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Abstract
In the present paper, we investigate the underlying Stokes complex structure of the Virtual
Element Method for Stokes and Navier–Stokes introduced in previous papers by the same
authors, restricting our attention to the two dimensional case.We introduce a Virtual Element
space Φh ⊂ H2(Ω) and prove that the triad {Φh, V h, Qh} (with V h and Qh denoting the
discrete velocity and pressure spaces) is an exact Stokes complex. Furthermore, we show
the computability of the associated differential operators in terms of the adopted degrees
of freedom and explore also a different discretization of the convective trilinear form. The
theoretical findings are supported by numerical tests.

Keywords Virtual elements · Stokes complex · Polygonal meshes

1 Introduction

The Virtual Element Method (VEM) was introduced in [6,7] as a generalization of the Finite
Element Method that allows to use general polygonal and polyhedral meshes. The VEM
enjoyed a good success in this recent years both in the mathematics and in the engineering
communities, a very brief list of papers being [5,8,11–14,19,21,23,24,34–36,38,40], while
for the specific framework of incompressible flows we refer to [3,9,10,17,18,25,33].

It was soon recognized that the more general construction of VEM, that is not limited to
polynomial functions on the elements, may allow for further interesting features in additional
to polytopal meshing. An example can be found in [9,10] where the authors developed a (con-
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forming) Virtual ElementMethod for the Stokes andNavier–Stokes problems that guarantees
a divergence free velocity, a property that yields advantages with respect to standard inf-sup
stable schemes (see for instance [29]). And, most importantly, the proposed approach fitted
quite naturally in the virtual element setting, so that the ensuing element is not particularly
complicated to code or to handle.

Our aim is to further develop the idea in [9,10], also in order to get a deeper understanding
of the underlying structure. In [22] the term “Stokes exact complex” was introduced; in
that paper the authors underline that, if a given velocity/pressure FE scheme is associated
to a discrete Stokes exact complex, then not only the existence of an unique solution is
guaranteed, but also the divergence-free character of the discrete velocity. In addition, this
allows to construct an equivalent curl formulation of the problem in a potential-like variable.
This matter is one of interest in the FEM community, see for instance [29,32], also due to
the difficulty in deriving exact Stokes complexes for Finite Elements, that often yield quite
“cumbersome” schemes.

In the present paper, we unveil the underlying 2D Stokes complex structure of the VEM
in [9,10] by introducing a Virtual Element space Φh ⊂ H2(Ω) and proving that the triad
{Φh, V h, Qh} (with V h and Qh velocity and pressure spaces of [10]) is an exact Stokes
complex. Furthermore, we show the computability of the associated differential operators
in terms of the adopted degrees of freedom (a key aspect in VEM discretizations) and we
explore also a different discretization of the convective trilinear form. As a byproduct of
the above exact-sequence construction, we obtain a discrete curl formulation of the Navier–
Stokes problem (set in the smaller space Φh) that yields the same velocity as the original
method (while the pressure needs to be recovered by solving a global rectangular system). For
completeness, we also briefly present and compare a stream-function formulation approach,
that is based on a direct discretization (with C1 Virtual Elements) of the continuous stream
function formulation of the problem. Some numerical tests are developed at the end of the
paper, in order to show the performance of the methods, also comparing aspects such as
condition number and size of the linear system. We note that a related study was developed
in [3], but only for the lowest order case without enhancements (that is, suitable for Stokes
but not for Navier–Stokes).

Thepaper is organized as follows. InSect. 2we review theNavier–Stokes problem in strong
and variational form, together with some basic theoretical facts. In Sect. 4 (after introducing
some preliminaries and definitions in Sect. 3) we review the Virtual scheme in [10], propose
a third option for the discretization of the convective term and extend the convergence results
also to this case. In Sect. 5 we introduce the space Φh together with the associated degrees of
freedom, prove the exact Stokes complex property and state the alternative curl formulation
for the discrete problem. In Sect. 6 we present a set of numerical tests, that also compare
the proposed method with a direct C1 discretization of the stream-function problem, briefly
described in the Appendix, that is not associated to a Stokes complex.

Throughout the paper, we will follow the usual notation for Sobolev spaces and norms
[1]. Hence, for an open bounded domain ω, the norms in the spaces Ws

p(ω) and L p(ω) are
denoted by ‖·‖Ws

p(ω) and ‖·‖L p(ω) respectively. Norm and seminorm in Hs(ω) are denoted

respectively by ‖·‖s,ω and |·|s,ω, while (·, ·)ω and ‖ · ‖ω denote the L2-inner product and the
L2-norm (the subscript ω may be omitted when ω is the whole computational domain Ω).
Moreover with a usual notation, the symbols ∇, Δ and ∇2 denote the gradient, Laplacian
and Hessian matrix for scalar functions, while �, ∇, and div denote the vector Laplacian,
the gradient operator and the divergence for vector fields. Furthermore for a scalar function
ϕ and a vector field v := (v1, v2) we set
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curl ϕ :=
(

∂ϕ

∂ y
, −∂ϕ

∂x

)
, curl v := ∂v2

∂x
− ∂v1

∂ y
, and ϕ × v := ϕ (−v2, v1) .

2 The Navier–Stokes Equation

We consider the steady Navier–Stokes equation on a polygonal simply connected domain
Ω ⊆ R

2 (for more details, see for instance [27])⎧⎪⎪⎪⎨
⎪⎪⎪⎩

find (u, p) such that

− ν �u + (∇u) u − ∇ p = f inΩ,

div u = 0 inΩ,

u = 0 on ∂Ω,

(1)

where u, p are the velocity and the pressure fields, respectively, ν ∈ R, ν > 0 is the viscosity
of the fluid and f ∈ [L2(Ω)]2 represents the external force. For sake of simplicity we here
consider Dirichlet homogeneous boundary conditions, different boundary conditions can be
treated as well. Problem (1) can be written in the equivalent rotational form⎧⎪⎪⎪⎨

⎪⎪⎪⎩

find (u, P) such that

− ν �u + (curl u) × u − ∇P = f inΩ,

div u = 0 inΩ,

u = 0 on ∂Ω.

(2)

Systems (1) and (2) are equivalent in the sense that the velocity solutions u coincide and
the rotational pressure solution P of Problem (2), the so-called Bernoulli pressure, and the
convective pressure solution p of Problem (1) are jointed by the relation

P := p − 1

2
u · u + λ , (3)

where, for the time being, λ denotes a suitable constant.
Let us consider the spaces

V := [H1
0 (Ω)

]2
, Q := L2

0(Ω) =
{
q ∈ L2(Ω) s.t.

∫
Ω

q dΩ = 0

}

endowed with natural norms

‖v‖V := |v|H1(Ω) , ‖q‖Q := ‖q‖L2(Ω).

Let us introduce the bilinear forms

a(·, ·) : V × V → R, a(u, v) :=
∫

Ω

∇u : ∇v dΩ, for all u, v ∈ V , (4)

b(·, ·) : V × Q → R b(v, q) :=
∫

Ω

q div v dΩ for all v ∈ V , q ∈ Q, (5)

and the trilinear forms

cconv(·; ·, ·) : V × V × V → R cconv(w; u, v) :=
∫

Ω

(∇u)w · v dΩ , (6)

cskew(·; ·, ·) : V × V × V → R cskew(w; u, v) := 1

2
cconv(w; u, v) − 1

2
cconv(w; v, u) ,

(7)

123



Journal of Scientific Computing (2019) 81:990–1018 993

crot(·; ·, ·) : V × V × V → R crot(w; u, v) :=
∫

Ω

(curlw × u) · v dΩ . (8)

Direct computations give that

cconv(u; u, v) = cskew(u; u, v) for all u, v ∈ V with div u = 0, (9)

cconv(u; u, v) = crot(u; u, v) + 1

2

∫
Ω

∇(u · u) v dΩ for all u, v ∈ V . (10)

In the following we denote with c(·; ·, ·) one of the trilinear forms listed above. Then a
standard variational formulation of Problem (1) is:⎧⎪⎨

⎪⎩
find (u, p) ∈ V × Q, such that

ν a(u, v) + c(u; u, v) + b(v, p) = ( f , v) for all v ∈ V ,

b(u, q) = 0 for all q ∈ Q.

(11)

From (10) it is clear that if c(·; ·, ·) = crot(·; ·, ·) we recover instead the variational formu-
lation of system (2) and the pressure solution p is actually the Bernoulli pressure P where λ

in (3) is the mean value of 1
2 u · u.

In the context of the analysis of incompressible flows, it is useful to introduce the concept
of Helmholtz–Hodge projector (see for instance [29, Lemma 2.6] and [26, Theorem 3.3]).
For every w ∈ [L2(Ω)]2 there exist w0 ∈ H(div; Ω) and ζ ∈ H1(Ω)/R such that

w = w0 + ∇ ζ, (12)

where w0 is L2-orthogonal to the gradients, that is (w0, ∇ϕ) = 0 for all ϕ ∈ H1(Ω) (which
implies, in particular, that w0 is solenoidal, i.e. divw0 = 0). The orthogonal decomposition
(12) is unique and is called Helmholtz–Hodge decomposition, and P(w) := w0 is the
Helmholtz–Hodge projector of w.

