
SCUOLA DI DOTTORATO

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

Department of Computer Sciences, Systems and Communications
PhD program in Computer Science Cycle XXXII

Machine Learning Techniques for

Urban Vehicle Localization

Tutor: Prof. Giuseppe VIZZARI

Supervisor: Prof. Domenico G. SORRENTI

Coordinator: Prof. Leonardo MARIANI

PhD dissertation by:

Daniele CATTANEO

Registration number 735879

Academic Year 2018-2019

Michael - Should I say thanks?

KITT - If you do I’ll say “You’re welcome”

Michael - Thanks

KITT - De nada

II

Contents

1 Introduction 1

1.1 Motivations . 2

1.2 Problem Statement . 3

1.3 Scientific Contributions . 5

1.4 Publications . 7

1.5 Thesis Outline . 8

2 Background 9

2.1 Autonomous Driving . 9

2.2 Localization . 12

2.2.1 Point Cloud Maps . 13

2.2.2 Grid Maps . 14

2.2.3 Topological Maps . 17

2.3 Artificial Neural Networks . 19

2.3.1 Convolutional Neural Networks . 21

2.3.2 Recurrent Neural Networks . 23

2.3.3 DNNs for Autonomous Driving . 24

3 Ego-lane estimation in highway-like scenarios 29

3.1 Related work . 30

3.2 Proposed algorithm . 33

3.2.1 Line detection and tracking . 35

3.2.2 Tentative vector and reliability of the whole detection 38

3.2.3 HMM with Transient Failure Model 39

3.2.4 Inference . 43

3.3 Experimental evaluation . 45

3.4 Conclusions . 58

III

Contents

4 Visual localization at intersections 59

4.1 Related Work . 61

4.2 The Sensing Pipeline . 62

4.2.1 Semantic Segmentation . 62

4.2.2 3D Reconstruction . 63

4.2.3 Generation of the SENSOROG . 64

4.3 Vehicle Localization . 67

4.3.1 Hypotheses Generation . 69

4.3.2 Scoring Function . 69

4.3.3 Prediction Step . 70

4.3.4 Semantic Segmentation — Training Details 70

4.4 Experimental Evaluation . 72

4.4.1 Dataset Construction . 72

4.4.2 Evaluation Criteria . 75

4.4.3 System Parameterization . 78

4.5 Conclusions . 83

5 Enhancing localization by leveraging buildings information 85

5.1 Related Work . 86

5.2 Proposed Localization Pipeline . 88

5.2.1 Particle Filter . 88

5.2.2 The Point Clouds . 91

5.2.3 The Registration Step . 92

5.3 Experimental Evaluation . 94

5.4 Conclusions . 99

6 Camera to map registration for 6 DoF localization 101

6.1 Related Work . 103

6.1.1 Camera-only Approaches . 103

6.1.2 Camera and Light Detection And Ranging (LiDAR)-map Approaches105

6.2 Proposed Approach . 106

6.2.1 LiDAR-Image Generation . 107

6.2.2 Network Architecture . 108

6.2.3 Iterative Refinement . 109

IV

Index V

6.2.4 Training Details . 110

6.3 Experimental Evaluation . 110

6.3.1 Dataset . 110

6.3.2 System Components Evaluation . 112

6.3.3 Iterative Refinement . 112

6.3.4 Generalization Capabilities . 120

6.4 Conclusions . 122

7 Visual place recognition within HD-maps 123

7.1 Related Work . 125

7.2 Proposed Approach . 127

7.2.1 2D Network Architecture . 128

7.2.2 3D Network Architecture . 128

7.2.3 Learning Methods . 129

7.2.4 Training Details . 131

7.2.5 Inference . 132

7.3 Experimental Evaluation . 133

7.3.1 Dataset . 133

7.3.2 Regions Subdivision and Sub-maps Creation 133

7.3.3 Evaluation Metrics . 134

7.3.4 Results . 134

7.3.5 Further Improvement Attempts . 136

7.4 Conclusions . 141

8 Conclusions 143

Bibliography 145

Acronyms 167

Chapter 1

Introduction

It was almost one century ago, in 1925, that Houdina Radio Control for the first time

envisioned and demonstrated a car without a driver going trough the streets of New

York City. Although the car was not autonomous, but was instead radio-controlled,

the idea of releasing drivers from tedious tasks was already clear. It was only 60 years

later, during the 1980s, that the first experiments on self-driving cars were pursued

by Eric Dickmanns and his team. In 1987, Dickmanns’ car was the first ever vehicle

to drive autonomously on an empty highway. Since then, the interest in self-driving

cars increased from year to year, especially after the Grand Challenges organized by

the Defense Advanced Research Projects Agency (DARPA) between the years 2004 and

2007. Many research teams all over the world competed in these challenges in order

to win the first prize. Nowadays, most of the big car-making companies are investing

many resources on autonomous car related research, and semi-autonomous vehicles are

already becoming available on the market. The World Health Organization estimated

that car accidents cause 1.35 million death every year, and that it is the most common

cause of death in children and young adults [1]. One of the primary aims of the next

generation of Advanced Driver Assistance Systems (ADAS) and of self-driving cars is to

provide safe systems that will drastically reduce the number of these deaths. Beside

safety, self-driving cars can provide personal mobility to people that are unable to drive

due to disability. Finally, autonomous vehicles can regulate their speed in order to reduce

fuel consumption.

1

2 Chapter 1. Introduction

1.1 Motivations

Robots that operate in controlled environments, such as factories, are usually pro-

grammed to perform only specific tasks, and the unpredictability factors in such en-

vironments are very limited. For examples, robots for welding, assembling and painting

that can be found in car manufacturing factories are usually enclosed in cages. Therefore,

they don’t usually exploit any algorithms for understanding the surrounding scene. Self-

driving cars and other robots that navigate and interact with dynamic environments, on

the other hand, require a complete understanding of their surrounding in order to deal

with our complex world. Since these robots coexist with human actors (e.g., drivers and

pedestrians), their reliability is of primary importance. An erroneous detection of the

perception system, or a wrong decision, might lead to accidents and even fatal injuries

for other road users.

Beside the low-level control of the vehicle, the three main tasks for a self-driving car

are the perception, the localization, and the motion planning. In the perception, the

sensors’ data are collected and processed to understand the surrounding scene. Methods

that fall in this category aim, for example, at object detection and tracking to avoid

collision, detecting the space where the vehicle can drive, crosswalk detection in order

to stop if pedestrians are crossing the street, pedestrians’ intention prediction so to slow

down if a child is running on the sidewalk. The localization task aims at finding the

position and orientation of the vehicle with respect to a reference map. Such map can

be of different types, e.g., road graph, geometric map or grid map. It is important

to note that Global Navigation Satellite Systems (GNSSs), such as Global Positioning

System (GPS), GLONASS, Galileo, and BeiDou, are not accurate and reliable enough

for autonomous driving applications, especially in urban environments, where buildings

may block or deflect satellites’ signals, leading to non-line-of-sight (NLOS) or multipath

errors [2]. Therefore, to overcome the latter issues, localization approaches usually ex-

ploit perception techniques to match the perceived scene with the map. For example, the

localization can be performed by reconstructing the surrounding geometry and looking

for the same geometry within the map. In the motion planning task, both perception

and localization are exploited in order to take decisions such as which road to take, or

whether to overtake other cars.

During the last decade, the interest in Artificial Neural Networks (ANNs) has drasti-

cally increased from both academia and industry. Deep learning based techniques have

1.2. Problem Statement 3

been successfully applied in many different fields, such as image classification [3], medi-

cal image segmentation [4], natural language processing [5], and even for playing Go [6].

Nowadays, also in the autonomous driving field, state-of-the-art approaches that tackle

the perception task usually exploit Convolutional Neural Networks (CNNs). For exam-

ples, CNN-based methods have outperformed previous techniques in object detection [7–

9], pixel-level semantic classification [10–12], geometric reconstruction from cameras [13–

16], and optical flow estimation [17–20]. Recently, Deep Neural Networks (DNNs) have

also been used for directly localizing a robot in an end-to-end fashion, i.e., combining

both the perception and the localization tasks in a single step [21–23]. However, these

approaches require a huge amount of images (and relative positions) of the environment

to train the model, and second, they achieved good performances only in small envi-

ronments (e.g., a room or a small outdoor area of few tens of meters). Moreover, DNNs

for localization can not be used to obtain a localization in areas different from the one

represented in the training set, since these network learn to perform localization only on

the specific scene used during the training phase. In this thesis, we present innovative

methods to effectively exploit DNNs and machine learning techniques for autonomous

vehicles localization.

1.2 Problem Statement

Over the past few years, the effectiveness of scene understanding for self-driving cars has

drastically increased, mainly thanks to the great performances achieved by CNNs and the

great interest in self-driving cars related topics from government agencies and big com-

panies. Even though these improvements allowed for more advanced and sophisticated

ADAS and maneuvers, the current state of the art is far from the SAE full-automation

level1, especially in complex scenarios such as urban areas. Most of these algorithms

depend on very accurate localization estimates. A typical localization pipeline usually

involves two steps. First, a rough pose of the robot is estimated, thus performing a

so-called global localization of the observer. Secondly, the initial rough pose is refined,

achieving more precise localization accuracy level, usually referred to as local localiza-

tion. Usually, the first step can be accomplished with the aid of GNSSs, which provides

a global position with respect to a World Geodetic System (WGS). However, the local-

1The SAE International “Levels of Driving Automation” standard define six different levels of automa-
tion, ranging from manual to fully automated systems.

4 Chapter 1. Introduction

ization accuracy and reliability of GNSSs is inadequate for the second step, particularly

in urban environments, where buildings might obstruct satellites’ signal, causing NLOS

and multi-path issues. Therefore, for the second step, complementary approaches are

required. Among these complementary systems, in the robotic and computer vision

communities, a common way is to exploit scene understanding techniques.

Different options have been investigated to solve the local localization problem, in-

cluding approaches based on both vision and LiDAR; they usually exploit an a-priori

knowledge of the environment (a map) in the localization process. Although LiDAR sen-

sors are the de facto standard for 3D geometric reconstruction, their price, weight, and

mechanically-based scanning systems, make them still not suitable for mass installation

on cars. Camera sensors, on the other hand, are cheaper and weight less than LiDAR,

but the geometric reconstruction that can be obtained with cameras (in both single and

stereo configurations) is not as accurate as the one that can be obtained with LiDAR.

Moreover, the camera reconstruction errors are not linear, but instead increase quadrati-

cally with the distance from the observer. While approaches that localize a vehicle using

LiDAR sensors achieved accuracies in the order of 10 cm [24], camera-only localization

techniques are still far from this level of localization in city-scale complex environments.

Recalling that localization is the task aimed at finding the position and the orientation

of a robot with respect to a reference map, different types of representation can be used

for this map. For examples, grid maps (bi-dimensional or tri-dimensional) are a type

of maps commonly used in controlled environments. This type of maps divides the

world into a grid of fixed size and, in its basic form, store in each cell a binary value

that represent whether that cell is traversable or occupied. Point clouds maps, instead,

represent the environment as a simple list of 3D points. Another possibility is to exploit

maps provided by map-making companies, such as HERE, TomTom or the collaborative

project OpenStreetMap (OSM). These maps can be seen as a graph, where vertices

represent geo-referenced points, and edges represent roads that connect the associated

points. Finally, although not yet freely available, map-making companies are already

developing the so-called HD-maps, that are specifically designed to support autonomous

driving applications. These maps provide an accurate position of high-level features such

as traffic lights and road lanes as well as a geometric representation of the environment.

In this thesis, we address the vehicle localization task in challenging environments,

using only cheap camera sensors onboard. Our goal is to take advantage of recent DNNs

1.3. Scientific Contributions 5

and machine learning techniques to localize a vehicle with respect to maps provided by

map-making companies (cartographic and HD-maps). Since HD-maps are not yet freely

available, we resemble them using maps built from LiDAR sensors. In particular, we try

to answer the following questions:

• Which types of maps are better suited for vision-based localization of a self-driving

car?

• How to integrate existing CNNs and machine learning techniques within a local

localization pipeline?

• How can we provide an accurate localization near road intersections, one of the

most dangerous situations for vehicles?

• Can we leverage buildings information to enhance vehicle localization in urban

environments?

• Is it possible to design a DNN that directly localize the camera and that can be used

in any environment (even areas not seen in the training phase) without re-training?

• How can we globally localize a vehicle within a city when GNSSs are not available?

1.3 Scientific Contributions

In the first part of this thesis (Chapters 3 to 5) we propose three approaches that exploit

data from the OSM service to localize a vehicle in highway-like and urban environments

by matching high-level features (road lanes, road intersections and buildings), integrat-

ing CNNs and machine learning in different localization pipelines. In the second part

(Chapters 6 and 7), instead, we exploit LiDAR-maps (the same data that will probably

be available in the forthcoming market of HD-maps), and we propose novel DNN-based

systems that directly perform localization in an end-to-end fashion.

The research proposed in this thesis is mainly focused on the local localization task,

i.e., a rough position estimate is required to be known a priori. The reason behind this

decision is that such a rough position estimate can be usually obtained with GNSSs. How-

ever, to be able to localize the vehicle even when GNSSs are not available, in Chapter 7

we complete our contribution proposing a novel global localization method.

6 Chapter 1. Introduction

The scientific contributions of each approach proposed in this thesis can be summarized

as follows.

• In Chapter 3 we proposed an approach to estimate the ego-lane of the vehicle, i.e.,

to answer the question “in which lane am I driving?”, in highway-like scenarios.

We tackle the problem in a probabilistic fashion by exploiting a Hidden Markov

Model (HMM). The method relies on existing line detectors and trackers, and aims

to improve the ego-lane estimates that can be obtained only from the detector’s

output. Typical line detectors often fail to detect all the road lines due to, for

example, shadows or traffic occlusions. Therefore, the proposed HMM explicitly

includes a variable that represent the functioning status of the detector itself.

• In Chapter 4 we introduce a method to localize a vehicle in complex urban en-

vironments, specifically designed for localization in proximity of road intersection

areas. Here state-of-the-art CNNs and visual odometry techniques are combined in

order to generate an occupancy grid that represents the geometry of the upcoming

intersection. The localization is performed by comparing the reconstructed geom-

etry with its counterpart in the OSM service. Different localization hypotheses and

geometries are taken into account, to be robust to small errors in the OSM data.

• In Chapter 5 we propose to exploit one of the most static structures in urban

environments, i.e., the buildings, in the vehicle’s surrounding to enhance the ve-

hicle localization. The buildings’ façades detected from the cameras are matched

with the buildings’ outlines gathered from OSM to improve the localization when

buildings are visible. State-of-the-art CNNs are exploited to accurately perceive

and reconstruct the surrounding buildings.

• In Chapter 6 we address the problem of monocular camera local localization in HD-

maps. The different nature of the sensors used for localization (camera) and for

mapping (LiDAR) makes this task extremely challenging. To address this problem,

we propose a CNN, named CMRNet, that learns how to match an image with a

LiDAR-map. Since the network does not learn the map, it can be used in any

environment for which a LiDAR-map is available, without the need to retrain the

network.

• While all the latter approaches addressed the local localization task (i.e., they

require a rough position estimate to be known), in Chapter 7 we addressed the

1.4. Publications 7

global visual localization task. In particular, we want to localize an image in an

HD-map without any prior information about its position. This is useful in case

where GNSSs are not available. To address this task, we propose to jointly train two

DNNs, one for the images and the other for the point clouds, in order to generate

a shared embedding space for the two types of data. This embedding space allows

us to perform place recognition with heterogeneous sensors.

Moreover, since we were unable to find suitable datasets for testing the approaches

presented in Chapters 3 and 4, we published two new datasets.

• ego-lane1 dataset: we recorded a novel dataset composed of more than 100 km of

highway driving in both Italy and Spain. We manually labelled each frame with

the correspondent vehicle’s ego-lane (i.e., in which lane the vehicle is driving).

This dataset was recorded in wide highways (three and four lanes), and include

more than 100 lane changes. This dataset is available online2.

• intersection dataset: we performed an extensive analysis of the available datasets

for autonomous driving to assemble a new dataset, specially designed for bench-

marking localization at intersections. After the analysis performed, we ended up

with 48 approaches to intersections sequences, all from KITTI residential category.

Although all approaches are from the same German city, we were able to include

different intersection geometries, lighting and traffic conditions. This dataset is

available online3.

1.4 Publications

The majority of the approaches presented in this thesis have been published in peer-

reviewed conferences’ proceedings. The publications related to the research presented in

this thesis are listed below.

• A. L. Ballardini, D. Cattaneo, R. Izquierdo, I. Parra, M. A. Sotelo, and D. G.

Sorrenti. “Ego-lane estimation by modeling lanes and sensor failures”. In: IEEE

International Conference on Intelligent Transportation Systems (ITSC). Oct. 2017,

pp. 1–7

2http://www.ira.disco.unimib.it/ego-lane-estimation-by-modeling-lanes-and-sensor-failures
3http://www.ira.disco.unimib.it/visual-localization-at-intersections-with-digital-maps

8 Chapter 1. Introduction

• A. L. Ballardini, D. Cattaneo, S. Fontana, and D. G. Sorrenti. “An online proba-

bilistic road intersection detector”. In: IEEE International Conference on Robotics

and Automation (ICRA). May 2017, pp. 239–246

• A. L. Ballardini, D. Cattaneo, and D. G. Sorrenti. “Visual Localization at Inter-

sections with Digital Maps”. In: IEEE International Conference on Robotics and

Automation (ICRA). May 2019, pp. 6651–6657

• A. L. Ballardini, D. Cattaneo, S. Fontana, and D. G. Sorrenti. “Leveraging the

OSM building data to enhance the localization of an urban vehicle”. In: IEEE In-

ternational Conference on Intelligent Transportation Systems (ITSC). Nov. 2016,

pp. 622–628

• D. Cattaneo, M. Vaghi, A. L. Ballardini, S. Fontana, D. G. Sorrenti, and W. Bur-

gard. “CMRNet: Camera to LiDAR-Map Registration”. In: IEEE International

Conference on Intelligent Transportation Systems (ITSC). Oct. 2019, pp. 1283–

1289

• D. Cattaneo, M. Vaghi, S. Fontana, A. L. Ballardini, and D. G. Sorrenti. “Global

visual localization in LiDAR-maps through shared 2D-3D embedding space”. In:

IEEE International Conference on Robotics and Automation (ICRA). 2020. Sub-

mitted

1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2 we introduce a brief historical preface

and background knowledge on the topics of self-driving cars, robot localization and arti-

ficial neural networks. In Chapter 3 we propose a probabilistic model for estimating the

vehicle’s ego-lane in highway-like scenarios. Chapter 4 introduces a localization pipeline

specifically designed for road intersection detection that exploits state-of-the-art CNNs

and the OSM road graph. In Chapter 5 we present a method to enhance the vehicle’s

localization by leveraging buildings information from the OSM service. Chapter 6 pro-

poses an end-to-end CNN for monocular camera localization that can be used in any

environments for which a LiDAR-map is available, while in Chapter 7 we introduce a

DNN-based system for visual global localization in LiDAR maps. Finally, in Chapter 8

we draw our conclusions about the research presented in this thesis.

Chapter 2

Background

2.1 Autonomous Driving

The first concept of a self-driving car dates back to 1925 when Houdina Radio Control

demonstrated the “American Wonder”, a vehicle that was radio-controlled trough New

York City traffic. A decade later, in 1939, General Motors sponsored an exhibit called

“Futurama” designed by Norman Bel Geddes. The exhibit was a vision 20 years into the

future depicting automated highways for traffic congestion reduction. Circuits embedded

in the roadways powered radio-controlled electric cars. Even though this generation of

vehicles was not really autonomous, the idea of releasing the driver from tedious tasks

was already evident.

In 1977, thanks to the advancements in computer vision tasks and the higher com-

putational power available, the Tsukuba Mechanical Engineering Lab unveiled the first

truly autonomous car. It was equipped with two cameras and an analog computer that

could track white street markers, allowing the car to drive up to 30 km/h in a dedicated

road. A few years later, Daimler in collaboration with Ernst Dickmanns and his team

equipped a van (named VaMoRs) with two cameras and multiple microprocessors [25].

VaMoRs was able to drive at speeds up to 96 km/h on empty highways. Afterwards, the

EUREKA organization funded the “Eureka Prometheus” project, the largest research

and development program on self-driving cars. The project culminated in 1995, when

Dickmanns’ autonomous vehicle took a 1600 km trip from Munich to Copenhagen and

back almost fully autonomously, with only 5% of human intervention. The car drove at a

speed up to 175 km/h in standard traffic conditions, autonomously overtaking other cars.

Around the same years, the NAVLab project from Carnegie Mellon University (CMU)

tested a series of autonomous vehicles. Notably, in 1995, NAVLab 5 drove 5000 km with

9

10 Chapter 2. Background

autonomous steering controls (for about 98% of the journey) but manual throttle and

brake controls [26]. In 1996, professor Alberto Broggi and his team launched the project

ARGO [27]. Their vehicle completed a 1900 km journey in Italian highways, of which

94% was autonomously controlled, with an average speed of 90 km/h. This second gen-

eration of vehicles was really autonomous but was focused on simplistic scenarios, i.e.,

dedicated roads or highways with clear lane markings.

In 2004, the DARPA introduced “Grand Challenge”, the first long-distance competition

for self-driving cars. International teams were challenged to build a vehicle that could

drive autonomously along a 240 km route in the Mojave Desert region. However, the

farthest distance traveled was only 11 km. A year later, the second round of the Grand

Challenge took place, and this time five teams were able to complete the 212 km route.

The winning vehicle, Stanley [28] developed by the Stanford Racing Team, used multiple

LiDAR units, a camera and probabilistic reasoning for detecting road surface and obsta-

cles. In 2007, DARPA conducted a third competition, called “Urban Challenge”, in which

self-driving cars were demanded to handle city-like environments obeying traffic regula-

tions and negotiation intersections with other vehicles. Six teams were able to complete

the route, and the winning vehicle Boss, developed at Carnegie Mellon University [29],

uses multiple LiDAR, radars, camera and GPS units to handle the complex environment.

The DARPA challenges tackled complex scenarios (desert roads and urban settings), but

in controlled environments, i.e., no pedestrians or bicycles and lanes wider than usual.

In 2009, Google recruited experienced researchers from the best teams involved in the

DARPA Grand Challenges and started his self-driving car project. In 2016 Google states

that his self-driving cars drove more than three million kilometers in autonomous mode,

though they were involved in 14 minor accidents caused by humans driving other vehicles.

During the last decade, most of the big car making companies (such as BMW, Toyota,

General Motors, Bosch, Audi, Mercedes), AI companies (Google, Apple) and innovative

companies (Uber, nuTonomy, Tesla Motors) invested lots of resources in research and

development of self-driving cars. Since each company has different name and technologies

for the same capabilities, in 2014 “SAE International” introduced the J3016 document

“Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated

Driving Systems”. This document defined six different levels of automation, ranging

from manual to fully automated systems, based on the human intervention and attention

required.

2.1. Autonomous Driving 11

Figure 2.1: The SAE International “Levels of Driving Automation” standard.

Figure 2.1 reports the descriptions of the different automation levels defined in the

document.

Nowadays, cars with semi-autonomous features (SAE level 2) are already available

on the market. Most of the big car making companies (such as Audi, BMW, General

Motors, Ford, Honda, Hyundai, Lexus, Mercedes-Benz, Nissan, Porsche, Tesla, Toyota

and more) offer cars equipped with a combination of adaptive cruise control and lane-

keeping to autonomously drive inside a lane in highways. Some of these companies also

offer more advanced systems:

• Tesla Motors’ Autopilot: the first and probably the most advanced semi-autonomous

system on the market, it features adaptive cruise control, lane-keeping, auto lane

change, auto-park and interchanges navigation. The system requires the driver to

pay attention and keeps his hands on the steering wheel.

12 Chapter 2. Background

• General Motors’ SuperCruise: this system offers fewer features than Autopilot

(only adaptive cruise control and lane-keeping on selected highways), but it is the

first “True Hand-Free” system1. The driver does not need to keep his hands on the

steering wheel, but needs to pay attention (a camera tracks the eye of the driver

to make sure he is paying attention).

• BMW’ Extended Traffic Jam Assistant: similarly to SuperCruise, it offers hand-

free driving for speeds up to 60 km/h

Moreover, Audi promised to release the first SAE level 3 (driver does not need to pay

attention, but need to take control in certain situations) feature on the market. However,

this feature will only work in traffic jams up to 60 km/h on highways where a physical

barrier separates the two carriageways.

All the aforementioned modern self-driving cars either work only on highways or rely

on expensive sensors such as LiDAR units. In this thesis, instead, we focus on more

challenging scenarios (urban areas) using only cheap onboard sensors (cameras).

2.2 Localization

The localization is one of the most important tasks for an autonomous mobile robot,

and the research community have tackled it using different approaches. Being able to

localize itself is crucial for an autonomous robot as the collision avoidance with static

or dynamic objects, and the prediction of a proper path to the goal destination, strictly

depend on this capability. More formally, localization is the task aimed at finding the

position and orientation of the robot with respect to a known reference map of the

working environment. The combination of position and orientation is also referred to as

pose.

GNSSs (such as GPS, Galileo, GLONASS and BeiDou) provide a global localization

anywhere on the Earth, provided that there is a clear line of sight to at least four satel-

lites. In real-world autonomous driving applications, however, this is not often the case:

in tunnels, for example, such systems are not available. Even in outdoor environments

GNSSs are often inadequate for self-driving cars, especially in urban environments where

buildings may block or deflect satellites’ signals, leading to non-line-of-sight (NLOS)

or multipath errors [2]. Therefore, GNSSs by themselves are not accurate and reliable

1https://www.cadillac.com/ownership/vehicle-technology/super-cruise

2.2. Localization 13

enough for autonomous driving applications. Different approaches for mitigating the

latter issues have been proposed, for example by exploiting filtering techniques [30, 31]

or by using three-dimensional mapping of the buildings [32, 33]. However, the obtained

localization is still not accurate enough (i.e., they reduced the localization errors from

tens of meters to 5-10 meters). A common practice in the autonomous driving com-

munity is to exploit vehicles’ onboard sensors in order to obtain localization estimates

appropriate for safe navigation.

A typical localization pipeline usually involves two consecutive steps: first, the sensors’

data are processed to detect some informative features and second, those features are

matched with the reference map. Numerous approaches have been proposed by the

research community, and they differ in the type of sensor used, type of the map and

working environment (i.e., indoor or outdoor). Another important distinction is whether

the approach requires an initial position estimate to be known (“local” localization) or

not (“global” localization). Global techniques estimate a rough position of the robot

globally within the reference map without any prior information about its position, while

Local techniques aim at refining such rough pose to provide an accurate localization.

In the following subsections, we will present an overview of the existing types of map

used for localization in the context of autonomous driving.

2.2.1 Point Cloud Maps

The first type of maps we introduce is the point cloud maps in which a simple list

of points represent the environment. These points, besides their spatial coordinates,

can optionally have additional information attached, such as intensity, color or surface

normal. On the one hand, this type of map is usually not discretized, and thus, it is

the most expressive among the types presented in this overview. In fact, other types

of maps, such as grid maps (Section 2.2.2), are usually generated starting from point

clouds. On the other hand, point cloud maps usually require lot of memory to be stored,

and they do not explicitly distinguish between free and unknown space.

Point clouds maps are usually generated using LiDAR sensors [34, 35], thanks to their

high accuracy in measuring distances and thus producing accurate maps. However, var-

ious approaches to generate point cloud maps with different sensors have been proposed,

e.g., using stereo cameras [36], depth cameras [37] or even monocular camera [38]. Point

cloud maps generated with stereo or depth cameras are usually denser than LiDAR maps

14 Chapter 2. Background

but produce a less accurate reconstruction.

In order to reduce the memory required to store point cloud maps, a common approach

is to “subsample” the map, that means keeping only a subset of the points. Besides the

most straightforward strategy to remove random points, more sophisticated strategies

have been proposed to select the points to remove based, for example, on clustering [39]

or points distances [40] approaches.

Point cloud maps are usually generated through a family of approaches that takes

the name of Simultaneous Localization And Mapping (SLAM). The mapping process

of a SLAM approach typically involves a mobile robot that navigate in an unknown

environment, progressively mapping the area and at the same time localizing within it.

Another relevant and widespread technique for generating point cloud maps is called

Structure from Motion (SfM) [41, 42]. While SLAM is generally sensor agnostic, SfM is

specific for camera sensors. In a typical SfM pipeline, multiple images of the environment

without known poses are processed, generating a sparse point cloud. In the first step,

features such as SIFT [43] or SURF [44] are detected in all the images. Afterword, these

features are tracked between overlapped images. Finally, both camera poses and 3D

reconstruction are estimated employing a bundle adjustment technique [45]. However,

SfM applied to monocular systems is subject to the scale ambiguity, i.e., camera poses

and point cloud map are estimated up to an unknown scale factor. In order to estimate

this scale factor, either relative motion between camera poses or dimension of a scene

object needs to be known.

