
ON PARABOLIC EQUATIONS WITH CRITICAL ELECTROMAGNETIC

POTENTIALS

VERONICA FELLI AND ANA PRIMO

Abstract. We consider a class of parabolic equations with critical electromagnetic potentials,
for which we obtain a classification of local asymptotics, unique continuation results, and an
integral representation formula for solutions.

1. Introduction and statement of the main results

This paper is concerned with the following class of evolution equations with critical electromag-
netic potentials

(1) ut +

(
−i∇+

A
(
x
|x|
)

|x|

)2
u−

a
(
x
|x|
)

|x|2 u = h(x, t)u,

in RN×I, for some interval I ⊂ R and for N > 2. Here u = u(x, t) : RN×I → C, a ∈ L∞(SN−1,R),
S
N−1 denotes the unit (N − 1)–dimensional sphere, and A ∈ C1(SN−1,RN) satisfies the following

transversality condition

(2) A(θ) · θ = 0 for all θ ∈ S
N−1.

We always denote by r := |x|, θ = x/|x|, so that x = rθ. Under the transversality condition (2),
the hamiltonian

(3) LA,a :=

(
−i∇+

A
(
x
|x|
)

|x|

)2
−
a
(
x
|x|
)

|x|2

formally acts on functions f : RN → C as

LA,af = −∆f +
|A
(
x
|x|
)
|2 − a

(
x
|x|
)
− i divSN−1 A

(
x
|x|
)

|x|2 f − 2i
A
(
x
|x|
)

|x| · ∇f,

where divSN−1 A denotes the Riemannian divergence of A on the unit sphere SN−1 endowed with
the standard metric.
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The electromagnetic potential appearing in (1) is singular and homogeneous. A prototype in
dimension 2 of such type of potentials is given by the Aharonov-Bohm vector potential

(4) (x1, x2) 7→ A(x1, x2) = α

(
− x2
x21 + x22

,
x1

x21 + x22

)

which is associated to thin solenoids. If the radius of the solenoid tends to zero while the flux
through it remains constantly equal to α 6∈ Z, then a δ-type magnetic field is produced and the so-
called Aharonov-Bohm effect occurs, i.e. the magnetic potential affects charged quantum particles
moving in R2 \ {(0, 0)}, even if the magnetic field B = curlA is zero there.

We mention that heat semigroups generated by magnetic Schrödinger operators have been stud-
ied in [4, 18]. In particular in [4] the case of a compactly supported smooth magnetic field was
considered and it was shown that the large time behavior of the heat semigroup is related to a
magnetic eigenvalue problem on the (N − 1)-dimensional sphere (see (10)). In [18] it was proved
that the large time behavior of magnetic heat kernels in two dimensions is determined by the flux
of the magnetic field.

In the present paper, we aim at providing some unique continuation principles for problem (1)
under suitable assumptions on the perturbing potential h and deriving a representation formula
for solutions in the case h ≡ 0.

In order to establish unique continuation properties, we will describe the asymptotic behaviour
of solutions near the singularity, under the assumption that, in some bounded interval I, the
real-valued function h satisfies

(5)

{
h, ht ∈ Lr

(
I, LN/2(RN )

)
for some r > 1, ht ∈ L∞

loc

(
I, LN/2(RN )

)
, if N > 3,

h, ht ∈ Lr
(
I, Lp(RN )

)
for some p, r > 1, ht ∈ L∞

loc

(
I, Lp(RN )

)
, if N = 2,

and there exists Ch > 0 such that

(6) |h(x, t)| 6 Ch(1 + |x|−2+ε) for all t ∈ I, a.e. x ∈ R
N , and for some ε ∈ (0, 2).

In particular, for t0 ∈ I fixed, we are interested in describing the behavior of solutions along the
directions (λx, t0 − λ2t) naturally related to the heat operator. Indeed, since the unperturbed

operator ut +
(
−i∇+ A(x/|x|)

|x|

)2
u− a(x/|x|)u

|x|2 is invariant under the action (x, t) 7→ (λx, t0 + λ2t),

we are interested in evaluating the asymptotics of

u(
√
t0 − t x, t) as t→ t−0

for solutions to (1). We notice that, in the magnetic-free case A ≡ 0, an asymptotic analysis for
solutions to (1) was developed in [16].

In the description of the asymptotic behavior at the singularity of solutions to (1) a key role is
played by the eigenvalues and eigenfunctions of the Ornstein-Uhlenbeck magnetic operator with
singular inverse square potential

(7) LA,a : H → H⋆, LA,a = LA,a +
x

2
· ∇,

defined as

H⋆〈LA,av, w〉H =

∫

RN

(
∇Av(x) · ∇Aw(x) −

a(x/|x|)
|x|2 v(x)w(x)

)
e−

|x|2

4 dx, for all v, w ∈ H.
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Here H is the functional space defined as the completion of C∞
c (RN \ {0},C) with respect to the

norm

(8) ‖v‖H =

(∫

RN

(
|∇v(x)|2 + |v(x)|2 + |v(x)|2

|x|2
)
e−

|x|2

4 dx

)1/2
.

The spectrum of LA,a is related to the angular component of the operator LA,a on the unit
(N − 1)–dimensional sphere SN−1, i.e. to the operator

TA,a =
(
− i∇SN−1 +A

)2 − a(θ) = −∆SN−1 +
(
|A|2 − a(θ)− i divSN−1 A

)
− 2iA · ∇SN−1 .

By classical spectral theory, TA,a admits a diverging sequence of real eigenvalues with finite mul-
tiplicity µ1(A, a) 6 µ2(A, a) 6 · · · 6 µk(A, a) 6 · · · , see [14, Lemma A.5]. The first eigenvalue
µ1(A, a) admits the following variational characterization:

(9) µ1(A, a) = min
ψ∈H1(SN−1)\{0}

∫
SN−1

[∣∣(∇SN−1 + iA(θ)
)
ψ(θ)

∣∣2 − a(θ)|ψ(θ)|2
]
dS(θ)∫

SN−1 |ψ(θ)|2 dS(θ)
.

To each k ∈ N, k > 1, we associate a L2
(
SN−1,C

)
-normalized eigenfunction ψk of the operator

TA,a on SN−1 corresponding to the k-th eigenvalue µk(A, a), i.e. satisfying

(10)

{
TA,aψk = µk(A, a)ψk(θ), in SN−1,
∫
SN−1 |ψk(θ)|2 dS(θ) = 1.

In the enumeration µ1(A, a) 6 µ2(A, a) 6 · · · 6 µk(A, a) 6 · · · we repeat each eigenvalue as many
times as its multiplicity, so that exactly one eigenfunction ψk corresponds to each index k ∈ N.
Furthermore, the functions ψk can be chosen in such a way that they form an orthonormal basis of
L2(SN−1,C). We mention that the key role played by the angular magnetic Schrödinger operator
TA,a in the behaviour of the heat magnetic semigroup was already highlighted in [4].

We notice that, under the condition

(11) µ1(A, a) > −
(
N − 2

2

)2

the quadratic form associated to LA,a is positive definite (see [14, Lemma 2.2]), thus implying that
the hamiltonian LA,a is a symmetric semi-bounded operator on L2(RN ;C) which then admits a
self-adjoint extension (Friedrichs extension) with the natural form domain.

We introduce the notation

(12) αk :=
N − 2

2
−
√(

N − 2

2

)2
+ µk(A, a), βk :=

√(
N − 2

2

)2
+ µk(A, a),

so that βk = N−2
2 − αk, for all k ∈ N, k > 1.

The first result of the present paper is the following complete description of the spectrum of the
operator LA,a. We mention that analogous results were proved in the case where a is a constant
and A ≡ 0 in [26, §9.3] and in the magnetic-free case A ≡ 0 in [16, Proposition 1]; see also [5, §4.2]
and [12, §2] for the non singular case.

Proposition 1.1. The set of the eigenvalues of the operator LA,a is
{
γm,k : k,m ∈ N, k > 1

}

where

(13) γm,k = m− αk
2
,
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being αk as in (12). Each eigenvalue γm,k has finite multiplicity equal to

#

{
j ∈ N, j > 1 : γm,k +

αj
2

∈ N

}

and a basis of the corresponding eigenspace is
{
Vn,j : j, n ∈ N, j > 1, γm,k = n− αj

2

}
, where

(14) Vn,j(x) = |x|−αjPj,n

( |x|2
4

)
ψj

( x
|x|
)
,

ψj is an eigenfunction of the operator TA,a associated to the j-th eigenvalue µj(A, a) as in (10),
and Pj,n is the polynomial of degree n given by

Pj,n(t) =

n∑

i=0

(−n)i(
N
2 − αj

)
i

ti

i!
,

denoting as (s)i, for all s ∈ R, the Pochhammer’s symbol (s)i =
∏i−1
j=0(s+ j), (s)0 = 1.

The second main result of the present paper establishes a sharp relation between the asymptotic
behaviour of solutions to (1) along the directions (λx, t0 − λ2t) and the spectrum of the operator
LA,a. Indeed we prove that

u(
√
t0 − t x, t) ∼ (t0 − t)γg(x) as as t→ t−0 ,

where γ is an eigenvalue of LA,a and g is an associated eigenfunction. In order to state precisely
the result of our asymptotic analysis, we introduce the Hilbert space Ht defined, for every t > 0,
as the completion of C∞

c (RN \ {0},C) with respect to the norm

(15) ‖φ‖Ht =

(∫

RN

(
t|∇φ(x)|2 + |φ(x)|2 + t

|φ(x)|2
|x|2

)
G(x, t) dx

)1/2
,

where

G(x, t) = t−N/2 exp
(
− |x|2

4t

)

is the heat kernel of the free evolution forward equation satisfying

(16) Gt −∆G = 0 and ∇G(x, t) = − x

2t
G(x, t) in R

N × (0,+∞).

For every t > 0, we also define the space Lt as the completion of C∞
c (RN ) with respect to the

norm

‖u‖Lt =

(∫

RN

|u(x)|2G(x, t) dx
)1/2

.

We set L := L1.

Theorem 1.2. Let N > 2, A ∈ C1(SN−1,RN ) and a ∈ L∞(SN−1,R
)
satisfy (2) and (11). Let

u 6≡ 0 be a weak solution to (1) (see Definition 2.1 for the notion of weak solution) in RN×(t0−T, t0)
with h satisfying (5)–(6) in I = (t0−T, t0) for some t0 ∈ R and T > 0. Then there exist m0, k0 ∈ N,
k0 > 1, such that

(17) lim
t→t−0

Ñ (t) = γm0,k0 = m0 −
αk0
2
,
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where

(18) Ñ (t) =
(t0 − t)

∫
RN

(
|∇Au(x, t)|2 − a(x/|x|)

|x|2 |u(x, t)|2 − h(x, t)|u(x, t)|2
)
e
− |x|2

4(t0−t) dx

∫
RN |u(x, t)|2 e−

|x|2

4(t0−t) dx
.

Furthermore, denoting as J0 the finite set of indices J0 = {(m, k) ∈ N×(N\{0}) : m−αk

2 = γm0,k0},
for all τ ∈ (0, 1) there holds

(19) lim
λ→0+

∫ 1

τ

∥∥∥∥λ
−2γm0,k0u(λx, t0 − λ2t)− tγm0,k0

∑

(m,k)∈J0

βm,kṼm,k(x/
√
t)

∥∥∥∥
2

Ht

dt = 0

and

(20) lim
λ→0+

sup
t∈[τ,1]

∥∥∥∥λ
−2γm0,k0u(λx, t0 − λ2t)− tγm0,k0

∑

(m,k)∈J0

βm,kṼm,k(x/
√
t)

∥∥∥∥
Lt

= 0,

where Ṽm,k = Vm,k/‖Vm,k‖L, Vm,k are as in (14),

(21) βm,k = Λ−2γm0,k0

∫

RN

u(Λx, t0 − Λ2)Ṽm,k(x)G(x, 1) dx

+ 2

∫ Λ

0

s1−2γm0,k0

(∫

RN

h(sx, t0 − s2)u(sx, t0 − s2)Ṽm,k(x)G(x, 1) dx

)
ds

for all Λ ∈ (0,Λ0) and for some Λ0 ∈ (0,
√
T ), and βm,k 6= 0 for some (m, k) ∈ J0.

The effect of the magnetic singular potential on the local behavior of solutions can be recognized
in the values of the limit frequencies γm,k which are directly related to the angular eigenvalues
µk(A, a) through formulas (12) and (13). We observe that the magnetic eigenvalues µk(A, a) are
indeed different from the magnetic-free eigenvalues µk(0, a), at least in the case of a non irrotational
magnetic vector potential; e.g. in [14, Lemma A.2] it was proved that µ1(A, a) > µ1(0, a) if
curl(A/|x|) 6≡ 0. We also recall that, in the relevant example of a Aharonov-Bohm vector potential
(4) in dimension N = 2 (with a ≡ 0), the magnetic eigenvalues are explicitly known and the limit
frequencies turns out to be

m+
|α− k|

2
, m, k ∈ N,

showing how the asymptotic behaviour of solutions strongly relies on the circulation α.
The proof of Theorem 1.2 is based on a parabolic Almgren-Poon type monotonicity formula in

the spirit of [23] combined with a blow-up analysis, see also [16]. In particular, the function (18)
represents the Poon’s electromagnetic parabolic counterpart of the frequency quotient introduced
by Almgren in [3] and used by Garofalo and Lin [17] to prove unique continuation properties for
elliptic equations with variable coefficients; indeed, both in the elliptic and in the parabolic case,
monotonicity of the frequency function implies doubling properties of the solution and then the
validity of unique continuation principles. As done in the proof of Theorem 1.2 and as already
observed in [16] in the magnetic free case, the combination of the monotonicity argument with
a blow-up analysis allows proving not only unique continuation but also the precise asymptotic
description of scaled solutions near the singularity given in (19)–(20). We notice that the magnetic
free results of [16] and their magnetic counterpart of the present paper generalize the classification
of local asymptotics of solutions to parabolic equations with bounded coefficients obtained in [5]
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to the case of singular homogenous potentials (Hardy potential and homogenous electromagnetic
potentials); we recall that the approach in [5] is based on recasting equations in terms of parabolic
self-similar variables. We also mention [2, 7, 8, 10, 11, 15] for unique continuation results for
parabolic equations with time-dependent potentials via Carleman inequalities and monotonicity
methods.