Combining the argument in [27, Theorem IV.2.2] and the definition of Helmholtz–Hodge
projector, it can be shown that in the diffusion dominated regime, i.e. under the assumption

(A0) γ := Ĉ ‖P( f )‖H−1

ν2
< 1 (13)

where Ĉ denotes the continuity constant of c(·; ·, ·) with respect to the V -norm, Problem
(11) is well-posed and the unique solution (u, p) ∈ V × Q satisfies

‖u‖V ≤ ‖P( f )‖H−1

ν
. (14)

Let us introduce the kernel of bilinear form b(·, ·) that corresponds to the functions in V
with vanishing divergence

Z := {v ∈ V s.t. b(v, q) = 0 for all q ∈ Q} . (15)

Then, Problem (11) can be formulated in the equivalent kernel form:{
find u ∈ Z, such that

ν a(u, v) + c(u; u, v) = ( f , v) = (P( f ), v) for all v ∈ Z.
(16)

If Ω is a simply connected domain, a well known result (see [27] for the details) states
that a vector function v ∈ Z if and only if there exists a scalar potential function ϕ ∈ H2(Ω),
called stream function such that

v = curl ϕ .
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Clearly the function ϕ is defined up to a constant. Let us consider the space

Φ := H2
0 (Ω) =

{
ϕ ∈ H2(Ω) s.t. ϕ = 0,

∂ϕ

∂n
= 0 on ∂Ω

}
(17)

endowed with norm

‖ϕ‖Φ := |ϕ|H2(Ω) for allϕ ∈ Φ.

Then, Problem (16) can be formulated in the following curl formulation:{
findψ ∈ Φ, such that

ν a(curlψ, curlϕ) + c(curlψ; curlψ, curlϕ) = ( f , curlϕ) for allϕ ∈ Φ.
(18)

Since the formulation (18) is equivalent to Problem (16) (in turn equivalent to Problem (11)),
the well-posedness of curl formulation follows from assumption (A0).

3 Definitions and Preliminaries

In the present section we introduce some basic tools and notations useful in the construction
and theoretical analysis of Virtual Element Methods. Let {Ωh}h be a sequence of decom-
positions of Ω into general polygonal elements E where hE is the diameter of E and
h := supE∈Ωh

hE . We suppose that for all h, each element E in Ωh fulfils the following
assumptions:

(A1) E is star-shaped with respect to a ball BE of radius ≥ 
 hE ,
(A2) the distance between any two vertexes of E is ≥ 
 hE ,

where 
 is a uniform positive constant. We remark that the hypotheses above, though not
too restrictive in many practical cases, can be further relaxed, as investigated in [8]. For any
E ∈ Ωh , using standard VEM notations, for n ∈ N let us introduce the spaces:

– Pn(E) the set of polynomials on E of degree ≤ n (with the extended notation
P−1(E) = ∅),

– P̂n/m(E) := Pn(E)/Pm(E) for m ≤ n denotes the polynomials in Pn(E) that are L2-
orthogonal to all polynomials of Pm(E),

– Bn(∂E) := {v ∈ C0(∂E) s.t. v|e ∈ Pn(e) for all edge e ⊂ ∂E}.
Note that

[Pn(E)]2 = ∇(Pn+1(E)) ⊕ x⊥
Pn−1(E) (19)

with x⊥ := (x2,−x1).

Remark 3.1 Note that (19) implies that the operator curl is an isomorphism from x⊥
Pn−1(E)

to the whole Pn−1(E), i.e. for any qn−1 ∈ Pn−1(E) there exists a unique pn−1 ∈ Pn−1(E)

such that

qn−1 = curl(x⊥ pn−1) .

On the other hand, we also have that

dim (Pn(E)) = (n + 2)(n + 1)

2
, dim (Bn(∂E)) = nE n, (20)

where nE is the number of edges (or the number of vertexes) of the polygon E .
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One core idea in the VEM construction is to define suitable (computable) polynomial
projections. For any n ∈ N and E ∈ Ωh we introduce the following polynomial projections:

– the L2-projection Π
0,E
n : L2(E) → Pn(E), given by

∫
E
qn(v − Π0,E

n v) dE = 0 for all v ∈ L2(E) and for all qn ∈ Pn(E), (21)

with obvious extension for vector functions Π
0,E
n : [L2(E)]2 → [Pn(E)]2, and tensor

functions �0,E
n : [L2(E)]2×2 → [Pn(E)]2×2,

– the H1-seminorm projection Π
∇,E
n : H1(E) → Pn(E), defined by

⎧⎪⎨
⎪⎩

∫
E

∇ qn · ∇(v − Π∇,E
n v) dE = 0 for all v ∈ H1(E) and for all qn ∈ Pn(E),

Π
0,E
0 (v − Π∇,E

n v) = 0 ,

(22)

with obvious extension for vector functions Π
∇,E
n : [H1(E)]2 → [Pn(E)]2.

In the following the symbol C will indicate a generic positive constant, independent of
the mesh size h, the viscosity ν and the constant γ appearing in (A0), but which may depend
on Ω , the integer k (representing the “polynomial” order of the method) and on the shape
constant 
 in assumptions (A1) and (A2). Furthermore, C may vary at each occurrence.

4 Virtual Elements Velocity–Pressure Formulation

In the present section we outline a short overview of the Virtual Element discretization of
the Navier–Stokes formulation presented in Problem (11). We will make use of various tools
from the virtual element technology, that will be described briefly; we refer the interested
reader to the papers [3,9,10,39]. We recall that in [9] a new family of Virtual Elements for
the Stokes Equation has been introduced. The core idea is to define suitable Virtual space
of velocities, associated to a Stokes-like variational problem on each element, such that the
discrete velocity kernel is pointwise divergence-free. In [39] has been presented an enhanced
Virtual space to be used in place of the original one, that, taking the inspiration from [2],
allows the explicit knowledge of the L2-projection onto the polynomial space Pk (being k
the order of the method). In [10] a Virtual Element scheme for the Navier–Stokes equation
in classical velocity–pressure formulation has been proposed. In the following we give some
basic tools and a brief overview of such scheme. We focus particularly on the virtual element
discretization of Navier–Stokes equation in rotation form (2) related to the trilinear form
crot(·; ·, ·) defined in (8) that was not treated in [10]. Specifically for the resulting discrete
schemewe develop the convergence analysis for both the Bernoulli and the related convective
pressure.

4.1 Virtual Elements Spaces

Let k ≥ 2 the polynomial degree of accuracy of the method. We consider on each element
E ∈ Ωh the finite dimensional local virtual space (cf. [10]):
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Fig. 1 DoFs for k = 2 (left), k = 3 (right). We denote DV1 with green dots, DV2 with orange dots, DV3 with
blue stars, DV4 with red squares (Color figure online)

V E
h :=

{
v ∈ [H1(E)]2 s.t.

(
v − Π

∇,E
k v, x⊥ p̂k−1

)
E

= 0 for all p̂k−1 ∈ P̂k−1/k−3(E)

⎧⎪⎨
⎪⎩

− �v − ∇s ∈ x⊥
Pk−1 ,

div v ∈ Pk−1(E) ,

v|∂E ∈ [Bk(∂E)]2 ,

for some s ∈ L2(E)/R

}
.

(23)

We here summarize the main properties of the virtual space V E
h (we refer [10,39] for a deeper

analysis):

– dimension: the dimension of V E
h is

dim
(
V E

h

)
= 2nE k + (k − 1)(k − 2)

2
+ (k + 1)k

2
− 1, (24)

where nE is the number of vertexes of E ;
– degrees of freedom: the following linear operatorsDV, split into four subsets (see Fig. 1)

constitute a set of DoFs for V E
h :

– DV1: the values of v at the vertexes of the polygon E ,
– DV2: the values of v at k − 1 distinct points of every edge e ∈ ∂E ,
– DV3: the moments of v∫

E
v · x⊥ pk−3 dE for all pk−3 ∈ Pk−3(E),

– DV4: the moments of div v∫
E
(div v) qk−1 dE for all qk−1 ∈ Pk−1(E)/R;

– projections: the DoFs DV allow us to compute exactly (cf. (22) and (21))

Π
∇,E
k : V E

h → [Pk(E)]2, Π
0,E
k : V E

h → [Pk(E)]2,
�

0,E
k−1 : ∇(V E

h ) → [Pk−1(E)]2×2,

in the sense that, given any vh ∈ V E
h , we are able to compute the polynomials Π

∇,E
k vh ,

Π
0,E
k vh and �

0,E
k−1∇vh only using, as unique information, the degree of freedom values

DV of vh .
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The global virtual element space is obtained as usual by combining the local spaces V E
h

accordingly to the local degrees of freedom, as in standard finite elements and considering
the homogeneous boundary conditions. We obtain the global space

V h := {v ∈ [H1
0 (Ω)]2 s.t. v|E ∈ V E

h for all E ∈ Ωh} . (25)

The space V h has an optimal interpolation order of accuracy with respect to k ≥ 2 (see
Theorem 4.1 in [10]). The pressure space is simply given by the piecewise polynomial
functions

Qh := {q ∈ L2
0(Ω) s.t. q|E ∈ Pk−1(E) for all E ∈ Ωh}, (26)

with the obvious associated set of global degrees of freedom:

– DQ: the moments up to order k − 1 of q , i.e.∫
E
q pk−1 dE for all pk−1 ∈ Pk−1(E) and for all E ∈ Ωh .

A crucial observation is that, by definitions (25) and (26), it holds

div V h ⊆ Qh . (27)

Therefore the discrete kernel

Zh := {vh ∈ V h s.t. b(vh, qh) = 0 for all qh ∈ Qh}, (28)

is a subspace of the continuous kernel Z (cf. (15)), i.e.

Zh ⊆ Z . (29)

This leads to a series of important advantages, as explored in [10,29,30,39]. Finally, we
remark that the kernel Zh is obtained by gluing the local kernels explicitly defined by

ZE
h :=

{
v ∈ [H1(E)]2 s.t.

(
v − Π

∇,E
k v, x⊥ p̂k−1

)
E

= 0 for all p̂k−1 ∈ P̂k−1/k−3(E)

⎧⎪⎨
⎪⎩

− �v − ∇s ∈ x⊥
Pk−1 ,

div v = 0 ,

v|∂E ∈ [Bk(∂E)]2 ,

for some s ∈ L2(E)/R

}
.