2.2.2 Grid Maps

This type of maps divides the world into a grid of fixed size, and store in each cell a

value that represents the probability of that cell to be occupied. Grid maps, despite

their simplicity, are still widely used for localization, especially in indoor environments

where a 3-DoF localization is enough. For this purpose, bi-dimensional grids depicting

the working environment in a bird’s-eye view (BEV) perspective are used. Approaches

from the late 1990s and still commonly used today [46, 47] use bi-dimensional grid maps,

allowing for robot localization by matching LiDAR scans with the map. An example of

a map generated by those approaches is depicted in Figure 2.2. These BEV grid maps

require less memory and computational power than point cloud maps, but they only

work in environments with a flat ground (e.g., buildings) and ground robots.

2.2. Localization 15

Figure 2.2: A bi-dimensional grid map of the environment where gray pixels represent free
space, black pixels represent obstacles and teal pixels represent unknown areas. The
LiDAR scan at the estimated robot position is shown in blue. The good alignment
of the measures with respect to the map indicates a good localization estimate.

In order to deal with non-flat terrains, a popular approach is to use elevation maps

(also known as 2.5D maps). This type of map uses a BEV grid wherein each cell is

stored the terrain’s height of the corresponding world space. Some researchers have

tested elevation maps in a planetary explorer rover for mapping the environment [48]

and localization of the robot [49]. However, standard elevation maps cannot properly

represent vertical or overhanging objects, such as walls of buildings, bridges and trees’

branches. Different extensions have been proposed to deal with the problem mentioned

above. Extended Elevation Maps [50] can detect vertical and overhanging objects, but

they can represent only one surface per cell. On the other hand, Multi-Level Surface

Maps [51] store multiple surfaces in each cell of the grid, correctly handling situations

like bridges. Figure 2.3 depicts an example of elevation maps and their extensions.

Grid-based maps can also be used with three-dimensional grids, where each cell stores

16 Chapter 2. Background

(a) Point Cloud (b) Elevation Map

(c) Extended Elevation Map (d) Multi-level surface map

Figure 2.3: How different elevation maps handle the situation in (a): standard elevation maps
(b) see an impassable wall, while extended elevation maps (c) represent the ground
of the underpass and multi-level surface maps (d) correctly depict both the surfaces
under and over the bridge. Images taken from [51].

the state (free or occupied) of the corresponding environment space. In this case, the

cells are called voxels, from volumetric pixels. These maps are more expressive than

2D and 2.5D grid maps but require more memory. It is important to note that all the

grid-based maps mentioned so far require that all the map must be allocated beforehand,

and the maximum extension must be known a priori.

A relevant extension to the standard 3D grid maps, called OctoMap [52], offer dif-

ferent advantages such as low memory requirement, explicit representation of free and

unknown space, multi-resolution queries and probabilistic measurements’ integration.

OctoMaps are based on octrees, a hierarchical data structure for 3D geometric model-

ing [53]. Each node of the tree represents a voxel that can be recursively subdivided

into eight sub-nodes until reaching the minimum voxel dimension defined. The hierar-

chical nature of the data structure allows for queries at multiple resolutions. Moreover,

OctoMaps are dynamically expanded as needed; thus, the maximum extension does not

need to be known beforehand. An example of an OctoMap is depicted in Figure 2.4.

2.2. Localization 17

(a) Point Cloud (b) OctoMap

Figure 2.4: An example of an OctoMap (b) generated starting from the point cloud in (a).
Images taken from [52].

2.2.3 Topological Maps

The last type of map that can be exploited for autonomous robot localization is the

topological map. These maps were not initially intended for robotic applications, but

were instead intended for human reading, and later for navigation applications that can

be found in any modern smartphone. The most basic form of topological maps can be

seen as a graph, where vertices represent geo-referenced points, and edges represent roads

that connect the associated points. The edges of the graph can also contain additional

information, such as name, type and width of the road, number of lanes and maximum

speed allowed. Different companies, such as TomTom, HERE and Google, provide these

maps, but also free and collaborative projects provide them. In 2004, Steve Coast,

inspired by the success of Wikipedia, founded OpenStreetMap (OSM), a collaborative

project to create editable maps of the world that are freely available to the public [54].

An example of the data from OSM is depicted in Figure 2.5.

Although OSM is usually generated by gathering GPS data manually collected by users,

some researchers have proposed different methods to automatically correct or enhance

the map. Aerial images can be used to automatically extract road-segment center-

lines [55, 56], roads’ width [57] or coupled with ground images to enrich the map with

segmentation categories such as sidewalks and parking slots [58]. OSM does not only

provide the road network, but it also contains additional semantic information, such as

18 Chapter 2. Background

Figure 2.5: An example of a topological map from OpenStreetMap with road network and
buildings’ outlines.

building footprint, railway and bus stop locations.

A recent trend in the research community is to exploit topological maps to localize a

mobile autonomous robot. In [59], the authors propose to match measurements from an

onboard LiDAR sensor with buildings’ outlines gathered from OSM to localize a vehicle. A

similar approach [60] use buildings’ footprints to constrain the feasible poses of the robot

in a SLAM pipeline. Information from OSM has also been combined with visual odometry

to perform global localization within a city [61] or for improving robot localization [62].

Finally, the authors in [63] propose to detect the road surface in point clouds from an

onboard LiDAR sensor and match it with OSM road data.

2.3. Artificial Neural Networks 19

2.3 Artificial Neural Networks

In the last decade, the interest in artificial neural networks has increased drastically, from

both academia and industry. The origin of artificial neural networks dates back to 1943

when the first mathematical model of a neural network was formulated to emulate the

human thinking process [64]. This model is known as McCulloch–Pitts neuron. Later,

in the 1950s, different attempts to emulate a neural network were made and, even if the

first attempt failed, in 1959 a working artificial neural network was proposed [65] and

effectively applied to a real-world problem, i.e., it removes echoes in phone calls.

Modern neural networks are based upon the Perceptron model [66] proposed in 1957.

The Perceptron is a generalization of the McCulloch-Pitts neuron and, differently from

the latter, it has learnable weights and real valued inputs. A Perceptron model takes

n inputs xi ∈ R that are first multiplied by a set of learnable weights wi and then

summed together. A bias b is also added to the summation, and the resulting value

is processed by a non-linear “activation function”. An example of a Perceptron with a

“step” activation function is depicted in Figure 2.6. Although the Perceptron is limited in

its complexity (in 1969 was proven that it could not model the exclusive-or circuit [67]),

multiple Perceptrons can be stacked in order to solve more complex tasks (e.g., multi-

class classification, non-linear function approximation). In this case, the model is called

Multilayer Perceptron (MLP), and an example is depicted in Figure 2.7. However, in 1969

the authors of [67] discovered that the learning rule proposed in [66] was not applicable

to multiple layers of Perceptrons, slowing the neural network research progress for a

decade.

The learning algorithm typically used to train modern neural networks is called Back-

Propagation (BP). Even though different researchers have investigated some concepts

of BP in the 1960s, the first efficient version of the BP algorithm as we know it today

was proposed in 1970 [68], and the first application of BP for multilayer Perceptrons

was introduced only in 1982. The possibility to learn the weights of multilayer Percep-

trons, together with the mathematical proof that they can approximate any continuous

function [69], have increased the researcher’s interest in artificial neural networks again.

During the 1990s, artificial neural networks were successfully applied in many fields,

such as image classification [70], autonomous driving [71], reinforcement learning [72]

and recurrent neural networks [73]. However, the high computation required by neural

networks to be effective has hampered their diffusion in favor of Support Vector Machines

20 Chapter 2. Background

Figure 2.6: The Perceptron model for binary classification. The inputs xi are multiplied by the
weights wi and then summed. A step function decide whether the inputs represent
a positive or a negative sample.

Figure 2.7: An example of a Multilayer Perceptron.

(SVMs) with the “kernel trick” [74]. A SVM is a linear model for classification and

regression, in which n-dimensional inputs are separated in two classes by finding the

(n − 1)-dimensional hyperplane that maximize the distance from it to the nearest input

on each side. The kernel trick allows SVMs to perform non-linear classification and

2.3. Artificial Neural Networks 21

regression by mapping the input data into a higher dimensional space where the data are

linearly separable. One of the main advantages of the kernel trick is that there is no need

to compute the mapping of the input data, but only the inner product of pairs of points

in the higher dimensional space is needed to be computed. With the computational

power available at that time, SVMs have been proven to achieve comparable classification

accuracy compared to neural networks [75], while being faster to train.

Only during the late 2000s the highly parallel computational power available and a

new algorithm for learning the weights [76] made the training of deep neural networks

possible.

2.3.1 Convolutional Neural Networks

Classical MLPs consist of multiple layers of Perceptrons, and each neuron in a layer is

connected to all the neurons in the previous layer. Due to the fully connected nature

of MLPs, the weights to be learned increase quadratically with the number of neurons

in each layer. Therefore, when the size of the input is huge (e.g., an image), it is

impractical to build a deep MLP.

In 1980, inspired by the flow of information in a cat’s visual cortex, Kunihiko Fukushima

proposed the Neocognitron model [77], an artificial neural network designed for pattern

recognition in images. The Neocognitron was composed of S-cells that respond to local

features and C-cells, designed to detect more complex features. For example, an S-cell

may detect an edge in a specific position, while a C-cell activate if the same edge is

present anywhere in the image, i.e., C-cells are spatial invariant. A few years later,

in 1989, the first modern CNN [78], called LeNet-5, was proposed. It combined the key

ideas of the Neocognitron with the BP learning algorithm in order to classify handwritten

digits.

The key innovations of CNNs with respect to classical MLPs are the following:

• Local Receptive Field each neuron in a layer is connected only to a set of spatial

neighbor neurons in the previous layer. In this way, a neuron can detect simple

spatial feature, e.g., edges or corners.

• Weight Sharing following the idea that if a feature is relevant in a specific location

of the image, the same feature is probably also relevant in the whole image, neurons

in a layer are organized in “planes”. Inside a plane, all the output neurons are forced

22 Chapter 2. Background

to have the same set of weights, i.e., the same convolutional kernel is applied at

every location of the input. Each layer of a CNN is composed of multiple planes,

and the output of each plane is called “feature map”.

• Subsampling after each convolutional layer, a sub-sampling operation is applied

to all the feature maps, in order to decrease the spatial resolution by half.

The combination of convolutions and subsampling layers has a twofold purpose: on

the one hand, it allows the detection of higher-level features and on the other hand, it

reduces the sensitivity of the output to spatial shift and distortion. Moreover, the weight

sharing technique drastically reduces the number of free parameters of the network. For

example, in the first convolutional layer of LeNet-5 the number of free parameters is ca.

700 times less than the number of connections, and ca. 32 000 times less than a MLP

with the same number of neurons. Figure 2.8 depicts the architecture of LeNet-5.

Figure 2.8: The architecture of a typical CNN for image classification, where convolutional and
subsampling layers are alternated and then followed by one or more fully connected
layers. Image taken from [78].

Even though LeNet-5 achieved state-of-the-art accuracies for handwritten digits clas-

sification, the high computational resources and the time requirements for training pur-

poses, led the research community to prefer SVMs over CNNs for more than 20 years.

CNNs gained massive interest from the research community in 2012 thanks to the

high parallel computational capacity of Graphics Processing Units (GPUs) and the huge

amount of training data available. AlexNet [79] was the first CNN-based approach to win

the ILSVRC (ImageNet Large Scale Visual Recognition Challenge) [80] outperforming

all the other methods by a large margin. One of the key aspects of AlexNet was the use

of the Rectified Linear Unit (ReLU) activation function in convolutional layers. Although

ReLU is not completely differentiable, it has been proven that networks with ReLUs train

2.3. Artificial Neural Networks 23

several times faster than networks with sigmoid or tanh activation functions [79, 81].

Thanks to the impressive results of AlexNet, the interest and efforts of the research

community in CNNs has grown from year to year, drastically increasing their perfor-

mances. One of the most significant achievements was reached in 2015 when, for the first

time, a CNN-based approach has beaten human performances on image classification [3].

During the last decade, CNNs have been successfully applied in many fields, outperform-

ing classical machine learning approaches, e.g., medical image segmentation [4], natural

language processing [5], playing games [6] or videogames [82], and many more.

2.3.2 Recurrent Neural Networks

While CNNs were specifically designed to process spatial data (such as images or point

clouds), another class of ANNs, namely Recurrent Neural Networks (RNNs), were designed

to handle data sequences (such as texts, genomes or time series). The first early model

of a RNN was proposed in 1982 by John Hopfield [83]. This model, namely Hopfield

network, tried to mimic the associative memory of the human brain, and it was designed

to learn a set of patterns and recognize them even with incomplete or corrupted inputs.

The basic idea behind RNNs is that the output for a specific input does not depend only

on the input itself, but also on the previous inputs. The learning algorithm commonly

used to train RNNs is called Backpropagation Through Time (BPTT), and is an extension

of the previously presented BP.

Modern RNNs are based on the Long Short-Term Memory (LSTM) unit, invented by

Sepp Hochreiter and Jürgen Schmidhuber in 1997 [73]. An LSTM is usually composed of

four main components: a cell state, an input gate, a forget gate and an output gate. The

cell state is the memory of the unit, and can carry information through time. The input

gate and the forget gate control how the cell state should be updated. In particular, the

forget gate decides how much of the previous cell state should be kept, while the input

gate controls whether to add new information or not. Finally, the output gate controls

the actual output of the LSTM layer, by combining input and cell state.

LSTMs have been successfully applied in many tasks that involve the processing of data

sequences, such as speech recognition [84], machine translation [85], image captioning [86]

and image generation [87]. Major technology companies have implemented LSTM-based

techniques in their products: Google Translate, Apple Siri, Amazon Alexa, Microsoft

Cortana.

24 Chapter 2. Background

2.3.3 DNNs for Autonomous Driving

In the autonomous driving field, deep neural networks have been exploited to solve

numerous tasks, such as detecting surrounding objects (e.g., pedestrians, other cars,

road signs) [4, 7–12, 88], geometric reconstruction [13–16], optical flow estimation [17–

20], visual odometry [89–91] and vehicle localization [21–23, 92–94]. In this section, we

will briefly describe each of these tasks, together with the corresponding most relevant

approaches.

The problem of detecting the objects surrounding the vehicle is probably the most

critical task for safe navigation. Being able to avoid collision with other cars, stop if

pedestrians are crossing the road and detect obstacles are some of the critical capabilities

that an autonomous vehicle needs to perform when driving in dynamic environments.

This problem can be tackled by exploiting textural information from a camera sensor,

and it can be subdivided into three complementary tasks: Object Detection, Semantic

Segmentation and Instance Segmentation. On the one hand, in object detection, the

goal is to draw a bounding box around each interesting object present in the image and

classify the bounding boxes with the respective object class. This allows the identification

of all the objects in the scene, while distinguishing different instances of the same class,

but it does not provide a so called fine-grained classification. On the other hand, in

the semantic segmentation task, we want to classify each pixel of the image with the

corresponding class. However, even with this more detailed information, we still cannot

distinguish between different object instances, e.g., we are unable to know if two pixels

classified as car belong to the same car or not. The instance segmentation is the mix

of the previous two tasks: each pixel is classified with the respective class and instance.

Figure 2.9 depicts an example of the three tasks mentioned above.

Object Detection and Segmentation

One of the most significant CNN-based approach to deal with the object detection task

was R-CNN [95], in which a region proposal step is employed to generate around 2k

bounding boxes. Each of these boxes is then fed to a CNN-based feature extractor and

is finally classified with a SVM. R-CNN outperformed all the previous approaches by a

large margin, but the numerous forward passes of the CNN make it very slow. To speed

up the inference time of R-CNN, an extension, named Fast R-CNN [96], that only needs

a single forward pass to extract the features, was proposed. In a further extension, Faster

2.3. Artificial Neural Networks 25

Figure 2.9: Three complementary computer vision tasks: Object Detection, Semantic Segmen-
tation and Instance Segmentation.

R-CNN [7], the authors proposed the Region Proposal Network (RPN) that takes as input

the features extracted from the image, and outputs a set of bounding boxes, avoiding

the need for a separate prior region proposal step, and reducing the computational time.

The improvements proposed in Fast R-CNN and Faster R-CNN drastically reduced the

processing time, but not enough to make them suitable for real-time applications.

The latter approaches [7, 95, 96] follows a two-step classification pipeline (first multiple

regions are proposed, then each of them is classified). Other approaches that only need

a single step also exist, where both bounding boxes (with associated confidence) and

classes are predicted at the same time, and the most significant approaches of this type

are YOLO [8, 97] and SSD [9]. Single-step detectors are usually faster (the tiny version

of YOLO can run up to 220 frames per second) but have lower precision than region

proposal based detectors.

In 2015, the first CNN-based approach for semantic segmentation, named Fully Con-

volutional Network (FCN) [10], was introduced. The authors proposed to replace the

fully connected layers of a standard classification CNN (e.g., AlexNet) with convolutional

layers. Therefore, the output of the encoder is a coarse feature map instead of a single

probability distribution over the classes. Moreover, this made it possible for the network

to accept images of arbitrary shape. Since the output feature map of FCN has a low

resolution (1/32nd of the input image), to predict a finer-grained output the authors

proposed to combine the coarse map with information from shallow and fine layers. A

similar approach, named U-Net [4], was proposed to segment medical images. It consists

of an encoder that extracts features from the image, and a decoder that classifies each

pixel by combining information from different scales using skip-connections. Figure 2.10

26 Chapter 2. Background

depicts the architecture of U-Net. Many recent CNN-based semantic segmentation ap-

proaches follow the same idea of U-Net [11, 12, 98, 99].

Figure 2.10: The architecture of U-Net: encoder-decoder with skip-connection. Image from [4]

The last task for detecting the surrounding objects (instance segmentation) is a mix

between object detection and semantic segmentation. In fact, the most relevant work,

named Mask R-CNN [88], combine an object detection network (Faster R-CNN) with

an additional pixel-level mask prediction branch.

3D Object Detection

Thanks to the impressive results achieved by CNNs in computer vision tasks, deep learn-

ing approaches have also been applied in autonomous driving related tasks that do not

directly involve camera images. For example, DNNs have been applied to 3D object

detection in LiDAR data, by exploiting birds-eye view elevation images [100, 101], by

employing neural networks for point cloud processing [102–104], or by combining LiDAR

and camera information [105–107].

2.3. Artificial Neural Networks 27

DNNs for 3D LiDAR data processing is a new and emerging field. The first DNN-

based approaches for point clouds processing [108, 109] first converted the cloud into

a 3D occupancy grid, and then applied 3D CNNs. More recently, neural networks that

directly represent the cloud as a list of points have been proposed [110–112]. Hierarchical

data structures (such as octrees and kd-trees) have also been exploited within DNN

approaches [113, 114]. A more in-depth review of existing DNN-based methods for point

cloud processing is reported in Section 7.1.

Geometric Reconstruction

Convolutional Neural Networks have been successfully applied also to geometric recon-

struction related tasks. According to the KITTI benchmark leaderboard [115], in the last

years CNN-based approaches have outperformed standard methods in stereo disparity es-

timation [13–16], monocular depth estimation [116–118] and optical flow [17–20]. Some

attempts to face the visual odometry task with CNNs have also been carried out [89–91],

but they have not reached the performance achieved by standard approaches.

Pose Regression

One recent trend in the research community is to exploit CNNs to solve the pose regression

task, i.e., predict the pose of the observer given only a single image. The first approach

to tackle this problem using a CNN was PoseNet [21], where a deep convolutional network

was trained to directly regress the 6-DoF pose of the camera given a single RGB image.

Starting from this work, additional improvements have been proposed by introducing

new geometric loss function [92], by exploiting the uncertainty estimation of Bayesian

CNNs [93], by including a data augmentation scheme based on synthetic depth infor-

mation [94], by using the relative pose between two observations [22], or by exploiting

multi-learning task [23]. All the latter methods are trained in the working area, and

thus they cannot perform localization in environments that have not been seen during

the training phase, i.e., they need to be retrained in each area where the network is

deployed.

The focus of this thesis is not primarily aimed at proposing new DNN architectures

for specific computer vision tasks. Instead, our focus is to exploit DNNs for improving

vehicles’ localization. In the first part of this thesis (Chapters 4 and 5), we integrate

28 Chapter 2. Background

CNN-based approaches for semantic segmentation and stereo disparity estimation within

a localization pipeline. The goal is to localize a vehicle in topological maps by matching

high-level features (road intersections and buildings) detected using cameras with their

counterpart in the map. In the second part, instead, we directly use DNNs for estimating

the pose of the camera. In particular, we propose two DNN-based approaches for camera

localization within LiDAR-maps. In Chapter 6 we tackle the local localization task, i.e.,

the goal is to refine a rough position estimate (for example, gathered from a GNSS), while

in Chapter 7 we propose a global localization approach, where we localize the camera

without any prior information about its position.

Chapter 3

Ego-lane estimation in highway-like

scenarios

In this thesis, we address the problem of vehicle’s localization in complex environments

with only cheap onboard camera sensors. The first approach, described in this chapter,

tackles the problem of localization in highway-like scenarios. Such scenarios are easier

than, for example, urban environments, because only vehicles are allowed to transit (i.e.,

no pedestrians and bicycles), and road markings are well maintained. Accurate metric

localization is not required to navigate in highway-like environments autonomously. A

combination of adaptive cruise control and lane-keeping features can be exploited to

drive inside a lane autonomously, and in the last few years, such features are becoming

available on the market (e.g., Tesla Motors’ AutoPilot, General Motors’ SuperCruise,

Audi AI). However, in those systems, tasks such as taking exit ramps or positioning in

the correct lane at bifurcations require manual intervention. In order to make the latter

tasks autonomous, the vehicle requires a localization with lane-level accuracy. However,

lane-level localization is actually a term with broad meaning and it usually might refer

to two different problems: on the one hand it might refer to the determination of the

lane currently occupied by the vehicle, a problem which is also known as host-lane or

ego-lane estimation; on the other hand, it might refer to the estimation of the lateral

position of the vehicle inside the lane or whole road. The latter problem is relevant

for the lower-level control of the vehicle, while the first is relevant in the higher-level

(tactical) control of the vehicle, i.e., trajectory and maneuver planning. Solutions to

the latter live in R, while solutions to the first live in N. In both cases, images obtained

from forward-facing camera(s) of the vehicle are usually processed to detect road lines.

Those lines are then exploited to infer the vehicle’s ego-lane at the time of the image(s)

29

30 Chapter 3. Ego-lane estimation in highway-like scenarios

capture.

In this chapter, we propose an approach to estimate the ego-lane of the vehicle, i.e., in

which lane the car is driving. Since different methods to detect road lines have been pro-

posed by the research community [119] since the 1980s [25], instead of developing a new

line detector, we propose to exploit existing line detectors coupled with a probabilistic

approach aimed to estimate the ego-lane of the vehicle. The method is based on a HMM

with a transient failure model, which allows us to accommodate inaccurate or missing

road line detections. Differently from other works available in the literature, ours is a

modular, hence reusable, algorithm for improving the ego-lane estimation that could be

obtained from a generic line detector. The algorithm exploits a GNSS measure only to

initialize the model with the correct number of lanes retrieved from the OSM (or other

cartographic services) road property “lane number”. Being the proposed model indepen-

dent of the line detector, it is ready to be used over any approach for line recognition,

increasing the overall performance of the basic low-level feature detector.

Unfortunately, most of the available dataset for autonomous driving related research

either contains highways with few lanes or the recording vehicle stay in the same lane for

the majority of the dataset; thus, we were unable to find a suitable dataset for a proper

evaluation of the proposed approach. Therefore, we recorded a new dataset, specifically

aimed at evaluating ego-lane estimation algorithms, composed of more than 100Km

of highway driving in Italy and Spain, and we manually annotated the Ground Truth

about the vehicle’s ego-lane. This dataset was recorded in wide highways (three and four

lanes), and include more than 100 lane changes. We evaluated the effectiveness of the

proposed algorithm by employing different line detectors and showing we could achieve

much more usable, i.e., stable and reliable, ego-lane estimates compared to relying only

on the underlying line detector’s output.

3.1 Related work

Ego-lane estimation for autonomous driving has been extensively investigated in the last

decades. The first achievements were obtained by the group of Prof. Dickmanns [25];

they introduced a road representation model based on clothoids, which were then up-

dated with the image measurements by using Kalman filters.

Basing on these results, active research has been conducted in subsequent years [26,

120–122]. Heterogeneous modelling techniques for the lane markings (e.g., parabolas,

3.1. Related work 31

clothoids, poly-lines or b-splines) were proposed. Typically, road markings are extracted

from images after some preprocessing steps designed to remove clutter and irrelevant

areas.

One of the most challenging tasks that are to be solved to identify the ego-lane is

the detection of the road surface. Achieving good discrimination of the road surface

from other parts is crucial since it is the basis for further processing. However, this

detection is usually adversely affected by the large amount of clutter normally found on

real roads. While faded road markings, unusual or specific weather conditions, or even

light variations might severely affect the road surface detection, the visibility of the road

surface is quite frequently hampered by the presence of other vehicles, thus requiring

different considerations to solve the problem.

Most of the current Advanced Driver Assistance Systems (ADAS) available in modern

cars, like the systems presented in Section 2.1 (e.g., Lane Departure Warning (LDW),

Adaptive Cruise Control (ACC) or lane-keeping), require just a partial understanding

of the whole observed scene, such as the lines of the vehicle’s lane or the lane crossing

points [119, 123].

For what concerns the sensors, even though LIDAR-based algorithms sport the ad-

vantage of active lighting, vision-based algorithms are, as for today, the most frequently

used sensing techniques for line detection and ego-lane estimation for two main reasons.

First, camera sensors are likely to be found in most of the modern cars available, and

second, road markings are designed to be human-visible in mostly all driving condi-

tions and are usually well maintained in highways. For an excellent review of standard

approaches in lane localization, see [119].

With the objective to pursue lane-level localization, the authors in [124] propose to

exploit the objects present in the surrounding of the vehicle and to describe the prob-

abilistic dependencies between the object measurements, by means of a factor graph

model. A similar proposal comes from the authors of [125], where Histograms of Ori-

ented Gradients are used to align the images acquired from a front facing camera to the

road lane markings available in the map, to improve the vehicle’s localization.

In order to increase the performance of ego-lane estimation algorithms, many au-

thors propose to exploit additional road information gathered by map services as well

as information provided by GNSS. In this regard, an interesting approach is presented

in [126], where the authors tackled the ego-lane estimation as a scene-classification prob-

32 Chapter 3. Ego-lane estimation in highway-like scenarios

lem. They holistically infer the lane number, leveraging both spatial information and

objects around the vehicle, and finally training the best classifier with different learning

algorithms. In [127], the author presented a robust lane-detection-and-tracking algo-

rithm combining a particle filtering technique for lane tracking and RANSAC for the

detection of lane boundaries. The work detects left and right lane boundaries separately,

without exploiting fixed-width lane models, and combining lane detection and tracking

within a common probabilistic framework.

The authors in [128, 129], respectively in highway and urban scenarios, propose to

exploit boosting classifiers and particle filtering approaches. A similar technique was

proposed in [130], where multiple evidence from a visual processing pipeline was com-

bined within a Bayesian Network approach.

Closer to our proposal are the works in [131–133], where the authors explicitly address

the multiple-lane detection problem. In [131] multiple lane detections are performed af-

ter a first processing phase, where the authors identify the ego-lane geometry. Then,

adjacent lanes are first hypothesized and then tested, assuming same curvature and

width for all lanes, a fair assumption for most of the multi-lane roads, including high-

ways. Similarly, the work proposed in [132] also considers highway scenarios and parallel

lane markings, with respect to the detected ego-lane. The authors in [133] proposed a

multi-lane detection algorithm also based on a hypothesis generation and testing scheme,

ensuring an accurate geometric estimation using a robust line fitting pipeline and van-

ishing point estimation.

More recently, end-to-end CNN-based approaches for multi-line detection have been

proposed to avoid the designing of hand-crafted features. The task of lines detection with

neural networks can be treated as a semantic segmentation problem (Section 2.3.3), i.e.,

classify each pixel as belonging to a line or not [134]. Alternatively, instance segmenta-

tion approaches can be exploited to distinguish pixels belonging to different lines [135].

Several techniques have been proposed to improve CNN-based lines detector. In [136]

a multi-task CNN guided by the vanishing point (defined as “the nearest point on the

horizon where lanes converge and disappear”) detect and classify lane and road mark-

ings. The authors of [137] employed a Generative Adversarial Network (GAN) to produce

more realistic and structure-preserving segmentation outputs. A message passing scheme

that enables spatial communication between pixels across rows and columns in a layer

has been proposed in [138]. Finally, the most recent work presented in [139] employed

3.2. Proposed algorithm 33

lightweight pre-trained CNNs coupled with a novel Self Attention Distillation module,

substantially improving lines detections without any additional labels or supervision.

Approaches based on CNNs are more robust to visual changes (e.g., light or weather

changes) than hand-crafted based methods, achieving reasonable performance in night

and rainy scenarios.

Differently from the aforementioned contributions, where the authors proposed new

detection pipelines for the ego-lane estimation problem, in this chapter, we introduce

a generic scheme aimed at improving the ego-lane estimation capabilities of potentially

every line detector. Additionally, the output of a lane detection algorithm could be fed

into our algorithm to increase its performance in ego-lane estimation.