As a consequence of Theorem 1.2 we obtain the following strong unique continuation property
at the singularity.

Corollary 1.3. Let u be a weak solution to (1) in (t0 − T, t0) under the assumptions of Theorem
1.2. If

(22) u(x, t) = O
((

|x|2 + (t0 − t)
)k)

as x→ 0 and t→ t−0 , for all k ∈ N,

then u ≡ 0 in RN × (t0 − T, t0).

The monotonicity argument developed to prove Theorem 1.2 yields as a byproduct the following
unique continuation property with respect to time. It can be interpreted as a backward uniqueness
result for (1) in the spirit of [21], see e.g. [19, 22].

Proposition 1.4. Let N > 2, A ∈ C1(SN−1,RN ) and a ∈ L∞(SN−1,R
)
satisfy (2) and (11).

Let u be a weak solution to (1) in RN × I with h satisfying (5)–(6) for some bounded interval I.
If there exists t0 ∈ I such that

u(x, t0) = 0 for a.e. x ∈ R
N ,

then u ≡ 0 in RN × I.

Another main goal of this manuscript is to give an integral representation formula for magnetic
caloric functions, i.e. for solutions to (1). The free heat forward equation, i.e. (1) with A ≡ 0,
a ≡ 0 and h ≡ 0, can be considered as the canonical example of diffusion equation. A well-known
solution to the the Cauchy problem

(23)

{
ut = ∆u

u(x, 0) = f(x)

with datum f ∈ C0(RN ) ∩ L∞(RN ) is given by the integral formula:

u(x, t) = e−t∆f(x) :=
1

(4πt)
N
2

∫

RN

e−
|x−y|2

4t f(y) dy, x ∈ R
N , t > 0.

We also refer to [6] for integral representation formulas for the heat equation in half–spaces.
With the aim of extending integral representation formulas to the electromagnetic singular case,

the following theorem provides an explicit representation formula for weak solutions to (1), with

h ≡ 0 and initial datum u0 ∈ L̃, where L̃ is defined as the completion of C∞
c (RN ,C) with respect

to

(24) ‖ϕ‖L̃ =

(∫

RN

|ϕ(x)|2e |x|2

4 dx

)1/2
.
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Theorem 1.5. Let u be a weak solution (in the sense explained at the beginning of Section 7) to

(1) with h ≡ 0 and u(·, 0) = u0 ∈ L̃. Then u admits the following representation: for all t > 0,

u(x, t) = t−
N
2

∫

RN

u0(y)K

(
y√
t
,
x√
t

)
dy,

where the integral at the right hand side is understood in the sense of improper multiple integrals
and

(25) K(x, y) =
1

2(|x||y|)N−2
2

e−
|x|2+|y|2

4

∞∑

k=1

ei
π
2 βkψk

(
y
|y|
)
ψk
(
x
|x|
)
Jβk

(−i|x||y|
2

)

being βk as in (12), ψk as in (10), and being Jβk
the Bessel function of the first kind of order βk.

In the proof of Theorem 1.5, the critical homogeneities and the transversality condition (2) play
a fundamental role. Indeed Theorem 1.5 is proved by recasting equation (1) with h = 0 in terms of
parabolic self-similar variables (see transformation (116)) thus obtaining an equivalent parabolic
equation with an Ornstein-Uhlenbeck type operator with singular homogeneous electromagnetic
potentials (see (117)). Then a representation formula is obtained by expanding the transformed
solution in Fourier series with respect to an orthonormal basis given by eigenfunctions of the
Ornstein-Uhlenbeck type operator (see Remark 4.6 for the description of such a basis).

The present paper is organized as follows. In section 2 we give a weak formulation of problem
(1). In section 3 we present some magnetic parabolic Hardy type inequalities and weighted Sobolev
embeddings. Section 4 is devoted to the description of the spectrum of the operator LA,a defined
in (7) and to the proof of Proposition 1.1. The parabolic monotonicity argument developed in
section 5 together with the blow-up analysis of section 6 allow proving Theorem 1.2 at the end of
section 6. Finally, section 7 contains the proof of the representation formula stated in Theorem 1.5.

Notation. We list below some notation used throughout the paper.

- const denotes some positive constant which may vary from formula to formula.
- dS denotes the volume element on the unit (N − 1)-dimensional sphere SN−1.
- ωN−1 denotes the volume of SN−1, i.e. ωN−1 =

∫
SN−1 dS(θ).

- For every complex number z we denote as Re(z) its real part.

2. The weak formulation of the problem

The functional space Ht defined in (15) is related to the weighted magnetic Sobolev space HA
t

defined, for every t > 0, as the completion of C∞
c (RN \ {0},C) with respect to the norm

‖u‖HA
t
=

(∫

RN

(
t|∇Au(x)|2 + |u(x)|2

)
G(x, t) dx

)1/2
,

where ∇Au = ∇u+ iA(x/|x|)
|x| u. For A ≡ 0 we recover the Hilbert Space

Ht := H0
t

described in [16]. From [23, Proposition 3.1] (see Lemma 3.1 in section 3) it follows that

if N > 3 then Ht = Ht = H0
t and the norms ‖ · ‖Ht , ‖ · ‖Ht are equivalent.

On the other hand, if N = 2 we have that Ht ⊂ Ht and Ht 6= Ht.
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We also notice that Ht is continuously embedded into HA
t ; a detailed comparison between spaces

Ht and HA
t will be performed in section 3.

We denote as H⋆
t the dual space of Ht and by H⋆

t
〈·, ·〉Ht the corresponding duality product.

In order to prove Theorem 1.2, up to a translation it is not restrictive to assume that

t0 = 0.

Furthermore, to simplify notations and work with positive times t, it is convenient to perform
the change of variable (x, t) 7→ (x,−t). Indeed, if u(x, t) is solution to (1) in RN × (−T, 0), then
ũ(x, t) = u(x,−t) solves
(26) − ũt(x, t) + LA,aũ(x, t) = h(x,−t)ũ(x, t) in R

N × (0, T ).

Definition 2.1. We say that ũ ∈ L1
loc(R

N × (0, T )) is a weak solution to (26) in RN × (0, T ) if
∫ T

τ

‖ũ(·, t)‖2Ht
dt < +∞,

∫ T

τ

∥∥∥ũt +
∇Aũ · x

2t

∥∥∥
2

H⋆
t

dt < +∞ for all τ ∈ (0, T ),(27)

H⋆
t

〈
ũt +

∇Aũ · x
2t

, φ

〉

Ht

(28)

=

∫

RN

(
∇Aũ(x, t) · ∇Aφ(x) −

a(x/|x|)
|x|2 ũ(x, t)φ(x) − h(x,−t)ũ(x, t)φ(x)

)
G(x, t) dx

for a.e. t ∈ (0, T ) and for each φ ∈ Ht.

Remark 2.2. In view of (2) we have that ∇Aũ · x = ∇ũ · x. Therefore, if ũ ∈ L1
loc(R

N × (0, T ))
satisfies (27), then the function

(29) v(x, t) := ũ(
√
tx, t)

satisfies

(30) v ∈ L2(τ, T ;H) and vt ∈ L2(τ, T ;H⋆) for all τ ∈ (0, T ),

where H := H1 is defined in (8). From (30) it follows that v ∈ C0([τ, T ],L) (see e.g. [24]),
being L := L1, i.e. L is the completion of C∞

c (RN ,C) with respect to the norm ‖v‖L =( ∫
RN |v(x)|2e−|x|2/4 dx

)1/2
. Moreover the function

t ∈ [τ, T ] 7→ ‖v(t)‖2L =

∫

RN

|ũ(x, t)|2G(x, t) dx

is absolutely continuous and

1

2

1

dt

∫

RN

|ũ(x, t)|2G(x, t) = 1

2

1

dt
‖v(t)‖2L = Re

[
H⋆〈vt(·, t), v(·, t)〉H

]

= Re

[

H⋆
t

〈
ũt +

∇Aũ · x
2t

, ũ(·, t)
〉

Ht

]

for a.e. t ∈ (0, T ).

Remark 2.3. If u is a weak solution to (1) in the sense of definition 2.1, then the function
v(x, t) := ũ(

√
tx, t) defined in (29) is a weak solution to

vt +
1

t

(
− LA,av −

x

2
· ∇v + th(

√
tx,−t)v

)
= 0,
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in the sense that, for every φ ∈ H,

(31) H⋆

〈
vt, φ

〉
H

=
1

t

∫

RN

(
∇Av(x, t)·∇Aφ(x) −

a
(
x
|x|
)

|x|2 v(x, t)φ(x) − t h(
√
tx,−t)v(x, t)φ(x)

)
G(x, 1) dx.

3. Magnetic parabolic Hardy type inequalities and weighted Sobolev embeddings

The following Hardy type inequality for parabolic operators was proved in [23, Proposition 3.1].

Lemma 3.1. For every t > 0, N > 3 and u ∈ Ht = H0
t there holds

∫

RN

|u(x)|2
|x|2 G(x, t) dx 6

1

(N − 2)t

∫

RN

|u(x)|2G(x, t) dx +
4

(N − 2)2

∫

RN

|∇u(x)|2G(x, t) dx.

In order to compare the space Ht with the magnetic space HA
t , we recall the well-known dia-

magnetic inequality: for all u ∈ HA
t ,

(32) |∇|u|(x)| 6
∣∣∇Au(x)

∣∣, for a.e. x ∈ R
N .

Lemma 3.1 and the diamagnetic inequality (32) easily imply that

if N > 3 and A ∈ C1(SN−1,RN ) then HA

t = Ht = Ht for all t > 0.

The following lemma extends the Hardy type inequality of Lemma 3.1 to the electromagnetic case;
we notice that the presence of an electromagnetic potential satisfying the positivity condition (11)
allows recovering a Hardy inequality even in dimension 2.

Lemma 3.2. Let N > 2, a ∈ L∞(SN−1,R
)
and let A ∈ C1(SN−1,RN ) satisfy the transversality

condition (2). For every t > 0 and u ∈ Ht, there holds

∫

RN

(
|∇Au(x)|2 −

a(x/|x|)
|x|2 |u(x)|2

)
G(x, t) dx +

N − 2

4t

∫

RN

|u(x)|2G(x, t) dx

>

(
µ1(A, a) +

(N − 2)2

4

)∫

RN

|u(x)|2
|x|2 G(x, t) dx.

Proof. Let u ∈ C∞
c (RN \{0},C). The magnetic gradient of u can be written in polar coordinates

as

∇Au(x) =

(
∇+ i

A(θ)

|x|

)
u =

(
∂ru(rθ)

)
θ +

1

r
∇SN−1u(rθ) + i

A(θ)

r
u(rθ), r = |x|, θ = x

|x| ,

hence, in view of (2),

|∇Au(x)|2 =
∣∣∂ru(rθ)

∣∣2 + 1

r2
∣∣(∇SN−1 + iA)u(rθ)

∣∣2.
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Hence

(33)

∫

RN

(
|∇Au(x)|2 −

a(x/|x|)
|x|2 |u(x)|2

)
G(x, t) dx

= t−
N
2

∫

SN−1

(∫ +∞

0

rN−1e−
r2

4t |∂ru(rθ)|2 dr
)
dS(θ)

+ t−
N
2

∫ +∞

0

rN−1e−
r2

4t

r2

(∫

SN−1

[
|(∇SN−1 + iA)u(rθ)|2 − a(θ)|u(rθ)|2

]
dS(θ)

)
dr.

For all θ ∈ S
N−1, let ϕθ ∈ C∞

c ((0,+∞),C) be defined as ϕθ(r) = u(rθ), and ϕ̃θ ∈ C∞
c (RN \{0},C)

be the radially symmetric function given by ϕ̃θ(x) = ϕθ(|x|). If N > 3, from Lemma 3.1, it follows
that

t−
N
2

∫

SN−1

(∫ +∞

0

rN−1e−
r2

4t |∂ru(rθ)|2 dr
)
dS(θ)(34)

= t−
N
2

∫

SN−1

(∫ +∞

0

rN−1e−
r2

4t |ϕ′
θ(r)|2 dr

)
dS(θ)

=
1

ωN−1

∫

SN−1

(∫

RN

|∇ϕ̃θ(x)|2G(x, t) dx
)
dS(θ)

>
1

ωN−1

(N − 2)2

4

∫

SN−1

(∫

RN

|ϕ̃θ(x)|2
|x|2 G(x, t) dx

)
dS(θ)

− 1

ωN−1

N − 2

4t

∫

SN−1

(∫

RN

|ϕ̃θ(x)|2G(x, t) dx
)
dS(θ)

= t−
N
2
(N − 2)2

4

∫

SN−1

(∫ +∞

0

rN−1e−
r2

4t

r2
|u(rθ)|2 dr

)
dS(θ)

− t−
N
2
N − 2

4t

∫

SN−1

(∫ +∞

0

rN−1e−
r2

4t |u(rθ)|2 dr
)
dS(θ)

=
(N − 2)2

4

∫

RN

|u(x)|2
|x|2 G(x, t) dx − N − 2

4t

∫

RN

|u(x)|2G(x, t) dx,

where ωN−1 denotes the volume of the unit sphere SN−1, i.e. ωN−1 =
∫
SN−1 dS(θ). If N = 2 we

have trivially that

(35) t−
N
2

∫

SN−1

(∫ +∞

0

rN−1e−
r2

4t |∂ru(rθ)|2 dr
)
dS(θ) > 0.