(30)

It can be shown that v ∈ ZE
h if and only if DV4 = 0 and DV1 and DV2 are such that∫

∂E v · n dS = 0. Therefore, employing (24) and (20), the dimension of ZE
h is

dim
(
ZE
h

)
= dim

(
V E

h

)
− number (DV4) − 1 = 2nEk + (k − 1)(k − 2)

2
− 1, (31)

where nE is the number of vertexes of E .

4.2 Discrete Bilinear forms and Load Term Approximation

In this subsection, we briefly describe the construction of a discrete version of the bilinear
form a(·, ·) (cf. (4)) and trilinear forms c(·; ·, ·) (cf. (6), (7), (8)). We can follow in a rather
slavish way the procedure initially introduced in [6] for the Laplace problem and further
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developed in [9,10,39] for flow problems. First, we decompose into local contributions the
bilinear form a(·, ·) and the trilinear forms c(·; ·, ·) by considering:
a(u, v) =:

∑
E∈Ωh

aE (u, v) , c(w; u, v) =:
∑
E∈Ωh

cE (w; u, v) for allw, u, v ∈ V .

Therefore, following a standard procedure in the VEM framework, we define a computable
discrete local bilinear form

aE
h (·, ·) : V E

h × V E
h → R (32)

approximating the continuous form aE (·, ·), and defined by
aEh (uh, vh) := aE

(
Π

∇,E
k uh, Π

∇,E
k vh

)
+ SE

(
(I − Π

∇,E
k )uh, (I − Π

∇,E
k )vh

)
(33)

for all uh, vh ∈ V E
h , where the (symmetric) stabilizing bilinear form SE : V E

h × V E
h → R

satisfies

α∗aE (vh, vh) ≤ SE (vh, vh) ≤ α∗aE (vh, vh) for all vh ∈ V E
h ,Π

∇,E
k vh = 0 (34)

with α∗ and α∗ positive constants independent of the element E . For instance, a standard
choice is SE (uh, vh) = ∑NDoFs

i=1 DVi (uh)DVi (vh) where DVi (vh) denotes the i-th DoFs
value of vh , opportunely scaled. It is straightforward to check that the definition of the H1-
seminorm projection Π

∇,E
k (cf. (22)) and (34) imply that the discrete form aE

h (·, ·) satisfies
the well-known consistency and stability properties (see [10] for further details). The global
approximated bilinear form ah(·, ·) : V h × V h → R is defined by simply summing the local
contributions:

ah(uh, vh) :=
∑
E∈Ωh

aE
h (uh, vh) for all uh, vh ∈ V h . (35)

We now define discrete versions of the forms c(·; ·, ·). Referring to (6), (7) and (8), we set
for all wh, uh, vh ∈ V E

h :

cEconv,h(wh; uh, vh) :=
∫
E

[(
�

0,E
k−1 ∇uh

) (
Π

0,E
k wh

)]
· Π

0,E
k vh dE (36)

cEskew,h(wh; uh, vh) := 1

2
cEconv,h(w; u, v) − 1

2
cEconv,h(w; v, u) (37)

cErot,h(wh; uh, vh) :=
∫
E

[(
Π

0,E
k−1 curlwh

)
×
(
Π

0,E
k uh

)]
· Π

0,E
k vh dE (38)

and note that all quantities in the previous formulas are computable. Let cEh (·; ·, ·) be one of
the discrete trilinear forms listed above. As usual, we define the global approximated trilinear
form by adding the local contributions:

ch(wh; uh, vh) :=
∑
E∈Ωh

cEh (wh; uh, vh), ∀wh, uh, vh ∈ V h . (39)

The forms ch(·; ·, ·) are immediately extendable to the whole V (simply apply the same
definition for any w, u, v ∈ V ). Moreover, the trilinear forms ch(·; ·, ·) are continuous on
V , i.e. there exists a uniform bounded constant Ĉh such that

|ch(w; u, v)| ≤ Ĉh ‖w‖V‖u‖V‖v‖V ∀w, u, v ∈ V . (40)
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The proof of the continuity for the trilinear forms cconv,h(·; ·, ·) and cskew,h(·; ·, ·) can be
found in Proposition 3.3 in [10]. Analogous techniques can be used to prove the continuity
of the trilinear form crot,h(·; ·, ·). On the other hand, For what concerns b(·, ·) (cf. (5)),
as noticed in [9], we do not need to introduce any approximation, since it can be exactly
computed by the DoFs DV .

The last step consists in constructing a computable approximation of the right-hand side
( f , v) in (11). We define the approximated load term f h as

f h |E := Π
0,E
k f for all E ∈ Ωh . (41)

4.3 The Discrete Problem

Referring to (25), (26), (35), (39), (5) and (41), the virtual element approximation of the
Navier–Stokes equation in the velocity–pressure formulation is given by:⎧⎪⎨

⎪⎩
find (uh, ph) ∈ V h × Qh, such that

ν ah(uh, vh) + ch(uh; uh, vh) + b(vh, ph) = ( f h, vh) for all vh ∈ V h,

b(uh, qh) = 0 for all qh ∈ Qh,

(42)

with ch(·; ·, ·) given by (36), (37) or (38). Whenever the choice (38) is adopted, the pressure
output in (42) approximates the Bernoulli pressure P in (3) instead of the convective pressure
p. Recalling the kernel inclusion (29), Problem (42) can be also formulated in the equivalent
kernel form{

find uh ∈ Zh, such that

ν ah(uh, vh) + ch(uh; uh, vh) = ( f h, vh) for all vh ∈ Zh .
(43)

The well-posedness of the discrete problems is stated in the following theorem. Note that an
analogous result could be stated making use of a discrete Helmholtz–Hodge projector in the
spirit of [26], but the result below is more suitable to the current presentation.

Theorem 4.1 Under the assumption

(A0)h γh := Ĉh ‖ f h‖Z∗
h

α2∗ ν2
< 1 , (44)

with the usual definitionof dual norm.Problem (42)hasaunique solution (uh, ph) ∈ V h×Qh

such that

‖uh‖V ≤ ‖ f h‖Z�
h

α∗ ν
. (45)

Proof The proof of this result is essentially identical to that of Theorem 3.5 in [10] when
ch(·; ·, ·) is given by (37). The proof for the choices of ch(·; ·, ·) given by (36) or (38) can
be obtained repeating the same arguments. ��

In addition, we have the following approximation results (see Theorem 4.6 and Remark
4.2 in [10] for the choices (36) and (37)).

Theorem 4.2 Under the assumptions (A0) and (A0)h, let (u, p) ∈ V × Q be the solution of
Problem (11) and (uh, ph) ∈ V h × Qh be the solution of Problem (42). Assuming moreover
u, f ∈ [Hs+1(Ω)]2 and p ∈ Hs(Ω), 0 < s ≤ k, then

‖u − uh‖V ≤ hs F(u; ν, γ, γh) + hs+2H(ν, γh) | f |s+1 (46)
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‖p − ph‖Q ≤ C hs |p|s + hs K(u; ν, γ, γh) + C hs+2 | f |s+1 (47)

for a suitable functions F , H, K independent of h.

Following the same steps as in [10], Theorem 4.2 easily extends also to the choice (38).
In such case we preliminary observe that if the velocity solution u ∈ [Hs+1(Ω)]2 and the
convective pressure p ∈ Hs(Ω) then the Bernoulli pressure P ∈ Hs(Ω). In fact, recalling
(3) by the Hölder inequality and Sobolev embedding Hs+1(Ω) ⊂ Ws

4 (Ω), we recover

‖P‖s ≤ ‖p‖s + 1

2
‖u · u‖s + ‖λ‖s ≤ ‖p‖s + 1

2
‖u‖2Ws

4
+ ‖λ‖s

≤ ‖p‖s + 1

2
‖u‖2s+1 + |λ||Ω|1/2 .

Now let (uh, Ph) be the solution of the virtual problem (42) with the trilinear form (38) and
(u, P) be the solution of the Navier–Stokes equation (2). Then (47) is substituted by

‖P − Ph‖Q ≤ C hs |P|s + hs K(u; ν, γ, γh) + C hs+2 | f |s+1 . (48)

In such case the following computable approximation ph of the convective pressure p is
available:

ph |E := Ph |E + 1

2
Π

0,E
k uh · Π

0,E
k uh − λh, (49)

where λh is the mean value of the piecewise polynomial function 1
2 Π

0,E
k uh · Π

0,E
k uh . The

optimal order of accuracy for the convective pressure can established as follows. Definitions
(3) (taking λ as the mean value of 1

2 u · u) and (49) easily imply

‖p − ph‖Q ≤ ‖P − Ph‖Q +
∥∥∥∥12
⎛
⎝u · u −

∑
E∈Ωh

Π
0,E
k uh · Π

0,E
k uh

⎞
⎠− (λ − λh)

∥∥∥∥
Q

≤ ‖P − Ph‖Q + 1

2

∥∥∥∥u · u −
∑
E∈Ωh

Π
0,E
k uh · Π

0,E
k uh

∥∥∥∥
Q

= ‖P − Ph‖Q + 1

2

( ∑
E∈Ωh

∥∥∥u · u − Π
0,E
k uh · Π

0,E
k uh

∥∥∥2
Q,E

)1/2

=: ‖P − Ph‖Q + 1

2

( ∑
E∈Ωh

μ2
E

)1/2
,

(50)

where in the second inequality we have used the fact that all terms inside the norms are zero
averaged. The first term in the right hand side of (50) is bounded by (48). Whereas for the
terms μE the triangular inequality and the Hölder inequality entail

μE ≤ ‖u · u − Π
0,E
k u · Π

0,E
k u‖E + ‖Π0,E

k u · Π
0,E
k u − Π

0,E
k uh · Π

0,E
k uh‖E

= ‖(u − Π
0,E
k u) · (u + Π

0,E
k u)‖E + ‖Π0,E

k (u − uh) · Π
0,E
k (u + uh)‖E

≤ ‖u − Π
0,E
k u‖L4(E) ‖u + Π

0,E
k u‖L4(E)

+ ‖Π0,E
k (u − uh)‖L4(E) ‖Π0,E

k (u + uh)‖L4(E) .