3.2 Proposed algorithm

The goal of the proposed algorithm is to estimate the vehicle ego-lane in highway-like

scenarios, when the topology of the roadway does not change, e.g., because of exit ramps

or bifurcations. The input of the proposed approach are both a global localization, at the

level of accuracy provided by today GNSS, and the detections of the road line markings.

Our proposed method is designed to tolerate occasional temporary failures of the

underlying line detector as well as its noisy measurements. A line detector is a software

component that detects and tracks the relative position of both dashed and continuous

road lines, with respect to the vehicle.

Our algorithm relies on a probabilistic model designed to be independent of the line

detector, so we can compare the results of our algorithm when working on the output of

different line detectors. Indeed, the estimation of the vehicle’s ego-lane can be regarded

as a consequence of the outcome of the line detection procedure. The position of all the

road lines with respect to the vehicle allows determining the ego-lane by using simple

geometric considerations, on a per-frame basis. Unfortunately, line detections are usually

not fully reliable, being hampered by faded road markings, cluttering elements from the

nearby traffic, or weather conditions, see e.g., Figure 3.1, 3.2a and 3.5.

However, we combine the line detections with an index about how reliable each de-

tection is, we call this index Line Reliability Index (LRI). This index, together with our

proposed probabilistic model, allows us to handle the noisy output of the line detectors

properly.

Furthermore, consider the situation depicted in Figure 3.2a, surely a critical situation

34 Chapter 3. Ego-lane estimation in highway-like scenarios

Figure 3.1: An example of a moderately congested condition on the A4 (Turin - Milan - Venice
- Trieste) highway, Italy. Even at this moderate level of congestion most road
markings are hidden by traffic.

(a) (b)

Figure 3.2: In (a) only one line out of four is detected, thus the highlighted lanes in (b) have a
higher probability of being the vehicle ego-lane, as implicated by the distances to
the detected lines.

for ego-lane estimation, due to the shadow that hampers the line detection. Even though

the exact lane cannot be estimated from the only detected line, the distance measured

from such line would limit the uncertainty only to the compatible lanes, as depicted by

the green highlighted lanes in Figure 3.2b.

Our proposal is to tackle the ego-lane estimation with a probabilistic model, in order

to infer the ego-lane by leveraging consecutive, yet incomplete, observations over time.

From a technical perspective, we propose a HMM with a Lane variable that can take n

values, corresponding to the number of lanes retrieved from an OSM-like service, and a

Sensor State variable that represents the reliability of the underlying lane detector.

3.2. Proposed algorithm 35

Figure 3.3: If only the line indicated with the arrow were detected, the probability of being
in Lane{1|2|3} would be {0, 0.5, 0.5}. The idea of exploiting the plausibility given
by each line, repeated for all the detected lines, is combined with our model for
solving the ego-lane estimation problem. Here, the green and blue visually suggest
the reliability of the lines (green is higher).

3.2.1 Line detection and tracking

In this subsection, we shortly describe the line detection and tracking algorithms used in

the experimental activity. We first introduce a “simple” line detector and tracker capable

of working with both a stereo and a monocular camera configuration, provided that the

projection of the camera(s) is calibrated with respect to the vehicle reference frame

before its usage. This algorithm is a modified version of a software kindly provided by

the INVETT Research Group of the Universidad de Alcalá, and consists of the following

steps:

• The contours of the road markings are extracted from the Bird’s-Eye / Inverse

Perspective view (BEV / IPV) of the left camera image and discarded if their

area is below a threshold (Figure 3.4a). To compute the BEV / IPV image, a

homography matrix is computed, basing on the intrinsic values of the projection

model, and the extrinsic values with respect to the road surface. The contours in

the BEV image are then determined using the algorithm proposed in [140].

• The algorithm then tries to fit, onto the detected contours, a fixed number of

lines or clothoids (both the number and the type are parameters), trying to cover

the highest number of contour areas (Figure 3.4b); if the stereo configuration is

available, the algorithm exploits it to exclude lines / clothoids not lying on the

ground plane. The ground plane equation is evaluated using the output of the

36 Chapter 3. Ego-lane estimation in highway-like scenarios

(a) Contours extraction (b) Lines fitting

Figure 3.4: An example of the simple line detector employed. First, road markings contours
are extracted from the BEV image, then multiple lines (or clothoids) are fitted to
cover the highest number of contour areas.

SGBM [141] or the ELAS [142] stereo-matching algorithm (also this choice is a

parameter). Concluding, both a monocular and a stereo version of the algorithm

are available.

• The parameters of each line/clothoid are then updated through a Kalman filter.

An example of this simple line detector is depicted in Figure 3.4.

With respect to the previous k (e.g., k = 10) frames, the number of times the same

line is detected is taken as the Line Reliability Index (LRI). Furthermore, again for each

line, the LRI is used to set a flag, named isValid, once the counter reaches its maximum

value; to reset the flag the counting goes on with hysteresis, so that the flag is not reset

until LRI goes below a certain fraction of its maximum value.

3.2. Proposed algorithm 37

Box 3.1: The line detector output for the image in Figure 3.3. The isValid flag is set to TRUE
when LRI=10, and reset using a hysteresis counting procedure. A negative offset refers
to lines on the left of the vehicle.

Line1: isValid = 1; continuous=1; LRI: 10; offset: −9.15 m
Line2: isValid = 0; continuous=0; LRI: 09; offset: −6.47 m
Line3: isValid = 1; continuous=0; LRI: 07; offset: −2.15 m
Line4: isValid = 0; continuous=1; LRI: 00; offset: +0.99 m

This simple line detector and tracker achieves good performances only under optimal

illumination conditions and, as depicted in Figure 3.3 and shown in the corresponding

results in Box 3.1, dashed lines and shadows are not always handled correctly. However,

despite its limited performances, it allowed us to evaluate the effectiveness of our con-

tribution, which is designed to enhance the vehicle ego-lane estimation by exploiting a

noisy sensor as well as the road lane property gathered from an OSM-like service.

Moreover, to effectively assess the proposed probabilistic model, we performed an

extensive search to find other multi-line detectors that included a measure of the relia-

bility of the detection of each line. Although the literature about generic line detection is

huge, as the problem has been investigated since the beginning of digital image process-

ing, solutions dedicated to detecting multiple road lines that also provide freely available

software reduce, to the best of our knowledge and at the time of the investigation, to

the following two.

• The proposal by Mohamed Aly [143], which exploits a robust approach based on a

line / Bezier line tracker and a RANSAC procedure. As far as their publicly avail-

able results show, this algorithm is able to detect all the lines on the road surface,

making it one of the most complete and well performing algorithms. Neverthe-

less, on the one hand, the publicly available software does not include the tracking

module, and on the other hand, the number of parameters is overwhelming (about

one hundred). These aspects make this software extremely hard to use. We have

not been able to find a reasonably good configuration for the datasets used in our

experiments. In conclusion, this option, although very appealing, could not be

used in our experimental activity.

• The approach by Hur [144] (MLD in the following), which detects a maximum of

four lines, corresponding to the markings of the current lane as well as of the two

38 Chapter 3. Ego-lane estimation in highway-like scenarios

Figure 3.5: In this figure, just two out of the five lines are correctly detected and tracked. The
shadow created by the Jersey barrier prevents the correct detection of the leftmost
line, although in our opinion the line might be detected, perhaps with a different set
of parameters, which might in turn bring in other misdetections. An error might
also arise with dashed lines, whenever the space between two consecutive detected
dashes is increased by some vehicle. The two rightmost lines are not detected
because of their limited thickness; also in this case a different processing pipeline
could detect such lines, usually introducing other errors.

neighboring lanes. This software was adapted to our requirements for this work by

introducing a procedure for determining whether a line is dashed or continuous.

Neither of the two solutions can exploit a stereo camera configuration, and both rely

on the extrinsic projection parameters to determine the distance of each line from the

vehicle, exploiting the BEV / IPM image.

3.2.2 Tentative vector and reliability of the whole detection

To exploit the measurements provided by a line detector and tracker like the ones men-

tioned above, we derived a probabilistic (inverse) sensor model, which exploits both the

spatial information carried by the lines and the LRIs, both produced by the line detector

and tracker. The processing pipeline is therefore composed as follows. First, the lines

are sorted, in ascending order, based on their lateral offset with respect to the vehicle.

Then, a vector of counters, of the size of the number of lanes, is created. This vector

is called tentative (implied: distribution of the belief on the state as from the measure-

ments, as usual for an inverse sensor model). The values in this vector are determined

by iterating the following steps for all the valid lines, i.e., the lines whose isValid flag is

set, taking into consideration whether each line is dashed or continuous.

• One is added to the i-th tentative vector value if it is in accordance with the

3.2. Proposed algorithm 39

measurement, i.e., if being in the i-th lane is compatible with the line position;

this has the objective to cumulate the plausibility of being in the i-th lane, given

the detected lines.

• If the line has the continuous flag set, an additional Bonus Value (BV) is added to

the tentative vector position (based on the distance with respect to the line); this

has the objective to represent the fact that continuous lines are more informative,

as they are usually the leftmost/rightmost lines of the road.

For example, after the evaluation of the line indicated with an arrow in Figure 3.3, the

resulting tentative vector would be [0; 1; 1].

During the iteration on all the lines, we also accumulate all the LRI counters and

compute the fraction over the maximum LRI value times the current number of expected

lines. This value is taken as an index of the overall reliability of the detector, namely a

Whole Output Reliability (WOR). This, in turn, can be taken as an observation of the

sensor being properly functioning or not.

It has to be noticed that some of these rules could be not adequate for all line detectors.

For example, if a line detector could not provide a continuous flag or a reliability index

for each line, the set of rules must be modified, in order to provide a frame-level tentative

vector and an overall WOR.

3.2.3 HMM with Transient Failure Model

As we previously mentioned, typical line detectors could fail to detect all the road lines

due to, for example, shadows or traffic occlusion. To tackle this problem, we applied a

filtering algorithm based on a HMM, which includes a variable representing the function-

ing of the sensor itself. For an introduction to HMMs, see [145]. The proposed model

allows us to take advantage of incomplete and noisy road line observations in a proba-

bilistic fashion, to better estimate the current ego-lane as well as whether the sensor is

properly working or not. In our opinion, this extra degree of freedom, i.e., the explicit

modelling of the sensor functioning state, yields better performance, compared to con-

sider the ego-lane as the only information, as it gives an extra area of accommodation

for matching the unknown value of the state variables to the observations.

The HMM implements a filtering procedure over discrete random variables, where each

iteration depends on the parameterization in Eq. (3.1), see below for an explanation of

40 Chapter 3. Ego-lane estimation in highway-like scenarios

the parameters.

HMM(n, σ1, σ2, p1, p2, p3, p4, BV) (3.1)

There are four variables, for each time frame, see Figure 3.6:

• Lane: represents the lane where the vehicle is (believed to be) located. This is a

scalar variable, taking discrete values, which identify one of the road lanes.

• Sensor State (also SS in the following): a scalar variable, taking one out of two

values, which represents whether the sensor is properly working or not, and the

taken values could be OK or BAD.

• Detector Output: as we developed an inverse sensor model, this variable is homo-

geneous to the Lane variable; thus, it is a scalar value in the range [1 . . . n].

• Reliability Index (WOR): analogously to Detector Output, it is homogeneous to

the Sensor State variable and can take one value out of the OK, BAD possible

values.

In principle, all the above variables would be represented as scalar values; in practice,

they will be represented as probability distributions over their state spaces. In the model,

Lane and SS are hidden variables, while Detector Output and WOR are observable

variables. Our goal is to infer, at each time frame, the state of the variable Lane (i.e.,

in which lane the vehicle is driving), given the evidence on the observable variables.

The dependencies between these variables are described using Conditional Probability

Tables (CPTs), i.e., tables that describe the probability distribution of a variable (the

values the variable can take are in the columns), given the state of its parents in the graph

(the values the parents variables can take are in the rows) of the model in Figure 3.6.

In other words, the CPTs allow us to forward compute the expectations on the variables,

which will be then updated with the observations.

The first two variables (Lane and Sensor State) have temporal dependencies, while

the others only depend on variables within the same time frame.

Table 3.1 describes the dynamics of the lane variable, i.e., the probability distribution

over the lanes at time t + 1, given the vehicle is on the lane i at time t. Thus, given a

value of Lane at time t, we expect the Lane variable at time t + 1 to follow a normal

distribution with the Lane at time t as mean (µ = Lanet) and σ2
1 as variance. The

variance σ2
1 controls how likely it is for the vehicle to change lane during the specific

3.2. Proposed algorithm 41

Figure 3.6: Two time frames of the HMM. The single circled variables are hidden, and the
double circled variables are observable.

time interval. Notice that σ2
1 is a parameter of our algorithm, and should be set according

to both the actual speed at which the vehicle travels and the frequency of the ego-lane

estimation, i.e., the image frame rate. In order to adapt a normal distribution into a

probability distribution over the n states that the variable Lane can take, we applied

a transformation F defined as follows. First, for every state j ∈ [1 . . . n], we assign

p(Lanet+1 = j|Lanet = k) to the probability density function of the normal N (k, σ2
1)

in i. Then, we normalize the probability distribution to sum up to 1. For example, the

probability that the variable Lane at time t + 1 is j given it was k at time t is computed

as follows:

p(Lanet+1 = j|Lanet = k) =
f(j|k, σ2

1)
∑n

i=1 f(i|k, σ2
1)

(3.2)

Here, f(j|k, σ2
1) is the probability density function of N (µ = k, σ2

1) in j.

Table 3.2 describes the sensor dynamics with respect to its mistakes, which in turn

is related to road markings conditions, and lighting conditions. If the sensor is working

42 Chapter 3. Ego-lane estimation in highway-like scenarios

Table 3.1: Lane CPT

Lanet+1

Lanet 1 2 . . . n

1 F(N (1, σ2
1))

2 F(N (2, σ2
1))

.

n F(N (n, σ2
1))

Table 3.2: Sensor State CPT

Sensor Statet+1

Sensor Statet OK BAD

OK p1 1 − p1

BAD 1 − p2 p2

properly, it will remain in the properly working state with probability p1, and switch

to giving a wrong output with probability (1 − p1). If the sensor is not in a properly

working state, then it will remain in such a state with probability p2, and switch back to

properly working with probability (1 − p2). This idea aims, by suitably setting p1 and

p2, to represent the real experience of the sensor working most of the time properly, and

then presenting a sequence of frames with the sensor providing a wrong output.

Table 3.3 describes the detector output with respect to the state of its parents in the

HMM: Sensor State and Lane. Therefore, the table has as many rows as the combinations

of the values that the two conditioning variables can take, while it has as many columns

as the values that the conditioned variable can take. As we have an inverse sensor

model, the output of the detector is homogeneous to the Lane variable, thus the table

has n columns. If Sensor State is OK, we expect the detector to provide a reliable

estimation of the ego-lane. Therefore, we expect the Detector Output to follow a normal

distribution with mean equal to the value of the variable Lane, and variance σ2
2. This

variance represents the accuracy of the sensor in determining the ego-lane when properly

working; this is clearly a different value from the lane-change dynamics of the vehicle

σ2
1. Again, the same transformation F defined for the Lane CPT is applied to adapt the

normal distribution to a probability distribution. However, if Sensor State is BAD, the

3.2. Proposed algorithm 43

Table 3.3: Detector Output CPT

Parents Detector Output

Sensor State Lane 1 2 . . . n

OK

1 F(N (1, σ2
2))

2 F(N (2, σ2
2))

.

n F(N (n, σ2
2))

BAD

1 U(1, n)

2 U(1, n)

.

n U(1, n)

Table 3.4: WOR CPT

WOR

Sensor State OK BAD

OK p3 1 − p3

BAD 1 − p4 p4

detector output will be independent of the real lane, thus the output will be uniformly

distributed.

We can similarly define the CPT for WOR, the expected overall reliability of the

sensor’s output, shown in Table 3.4. As in our model the WOR has only one parent,

Sensor State, only two rows are reported in the Table. Notice though that a different

model, where WOR depends on the Lane variable also, could be considered, which might

be more appropriate for certain situations or line detectors. The parameters p3 and p4

represent the probability of a correct evaluation of the Sensor State when the Sensor

State is, respectively, OK and BAD.

3.2.4 Inference

Perform inference with our model means to compute the most probable value of the

variable Lane, given the evidence on the observable variables Detector Output and WOR.

This evidence is computed from the line detector and tracker using the tentative vector

44 Chapter 3. Ego-lane estimation in highway-like scenarios

and the overall WOR, as described in Section 3.2.2.

To compute the belief on the hidden variables (i.e., Lane and Sensor State) at time

t + 1, we start from the HMM state at time t. Firstly, leveraging Table 3.1 and Table 3.2,

we compute the expectation at time t + 1 on these variables. Sensor State is shortened

in SS.

P (Lanet+1 | Lanet) = P (Lanet) · Lane CPT (3.3)

P (SSt+1 | SSt) = P (SSt) · SS CPT (3.4)

Then, in order to incorporate the new evidence carried by the Tentative vector and the

WOR index, the Bayes formula has to be applied, so obtaining the belief over the hidden

state at time t + 1. There are, in general, two ways of applying the Tentative vector and

WOR index as evidence in the inference. The first way is to simply consider the most

probable value of the Tentative vector and WOR index as hard evidence for the belief

on the state. The other way, instead, is to consider the Tentative vector and the WOR

index as virtual evidence [146], i.e., by setting the evidence as a probability distribution

over the state space of the observable variables. Since this second way allows a more

comprehensive representation of the evidence, we have only considered this approach,

also because the additional computation required for the inference is irrelevant, given

the small size of the model. The general way to perform inference using virtual evidence

is to create a temporary child node for each observable variables and setting its CPT

proportionally to the evidence probability distribution, and then set hard evidence on

these virtual nodes.

In Figure 3.7 is depicted an overview of the proposed model. The blue box is the core

of our model, i.e., the HMM, which is independent of the detector. The red box is the

line detector and tracker, on which we tried to impose no constraint, keeping our model

as general as possible. Lastly, the green box is the set of rules used to connect the line

detector and tracker output to the HMM. This part may need to be changed with the

output format of the line detector and tracker.

3.3. Experimental evaluation 45

Figure 3.7: An overview of the proposed model.

3.3 Experimental evaluation

To effectively verify the improvements achieved by our model, we collected two datasets

in real driving conditions. The first dataset was recorded in the A4 highway, Italy, from

Bergamo to Milan. The second dataset is from the A2 highway area of Alcalá de Henares,

Spain. Both the datasets were recorded at 10 fps and with a resolution of 1312x540 and

1392x400 pixels respectively. Differently from standard datasets like KITTI, in which

the highway sequences only contain few lanes, we drove our vehicles on wider highways

with 3 and 4 lanes (Spain and Italy respectively), including more than 100 lane changes

in the A4 highway sequences. We manually annotated the ground truth (GT) about

the correct lane for more than 20K frames, considering as Lane = 1 the leftmost lane

as in 3.2a. For each frame, we also included a “crossing flag” to indicate whether the

vehicle is changing lane, so to exclude ambiguous lane assignments, see Figure 3.8.

For each experimental setting, the parameterization of Eq. (3.1) was empirically de-

fined after an optimization phase, aimed at identifying the best parameter set with

respect to the GT. We tested our approach using four different variants of the “simple”

46 Chapter 3. Ego-lane estimation in highway-like scenarios

Figure 3.8: Two frames from the proposed annotated dataset, the detector output is overlaid.
In the top image, the vehicle was traveling in the A4 highway, Italy, and performing
a lane change, i.e., in the dataset the crossing flag is set. The bottom image depicts
a frame from the A-2 highway, Spain.

line detector presented in Section 3.2.1 by changing the camera setup (monocular or

stereo) and the geometry of the detection (line or clothoid). Moreover, we tested our

approach using the MLD line detector [144]. The parameter values used during the

experiments in Italy and Spain are reported in Tables 3.5 and 3.6.

As further research is required for this problem, and to allow future researchers to

compare their work with ours, we published our datasets and the associated GT values

online1.

We evaluated the localization performances of our proposal comparing the ego-lane

estimates with respect to the GT, for a set of configurations (e.g., with/without the

proposed model, different line detectors). The results are presented in Tables 3.7 to 3.26,

on a per-frame basis, reporting whether correct lane classifications were achieved.

1The dataset and the annotations are available on our lab’s website:
http://www.ira.disco.unimib.it/ego-lane-estimation-by-modeling-lanes-and-sensor-failures

3.3. Experimental evaluation 47

Table 3.5: Parameterization used for the different experimental settings — Italy
(4 lanes).

Run ID
Line

Detector
σ1 σ2 p1 p2 p3 p4 BV

01 ML 0.336 0.696 0.895 0.894 0.690 0.461 7

02 SL 0.481 0.296 0.160 0.970 0.613 0.975 9

03 MC 0.407 0.360 0.853 0.993 0.303 0.640 4

04 SC 0.386 0.598 0.906 0.994 0.311 0.595 7

05 MLD 0.324 0.707 0.223 0.963 0.779 0.873 1

M = mono, S = stereo, L = line, C = clothoid, MLD = [144]

Table 3.6: Parameterization used for the different experimental settings — Spain
(3 lanes).

Run ID
Line

Detector
σ1 σ2 p1 p2 p3 p4 BV

06 ML 0.407 0.258 0.692 0.590 0.180 0.459 9

07 SL 0.364 0.460 0.640 0.556 0.409 0.812 8

08 MC 0.313 0.532 0.092 0.255 0.971 0.605 7

09 SC 0.382 0.483 0.941 0.977 0.885 0.984 9

10 MLD 0.343 2.907 0.283 0.991 0.903 0.060 5

M = mono, S = stereo, L = line, C = clothoid, MLD = [144]

Figure 3.9 shows a short area of the A4 highway together with qualitative results of

the algorithm, while in Figures 3.10a to 3.10j and 3.11a to 3.11j we report the dispersion

over the ego-lane detection, considering all the frames of all experiments. Here the line

detectors alone appear clearly unable to correctly detect the ego-lane, mostly because of

missing detections due to clutter or illumination issues. This effect often results in the

detector not being able to provide any information on the ego-lane (depicted in black in

Figures 3.10 and 3.11). Further confirmation of this can be found in Figure 3.9b: the

results achieved from relying only on the detector output are extremely noisy, resulting

in an unreliable ego-lane determination. For instance, the detector is completely missing

the final transition from Lane1 to Lane2, leaving the vehicle without almost any ego-lane

localization clue. On the other hand, the filtering effect of the HMM is clearly shown in

48 Chapter 3. Ego-lane estimation in highway-like scenarios

(a) Our model

(b) Detector only

(c) Ground truth

Figure 3.9: A short section of the 4-lanes A4 highway in Italy. More saturated colors correspond
to a higher probability of being in a lane. The figure presents a comparison between
our model (a) with respect to the results achieved using the detector only (b). (c)
is the GT, in gray are the transitions between lanes. Our proposal yields good
improvements, with more stable detections, compared to the detector’s results.

Figure 3.9a. The proposed model correctly identified the lane transitions even without

a complete set of line measurements. Promising results are summarized in Figures 3.10

and 3.11. Our model outperformed the basic detector in all tests.

Concerning the confusion matrices Tables 3.7 to 3.26, it is worth noting that, for

the dataset recorded in Spain, all the algorithms and configuration settings achieve a

better performance compared to the one recorded in Italy. This is most likely related

to the better view of the whole road, which contains three lanes instead of four. We

can also conclude that the localization results achieved by using our line detector are

consistently higher, although this comparison might be unfair for the Italy A4 highway

dataset, because of the MLD algorithm limitation (maximum four lines). However, our

experiments prove the effectiveness of our proposal, as depicted in Figures 3.10i, 3.10j,

3.11i and 3.11j.

From the result of the experiments, we can observe that:

• using a line detector that is capable of classifying the road line as dashed or con-

tinuous results in better performance, see in Figure 3.12 an example of how the

performance decreases when not using the Bonus Value.

• In difficult situations that hamper the output of line detection and tracking, our

approach is able to provide a valuable performance boost.

3.3. Experimental evaluation 49

Table 3.7: Run#1 - Detector Only

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Lane 4 Total

Lane 1 1781 21 5 1 1808
Lane 2 59 1613 190 46 1908
Lane 3 147 42 730 166 1085
Lane 4 1 21 17 215 254
Unassigned 196 754 1310 456 2716

Support 2184 2451 2252 884 7771

Mean Precision: 0.83 Mean Recall: 0.51 Mean F1: 0.61 Accuracy 0.55
Logloss: 0.99

Table 3.8: Run#1 - Model

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Lane 4 Total

Lane 1 2079 27 0 0 2106
Lane 2 67 2284 346 67 2764
Lane 3 17 117 1853 409 2396
Lane 4 21 23 53 405 502
Unassigned 0 0 0 3 3

Support 2184 2451 2252 884 7771

Mean Precision: 0.84 Mean Recall: 0.79 Mean F1: 0.80 Accuracy 0.85
Logloss: 0.51

Table 3.9: Run#2 - Detector Only

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Lane 4 Total

Lane 1 1941 31 2 4 1978
Lane 2 9 1611 147 31 1798
Lane 3 6 21 762 171 960
Lane 4 3 3 5 223 234
Unassigned 225 785 1336 455 2801

Support 2184 2451 2252 884 7771

Mean Precision: 0.90 Mean Recall: 0.53 Mean F1: 0.64 Accuracy 0.58
Logloss: 0.93

50 Chapter 3. Ego-lane estimation in highway-like scenarios

Table 3.10: Run#2 - Model

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Lane 4 Total

Lane 1 2117 94 2 0 2213
Lane 2 64 2288 352 49 2753
Lane 3 3 69 1883 385 2340
Lane 4 0 0 15 450 465
Unassigned 0 0 0 0 0

Support 2184 2451 2252 884 7771

Mean Precision: 0.89 Mean Recall: 0.81 Mean F1: 0.83 Accuracy 0.86
Logloss: 0.94

Table 3.11: Run#3 - Detector Only

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Lane 4 Total

Lane 1 1438 30 51 0 1519
Lane 2 79 1795 238 124 2236
Lane 3 350 56 1207 269 1882
Lane 4 5 47 33 217 302
Unassigned 312 523 723 274 1832

Support 2184 2451 2252 884 7771

Mean Precision: 0.77 Mean Recall: 0.54 Mean F1: 0.62 Accuracy 0.59
Logloss: 1.07

Table 3.12: Run#3 - Model

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Lane 4 Total

Lane 1 1967 69 48 1 2085
Lane 2 85 2268 313 70 2736
Lane 3 104 99 1817 317 2337
Lane 4 28 15 74 496 613
Unassigned 0 0 0 0 0

Support 2184 2451 2252 884 7771

Mean Precision: 0.83 Mean Recall: 0.79 Mean F1: 0.81 Accuracy 0.84
Logloss: 0.63

3.3. Experimental evaluation 51

Table 3.13: Run#4 - Detector Only

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Lane 4 Total

Lane 1 1596 27 12 8 1643
Lane 2 20 1910 190 20 2140
Lane 3 11 27 1283 327 1648
Lane 4 7 0 6 206 219
Unassigned 550 487 761 323 2121

Support 2184 2451 2252 884 7771

Mean Precision: 0.89 Mean Recall: 0.57 Mean F1: 0.67 Accuracy 0.64
Logloss: 0.80

Table 3.14: Run#4 - Model

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Lane 4 Total

Lane 1 2095 38 0 0 2133
Lane 2 86 2286 240 17 2629
Lane 3 3 127 1907 306 2343
Lane 4 0 0 105 552 657
Unassigned 0 0 0 9 9

Support 2184 2451 2252 884 7771

Mean Precision: 0.87 Mean Recall: 0.84 Mean F1: 0.85 Accuracy 0.88
Logloss: 0.49

Table 3.15: Run#5 - Detector Only

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Lane 4 Total

Lane 1 0 0 0 0 0
Lane 2 1 0 45 0 46
Lane 3 39 0 6 0 45
Lane 4 0 0 0 0 0
Unassigned 2122 2413 2171 876 7582

Support 2162 2413 2222 876 7673

Mean Precision: 0.03 Mean Recall: 0.00 Mean F1: 0.00 Accuracy 0.00
Logloss: 1.80

52 Chapter 3. Ego-lane estimation in highway-like scenarios

Table 3.16: Run#5 - Model

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Lane 4 Total

Lane 1 1120 549 163 59 1891
Lane 2 448 1320 812 160 2740
Lane 3 576 407 1037 515 2535
Lane 4 18 137 210 142 507
Unassigned 0 0 0 0 0

Support 2162 2413 2222 876 7673

Mean Precision: 0.44 Mean Recall: 0.42 Mean F1: 0.42 Accuracy 0.47
Logloss: 1.26

Table 3.17: Run#6 - Detector Only

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Total

Lane 1 1405 162 2 1569

Lane 2 68 3004 275 3347

Lane 3 27 6 886 919

Unassigned 479 424 1132 2035

Support 1979 3596 2295 7870

Mean Precision: 0.91 Mean Recall: 0.64 Mean F1: 0.73 Accu-
racy 0.67 Logloss: 0.73