On the other hand, from the definition of µ1(A, a) it follows that

(36)

∫

SN−1

[
|(∇SN−1 + iA(θ))u(rθ)|2− a(θ)|u(rθ)|2

]
dS(θ) > µ1(A, a)

∫

SN−1

|u(rθ)|2dS(θ).

From (33), (34), (35), and (36), we deduce the stated inequality for all u ∈ C∞
c (RN \ {0},C). The

conclusion follows by density of C∞
c (RN \ {0},C) in Ht. �

Lemma 3.2 allows extending the Hardy type inequality of Lemma 3.1 to the case N = 2 in the
presence of a vector potential satisfying a suitable non-degeneracy condition. Indeed Lemma 3.2
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implies that, if N = 2, t > 0 and u ∈ Ht, then

(37)

∫

RN

|∇Au(x)|2G(x, t) dx > µ1(A, 0)

∫

RN

|u(x)|2
|x|2 G(x, t) dx,

thus giving a Hardy type inequality if µ1(A, 0) > 0. As observe in [14, Section 2], the condition
µ1(A, 0) > 0 holds if and only if

(38) ΦA :=
1

2π

∫ 2π

0

α(t) dt 6∈ Z, where α(t) := A(cos t, sin t) · (− sin t, cos t).

Condition (38) is related the following Hardy inequality proved in [20]:

(39)
(
min
k∈Z

|k − ΦA|
)2 ∫

R2

|u(x)|2
|x|2 dx 6

∫

R2

∣∣∣∣∇u(x) + i
A
(
x/|x|

)

|x| u(x)

∣∣∣∣
2

dx

which holds for all functions u ∈ C∞
c (RN \ {0},C). Moreover

(
mink∈Z |k − ΦA|

)2
= µ1(A, 0) is

the best constant in (39).
From (37) it follows that

if N = 2 and (2) and (38) hold, then that Ht = HA

t ,

being the norms ‖ · ‖Ht , ‖ · ‖HA

t
equivalent. On the other hand, if N = 2 and ΦA ∈ Z (i.e.

µ1(A, 0) = 0), then A is gauge equivalent to 0 and Ht ⊂ HA
t , Ht 6= HA

t ; this case is actually not
very interesting since it can be reduced to the magnetic free problem by a gauge transformation.

The following corollary provides a positivity condition for the quadratic form associated to the
electromagnetic potential under condition (11).

Corollary 3.3. Let N > 2, a ∈ L∞(SN−1,R
)
and let A ∈ C1(SN−1,RN ) satisfy (2) and (11).

Then, for every t > 0,

inf
u∈Ht\{0}

∫
RN

(
|∇Au(x)|2 − a(x/|x|)

|x|2 |u(x)|2
)
G(x, t) dx + N−2

4t

∫
RN |u(x)|2G(x, t) dx

∫
RN |∇u(x)|2G(x, t) dx +

∫
RN

|u(x)|2
|x|2 G(x, t) dx + N−2

4t

∫
RN |u(x)|2G(x, t) dx

= inf
v∈H\{0}

∫
RN

(
|∇Av(x)|2 − a(x/|x|)

|x|2 |v(x)|2
)
G(x, 1) dx + N−2

4

∫
RN |v(x)|2G(x, 1) dx

∫
RN |∇v(x)|2G(x, 1) dx +

∫
RN

|v(x)|2
|x|2 G(x, 1) dx + N−2

4

∫
RN |v(x)|2G(x, 1) dx

> 0.

Proof. The change of variables u(x) = v(x/
√
t) immediately gives the equality of the two

infimum levels. To prove that they are strictly positive, we argue by contradiction. Let us assume
that for every ε > 0 there exists vε ∈ H \ {0} such that

∫

RN

(
|∇Avε(x)|2 −

a(x/|x|)
|x|2 |vε(x)|2

)
G(x, 1) dx+

N − 2

4

∫

RN

|vε(x)|2G(x, 1) dx

< ε

(∫

RN

|∇vε(x)|2G(x, 1) dx +

∫

RN

|vε(x)|2
|x|2 G(x, 1) dx +

N − 2

4

∫

RN

|vε(x)|2G(x, 1) dx
)
.
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Hence

∫

RN

(
|∇Avε(x)|2 −

a(x/|x|)
|x|2 |vε(x)|2

)
G(x, 1) dx+

N − 2

4

∫

RN

|vε(x)|2G(x, 1) dx

< ε

∫

RN

(
|∇Avε(x)|2 + (1 + ‖A‖L∞(SN−1))

|vε(x)|2
|x|2 +

N − 2

4
|vε(x)|2

)
G(x, 1) dx

6 ε(1 + ‖A‖L∞(SN−1))

∫

RN

(
|∇Avε(x)|2 +

|vε(x)|2
|x|2 +

N − 2

4
|vε(x)|2

)
G(x, 1) dx.

From the above inequality and Lemma 3.2 it follows that

(
µ1

(
A,

a

1− (1 + ‖A‖L∞(SN−1))ε

)
+

(N − 2)2

4

)∫

RN

|vε(x)|2
|x|2 G(x, 1) dx

6

∫

RN

(
|∇Avε(x)|2 −

a(x/|x|)
1− (1 + ‖A‖L∞(SN−1))ε

|vε(x)|2
|x|2

)
G(x, 1) dx

+
N − 2

4

∫

RN

|vε(x)|2G(x, 1) dx

<
(1 + ‖A‖L∞(SN−1))ε

1− (1 + ‖A‖L∞(SN−1))ε

∫

RN

|vε(x)|2
|x|2 G(x, 1) dx,

hence

µ1

(
A,

a

1− (1 + ‖A‖L∞(SN−1))ε

)
+

(N − 2)2

4
<

(1 + ‖A‖L∞(SN−1))ε

1− (1 + ‖A‖L∞(SN−1))ε
.

From (9) it follows easily that, for fixed A ∈ C1(SN−1,RN ), the map a 7→ µ1(A, a) is continuous
with respect to the L∞(SN−1

)
-norm. Therefore, letting ε → 0 in the above inequality, we obtain

µ1(A, a) +
(N−2)2

4 6 0, thus contradicting assumption (11). �

The negligibility assumption (6) allows treating h as a lower order potential, recovering for small
time the positivity of the quadratic form associated to (26).

Corollary 3.4. Let N > 2, a ∈ L∞(
S
N−1,R

)
and let A ∈ C1(SN−1,RN ) satisfy (2) and (11).

Let T > 0, I = (−T, 0) and h ∈ L∞
loc((R

N \ {0}) × (−T, 0)) satisfy (6) in I. Then there exist

C1, C2 > 0 and T > 0 such that for every t ∈ (0, T ), s ∈ (−T, 0), and u ∈ Ht

∫

RN

(
|∇Au(x)|2 −

a(x/|x|)
|x|2 |u(x)|2 − |h(x, s)||u(x)|2

)
G(x, t) dx

> C1

∫

RN

|u(x)|2
|x|2 G(x, t) dx − C2

t

∫

RN

|u(x)|2G(x, t) dx
∫

RN

(
|∇Au(x)|2 −

a(x/|x|)
|x|2 |u(x)|2 − |h(x, s)||u(x)|2

)
G(x, t) dx +

N − 2

4t

∫

RN

|u(x)|2G(x, t) dx

> C1

(∫

RN

|∇u(x)|2G(x, t) dx +

∫

RN

|u(x)|2
|x|2 G(x, t) dx +

1

t

∫

RN

|u(x)|2G(x, t) dx
)
.
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Proof. From (6) it follows that, for every u ∈ Ht,
∣∣∣∣
∫

RN

|h(x, s)||u(x)|2G(x, t) dx
∣∣∣∣(40)

6 Ch

(∫

RN

|u(x)|2G(x, t) dx +

∫

RN

|x|−2+ε|u(x)|2G(x, t) dx
)

6 Ch

(∫

RN

|u(x)|2G(x, t) dx + tε/2
∫

|x|6
√
t

|u(x)|2
|x|2 G(x, t) dx

+ t−1+ε/2

∫

|x|>
√
t

|u(x)|2G(x, t) dx
)

=
Ch
t
(t+ tε/2)

∫

RN

|u(x)|2G(x, t) dx + Cht
ε/2

∫

RN

|u(x)|2
|x|2 G(x, t) dx.

The stated inequalities follow from (40), Lemma 3.2, Corollary 3.3, and assumption (11). �

The proof of the following inequality follows the spirit of [9, Lemma 3].

Lemma 3.5. For every u ∈ H, |x|u ∈ L and

1

16

∫

RN

|x|2|u(x)|2G(x, 1) dx 6

∫

RN

|∇Au(x)|2G(x, 1) dx +
N

4

∫

RN

|u(x)|2G(x, 1) dx.

Proof. Let u ∈ C∞
c (RN \ {0},C) and w = e−

|x|2

8 u. It follows that

∇Aw = e−
|x|2

8

((
∇+ i

A

|x|

)
u− ux

4

)
.

Hence, by the transversality condition (2), an integration by parts yields that
∫

RN

|∇Aw|2 dx =

∫

RN

e−
|x|2

4

(∣∣∣
(
∇+ i A|x|

)
u
∣∣∣
2

+
|x|2|u|2

16
− 1

2
Re

((
∇+ i A|x|

)
u · x ū

))
dx

=

∫

RN

e−
|x|2

4

(∣∣∣
(
∇+ i A|x|

)
u
∣∣∣
2

+
|x|2|u|2

16
− 1

4
∇|u|2 · x

)
dx

=

∫

RN

e−
|x|2

4 |∇Au|2 dx− 1

16

∫

RN

e−
|x|2

4 |x|2|u|2 dx +
N

4

∫

RN

e−
|x|2

4 |u|2 dx > 0.

The conclusion follows by density of C∞
c (RN \ {0},C) in H. �

Using the change of variables u(x) = v(x/
√
t), it is easy to verify that Lemma 3.5 implies the

following inequality in Ht.

Corollary 3.6. For every t > 0 and u ∈ Ht, there holds

1

16t2

∫

RN

|x|2|u(x)|2G(x, t) dx 6

∫

RN

|∇Au(x)|2G(x, t) dx +
N

4t

∫

RN

|u(x)|2G(x, t) dx.

The following weighted Sobolev type inequalities hold.
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Lemma 3.7. For all v ∈ H there holds v
√
G(·, 1) ∈ Ls(RN ) for all s ∈ [2, 2N

N−2 ] if N > 3 and for
all s > 2 if N = 2; furthermore

(∫

RN

|v(x)|sG s
2 (x, 1) dx

)2
s

6 Cs‖v‖2H

for some constant Cs > 0 independent of v ∈ H. Moreover, for every t > 0 and u ∈ Ht,
(∫

RN

|u(x)|sG s
2 (x, t) dx

)2
s

6 Cst
−N

s (
s−2
2 )‖u‖2Ht

,

for all s ∈ [2, 2N
N−2 ] if N > 3 and for all s > 2 if N = 2, with Cs > 0 as above.

Proof. Lemma 3.5 implies that, if v ∈ H, then v
√
G(·, 1) ∈ H1(RN ) and the first embedding

follows from classical Sobolev inequalities and Lemma 3.5. The second inequality follows directly
from the first one and the change of variables u(x) = v(x/

√
t). �

4. Spectrum of Ornstein-Uhlenbeck type operators with critical

electromagnetic potentials

In this section we describe the spectral properties of the operator LA,a = LA,a+
x
2 ·∇ defined in

(7). In particular we extend to the general critical electromagnetic case previous analogous results
obtained in [26] for A ≡ 0 and a ≡ λ constant and in [16] for A ≡ 0.

In order to apply the Spectral Theorem to the operator LA,a, some compactness is first needed.
With this aim, following [12], we prove the following compact embedding.

Lemma 4.1. The space H is compactly embedded in L.
Proof. Let us assume that uk ⇀ u weakly in H. From Rellich’s theorem uk → u in L2

loc(R
N ),

i.e. uk → u strongly in L2(Ω) for all Ω ⊂⊂ RN . For every R > 0 and k ∈ N, we have

(41)

∫

RN

|uk − u|2G(x, 1) dx = Ak(R) +Bk(R)

where

(42) Ak(R) =

∫

{|x|6R}
|uk(x)− u(x)|2e−|x|2/4 dx→ 0 as k → +∞, for every R > 0,

and

Bk(R) =

∫

{|x|>R}
|uk(x) − u(x)|2G(x, 1) dx.

From Lemma 3.5 and boundedness of uk in H, we deduce that

Bk(R) 6 R−2

∫

{|x|>R}
|x|2|uk(x) − u(x)|2G(x, 1) dx(43)

6
1

R2

(
16

∫

RN

|∇A(uk − u)(x)|2G(x, 1) dx+ 4N

∫

RN

|uk(x) − u(x)|2G(x, 1) dx
)

6
const

R2
.