(51)

Using the Sobolev embedding H1(Ω) ⊂ L4(Ω), the continuity of the projection Π
0,E
k

with respect to the L4-norm and the H1-norm (see, for instance, [10]), and polynomial
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approximation estimates on star shaped polygons (see [15]), from (51) we infer

μE ≤ ‖u − Π
0,E
k u‖V ,E ‖u + Π

0,E
k u‖V ,E + ‖u − uh‖L4(E) ‖u + uh‖L4(E)

≤ C hs |u|s+1,E ‖u‖V ,E + ‖u − uh‖V ,E ‖u + uh‖V ,E

≤ C hs |u|s+1,E ‖u‖V ,E + ‖u − uh‖V ,E
(‖u‖V ,E + ‖uh‖V ,E

)
.

(52)

Combining bound (52) with the Hölder inequality for sequences, the velocity error estimate
(46) and with the stability estimates (14) and (45), it follows
( ∑

E∈Ωh

μ2
E

)1/2

≤
( ∑

E∈Ωh

C h2s |u|2s+1,E ‖u‖2V ,E +
∑
E∈Ωh

‖u − uh‖2V ,E (‖u‖2V ,E + ‖uh‖2V ,E )
)1/2

≤ C hs |u|s+1 ‖u‖V + ‖u − uh‖V (‖u‖V + ‖uh‖V )

≤ C hs |u|s+1
‖P( f )‖H−1

ν
+ ‖u − uh‖V

(‖P( f )‖H−1

ν
+ ‖ f h‖Z∗

h

α∗ ν

)

≤ hs L(u, f ; ν, γ, γh) + hs+2 I( f ; ν, γh)

(53)

for a suitable functions L and I independent of h. Finally, inserting estimates (48) and (53)
in (50) we obtain the optimal convergence result for the convective pressure also for choice
(38).

In the context of the approximation of the Navier–Stokes equation, a numerical method is
said to be pressure-robust (see e.g. [29]) if the discrete velocity solution depends only on the
Helmholtz–Hodge projector P( f ) of the load f (as it happens for the exact velocity field).
In particular, assume that the load in (11) is a gradient field, i.e. f = ∇ζ , then P(∇ζ ) = 0
and thus the solution of (1) satisfies u = 0. The discrete velocity solution uPRh computed by
means of a pressure-robust method also satisfies uPRh = 0 , while a generic inf-sup stable
scheme does not guarantee such property.

The proposed VEM scheme (42) is divergence free (namely Zh ⊂ Z), which leads to
certain benefits when compared to standard inf-sup stable elements, that enforce the div-free
condition only in a relaxed sense [10]. On the other hand, method (42) is not pressure-robust.
The discrete velocity solution uVEMh depends (although “weakly”) on the full load and not
only on its Helmholtz–Hodge projector. For instance, when the load is a gradient field, from
(45) and since (∇ζ, zh) = 0 for all zh ∈ Z∗

h , one can easily derive

‖uVEMh ‖V ≤ ‖ f h‖Z�
h

α∗ ν
= ‖ f h − f ‖Z�

h

α∗ ν
≤ C

hs+2

ν
| f |s+1,

for s ≤ k, where we assume f ∈ [Hs+1(Ω)]2 (it is actually sufficient that this holds
separately in each mesh element). Notice that in the same situation the velocity solution of
classical mixed finite element methods would have the form (again s ≤ k)

‖uFEMh ‖V ≤ C
hs

ν
| f |s−1 .

Hence the proposed method is not pressure-robust, but the dependence on the full load is
much weaker with respect to standard mixed schemes. For a deeper analysis of pressure-
robust methods we refer to [29] and the references therein.
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Remark 4.1 A careful investigation of the proof of Theorem 4.2 (see Lemma 4.3 in [10])
shows that if the exact velocity solution u ∈ [Pk(Ω)]2 and the trilinear form cconv,h(·; ·, ·)
or the trilinear form crot,h(·; ·, ·) are adopted in (42), the corresponding schemes provide a
higher order approximation errors, that are respectively

‖u − uh‖V ≤ C hk+2 ‖(∇u)u‖k+1 + C hk+2 ‖ f ‖k+1 ,

‖u − uh‖V ≤ C hk+2 ‖(curl u) × u‖k+1 + C hk+2 ‖ f ‖k+1 .

These are to be compared with the error of standard inf-sup stable Finite Elements, that in
the same situations would be O(hk) due to the pressure contribution to the velocity error.
On the other hand, in the same situation a (consistent) pressure robust scheme would attain
machine precision error, assuming all integrals are computed “exactly”.

Remark 4.2 Another interesting aspect related to method (42) is the so called “reduced”
version. Noting that the discrete solution satisfies div uh = 0, one can immediately set to
zero all DV4 degrees of freedom, and correspondingly eliminate also the associated (locally
zero average) discrete pressures. The local reduced velocity space becomes

Ṽ
E
h :=

{
v ∈ V E

h s.t. div v ∈ P0(E)
}

,

with the obvious global counterpart Ṽ h , while the reduced pressure space is given by the
piecewise constant functions. The resulting equivalent scheme has much less internal-to-
element velocity DoFs and only piecewise constant pressures (we refer to [9,10] for further
details).

5 Virtual Elements Stokes Complex and curl Formulation

In this section,we present theVEMstream function space and the associated StokesComplex.

5.1 Virtual Element Space of the Stream Functions

The aim of the present section is to introduce a suitable virtual space Φh approximating the
continuous space of the stream functions Φ defined in (17), such that

curlΦh = Zh . (54)

In particular this will allow to exploit the kernel formulation (43) in order to define an
equivalent VEM approximation for the Navier–Stokes equation in curl form (cf. (18)). Note
that a related approach, but limited to a lowest order case and suitable only for the Stokes
problem, was presented in [3].

In order to construct the space of the virtual stream functionsΦh , we proceed step by step,
following the enhanced technique used in Sect. 4.2. On each element E ∈ Ωh we consider
the enlarged local virtual space for k ≥ 2:

Ψ E
h :=

{
ϕ ∈ H2(E) s.t. ϕ|∂E ∈ Bk+1(∂E) , (∇ϕ)|∂E ∈ [Bk(∂E)]2 , Δ2ϕ ∈ Pk−1(E)

}
.

(55)
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Fig. 2 Degrees of freedom for k = 2 (left), k = 3 (right). We denote D�1 with blue dots, D�2 with red
circles, D�3 with blued dots, D�4 with green lines, D�5 with yellow stars (Color figure online)

Then, we define the enhanced space of the stream functions

ΦE
h :=

{
ϕ ∈ Ψ E

h s.t.
(
curlϕ − Π

∇,E
k (curlϕ), x⊥ p̂k−1

)
E

= 0for all p̂k−1 ∈ P̂k−1/k−3(E)

}
.

(56)

It is straightforward to see that Pk+1(E) ⊆ ΦE
h . We are now ready to introduce a suitable set

of degrees of freedom for the local space of virtual stream functions ΦE
h . Given a function

ϕ ∈ ΦE
h , we take the following linear operators D�, split into five subsets (see Fig. 2)

– D�1: the values of ϕ at the vertices of the polygon E ,
– D�2: the values of ∇ϕ at the vertices of the polygon E ,
– D�3: the values of ϕ at k − 2 distinct points of every edge e ∈ ∂E ,
– D�4: the values of

∂ϕ
∂n at k − 1 distinct points of every edge e ∈ ∂E ,

– D�5: the moments of curl ϕ∫
E
curl ϕ · x⊥ pk−3 dE for all pk−3 ∈ Pk−3(E).

We note that the linear operators D�1 and D�2 are always needed to enforce the C1-
continuity at the vertices. Moreover it is immediate to check that for any stream function
ϕ ∈ ΦE

h (the same holds for Ψ E
h ), the linear operator evaluations of D�1, D�2, D�3, D�4

uniquely determine ϕ and its gradient on ∂E . We now prove the following result.

Proposition 5.1 The linear operators D� are a unisolvent set of degrees of freedom for the
virtual space of stream functions ΦE

h and the dimension of ΦE
h is

dim
(
ΦE

h

)
= 2 nE k + (k − 1)(k − 2)

2
(57)

where as usual nE denotes the number of vertices of the polygon E.

Proof We preliminary prove that the linear operators D� plus the additional moments of
curl ϕ

D�5 :
∫
E
curl ϕ · x⊥ p̂k−1 dE for all p̂k−1 ∈ P̂k−1/k−3(E)

constitute a set of degrees of freedom for Ψ E
h . An integration by parts and recalling

Remark 3.1 imply that the linear operators D�5 + D�5 are equivalent to prescribe the
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moments
∫
E ϕ qk−1 dE for all qk−1 ∈ Pk−1(E). Indeed, Remark 3.1 and simple computa-

tions give∫
E

ϕ qk−1 dE =
∫
E

ϕ curl(x⊥ pk−1) dE

=
∫
E

(curl ϕ) · x⊥ pk−1 dE −
∑
e∈∂E

∫
e
ϕ x⊥ pk−1 · te dS ,

where the boundary integral is computable using the DoFs values. Now the assertion follows
by a direct application of Proposition 4.2 in [16]. In particular, from (20) it holds that

dim
(
Ψ E
h

)
= 2 nE k + k(k + 1)

2
. (58)

The next step is to prove that the linear operators D� are unisolvent for ΦE
h . From (20) it

holds

dim
(̂
Pk−1/k−3(E)

) = dim (Pk−1(E)) − dim (Pk−3(E)) = 2 k − 1 .