Table 3.18: Run#6 - Model

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Total

Lane 1 1762 263 0 2025

Lane 2 150 3323 326 3799

Lane 3 66 10 1969 2045

Unassigned 1 0 0 1

Support 1979 3596 2295 7870

Mean Precision: 0.90 Mean Recall: 0.89 Mean F1: 0.89 Accu-
racy 0.89 Logloss: 0.49

3.3. Experimental evaluation 53

Table 3.19: Run#7 - Detector Only

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Total

Lane 1 1380 163 2 1545

Lane 2 69 2850 216 3135

Lane 3 29 19 901 949

Unassigned 501 564 1176 2241

Support 1979 3596 2295 7870

Mean Precision: 0.91 Mean Recall: 0.62 Mean F1: 0.72 Accu-
racy 0.65 Logloss: 0.73

Table 3.20: Run#7 - Model

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Total

Lane 1 1749 219 0 1968

Lane 2 155 3322 278 3755

Lane 3 74 55 2017 2146

Unassigned 1 0 0 1

Support 1979 3596 2295 7870

Mean Precision: 0.90 Mean Recall: 0.89 Mean F1: 0.89 Accu-
racy 0.90 Logloss: 0.48

Table 3.21: Run#8 - Detector Only

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Total

Lane 1 1263 82 3 1348

Lane 2 57 2527 208 2792

Lane 3 69 38 748 855

Unassigned 590 949 1336 2875

Support 1979 3596 2295 7870

Mean Precision: 0.90 Mean Recall: 0.55 Mean F1: 0.67 Accu-
racy 0.57 Logloss: 0.95

54 Chapter 3. Ego-lane estimation in highway-like scenarios

Table 3.22: Run#8 - Model

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Total

Lane 1 1671 199 49 1919

Lane 2 149 3262 565 3976

Lane 3 158 135 1681 1974

Unassigned 1 0 0 1

Support 1979 3596 2295 7870

Mean Precision: 0.84 Mean Recall: 0.82 Mean F1: 0.83 Accu-
racy 0.84 Logloss: 0.64

Table 3.23: Run#9 - Detector Only

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Total

Lane 1 1375 90 11 1476

Lane 2 46 2882 251 3179

Lane 3 55 19 824 898

Unassigned 503 605 1209 2317

Support 1979 3596 2295 7870

Mean Precision: 0.91 Mean Recall: 0.61 Mean F1: 0.72 Accu-
racy 0.64 Logloss: 0.79

Table 3.24: Run#9 - Model

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Total

Lane 1 1777 166 10 1953

Lane 2 88 3348 363 3799

Lane 3 113 82 1922 2117

Unassigned 1 0 0 1

Support 1979 3596 2295 7870

Mean Precision: 0.89 Mean Recall: 0.88 Mean F1: 0.89 Accu-
racy 0.89 Logloss: 0.56

3.3. Experimental evaluation 55

Table 3.25: Run#10 - Detector Only

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Total

Lane 1 153 104 0 257

Lane 2 58 1714 365 2137

Lane 3 72 138 203 413

Unassigned 1653 1590 1727 4970

Support 1936 3546 2295 7777

Mean Precision: 0.62 Mean Recall: 0.21 Mean F1: 0.29 Accu-
racy 0.26 Logloss: 1.16

Table 3.26: Run#10 - Model

Actual Class

Predicted Class Lane 1 Lane 2 Lane 3 Total

Lane 1 1436 292 0 1728

Lane 2 317 2841 326 3484

Lane 3 183 411 1969 2563

Unassigned 0 2 0 2

Support 1936 3546 2295 7777

Mean Precision: 0.80 Mean Recall: 0.80 Mean F1: 0.80 Accu-
racy 0.80 Logloss: 1.08

56 Chapter 3. Ego-lane estimation in highway-like scenarios

(a) Run#1 - Detector Only (b) Run#1 - Model

(c) Run#2 - Detector Only (d) Run#2 - Model

(e) Run#3 - Detector Only (f) Run#3 - Model

(g) Run#4 - Detector Only (h) Run#4 - Model

(i) Run#5 - Detector Only (j) Run#5 - Model

Figure 3.10: Comparison graphs between the localization accuracies using only the line detector
compared to the proposed model. As line detector we considered different variants
of the “simple” detector described in Section 3.2.1, and the MLD detector. The
charts depict the results obtained on the Italian dataset in the A4 highway (4-
lanes highway). A green color coding represents correct vehicle’s lane localization,
yellow represent one-lane range mismatches, orange 2-lane range mismatches and
red 3-lane range mismatches. The black color represents the inability to assign a
lane, due to missing information.

3.3. Experimental evaluation 57

(a) Run#6 - Detector Only (b) Run#6 - Model

(c) Run#7 - Detector Only (d) Run#7 - Model

(e) Run#8 - Detector Only (f) Run#8 - Model

(g) Run#9 - Detector Only (h) Run#9 - Model

(i) Run#10 - Detector Only (j) Run#10 - Model

Figure 3.11: As in Fig. 3.10 except it refers to the Spanish dataset, taken in the A2 highway
(3-lanes highway).

58 Chapter 3. Ego-lane estimation in highway-like scenarios

(a) Run#3 (No BV) - Detector Only (b) Run#3 (No BV) - Model

Figure 3.12: Comparison of Run#3 (see Figs. 3.10e and 3.10f) between the localization accura-
cies without the BV, i.e., not classifying the road lines as dashed or continuous.

3.4 Conclusions

In this chapter, we presented an ego-lane estimation algorithm aimed at enhancing the

accuracy of the vehicle localization at the lane-level, in highway-like scenarios. Differ-

ently from other works in the literature focused on improving the detection of the road

lines, we proposed a method designed to cooperate with existing multi-line detectors and

trackers. Compared to the state-of-the-art ego-lane estimation literature, our algorithm

achieves good localization even when fed with noisy and occasionally missing data, i.e.,

the typical output of a real, and therefore unreliable, line detector and tracker. We

exploited a HMM-based scheme to take advantage of real road line observations prob-

abilistically. The proposed algorithm improves the localization robustness in realistic

challenging conditions where lane markings are missing, hidden by traffic clutter or diffi-

cult to detect because of lighting issues. Moreover, to validate our approach, we collected

and manually labelled a novel dataset composed of more than 100 km of highway driving

in both Italy and Spain. In order to allow other researchers to compare their approaches

with our results, we published the recorded dataset online.

Chapter 4

Visual localization at intersections

In the previous chapter, we introduced a method to estimate the lane in which the car is

driving. Such ego-lane estimation is useful in highway-like scenarios, where the complex-

ity of the environment is limited, e.g., no pedestrians or bicycles, no road intersections,

clear lane markings. In urban environments, however, accurate metric localization is vi-

tal for an autonomous vehicle, as a wrong position estimate can lead to fatal accidents.

Moreover, GNSSs are even more unreliable in urban contexts, where buildings (in full or

in part) block or reflect the signals from satellites.

In such contexts, a common approach is to leverage digital maps services. These

are usually coupled with sensor fusion methods aimed at exploiting Inertial Navigation

Systems (INS) together with the road graph [147, 148], using lock-on-road procedures

or road geometry modelling approaches [149]. Further improvements are often achieved

by computer vision algorithms, which exploit structured urban features, whose position

is known in the maps, such as, e.g., road markings [150], or traffic lights [151]. Typical

algorithms involve Conditional Random Fields (CRF), Decision Trees or Description

Logic techniques [152–154], embedded into sensor fusion frameworks [155, 156]. However,

despite the great efforts made to exploit heterogeneous contextual cues [125, 157], a

proper localization accuracy is still often difficult to obtain, and this is even truer when

approaching and passing through intersection areas.

In urban environments, road intersections represent one of the most critical and dan-

gerous situations for autonomous vehicles due to the complexity of the scene. Car ac-

cidents often occur at intersections because they are the most common situation where

two or more vehicles try to occupy the same space at the same time. It was estimated

that about 40 percent of all car accidents in the US are intersection-related and that

the main reason for such crashes is inadequate surveillance from the drivers [158]. Al-

59

60 Chapter 4. Visual localization at intersections

though rear-end collisions are the most common type of car accidents, collisions at road

intersections involve more dangerous types of crashes. Broadside collisions (also called

T-bone collisions) happen when the front of one vehicle impact the side of another, and

they can be fatal for the passengers of the impacted vehicle.

A self-driving car must take into consideration multiple factors when approaching a

road intersection — traffic lights, traffic rules, pedestrian crossing — in order to cross it

safely. Therefore, accurate and reliable localization is crucial in such situations.

In this chapter, we propose an online vision-based approach for vehicle’s localiza-

tion when approaching road intersections. We exploited a stereo camera configuration

mounted on the car to estimate a bi-dimensional probabilistic occupancy grid of the

surrounding environment. The localization is then performed against topological infor-

mation by comparing the occupancy grid generated from the sensors with an “expected”

occupancy grid created basing on the road graph geometry retrieved from the OSM

service. State-of-the-art CNN-based techniques are employed for both semantic under-

standing and geometric reconstruction of the scene. While road surface markings can

be used to retrieve basic information about the intersection, and then higher-level fea-

tures such as intersections boundaries or patterns of traffic may be exploited to infer

the intersection structure [159], we exploit stereo reconstruction and pixel-level semantic

segmentation for this scope. One of the main differences that distinguish our method

from other similar localization approaches such as [150, 160], is that our pipeline does

not rely on the visual detection of predefined road landmarks (e.g., traffic signs, road

markings, stop lines), but rather on a semantic template matching against the cartog-

raphy. By avoiding relying on such landmarks, our method gains robustness to missed

detection and to cluttering elements, situations that often happen in real road driving

images.

In order to evaluate the performances of the proposed approach, we performed an

extensive analysis of the available datasets for autonomous driving to assemble a new

dataset, specially designed for benchmarking localization at intersections. Experimental

activity on challenging scenarios demonstrate the effectiveness of our method. Moreover,

we define a new evaluation criteria to asses how well the method recovers from a wrong

initial position estimate.

4.1. Related Work 61

4.1 Related Work

The first studies on intersection detection date back to 1987 [161], when Kushner

and Puri proposed to determine the intersection geometry by using template matching

against an a priori map database. Differently from them,the authors in [162] proposed

SCARF, a method to exploit road-surface detection and road-type matching, and in-

troduced an intersection model, so to have a system working even when lane markings

are missing or under difficult shadow conditions. This system was able to detect inter-

sections without a priori knowledge. In [163], the same authors enhanced their work

by introducing an intersection detector, based on the ALVINN neural network. Both

SCARF and ALVINN were tested in the NAVLab autonomous vehicles presented in

Section 2.1.

More recently, and differently from the approaches mentioned before which aimed at

the global detection of the intersection, methods based on specific road features were

proposed, e.g., [150] where a probabilistic localization method was based on ego-lane

identification and a custom set of visual affordances for the identification of lane de-

limiters, arrows, and stop markings, which were then exploited to localize the vehicle.

Similarly was done by the work in [160], which relied on stop lines and their availabil-

ity in the maps. The solution was assessed under different weather conditions and for

several months, achieving decimeter accuracy. The authors in [159] propose an offline

method to estimate the intersection geometry using high-level features such as intersec-

tions’ boundaries and traffic patterns; here, offline means that the method requires the

whole sequence of images up to when the vehicle is inside the intersection before starting

the computation. These more recent approaches rely on the detection of specific road

features to determine the vehicle’s pose.

Some research on road intersection detection from LiDAR data had also been per-

formed. In [164], a set of features is extracted from the beam model and combined

with a SVM classifier to solve the road shape classification task. The authors in [165]

propose to classify the road type using an ANN. Finally, in [166], the authors localize

road intersections and detect roads’ orientations using the OSM data as prior knowledge.

Differently from the latter methods, our approach is online (output a localization

estimate at each frame) and based only on cheap onboard camera sensors (as this is the

focus of this thesis). Moreover, our method does not rely on the detection of specific road

features; instead, it leverages pixel-level semantic segmentation and 3D reconstruction.

62 Chapter 4. Visual localization at intersections

As stated in Section 2.3.3, nowadays CNN-based approaches outperform other solutions

in both pixel-level image classification and geometric reconstruction from stereo images.

Therefore, in the method presented in this chapter, we exploit state-of-the-art CNN-based

techniques for both these tasks.

4.2 The Sensing Pipeline

The localization process is achieved using the detection pipeline shown in Figure 4.1,

which was specifically tuned for intersection areas using a CNN-based approach. To rep-

resent the intersection area we use an Occupancy Grid (OG), generated from a Bird’s-Eye

View (BEV), where the cells hold the probability of belonging to the road surface. Our

method aims at accurately localize the vehicle with respect to an upcoming intersection,

without relying on any specific road feature. It relies on the alignment of the OG gener-

ated from the sensing pipeline, called SENSOROG, against a set of OGs obtained from

different hypothesized vehicle poses, called EXPECTEDOGs, see Figure 4.2, generated

basing on the OSM road graph. Localization is performed using a particle-filter based

algorithm, derived from [167].

4.2.1 Semantic Segmentation

The first stage of the sensing pipeline consists in running a CNN for pixel-level semantic

classification on the left image. Both Dilation7 [168] and PSPNet [12] have been eval-

uated. Dilation7 was chosen because it was already trained on KITTI sequences, and

PSPNet because it was one of the best performing networks at that time, according to

the CITYSCAPES benchmark [169]. For PSPNet, we used the PyTorch implementa-

tion proposed in [170] and fine-tuned it in two successive steps. The first fine-tuning

phase was performed using the CITYSCAPES dataset, followed by a second phase on

the KITTI official labeling sequences [171]. Training details for PSPNet are reported

in Section 4.3.4. The Dilation7 network is able to detect 11 categories, namely: road,

sidewalk, building, car, vegetation, sky, fence, pole, sign, pedestrian, and cyclist. PSP-

Net, instead, detects 19 categories, namely: road, sidewalk, building, car, truck, bus,

motorcycle, bicycle, wall, fence, pole, traffic light, traffic sign, vegetation, terrain, sky,

person, rider, and train. As our system is focused on the localization task, further efforts

in fine-tuning or in CNN-related research were not pursued. However, as the proposed

4.2. The Sensing Pipeline 63

Figure 4.1: From the stereo images (a), the pixel level semantic segmentation (b) and the
disparity map (c) are generated, which are then used to create the 3D projection
(e). Visual Odometry (d) is used, together with the 3D projection (e), to generate
a temporal integrated SENSOROG (g). After the hypotheses initialization (h-j),
which is triggered 20m from the intersection center, the candidate vehicle poses are
filtered using a Particle Filter, thus giving out multiple EXPECTEDOGs (l). A
scoring function is then used to evaluate the best match, which corresponds to the
best localization estimate (m).

pipeline is not dependent on a specific network, it could easily inherit improvements of

future networks. Some semantic segmentation examples obtained with both Dilation7

and PSPNet are reported in Figure 4.3.

4.2.2 3D Reconstruction

A reliable semantic segmentation of an image is, most of the times, not enough to obtain

a reliable description of the upcoming road geometry in terms of OGs. Cluttering ele-

ments, as well as the distance and the perspective, make identification of the intersection

really challenging. For these reasons, notwithstanding the unavoidable stereo errors, we

integrated a 3D stereo reconstruction phase. In comparison to the OGs generated from

the semantically segmented left image only, this allowed us to obtain OGs that also take

into account the geometry of the scene, by just accessing the 3D reconstruction. Ac-

cording to the KITTI-STEREO-2015 benchmark [171], in the last few years, CNN-based

approaches have shown top performance in the 3D reconstruction tasks from stereo im-

ages. For this reason, we tested the CRL [16] and the PSM [15] networks as they were, at

64 Chapter 4. Visual localization at intersections

(a) (b)

Figure 4.2: (a) and (b) presents two hypotheses about the relative pose of the vehicle with re-
spect to the intersection. In beige is the expected intersection geometry, as retrieved
from the digital map server, in the two different poses. The sensed intersection is
the same for both poses, and it is represented in black and white, plus grey for
unknown. In (a) the sensed intersection is almost all covered by the expected in-
tersection. A better match between the sensed and the expected intersection areas
corresponds to a shorter distance between the centers of the intersection, i.e., to a
better estimate of the vehicle pose.

that time, the two best performing networks in the KITTI-STEREO-2015 benchmark,

with the code available. The neural network only computes the disparity, while the 3D

reconstruction uses the projection parameters of the cameras.

4.2.3 Generation of the SENSOROG

We have now a classified point cloud, which we project on the ground plane and divide in

equally-spaced cells in order to generate the SENSOROG. In particular, the SENSOROG

represents an area of 30x30 meters (30 meters forward and 15 meters lateral on each side

of the vehicle), and each cell represent a 10x10 cm space, for a total of 300x300 pixels.

The values associated with each cell, taken as the probability of being road surface, are

computed using the Eq. (4.1), i.e., the ratio of the number of points in the cell classified

as road, over the total number of points in the same cell.

SENSOROG[i, j] =
nroad[i, j]

N [i, j]
(4.1)

4.2. The Sensing Pipeline 65

In
pu

t
Im

ag
e

D
ila

ti
on

7
[1

68
]

P
SP

N
et

[1
2]

(o
ur

tr
ai

ni
ng

)

R
oa

d
Si

de
w

al
k

B
ui

ld
in

g
C

ar
T

ru
ck

B
us

M
ot

or
cy

cl
e

B
ic

yc
le

W
al

l
P

ol
e

T
ra

ffi
c

lig
ht

T
ra

ffi
c

si
gn

V
eg

et
at

io
n

T
er

ra
in

Sk
y

P
er

so
n

R
id

er
T

ra
in

F
ig

u
re

4
.3

:
So

m
e

ex
am

pl
es

of
pi

xe
l-

le
ve

ls
em

an
ti

c
cl

as
si

fic
at

io
n

on
th

e
K

IT
T

I
da

ta
se

t,
b

ot
h

re
su

lt
s

fr
om

D
ila

ti
on

7
[1

68
]a

nd
P

SP
N

et
[1

2]
ar

e
de

pi
ct

ed
.

P
le

as
e

no
te

th
at

D
ila

ti
on

7
on

ly
de

te
ct

s
11

ca
te

go
ri

es
,

w
hi

le
P

SP
N

et
de

te
ct

s
19

ca
te

go
ri

es
.

Fo
r

ex
am

pl
e,

P
SP

N
et

di
st

in
gu

is
he

s
b

et
w

ee
n

ve
ge

ta
ti

on
an

d
te

rr
ai

n,
w

hi
le

D
ila

ti
on

7
do

es
no

t.

66 Chapter 4. Visual localization at intersections

(a)

(b) (c)

Figure 4.4: The tree branches (A, B) above the road, and the car (C) do not appear in the
occupancy grid (c) (heuristics activated) as they appear in (b) (heuristics disabled).
In both these figures, a brighter shade of gray corresponds to a higher probability
of being road, while the blue is associated to unknown areas.

To increase the quality of the SENSOROG, we first remove points classified as cars,

as vehicles may be often found on parking lots or sidewalks, not only on roads. Another

issue arise from the presence of trees: besides 3D reconstruction of the tree crowns being

very noisy, tree branches often expand above the road surface, and their projections

into the SENSOROG cells cause classification mistakes. For this reason, we removed all

points positioned higher than a threshold of 2.5 m that were not classified as building.

See Figure 4.4 for an impression about the effect of such heuristics.

Even though the SENSOROGs after the latter heuristics are much more reliable, being

4.3. Vehicle Localization 67

able to perceive the whole intersection from a single stereo frame is frequently quite hard,

even for human people looking at onboard camera images. Moreover, processing every

single frame with the CNN-based classifiers mentioned above usually leads to unstable

estimates, thus leading to temporarily unstable occupancy grids. Therefore, we increased

the consistency of the SENSOROG by leveraging the outcome computed in consecutive

frames, according to the Proportional Conflict Redistribution rule no. 6 (PCR6) derived

from the Dezert-Smarandache Theory (DSmT) [172], and updating the vehicle pose with

the LIB-Viso2 Visual Odometry (VO) algorithm [173].

In order to further increase the temporal coherence of the SENSOROG, a temporal

hysteresis on the classification has been introduced, so that multiple same-class clas-

sifications increase the classification belief over each cell of the occupancy grids. We

integrate a dual-counter scheme as follows. For each cell, the first counter sums how

many times the area has been observed (for many reasons, e.g., occlusions, the 3D re-

construction might not be able to observe points in some area). The other counter starts

from the allowed number of consecutive frames that the area will be kept as valid even

if not observed, and it is decreased each time the area is not observed. Finally, we reset

it when it gets a new observation. If this counter reaches zero, the classification is reset

to unknown. The allowed number of consecutive no-observation frames is bounded on

both sides (from a minimum of 2 to a maximum of 10); in between, it equals the current

value of the first counter. Figure 4.5 depicts the whole scheme.

Finally, in order to remove isolated points that are usually the result of noise in the

disparity map, we employed a local spatial filter on the SENSOROG, defined as follows.

For each cell, if the total number of points that falls in its 3x3 neighborhood is less than

a threshold, that cell is reset to unknown.

4.3 Vehicle Localization

The localization system relies on the quality of the alignment between the SENSOROG

and EXPECTEDOGs, which is evaluated using a template matching scoring function.

Following a particle filter approach, a set of localization hypotheses is initially drawn, the

EXPECTEDOG is then retrieved from the map service, and positioned onto each pose

hypothesis. The quality of each alignment correspond to the weight of each hypothesis,

and the particle set is then resampled. The new hypotheses are moved forward using

the motion estimate derived from a VO module, and then the whole process is iterated.

68 Chapter 4. Visual localization at intersections

Figure 4.5: The SENSOROG is integrated over time using Visual Odometry and the PCR6 rule,
employing a noise filtering procedure through a hysteresis on the classification.

Figure 4.6: The geometry model used to generate the intersections. The parameters c, n, wi,
ri are retrieved from the OSM service.

4.3. Vehicle Localization 69

4.3.1 Hypotheses Generation

Since we are performing localization with respect to a 2D topological map, the state of

each particle space has 3-DoF, i.e., latitude, longitude and yaw, and the parameters of

the upcoming intersection model are also included in the particle, relative to each pose

hypothesis. Regarding the intersection model, we used the one depicted in Figure 4.6,

which has the following parameters:

• The intersection center c expressed as distance from the vehicle’s position

• The number of arms n involved in the intersection

• The width wi and rotation ri (expressed relative to the traveled road segment) of

each arm i.

As in [163], we initialize the system every time the vehicle gets closer than 20 meters from

the intersection center. As we are running on pre-recorded data, we use the GT position

(which in KITTI is provided by GPS-RTK) for this trigger, but we mimicked the error

that the vehicle might have about its pose in reality, as we will explain in Section 4.4.2.

The pose subspace is sampled from a normal distribution whose expected value is the VO

output. The EXPECTEDOGs, which represent the hypothesized intersection geometry

“as seen from” each particle pose, are then retrieved from the OSM service and added to

the state of each particle. Additionally, to accommodate for small cartographic errors

as well as unavoidable map simplifications, we slightly modify each EXPECTEDOG by

altering the parameters of the model, again sampling from a normal distribution.

4.3.2 Scoring Function

Each particle is then scored by comparing its associated EXPECTEDOG with the SEN-

SOROG, using a template matching function that consists in computing the Normalized

Correlation Coefficient (NCC). The normalized correlation coefficient between two im-

ages I1 and I2 is defined in Eq. (4.2).

NCC(I1, I2) =

∑

u,v((I1[u, v] − I1) ∗ (I2[u, v] − I2))
√

∑

u,v(I1[u, v] − I1)2 ∗
∑

u,v(I2[u, v] − I2)2
(4.2)

Here, I1 and I2 represent the mean of image I1 and I2, respectively. The NCC between

each EXPECTEDOG and the SENSOROG can be easily implemented as a 2D GPU-

70 Chapter 4. Visual localization at intersections

Convolution using (SENSOROG−SENSOROG) as the weights of the convolution and

(EXPECTEDOG − EXPECTEDOG) as input. The particle set is updated every

frame until the vehicle enters the intersection area. At this point, given the camera

configuration and the geometry of most intersections, the OGs is representing an area

beyond the intersection, and therefore the filtering is stopped and will be initialized

again when the vehicle is near to the next intersection.

4.3.3 Prediction Step

The prediction step of the particle filter is defined as follows.

1. The pose of each particle is updated using a simple motion model that adds the

relative displacement obtained from VO and a normally distributed noise, scaled

by the magnitude of the displacement. In spite of its simplicity, this proved to

work properly, given the relatively short distance traveled by the vehicle in the

approach to the intersections.

2. The intersection model of each particle is optionally perturbed, adding a normally

distributed noise, in both width and rotation, to each road segment.

4.3.4 Semantic Segmentation — Training Details

We tested four different CNNs, two for the semantic segmentation (Dilation7 and PSP-

Net), and two for the stereo disparity estimation (CRL and PSM). Since three networks

(Dilation7, CRL, and PSM) were already trained on the KITTI dataset, we did not per-

form any training activity on these networks. We trained the fourth network (PSPNet)

in two consecutive steps, first on the CITYSCAPES dataset, and then fine-tuning on

the KITTI dataset.

CITYSCAPES

The images from the CITYSCAPES dataset have size 2048x1024. We employed a pre-

processing step to divide each image into 12 overlapping crops of size 800x800, and we

treated each crop as an independent image, see Figure 4.7. We trained the network

for 100 epochs on a single NVIDIA Titan X, using an SGD optimizer, weight decay

of 1 ∗ 10−4, and a batch size of 2, but updating the network’s weights only every six

4.3. Vehicle Localization 71

Figure 4.7: A sample image from the CITYSCAPES dataset, with the center of the 12 800x800
crops depicted as red crosses.

forward-backward passes. The initial learning rate was set to 0.01 with a polynomial

decay defined as follows:

LR(iter) = init_lr ∗

(

1 − iter

max_iter

)0.9

(4.3)

Here, iter represents the current iteration, while max_iter represents the maximum

number of iterations.

In order to make the network more robust, we applied a data augmentation scheme by

randomly applying rotation (−10◦, 10◦), horizontal flip, brightness modulation (0.9, 1.1),

gamma correction (0.9, 1.1), contrast modulation (0.9, 1.1) and crop (512x512). The

loss function used was the one proposed by the PSPNet authors [12], i.e., cross-entropy

with an auxiliary loss.

KITTI

After training on CITYSCAPES, we fine-tune the network on the KITTI pixel-level

semantic segmentation dataset [171]. Images in the KITTI dataset have shape varying

from 1124x370 to 1242x376, and we did not apply any preprocessing cropping in this

case. We trained the network for 100 epochs on a single NVIDIA Titan X, using an SGD

optimizer, weight decay of 1 ∗ 10−4, and a batch size of 9. In this case, the learning rate

72 Chapter 4. Visual localization at intersections

Table 4.1: KITTI semantic Segmentation — comparison

Method IoU class iIoU class IoU category iIoU category

APMoE_seg [174] 47.96 17.86 78.11 49.17

SDNet [175] 51.14 17.74 79.62 50.45

PSPNet (fine-tuning) 52.01 24.00 74.91 47.09

SegStereo [176] 59.10 28.00 81.31 60.26

LDN2 [177] 63.51 28.31 85.34 59.07

VideoProp-LabelRelax [178] 72.83 48.68 88.99 75.26

Results on the KITTI test set for different state-of-the-art approaches compared to our training of PSP-
Net. Even tough the focus of our work was not on the semantic segmentation, we achieved comparable
results.

was set to 0.001, with the same decay defined in Eq. (4.3). We applied the same data

augmentation scheme used for the CITYSCAPES dataset, except for the cropping, that

in this case is of shape 800x256.

The performance of the training on the KITTI dataset have been assessed using the

official benchmark website1. The results, reported in Table 4.1, are expressed using

the Intersection-over-Union (IoU) metric, defined as IoU = TP/(TP + FP + FN),

where TP, FP and FN are the numbers of true positive, false positive and false negative,

respectively. Some qualitative examples are depicted in Figure 4.3, third column. As the

aim of our system is the localization task, additional efforts in semantic segmentation

related research were not pursued.

4.4 Experimental Evaluation

4.4.1 Dataset Construction

The obtainment of a set of stereo sequences of a vehicle approaching an intersection, with

a reasonably accurate position estimate to be used as GT, has been a very cumbersome

activity. Quite unexpectedly, given the number of datasets from road vehicles available

today, collecting such sequences was very difficult. We analyzed the sequences of many

datasets, checking whether everything needed was usable. Unfortunately, it turned out

that, for various reasons, most of the material publicly available was not usable.

1http://www.cvlibs.net/datasets/kitti/eval_semseg.php?benchmark=semantics2015

4.4. Experimental Evaluation 73

After the analysis procedure described below, we ended up with more than 40 ap-

proaches to intersections, all from KITTI residential sequences. Although all approaches

are from the same German city, we were able to include different intersection geome-

tries, lighting and traffic conditions. In spite of the effort put in building the dataset,

and despite its uniqueness, we believe this dataset should be integrated with sequences

from other countries, and more extreme light and traffic conditions. Nevertheless, as for

today, we believe it is the best mean to benchmark a proposal about vision-based vehicle

localization at intersections.