Combining (41), (42), and (43), we obtain that uk → u strongly in L. �

In the proof of the representation formula for solutions stated in Theorem 1.5 and performed in
section 7 also the forward Ornstein-Uhlenbeck operators L−

A,a = LA,a− x
2 ·∇ will come into play. In
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order to study its spectral decomposition, we introduce the forward analogue of the spaces H and
L. More precisely, we define the space L̃ as in (24) and H̃ as the completion of C∞

c (RN \ {0},C)
with respect to

(44) ‖ϕ‖H̃ =

(∫

RN

(
|∇ϕ(x)|2 + |ϕ(x)|2 + |ϕ(x)|2

|x|2
)
e

|x|2

4 dx

)1/2
.

Proposition 4.2. Let T̃ : H → H̃ be defined as T̃ u(x) = e−
|x|2

4 u(x). Then,

i) T̃ : L → L̃ is an isometry;

ii) T̃ : H → H̃ is an isomorphism of normed vector spaces.

Proof. We first observe that, if ϕ = T̃ u, then
∫

RN

|ϕ(x)|2e |x|2

4 dx =

∫

RN

|u(x)|2e− |x|2

4 dx.

Hence, ‖ϕ‖L̃ = ‖u‖L = ‖T̃u‖L̃ for all u ∈ L. Then i) is proved.

To prove ii), we first observe that, if u ∈ C∞
c (RN \ {0},C) and v = T̃ u, there holds

∇u(x) = e
|x|2

4

(x
2
v(x) +∇v(x)

)
,

and hence

|∇u(x)|2 = e
|x|2

2

( |x|2
4

|v(x)|2 + |∇v(x)|2 +Re(v(x)∇v(x) · x)
)

= e
|x|2

2

( |x|2
4

|v(x)|2 + |∇v(x)|2 + 1

2
∇|v|2(x) · x

)
.

Then, an integration by parts yields
∫

RN

|∇u(x)|2 e− |x|2

4 dx =

∫

RN

e
|x|2

4

( |x|2
4

|v(x)|2 + |∇v(x)|2
)
dx+

1

2

∫

RN

e
|x|2

4 ∇|v|2(x) · x dx

=

∫

RN

e
|x|2

4

( |x|2
4

|v(x)|2 + |∇v(x)|2
)
dx − 1

2

∫

RN

e
|x|2

4 |v(x)|2
( |x|2

2
+N

)
dx

=

∫

RN

e
|x|2

4

(
|∇v(x)|2 − N

2
|v(x)|2

)
dx.

Therefore
∫

RN

e−
|x|2

4

(
|∇u(x)|2 +N |u(x)|2 + |u(x)|2

|x|2
)
dx =

∫

RN

e
|x|2

4

(
|∇v(x)|2 + N

2
|v(x)|2 + |v(x)|2

|x|2
)
dx.

The above identity and density of C∞
c (RN \ {0},C) in H and H̃ prove statement ii). �

As a consequence, we obtain the following compact embedding for H̃.

Corollary 4.3. The space H̃ is compactly embedded in L̃.
Proof. The conclusion follows by combining Lemma 4.1 with Proposition 4.2. �

The Hardy type inequalities established in section 3 and the embeddings discussed above allow
applying the classical Spectral Theorem to the operator LA,a defined in (7).
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Lemma 4.4. For N > 2, let A ∈ C1(SN−1,RN ) satisfy (2) and let a ∈ L∞(SN−1,R
)
be such that

(11) holds. Then the spectrum of the operator LA,a defined in (7) consists of a diverging sequence
of real eigenvalues with finite multiplicity. Moreover, there exists an orthonormal basis of L whose
elements belong to H and are eigenfunctions of LA,a.

Proof. By Corollary 3.3 and the Lax-Milgram Theorem, the bounded linear self-adjoint operator

TA,a : L → L, TA,a =

(
LA,a +

N − 2

4
Id

)−1

is well defined. Moreover, by Lemma 4.1, TA,a is compact. The result then follows from the
Spectral Theorem. �

We are now in position to prove Proposition 1.1.
Proof of Proposition 1.1. Let γ be an eigenvalue of LA,a and g ∈ H \ {0} be a corresponding
eigenfunction, so that

(45) LA,ag(x) +
∇g(x) · x

2
= γ g(x)

in a weak H-sense. From classical regularity theory for elliptic equations, g ∈ C1,α
loc (R

N \ {0},C).
Hence g can be expanded as

g(x) = g(rθ) =

∞∑

k=1

φk(r)ψk(θ) in L2(SN−1,C),

where r = |x| ∈ (0,+∞), θ = x/|x| ∈ SN−1, and

φk(r) =

∫

SN−1

g(rθ)ψk(θ) dS(θ),

with {ψk}k as in (10). Equations (10) and (45) imply that, for every k,

(46) φ′′k +

(
N − 1

r
− r

2

)
φ′k +

(
γ − µk(A, a)

r2

)
φk = 0 in (0,+∞).

The rest of the proof follows exactly as in [16, Proposition 1] . �

Denoting by Lαm(t) the generalized Laguerre polynomials

Lαm(t) =
m∑

n=0

(−1)n
(
m+ α

m− n

)
tn

n!
,

we have that

(47) Pk,m

( |x|2
4

)
=

(
m+ βk
m

)−1

Lβk
m

( |x|2
4

)
,

with βk =

√(
N−2
2

)2
+ µk(A, a). It is worth recalling the well known orthogonality relation

(48)

∫ ∞

0

xαe−xLαn(x)L
α
m(x) dx =

Γ(n+ α+ 1)

n!
δn,m,

where δn,m denotes the Kronecker delta.
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Remark 4.5. For n, j ∈ N, j > 1, let Vn,j be defined in (14). From the orthogonality of eigen-
functions {ψk}k in L2(SN−1,C) and the orthogonality relation for Laguerre polynomials (48), it
follows that

if (m1, k1) 6= (m2, k2) then Vm1,k1 and Vm2,k2 are orthogonal in L.
By Lemma 4.4, we conclude that an orthonormal basis of L is given by

{
Ṽn,j =

Vn,j
‖Vn,j‖L

: j, n ∈ N, j > 1

}
.

Remark 4.6. If γ is an eigenvalue and ϕ ∈ H̃\{0} is a corresponding eigenfunction of the operator
L−
A,a defined as

(49) L−
A,a : H̃ → H̃⋆, L−

A,aϕ(x) = LA,aϕ(x) −
∇ϕ(x) · x

2
,

i.e. L−
A,aϕ = γ ϕ in a weak H̃-sense, then γ − N

2 is an eigenvalue of the operator LA,a with

u = e
|x|2

4 ϕ as a corresponding eigenfunction, i.e.

LA,au(x) = LA,au(x) +
∇u(x) · x

2
=
(
γ − N

2

)
u(x)

in a weak H-sense. It follows that the set of the eigenvalues of L−
A,a is

{
N

2
+m− αk

2
: k,m ∈ N, k > 1

}
.

Moreover, letting Un,j = e−
|x|2

4 Vn,j with Vn,j as in (14), we have that
{
Ũn,j =

Un,j
‖Un,j‖L̃

: j, n ∈ N, j > 1

}

is an orthonormal basis of L̃.
Remark 4.7. From (47) and the orthogonality relation (48), it is easy to check that

‖Um,k‖2L̃ =

∫

RN

e
|x|2

4 |Um,k|2 dx =

∫

RN

e−
|x|2

4 |Vm,k|2 dx

= ‖Vm,k‖2L = 21+2βkΓ(1 + βk)

(
m+ βk
m

)−1

.

5. The parabolic electromagnetic Almgren monotonicity formula

Throughout this section, we assume that N > 2, A ∈ C1(SN−1,RN ) and a ∈ L∞(SN−1,R
)

satisfy (2) and (11), and ũ is a weak solution to (26) in R
N × (0, T ) with h satisfying (5)–(6) in

I = (−T, 0). Let C1 > 0 and T > 0 be as in Corollary 3.4 and denote

α =
T

2
(⌊
T/T

⌋
+ 1
) ,

where ⌊·⌋ denotes the floor function, i.e. ⌊x⌋ := max{n ∈ Z : n 6 x}. Then (0, T ) =
⋃k
j=1(aj , bj)

being
k = 2

(⌊
T/T

⌋
+ 1
)
− 1, aj = (j − 1)α, and bj = (j + 1)α.
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We notice that 0 < 2α < T and (aj , bj)∩ (aj+1, bj+1) = (jα, (j +1)α) 6= ∅. For every j = 1, . . . , k,
we define

ũj(x, t) = ũ(x, t+ aj), x ∈ R
N , t ∈ (0, 2α).

Lemma 5.1. For every j = 1, . . . , k, the function ũj defined above is a weak solution to

(50) − (ũj)t(x, t) + LA,aũj(x, t) = h(x,−(t+ aj))ũj(x, t)

in RN×(0, 2α) in the sense of Definition 2.1. Furthermore, ṽj(x, t) := ũj(
√
tx, t) is a weak solution

to

(51) (ṽj)t +
1

t

(
− LA,aṽj −

x

2
· ∇ṽj + th(

√
tx,−(t+ aj))ṽj(x, t)

)
= 0

in RN × (0, 2α) in the sense of Remark 2.3.

Proof. Since the proof is very similar to the proof of [16, Lemma 4.1], we omit it here, referring to
[16] for details. �

For every j = 1, . . . , k, we define

(52) Hj(t) =

∫

RN

|ũj(x, t)|2G(x, t) dx, for every t ∈ (0, 2α),

and

(53) Dj(t) =

∫

RN

[
|∇Aũj(x, t)|2 −

a(x/|x|)
|x|2 |ũj(x, t)|2 − h(x,−(t+ aj))|ũj(x, t)|2

]
G(x, t)dx

for a.e. t ∈ (0, 2α). From Lemma 5.1 and Remark 2.2 it follows that, for every 1 6 j 6 k,

Hj ∈ W 1,1
loc (0, 2α) and

(54) H ′
j(t) = 2Re

[

H⋆
t

〈
(ũj)t +

∇ũj · x
2t

, ũj(·, t)
〉

Ht

]
= 2Dj(t) for a.e. t ∈ (0, 2α).

Lemma 5.2. Letting C1 as in Corollary 3.4, we have that, for every j = 1, . . . , k, the function

t 7→ t−2C1+
N−2

2 Hj(t)

is nondecreasing in (0, 2α).

Proof. From (54), Corollary 3.4 and the fact that 2α < T , we have that, for all t ∈ (0, 2α),

H ′
j(t) >

1

t

(
2C1 −

N − 2

2

)
Hj(t),

which implies that d
dt

(
t−2C1+

N−2
2 Hj(t)

)
> 0, thus concluding the proof. �

Lemma 5.3. If 1 6 j 6 k and Hj(t̄) = 0 for some t̄ ∈ (0, 2α), then Hj(t) = 0 for all t ∈ (0, t̄ ].

Proof. From Lemma 5.2, the function t 7→ t−2C1+
N−2

2 Hj(t) is nondecreasing in (0, 2α), nonnega-
tive, and vanishing at t̄. Hence Hj(t) = 0 for all t ∈ (0, t̄]. �

Lemma 5.4. If 1 6 j 6 k and Tj ∈ (0, 2α) is such that ũj(·, Tj) ∈ HTj , then

(i)
∫ Tj

τ

∫
RN

(∣∣(ũj)t(x, t) + ∇Aũj(x,t)·x
2t

∣∣2G(x, t) dx
)
dt < +∞ for all τ ∈ (0, Tj);
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(ii) the function t 7→ tDj(t) belongs to W 1,1
loc (0, Tj) and, for a.e. t ∈ (0, Tj),

d

dt

(
tDj(t)

)
= 2t

∫

RN

∣∣∣∣(ũj)t(x, t) +
∇ũj(x, t) · x

2t

∣∣∣∣
2

G(x, t) dx

+

∫

RN

h(x,−(t+ aj))

(
N − 2

2
|ũj(x, t)|2 +Re(ũj(x, s)∇ũj(x, s) · x)−

|x|2
4t

|ũj(x, t)|2
)
G(x, t) dx

+ t

∫

RN

ht(x,−(t+ aj))|ũj(x, t)|2G(x, t) dx.

Proof. Testing equation (51) with (ṽj)t (this formal testing procedure can be made rigorous by a
suitable approximation) and using Corollary 3.4, we obtain that, for all t ∈ (0, Tj),

∫ Tj

t

s

(∫

RN

|(ṽj)t(x, s)|2G(x, 1) dx
)
ds

6 const

(
‖ũj(

√
Tj ·, Tj)‖2H +

∫

RN

|ṽj(x, t)|2G(x, 1) dx

+

∫ Tj

t

(∫

RN

h(
√
sx,−(s+ aj))

( |x|2
8

|ṽj(x, s)|2

− Re(ṽj(x, s)∇ṽj(x, s) · x)
2

− N − 2

4
|ṽj(x, s)|2

)
G(x, 1) dx

)
ds

− 1

2

∫ Tj

t

s

(∫

RN

hs(
√
sx,−(s+ ai))|ṽj(x, s)|2G(x, 1) dx

)
ds

)
.

From (5)–(6) and Lemmas 3.5 and 3.7 we have that the integrals in the last two terms of the
previous formula are finite for every t ∈ (0, Tj). Hence we conclude that

(ṽj)t ∈ L2(τ, Tj ;L) for all τ ∈ (0, Tj).