Hence, neglecting the independence of the additional (2 k−1) conditions in (56), the dimen-
sion of ΦE

h is bounded from below by

dim
(
ΦE

h

)
≥ dim

(
Ψ E
h

)
− (2 k − 1) = 2 nE k + (k − 1)(k − 2)

2
= number of DoFsD�. (59)

Due to (59), the proof is concluded if we show that a function ϕ ∈ ΦE
h such that D�(ϕ) = 0

is identically zero. In such case, ϕ = 0 and ∇ϕ = 0 on the skeleton ∂E and this entails
curl ϕ = 0 on ∂E . Moreover we note that in this case the Π

∇,E
k (curl ϕ) = 0; as a matter of

fact, by definition (22), we get∫
E

∇(curl ϕ) : ∇ pk dE = −
∫
E
curl ϕ · � pk dE +

∫
∂E

curl ϕ · ∇ pk nE dS .

The boundary integral is zero being curl ϕ = 0 on the skeleton ∂E . For the internal integral,
in the light of (19), let us set � pk = ∇qk−1 + x⊥ pk−3 with qk−1 ∈ Pk−1(E)/R. Then we
infer ∫

E
∇(curl ϕ) : ∇ pk dE = −

∫
E
curl ϕ · ∇qk−1 dE −

∫
E
curl ϕ · x⊥ pk−3 dE

=
∑
e∈∂E

∫
e
ϕ

∂qk−1

∂t
dS −

∫
E
curl ϕ · x⊥ pk−3 dE = 0 ,

where the boundary integral is zero since ϕ = 0 on ∂E , whereas the second term is zero since
D�5(ϕ) = 0. In particular we proved that, since Π

∇,E
k (curl ϕ) = 0, recalling (56) also the

moments D�5 of ϕ are zero. Since D�(ϕ) = 0 by assumption, recalling that ϕ ∈ ΦE
h ⊂ Ψ E

h
and that {D�, D�5} are a set of degrees of freedom for Ψ E

h , it follows ϕ = 0. ��
Remark 5.1 An alternative way to define a unisolvent set of DoFs for the space ΦE

h is to
provide in the place of D�5 the following operators (see [16]):

– D̃�5 : the moments of ϕ against the polynomial of degree up to degree k − 3∫
E

ϕ pk−3 dE for all pk−3 ∈ Pk−3(E), (60)
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but such choice is less suitable for the exact sequence construction of the present work.

The global virtual space Φh is obtained by combining the local spaces ΦE
h accordingly to

the local degrees of freedom, taking into account the boundary conditions:

Φh :=
{
ϕ ∈ Φ s.t. ϕ|E ∈ ΦE

h for all E ∈ Ωh

}
. (61)

The dimension is

dim (Φh) = 3 nV + (2 k − 3)ne + nP
(k − 1)(k − 2)

2
, (62)

where nP (resp., ne and nV ) is the number of elements (resp., internal edges and vertices) in
the decomposition Ωh .

5.2 Virtual Element Stokes Complex

The aim of the present subsection is to provide a virtual element counterpart of the continuous
Stokes complex [28]:

0
i−−−−−→ H2

0 (Ω)
curl−−−−−→ [H1

0 (Ω)]2 div−−−−−→ L2
0(Ω)

0−−−−→ 0 , (63)

where i denotes the mapping that to every real number r associates the constant function
identically equal to r and we recall that a sequence is exact if the image of each operator
coincides with the kernel of the following one. The case without boundary conditions is
handled analogously.

We start by characterizing the space ΦE
h as the space of the stream functions associated

to the discrete kernel ZE
h .

Proposition 5.2 For any E ∈ Ωh let ZE
h and ΦE

h be the spaces defined in (30) and (56),
respectively. Then, it holds that

curlΦE
h = ZE

h .

Proof For any ϕh ∈ ΦE
h , we show that the function vh := curl ϕh ∈ ZE

h . First of all, it is
straightforward to check that

div vh = div (curl ϕh) = 0 . (64)

Concerning the condition on the skeleton ∂E , we observe that ϕh |∂E ∈ Bk+1(∂E) and
(∇ϕh)|∂E ∈ [Bk(∂E)]2 easily imply that

vh |∂E = (curl ϕh)|∂E ∈ [Bk(∂E)]2 . (65)

Inside the element, by simple calculations and by definition (56), we infer curl�vh =
curl�(curl ϕh) = Δ2ϕh ∈ Pk−1(E). In the light of Remark 3.1, the previous relation is
equivalent to

curl�vh ∈ curl
(
x⊥

Pk−1(E)
)

.

Therefore, there exists pk−1 ∈ Pk−1(E) such that curl(�vh − x⊥ pk−1) = 0. Since E is
simply connected, there exists s such that �vh − x⊥ pk−1 = ∇s. Thus we have shown that

(�vh − ∇ s) ∈ x⊥
Pk−1(E) . (66)
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Moreover, by definition (56), for all p̂k−1 ∈ P̂k−1/k−3(E) it holds
(
vh − Π

∇,E
k vh, x⊥ p̂k−1

)
E

=
(
curlϕh − Π

∇,E
k (curlϕh), x⊥ p̂k−1

)
E

= 0 . (67)

At this point is clear that (64), (65), (66), (67) and definition (30), imply vh = curl ϕh ∈ ZE
h

for any scalar potentialϕh ∈ ΦE
h , i.e. curlΦ

E
h ⊆ ZE

h . The proof now followsby a dimensional
argument. In fact, from (57) and (31) easily follows that

dim
(
curl(ΦE

h )
)

= dim
(
ΦE

h

)
− 1 = 2 nE k + (k − 2)(k − 1)

2
− 1 = dim

(
ZE
h

)
.

Therefore we can conclude that curlΦE
h = ZE

h for all E ∈ Ωh . ��

Remark 5.2 Given any ϕh ∈ ΦE
h , from the degrees of freedom values D� of ϕh , we are able

to compute the DoFs values DV of curl ϕh . In particular it holds that

DV3(curl ϕh) = D�5(ϕh) and DV4(curl ϕh) = 0 .

Therefore, for any ϕh ∈ ΦE
h , the DoFs D� allow to compute the polynomial projections

Π
∇,E
k (curl ϕh), Π

0,E
k (curl ϕh) and �

0,E
k−1∇(curl ϕh).

Proposition 5.3 For any E ∈ Ωh let V E
h be the space defined in (23). Then, it holds that

div V E
h = Pk−1(E) .

Proof We show briefly the simple proof. Let pk−1 ∈ Pk−1(E), then we need to show that
there exists vh ∈ V E

h such that div vh = pk−1. We construct vh by defining its degrees of
freedom DV(vh). Let us set DV3(vh) = 0, and

DV4(vh) =
∫
E
pk−1 qk−1 dE for all qk−1 ∈ Pk−1(E)/R. (68)

For the boundary DoFs, we chose DV1(vh) and DV2(vh) such that∫
∂E

vh · n dS =
∫
E
pk−1 dE . (69)

Note that for doing this we essentially require to fix the value of the normal component of
vh on each edge of E (that is available being k ≥ 2). Recalling that div vh ∈ Pk−1(E) by
(23), equations (68) and (69) imply div vh = pk−1. ��

As a consequence of Propositions 5.2 and 5.3we have the following Stokes exact sequence
for our discrete VEM spaces and its reduced version (see also Figs. 3 and 4).

Theorem 5.1 Let ΦE
h and V E

h be the spaces defined in (56) and (23), respectively, and let

Ṽ
E
h denote the reduced velocity space, see Remark 4.2. Then, the following sequences are

exact

R
i−−−−→ ΦE

h
curl−−−−−→ V E

h
div−−−−→ Pk−1(E)

0−−−−→ 0 , (70)

R
i−−−−→ ΦE

h
curl−−−−−→ Ṽ

E
h

div−−−−→ P0(E)
0−−−−→ 0 . (71)
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Fig. 3 H2-conforming stream virtual element ΦE
h (left), H1-conforming virtual velocity space V E

h (middle),
and pressure space Pk−1(E) (right) satisfying the exact complex (70)

Fig. 4 Reduced version of the Virtual Element Stokes complex (see Remark 4.2)

Remark 5.3 In terms of degrees of freedom, our lowest order element (when restricted to
triangles!) can be compared with the Zienkiewicz element [20,28], all other FEM elements
in the literature being either higher order or needing a sub-element partition and more DoFs.
The reduced version of ourVEMelement for k = 2 (see Remark 4.2 and Fig. 4) has piecewise
constant pressures and no internal degrees of freedom for velocities, and thus in terms of
degrees of freedom exactly corresponds to the above finite element (the difference is that we
use theVE approach instead of introducing rational basis functions). But note that the element
here presented yields O(h2) convergence rate for velocities and also for the local pressure
average (full O(h2) pressure convergence can be recovered by a local post-processing),
instead of linear convergence as [28]. In addition, we avoid integration of rational functions.
Clearly, this comes at the price of having a virtual formulation and thus the absence of an
explicit expression of the shape functions.

The following results are the global counterpart of Proposition 5.2 and Theorem 5.1.

Proposition 5.4 Let Zh and Φh be the spaces defined in (28) and (61), respectively. Then, it
holds that

curlΦh = Zh .