We analyzed the following datasets: KITTI [179], MALAGA [180], Oxford Robot-

Car [181], Rawseeds [182], and ApolloScapeAuto [183].

• KITTI: used, a stereo rig and GPS-RTK are available;

• Malaga: unused for the lack of GPS-RTK;

• Oxford RobotCar: unused for the lack of GPS-RTK;

• Rawseeds: no intersection between real roads is available, only intersections be-

tween roads in private areas, whose resemblance to real intersections has been

considered not good enough;

• ApolloScapeAuto: unused for the lack of GPS-RTK.

Unfortunately, we also had to deal with map alignment issues. OSM has global map

alignment problems, i.e., some parts of the map are not aligned with each other. The

problem manifests with the ground truth trajectory of the vehicle being apparently out

of the road, e.g., on curbs or inside private areas. This is a known issue, and there

are also literature contributions on how to increase the quality of the alignments, as

mentioned in Section 2.2.3. Notice that there is no clear way to determine whether the

culprit is the ground truth or the map.

To check this alignment, we started by superimposing the LiDAR point clouds onto

the aerial view, by means of the ground truth position, which is available in KITTI for

each LiDAR point cloud. Of course, the misalignments between, e.g., the boundaries of

the buildings in the aerial view and the same boundaries into the LiDAR point cloud

cannot safely be attributed to an error in the ground truth pose or in the aerial map.

This superimposition has been performed both with JOSM (an OSM editor), requiring

74 Chapter 4. Visual localization at intersections

a cumbersome manual image mosaicing, and also with MAPViz, a ROS tool for super-

imposing layers of geo-localized data. Unfortunately, in both cases, we could not obtain

geometrically consistent results.

A further option is to use the capability of JOSM to set some alignment points in

the aerial images, while the global position of the alignment points could be retrieved

from a specific server. At this point, we could modify the ground truths by checking the

alignment of buildings and roads. This would have been a very cumbersome and error

prone task.

Alternatively, we could join, in a SLAM-like fashion, all aerial images, and then draw

the roads and the ground truth position into this map (and re-entry all such data into

OSM), again a difficult and very cumbersome task.

In the end, we decided not to try to increase the quality of the maps, neither to

correct the ground truth. Instead, by exploiting the spatial locality of the problem (i.e.,

localization while approaching an intersection), we selected only the sequences taking

place in areas where the alignment was good enough, according to the criteria described

below. The criteria to select a sequence is as follows.

1. We select a frame where the vehicle is very near to the intersection;

2. we compute the SENSOROG, i.e., the occupancy grid built using the point cloud

reconstructed from the cameras (Section 4.2.3);

3. we generate the EXPECTEDOG, i.e., the occupancy grid obtained from OSM,

when hypothesizing the vehicle in the ground truth position;

4. we superimpose the two occupancy grids and,

5. depending on whether the two are aligned, see Figure 4.8, we consider the approach

to that intersection as usable or not.

Therefore, the localization performances will be benchmarked only in situations where

it has been manually verified that the SENSOROGs, are correctly aligned with respect

to the corresponding EXPECTEDOGs, computed considering the vehicle in the position

ground truth, i.e., a very good estimate of the real position of the vehicle. In the end, we

obtained 48 well-aligned subsequences of approaches to different intersection geometries.

The involved intersections are shown in Figure 4.9.

4.4. Experimental Evaluation 75

EXPECTEDOG SENSOROG OVERLAY

(a) Example of correct alignment

EXPECTEDOG SENSOROG OVERLAY

(b) Example of wrong alignment

Figure 4.8: For each row, from left to right: the EXPECTEDOG created using the GPS-RTK
and the digital map, the SENSORSOG and finally their overlay. A misalignment
between the GPS-RTK pose (and the associated EXPECTEDOG) and the map is
highlighted in the Figure 4.8b. It is worth to note that alignment error might come
from degraded GPS-RTK measures or digital map misalignments, and these two
alternatives are not distinguishable.

4.4.2 Evaluation Criteria

We believe that it is necessary to simulate the position uncertainty the vehicle will

experience when our algorithm will be triggered. Therefore, we define a new evaluation

criteria to asses the capability of the method to recovers from a wrong initial position

estimate, that goes as follows:

• The uncertainty on the pose estimate at trigger time is defined a priori and has

to be appropriate with respect to the real uncertainties. This uncertainty will

also be used online in the vehicle. Hypothesizing this uncertainty to be normally

distributed, its 3σ ellipsoid should almost always include the ground truth pose.

• While sampling the hypothesized poses around the initial pose estimate at trigger

76 Chapter 4. Visual localization at intersections

Figure 4.9: In the figure the 48 usable subsequences from the KITTI dataset are highlighted in
yellow.

time, the ground truth cannot be used as the expected pose, as a real vehicle will

have a pose estimate different from the ground truth one.

• To be useful, the experimental activity on pre-recorded datasets should prove that

the proposed method can recover from wrong pose initialization.

• The distance of the wrong pose estimate from the ground truth pose should also

be realistic, so to have the 3σ ellipsoid, when centered on the wrong pose estimate,

to almost always include the ground truth pose, Figure 4.10.

To properly assess whether the method recovers from a wrong position estimate, we

could use a randomly distributed or a regularly distributed set of estimates. Given the

4.4. Experimental Evaluation 77

Figure 4.10: Initialization from the pose estimate, which is displaced from the ground truth
pose.

seeming smoothness of the convergence behavior, we propose to regularly sample the

position of the vehicle, so obtaining a grid, and activating the method taking, as initial

position estimate, a different vertex of such grid. At each activation, an initialization

from scratch of the method is performed, and the evolution of the localization is analyzed.

The localization error, i.e., the accuracy of the pose estimate, is measured against the

same-time ground truth, and is recorded for performance evaluation. We propose to

use the last set of pose estimates in order to allow some time/space (20 m to 13 m) for

the estimate to converge. The measurement is therefore recorded only for those frames

whose ground truth pose is between 13 m and 8 m from the intersection center. At shorter

distances from the center, given the focal length of the KITTI cameras, the intersection

area is usually out of sight, having the vehicle already inside it. The localization error

will then be averaged on the recorded frames. Such average will then be in turn averaged

across the 48 different approaches to intersections that are available in the dataset. The

whole procedure will be repeated for each vertex of the initialization grid, in order to

verify the robustness with respect to wrong pose estimates at trigger time. The overall

results consist in the matrix of the average localization errors for each initialization value,

78 Chapter 4. Visual localization at intersections

and are reported in Figure 4.11.

4.4.3 System Parameterization

The distribution of poses about the initial position is obtained by sampling from a

normally distributed noise centered on the vertex of the initialization grid, using null-

mean and σx = 1.5m, σy = 1.5m, σϑ = 0.1rad as standard deviations. No GNSS

measurement is integrated after the initialization. To find the pose estimated by the

filter, we first ranked the particles according to their weights. Then, to simplify the

computational complexity of the pose estimation, i.e., to avoid a particle clustering

phase, we averaged the 3-DoF state of all the particles having a weight higher than a

threshold th, a parameter determined in order to accept just a desired qth percentage of

the pose hypotheses. Concerning the scoring function, we used the normalized correlation

coefficient, as described in Section 4.3.2.

We have assessed the best system configuration taking into account the following

parameters and algorithms on a subset of the dataset, to reduce the computational

effort:

• Regarding the particle filter resampling function, we evaluated the Multinomial,

the Residual, and the Stratified resampling functions.

• Regarding the neural networks, we considered PSMNet and CRL for the 3D re-

construction, PSPNet and Dilation7 for the semantic segmentation.

• Regarding the pose predicted by the filter, we evaluated different qth percentages.

• Regarding the intersection model, we evaluated whether to add noise or not to each

of the road segment parameters (i.e., width and orientation), during the prediction

step.

As a first consideration, the results summarized in the first rows of Table 4.2 show that

the Stratified resampling function performs better in all our tests. Regarding the DNNs

models, 2th block of rows, we assessed which combination of neural networks produced

the lowest Mean Absolute Error (MAE), concluding that CRL performed better than

PSMNet and Dilation7 performed better than PSPNet. It is worth to notice that, even if

PSPNet proved it can achieve high pixel-level classification accuracies on CITYSCAPES,

the low performances obtained in our experiments should not be intended as a proof that

4.4. Experimental Evaluation 79

Dilation7 outperforms PSPNet, but rather than, with proper training, PSPNet would

probably attain a better localization accuracy. Concerning the qth value, we assessed

that the best performances were obtained considering the 10% high-scored particles.

Regarding the road segments parameters (4th column of the table), the results show that

adding noise to the orientation parameters turned into better results, while perturbing

the width did not cause a comparable MAE decrease. These results suggest that the

widths of the roads in the cartography are usually more accurate than the orientation

of the road segments. The best system configuration is highlighted in Table 4.2.

We initially evaluated the localization performances regardless of the number of parti-

cles, since the GPU implementation of the scoring function allowed a parallel evaluation

of a huge number of hypotheses in constant time. Using all the memory of one NVIDIA

GXT1080Ti, we were able to handle approximately 8000 hypotheses, which were eval-

uated in 0.045s excluding the initialization phase. Lastly, once the best configuration

of the parameters was found, we tried to reduce the number of hypotheses used in the

filter. The results, shown in Table 4.3 and depicted in Figure 4.14, prove that even 500

particles are sufficient to localize the vehicle using the proposed approach. Also this

activity has been performed using the same subset of the dataset.

The main results of the method are summarized in Figure 4.11. Not surprisingly,

almost sub-meter localization accuracies were obtained while our pipeline was initialized

nearby the GT position. Even though the results remain reasonably good at a distance

from the GT, a decrease of the performances can be observed. However, as long as

the estimated pose remains within a significant distance from the GT, the performance

continues to be sub-meter. At even larger distances from the GT, we observe a significant

degradation of the performances. We believe that this can be attributed to the interplay

between intersection geometry and the usage of a template matching scoring, and an

example is visible in Figure 4.12. Here, given the geometry of the intersection, H1 can

iteratively move towards the GT pose, i.e., is in the basin of attraction of the GT pose,

while H2 is not since the score does not change with motion along the horizontal axis.

Figure 4.13 depicts two examples of the proposed approach.

80 Chapter 4. Visual localization at intersections

Table 4.2: Parameter Estimation

Resampling CNNs qth Width/Orientation MAE

Multinomial PSM/Dilation7 10 YES/NO 0.70

Residual PSM/Dilation7 10 YES/NO 0.72

Stratified PSM/Dilation7 10 YES/NO 0.64

Stratified PSM/Dilation7 10 YES/NO 0.64

Stratified PSM/PSP 10 YES/NO 0.85

Stratified CRL/Dilation7 10 YES/NO 0.63

Stratified CRL/PSP 10 YES/NO 0.77

Stratified CRL/Dilation7 5 YES/NO 0.70

Stratified CRL/Dilation7 10 YES/NO 0.63

Stratified CRL/Dilation7 20 YES/NO 0.64

Stratified CRL/Dilation7 40 YES/NO 0.71

Stratified CRL/Dilation7 10 YES/NO 0.63

Stratified CRL/Dilation7 10 YES/YES 0.61

Stratified CRL/Dilation7 10 NO/NO 0.66

Stratified CRL/Dilation7 10 NO/YES 0.60

To ensure a fair comparison between the experiments, we used an initial noisy_pose

set to a fixed value, randomly generated using the procedure described in Section 4.4.
Please note that in the second column we indicate respectively the neural network used
to perform 3D-Reconstruction and Pixel-level Classification.

Table 4.3: Evaluation by particles number

Resampling CNN Particles Width/Orientation MAE

Stratified CRL/Dilation7 8000 YES/NO 0.63

Stratified CRL/Dilation7 2000 YES/NO 0.63

Stratified CRL/Dilation7 500 YES/NO 0.63

Stratified CRL/Dilation7 250 YES/NO 0.72

Stratified CRL/Dilation7 100 YES/NO 0.84

The table shows the experiments performed to evaluate the adequate number of particles.
Here we use the best parameters configuration highlighted in Table 4.2.

4.4. Experimental Evaluation 81

Figure 4.11: The figure presents the average MAE obtained after initializing the proposed
method at different initialization values, displaced from the GT.

Figure 4.12: In the picture, only the H1 hypothesis (green) converges to the GT pose (black),
because moving H1 toward the GT increase its score, while moving H2 along the
horizontal axis in either direction does not change its score.

82 Chapter 4. Visual localization at intersections

Figure 4.13: Two examples of the proposed approach. Each example depicts the camera image
overlaid with the semantic segmentation on top, the SENSOROG on the bottom
left, the road geometry associated to the best particle on the bottom center, and
the localization error on the bottom right. We compared our estimated localization
(red dots) with the ground truth (green dots); the yellow dot represent the initial
rough position used to initialize the filter.

4.5. Conclusions 83

Figure 4.14: An instance of the evolution of the localization estimate (blue) with respect to
the GT (red). The colored stars indicate the corresponding starting position. The
green ellipses show the 3σ dispersion with respect to the mean value.

4.5 Conclusions

In this chapter, we described a method for estimating the ego-vehicle localization in

complex urban scenarios, in particular when the car is approaching intersection areas.

Starting from a coarse street-level localization and onboard stereo images, we proposed

an original pipeline aimed at exploiting the intersection geometry in conjunction with

the output of CNNs. The intersection geometry is retrieved from the OSM service, and the

CNNs output represents the perceived surrounding of the vehicle through an occupancy

grid. A particle filtering approach was then used to handle the localization uncertainties

probabilistically. To asses the performances of the proposed method, we performed an

extensive analysis of the publicly available datasets in order to assemble a new dataset

for benchmarking vision-based localization methods when the vehicle approach intersec-

tions. The resulting dataset consists of 48 sequences, each of which contains an image

sequence from a color stereo rig together with an accurate position to be used as ground

truth. Results show that our system is able to localize the vehicle up to nearly sub-

84 Chapter 4. Visual localization at intersections

meter accuracies starting from poses realistically different from the GT pose. As the

map-matching procedure is GPU-performed, our system is able to test a vast number

of localization hypotheses. While the obtained results are slightly worse than other

approaches to the same task available in the literature, our localization pipeline does

not require detecting specific road elements, nor to enhance standard digital maps with

precisely localized elements. Specific road data could be, for example, road markings

and traffic lights. In our opinion, this is one of the main advantages of the proposed

method since individual features might be unreliable in cluttered driving scenarios. For

example, differently from state-of-the-art approaches, our method can handle situations

where road markings, traffic lights and stop lines are absent or inconsistent such as in

road working conditions. Moreover, the system can be easily further improved incorpo-

rating semantic considerations in the SENSOROGs, e.g., including moving vehicles and

pedestrians detections.

Chapter 5

Enhancing localization by leveraging

buildings information

In the previous chapter, we presented an approach for vehicle localization when ap-

proaching road intersections. Although intersections are one of the most dangerous

scenarios due to the interactions with other road users, in order to localize the vehicle

when driving not in proximity of intersection areas different cues should be exploited. In

the research community, different approaches have been proposed to localize a vehicle in

urban environments by exploiting, for example, road markings [184, 185], stop lines [160],

poles [186], or road signs [187]. The latter approaches, however, require a cumbersome

prior activity to precisely geo-localize all the road markings, and moreover, they can

not give valuable contributions in case of faded or occluded road lines. An interesting

opportunity in urban contexts is to exploit the buildings in the vehicle’s surroundings,

since they are less likely to change over time than, for example, road markings, i.e.,

buildings are constructed and demolished with low frequency.

It is important to recall that the localization accuracies that can be obtained with

GNSSs (such as GPS, Galileo, and GLONASS) are particularly inadequate in urban

canyons (i.e., when buildings on both sides flank the vehicle). In such environments,

buildings may block the signals from the satellites or deflect them, thereby causing NLOS

or multipath errors [2]. Even though different approaches for mitigating the latter GNSS

issues by exploiting filtering techniques [30, 31] or by using three-dimensional mappings

of the buildings [32, 33] have been proposed, the obtained localization is still not ac-

curate enough for autonomous driving (i.e., they reduced the localization errors from

tens of meters to 5-10 meters). A common practice in the autonomous driving com-

munity is to exploit a comprehensive understanding of the scene around the vehicle

85

86 Chapter 5. Enhancing localization by leveraging buildings information

in order to obtain localization estimates appropriate for safe urban navigation. Even

though different techniques have been investigated to improve localization algorithms

for self-driving cars [152–154], the results are still inadequate for developing vehicles

with driving automation capabilities higher than SAE level 2 (Figure 2.1). Thereby, it

remains a remarkable challenge for the research community, as proved by many recent

works [59, 63, 188, 189], suggesting the necessity for further improvements.

This chapter presents a probabilistic method for ego-vehicle localization in urban

contexts, which exploits the 3D detection of buildings’ façades. It bases on the pixel-

level stereo image segmentation and 3D reconstruction capabilities of state-of-the-art

CNNs. The façades, represented in terms of three-dimensional point clouds, can hence

be matched against the surrounding buildings’ outlines provided by the OSM service

without any preprocessing procedure or map enhancement. Therefore, we can exploit

the geometry of the façades, using in our favor the primary source of NLOS or multipath

issues, i.e., the buildings themselves. We tested our system on five carefully selected

sequences from the KITTI dataset [179], evaluating the localization results with respect

to the available GPS-RTK ground truths.

As the outlines of the buildings in OSM are defined by various users and therefore

no guaranteed precision is provided, we first manually verified the Karlsruhe urban

sequences map alignments, comparing the building data with aerial images and the

overlay of the LiDAR data, using their associated ground truth positions. The comparison

showed a fairly accurate matching of the building outlines, see Figure 5.1. As a result

of this satisfactory alignment, the presented technique achieves meter-level localization

accuracy in the context of a vehicle traversing roads with buildings in its field of view,

allowing for reliable localization estimates without the typical GNSSs degradation. The

use of point clouds generated from the buildings’ footprints is a first step towards the

use of next generation high-definition maps, which are expected to be very precise and,

therefore, will allow for even greater accuracy.

5.1 Related Work

The building detection task from images or point clouds has been widely investigated

during the last decades, since it is an important task for applications such as vision-

based navigation or mapping. In [190], the authors propose a technique to extract

buildings’ façades from single images by detecting lines and vanishing points. In [188,

5.1. Related Work 87

191], a discriminative model was proposed to answer the question: Is this pixel part of a

building façade, and if so, which one?. They fuse boosting-based pixel-level classification

and surface analysis by means of a Markov Random Field. The authors in [192] combined

multiple boosted decision trees with the use of auto-context features in order to classify

buildings’ parts from both images and point clouds.

Recently, DNN-based approaches specially designed for buildings’ façades segmentation

have been proposed. The method presented in [193] extracts semantic and structural cues

with a CNN in order to detect façades. In [194], a semantic segmentation CNN is combined

with a Restricted Boltzmann Machine (RBM) to enforce architectural constraints. An

interesting approach was proposed in [195], in which two DNNs that jointly process point

clouds and multi-view images, using sparse lattice filters, are employed to segment both

images and point clouds simultaneously.

All the methods mentioned above for façades detection from images, however, require

that the input images depict building in the foreground, and thereby they are not suited

for our goal. Images taken from a camera mounted on a vehicle usually depict buildings

only on the side of the image. Therefore, for detecting building from onboard cameras,

pixel-level semantic segmentation approaches, which nowadays are usually solved using

CNNs (Section 2.3.3), are better suited.

Different methods to solve the visual localization task by exploiting buildings have

been proposed in the literature. In [196], the authors proposed to detect the silhouette

of the buildings present in the scene and register it with a CAD model of the build-

ings. However, this method requires the buildings to be completely visible in the image.

Similarly, the authors in [197] register an image with respect to Geographic Information

System (GIS) by matching the skyline, but they provided quantitative results only on

synthetic images. The authors in [198] match the buildings detected in an image to the

ones present in airborne imagery to perform camera localization; however, they did not

provide quantitative results on the localization accuracy achieved.

Matching a reconstructed point cloud to a point cloud obtained from a map service

means to register, i.e., to align, the two clouds. This is a well-known problem whose

solutions fall into two categories: those that rely on features extracted from the clouds,

and those derived from the Iterative Closest Point (ICP) algorithm [199, 200]. The first

category is usually aimed at global registration, i.e., at aligning two point clouds with-

out any guess on their initial reciprocal position; this class usually does not provide very

88 Chapter 5. Enhancing localization by leveraging buildings information

precise results. The second, on the other hand, is aimed at fine-registration, that is, at

refining the alignment between two point clouds whose relative pose is roughly known.

The main intuition behind the second class of algorithms is that the true point corre-

spondences between the two clouds can be greedily approximated, iteratively looking for

closest neighbors. Since in our application the clouds to align are relatively close, i.e., we

do not perform localization in global terms, we have chosen a technique from the second

category, namely, G-ICP [201], which has been shown to provide very good results [202].

We concentrated only on local registration techniques because our registration problem

is inherently local: each vehicle pose hypothesis will have only a small displacement

with respect to the real pose of the vehicle, thus the corresponding point clouds should

require only a fine alignment with respect to the map. While recent global registration

techniques, such as [203], that improve the typical low accuracy of this kind of approach

have been proposed, they have not been proved to provide better results than G-ICP

with local registration problems.

5.2 Proposed Localization Pipeline

The idea behind the proposed technique is that if a vehicle is well localized, then what

it currently perceives should be aligned with the map. This is a well-known concept

in the field of robotic localization, therefore we decided to use it to improve the vehi-

cle’s localization by leveraging buildings’ façades, whose footprints are available in the

OSM service. Unfortunately, at the moment, this only means bi-dimensional building

outlines, although high-definition maps will likely make a detailed 3D representation of

the façades available. Since, while driving, the vehicle usually can observe the buildings

in its surroundings, we could align a perceived 3D observation of these buildings with

the building models available from OSM. The quality of this alignment is an indirect

measure of the quality of the vehicle’s localization.

5.2.1 Particle Filter

In order to test the proposed approach, we employed a particle filter derived from [167].

A particle filter is used to estimate the state of a system in a non-parametric way and

without making any assumption about the probability distribution representing the state

space. In our case, a particle corresponds to a localization hypothesis, and it is associated

5.2. Proposed Localization Pipeline 89

Figure 5.1: The figure depicts how we compared the LiDAR data to the aerial images and the
OSM data. White points correspond to the LiDAR measures associated to the KITTI
ground truth positions.

with a set of scene elements called Layout Components (LCs) that describe the hypoth-

esized surrounding environment. At each iteration of the filter, the particles’ position

and the associated LCs are updated using the movement predicted by the LIB-Viso2

visual odometry algorithm [173]. Afterward, each particle is given a score, according to

the likelihood of the measurement, given the particle’s pose. In particular, each LC give

its scoring term to the particle, and all the LCs contribute to the final score associated

with that particle. Lastly, in the resampling step, particles are randomly taken with a

probability proportional to their score.

The basic LC proposed in [167] is based on a lock-on-road technique [204], and the

score for each particle is based on the distance between the associated pose and its

90 Chapter 5. Enhancing localization by leveraging buildings information

Figure 5.2: The pipeline of our proposal. A stereo rig (a) is used to produce a semantic seg-
mentation (b), the disparity (c) and the visual odometry (d). The disparity and
the semantic segmentation are used to produce a point cloud with semantic anno-
tations (e). In the meanwhile, for each vehicle pose hypothesis (particle) we take
a surrounding area and the included building outlines (f and g). The outlines are
extruded in 3D (h) and compared against the semantic point cloud (e) to produce
a scoring for a particle and, at the end, a localization estimate (i).

projection snapped on the nearest road segment in OSM, considering both translation and

orientation components. The particle filter with only this basic LC is used as a baseline

in our experimental activity. In this work, we propose to enrich the scene description

with a new scene element (LC) that takes into account the buildings surrounding the

vehicle and uses data from OSM. From a technical perspective, we take the façades of

the building as perceived by the vehicle, using onboard cameras, and try to match them

with their outlines in OSM converted into point clouds. If the perceived buildings are

well aligned with the data in OSM, then the particle represents a good estimate of the

pose of the vehicle and therefore should be given a high score. The overall pipeline is

summarized in Figure 5.2.

It is important to note that the proposed approach is not meant to be used alone, but

it should be combined with other cues to improve the robustness of the approach, e.g.,

when no building is clearly visible.

5.2. Proposed Localization Pipeline 91

5.2.2 The Point Clouds

To represent the façades of the buildings, we decided to use point clouds. The same

type of representation has also been used for the outlines extracted from OSM, so that

the two data can be aligned using standard point clouds registration techniques.

The point clouds representing the façades have been produced using a CNN fed with

images taken from an in-vehicle stereo rig. However, point clouds produced with any

sensor could be used as no assumption is made on the characteristics of the point clouds,

being it the density, the presence of geometric features, or whether they are organized

or not. Nevertheless, we used a stereo rig because this thesis is focused on autonomous

vehicles’ localization with only cheap camera sensors onboard.

For pixel-level semantic classification, we used again the Dilation7 network proposed

in [168], since it was the semantic segmentation network that achieved the best result in

Chapter 4. The semantic segmentation alone is not enough to reconstruct the upcoming

road geometry, thus mapping each classified pixel onto the correspondent 3D point is

required. Here again, as in Chapter 4, we used the Cascade Residual Learning (CRL) [16]

network. However, the core of our approach, that is, the particle scoring method, can also

be used in conjunction with other techniques for scene reconstruction and segmentation.

The availability of a semantic segmentation greatly simplifies the alignment of the two

point clouds. Indeed, we are able to align the façades of the buildings with the outlines

in OSM, removing other elements from the point clouds that otherwise could mislead

the alignment step.

The second kind of data that our technique uses are the outlines of the buildings

available in OSM. These are simply a list of points describing the corners of a 2D

representation of the façades of the buildings. As the observed point clouds are 3-

dimensional, while the outlines are bi-dimensional, we have either to project the 3D

point clouds onto a 2D plane, thus losing some information as the façades are not just

vertical planes, or to extrude the outlines in the 3D space. We opted for the second

solution for a very important reason: while still not publicly available, many mapping

services (such as Here and TomTom) will probably release soon the so-called HD-maps,

which provide a 3D representation of the environment. These representations are also

much more accurate than the outlines and also carry much more detail. For example, the

balconies cannot be described in a 2D representation, while the vehicle sees them, and

they could also provide useful anchoring points for the registration process. Therefore,

92 Chapter 5. Enhancing localization by leveraging buildings information

our technique is ready to use HD-maps as soon as they become available.

To extrude the outlines, we assumed a fixed height of the buildings. This simplification

usually does not bring significant errors because a camera mounted on a vehicle is often

not able to observe up to the top of the buildings. While the top of buildings far from

the vehicle could still be visible, this data is usually not accurate, since the errors in the

stereo reconstruction increase quadratically with the distance. This was also at the basis

of using only the point cloud portion closer to the camera. An important advantage of

the point clouds produced with the CNN approach mentioned above is that each point is

associated with a label describing what that point represents, e.g., a building, the road,

a car. In other words, we have a semantic segmentation of every point in the cloud.

For our purpose we can therefore discard everything that is not a building, so to avoid

aligning other objects with the OSM data and thus improving the results.

5.2.3 The Registration Step

In the field of point clouds registration, the two point clouds are called the source and

target point cloud. The pose of the source cloud is iteratively moved to match the

target cloud until some convergence criterion is met. We decided to take the distance

between the initial pose of the source point cloud (produced by the stereo rig) and its

final aligned pose, as a measure of the quality of the vehicle’s pose estimate. Intuitively,

if the registration process had to move the source point cloud a lot to align it with the

target, it means that the pose estimate was worse than if it had to move it by a smaller

distance.

Measuring the distance between two poses is a non-trivial problem since there is no

shared standard method to measure the combined distance between two positions and

two orientations. However, in our case, we can take advantage of the point clouds

associated with each iteration step of the registration process. Since we know that the

n-th point in the source point cloud in the initial pose corresponds to the n-th point in

the final pose (rigid-body transformations preserves the order of the points in the cloud),

we decided to measure the distance between the two poses by taking the mean distance

between all the corresponding points. This is similar to what is done in other fields

where a solid is fitted on both poses, and the mean distance between the homologous

solid’s vertices in the two poses represents the distance between the poses, see [205].

Formally, given two point clouds P and G, that represent the same scene, only dis-

5.2. Proposed Localization Pipeline 93

placed, composed of points pi ∈ P corresponding to points gi ∈ G, the distance between

the poses of P and G is defined as follows.

δ(P, G) =
∑n

i=0 ‖pi − gi‖2

n
(5.1)

Here, ‖x‖2 is the Euclidean norm of vector x and n the cardinality of the point clouds.

To align the two point clouds, we used Generalized-ICP (GICP) [201], a very popular

variant of the Iterative Closest Point (ICP) algorithm, which usually provides very good

results [202]. The point clouds have been sub-sampled using a voxel grid of a fixed size

of 50 cm, to increase the speed of the registration and to reduce the noise introduced

during the 3D reconstruction. The point clouds have also been cropped to remove parts

too far from the camera (more than 10 m) and, therefore, very noisy. Since we expect

the two point clouds to align to be very close, we allowed a maximum of 10 iterations of

GICP, which proved to be a satisfactory iteration number in all cases.