Testing (51) with (ṽj)t also yields

∫ Ti

t

s

(∫

RN

|(ṽj)t(x, s)|2G(x, 1) dx
)
ds

+
1

2

∫

RN

(
|∇Aṽj(x, t)|2 −

a(x/|x|)
|x|2 |ṽj(x, t)|2 − th(

√
tx,−(t+ aj))|ṽj(x, t)|2

)
G(x, 1) dx

=
1

2

∫

RN

(
|∇Av0,j(x)|2 −

a(x/|x|)
|x|2 |v0,j(x)|2 − Tjh(

√
Tjx,−(Tj + aj))|v0,j(x)|2

)
G(x, 1) dx

+

∫ Tj

t

(∫

RN

h(
√
sx,−(s+ aij))

( |x|2
8

|ṽj(x, s)|2

− Re(ṽj(x, s)∇ṽj(x, s) · x)
2

− N − 2

4
|ṽj(x, s)|2

)
G(x, 1) dx

)
ds

− 1

2

∫ Tj

t

s

(∫

RN

hs(
√
sx,−(s+ aj))|ṽj(x, s)|2G(x, 1) dx

)
ds,
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for all t ∈ (0, Tj), where v0,j(x) := ũj(
√
Tjx, Tj) ∈ H. Therefore the function

t 7→
∫

RN

(
|∇Aṽj(x, t)|2 −

a(x/|x|)
|x|2 |ṽj(x, t)|2 − th(

√
tx,−(t+ aj))|ṽj(x, t)|2

)
G(x, 1) dx

is absolutely continuous in (τ, Tj) for all τ ∈ (0, Tj) and

d

dt

∫

RN

(
|∇Aṽj(x, t)|2 −

a(x/|x|)
|x|2 |ṽj(x, t)|2 − th(

√
tx,−(t+ aj))|ṽj(x, t)|2

)
G(x, 1) dx

= 2t

∫

RN

|(ṽj)t(x, t)|2G(x, 1) dx

−
∫

RN

h(
√
tx,−(t+ aj))

( |x|2
4

|ṽj(x, t)|2

−Re(ṽj(x, s)∇ṽj(x, s) · x)−
N − 2

2
|ṽj(x, t)|2

)
G(x, 1) dx

+ t

∫

RN

ht(
√
tx,−(t+ aj))|ṽj(x, t)|2G(x, 1) dx.

The change of variables ũj(x, t) = ṽj(x/
√
t, t) gives the conclusion. �

For all j = 1, . . . , k, the Almgren type frequency function associated to ũj is defined as

Nj : (0, 2α) → R ∪ {−∞,+∞}, Nj(t) :=
tDj(t)

Hj(t)
.

The analysis below will show that each Nj actually assumes finite values all over (0, 2α) and
its derivative is an integrable perturbation of a nonnegative function wherever Nj assumes finite
values.

Lemma 5.5. Let k ∈ {1, . . . , k}. If there exist βj , Tj ∈ (0, 2α) such that

(55) βj < Tj, Hj(t) > 0 for all t ∈ (βj , Tj), and ũj(·, Tj) ∈ HTj ,

then Nj ∈W 1,1
loc (βj , Tj) and

N ′
j(t) = ν1j(t) + ν2j(t)

in a distributional sense and a.e. in (βj , Tj) where

ν1j(t) =
2t

H2
j (t)

[(∫

RN

∣∣∣∣(ũj)t(x, t) +
∇ũj(x, t) · x

2t

∣∣∣∣
2

G(x, t) dx

)(∫

RN

|ũj(x, t)|2 G(x, t) dx
)

−
(∫

RN

(
(ũj)t(x, t) +

∇ũj(x, t) · x
2t

)
ũj(x, t)G(x, t) dx

)2 ]
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and

ν2j(t) =
1

Hj(t)

∫

RN

h(x,−(t+ aj))

(
N − 2

2
|ũj(x, t)|2

+Re
(
ũj(x, t)∇ũj(x, t) · x

)
− |x|2

4t
|ũj(x, t)|2

)
G(x, t) dx

+
t

Hj(t)

(∫

RN

ht(x,−(t+ aj))|ũj(x, t)|2G(x, t) dx
)
.

Proof. From (54) and Lemma 5.4, it follows that Nj ∈W 1,1
loc (βj , Tj). From (54) it follows that

N ′
j(t) =

(tDj(t))
′Hj(t)− tDj(t)H

′
j(t)

H2
j (t)

=
(tDj(t))

′Hj(t)− 2tD2
j (t)

H2
j (t)

,

and hence, in view of (52), (54), and Lemma 5.4, we obtain the conclusion. �

Lemma 5.6. There exists C3 > 0 such that, if j ∈ {1, . . . , k} and βj , Tj ∈ (0, 2α) satisfy (55),
then, for every t ∈ (βj , Tj),

Nj(t) 6 −N − 2

4
+ C3

(
Nj(Tj) +

N − 2

4

)
.

Proof. Let us first claim that, for all j = 1, . . . , k, the term ν2j of Lemma 5.5 can be estimated as
follows:

(56)
∣∣ν2j(t)

∣∣ 6





C4

(
Nj(t) +

N−2
4

)(
t−1+ε/2 + ‖ht(·,−(t+ aj))‖LN/2(RN )

)
, if N > 3,

C4

(
Nj(t) +

N−2
4

)(
t−1+ε/2 + ‖ht(·,−(t+ aj))‖Lp(RN )

)
, if N = 2,
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for a.e. t ∈ (βj , Tj), with some C4 > 0 independent of t and j. Indeed, from (6) it follows that, for
a.e. t ∈ (βj , Tj),

∣∣∣∣
∫

RN

h(x,−(t+ aj))Re
(
ũj(x, t)∇ũj(x, t) · x

)
G(x, t) dx

∣∣∣∣(57)

6 Ch

∫

RN

(1 + |x|−2+ε)|∇ũj(x, t)||x||ũj(x, t)|G(x, t) dx

6 Cht

∫

RN

|∇ũj(x, t)|
|x|
t
|ui(x, t)|G(x, t) dx

+ Cht
ε/2

∫

{|x|6
√
t}
|∇ũj(x, t)|

|ũj(x, t)|
|x| G(x, t) dx

+ Cht
ε/2

∫

{|x|>
√
t}
|∇ũj(x, t)|

|x|
t
|ũj(x, t)|G(x, t) dx

6
1

2
Ch(t+ tε/2)

∫

RN

|∇ũj(x, t)|2G(x, t) dx

+
1

2
Ch(t+ tε/2)

∫

RN

|x|2
t2

|ũj(x, t)|2G(x, t) dx

+
1

2
Cht

ε/2

∫

RN

|∇ũj(x, t)|2G(x, t) dx +
1

2
Cht

ε/2

∫

RN

|ũj(x, t)|2
|x|2 G(x, t) dx

6
1

2
Cht

ε/2(2 + T
1−ε/2

)

∫

RN

|∇ũj(x, t)|2G(x, t) dx

+
1

2
Cht

ε/2(1 + T
1−ε/2

)

∫

RN

|x|2
t2

|ũj(x, t)|2G(x, t) dx

+
1

2
Cht

ε/2

∫

RN

|ũj(x, t)|2
|x|2 G(x, t) dx,

and
∫

RN

|h(x,−(t+ aj))||x|2|ũj(x, t)|2G(x, t) dx(58)

6 Ch

∫

RN

|x|2|ũj(x, t)|2G(x, t) dx + Ch

∫

RN

|x|−2+ε|x|2|ũj(x, t)|2G(x, t) dx

6 Ch

∫

RN

|x|2|ũj(x, t)|2G(x, t) dx + Cht
ε/2

∫

{|x|6
√
t}
|ũj(x, t)|2G(x, t) dx

+ Cht
−1+ε/2

∫

{|x|>
√
t}
|x|2|ũj(x, t)|2G(x, t) dx

6 Cht
−1+ε/2(1 + T

1−ε/2
)

∫

RN

|x|2|ũj(x, t)|2G(x, t) dx + Cht
ε/2

∫

RN

|ũj(x, t)|2G(x, t) dx.

Moreover, by Hölder’s inequality and Corollary 3.7, we have that, for a.e. t ∈ (βj , Tj), if N > 3,
∣∣∣∣
∫

RN

ht(x,−(t+ aj))|ũj(x, t)|2G(x, t) dx
∣∣∣∣ 6 C2∗t

−1‖ũj(·, t)‖2Ht
‖ht(·,−(t+ aj))‖LN/2(RN )(59)
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and, if N = 2,
∣∣∣∣
∫

RN

ht(x,−(t+ aj))|ũj(x, t)|2G(x, t) dx
∣∣∣∣ 6 C 2p

p−1
t−1/p‖ũj(·, t)‖2Ht

‖ht(·,−(t+ aj))‖Lp(RN ).(60)

Collecting (40), (57), (58) and (59)–(60), we obtain that

∣∣ν2j(t)
∣∣ 6 const tε/2

Hj(t)

(
1

t

∫

RN

|ũj(x, t)|2G(x, t) dx +

∫

RN

|ũj(x, t)|2
|x|2 G(x, t) dx(61)

+

∫

RN

|∇ũj(x, t)|2G(x, t) dx +
1

t2

∫

RN

|x|2|ũj(x, t)|2G(x, t) dx
)
+Rj(t)

where

Rj(t) =






C2∗

Hj(t)
‖ũj‖2Ht

‖ht(·,−(t+ aj))‖LN/2(RN ), if N > 3,

C 2p
p−1

t
1− 1

p

Hj(t)
‖ũj‖2Ht

‖ht(·,−(t+ aj))‖Lp(RN ), if N = 2.

Then estimate (56) follows from inequality (61), Corollary 3.4, and Corollary 3.6.
By Schwarz’s inequality,

(62) ν1j > 0 a.e. in (βj , Tj).

From Lemma 5.5, (62), and (56) it follows that

d

dt
Nj(t) >




−C4

(
Nj(t) +

N−2
4

)(
t−1+ε/2 + ‖ht(·,−(t+ aj))‖LN/2(RN )

)
, if N > 3,

−C4

(
Nj(t) +

N−2
4

)(
t−1+ε/2 + ‖ht(·,−(t+ aj))‖Lp(RN )

)
, if N = 2,

for a.e. t ∈ (βj , Tj). After integration, it follows that

Nj(t) 6





−N−2

4 +
(
Nj(Tj) +

N−2
4

)
exp

(
2C4

ε T
ε/2
j + C4‖ht‖L1((−T,0),LN/2(RN ))

)
, if N > 3,

−N−2
4 +

(
Nj(Tj) +

N−2
4

)
exp

(
2C4

ε T
ε/2
j + C4‖ht‖L1((−T,0),Lp(RN ))

)
, if N = 2,

for any t ∈ (βj , Tj), thus yielding the conclusion. �

As a consequence of the above monotonicity argument, we can prove the following non-vanishing
properties of the the functions Hj .

Proposition 5.7. (i) Let j ∈ {1, . . . , k}. If Hj 6≡ 0, then Hj(t) > 0 for all t ∈ (0, 2α).
(ii) Let j ∈ {1, . . . , k}. Then Hj(t) ≡ 0 in (0, 2α) if and only if Hj+1(t) ≡ 0 in (0, 2α).
(iii) Let u 6≡ 0 is a weak solution to (1) in RN × (−T, 0) with h satisfying (5)–(6) in RN × (−T, 0).

Let ũ(x, t) = u(x,−t) and let Hj be defined as in (52) for j = 1, 2, . . . , k. Then Hj(t) > 0 for
all t ∈ (0, 2α) and j = 1, . . . , k. In particular,

(63)

∫

RN

|u(x,−t)|2G(x,−t) dx > 0 for all t ∈ (−T, 0).

Proof. Once Lemmas 5.3 and 5.6 are established, the proof can be done arguing as in [16,
Lemmas 4.9 and 4.10, Corollary 7]. Hence we omit it. �

Proof of Proposition 1.4. Up a translation in time, it is not restrictive to assume that
I = (−T, 0) for some T > 0. Then the conclusion follows from Proposition 5.7 (iii). �
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Henceforward, we assume u 6≡ 0 in RN × (−T, 0) (so that ũ 6≡ 0 in RN × (0, T )) and we denote,
for all t ∈ (0, 2α),

H(t) = H1(t) =

∫

RN

|ũ(x, t)|2G(x, t) dx,

D(t) = D1(t) =

∫

RN

(
|∇Aũ(x, t)|2 −

a
(
x/|x|

)

|x|2 |ũ(x, t)|2 − h(x,−t)|ũ(x, t)|2
)
G(x, t) dx.

Proposition 5.7 ensures that, if ũ 6≡ 0 in RN × (0, T ), then H(t) > 0 for all t ∈ (0, 2α). Hence the
Almgren type frequency function

N (t) = N1(t) =
tD(t)

H(t)

is well defined over all (0, 2α). Moreover, by Lemma 5.5, N ∈ W 1,1
loc (0, 2α) and N ′ = ν1+ν2 a.e. in

(0, 2α), where ν1 = ν11 and ν2 = ν21, with ν11, ν21 as in Lemma 5.5. By (27), ũ(·, t) ∈ Ht for a.e.
t ∈ (0, T ), hence there exists a T0 ∈ (0, 2α) such that ũ(·, T0) ∈ HT0 . We now prove the existence
of the limit of N (t) as t→ 0+.