Proof We note that Proposition 5.2 endowed with the boundary condition in the definitions
(28) and (61) imply curlΦh ⊆ Zh . The proof as before follows by a dimensional argument.
From (31) we infer that

dim (Zh) = 2 nV + 2(k − 1)ne + nP

(
(k − 1)(k − 2)

2
− 1

)
,

where we recall nP (resp., ne and nV ) is the number of elements (resp., internal edges and
vertices) in the decomposition Ωh . Therefore from (62) we obtain

dim (curl(Φh)) − dim (Zh) = dim (Φh) − dim (Zh) − 1 = nV − ne + nP − 1 = 0
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for the Euler formula. ��
Theorem 5.2 Let ΦE

h , V h and Qh be the spaces defined in (61), (25) and (26), respectively,
and let Ṽ h and Q̃h denote the reduced velocity space and the piecewise constant pressures,
respectively, see Remark 4.2. Then, the following sequences are exact

0
i−−−−→ Φh

curl−−−−−→ V h
div−−−−→ Qh

0−−−−→ 0 , (72)

0
i−−−−→ Φh

curl−−−−−→ Ṽ h
div−−−−→ Q̃h

0−−−−→ 0 . (73)

The case without boundary conditions follows analogously.

5.3 The Discrete Problem

In the light of Proposition 5.2, referring to (43) and (61) we can set the virtual element
approximation of the Navier–Stokes equation in the curl formulation:⎧⎪⎨

⎪⎩
findψh ∈ Φh, such that

ν ah(curlψh, curl ϕh) + ch(curlψh; curlψh, curl ϕh) = ( f h, curl ϕh)

for allϕh ∈ Φh .

(74)

Due to Proposition 5.4, Problem (74) is equivalent to (43). We remark that all forms in (74)
are exactly computable by the DoFs D�. In fact, recalling Remark 5.2, the polynomials
Π

∇,E
k (curl ϕh), Π

0,E
k (curl ϕh) and �

0,E
k−1∇(curl ϕh) are computable on the basis of D�, so

that, referring to (35), (39) and (41), we infer that

ah(curl ·, curl ·) , ch(curl ·; curl ·, curl ·) , ( f h, curl ·)
are exactly computable from DoFsD�, see also Remark 6.1. The well-posedness of Problem
(74) under the assumption (A0)h immediately follows from Theorem 5.2. In fact the curl
operator on the global space Φh is an isomorphism into Zh . Owing to this isomorphism,
the existence and uniqueness result of Theorem 4.1 carry over to Problem (74), yielding the
following theorem.

Theorem 5.3 Under the assumption (A0)h Problem (74) has a unique solution ψh ∈ Φh

such that

‖ψh‖Φ ≤ ‖ f h‖Z∗
h

α∗ ν
. (75)

The convergence of the discrete solution curlψh of (74) to the continuous solution curl ϕ
of (18) follows immediately from Theorem 4.2, taking u = curl ϕ and uh = curl ϕh .

Clearly Problem (74) does not provide any information on the pressure p. Nevertheless,
the Stokes complex associated to the proposed scheme turns out to be very helpful if we are
interested in computing suitable approximation ph of p. Indeed referring to (25) and (42),
starting from the solution ψh of Problem (74), we infer the following problem⎧⎪⎨

⎪⎩
find ph ∈ Qh, such that

b(vh, ph) = −ν ah(curlψh, vh) − ch(curlψh; curlψh, vh) + ( f h, vh)

for all vh ∈ V h .

(76)

Since dim(V h) > dim(Qh), the previous system, is actually an overdetermined system, i.e.
there are more equations than unknowns. Nevertheless the well-posedness of Problem (76)
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is guaranteed by Theorem 4.1. We refer to Sect. 6 for a deeper analysis and computational
aspects of (76).

We stress that the curl virtual formulation (74) exhibits important differences from the
computational point of view compared with the velocity–pressure formulation (42). First
of all the linear system associated to Problem (74) has 2(nP − 1) less DoFs than Problem
(42), even if considering its equivalent reduced form (see Remark 4.2). Moreover the first
iteration of the Newton method applied to the the non-linear virtual stream formulation (74)
results in a linear system which is symmetric and positive definite, whereas applied to the
virtual element method (42) in velocity–pressure formulation leads to an indefinite linear
system. These advantages come at the price of a higher condition number of the involved
linear systems.

Remark 5.4 Simple integration by parts gives ( f , curl ϕ) = (curl f , ϕ) for any ϕ ∈ Φ. By
Remark 5.1, the DoFs D� allow us to compute the L2-projection Π

0,E
k−1 : ΦE

h → Pk−1(E),
so that we can consider a new computable right hand-side

((curl f )h, ϕh) :=
∑
E∈Ωh

∫
E

Π
0,E
k−1(curl f ) ϕh dE =

∑
E∈Ωh

∫
E
(curl f )Π

0,E
k−1ϕh dE . (77)

This new formulation of the right-hand side gets the same order of accuracy of the original
one.

In particular if the external force is irrotational, i.e. f = ∇ζ , we improve the error
estimate in (46) by removing the dependence of the error by the load. More generally, with
the choice (77), the error depends only on the Helmholtz–Hodge decomposition of the load
being curl f = curlP( f ). Clearly (77) can be applied only when f is given as an explicit
function.

6 Numerical Tests

In this section we present two sets of numerical experiments to test the practical performance
of the proposed virtual element methods (74), also compared with a direct C1 VEM dis-
cretization of the stream formulation (78) described in the Appendix, see equation (87). For
the scheme (74), in all tests we investigate the three possible options for the trilinear form in
(36), (37), (38). In Test 6.1 we study the convergence of the proposed virtual element schemes
(74) and (87) for the discretization of the Navier–Stokes equation in curl formulation and
stream formulation respectively. A comparison of (74) (in terms of errors, number of DoFs,
condition number of the resulting linear systems) with the equivalent virtual element scheme
(42) for the Navier–Stokes equation in velocity–pressure formulation is also performed. In
Test 6.2 we consider a benchmark problem for the Navier–Stokes equation (78) with the
property of having the velocity and stream solution in the corresponding discrete spaces. It
is well known that classical mixed finite element methods lead to significant velocity errors,
stemming from the velocity/pressure coupling in the error estimates. This effect is greatly
reduced by the presented methods (cf. Theorem 4.2, estimate (46) and Remark 4.1). In order
to compute the VEM errors, we consider the computable error quantities:

error(u, H1) :=
⎛
⎝∑

E∈Ωh

∥∥∥∇ u − �
0,E
k−1(∇ uh)

∥∥∥2
0,E

⎞
⎠

1/2
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for the velocity–pressure formulation (42) and

error(ψ, H2) :=
⎛
⎝∑

E∈Ωh

∥∥∥∇ curlψ − �
0,E
k−1(∇ curlψh)

∥∥∥2
0,E

⎞
⎠

1/2

for the curl and stream formulations (see (74) and (87), respectively). For what concerns the
pressures we simply compute the standard L2 error error(p, L2) := ‖p − ph‖0. For the
computation of the discrete pressure for the virtual element scheme (74) we follow (76) and
solve the overdetermined system by means of the least squares method. We briefly sketch
the construction of the least square formula. Let {v j }dim(V h)

j=1 be the canonical basis functions
of V h and let us denote with rh the vector with component

rh, j := −ν ah(curlψh, v j ) − ch(curlψh; curlψh, v j ) + ( f h, v j )

for j = 1, . . . , dim(V h),

i.e. rh contains the values of the degrees of freedom associated to the right hand side of
(76) with respect to the basis {v j }dim(V h)

j=1 . Similarly, let {qi }dim(Qh)
i=1 be the canonical basis

functions of Qh and for any piecewise polynomial pk−1 ∈ Qh we denote with ph the vector
containing the values of the coefficients with respect to the basis {qi } associated to pk−1.
Then the least squares formula associated to (76) is

B BT ph = B rh

where the matrix B ∈ R
dim(Qh)×dim(V h) is defined by

Bi, j = b(v j , qi ) for i = 1, . . . , dim(Qh) and j = 1, . . . , dim(V h).

Remark 6.1 We note that, if a code for formulation (42) is available, all is needed in order
to implement (74) is the construction of the rectangular matrixes that represent, in terms of
the degrees of freedom, the local operator curl : ΦE

h → V E
h . Once this matrixes are built,

one just needs to combine them with the local stiffness matrixes of scheme (74) and finally
assemble the global systems for the space Φh .

The polynomial degree of accuracy for the numerical tests is k = 2. In the experiments
we consider the computational domains ΩQ := [0, 1]2 and ΩD := {x ∈ R

2 s.t. |x| ≤ 1}.
The square domain ΩQ is partitioned using the following sequences of polygonal meshes:

– {Vh}h : sequenceofCVT(CentroidalVoronoi tessellation)withh = 1/8, 1/16, 1/32, 1/64,
– {Qh}h : sequence of distorted quadrilateral meshes with h = 1/10, 1/20, 1/40, 1/80.

Anexample of the adoptedmeshes is shown inFig. 5. For the generationof theVoronoimeshes
we use the code Polymesher [37]. The distorted quadrilateral meshes are obtained starting
from the uniform square meshes and displacing the internal vertexes with a proportional
“distortion amplitude” of 0.3.

For what concerns the disk ΩD we consider the sequences of polygonal meshes:

– {Th}h : sequence of triangular meshes with h = 1/5, 1/10, 1/20, 1/40,
– {Wh}h : sequence of mapped CVT with h = 1/4, 1/8, 1/16, 1/20.

The meshes Wh are obtained by mapping a CVT on the square [−1, 1]2 on the disk ΩD

through the map

Σ : [−1, 1]2 → ΩD with Σ : (x, y) �→
⎛
⎝x
√
1 − y2

2
, y

√
1 − x2

2

⎞
⎠ .
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Fig. 5 Example of polygonal meshes: V1/16, Q1/20

Fig. 6 Example of polygonal meshes: T1/10,W1/8

Figure 6 displays an example of the adopted meshes.