Regarding the scoring function associated with the buildings Layout Component intro-

duced in 5.2.1, we need the score to be between 0 and 1; however, the distance between

two generic poses obviously does not follow this constraint. Ideally, we wanted the dis-

tance to be as close to 0 as possible: this corresponds to the best score for a particle

because it means that it is in the right position. Therefore, a distance of 0 should cor-

respond to the maximum score, which is 1. The higher the distance, the lower the score

should be, with very large distances corresponding to very low scores. For this reason,

to evaluate a particle, we used a Gaussian probability density function (PDF) with zero

mean. Then, for a particular value of distance, we take the corresponding normalized

value of the density function. This function, indeed, perfectly formalizes our informal

requirements for the scoring function.

Summarizing our pipeline, we introduced a new Layout Component in the particle

filter presented in Section 5.2.1. The associated scoring factor is the result of the align-

ment of a point cloud produced with a stereo rig and a point cloud obtained extruding

the outlines of the surrounding buildings in OSM. The distance between the initial pose

of the particle, and the pose after the alignment, is the new scoring factor: the higher

the distance, the farther is the particle from the real pose of the vehicle.

94 Chapter 5. Enhancing localization by leveraging buildings information

Table 5.1: Experimental results

Sequence Duration Length [m]
Baseline

Mean Error
Proposal

Mean Error

2011_09_26_drive_0005 0:16 66.10 2.043 0.941

2011_09_26_drive_0046 0:13 46.38 1.269 1.168

2011_09_26_drive_0095 0:27 252.63 1.265 0.963

2011_09_30_drive_0027 1:53 693.12 2.324 1.746

2011_09_30_drive_0028 7:02 3204.46 1.107 1.792

The table show the experimental results on five KITTI sequences. Baseline is the particle
filter with only the lock-on-road LC, Proposal is the filter with also the buildings LC enabled.

5.3 Experimental Evaluation

We tested our approach on the KITTI dataset, composed of several sequences recorded

with a vehicle in different environments. Since our approach requires buildings to be

present in the surrounding of the vehicle, not all the sequences were appropriate for

evaluating the proposed approach. The sequences we used are summarized in Table 5.1.

For each sequence, the KITTI dataset provides a ground truth, recorded with an RTK-

GPS. Therefore, we measured the quality of our localization estimate by taking, at each

time step, the distance with respect to the ground truth position. We compared the

results with experiments performed using the particle filter with only its basic lock-

on-road component, turning on and off the proposed building component. The new

proposal got better results in all the sequences but one. While testing the sequence

2011_09_30_drive_0028, we noticed that there were segments where the ground truth

coordinates were wrong: if they were right, the car would have been driving into the

buildings. Therefore, we provided results only for the first portion of that sequence,

which had a plausible ground truth. With sequence 2011_09_26_drive_0005 the re-

sulting mean error is less than half than the baseline and, very important, has sub-meter

accuracy. Sub meter accuracy was also attained for sequence 2011_09_26_0095, even

though the improvement with respect to the baseline is less significant.

On the other hand, the mean error for sequence 2011_09_30_drive_0028 increased.

This is probably due to the fact that this sequence has large sections where the buildings

surrounding the vehicle are not visible, either because covered by other vehicles, or

because there are no buildings at all. Figure 5.3 represents the trajectory for that

5.3. Experimental Evaluation 95

sequence: yellow points are the positions as measured by the GPS, while red points

are the position estimates of our proposal. As can be seen, our pose estimate diverges

from the ground truth mainly in areas where there are few buildings and the vehicle is

surrounded by vegetation. Figures 5.4 and 5.5 show two frames taken from a critical

section: clearly, no building can be seen. The baseline algorithm without the building

component, instead, performed well on this sequence because the car followed more or

less strictly the lanes during the recording of the data. This is because the basic lock-

on-road component aligns the localization hypotheses to the center of the road. An

important feature of our new proposal is that, even if the pose estimate is wrong when

no building can be seen, the algorithm is able to recover from these soft failures as soon

as new useful data is received. Indeed, after the first critical section circled in red in

Figure 5.3, the pose estimate returns very close to the ground truth.

Since the lock-on-road technique enforces the particles to follow the road graph, in

sequences where the car did not follow so strictly the lanes our new proposal performed

much better than the baseline. This is the case of sequence 2011_09_26_drive_0005,

whose trajectory is depicted in Figure 5.6. Also in this case there are sections where

the error with respect to the ground truth is not negligible. This is probably due to the

quality of the point clouds that, even though the buildings are visible, sometimes are

very noisy. For example, in Figure 5.7a we have a very noisy point cloud, produced from

Figure 5.7b, that corresponds to the area where the proposal got the worst results. As

can be seen, the façades of the buildings, although visible, are very noisy and distorted

and thus cannot be aligned properly. However, even after such a critical situation, the

algorithm is able to recover and to precisely estimate the vehicle’s pose, getting much

better results than the baseline algorithm, as depicted in Figure 5.8. This is because

the vehicle does not strictly follow the road lane, because of the parked truck indicated

with a white arrow in Figure 5.6. In these situations, our new building detection and

registration component adds useful information to the particle filter.

It is important to mention that in its current development state, our proposal does

not execute in realtime. To produce the results shown, we played the datasets at half

their real frame rate and we used pre-computed point clouds and segmentation. For each

frame, on a desktop equipped with an NVIDIA GTX 1080Ti graphics card, calculating

the disparity with the neural network took 200 ms, producing a point cloud from the

disparity took 20 ms per frame, while producing the semantic segmentation took 500 ms

96 Chapter 5. Enhancing localization by leveraging buildings information

Figure 5.3: The trajectory for the 2011_09_30_drive_0028 sequence. Yellow points are the
ground truth positions, red points are the position estimates of our proposal. Crit-
ical sections where surrounding buildings are not visible are circled in red.

per frame. It has to be noted that the latter operations, in a real autonomous vehicle,

are already needed for other tasks, such as navigation and obstacle avoidance. Therefore,

these times are not strictly related to our approach. While the time spent for generating

the target point cloud is negligible, regarding the GICP performances our not optimized

algorithm took approximately 100 ms using the settings specified in Section 5.2.3.

5.3. Experimental Evaluation 97

Figure 5.4: A critical section for our proposal: the vehicle is surrounded by the vegetation.

Figure 5.5: The most critical section for our proposal: the vehicle is surrounded by the vege-
tation at a turn.

Figure 5.6: The trajectory for the 2011_09_26_drive_0005 sequence. Yellow points are the
ground truth positions, red points are the position estimates of our proposal, blue
points are the position estimates of the baseline algorithm. The red car is associated
to the parked truck visible in the overlaid camera frame.

98 Chapter 5. Enhancing localization by leveraging buildings information

(a)

(b)

Figure 5.7: A point cloud (a) and the corresponding image (b) from sequence
2011_09_26_drive_0005. There is too much noise and distortion to obtain a
proper alignment with OSM data.

Figure 5.8: The mean error with respect to the ground truth for our new proposal (in red) and
the baseline version (in blue) for the 2011_09_26_drive_0005 sequence.

5.4. Conclusions 99

5.4 Conclusions

In this chapter, we presented a novel technique for improving autonomous vehicles’

localization in an urban scenario. Our proposal takes into account the buildings in the

surrounding of the vehicle and tries to match them with data from OSM. The idea behind

this approach is that, if a hypothesized scene correctly represents the current pose, then

the façades of the buildings, as seen from that pose, should be aligned with the data in the

map. Following this simple idea, we experimented aligning a point cloud obtained from

state-of-the-art CNNs with one generated using the outlines of the buildings in OSM. The

more we have to move the first cloud, the worse the associated localization hypothesis

is. Although we tested the proposed approach with point clouds produced using a state-

of-the-art CNN-based technique on stereo images from the KITTI dataset, any sensor

that can produce a three-dimensional reconstruction of the environment can be used.

Our experiments show that, when buildings are visible from the cameras mounted on

the vehicle, the localization accuracy notably benefits from this approach and, as soon

as full 3D building point clouds (HD-maps) will be available from mapping providers,

our technique will be ready to exploit them.

Chapter 6

Camera to map registration for 6 DoF

localization

In the previous chapters, we introduced different approaches for improving autonomous

vehicle’s localization by exploiting several high-level semantic cues. Specifically, in Chap-

ter 3 we improved the localization in highway-like scenarios by estimating the vehicle’s

ego-lane, while in Chapter 4 we proposed a probabilistic approach to estimate the up-

coming road shape and localize the robot when approaching road intersections. Finally,

in Chapter 5, we exploited buildings’ façades to mitigate the GNSSs issues in urban

canyons (i.e., NLOS and multipath).

A straightforward research direction to complete the works presented in the previous

chapters would have been to integrate them in a unified localization framework as well

as investigate and model their inter-component interactions. However, Topological map

providers usually do not guarantee the localization accuracy of their data. This is even

truer for the OSM service, where data are recorded and aligned by the users, often using

cheap GPS sensors (e.g., using smartphones), leading to heterogeneous accuracies around

the globe. Although different approaches to automatically correct the OSM data have

been proposed [55–57], is it still difficult to evaluate the accuracies of the resulting data.

Further issues arise from the alignment between topological maps and ground truths

provided with autonomous driving datasets; in case they are not properly aligned, there

is no clear way to determine which one is incorrect (the map or the ground truths), nor

how to align them. As discussed in Section 4.4.1, dealing with the latter issues can be a

cumbersome activity.

The considerations mentioned above convinced us to shift our research focus toward

the localization against HD-maps, which are specifically designed to support self-driving

101

102 Chapter 6. Camera to map registration for 6 DoF localization

vehicles. These maps provide an accurate position of high-level features such as traffic

signs and road lanes as well as a representation of the environment in terms of point

clouds, with a density of points usually reaching 0.1 m [206]. Companies in the estab-

lished market of maps and related services, like e.g., HERE or TomTom, are nowadays

already developing those maps, which are usually built using LiDAR sensors [206]; this

allows other players in the domain of autonomous cars to focus on the localization task.

HD-maps, however, are not yet freely available, therefore we used point cloud maps

that resemble HD-maps, by processing data from LiDAR sensors using standard SLAM

techniques (Section 2.2.1). In the following, we refer to these point cloud maps as LiDAR-

maps.

Standard approaches to exploit such LiDAR-maps localize the observer by matching

point clouds gathered by the onboard sensor to the LiDAR-map; solutions to this problem

are known as point clouds registration algorithms. Currently, these approaches are

hampered by the huge cost of LiDAR devices, the de facto standard for accurate geometric

reconstruction. However, when these HD-maps will be available, point cloud registration

algorithms could be exploited to validate the ground truths of the available datasets and,

if necessary, align them with the HD-map of the area.

Differently from standard approaches that localize using onboard LiDAR devices, in this

chapter we propose a novel method for registering an image from an onboard monocular

RGB camera to a pre-exising LiDAR-map of the area. This allows for the exploitation

of the forthcoming market of LiDAR-maps embedded into HD-maps using only a cheap

camera-based sensor suite on the vehicle. In particular, we propose CMRNet, a realtime

CNN-based approach that achieves camera localization with sub-meter accuracy starting

from a rough initial pose estimate. The achieved results show that CMRNet is suitable

for accurate localization, even in challenging urban environments. The maps and images

used for localization are not necessarily those used during the training phase of the

network. To the best of our knowledge, this is the first DNN-based approach to tackle

the localization problem without a localized CNN, i.e., a CNN trained in the working

area [21]. CMRNet does not learn the map, instead, it learns how to match images

to the LiDAR-map; thus, it can be used in any environment for which a LiDAR-map is

available, without the need to retrain the network. Extensive experimental evaluations

performed on the KITTI dataset [115] and on the RobotCar dataset [181] show the

feasibility of the proposed approach.

6.1. Related Work 103

Figure 6.1: A sketch of the proposed processing pipeline. Starting from a rough camera pose
estimate (in red), e.g., from a GNSS device, CMRNet compares an RGB image and
a synthesized depth image projected from a LiDAR-map into a virtual image plane
(red) to regress the 6-DoF camera pose (in green).

The proposed approach takes as input a single RGB image, the LiDAR-map of the

environment and a rough estimate of the camera pose (e.g., from a GPS sensor). The

output consists of an accurate 6-DoF localization of the camera.

6.1 Related Work

In the last years, visual localization has been a trending topic in both computer vision

and robotics communities. Although many localization approaches have been proposed,

most of them are either based on images gathered from a camera sensor only, or exploit

a map of the environment.

6.1.1 Camera-only Approaches

The first category of techniques deals with the 6-DoF estimate of the camera pose using

only images as input. On the one hand, traditional methods face this problem by means

of a two-phase procedure that consists of a coarse localization, performed using GNSSs

104 Chapter 6. Camera to map registration for 6 DoF localization

or a place recognition algorithm, followed by a second refining step that allows for a

final accurate localization [207, 208]. On the other hand, the latest machine learning

techniques, mainly based on deep learning approaches, face this task in a single step.

Models from this second category are usually trained using a set of images taken from

different points of view of the working environment, in which the system performs the

localization. One of the most important approaches of this category, which inspired

many subsequent works, is PoseNet [21]. It consists in a CNN trained for camera pose

regression. Starting from this work, additional improvements have been proposed by

introducing new geometric loss functions [92], by exploiting the uncertainty estimation

of Bayesian CNNs [93], by including a data augmentation scheme based on synthetic

depth information [94], or by using the relative pose between two observations in a

CNNs pipeline [22]. One of the many works that follow the idea presented in PoseNet

is VLocNet++ [23]. Here the authors deal with the visual localization problem using

a multi-learning task (MLT) approach. Specifically, they proved that training a CNN

for different tasks at the same time yields better localization performances than single

task learning. At the time of writing, the literature still sees [23] as the best performing

approach on the 7Scenes dataset [209]. In [210] the authors developed a CNN that

exploits a sequence of images in order to improve the quality of the localization in urban

environments. The authors in [211, 212], instead, integrated a differentiable version of

RANSAC within a CNN-based approach in an end-to-end fashion.

Other camera-only localization methods are based on decision forests, which consists

of a set of decision trees used for classification or regression problems. For instance, the

approach proposed in [209] exploits RGB-D images and regression forests to perform in-

door camera localization. The techniques mentioned above, thanks to the generalization

capabilities of machine learning approaches, are more robust against challenging scene

conditions like lighting variations, occlusions, and repetitive patterns, in comparison

with methods based on hand-crafted descriptors, such as SIFT [43], or SURF [44]. How-

ever, all these methods cannot perform localization in environments that have not been

exploited in the training phase, hence these regression models need to be retrained for

every new place. Moreover, they achieved good results only in small environments (e.g.,

small rooms or outdoor areas of few tens of meters). Therefore, despite the great local-

ization performance achieved in small environments, these approaches are not suitable

for autonomous driving applications.

6.1. Related Work 105

6.1.2 Camera and LiDAR-map Approaches

The second category of localization techniques leverages existing maps, in order to solve

the localization problem. Since vision-based approaches that try to localize a vehicle

exploiting topological maps have been discussed in Chapters 3 to 5, here we focus only

on existing methods for visual localization within LiDAR-maps. In particular, two classes

of approaches have been presented in the literature for this task: geometry-based and

projection-based methods. A geometry-based method that try to solve the visual local-

ization problem by comparing the point cloud reconstructed from a sequence of images

and the existing map has been proposed in [213]. The authors in [214], instead, devel-

oped a projection-based method that uses meshes built from intensity data associated to

the 3D points of the maps, projected into an image plane, to perform a comparison with

the camera image using the Normalized Mutual Information (NMI) measure. Finally,

in [215], the authors proposed to use the similarity between depth images generated by

synthetic views and the camera image as a score function for a particle filter, in order

to localize the camera in indoor scenes.

The main advantage of these techniques is that they can be used in any environment

for which a 3D map is available. In this way, they avoid one of the major drawbacks

of machine learning approaches for localization, i.e., the necessity to train a new model

for every specific environment. Despite these remarkable properties, their localization

capabilities are still not robust enough in the presence of occlusions, lighting variations,

and repetitive scene structures.

The work presented in this chapter has been inspired by [216], which used 3D scans

from a LiDAR and RGB images as the input of a novel CNN, namely RegNet. Their

goal was to provide a CNN-based method for calibrating the extrinsic parameters of

a camera with respect to a LiDAR sensor. Taking inspiration from that work, in this

chapter we propose a novel approach that has the advantages of both the categories

described above, i.e., robustness to visual changes and capability to perform localization

in any environment for which a LiDAR-map is available without retraining. Differently

from [216], which exploits the data gathered from a synchronized single activation of a

3D LiDAR device and a camera image, the inputs of our approach are a complete 3D

LiDAR map of the environment, together with a single image and a rough initial guess

of the camera pose. Eventually, the output consists of an accurate 6-DoF camera pose

localization. It is worth to notice that having a single LiDAR scan taken at the same

106 Chapter 6. Camera to map registration for 6 DoF localization

time as the image, as in [216], imply that the observed scene is exactly the same. In our

case, instead, the 3D map usually depicts a different configuration, i.e., road users are

not present, making the matching considerably more challenging.

Our approach combines the generalization capabilities of CNNs, with the ability to be

used in any environment for which a LiDAR-map is available, without the need to re-train

the network.

6.2 Proposed Approach

This work aims at localizing a camera from a single image in a 3D LiDAR-map of an

urban environment. Toward this goal, we exploit recent developments in deep neural

networks for both pose regression [21] and feature matching [17].

The pipeline of our approach is depicted in Figure 6.1 and can be summarized as

follows. First, we generate a synthesized depth image by projecting the map points

into a virtual image plane, positioned at the initial guess of the camera pose. This is

done using the intrinsic parameters of the camera. From now on, we will refer to this

synthesized depth image as LiDAR-image. The LiDAR-image, together with the RGB

image from the camera, are fed into the proposed CMRNet, which regresses the rigid

body transformation Hout between the two different points of view. From a technical

perspective, applying Hout to the initial pose Hinit allows us to obtain the 6-DoF camera

localization.

In order to represent a rigid body transformation, we use a (4, 4) homogeneous matrix:

H =

R(3,3) T(3,1)

0(1,3) 1

 ∈ SE(3) (6.1)

Here, R is a (3, 3) rotation matrix and T is a (3, 1) translation vector, in Cartesian

coordinates. The rotation matrix is composed of nine elements, but, as it represents

a rotation in the space, it only has three degrees of freedom. For this reason, the

output of the network in terms of rotations is expressed using quaternions lying on the

3-sphere (S3) manifold. On the one hand, even though normalized quaternions have

one redundant parameter, they have better properties than Euler angles, i.e., gimbal

lock avoidance and unique rotational representation (except that conjugate quaternions

represent the same rotation). Moreover, they are composed of fewer elements than a

6.2. Proposed Approach 107

rotation matrix, thus being better suited for machine learning regression approaches.

The outputs of the network are then a translation vector T ∈ R
3 and a rotation

quaternion q ∈ S3. For simplicity, we will refer to the output of the network as Hout,

implying that we convert T and q to the corresponding homogeneous transformation

matrix, as necessary.

6.2.1 LiDAR-Image Generation

In order to generate the LiDAR-image for a given initial pose Hinit, we follow a two-step

procedure.

Map Projection. First, we project all the 3D points in the map into a virtual image

plane placed at Hinit, i.e., compute the image coordinates pi of every 3D point P i. This

mapping is shown in Equation (6.2), where K is the camera projection matrix.

pi = K · Hinit · P i (6.2)

The LiDAR-image is then computed using a z-buffer approach to determine the visibility

of points along the same projection line. Since Equation (6.2) can be computationally

expensive for large maps, we perform the projection only for a sub-region cropped around

Hinit, ignoring also points that lay behind the virtual image plane. In Figure 6.2a is

depicted an example of LiDAR-image.

Occlusion Filtering. The projection of a point cloud into an image plane can produce

unrealistic depth images. For instance, the projection of occluded points, e.g., laying

behind a wall, is still possible due to the sparsity nature of point clouds. To avoid this

problem, we adopt the point clouds occlusion estimation filter presented in [217]; an

example of the effect of this approach is depicted in Figure 6.2b. For every point Pi, we

can build a cone, about the projection line towards the camera, that does not intersect

any other point. If the cone has an aperture larger than a certain threshold Th, the point

Pi is marked as visible. From a technical perspective, for each pixel pj with a non-zero

depth in the LiDAR-image, we compute the normalized vector ~v from the corresponding

3D point Pj to the pin-hole. Then, for any 3D point Pi whose projection pi lays in a

neighborhood (of size KxK) of pj , we compute the vector ~c = Pi−Pj

‖Pi−Pj‖ and the angle ϑ

between the two vectors ~v and ~c (ϑ = arccos(~v · ~c)). This angle is used to assess the

visibility of Pj . Occluded pixels are then set to zero in the LiDAR-image. More details

108 Chapter 6. Camera to map registration for 6 DoF localization

(a) Without Occlusion Filter

(b) With Occlusion Filter

Figure 6.2: Top: a LiDAR-image with the associated RGB overlay. Please note how the points
behind the building on the right, i.e., lighter points on the fence, are projected into
the LiDAR-image. Bottom: an example of the occlusion filtering effect. Color codes
distance from close (blue) to far point (red).

are available in [217].

Both the z-buffer and the occlusion filter were implemented in CUDA, allowing for

realtime execution of the whole system.

6.2.2 Network Architecture

PWC-Net [17] was used as baseline, and we then made some changes to its architecture.

We chose this network because PWC-Net has been designed to predict the optical flow

between a pair of images, i.e., to find matches between them. Starting from a rough

camera localization estimate, our insight is to exploit the correlation layer of PWC-Net

and its ability to match features from different points of view to regress the correct

6-DoF camera pose.

We applied the following changes to the original architecture.

• First, as our inputs are a depth and an RGB image (instead of two RGB images),

6.2. Proposed Approach 109

we decoupled the feature pyramid extractors by removing the weights sharing.

• Then, as we aim to perform pose regression, we removed the up-sampling layers,

attaching the fully connected layers just after the first cost volume layer.

Regarding the regression part, we added one fully connected layer with 512 neurons

before the first optical flow estimation layer (conv6_4 in PWC-Net), followed by two

branches for handling rotations and translations. Each branch is composed of two stacked

fully connected layers, the first with 256 neurons while the second with 3 or 4 neurons,

for translation and rotation respectively.

Given an input pair composed of an RGB image I and a LiDAR-image D, we used the

loss function in Equation (6.3), where Lt(I, D) is the translation loss and Lq(I, D) is

the rotation loss.

L(I, D) = Lt(I, D) + Lq(I, D) (6.3)

For the translation we used a smoothL1 loss [96]. Regarding the rotation loss, even

though many approaches in the literature use the Euclidean distance, this distance does

not provide a significant measure to describe the difference between two orientations.

Instead, we used the angular distance between quaternions, defined as follows:

Lq(I, D) = Da(q ∗ inv(q̃)) (6.4)

Da(m) = atan2(
√

b2
m + c2

m + d2
m, |am|) (6.5)

Here, q is the ground truth rotation quaternion, q̃ represents the predicted normalized

quaternion, inv is the inverse operation for quaternions, {am, bm, cm, dm} are the com-

ponents of a quaternion m and ∗ is the multiplicative operation of two quaternions.

In order to use Equation (6.4) as a loss function, we need to ensure that it is dif-

ferentiable for every possible output of the network. Recalling that atan2(y, x) is not

differentiable for y = 0 ∧ x ≤ 0, and the fact that q̃ is a unit quaternion (‖q‖2 = 1), we

can easily verify that Equation (6.5) is differentiable in S3.

6.2.3 Iterative Refinement

When the initial pose strongly deviates with respect to the camera frame, the map pro-

jection produces a LiDAR-image that shares just a few correspondences with the camera

image. In this case, the camera pose prediction task is hard, because the CNN lacks the

110 Chapter 6. Camera to map registration for 6 DoF localization

required information to compare the two points of view. It is therefore quite likely that

the predicted camera pose is not accurate enough. Taking inspiration from [216], we

propose an iterative refinement approach. In particular, we trained different CNNs by

considering descending error ranges for both the translation and rotation components

of the initial pose. Once a LiDAR-image is obtained for a given camera pose, both the

camera and the LiDAR-image are processed, starting from the CNN that has been trained

with the largest error range. Then, a new projection of the map points is performed,

and the process is repeated using a CNN trained with a reduced error range. Repeating

this operation n times is possible to improve the accuracy of the final localization. The

improvement is achieved thanks to the increasing overlap between the scene observed

from the camera and the scene projected in the nth LiDAR-image.

6.2.4 Training Details

We implemented CMRNet using the PyTorch library [218], and a modified version of

the official PWC-Net implementation, as explained in Section 6.2.2. Regarding the

activation function, we used a leaky ReLU with a negative slope of 0.1 as non-linearity.

Finally, CMRNet was trained from scratch for 300 epochs using the ADAM optimizer

with default parameters, weight decay of 5 ∗ 10−6, and a batch size of 24 on a single

NVidia GTX 1080ti. The initial learning rate was set to 0.0001 and halved after epochs

20, 50 and 70.

6.3 Experimental Evaluation

This section describes the evaluation procedure we adopted to validate CMRNet, in-

cluding the used dataset, the assessed system components, the iterative refinements and

finally the generalization capabilities.

We wish to emphasize that, in order to assess the performance of CMRNet itself, in

all the performed experiments each input was processed independently, i.e., without any

tracking or temporal integration strategy.

6.3.1 Dataset

We tested the localization accuracy of our method on the KITTI dataset and on the

RobotCar dataset.

6.3. Experimental Evaluation 111

For the KITTI dataset, we used the sequences 00, 03, and from 05 to 09 of the

odometry sequences (for a total of 16 238 frames). We employed a leave-one-out cross

validation approach, i.e., for each sequence we used the other six sequences as training,

and we tested the localization performance on the left-out sequence. Note that every

sequence is spatially separated from the others thus the network is always tested in

scenes never seen during the training phase. Since the accuracy of the provided GPS-

RTK ground truth is not sufficient for our task (the resulting map is not aligned nearby

loop closures), we used a LiDAR-based SLAM system to obtain consistent trajectories.

The resulting poses are used to generate a down-sampled map with a resolution of 0.1 m.

This choice is the result of our expectations on the format of HD-maps that will be soon

available from map providers [206].

Since the images from the KITTI dataset have different sizes (varying from 1224x370

to 1242x376), we padded all images to 1280x384, in order to match the CNN architecture

requirement, i.e., width and height multiple of 64. Note that we first projected the map

points into the LiDAR-image and then we padded both RGB and LiDAR-image, in order

not to modify the camera projection parameters.

Concerning the RobotCar dataset, we considered a total of 42 runs, in particular we

used the same runs of [219] except that we removed the three runs recorded during night.

For each run, an image is stored every five meters of the vehicle’s movement, only for the

central camera (for a total of 51 927 frames). The RobotCar dataset contains different

runs obtained by traversing the same path multiple times over a year, thus including

changes in scene structure, lights and season. In this case, we geographically divided

the path into different non overlapping regions, using four regions for validating and the

rest for training. In particular, we used the same regions defined in [219]. Differently

from the KITTI dataset, that provides LiDAR data from a Velodyne with 64 channels,

the RobotCar dataset provided only single-channel SICK sensors. Therefore, the result-

ing maps contain fewer points than KITTI maps, and no down-sampling preprocess is

needed. The images from the RobotCar dataset have shape of 960x1280, therefore the

CNN requirement is already satisfied, and no padding is needed.

To simulate a noisy initial pose estimate Hinit, we applied, independently for each

input, a random translation and rotation to the ground truth camera pose. In particular,

for each component, we added a uniformly distributed noise in the range of [-2 m, +2

m] for the translation and [−10◦, +10◦] for the rotation.

112 Chapter 6. Camera to map registration for 6 DoF localization

Finally, we applied the following data augmentation scheme: first, we randomly

changed the image brightness, contrast and saturation (all in the range [0.9, 1.1]). Then

we randomly mirrored the image horizontally, and last we applied a random image rota-

tion in the range [−5◦, +5◦] along the optical axis. The 3D point cloud was transformed

accordingly.

Both data augmentation and the selection of Hinit take place at run-time, leading to

different LiDAR-images for the same RGB image through the epochs.

6.3.2 System Components Evaluation

We evaluated the performances of CMRNet by assessing the localization accuracy, vary-

ing different sub-components of the overall system. In order to reduce the computational

effort, we evaluated these tests only on the sequence 00 of the KITTI dataset (using the

other sequences of the KITTI dataset as training). Moreover, the noise added to the

poses on the validation set was kept fixed in all the experiments of this section, allowing

for a fair comparison of the performances. Among the different sub-components of the

system, the most significative are shown in Table 6.1, and derive from the following

operational workflow.

First, we evaluated the best CNN to be used as backbone, comparing the performances

of state-of-the-art approaches, namely PWC-Net, ResNet18 and RegNet [3, 17, 216].

According to the performed experiments, PWC-Net maintained a remarkable superiority

with respect to RegNet and ResNet18 and therefore was chosen as a starting point for

further evaluation.

Thereafter, we estimated the effects in modifying both inputs, i.e., camera images

and LiDAR-images. In particular, we added a random image mirroring and experimented

different parameter values influencing the effect of the occlusion filtering presented in

Section 6.2.1, i.e., size K and threshold Th.