Lemma 5.8. The limit γ := limt→0+ N (t) exists and it is finite.

Proof. We first observe that, in view of Corollary 3.4, tD(t) >
(
C1−N−2

4

)
H(t) for all t ∈ (0, 2α).

Hence N (t) > C1 − N−2
4 , i.e. N is bounded from below. Let T0 be as above. By Schwarz’s

inequality, ν1(t) > 0 for a.e. t ∈ (0, T0). Furthermore, Lemma 5.6 and estimate (56), together with
assumption (5), imply that ν2 ∈ L1(0, T0). Hence N ′(t) is the sum of a nonnegative function and

of a L1 function over (0, T0). Therefore, N (t) = N (T0) −
∫ T0

t
N ′(s) ds admits a limit as t → 0+.

We conclude by observing that such a limit is finite since N is bounded from below (as observed
at the beginning of the proof) and from above (due to Lemma 5.6) in the interval (0, T0). �

Lemma 5.9. Let γ := limt→0+ N (t) be as in Lemma 5.8. Then there exists a constant K1 > 0
such that

(64) H(t) 6 K1t
2γ for all t ∈ (0, T0).

Furthermore, for any σ > 0, there exists a constant K2(σ) > 0 depending on σ such that

(65) H(t) > K2(σ) t
2γ+σ for all t ∈ (0, T0).

Proof. From Lemma 5.5, Schwarz’s inequality, (56), and assumption (5) we deduce that

N (t) − γ =

∫ t

0

(ν1(s) + ν2(s))ds >

∫ t

0

ν2(s)ds

>




−C3C4

(
N (T0) +

N−2
4

) ∫ t
0

(
s−1+ε/2 + ‖ht(·,−s)‖LN/2(RN )

)
ds, if N > 3,

−C3C4N (T0)
∫ t
0

(
s−1+ε/2 + ‖ht(·,−s)‖Lp(RN )

)
ds, if N = 2,

>




−C3C4

(
N (T0) +

N−2
4

)(
2
ε t
ε/2 + ‖ht‖Lr((−T,0),LN/2(RN ))t

1−1/r
)
, if N > 3,

−C3C4N (T0)
(

2
ε t
ε/2 + ‖ht‖Lr((−T,0),Lp(RN ))t

1−1/r
)
, if N = 2

> −C5t
δ
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with

(66) δ = min

{
ε

2
, 1− 1

r

}

for some constant C5 > 0 and for all t ∈ (0, T0). From the above estimate and (54), we deduce that

(logH(t))′ = H′(t)
H(t) = 2

tN (t) > 2
t γ − 2C5t

−1+δ, which, after integration over (t, T0), yields (64).

Since γ = limt→0+ N (t), for any σ > 0 there exists tσ > 0 such that N (t) < γ + σ/2 for any

t ∈ (0, tσ). Hence H′(t)
H(t) = 2N (t)

t < 2γ+σ
t which, by integration over (t, tσ) and continuity of H

outside 0, implies (65) for some constant K2(σ) depending on σ. �

6. Blow-up analysis

Once the monotonicity type Lemma 5.8 is established, our next step is a blow-up analysis for
scaled solutions to (26), which can be performed following the procedure developed in [16]

Let ũ be a weak solution to (26) in RN × (0, T ) with h satisfying (5)–(6) in I = (−T, 0). For
every λ > 0, we define

ũλ(x, t) = ũ(λx, λ2t).

We observe that ũλ weakly solves

(67) − (ũλ)t + LA,aũλ = λ2h(λx,−λ2t)ũλ in R
N × (0, T/λ2).

We can associate to the scaled equation (67) the Almgren frequency function

(68) Nλ(t) =
tDλ(t)

Hλ(t)
,

where

Dλ(t) =

∫

RN

(
|∇Aũλ(x, t)|2 −

a
(
x/|x|

)

|x|2 |ũλ(x, t)|2 − λ2h(λx,−λ2t)|ũλ(x, t)|2
)
G(x, t) dx,

Hλ(t) =

∫

RN

|ũλ(x, t)|2G(x, t) dx.

By scaling and a suitable change of variables we easily see that

Dλ(t) = λ2D(λ2t) and Hλ(t) = H(λ2t),(69)

so that

Nλ(t) = N (λ2t) for all t ∈
(
0,

2α

λ2

)
.(70)

Lemma 6.1. Let N > 2, A ∈ C1(SN−1,RN ) and let a ∈ L∞(SN−1,R
)
satisfy (2) and (11). Let

ũ 6≡ 0 be a nontrivial weak solution to (26) in R
N × (0, T ) with h satisfying (5)–(6) in I = (−T, 0).

Let γ := limt→0+ N (t) as in Lemma 5.8. Then

(i) γ is an eigenvalue of the operator LA,a defined in (7);
(ii) for every sequence λn → 0+, there exists a subsequence {λnk

}k∈N and an eigenfunction g
of the operator LA,a associated to the eigenvalue γ such that, for all τ ∈ (0, 1),

lim
k→+∞

∫ 1

τ

∥∥∥∥
ũ(λnk

x, λ2nk
t)√

H(λ2nk
)

− tγg(x/
√
t)

∥∥∥∥
2

Ht

dt = 0
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and

lim
k→+∞

sup
t∈[τ,1]

∥∥∥∥
ũ(λnk

x, λ2nk
t)√

H(λ2nk
)

− tγg(x/
√
t)

∥∥∥∥
Lt

= 0.

Proof. Let

wλ(x, t) :=
ũλ(x, t)√
H(λ2)

,(71)

with λ ∈ (0,
√
T 0), so that 1 < T0/λ

2. From Lemma 5.2 it follows that, for all t ∈ (0, 1),

(72)

∫

RN

|wλ(x, t)|2G(x, t) dx =
H(λ2t)

H(λ2)
6 t2C1−N−2

2 ,

with C1 as in Corollary 3.4. Lemma 5.6, Corollary 3.4, and (69) imply that

1

t

(
− N − 2

4
+ C3

(
N (T0) +

N − 2

4

))
Hλ(t) > λ2D(λ2t)

>
1

t

(
C1 −

N − 2

4

)
Hλ(t) + C1

∫

RN

(
|∇ũλ(x, t)|2 +

|ũλ(x, t)|2
|x|2

)
G(x, t) dx

and hence, in view of (72),

(73) t

∫

RN

(
|∇wλ(x, t)|2 +

|wλ(x, t)|2
|x|2

)
G(x, t) dx 6 C−1

1

(
C3

(
N (T0) +

N−2
4

)
− C1

)
t2C1−N−2

2

for a.e. t ∈ (0, 1). By scaling, we have that the family of functions

w̃λ(x, t) = wλ(
√
tx, t) =

ũ(λ
√
tx, λ2t)√
H(λ2)

satisfies

(74)

∫

RN

|w̃λ(x, t)|2G(x, 1) dx =

∫

RN

|wλ(x, t)|2G(x, t) dx

and

(75)

∫

RN

(
|∇w̃λ(x, t)|2 +

|w̃λ(x, t)|2
|x|2

)
G(x, 1) dx = t

∫

RN

(
|∇wλ(x, t)|2 +

|wλ(x, t)|2
|x|2

)
G(x, t) dx.

From (72), (73), (74), and (75), we deduce that, for all τ ∈ (0, 1),

(76)
{
w̃λ
}
λ∈(0,

√
T 0)

is bounded in L∞(τ, 1;H)

uniformly with respect to λ ∈ (0,
√
T 0). Moreover w̃λ solves the following weak equation: for all

φ ∈ H,

(77) H⋆

〈
(w̃λ)t, φ

〉
H =

1

t

∫

RN

(
∇Aw̃λ(x, t) · ∇Aφ(x) −

a
(
x
|x|
)

|x|2 w̃λ(x, t)φ(x)

− λ2t h
(
λ
√
tx,−λ2t)w̃λ(x, t)φ(x)

)
G(x, 1) dx.
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From (6) it follows that

λ2
∣∣∣∣
∫

RN

h(λ
√
tx,−λ2t)w̃λ(x, t)φ(x)G(x, 1) dx

∣∣∣∣(78)

6 Chλ
2

∫

RN

|w̃λ(x, t)||φ(x)|G(x, 1) dx + Ch
λε

t

∫

RN

|x|−2+ε|w̃λ(x, t)||φ(x)|G(x, 1) dx

6 Chλ
2‖w̃λ(·, t)‖H‖φ‖H + Ch

λε

t

∫

|x|61

|w̃λ(x, t)||φ(x)|
|x|2 G(x, 1) dx

+ Ch
λε

t

∫

|x|>1

|w̃λ(x, t)||φ(x)|G(x, 1) dx

6 Ch
λε

t

(
t λ2−ε + 2

)
‖w̃λ(·, t)‖H‖φ‖H

for all λ ∈ (0,
√
T 0) and a.e. t ∈ (0, 1). From (77) and (78), and Lemma 3.1 we deduce that

(79) ‖(w̃λ)t(·, t)‖H⋆ 6
const

t
‖w̃λ(·, t)‖H

for all λ ∈ (0,
√
T 0) and a.e. t ∈ (0, 1) and for some const > 0 independent of t and λ.

In view of (76), estimate (79) yields, for all τ ∈ (0, 1),

(80)
{
(w̃λ)t

}
λ∈(0,

√
T 0)

is bounded in L∞(τ, 1;H⋆)

uniformly with respect to λ ∈ (0,
√
T 0). From (76), (80), and [25, Corollary 8], we deduce that{

w̃λ
}
λ∈(0,

√
T 0)

is relatively compact in C0([τ, 1],L) for all τ ∈ (0, 1). Therefore, by a diagonal

argument, from any given sequence λn → 0+ we can extract a subsequence λnk
→ 0+ such that

(81) w̃λnk
→ w̃ in C0([τ, 1],L)

for all τ ∈ (0, 1) and for some w̃ ∈ ⋂τ∈(0,1)C
0([τ, 1],L). From the fact that 1 = ‖w̃λnk

(·, 1)‖L and

the convergence (81) it follows that

(82) ‖w̃(·, 1)‖L = 1.

In particular w̃ is nontrivial. Furthermore, by (76) and (80), the subsequence can be chosen in
such a way that also

(83) w̃λnk
⇀ w̃ weakly in L2(τ, 1;H) and (w̃λnk

)t ⇀ w̃t weakly in L2(τ, 1;H⋆)

for all τ ∈ (0, 1), so that w̃ ∈ ⋂τ∈(0,1) L
2(τ, 1;H) and w̃t ∈

⋂
τ∈(0,1) L

2(τ, 1;H⋆). Actually, we can

prove that

(84) w̃λnk
→ w̃ strongly in L2(τ, 1;H) for all τ ∈ (0, 1).

To prove claim (84), we notice that (83) allows passing to the limit in (77). Since (78) and (76)
imply that the perturbation term vanishes in such a limit, we conclude that

(85) H⋆

〈
w̃t, φ

〉
H =

1

t

∫

RN

(
∇Aw̃(x, t) · ∇Aφ(x) −

a
(
x
|x|
)

|x|2 w̃(x, t)φ(x)

)
G(x, 1) dx

for all φ ∈ H and a.e. t ∈ (0, 1), i.e. w̃ is a weak solution to

w̃t +
1

t

(
− LA,aw̃ − x

2
· ∇w̃

)
= 0.
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Testing the difference between (77) and (85) with (w̃λnk
− w̃) and integrating with respect to t

between τ and 1, we obtain

∫ 1

τ

(∫

RN

(
|∇A(w̃λnk

− w̃)(x, t)|2 − a(x/|x|)
|x|2 |(w̃λnk

− w̃)(x, t)|2
)
G(x, 1) dx

)
dt

=
1

2
‖w̃λnk

(1)− w̃(1)‖2L − τ

2
‖w̃λnk

(τ) − w̃(τ)‖2L − 1

2

∫ 1

τ

(∫

RN

|(w̃λnk
− w̃)(x, t)|2G(x, 1) dx

)
dt

+ λ2nk

∫ 1

τ

t

(∫

RN

h(λnk

√
tx,−λ2nk

t)Re
(
w̃λnk

(x, t)(w̃λnk
− w̃)(x, t)

)
G(x, 1) dx

)
dt.

Then (78) and (81) imply that, for all τ ∈ (0, 1),

lim
k→+∞

∫ 1

τ

(∫

RN

(
|∇A(w̃λnk

− w̃)(x, t)|2 − a(x/|x|)
|x|2 |(w̃λnk

− w̃)(x, t)|2
)
G(x, 1) dx

)
dt = 0,

which yields the convergence claimed in (84) in view of Corollary 3.3 and (81). Thus, we have
obtained that, for all τ ∈ (0, 1),

(86) lim
k→+∞

∫ 1

τ

‖wλnk
(·, t)− w(·, t)‖2Ht

dt = 0 and lim
k→+∞

sup
t∈[τ,1]

‖wλnk
(·, t)− w(·, t)‖Lt = 0,

where w(x, t) := w̃
(
x√
t
, t
)
is a weak solution to

(87) wt − LA,aw = 0.