Test 6.1 In this test we solve the Navier–Stokes equation on the square domain ΩQ with
viscosity ν = 1 and with the load term f chosen such that the analytical velocity–pressure
solution and the corresponding stream function solution are respectively

u(x, y) = 1

2

(
sin(2πx)2 sin(2π y) cos(2π y)

− sin(2π y)2 sin(2πx) cos(2πx)

)
p(x, y) = π2 sin(2πx) cos(2π y) ,

ψ(x, y) = 1

8π
sin(2πx)2 sin(2π y)2 .

We test the virtual element scheme (74). In Figs. 7 and 8 we show the results obtained with
the sequences of Voronoi meshes Vh and quadrilateral meshes Qh , by considering the three
possible choices of the trilinear forms. We stress that in all cases considered we compare
the discrete convective pressure ph (for the trilinear form in crot,h(·; ·, ·) we consider the
definition (49)).We notice that the theoretical predictions of Sect. 5 are confirmed.Moreover,

123



1012 Journal of Scientific Computing (2019) 81:990–1018

Fig. 7 Test 6.1. Errors computed with the VEM (74) and (87), meshes Vh

Fig. 8 Test 6.1. Errors computed with the VEM (74) and (87), meshes Qh

we observe that the virtual element methods obtained with the three different trilinear forms
exhibit almost identical results, at least for this example and with the adopted meshes. In
Figs. 7 (left) and 8 (left) we also depict the error for the direct C1 discretization of the stream
formulation (87), that follows a similar behaviour to (74). Note that we do not compute a
pressure error for scheme (87) since the computation of a discrete pressure is a more complex
issue in this case, see Remark 7.1. Finally we test the corresponding virtual element method
(42) with the same sequences of polygonal meshes Vh ,Qh . Table 1 shows the results obtained
respectively with VEM (42) and (74) obtained considering the trilinear form crot,h(·; ·, ·). The
outcomes confirm the theoretical predictions of Sect. 5: the two schemes produces for this
example identical solution errors up to the first ten digits. The results are analogous also for the
other two proposed trilinear forms (not shown). In Table 2 we compare the number of DoFs
and the condition number of the resulting linear systems (stemming from the fist iteration of

123



Journal of Scientific Computing (2019) 81:990–1018 1013

Table 1 Test 6.1. Errors computed with virtual elements schemes (42) and (74) for the meshes Vh andQh

Velocity–pressure formulation curl formulation

h error(u, H1) error(p, L2) error(ψ, H2) error(p, L2)

Vh 1/8 3.704032467e-1 3.891840615e-1 3.704032467e-1 3.891840615e-1

1/16 9.153568669e-2 8.875084726e-2 9.153568669e-2 8.875084726e-2

1/32 2.308710367e-2 1.994452869e-2 2.308710367e-2 1.994452869e-2

1/64 5.791512013e-3 4.602515029e-3 5.791512013e-3 4.602515029e-3

Qh 1/10 3.047752518e-1 3.714633884e-1 3.047752518e-1 3.714633884e-1

1/20 8.709526360e-2 8.363888240e-2 8.709526360e-2 8.363888240e-2

1/40 2.188243443e-2 1.945853612e-2 2.188243443e-2 1.945853612e-2

1/80 5.523374104e-3 4.762632907e-3 5.523374104e-3 4.762632907e-3

Table 2 Test 6.1. Number of DoFs and condition numbers for the virtual elements schemes (42) and (74) for
the meshes Vh andQh

Velocity–pressure formulation curl formulation

h n_DoFs Condition number n_DoFs Condition number

Vh 1/8 585 1.274770181e+3 459 1.063189235e+5

1/16 2573 5.052943797e+3 2063 7.870747143e+5

1/32 10757 2.347797950e+4 8711 1.840718952e+7

1/64 43833 9.919686982e+4 35643 3.030371659e+8

Qh 1/10 621 2.395280050e+3 423 9.117317719e+3

1/20 2641 1.151514288e+4 1843 8.438089452e+4

1/40 10881 5.217365003e+4 7683 1.299512460e+6

1/80 44161 2.121983675e+5 31363 2.079841110e+7

the Newton method) for both formulations (42) and (74). As observed in Sect. 5, the scheme
(74) has the advantage of having (2 nP − 2) less of unknowns, even when considering the
reduced version (see Remark 4.2) for formulation (42). The drawback is that the condition
number of the system resulting from the velocity–pressure scheme (42) behaves as h−2, while
the asymptotic rate of the condition number of the linear system resulting from the scheme
(74) formulation is h−4.

Test 6.2 In this test, inspired by [31], we consider a problem for the Navier–Stokes with the
property of having the velocity and stream solution in the corresponding discrete spaces. In
particular we consider the Navier–Stokes (78) on the disk ΩD with viscosity ν = 1 and with
the load f chosen such that the analytical velocity–pressure solution and the corresponding
stream function solution are respectively

u(x, y) =
(
x2 + y2

−2 xy

)
p(x, y) = x3y3 − 1

16
,

ψ(x, y) = x2y + 1

3
y3 .

We notice that the stream function solution ψ belongs to the discrete spaces Φh and Φ̃h (cf.
(56) and (81) respectively) and the corresponding velocity u = curlψ belongs to [Pk(Ω)]2 ⊂
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Fig. 9 Test 6.2. Errors computed with the VEM (74) and (87), meshes Th

Fig. 10 Test 6.2. Errors computed with the VEM (74) and (87), meshes Wh

V h . In the light of Remark 4.1, the methods (74) obtained considering the trilinear forms
cconv,h(·; ·, ·) or crot,h(·; ·, ·) provide a higher order approximation error, that is hk+2 (instead
of hk as a standard inf-sup stable FEMwould do). Note that instead an exactly divergence-free
FEM would acquire machine precision velocity error on this test, but this comes at the price
of the additional complications of these methods. Figures 9 and 10 plot the results obtained
with the sequence of triangular meshes Th and mapped Voronoi meshesWh considering the
scheme (74) (with all possible choices of the trilinear forms) and the scheme (87). The error
for the C1 discretization of the stream formulation (87) provides the same higher order of
convergence hk+2. The error for scheme (87) in the case of the finest Voronoi mesh is not
depicted since the Newton iterations did not converge in that case, probably an indication on
the reduced robustness of such scheme when compared to (74).
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7 Appendix: Virtual Elements Stream Formulation

An alternative approach that makes use of the stream functions for the analysis of the Navier–
Stokes equation is given by the so-called stream formulation (see for instance [27, IV.2.2]):{

findψ ∈ Φ such that

ν ã(ψ, ϕ) + c̃(ψ; ψ, ϕ) = (curl f , ϕ) for allϕ ∈ Φ,
(78)

where

ã(·, ·) : Φ × Φ → R, ã(ψ, ϕ) :=
∫

Ω

Δψ Δ ϕ dΩ, for allψ, ϕ ∈ Φ, (79)

c̃(·; ·, ·) : Φ × Φ × Φ → R c̃(ζ ; ψ, ϕ) :=
∫

Ω

Δζ curlψ · ∇ϕ dΩ for all ζ, ψ, ϕ ∈ Φ.

(80)

Direct computations show that the formulation (78) is equivalent to Problem (18) (in turn
equivalent to Problem (11)), therefore the well-posedness of the stream formulation follows
from assumption (A0).

In the present sectionwe briefly present a virtual element discretization of the stream func-
tion formulation approach presented in (78) (which has been used in Sect. 6 for comparison
with the schemes presented in Sects. 4 and 5), that is based on a direct approximation with
C1 Virtual Elements [4,16] of the continuous stream function formulation of the problem
(78). This approach is not associated to a discrete Stokes complex and therefore lacks an
equivalent discrete velocity–pressure formulation.

Recalling (55), we consider on each element E ∈ Ωh the finite dimensional local virtual
space for k ≥ 2:

Φ̃E
h :=

{
ϕ ∈ Ψ E

h s.t.
(
ϕ − Π

∇2,E
k+1 ϕ, p̂k−1

)
E

= 0 for all p̂k−1 ∈ P̂k−1/k−3(E)

}
,

(81)

where the space Ψ E
h has been introduced in (55) and Π

∇2,E
k+1 denotes the H2-seminorm

projection onto Pk+1(E).
We here mention only the main properties of the virtual space Φ̃E

h and refer to [4,16] for
a deeper description:

– dimension: it holds Pk+1(E) ⊂ Φ̃E
h and dim

(
Φ̃E

h

) = 2nEk + (k−1)(k−2)
2 , that is the

same dimension of ΦE
h (cf. (57));

– degrees of freedom: the linear operators D�̃: D�1,D�2,D�3,D�4, D̃�5 (see
Remark 5.1) constitute a set of DoFs for Φ̃E

h ;

123

http://creativecommons.org/licenses/by/4.0/


1016 Journal of Scientific Computing (2019) 81:990–1018

– projections: the DoFs D�̃ allow us to compute exactly

Π
∇2,E
k+1 : Φ̃E

h → Pk+1(E) , Π
0,E
k−1 : Δ(Φ̃E

h ) → Pk−1(E) ,

Π
0,E
k−1 : Φ̃E

h → Pk−1(E) ,

Π
0,E
k : ∇(Φ̃E

h ) → [Pk(E)]2 , Π
0,E
k : curl(Φ̃E

h ) → [Pk(E)]2 .