At last, the effectiveness of the rotation loss proposed in Section 6.2.2 was evaluated

with respect to the commonly used L1 loss. The proposed loss function achieved a

relative decrease of rotation error of approximately 35%.

6.3.3 Iterative Refinement

In order to improve the localization accuracy of our system, we tested the iterative

approach explained in Section 6.2.3. In particular, we trained three instances of CMRNet

6.3. Experimental Evaluation 113

Table 6.1: Parameter Estimation

Occlusion Error

Backbone K Th Mirroring Rot. Loss Transl. Rot.

RegNet - - ✗ Da 0.64 m 1.67◦

ResNet18 - - ✗ Da 0.60 m 1.59◦

PWC-Net 11 3.9999 ✗ Da 0.52 m 1.50◦

PWC-Net 13 3.9999 ✗ Da 0.51 m 1.43◦

PWC-Net 5 3.0 ✗ Da 0.47 m 1.45◦

PWC-Net 5 3.0 ✓ Da 0.46 m 1.36◦

PWC-Net 5 3.0 ✓ L1 0.46 m 2.07◦

Median localization accuracy varying different sub-components of the overall system. K and Th corre-
spond to the occlusion filter parameters as described in Section 6.2.1.

varying the maximum error ranges of the initial camera poses. To assess the robustness

of CMRNet, we repeated the localization process for 10 times using different noises on

the initial position estimates. The averaged results are shown in Tables 6.2 and 6.3,

for the KITTI and the RobotCar dataset respectively, together with the correspondent

ranges used for training each network. While Table 6.2 shows the overall results on all

the KITTI odometry sequences, in Table 6.6 we reported the results on each sequence

separately. We believe that the better results obtained in the RobotCar dataset are

due to the higher density of the points in the map (since no subsample operation was

performed). In order to confirm these thoughts, we tested the localization performances

of CMRNet on the sequence 00 of the KITTI dataset varying the density of the points

in the LiDAR-map. The results reported in Table 6.5 show a decrease of the accuracy

when the density of the points is reduced. Although this is a preliminary test, and can

not prove our statement, the results support our supposition.

Moreover, in order to compare the localization performances with the state-of-the-art

monocular localization in LiDAR maps [213], we calculated mean and standard deviation

for both rotation and translation components over 10 runs on the sequence 00 of the

KITTI odometry dataset. Our approach shows comparable values for the translation

component (0.33 ± 0.22 m compared to 0.30 ± 0.11 m), with a lower rotation errors

(1.07 ± 0.77◦ compared to 1.65 ± 0.91◦). Nevertheless, it is worth to note that our

approach still does not take advantage of any pose tracking procedure nor multi-frame

114 Chapter 6. Camera to map registration for 6 DoF localization

Table 6.2: Iterative Pose Refinement — KITTI

Initial Error Range Localization Error

Transl. [m] Rot. [deg] Transl. [m] Rot. [deg]

Iteration 1 [-2, +2] [−10, +10] 0.54 1.62

Iteration 2 [-1, +1] [−2, +2] 0.35 1.29

Iteration 3 [-0.6, +0.6] [−2, +2] 0.32 1.25

Median localization error at each step of the iterative refinement on all the sequences of the KITTI
odometry dataset (sequences 00, 03, and 05 to 09). The results are averaged over 10 different initial pose
estimation for each frame.

Table 6.3: Iterative Pose Refinement — RobotCar

Initial Error Range Localization Error

Transl. [m] Rot. [deg] Transl. [m] Rot. [deg]

Iteration 1 [-2, +2] [−10, +10] 0.28 0.64

Iteration 2 [-1, +1] [−2, +2] 0.15 0.38

Iteration 3 [-0.3, +0.3] [−1, +1] 0.11 0.25

Median localization error at each step of the iterative refinement on the RobotCar dataset averaged over
10 runs.

analysis.

Some qualitative examples of the localization capabilities of CMRNet with the latter

iteration scheme are depicted in Figures 6.3 and 6.4, on the KITTI and RobotCar dataset

respectively.

In Figure 6.5 we illustrate the probability density functions (PDF) of the localization

error on the KITTI dataset, decomposed into the six components of the pose, for the

three iterations of the iterative refinement. It can be noted that the PDF of even the first

network iteration approximates a Gaussian distribution and following iterations further

decrease the variance of the distributions.

Analysis of the runtime performances on both datasets using this configuration are

shown in Table 6.4. Since the images in the RobotCar dataset are bigger than the ones

in KITTI, the inference time for the RobotCar dataset is higher, but CMRNet still

maintains realtime capabilities.

6.3. Experimental Evaluation 115

Table 6.4: Runtime Performances

Z-Buffer Occlusion Filter CMRNet Total

KITTI 8.9 ms 1.4 ms 4.6 ms 14.7 ms (∼68 Hz)

RobotCar 8.0 ms 1.8 ms 8.6 ms 18.4 ms (∼55 Hz)

In the table, an analysis of the time performances of the system steps for a single iteration, on both
datasets, i.e., 44.1 ms and 55.2 ms for the 3-stages iterative refinement. All the code was developed in
CUDA, achieving 68 fps runtime performances on the KITTI dataset and 55 fps on RobotCar. CPU-
GPU transfer time was not here considered.

Table 6.5: Points Density Test

Density 10 cm Density 15 cm Density 20 cm

Tr. [m] Rot. [deg] Tr. [m] Rot. [deg] Tr. [m] Rot. [deg]

Iteration 1 0.48 1.45 0.61 1.65 0.68 1.68

Iteration 2 0.31 1.15 0.39 1.33 0.48 1.42

Iteration 3 0.28 1.11 0.33 1.21 0.41 1.30

This table shows the performances of CMRNet on the sequence 00 of the KITTI dataset varying the
density of the points in the LiDAR-map. Please note that the initial error ranges for the 3 iterations are
the same used in Table 6.2.

116 Chapter 6. Camera to map registration for 6 DoF localization

T
a
b

le
6

.6
:

Iterative
P

ose
R

efinem
ent

—
K

IT
T

I

Seq
00

Seq
03

Seq
05

Seq
06

Seq
07

Seq
08

Seq
09

T
r.

R
ot.

T
r.

R
ot.

T
r.

R
ot.

T
r.

R
ot.

T
r.

R
ot.

T
r.

R
ot.

T
r.

R
ot.

Iteration
1

0.48
1.45

0.71
1.61

0.55
1.66

0.62
1.91

0.42
1.35

0.56
1.66

0.62
1.96

Iteration
2

0.31
1.15

0.48
1

.4
6

0.39
1.54

0
.4

8
1.29

0.26
0.98

0.34
1

.3
3

0.39
1.37

Iteration
3

0
.2

8
1

.1
1

0
.4

2
1.50

0
.3

5
1

.5
4

0.51
1

.2
4

0
.2

5
0

.8
6

0
.3

1
1

.3
3

0
.3

4
1

.3
1

M
ed

ia
n

lo
ca

liza
tio

n
erro

r
a
t

ea
ch

step
o
f

th
e

itera
tiv

e
refi

n
em

en
t

o
n

th
e

K
IT

T
I

seq
u

en
ces.

T
h

e
in

itia
l

erro
rs

ra
n

g
es

a
re

[±
2

m
,

±
1
0

◦]
fo

r
th

e
fi

rst
itera

tio
n

,
[±

1
m

,
±

2
◦]

fo
r

th
e

seco
n

d
a
n

d
[±

0
.6

m
,

±
2

◦]
fo

r
th

e
th

ird

6.3. Experimental Evaluation 117
In

pu
t

C
M

R
N

et
pr

ed
ic

ti
on

G
ro

un
d

tr
ut

h

F
ig

u
re

6
.3

:
F

iv
e

ex
am

pl
es

of
th

e
lo

ca
liz

at
io

n
re

su
lt

s
on

th
e

K
IT

T
I

da
ta

se
t.

Fr
om

le
ft

to
ri

gh
t:

In
pu

t
L

iD
A

R
-i

m
ag

e,
C

M
R

N
et

re
su

lt
af

te
r

th
e

th
ir

d
it

er
at

io
n,

gr
ou

nd
tr

ut
h.

A
ll

L
iD

A
R

-i
m

ag
es

ar
e

ov
er

la
id

w
it

h
th

e
re

sp
ec

ti
ve

R
G

B
im

ag
e

fo
r

vi
su

al
iz

at
io

n
pu

rp
os

e.

118 Chapter 6. Camera to map registration for 6 DoF localization

Input
C

M
R

N
et

prediction
G

round
truth

F
ig

u
re

6
.4

:
T

hree
exam

ples
of

the
localization

results
on

the
R

ob
otC

ar
dataset

in
challenging

situations
(rain,

direct
sunlight,

snow
).

From
left

to
right:

Input
L

iD
A

R
-im

age,
C

M
R

N
et

result
after

the
third

iteration,
ground

truth.
A

ll
L

iD
A

R
-im

ages
are

overlaid
w

ith
the

resp
ective

R
G

B
im

age
for

visualization
purp

ose.

6.3. Experimental Evaluation 119

(a) Longitudinal Errors (b) Lateral Errors

(c) Vertical Errors (d) Roll Errors

(e) Pitch Errors (f) Yaw Errors

Figure 6.5: Iterative refinement error distributions on the sequence 00 of the KITTI dataset.
A PDF has been fitted (using Gaussian kernel density estimation) on the network
error outcome for each iteration step and each component. The dashed red lines
are the theoretic PDFs of the initial Hinit errors.

120 Chapter 6. Camera to map registration for 6 DoF localization

6.3.4 Generalization Capabilities

In order to assess the generalization effectiveness of our approach, we evaluated its

localization performance using a 3D LiDAR-map generated on a different day with respect

to the camera images, yet still of the same environment. This allows us to have a

completely different arrangement of parked cars and therefore to stress the localization

capabilities.

Unfortunately, there is only a short overlap between the sequences of the KITTI

odometry dataset (approx. 200 frames), consisting of a small stretch of roads in common

between sequences “00” and “07”. Even though we cannot completely rely on the results

of this limited set of frames, CMRNet achieved 0.57 m and 0.9◦ median localization

accuracy on this test.

Indeed, it is worth to notice that the network was trained with maps representing the

same exact scene of the respective images, i.e., with cars parked in the same parking

spots, and thus cannot learn to ignore cluttering scene elements.

The RobotCar dataset, on the other hand, would in principle be well suited for testing

the localization errors of CMRNet on maps built on a different day than the query images.

However, the precision of the positions provided with the dataset “varied significantly

during the course of data collection”, and the authors suggest to not use them as “ground

truth for benchmarking localisation and mapping algorithms, especially if using multiple

traversals spaced over many months” [181]. Moreover, due to the single-channel LiDAR

devices provided with the dataset, the alignment of maps taken during different days

through SLAM-like techniques is not a trivial task. Therefore, we were unable to evaluate

CMRNet within maps generated on a different day on the RobotCar dataset.

Thereafter, we evaluated the localization performances of our approach in illumination

condition different from the ones used in the training phase. In particular, we tested

CMRNet in a run of the RobotCar dataset recorded during night-time (run “2014-12-

16-18-44-24”). Even though the network was trained only with images recorded during

day-time, CMRNet achieved 0.34 m and 0.91◦ median localization accuracy in this test.

Some qualitative examples of this test are depicted in Figure 6.6. The great localization

performances achieved by our approach during night-time demonstrate the robustness

of CMRNet to illumination variations.

6.3. Experimental Evaluation 121

In
pu

t
C

M
R

N
et

pr
ed

ic
ti

on
G

ro
un

d
tr

ut
h

F
ig

u
re

6
.6

:
T

hr
ee

ex
am

pl
es

of
th

e
lo

ca
liz

at
io

n
re

su
lt

s
on

th
e

R
ob

ot
C

ar
da

ta
se

t
du

ri
ng

ni
gh

tt
im

e.
P

le
as

e
no

te
th

at
C

M
R

N
et

w
as

tr
ai

ne
d

on
ly

w
it

h
im

ag
es

re
co

rd
ed

du
ri

ng
da

yt
im

e.
Fr

om
le

ft
to

ri
gh

t:
In

pu
t

L
iD

A
R

-i
m

ag
e,

C
M

R
N

et
re

su
lt

af
te

r
th

e
th

ir
d

it
er

at
io

n,
gr

ou
nd

tr
ut

h.
A

ll
L

iD
A

R
-i

m
ag

es
ar

e
ov

er
la

id
w

it
h

th
e

re
sp

ec
ti

ve
R

G
B

im
ag

e
fo

r
vi

su
al

iz
at

io
n

pu
rp

os
e.

122 Chapter 6. Camera to map registration for 6 DoF localization

6.4 Conclusions

In this chapter, we described CMRNet, a CNN-based approach for camera to LiDAR-

map registration. The runtime performances of the proposed approach allow multiple

specialized instances of CMRNet to be stacked to improve the final camera localization,

yet preserving realtime requirements. The results have shown that our proposal is able

to localize the camera with a median less than 0.32 m and 1.25◦ on the KITTI odometry

datasets and 0.11 m and 0.25◦ on the Oxford RobotCar dataset. Therefore, CMRNet

achieved “lane-level” localization accuracies in urban environments even in challenging

conditions (e.g., night, snow, direct sunlight). Moreover, since the error distributions

(depicted in Figure 6.5) reveal a similarity with Gaussian distributions, we expect to be

able to benefit from standard filtering techniques aimed to probabilistically tackle the

uncertainties over time. Since the proposed method does not learn the map, but learns

how to perform the registration, it is suitable for being used with large-scale HD-maps.

Moreover, we proposed a new angular loss for the rotation components that achieved a

relative rotation errors reduction of approximately 35%.

Chapter 7

Visual place recognition within HD-maps

So far in this thesis, we have addressed the local localization task in challenging envi-

ronments. In particular, in Chapters 3 to 5 we leveraged topological maps (the OSM

service) to localize a vehicle in highway-like and urban environments by exploiting high-

level features such as ego-lane, road intersections, and buildings. In Chapter 6, instead,

we proposed a realtime CNN-based approach to localize a single camera image within

LiDAR-maps. Recalling that local localization techniques require an initial position esti-

mate to be known, all the approaches proposed so far require a rough position as input.

Usually, this rough position can be obtained using GNSSs, which provides a global lo-

calization. However, the reliability of GNSSs is often inadequate for autonomous driving

applications, especially in urban environments and indoor areas (e.g., indoor parking).

Signals from satellites might be blocked by buildings or bridges, for example, leading to

no position estimates at all. Being able to provide a “global” localization, when GNSSs

are not available, require further scene understanding techniques.

A common way to solve the latter problem is to use “visual place recognition” ap-

proaches [220–223]. These approaches aim to localize a query image by comparing it

with a prerecorded database of geo-referenced images. If the most similar image retrieved

by the approach depicts the same place of the query image, the retrieval is considered

correct, and the position of the retrieved image serves as a rough global localization.

The authors in [61], instead, proposed to utilize visual odometry and the road graph

from the OSM service to globally localize a vehicle at city-scale. An extension of the

latter approach that also utilizes sun direction, presence of an intersection, road type

(highway or non-highway), and speed limits was proposed in [224]. Both approaches,

however, require an image sequence of about 20 seconds of driving before estimating the

vehicle’s localization, and therefore they are not suitable for fully autonomous vehicles.

123

124 Chapter 7. Visual place recognition within HD-maps

Recent machine learning approaches, mainly based on CNNs or random forests, tackle

the localization problem in a single step by regressing the robot’s position using only a

single RGB image [21, 23, 209], without any map or prior information about its position.

However, they have important limitations. First, they require a huge amount of images

of the environment to train the model, and second, they achieved good performances

only in small environments (e.g., a room or a small outdoor area of few tens of meters).

Moreover, these approaches can not be used to obtain a localization in scenes that were

not represented in the training set, since the model learns to perform localization only

with respect to the specific places used during the training phase. Therefore, for new

locations, the acquisition of a new dataset, together with a re-training of the model are

required. This characteristic makes these methods not suitable for autonomous road

vehicles.

As we stated in Chapter 6, our research is now focused on localization with respect

to HD-maps. To effectively exploit the forthcoming market of these maps, however, we

need a reliable method to perform global localization within HD-maps in GNSSs-denied

environments. Existing approaches for global localization within LiDAR-maps only ex-

ploit LiDAR sensors onboard the vehicle, and perform the localization by means of point

cloud registration algorithms [203, 225, 226] or LiDAR place recognition techniques [219,

227, 228].

How to perform global visual localization with respect to LiDAR-maps when GNSSs

are not available is still an open question, even though the path toward high definition

3D maps, produced mainly from LiDAR sensors, is clear. In this chapter we propose

a novel DNN-based approach to the global visual localization problem, i.e., to localize

an RGB image in a previously built geometric 3D map of an urban area. Specifically,

we propose to jointly train two DNNs, one for the images and the other for the point

clouds, in order to generate a shared embedding space for the two types of data. This

embedding space allows us to perform place recognition with heterogeneous sensors. In

fact, an image query with respect to a point cloud database is just one of the possibilities.

Besides allowing localization on a geometric map using visual information, our proposal

does not need to be trained for every new environment. Instead, the neural networks

are trained with samples from many different areas. In this way, the networks learn

to associate similar descriptors to images and point clouds representing the same place.

Therefore, our approach can associate an image, i.e., the query, to the corresponding

7.1. Related Work 125

point cloud, among those that constitute the map of the area, i.e., the database. An

extensive experimental activity is presented to assess the effectiveness of the approach

with respect to different learning methods, network architectures, and loss functions.

All the evaluations have been performed using the Oxford RobotCar Dataset, which

encompasses a wide range of weather and light conditions. To the best of our knowledge,

this is the first approach for global visual localization within city-scale 3D-LiDAR map.

7.1 Related Work

Historically, visual place recognition represents a relevant problem for the computer

vision community. The aim of this task is to decide whether and where a place, observed

in an image, has already been observed within a set of geo-referenced images. This is

relevant in mobile robotics, as it may serve as a starting point for local localization

systems, or to detect loop closures in SLAM systems [229, 230].

Traditional methods involve an offline pre-computation of image descriptors for the

images of a database of images, which are then compared online against the descriptors of

a query image, to retrieve the most similar place. Methods to perform place recognition

were based on approaches such as bag of words [220], which exploit handcrafted-features

(e.g., SIFT and SURF [43, 44]), visual vocabulary [221], and query expansion [222].

More recently, methods that exploit deep learning techniques have been proposed. As

an example, the authors in [223] exploited a CNN-based feature extractor and proposed a

specific pooling layer, named NetVlad, designed for place recognition, which was inspired

by the Vector of Locally Aggregated Descriptors (VLAD) [231].

The definition of discriminative descriptors represents a fundamental step of the place

recognition task. Within machine learning methodologies, this task is usually performed

using metric learning techniques. The goal of metric learning is to find an appropriate

distance (or similarity) function for a specific task, by inferring such function from the

data. In order to learn non-linear distance functions, a common way is to instead

learn a non-linear mapping from the inputs to a feature space, and then compute the

similarity through a “simple” distance function (such as Euclidean or cosine). The

resulting feature space is called embedding space, and the descriptors take the name of

Embedding Vectors (EVs). We also want such embedding space to be low-dimensional,

so to perform fast comparison between samples. In recent years, a common trend is to

learn this non-linear mapping using DNNs, in this case we talk about deep metric learning.

126 Chapter 7. Visual place recognition within HD-maps

A possible method to train such DNNs, named contrastive, provides sample pairs to a

model by considering two cases: either the two samples represent the same concept or

distinct ones [232]. This training method tries to minimize the distance between EVs of

the same class while penalizing small distances between EVs of different classes. Another

similar technique consists in comparing triplets of samples, which are organized such

that a given input is associated with a positive sample and a negative one. In particular,

positive samples represent the same concept of the input, while the negative samples

belong to a different one. Different approaches extended the triplet embedding method

by considering multiple negative samples at once instead of a single one [233, 234].

Although place recognition is a task traditionally reserved to vision-based systems,

recently a DNN-based approach that performs place recognition on LiDAR-maps has been

proposed [219]. Their insight was to exploit the strong independence of LiDAR data with

respect to lighting conditions. This method, named PointNetVLAD, matches an input

point cloud, e.g., acquired from a vehicle, to another one among those contained in a

database representing a large urban area. It can match (the point cloud of) a LiDAR scan

to a location in a LiDAR-map of a large urban area. PointNetVLAD uses PointNet [110]

as feature extractor, and NetVlad [223] to compute the descriptors.

To the best of our knowledge, the only work in the literature that treats the problem of

image and LiDAR-map descriptors matching, using a metric learning approach, has been

proposed in [235]. In their work a neural network, named 2D3D-MatchNet, performs

descriptors extraction from 2D image patches and 3D LiDAR patches. The objective is to

perform the metric localization of a camera through 2D to 3D patch matching. Although

a neural network is used to compute the descriptors, 2D key-points are detected from

images using the detector in the SIFT software, while 3D key-points are extracted from

the point clouds using Intrinsic Shape Signatures [236]. The key-points are then used

to define the patches used for computing the descriptors, from images and LiDAR-maps.

The localization is finally computed solving a Perspective-n-Point (PnP) problem. Their

work is limited also in that they do not handle LiDAR-maps whose extension is larger

than a few tens of meters, which is not global localization.

There are many other contributions in the literature, which match image descriptors

to 3D maps, but they refer to maps produced by SfM approaches, where one or more

image descriptors are attached to the 3D-reconstructed points. On the other hand, we

need to handle descriptor-less point clouds, as naturally coming from LiDAR sensors.

7.2. Proposed Approach 127

Despite the results obtained on images, the field of neural networks for 3D data pro-

cessing is not largely explored and DNNs for 3D LiDAR data have appeared only recently.

Moreover, a neural network that can handle very large point clouds, such as those repre-

senting cities, still does not exist. Therefore, the selection of a model that can generate

effective EVs from LiDAR maps is still an open problem. The first approaches that pro-

cessed point clouds with DNNs [108, 109] first converted the cloud into a 3D occupancy

grid, and then applied 3D CNNs. However, such 3D CNNs are computationally expensive,

limiting the size of the input point clouds. In order to overcome this limitation, the au-

thors in [110] proposed PointNet, a neural network that directly consumes the cloud as

a list of unordered points. PointNet is one of the most influential work on 3D DNNs, that

inspired many subsequent works. For example, PointNet++ [111] added sampling and

grouping strategies to allow local features extraction, while EdgeConv [112] extracted

local geometries by computing a neighborhood graph and using convolution operations

on the edges of the graph. One of the innovations introduced by EdgeConv concerns the

capability of extracting similar features for semantically similar structures of an object.

Another way to overcome the limitations associated with 3D CNNs is to exploit hierarchi-

cal data structures. For instance, Kd-network [113] exploits kd-trees as the underlying

data structure, while O-CNN [114] utilizes the octree representation (Section 2.2.2). A

recent trend for tackling the 3D object detection task is to use a hybrid approach: the

input point cloud is first divided into a voxel grid, and then a PointNet-like DNN ex-

tract a feature vector for each non-empty voxel, by processing all the points that fall in

that voxel. The resulting sparse voxel grid is then processed using 3D and 2D convolu-

tional networks. VoxelNet [103] was the pioneer of this kind of approaches, and achieved

state-of-the-art performances on the KITTI 3D object detection benchmark [179]. The

novelty and the great results achieved by VoxelNet inspired different subsequent works.

For example, SECOND [104] used sparse and submanifold convolutions to reduce the

execution time and improve inference accuracy, while PointPillars [237] used a 2D grid

in the x-y plane instead of a 3D grid.

7.2 Proposed Approach

Differently from visual place recognition techniques, our approach matches a single RGB

image to a database of known-pose point clouds, to retrieve the point cloud representing

the same place of the query image. In order to compare images and point clouds, we

128 Chapter 7. Visual place recognition within HD-maps

propose to learn a shared embedding space where data representing the same place live

close to each other even though they have to be computed from different types of data.

In particular, we propose two DNNs, one for the images and another for the point clouds,

jointly trained to produce similar EVs, when the image and the point cloud come from

the same place.

Our work was inspired by PointNetVLAD [219], which requires a LiDAR device onboard

the vehicle, our approach instead only requires a camera onboard, which is the focus of

this thesis.

More formally, given a query image I and a LiDAR-map M, we can split the map into

multiple overlapping sub-maps mi. We formulate the global localization task as a metric

learning problem: we want to find two mapping functions f(·) and g(·), implemented as

two DNNs such that d(f(I), g(mi)) < d(f(I), g(mj)) when mi represent the same place

where I was taken, and mj does not. d(·) is a distance function, such as the euclidean

distance. The domain of f(·) is the image space (RHxW x3, Height x Width x 3 channels:

RGB), while the domain of g(·) is the point cloud space (RNx3, N points x 3 coordinates:

XY Z). The output of both functions is an EV of fixed length K; therefore the co-domain

is R
K . Once we have found the mappings between the input spaces and the embedding

space, to compute a global localization, i.e., to determine the most similar place, we

have to compare the EV of the query image with the EVs of all the sub-maps mi ∈ M.

7.2.1 2D Network Architecture

The network that computes the EVs from images is composed of two parts. First, a

CNN extracts local features from the input image; then those features are aggregated

to provide a fixed-length EV. Concerning the CNN, we considered some of the most

relevant architectures for the image classification task. In particular, we tested the

following networks: VGG-16 [238] and ResNet-18 [3]. Since we are not interested in the

classification task, we removed the fully connected layers from the latter architectures,

cropping them after the last convolutional layer. For the aggregation step, we tested the

NetVlad layer [223], that was specifically designed for the place recognition task.

7.2.2 3D Network Architecture

Similarly to the 2D CNN architecture, for the 3D network we adopted the same approach:

a DNN-based features extractor followed by a features’ aggregation layer. The best data

7.2. Proposed Approach 129

structures and architectures that allow the extraction of discriminative descriptors from

3D point clouds are not evident in the literature, therefore a comparison between different

architectures was needed. The first 3D feature extractor considered was PointNet [110],

since it was the first 3D DNN approach to directly process point clouds as a list of

points. We also considered one interesting extension of PointNet, named EdgeConv [112].

The latter DNNs require point clouds composed of a fixed number of points, thus a

down-sampling step of the input is necessary. The last option we considered is the

feature extraction layer of SECOND [104]. Since we are not interested in classification

or segmentation tasks, we modified the latter networks as follows:

• PointNet: we cropped the network before the MaxPooling layer;

• EdgeConv: we cropped the segmentation network after the concatenation layer;

• SECOND: we replaced the RPN with an Atrous Spatial Pyramid Pooling (ASPP)

layer [11]

Finally, for the aggregation step, again we used the NetVlad layer.

These models accommodate different representations of the input data (e.g., unordered

lists, graphs, voxel grids), thus we think that providing an evaluation of the existing

approaches is an important step forward for this type of research.

7.2.3 Learning Methods

We propose two different learning methods to create a shared embedding space between

2D and 3D EVs: teacher/student, and combined.

Teacher/Student Training

Given a 2D and a 3D neural network, the teacher/student method first trains one of the

network (the teacher) to create an effective embedding space for a particular task. In a

second step, this pre-trained network will be used to help the second one (the student)

to also generate a similar embedding space, i.e., similar EVs for similar concepts. For

instance, initially a CNN model learns to perform place recognition with images, then

a 3D DNN tries to emulate the CNN descriptors. In this way, the network creates the

embedding space where EVs are defined and the student also tries to generate that space

from a different kind of data.

130 Chapter 7. Visual place recognition within HD-maps

In this work, we first train the 2D network with a triplet loss function [239]: given a

triplet (Ia
i , Ip

i , In
i) composed of an anchor image Ia

i , an image depicting the same place

Ip
i (positive) and an image of a different place In

i (negative), the loss function is defined

as:

L2D-to-2D
trp =

∑

i

[d(f(Ia
i), f(Ip

i)) − d(f(Ia
i), f(In

i)) + m]+ (7.1)

where d(·) is a distance function, f(·) is the 2D network we want to train, [·]+ means

Max(0, [·]), and m is a margin that is enforced between positive and negative distances.

Once the 2D network (teacher) has been trained, the 3D network (student) is trained

to mimic the output of the teacher, so to obtain a Joint Embedding (JE). In this case,

given a pair (Ii, mi) composed of an image Ii and a point cloud mi captured at the same

time, the loss function is:

LJE =
∑

i

d(f(Ii), g(mi)) (7.2)

Please note that, during this step, only the student network g(·) is trained, while the

teacher f(·) is kept fixed.

Combined Training

Alternatively, we propose a combined approach that simultaneously trains both the 2D

and the 3D neural networks, in order to produce the same embedding space. In this

case, the loss function proposed to jointly train both networks is composed of different

components.

Same-Modality metric learning. The first components of the proposed combined loss are

aimed at producing effective EVs for place recognition within the same modality, i.e.,

the same type of sensor data (query image with respect to image database and query

point cloud with respect to point cloud database). The same-modality loss is defined as

follows:

LSM
trp = L2D-to-2D

trp + L3D-to-3D
trp (7.3)

Here, L2D-to-2D
trp is the 2D-to-2D triplet loss defined in Equation (7.1), while the 3D-to-3D

loss L3D-to-3D
trp can be derived similarly.