In view of (68) and (71), we can write Nλ as

Nλ(t) =
t
∫
RN

(
|∇Awλ(x, t)|2 − a(x/|x|)

|x|2 |wλ(x, t)|2 − λ2h
(
λx,−λ2t)|wλ(x, t)|2

)
G(x, t) dx

∫
RN |wλ(x, t)|2G(x, t) dx

for all t ∈ (0, 1). By (86) wλnk
(·, t) → w(·, t) in Ht for a.e. t ∈ (0, 1), and, by (78),

tλ2nk

∫

RN

h(λnk
x,−λ2nk

t)|wλnk
(x, t)|2G(x, t) dx → 0

for a.e. t ∈ (0, 1). Hence

(88)

∫

RN

(
|∇Awλnk

(x, t)|2 − a(x/|x|)
|x|2 |wλnk

(x, t)|2 − λ2nk
h
(
λnk

x,−λ2nk
t)|wλnk

(x, t)|2
)
G(x, t) dx

→ Dw(t)

and

(89)

∫

RN

|wλnk
(x, t)|2G(x, t) dx → Hw(t)

as k → +∞, for a.e. t ∈ (0, 1), where

Dw(t) =

∫

RN

(
|∇Aw(x, t)|2−

a(x/|x|)
|x|2 |w(x, t)|2

)
G(x, t) dx and Hw(t) =

∫

RN

|w(x, t)|2G(x, t) dx.
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From (82) it follows that
∫
RN |w(x, 1)|2G(x, 1) dx = 1, which, arguing as in Proposition 5.7, implies

that Hw(t) > 0 for all t ∈ (0, 1). From (88) and (89), it follows that

(90) Nλnk
(t) → Nw(t) for a.e. t ∈ (0, 1),

where Nw is the Almgren frequency function associated to equation (87), i.e.

(91) Nw(t) =
tDw(t)

Hw(t)
,

which is well defined on (0, 1) since Hw(t) > 0 for all t ∈ (0, 1) as observed above.
On the other hand, (70) implies that Nλnk

(t) = N (λ2nk
t) for all t ∈ (0, 1) and k ∈ N. Fixing

t ∈ (0, 1) and passing to the limit as k → +∞, from Lemma 5.8 we obtain

(92) Nλnk
(t) → γ for all t ∈ (0, 1).

Combining (90) and (92), we deduce that

(93) Nw(t) = γ for all t ∈ (0, 1).

Therefore Nw is constant in (0, 1) and hence N ′
w(t) = 0 for any t ∈ (0, 1). By (87) and Lemma 5.5

with h ≡ 0, we obtain that
(
wt(·, t) +

∇w(·, t) · x
2t

, w(·, t)
)2

Lt

=

∥∥∥∥wt(·, t) +
∇w(·, t) · x

2t

∥∥∥∥
2

Lt

‖w(·, t)‖2Lt
,

where (·, ·)Lt denotes the scalar product in Lt. Then there exists a function β : (0, 1) → R such
that

(94) wt(x, t) +
∇w(x, t) · x

2t
= β(t)w(x, t) for a.e. t ∈ (0, 1) and a.e. x ∈ R

N .

Testing (87) with φ = w(·, t) in the sense of (28) and taking into account (94), we obtain that

Dw(t) =
H⋆

t

〈
wt(·, t) +

∇w(·, t) · x
2t

, w(·, t)
〉

Ht

= β(t)Hw(t),

which, in view (91) and (93), yields β(t) = γ
t for a.e. t ∈ (0, 1). Then (94) becomes

(95) wt(x, t) +
∇w(x, t) · x

2t
=
γ

t
w(x, t) for a.e. (x, t) ∈ R

N × (0, 1)

in a distributional sense. From (95) and (87) we conclude that

(96) LA,aw +
∇w(x, t) · x

2t
=
γ

t
w(x, t)

for a.e. (x, t) ∈ RN×(0, 1) and in a weak sense. From (95), it follows that, letting, for all η > 0 and

a.e. (x, t) ∈ RN×(0, 1), wη(x, t) := w(ηx, η2t), there holds dw
η

dη = 2γ
η w

η a.e. and in a distributional

sense. An integration yields

(97) wη(x, t) = w(ηx, η2t) = η2γw(x, t) for all η > 0 and a.e. (x, t) ∈ R
N × (0, 1).

The function g(x) = w(x, 1) satisfies g ∈ L, ‖g‖L = 1, and, from (97),

(98) w(x, t) = w
√
t
( x√

t
, 1
)
= tγw

( x√
t
, 1
)
= tγg

( x√
t

)
for a.e. (x, t) ∈ R

N × (0, 1).
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In particular, from (98) it follows that g
(
·/
√
t
)
∈ Ht for a.e. t ∈ (0, 1) and hence, by scaling,

g ∈ H. Moreover, from (96) and (98), we obtain that g ∈ H \ {0} weakly solves

LA,ag(x) +
∇g(x) · x

2
= γg(x),

i.e. γ is an eigenvalue of the operator LA,a defined in (7) and g is an eigenfunction of LA,a

associated to γ. The proof is now complete. �

The next step is to determine the asymptotic behaviour of the normalization term in the blow-up
family (71). To this aim, in the next two lemmas we study the limit limt→0+ t

−2γH(t).

Lemma 6.2. Under the same assumptions as in Lemma 6.1, let γ := limt→0+ N (t) be as in
Lemma 5.8. Then the limit limt→0+ t

−2γH(t) exists and it is finite.

Proof. We omit the proof, since it is very similar to that of [16, Lemma 5.2]. �

The limit limt→0+ t
−2γH(t) is indeed strictly positive, as we prove below.

Lemma 6.3. Under the same assumptions as in Lemma 6.1, we have that limt→0+ t
−2γH(t) > 0.

Proof. Let us argue by contradiction and assume that limt→0+ t
−2γH(t) = 0. Let us consider

the orthonormal basis of L introduced in Remark 4.5 and given by {Ṽn,j : j, n ∈ N, j > 1}. Since

ũλ(x, 1) = ũ(λx, λ2) ∈ L for all λ ∈ (0,
√
T 0), we can expand ũλ as

(99) ũλ(x, 1) =
∑

m,k∈N

k>1

um,k(λ)Ṽm,k(x) in L,

where

(100) um,k(λ) =

∫

RN

ũλ(x, 1)Ṽm,k(x)G(x, 1) dx.

From (26) and the fact that Ṽm,k(x) is an eigenfuntion of the operator LA,a associated to the
eigenvalue γm,k defined in (13), we obtain that

(101) u′m,k(λ) =
2

λ
γm,kum,k(λ) − 2λξm,k(λ) for all m, k ∈ N, k > 1,

a.e. and distributionally in (0,
√
T0), where

(102) ξm,k(λ) =

∫

RN

h(λx,−λ2)ũλ(x, 1)Ṽm,k(x)G(x, 1) dx.

From Lemma 6.1, γ is an eigenvalue of the operator LA,a, hence, by Proposition 1.1, there exist

m0, k0 ∈ N, k0 > 1, such that γ = γm0,k0 = m0 − αk0

2 . Let us denote as E0 the associated
eigenspace and by J0 the finite set of indices {(m, k) ∈ N× (N \ {0}) : γ = m− αk

2 }, so that #J0

is equal to the multiplicity of γ and an orthonormal basis of E0 is given by {Ṽm,k : (m, k) ∈ J0}.
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In view of (6), for all (m, k) ∈ J0 we can estimate ξm,k as

|ξm,k(λ)| 6 Ch

∫

RN

(1 + λ−2+ε|x|−2+ε)|ũ(λx, λ2)||Ṽm,k(x)|G(x, 1) dx(103)

6 Ch

(∫

RN

|ũ(λx, λ2)|2G(x, 1) dx
)1/2

+ Chλ
−2+ ε

2

∫

|x|6λ−1/2

|ũ(λx, λ2)||Ṽm,k(x)|
|x|2 G(x, 1) dx

+Chλ
−1+ ε

2

∫

|x|>λ−1/2

|ũ(λx, λ2)||Ṽm,k(x)|G(x, 1) dx

6 Ch(1 + λ−1+ ε
2 )
√
H(λ2) + Chλ

−2+ ε
2

(∫

RN

|ũ(λx,λ2)|2
|x|2 G(x, 1) dx

)1
2
(∫

RN

|Ṽm,k(x)|2
|x|2 G(x, 1) dx

)1
2

.

Corollary 3.4 and Lemma 5.6 imply that

(104)

∫

RN

|ũ(λx, λ2)|2
|x|2 G(x, 1) dx = λ2

∫

RN

|ũ(y, λ2)|2
|y|2 G(y, λ2) dy

6
λ2

C1

(
D(λ2) +

C2

λ2
H(λ2)

)
=
H(λ2)

C1

(
N (λ2) + C2

)
= O(H(λ2))

as λ→ 0+. On the other hand, from Lemma 3.2 it follows that, for all (m, k) ∈ J0,

(105)

∫

RN

|Ṽm,k(x)|2
|x|2 G(x, 1) dx 6

(
µ1(A, a) +

(N − 2)2

4

)−1(
γ +

N − 2

4

)
.

Combining (103), (104), (105), and Lemma 5.9, we obtain that

|ξm,k(λ)| 6 O(λ−2+ ε
2+2γ) as λ→ 0+,(106)

for all (m, k) ∈ J0.
In order to prove the theorem, we argue by contradiction and assume that limt→0+ t

−2γH(t) = 0.

By orthogonality of the Ṽm,k’s in L, we have that

H(λ2) =
∑

n,j∈N

j>1

(un,j(λ))
2
> (um,k(λ))

2 for all λ ∈ (0,
√
T0) and m, k ∈ N, k > 1.

Hence, limt→0+ t
−2γH(t) = 0 implies that

(107) lim
λ→0+

λ−2γum,k(λ) = 0 for all m, k ∈ N, k > 1.

Integration of (101) over (ρ, λ) yields that, for all λ, ρ ∈ (0,
√
T0),

(108) um,k(ρ) = ρ2γm,k

(
λ−2γm,kum,k(λ) + 2

∫ λ

ρ

s1−2γm,kξm,k(s) ds

)
.

Estimate (106) implies that, for all (m, k) ∈ J0, the function s 7→ s1−2γξm,k(s) belongs to
L1(0,

√
T0). Letting ρ→ 0+ in (108) and using (107), we obtain that

(109) um,k(λ) = −2λ2γ
∫ λ

0

s1−2γξm,k(s) ds, for all λ ∈ (0,
√
T0).
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From (106) and (109), we deduce that, for all (m, k) ∈ J0,

(110) um,k(λ) = O(λ2γ+
ε
2 ) as λ→ 0+.

Let us fix 0 < σ < ε
2 . By Lemma 5.9, there exists K2(σ) such that H(λ2) > K2(σ)λ

2(2γ+σ) for all

λ ∈ (0,
√
T0). Therefore, (110) implies that, for all (m, k) ∈ J0,

(111)
um,k(λ)√
H(λ2)

= O(λ
ε
2−σ) = o(1) as λ→ 0+.

On the other hand, by Lemma 6.1, for every sequence λn → 0+, there exists a subsequence
{λnj}j∈N such that

ũλnj
(x, 1)

√
H(λ2nj

)
→ g in L as j → +∞,

for some eigenfunction g ∈ E0 \ {0}. Therefore, for all (m, k) ∈ J0,

(112)
um,k(λnj )√
H(λ2nj

)
=


 ũλnj

(x, 1)
√
H(λ2nj

)
, Ṽm,k




L

→ (g, Ṽm,k)L as j → +∞.

From (111) and (112) we deduce that (g, Ṽm,k)L = 0 for all (m, k) ∈ J0. Since g ∈ E0 and

{Ṽm,k : (m, k) ∈ J0} is an orthonormal basis of E0, this implies that g = 0, a contradiction. �

Proof of Theorem 1.2. As already observed, up to a translation it is not restrictive to assume
that t0 = 0; then the analysis performed in this section applies to the function ũ(x, t) = u(x,−t).
In particular (17) follows from Lemma 5.8, part (i) of Lemma 6.1 and Proposition 1.1, i.e. there
exists an eigenvalue γm0,k0 = m0− αk0

2 of LA,a, m0, k0 ∈ N, k0 > 1, such that γ = limt→0+ N (t) =

limt→0− Ñ (t) = γm0,k0 . Let E0 be the associated eigenspace and J0 the finite set of indices

{(m, k) ∈ N× (N\ {0}) : γm0,k0 = m− αk

2 }, so that {Ṽm,k : (m, k) ∈ J0} is an orthonormal basis of
E0. Let {λn}n∈N ⊂ (0,+∞) such that limn→+∞ λn = 0. Then, from part (ii) of Lemma 6.1 and
Lemmas 6.2 and 6.3, there exist a subsequence {λnk

}k∈N and complex numbers {βn,j : (n, j) ∈ J0}
such that βn,j 6= 0 for some (n, j) ∈ J0 and, for any τ ∈ (0, 1),

(113) lim
k→+∞

∫ 1

τ

∥∥∥∥λ
−2γ
nk

ũ(λnk
x, λ2nk

t)− tγ
∑

(n,j)∈J0

βn,jṼn,j(x/
√
t)

∥∥∥∥
2

Ht

dt = 0

and

(114) lim
k→+∞

sup
t∈[τ,1]

∥∥∥∥λ
−2γ
nk

ũ(λnk
x, λ2nk

t)− tγ
∑

(n,j)∈J0

βn,j Ṽn,j(x/
√
t)

∥∥∥∥
Lt

= 0.

In particular,

(115) λ−2γ
nk

ũ(λnk
x, λ2nk

) −→
k→+∞

∑

(n,j)∈J0

βn,j Ṽn,j(x) in L.