The global virtual element space is obtained as usual by combining the local spaces Φ̃E
h

accordingly to the local degrees of freedom

Φ̃h := {ϕ ∈ H2
0 (Ω) s.t. ϕ|E ∈ Φ̃E

h for all E ∈ Ωh} . (82)

Now we briefly describe the construction of a discrete computable version of the bilinear
form ã(·, ·) given in (79) and trilinear form c̃(·; ·, ·) (cf. (80)). First, we decompose into local
contributions ã(·, ·) and c̃(·; ·, ·) by considering:
ã(ψ, ϕ) =:

∑
E∈Ωh

ãE (ψ, ϕ) , c̃(ζ ; ψ, ϕ) =:
∑
E∈Ωh

c̃E (ζ ; ψ, ϕ) for all ζ, ψ, ϕ ∈ Φ.

Following a standard procedure in the VEM framework, we define a computable discrete
local bilinear form ãE

h (·, ·) : Φ̃E
h × Φ̃E

h → R approximating the continuous form ãE
h (·, ·),

and defined by

ãEh (ψ, ϕ) :=
(
Π

0,E
k−1Δψ, Π

0,E
k−1Δϕ

)
E

+ S̃E
((

I − Π
∇2,E
k+1

)
ψ,
(
I − Π

∇2,E
k+1

)
ϕ
)

(83)

for all ψ, ϕ ∈ Φ̃E
h , where the (symmetric) stabilizing bilinear form S̃E : Φ̃E

h × Φ̃E
h → R,

satisfies the stability condition

α∗‖ϕ‖2Φ,E ≤ S̃E (ϕ, ϕ) ≤ α∗‖ϕ‖2Φ,E for allϕ ∈ Φ̃E
h such thatΠ∇2,E

k+1 ϕ = 0 (84)

with α∗ and α∗ positive constants independent of the element E . For what concerns the
approximation of the local trilinear form c̃E (·; ·, ·), we simply set

c̃Eh (ζh; ψh, ϕh) :=
∫
E

[(
Π

0,E
k−1 Δζh

) (
Π

0,E
k curlψh

)]
·
(
Π

0,E
k ∇ψh

)
dE (85)

for all ζh, ψh, ϕh ∈ Φh , which is computable by the DoFs D�̃.
We define the global approximated forms ãh(·, ·) and c̃h(·; ·, ·) by simply summing the

local contributions:

ãh(ψh, ϕh) :=
∑
E∈Ωh

ãE
h (ψh, ϕh) c̃h(ζh; ψh, ϕh) :=

∑
E∈Ωh

c̃Eh (ζh; ψh, ϕh) , (86)

for all ζh, ψh, ϕh ∈ Φ̃h . Finally the right hand side is computed as explored in (77).
Referring to (82), (86) and (77), the virtual element stream formulation of the Navier–

Stokes equation is given by{
findψh ∈ Φ̃h such that

ν ãh(ψh, ϕh) + c̃h(ψh; ψh, ϕh) = ((curl f )h, ϕh) for allϕh ∈ Φ̃h .
(87)

Remark 7.1 Note that the C1 discretization of Navier–Stokes (78) does not allow to recon-
struct an approximation of the continuous pressure p analogous to that given in (76). Indeed
the core idea behind (76) is to exploit the Stokes complex associated to Φh and V h (cf. (61)
and (25), respectively).

123



Journal of Scientific Computing (2019) 81:990–1018 1017

References

1. Adams, R.A.: Sobolev Spaces, Volume 65 of Pure and Applied Mathematics. Academic Press, New
York-London (1975)

2. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element
methods. Comput. Math. Appl. 66(3), 376–391 (2013)

3. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream function formulation of the Stokes
problem for the virtual element method. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

4. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A C1 virtual element method for the Cahn–
Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016)

5. Artioli, E., Marfia, S., Sacco, E.: High-order virtual element method for the homogenization of long fiber
nonlinear composites. Comput. Methods Appl. Mech. Eng. 341, 571–585 (2018)

6. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of
virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

7. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The Hitchhiker’s guide to the virtual element
method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

8. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math.
Models Methods Appl. Sci. 27(13), 2557–2594 (2017)

9. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on
polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)

10. Beirão daVeiga, L., Lovadina, C., Vacca, G.: Virtual elements for theNavier-Stokes problem on polygonal
meshes. SIAM J. Numer. Anal. 56(3), 1210–1242 (2018)

11. Benedetto, M.F., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: A hybrid mortar virtual element method
for discrete fracture network simulations. J. Comput. Phys. 306, 148–166 (2016)

12. Benedetto, M.F., Berrone, S., Pieraccini, S., Scialò, S.: The virtual element method for discrete fracture
network simulations. Comput. Methods Appl. Mech. Eng. 280(1), 135–156 (2014)

13. Bertoluzza, S., Pennacchio, M., Prada, D.: BDDC and FETI-DP for the virtual element method. Calcolo
54(4), 1565–1593 (2017)

14. Brenner, S.C., Guan, Q., Sung, L.Y.: Some estimates for virtual element methods. Comput. Methods
Appl. Math. 17(4), 553–574 (2017)

15. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn, Volume 15 of
Texts in Applied Mathematics. Springer, New York (2008)

16. Brezzi, F., Marini, L.D.: Virtual element method for plate bending problems. Comput. Methods Appl.
Mech. Eng. 253, 455–462 (2012)

17. Cáceres, E., Gatica, G.N.: A mixed virtual element method for the pseudostress-velocity formulation of
the Stokes problem. IMA J. Numer. Anal. 37(1), 296–331 (2017)

18. Cangiani,A.,Gyrya,V.,Manzini,G.: Thenon conformingvirtual elementmethod for theStokes equations.
SIAM J. Numer. Anal. 54(6), 3411–3435 (2016)

19. Cangiani,A.,Manzini,G.,Russo,A., Sukumar,N.:Hourglass stabilization and the virtual elementmethod.
Int. J. Numer. Meth. Eng. 102(3–4), 404–436 (2015)

20. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Volume 4 of Stud. Math. Appl. North-
Holland. Amsterdam, Netherlands (1978)

21. Dassi, F., Mascotto, L.: Exploring high-order three dimensional virtual elements: bases and stabilizations.
Comput. Math. Appl. 75(9), 3379–3401 (2018)

22. Falk, R.S., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise
mass conservation. SIAM J. Numer. Anal. 51(2), 1308–1326 (2013)

23. Fumagalli, A., Keilegavlen, E.: Dual virtual element method for discrete fractures networks. SIAM J. Sci.
Comput. 40(1), B228–B258 (2018)

24. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear
elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160
(2014)

25. Gatica,G.N.,Munar,M., Sequeira, F.A.:Amixed virtual elementmethod for theNavier–Stokes equations.
Math. Models Methods Appl. Sci. 28(14), 2719–2762 (2018)

26. Gauger, N.R., Linke, A., Schroeder, P.W.: On high-order pressure-robust space discretisations, their
advantages for incompressible high Reynolds number generalised Beltrami flows and beyond. SMAI J.
of Comput. Math. 5, 89–129 (2019)

27. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations, Volume 5 of Springer
Series in Computational Mathematics. Springer, Berlin (1986) (Theory and algorithms)

28. Guzmán, J., Neilan, M.: Conforming and divergence-free Stokes elements on general triangular meshes.
Math. Comput. 83(285), 15–36 (2014)

123



1018 Journal of Scientific Computing (2019) 81:990–1018

29. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite
element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)

30. Lederer, P.L., Linke, A., Merdon, C., Schöberl, J.: Divergence-free reconstruction operators for pressure-
robust Stokes discretizations with continuous pressure finite elements. SIAM J. Numer. Anal. 55(3),
1291–1314 (2017)

31. Linke, A., Merdon, C.: On velocity errors due to irrotational forces in the Navier–Stokes momentum
balance. J. Comput. Phys. 313, 654–661 (2016)

32. Linke, A., Merdon, C.: Pressure-robustness and discrete Helmholtz projectors in mixed finite element
methods for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 311, 304–
326 (2016)

33. Liu, X., Chen, Z.: The nonconforming virtual element method for the Navier–Stokes equations. Adv.
Comput. Math. 45(1), 51–74 (2019)

34. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem. Math.
Models Methods Appl. Sci. 25(8), 1421–1445 (2015)

35. Mora, D., Rivera, G., Velásquez, I.: A virtual element method for the vibration problem of Kirchhoff
plates. ESAIM Math. Model. Numer. Anal. 52(4), 1437–1456 (2018)

36. Nguyen-Thanh,V.M., Zhuang,H., Nguyen-Xuan,X., Rabczuk, T.,Wriggers, P.: A virtual elementmethod
for 2D linear elastic fracture analysis. Comput. Methods Appl. Mech. Eng. 340, 366–395 (2018)

37. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: Polymesher: a general-purpose mesh generator
for polygonal elements written in matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

38. Vacca, G.: Virtual element methods for hyperbolic problems on polygonal meshes. Comput. Math. Appl.
74(5), 882–898 (2017)

39. Vacca, G.: An H1-conforming virtual element for Darcy and Brinkman equations.Math.ModelsMethods
Appl. Sci. 28(1), 159–194 (2018)

40. Wriggers, P., Rust, W.T., Reddy, B.D.: A virtual element method for contact. Comput. Mech. 58(6),
1039–1050 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	The Stokes Complex for Virtual Elements with Application to Navier–Stokes Flows
	Abstract
	1 Introduction
	2 The Navier–Stokes Equation
	3 Definitions and Preliminaries
	4 Virtual Elements Velocity–Pressure Formulation
	4.1 Virtual Elements Spaces
	4.2 Discrete Bilinear forms and Load Term Approximation
	4.3 The Discrete Problem

	5 Virtual Elements Stokes Complex and curl Formulation
	5.1 Virtual Element Space of the Stream Functions
	5.2 Virtual Element Stokes Complex
	5.3 The Discrete Problem

	6 Numerical Tests
	Acknowledgements
	7 Appendix: Virtual Elements Stream Formulation
	References