Let us fix Λ ∈ (0,
√
T0) and define um,j and ξm,j as in (100–102). From (115) and orthogonality

of the Ṽn,j ’s it follows that, for any (m, j) ∈ J0, limk→+∞ λ−2γ
nk

um,j(λnk
) = βm,j . Therefore from
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(108) we have that, for every (m, j) ∈ J0,

βm,j = Λ−2γum,j(Λ) + 2

∫ Λ

0

s1−2γξm,j(s) ds

= Λ−2γ

∫

RN

ũ(Λx,Λ2)Ṽm,j(x)G(x, 1) dx

+ 2

∫ Λ

0

s1−2γ

(∫

RN

h(sx,−s2)ũ(sx, s2)Ṽm,j(x)G(x, 1) dx
)
ds.

The above formula shows that the βm,j ’s depend neither on the sequence {λn}n∈N nor on its
subsequence {λnk

}k∈N. Then we can conclude that the convergences in (113) and (114) actually
hold as λ→ 0+. The proof is thereby complete. �

Proof of Corollary 1.3. Let us argue by contradiction and assume that u 6≡ 0 in RN×(t0−T, t0).
Let k ∈ N be such that k > γm0,k0 , being γm0,k0 as in Theorem 1.2. From (22) it follows that, for
a.e. (x, t) ∈ R

N × (0, 1),

lim
λ→0+

λ−2γm0,k0 t−γm0,k0u(λx, t0 − λ2t) = 0.

On the other hand, Theorem 1.2 implies that, for all t ∈ (0, 1) and a.e. x ∈ RN ,

lim
λ→0+

λ−2γm0,k0 t−γm0,k0u(λx, t0 − λ2t) = g(x/
√
t),

for some g ∈ H \ {0} eigenfunction of LA,a associated to the eigenvalue γm0,k0 , thus giving rise to
a contradiction. �

7. Proof of Theorem 1.5: representation formula of solutions

Let u be a weak solution to (1) with h ≡ 0. By saying that u is a weak solution to (1) we mean
that the the function ϕ defined as

(116) ϕ(x, t) = u
(√

1 + t x, t
)
, t > 0

is a weak solution of the following equation (which is equivalent to (1) up to the change of variable
x 7→

√
1 + t x):

(117)
dϕ

dt
(x, t) =

1

(1 + t)

(
−LA,aϕ(x, t) +

1

2
∇ϕ(x, t) · x

)
,

in the sense that

(118) ϕ ∈ L2
loc([0,+∞), H̃) and ϕt ∈ L2

loc([0,+∞), H̃⋆),

and

H̃⋆

〈
ϕt, w

〉
H̃ = − 1

t+ 1

∫

RN

(
∇Aϕ(x, t) · ∇Aw(x) −

a(x/|x|)
|x|2 ϕ(x, t)w(x)

)
e

|x|2

4 dx

for all w ∈ H̃, where H̃ is defined in (44). From (118) it follows that ϕ ∈ C0([0,+∞), L̃).
Furthermore,

ϕ(x, 0) = u(x, 0) = u0(x).

A representation formula for solutions u to (1) with h ≡ 0 can be found (in the spirit of [13]) by
expanding the transformed solution ϕ to (117) in Fourier series with respect to an orthonormal
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basis of L̃ consisting of eigenfunctions of an Ornstein-Uhlenbeck type operator perturbed with
singular homogeneous electromagnetic potentials, i.e. of the operator L−

A,a defined in (49) and
acting as

(119) H̃⋆〈L−
A,aϕ,w〉H̃ =

∫

RN

(
∇Aϕ(x) · ∇Aw(x) −

a( x|x|)

|x|2 ϕ(x)w(x)

)
e

|x|2

4 dx,

for all ϕ,w ∈ H̃, where H̃⋆ denotes the dual space of H̃ and H̃⋆〈·, ·〉H̃ is the corresponding duality
product.

Let us expand the initial datum u0 = u(·, 0) = ϕ(·, 0) in Fourier series with respect to the

orthonormal basis of L̃ introduced in Remark 4.6 as

(120) u0 =
∑

m,k∈N

k>1

cm,kŨm,k in L̃, where cm,k =

∫

RN

u0(x)Ũm,k(x)e
|x|2

4 dx,

and, for t > 0, the function ϕ(·, t) defined in (116) as

(121) ϕ(·, t) =
∑

m,k∈N

k>1

ϕm,k(t)Ũm,k in L̃,

where

ϕm,k(t) =

∫

RN

ϕ(x, t)Ũm,k(x)e
|x|2

4 dx.

Since ϕ(x, t) satisfies (117), by Remark 4.6 we obtain that ϕm,k ∈ C1([0,+∞),C) and

ϕ′
m,k(t) = − γ̃m,k

1 + t
ϕm,k(t), ϕm,k(0) = cm,k,

with γ̃m,k = N
2 + γm,k = N

2 − αk

2 + m. Integration yields ϕm,k(t) = cm,k(1 + t)−γ̃m,k . Hence
expansion (121) can be rewritten as

ϕ(z, t) =
∑

m,k∈N

k>1

cm,k(1 + t)−γ̃m,k Ũm,k(z) in L̃, for all t > 0.

We notice that γ̃m,k > 0 for all m, k, then, in view of the Parseval identity, for all t > 0,

(122) ‖ϕ(·, t)‖2L̃ =
∑

m,k∈N

k>1

c2m,k(1 + t)−2γ̃m,k 6
∑

m,k∈N

k>1

c2m,k = ‖u0‖2L̃.

In view of (120), the above series can be written as

ϕ(z, t) =
∑

m,k∈N

k>1

(1 + t)−γ̃m,k

(∫

RN

e
|y|2

4 u0(y)Ũm,k(y) dy

)
Ũm,k(z),

in the sense that, for all t > 0, the above series converges in L̃. Since u0(y) can be expanded as

u0(y) = u0
(
|y| y

|y|
)
=

∞∑

j=1

u0,j(|y|)ψj
(
y
|y|
)

in L2(SN−1),
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where u0,j(|y|) =
∫
SN−1 u0(|y|θ)ψj(θ) dS(θ), we conclude that

ϕ(z, t) =
∑

m,k∈N

k>1

(1 + t)−γ̃m,k

‖Um,k‖2L̃
Um,k(z)

(∫ ∞

0

u0,k(r)r
N−1−αkPk,m( r

2

4 ) dr

)

=

∞∑

k=1

ψk
(
z
|z|
) (1 + t)

αk
2 −N

2

21+2βkΓ(1 + βk)

[ ∞∑

m=0

(
m+βk

m

)

(1 + t)m
×

×
(∫ ∞

0

u0,k(r)

|rz|αk
Pk,m

(
r2

4

)
Pk,m

( |z|2
4

)
e−

|z|2

4 rN−1dr

)]
.

By [1] we know that

Pk,m

(r2
4

)
=

Γ(1 + βk)

Γ(1 + βk +m)
e

r2

4 r−βk2βk

∫ ∞

0

e−ttm+
βk
2 Jβk

(r
√
t) dt,

where Jβk
is the Bessel function of the first kind of order βk. Therefore,

ϕ(z, t) = 2

∞∑

k=1

ψk
(
z
|z|
)
(1 + t)

αk
2 −N

2

[ ∞∑

m=0

(1 + t)−m

Γ(1 + βk +m)Γ(1 +m)
×

×
(∫ ∞

0

u0,k(r)

|rz|αk+βk
e

r2

4

(∫ ∞

0

∫ ∞

0

e−s
2−s′2(ss′)2m+βk+1×

×Jβk
(rs)Jβk

(|z|s′) ds ds′)rN−1dr

)]

= 2
∞∑

k=1

ψk
(
z
|z|
)
(1 + t)

αk
2 −N

2

[∫ ∞

0

u0,k(r)|rz|−αk−βke
r2

4 rN−1×

×
(∫ ∞

0

∫ ∞

0

ss′

es2+s′2
×

×
( ∞∑

m=0

(1 + t)−m

Γ(1 +m)Γ(1 + βk +m)
(ss′)2m+βk

)
× Jβk

(rs)Jβk
(|z|s′)ds ds′

)
dr

]

= 2

∞∑

k=1

i−βkψk
(
z
|z|
)
(1 + t)

αk
2 −N

2 +
βk
2

[∫ ∞

0

u0,k(r)|rz|−αk−βke
r2

4 rN−1×

×
(∫ ∞

0

∫ ∞

0

ss′

es2+s′2
Jβk

( 2iss′√
1 + t

)
Jβk

(rs)Jβk
(|z|s′)ds ds′

)
dr

]
,

where in the last line we have used that

(1 + t)−m(ss′)2m+βk = (1 + t)
βk
2 i−βk(−1)m

( iss′√
1 + t

)2m+βk

,

and
∞∑

m=0

(−1)m

Γ(1 +m)Γ(1 + βk +m)

( iss′√
1 + t

)2m+βk

= Jβk

( 2iss′√
1 + t

)
.
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Then we have that

(123) ϕ(z, t) = 2
∞∑

k=1

e−i
π
2 βkψk

(
z
|z|
)

(1 + t)
N
4 + 1

2

[∫ ∞

0

u0,k(r)|rz|−
N−2

2 e
r2

4 Ik,t(r, |z|)rN−1dr

]
,

where

Ik,t(r, |z|) =
∫ ∞

0

∫ ∞

0

ss′e−s
2−s′2Jβk

( 2iss′√
1 + t

)
Jβk

(rs)Jβk
(|z|s′) ds ds′.

From [27, formula (1), p. 395] (with t = s′, p = 1, a = 2is√
1+t

, b = |z|, ν = βk which satisfy

Re(ν) > −1 and | arg p| < π
4 ), we know that

∫ ∞

0

s′e−s
′2

Jβk

( 2iss′√
1 + t

)
Jβk

(|z|s′) ds′ = 1

2
e−

1
4 (|z|2− 4s2

1+t )Iβk

(
i|z|s√
1 + t

)
,

where Iβk
denotes the modified Bessel function of order βk. Hence

Ik,t(r, |z|) =
1

2

∫ ∞

0

se−s
2

Jβk
(rs)e−

|z|2

4 e
s2

1+t Iβk

( i|z|s√
1 + t

)
ds

=
1

2
e−iβk

π
2 e

−|z|2

4

∫ ∞

0

se−s
2

Jβk
(rs)e

s2

1+tJβk

( −|z|s√
1 + t

)
ds,

since Iν(x) = e−
1
2νπiJν(xe

π
2 i) (see e.g. [1, 9.6.3, p. 375]). We obtain

Ik,t(r, |z|) =
1

2
e−iβk

π
2 e

−|z|2

4

∫ ∞

0

se−s
2 t

1+tJβk
(rs)Jβk

( −|z|s√
1 + t

)
ds.

Applying [27, formula (1), p. 395] (with t = s, p2 = t
t+1 , a = r, b = − |z|√

1+t
, ν = βk which satisfy

Re(ν) > −1 and | arg p| < π
4 ) and [1, 9.6.3, p. 375], we obtain

Ik,t(r, |z|) =
1

4
e−

βk
2 πie−

|z|2

4 e−
r2(1+t)+|z|2

4t
(t+ 1)

t
Iβk

(−r|z|
√
1 + t

2t

)

=
1

4
eiβkπe−

|z|2

4 e−
r2(1+t)+|z|2

4t
(t+ 1)

t
Jβk

(−ir|z|
√
1 + t

2t

)
.

From (123) and the above identity we deduce

ϕ(z, t) =
1

2

∞∑

k=1

ψk
(
z
|z|
)
ei

π
2 βk

t(1 + t)
N
4 − 1

2

[∫ ∞

0

u0,k(r)

|rz|N−2
2

e−
|z|2

4t − |z|2

4 − r2

4t Jβk

(−ir|z|
√
1 + t

2t

)
rN−1 dr

]
.

Notice that, by replacing
∫∞
0 with

∫ R
0 we obtain the series representation of the solution ϕR(z, t)

with initial datum u0,R(x) ≡ χR(x)u0(x), being χR(x) the characteristic function of the ball BR
of radius R centered at the origin. Since u0,R → u0 in L̃ as R → +∞, from (122) it follows that

ϕ(·, t) = limR→∞ ϕR(·, t) in L̃. Recalling the definition of u0,k and observing that the queue of the
series

∞∑

k=1

ψk
(
z
|z|
)
ψk
(
y
|y|
)
ei

π
2 βk

u0(y)

(|y||z|)N−2
2

e−
|y|2+|z|2(1+t)

4t Jβk

(−i|y||z|
√
1 + t

2t

)
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is uniformly convergent on compact sets (see [13, Lemma 1.2]), we can exchange integral and sum
and write

ϕR(z, t)

=
1

2t(1 + t)
N
4 − 1

2

∫

BR

u0(y)

(|y||z|)N−2
2

e−
|z|2(1+t)+|y|2

4t

[ ∞∑

k=1

ei
π
2 βkψk

(
z
|z|
)
ψk
(
y
|y|
)
Jβk

(−i|y||z|
√
1 + t

2t

)]
dy,

i.e.

ϕR(z, t) = t−
N
2

∫

BR

u0(y)K
(
y√
t
, z

√
1+t√
t

)
dy

where K(y, z) is the kernel defined in (25). Letting R → +∞ we obtain that

ϕ(z, t) = t−
N
2

∫

RN

u0(y)K
(
y√
t
, z

√
1+t√
t

)
dy,

where the integral at the right hand side is understood in the sense of improper multiple integrals.
From (116) we conclude that, for all t > 0,

u(x, t) = t−
N
2

∫

RN

u0(y)K

(
y√
t
,
x√
t

)
dy.
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