Cross-Modality metric learning. In order to learn 2D and 3D EVs that live in the same

7.2. Proposed Approach 131

embedding space, we extend the triplet loss to perform cross-modality metric learning:

L2D-to-3D
trp =

∑

i

[d(f(Ia
i), g(mp

i)) − d(f(Ia
i), g(mn

i)) + m]+ (7.4)

L3D-to-2D
trp =

∑

i

[d(g(ma
i), f(Ip

i)) − d(g(ma
i), f(In

i)) + m]+ (7.5)

LCM
trp = L2D-to-3D

trp + L3D-to-2D
trp (7.6)

An example of the L2D-to-3D
trp loss computed on a triplet (Ia

i , mp
i , mn

i) is depicted in

Figure 7.1.

Joint Embedding loss. The last component of the proposed loss tries to minimize the

distance between 2D and 3D EVs recorded at the same time, i.e., we want the EV of a

point cloud to be as close as possible to the EV of the corresponding image. To achieve

this aim we used the joint embedding loss defined in Equation (7.2); however, in this

case both networks f(·) and g(·) are trained.

Full combined loss. The final loss used to jointly train the 2D and 3D networks is a

combination of the aforementioned components (λ1 = 0.1, λ2 = 1, λ3 = 1):

Ltotal = λ1LSM
trp + λ2LCM

trp + λ3LJE (7.7)

7.2.4 Training Details

During the training phase, to mitigate overfitting, we use the following data augmenta-

tion scheme: for the images, we first apply a random color jitter (changing the saturation,

brightness, hue and contrast). Then, we randomly rotate the image within a range of

[−5◦, +5◦]; finally, we apply a random translation on both axes, with a maximum value

of 10% of the size of the image on that axis. Regarding the point clouds, we applied a

random rigid body transformation, with a maximum translation of 1.5 meters on all the

axes, and a maximum rotation of 10◦ around the vertical axis and 2◦ around the lateral

and longitudinal axes. We chose these values to accommodate slightly different points

of view.

Moreover, we applied random horizontal mirroring to the images and, when an image

is mirrored, the relative point cloud is also mirrored. This particular augmentation is

applied before any other data augmentation.

For the implementation we used the PyTorch library [218]. The input images are

132 Chapter 7. Visual place recognition within HD-maps

Figure 7.1: During the training phase, the “triplet” technique considers a positive and a nega-
tive sample with respect to a query. Please note that the weights of the 3D-DNN
and the associated NetVlad layers are shared between the point cloud samples,
meaning that we use the same network.

undistorted and resized to 320x240. The batch size is constructed by randomly selecting

N places and randomly picking two samples of each of the selected places, so to have

N positive pairs within the batch. The negative samples are selected randomly (one for

each positive pair) within the batch.

7.2.5 Inference

Once the DNN models have been trained, the inference of the place recognition is pursued

as follows. First, the 3D LiDAR-map of the environment is split into overlapping sub-

maps and the 3D DNN is used to generate the corresponding EVs. These EVs are then

organized in a specific data structure in order to allow a subsequent fast nearest neighbor

querying, in particular we used a KD-tree approach. Lastly, the localization is performed

by comparing the EV of the query image, generated by the 2D CNN, with respect to the

database. It would of course be possible to reverse the paradigm, i.e., to produce a

dataset of 2D image EVs and then perform queries using the EVs from 3D sub-maps or

7.3. Experimental Evaluation 133

LiDAR scans.

7.3 Experimental Evaluation

This section describes the experiments performed to evaluate the different architectures

and approaches, including the dataset preprocessing task.

7.3.1 Dataset

In order to develop an approach that is robust to challenging environmental conditions

(e.g., scene structure, lights and seasonal changes), we used the Oxford RobotCar [181]

dataset for both training and validation. The KITTI dataset, which we used for eval-

uating the approaches proposed in the previous chapters, is not suitable for the place

recognition task, because the different sequences almost never geographically intersect

each other. The RobotCar dataset, on the other hand, is composed of multiple runs

obtained by traversing the same path multiple times over a year; therefore, it is well

suited for the place recognition task. RobotCar contains geo-referenced LiDAR scans,

images, and GPS data of urban areas. It includes a broad set of weather conditions,

which allowed us to develop a robust approach. For instance, it is possible to test

the place recognition performance by considering different light conditions for images,

and structural changes for the scene, which are reflected in corresponding changes in

the LiDAR-maps, e.g., in the presence of roadworks. RobotCar has also been used for

training and testing PointNetVLAD [219], which inspired our research.

7.3.2 Regions Subdivision and Sub-maps Creation

As in Chapter 6, we considered the same 45 runs used in [219], in this case we also

included the night runs. For each run, an image is stored every five meters and the

corresponding LiDAR sub-map is cropped from the whole map. For each 3D sub-map

we considered a range of 50 meters on each axis. The training and validation sets have

been created by performing a subdivision of the global path in different non-overlapping

regions. The goal here was to make it possible to evaluate the performance in regions

never provided to the neural network during the training phase. In particular, we used

the same four regions that we used in Chapter 6 and defined in [219].

134 Chapter 7. Visual place recognition within HD-maps

7.3.3 Evaluation Metrics

The evaluation of a place recognition approach is usually based on the recall measure.

When the number of samples in the database increases, the difficulty of the operation

increases as well. For this reason, metrics such as recall@k are used, in order to provide a

fair evaluation. The term k represents the number of places that our system determines

to be the most similar with respect to the input query. If at least one of the retrieved k

elements corresponds to the location of the input query, then the retrieval is considered

correct. We fixed k to the 1% of the samples contained in the database in order to ensure

the invariance of the measure with respect to the database size. In our experiments, we

considered two poses to belong to the same place if their distance is less than 20m.

To test the performance of our approach we proceeded as follows. For every possible

pair of distinct runs, again as in [219], we used all samples of the first run as database,

and only the samples within the validation area of the second run as queries. In this

way, we tested our method in places never seen during the training phase. Finally, we

compute the mean of the recall@k metric over all pairs.

7.3.4 Results

We based on the networks proposed in [223] (VGG-16+NetVLAD), and on a modified

version of [104] (SECOND+ASPP+NetVLAD) in order to extract EVs from both 2D and

3D data. We applied the teacher/student learning method with the smooth-L1 distance

function [96], fixing the 2D architecture as teacher, since it represents the state-of-the-art

in the place recognition task with images. In particular, we took a pre-trained version

of the 2D backbone and performed fine-tuning on the Oxford RobotCar dataset.

The results of these experiments are provided in Table 7.1, where we show the per-

formance with respect to all the possible query-database combinations. Even though

our work is mainly focused on the 2D-to-3D modality, we also obtained comparable re-

sults in the 2D-to-2D place recognition modality, and even state-of-the-art performances

for 3D-to-3D. Considering the novelty of the proposed approach, the obtained results

are promising. An important aspect concerns the recall achieved when performing 3D

queries on 3D database: we found that our approach, which exploits SECOND, outper-

forms PointNetVLAD [219] on the same task, as shown in Table 7.2. To perform a fair

comparison we followed an evaluation scheme similar to theirs, considering images and

point clouds with an interval of 20 m (instead of 5 m) for the query runs and 10 m for

7.3. Experimental Evaluation 135

Table 7.1: Best model vs all runs

recall@1%

2D-to-2D 3D-to-2D 2D-to-3D 3D-to-3D

Ours 96,63 70,44 77,28 98,43

recall@1

2D-to-2D 3D-to-2D 2D-to-3D 3D-to-3D

Ours 88,40 29,51 41,92 93,99

recall@5

2D-to-2D 3D-to-2D 2D-to-3D 3D-to-3D

Ours 95,76 54,79 64,34 97,45

In this table we show the retrieval performances (%) of our approach,
computed over all the pairs of runs. We report the recall@1%, recall@1,
and recall@5, in all the four possible modalities, e.g., 2D-to-3D repre-
sents 2D queries with respect to 3D database.

Table 7.2: Comparison with PointNetVLAD [219]

recall@1%

2D-to-2D 3D-to-2D 2D-to-3D 3D-to-3D

Ours 91.19 55.33 67.27 94.44

PNV - - - 80.09

recall@1

2D-to-2D 3D-to-2D 2D-to-3D 3D-to-3D

Ours 81.32 29.92 42.83 88.98

PNV - - - 63.33

Retrieval performances comparison between our approach and Point-
NetVLAD [219]. Both recall@1% and recall@1 are reported.

the database runs, over the same 45 runs, and considering the retrieval as successful if

the retrieved place is within 25 m (instead of 20 m).

136 Chapter 7. Visual place recognition within HD-maps

Table 7.3: Ablation Study

Modality

Test ASPP Mirroring PC Augm. 2D-to-2D 3D-to-2D 2D-to-3D 3D-to-3D

Base ✗ ✗ ✗ 96.67 61.53 73.17 96.92

1 ✓ ✗ ✗ 96.67 65.31 73.99 97.75

2 ✓ ✓ ✗ 96.67 66.30 76.76 97.66

3 ✓ ✓ ✓ 96.67 71.10 79.10 98.44

Retrieval performances (%) of our approach in terms of recall@1% by varying different components of
the system.

Finally, we performed an ablation study to investigate the effect of different compo-

nents of the system. In particular, we tested the system without the data augmentation

techniques (mirroring and point clouds transformation), and without the ASPP. In these

tests, we only considered a subset of 10 runs, to have a quick insight on the effect of the

components. The results, reported in Table 7.3, show that both data augmentation, and

the ASPP bring substantial improvements to the performance.

Furthermore, once we found the combination which provides the best results, we

challenged the robustness of our approach by considering different weather conditions

between EVs database and the queries provided to the trained system. For example, we

generated a database from 3D samples gathered during summer, and then we provide

to the model images acquired during winter. This approach has also been exploited

by considering different lighting conditions. In Figure 7.2 we show the recall@k of the

four modalities with different values of k. In particular, a query run recorded during

summer, one with snow conditions and one recorded during night are compared against

a “overcast” database. Some successful and unsuccessful retrieval examples are depicted

in Figures 7.3 and 7.4 respectively.

7.3.5 Further Improvement Attempts

Having reached satisfactory results, we tried to increase our model’s performance by

varying different sub-components of the system. Starting from the architecture type, we

tested different backbones such as VGG-16 and ResNet18 for what concerns the 2D data,

and PointNet, EdgeConv and SECOND for the 3D data. Furthermore, we investigated

various learning methods together with different loss functions and distance measures.

7.3. Experimental Evaluation 137

Table 7.4: Recall@1% varying different sub-components

Backbone Modality

2D 3D Loss Dist. 2D-to-2D 3D-to-2D 2D-to-3D 3D-to-3D

Resnet18 PointNet (1) MSE 51.13 20.61 9.93 95.30

VGG-16 PointNet (1) MSE 85.51 31.98 51.32 94.53

VGG-16 PointNet (2) MSE 86.62 38.77 53.46 95.61

VGG-16 PointNet (2) Cosine 88.03 36.85 52.16 96.31

VGG-16 PointNet (2) L2 83.38 36.48 47.18 94.64

VGG-16 PointNet (3) L2 96.64 31.33 28.69 92.00

VGG-16 EdgeConv (3) L2 96.60 67.52 59.50 97.21

VGG-16 SECOND (2) MSE 89.27 53.90 59.75 97.10

Loss function are defined as follows: (1) L
SM
trp + L

CM
trp , (2) L

SM
trp + L

CM
trp + L

JE and (3) is the
teacher/student method.

Despite our best efforts, the results in Table 7.4 show that these variations did not

improve the performance of the model, instead they reduced the recall capability of our

system.

138 Chapter 7. Visual place recognition within HD-maps

(c) (d)

Figure 7.2: Recall measures considering up to K = 25 similar places. Here challenging weather
and time conditions, i.e., Snow, Night and Summer (direct sunlight), were com-
pared against an “overcast” database. We also provide the plot of the average recall
using all available dataset runs.

7.3. Experimental Evaluation 139

Figure 7.3: Two successful examples of the proposed approach. Each example depicts the
query image on top left, the top three retrieved point clouds in the middle with the
respective images on the right. Only the point clouds are used for the retrieval, the
images on the right are shown only for visualization purposes. The locations of the
query and of the retrieved point clouds are depicted on bottom left with green and
red pinpoints respectively.

140 Chapter 7. Visual place recognition within HD-maps

Figure 7.4: Two unsuccessful retrieval. See Figure 7.3 for the description of each example. Even
though the approach was unable to retrieve the correct place, in both examples the
scene geometry of the retrieved point clouds is very similar to the one in the query.

7.4. Conclusions 141

7.4 Conclusions

In this chapter, we described a novel DNN-based approach to perform global visual

localization in LiDAR-maps. In particular, we proposed to jointly train a 2D CNN and a

3D DNN to produce a shared embedding space. We trained and validated our DNNs on the

challenging Oxford RobotCar dataset, including all weather conditions, and promising

results show the effectiveness of our approach. We also obtained comparable performance

on 2D-to-2D and state-of-the-art results on 3D-to-3D modalities, although this was not

the focus of our research. To our knowledge, an approach that performs a global visual

localization using LiDAR-maps has never been presented before.

Chapter 8

Conclusions

This thesis presented different approaches for autonomous vehicles’ localization in high-

way and urban environments, using only cheap camera sensors onboard. In the first part

of this thesis, we integrated CNNs and machine learning techniques in different pipelines

for localizing the vehicle with respect to the OSM service by matching high-level features

(road lanes, road intersections, and buildings). In the second part, we proposed two end-

to-end DNN-based approaches for local and global localization, respectively, that matches

a single RGB image with a LiDAR-map of the working environments. The decision to

switch from OSM to LiDAR-maps is that we believe that in the near future, map-making

companies (such as TomTom and HERE) will release the so-called HD-maps. These

maps are specifically designed for autonomous driving applications, and they will pro-

vide a geometric reconstruction similar to the one obtained with LiDAR-maps.

The main contributions of this thesis are listed below.

• We proposed a HMM to estimate the ego-lane of the vehicle in highway-like scenarios

exploiting existing line detectors and trackers. Our model improved the localization

robustness in conditions where lane markings are missing, hidden by traffic clutter,

or difficult to detect because of lighting issues.

• We integrated state-of-the-art CNNs for semantic segmentation and geometric re-

construction in order to detect road geometry and buildings. We matched these

high-level features with their counterparts in OSM to localize the vehicle in a prob-

abilistic fashion by means of a particle filtering technique.

• We introduced CMRNet, a novel end-to-end DNN for vehicle localization in LiDAR-

maps that achieved lane-level localization accuracy in challenging conditions (such

as rain, snow, and night). Differently from state-of-the-art DNN-based approaches

143

144 Chapter 8. Conclusions

for camera localization, CMRNet does not learn the map, but instead it learns to

match images to the map. Therefore, it can be used in any environment for which a

LiDAR-map is available. Moreover, CMRNet achieved real-time capabilities, make

it suitable for autonomous driving applications.

• Finally, we proposed a novel DNN-based technique for global visual localization in

LiDAR-maps. We jointly trained two DNNs, one for images and the other for point

clouds, to create a shared embedding space. This embedding space allows us to

perform place recognition with heterogeneous sensors.

Bibliography

[1] W. H. Organization. Global status report on road safety 2018. 2018. url: https:

//www.who.int/violence_injury_prevention/road_safety_status/2018/

en/.

[2] Y. Gu, L. T. Hsu, and S. Kamijo. “GNSS/Onboard Inertial Sensor Integration

With the Aid of 3-D Building Map for Lane-Level Vehicle Self-Localization in Ur-

ban Canyon”. In: IEEE Transactions on Vehicular Technology 65.6 (June 2016),

pp. 4274–4287.

[3] K. He et al. “Deep residual learning for image recognition”. In: IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778.

[4] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks for

biomedical image segmentation”. In: International Conference on Medical image

computing and computer-assisted intervention. Springer. 2015, pp. 234–241.

[5] Y. Kim. “Convolutional Neural Networks for Sentence Classification”. In: Pro-

ceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP). 2014, pp. 1746–1751.

[6] D. Silver et al. “Mastering the game of Go with deep neural networks and tree

search”. In: nature 529.7587 (2016), p. 484.

[7] S. Ren et al. “Faster r-cnn: Towards real-time object detection with region pro-

posal networks”. In: Advances in neural information processing systems. 2015,

pp. 91–99.

[8] J. Redmon and A. Farhadi. “YOLO9000: better, faster, stronger”. In: IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 7263–

7271.

[9] W. Liu et al. “Ssd: Single shot multibox detector”. In: European conference on

computer vision. Springer. 2016, pp. 21–37.

145

146 Bibliography

[10] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for semantic

segmentation”. In: IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR). 2015, pp. 3431–3440.

[11] L.-C. Chen et al. “Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs”. In: IEEE Transactions on

Pattern Analysis and Machine Intelligence (2018).

[12] H. Zhao et al. “Pyramid scene parsing network”. In: IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). 2017.

[13] X. Cheng, P. Wang, and R. Yang. “Learning depth with convolutional spatial

propagation network”. In: arXiv preprint arXiv:1810.02695 (2018).

[14] Z. Yin, T. Darrell, and F. Yu. “Hierarchical Discrete Distribution Decomposition

for Match Density Estimation”. In: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 2019, pp. 6044–6053.

[15] J.-R. Chang and Y.-S. Chen. “Pyramid stereo matching network”. In: IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR). 2018, pp. 5410–

5418.

[16] J. Pang et al. “Cascade residual learning: A two-stage convolutional neural net-

work for stereo matching”. In: Workshop on Geometry Meets Deep Learning (IC-

CVW 2017). 2017.

[17] D. Sun et al. “PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and

Cost Volume”. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). June 2018.

[18] A. Dosovitskiy et al. “Flownet: Learning optical flow with convolutional net-

works”. In: IEEE International Conference on Computer Vision (ICCV). 2015,

pp. 2758–2766.

[19] E. Ilg et al. “Flownet 2.0: Evolution of optical flow estimation with deep net-

works”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2017, pp. 2462–2470.

[20] W.-C. Ma et al. “Deep Rigid Instance Scene Flow”. In: IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2019, pp. 3614–3622.

Bibliography 147

[21] A. Kendall, M. Grimes, and R. Cipolla. “PoseNet: A Convolutional Network for

Real-Time 6-DOF Camera Relocalization”. In: IEEE International Conference

on Computer Vision (ICCV). Dec. 2015.

[22] S. Brahmbhatt et al. “Geometry-Aware Learning of Maps for Camera Localiza-

tion”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2018.

[23] N. Radwan, A. Valada, and W. Burgard. “VLocNet++: Deep Multitask Learning

for Semantic Visual Localization and Odometry”. In: IEEERobotics and Automa-

tion Letters 3.4 (2018), pp. 4407–4414.

[24] J. Levinson and S. Thrun. “Robust vehicle localization in urban environments

using probabilistic maps”. In: IEEE International Conference on Robotics and

Automation (ICRA). May 2010, pp. 4372–4378.

[25] E. D. Dickmanns and B. D. Mysliwetz. “Recursive 3-D Road and Relative Ego-

State Recognition”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 14.2 (1992), pp. 199–213.

[26] D. Pomerleau. “RALPH: rapidly adapting lateral position handler”. In: Proc.

Intell. Veh. ’95 Symp. 1995, pp. 506–511.

[27] A. Broggi et al. “The ARGO autonomous vehicle’s vision and control systems”.

In: International Journal of Intelligent Control and Systems 3.4 (1999), pp. 409–

441.

[28] S. Thrun et al. “Stanley: The robot that won the DARPA Grand Challenge”. In:

Journal of field Robotics 23.9 (2006), pp. 661–692.

[29] C. Urmson et al. “Autonomous driving in urban environments: Boss and the

urban challenge”. In: Journal of Field Robotics 25.8 (2008), pp. 425–466.

[30] M. Nájar et al. “Mobile location with bias tracking in non-line-of-sight”. In: IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

Vol. 3. IEEE. 2004, pp. iii–956.

[31] J. M. Huerta et al. “Joint particle filter and UKF position tracking in severe non-

line-of-sight situations”. In: IEEE Journal of Selected Topics in Signal Processing

3.5 (2009), pp. 874–888.

148 Bibliography

[32] Y. Ng and G. X. Gao. “Direct position estimation utilizing non-line-of-sight

(NLOS) GPS signals”. In: ION GNSS. 2016, pp. 1279–1284.

[33] M. Adjrad and P. D. Groves. “Intelligent urban positioning using shadow match-

ing and GNSS ranging aided by 3D mapping”. In: Institute of Navigation (ION).

2016.

[34] D. M. Cole and P. M. Newman. “Using laser range data for 3D SLAM in outdoor

environments”. In: IEEE International Conference on Robotics and Automation

(ICRA). IEEE. 2006, pp. 1556–1563.

[35] A. Nüchter et al. “6D SLAM—3D mapping outdoor environments”. In: Journal

of Field Robotics 24.8-9 (2007), pp. 699–722.

[36] R. Mur-Artal and J. D. Tardós. “Orb-slam2: An open-source slam system for

monocular, stereo, and rgb-d cameras”. In: IEEE Transactions on Robotics 33.5

(2017), pp. 1255–1262.

[37] C. Kerl, J. Sturm, and D. Cremers. “Dense visual SLAM for RGB-D cameras”. In:

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE. 2013, pp. 2100–2106.

[38] J. Engel, T. Schöps, and D. Cremers. “LSD-SLAM: Large-scale direct monocular

SLAM”. In: European conference on computer vision. Springer. 2014, pp. 834–

849.

[39] M. Pauly, M. Gross, and L. P. Kobbelt. “Efficient simplification of point-sampled

surfaces”. In: Proceedings of the conference on Visualization’02. IEEE Computer

Society. 2002, pp. 163–170.

[40] C. Moenning and N. A. Dodgson. “A new point cloud simplification algorithm”.

In: Proc. Int. Conf. on Visualization, Imaging and Image Processing. 2003, pp. 1027–

1033.

[41] C. Tomasi and T. Kanade. “Shape and motion from image streams under orthog-

raphy: a factorization method”. In: International journal of computer vision 9.2

(1992), pp. 137–154.

[42] C. Wu. “Towards linear-time incremental structure from motion”. In: 2013 Inter-

national Conference on 3D Vision-3DV 2013. IEEE. 2013, pp. 127–134.

Bibliography 149

[43] D. G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In:

International Journal of Computer Vision 60.2 (Nov. 2004), pp. 91–110.

[44] H. Bay et al. “Speeded-Up Robust Features (SURF)”. In: Computer Vision and

Image Understanding 110.3 (2008), pp. 346–359.

[45] B. Triggs et al. “Bundle adjustment—a modern synthesis”. In: International work-

shop on vision algorithms. Springer. 1999, pp. 298–372.

[46] S. Thrun, W. Burgard, and D. Fox. “A probabilistic approach to concurrent

mapping and localization for mobile robots”. In: Autonomous Robots 5.3-4 (1998),

pp. 253–271.

[47] F. Dellaert et al. “Monte carlo localization for mobile robots”. In: ICRA. Vol. 2.

1999, pp. 1322–1328.

[48] J. Bares et al. “Ambler: An autonomous rover for planetary exploration”. In:

Computer 22.6 (1989), pp. 18–26.

[49] C. F. Olson. “Probabilistic self-localization for mobile robots”. In: IEEE Trans-

actions on Robotics and Automation 16.1 (2000), pp. 55–66.

[50] P. Pfaff, R. Triebel, and W. Burgard. “An efficient extension to elevation maps

for outdoor terrain mapping and loop closing”. In: The International Journal of

Robotics Research 26.2 (2007), pp. 217–230.

[51] R. Triebel, P. Pfaff, and W. Burgard. “Multi-level surface maps for outdoor terrain

mapping and loop closing”. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE. 2006, pp. 2276–2282.

[52] A. Hornung et al. “OctoMap: An efficient probabilistic 3D mapping framework

based on octrees”. In: Autonomous robots 34.3 (2013), pp. 189–206.

[53] D. Meagher. “Geometric modeling using octree encoding”. In: Computer graphics

and image processing 19.2 (1982), pp. 129–147.

[54] M. Haklay and P. Weber. “Openstreetmap: User-generated street maps”. In: IEEE

Pervasive Computing 7.4 (2008), pp. 12–18.

[55] G. Mattyus, W. Luo, and R. Urtasun. “DeepRoadMapper: Extracting Road

Topology From Aerial Images”. In: IEEE International Conference on Computer

Vision (ICCV). Oct. 2017.

150 Bibliography

[56] D. Costea et al. “Creating roadmaps in aerial images with generative adversarial

networks and smoothing-based optimization”. In: IEEE International Conference

on Computer Vision (ICCV). 2017, pp. 2100–2109.

[57] G. Mattyus et al. “Enhancing Road Maps by Parsing Aerial Images Around the

World”. In: IEEE International Conference on Computer Vision (ICCV). 2015.

[58] G. Mattyus et al. “HD Maps: Fine-grained Road Segmentation by Parsing Ground

and Aerial Images”. In: IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). 2016.

[59] M. Hentschel and B. Wagner. “Autonomous robot navigation based on Open-

StreetMap geodata”. In: IEEE International Conference on Intelligent Trans-

portation Systems (ITSC). Sept. 2010, pp. 1645–1650.

[60] O. Vysotska and C. Stachniss. “Improving SLAM by exploiting building infor-

mation from publicly available maps and localization priors”. In: PFG–Journal

of Photogrammetry, Remote Sensing and Geoinformation Science 85.1 (2017),

pp. 53–65.

[61] M. A. Brubaker, A. Geiger, and R. Urtasun. “Lost! leveraging the crowd for

probabilistic visual self-localization”. In: IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2013, pp. 3057–3064.

[62] G. Floros, B. van der Zander, and B. Leibe. “OpenStreetSLAM: Global vehi-

cle localization using OpenStreetMaps”. In: IEEE International Conference on

Robotics and Automation (ICRA). May 2013, pp. 1054–1059.

[63] P. Ruchti et al. “Localization on OpenStreetMap data using a 3D laser scanner”.

In: IEEE International Conference on Robotics and Automation (ICRA). May

2015, pp. 5260–5265.

[64] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in

nervous activity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–

133.

[65] B. Widrow and M. E. Hoff. Adaptive switching circuits. Tech. rep. Stanford Univ

Ca Stanford Electronics Labs, 1960.

[66] F. Rosenblatt. The perceptron, a perceiving and recognizing automaton Project

Para. Cornell Aeronautical Laboratory, 1957.

Bibliography 151

[67] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geom-

etry. Cambridge, MA, USA: MIT Press, 1969.

[68] S. Linnainmaa. “The representation of the cumulative rounding error of an algo-

rithm as a Taylor expansion of the local rounding errors”. In: Master’s Thesis (in

Finnish), Univ. Helsinki (1970), pp. 6–7.

[69] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward networks are

universal approximators”. In: Neural networks 2.5 (1989), pp. 359–366.

[70] Y. LeCun et al. “Backpropagation applied to handwritten zip code recognition”.

In: Neural computation 1.4 (1989), pp. 541–551.

[71] D. A. Pomerleau. “Alvinn: An autonomous land vehicle in a neural network”. In:

Advances in neural information processing systems. 1989, pp. 305–313.

[72] L.-J. Lin. Reinforcement learning for robots using neural networks. Tech. rep.

Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993.

[73] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural com-

putation 9.8 (1997), pp. 1735–1780.

[74] B. E. Boser, I. M. Guyon, and V. N. Vapnik. “A training algorithm for optimal

margin classifiers”. In: Proceedings of the fifth annual workshop on Computational

learning theory. ACM. 1992, pp. 144–152.

[75] Y. LeCun et al. “Comparison of learning algorithms for handwritten digit recog-

nition”. In: International conference on artificial neural networks. Vol. 60. Perth,

Australia. 1995, pp. 53–60.

[76] G. E. Hinton, S. Osindero, and Y.-W. Teh. “A fast learning algorithm for deep

belief nets”. In: Neural computation 18.7 (2006), pp. 1527–1554.

[77] K. Fukushima. “Neocognitron: A self-organizing neural network model for a mech-

anism of pattern recognition unaffected by shift in position”. In: Biological cyber-

netics 36.4 (1980), pp. 193–202.

[78] Y. LeCun et al. “Gradient-based learning applied to document recognition”. In:

Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[79] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep

convolutional neural networks”. In: Advances in neural information processing

systems. 2012, pp. 1097–1105.

152 Bibliography

[80] O. Russakovsky et al. “Imagenet large scale visual recognition challenge”. In:

International journal of computer vision 115.3 (2015), pp. 211–252.

[81] A. L. Maas, A. Y. Hannun, and A. Y. Ng. “Rectifier nonlinearities improve neural

network acoustic models”. In: Proc. icml. Vol. 30. 1. 2013, p. 3.

[82] V. Mnih et al. “Human-level control through deep reinforcement learning”. In:

Nature 518.7540 (2015), p. 529.

[83] J. J. Hopfield. “Neural networks and physical systems with emergent collective

computational abilities”. In: Proceedings of the national academy of sciences 79.8

(1982), pp. 2554–2558.

[84] A. Graves, A.-r. Mohamed, and G. Hinton. “Speech recognition with deep re-

current neural networks”. In: 2013 IEEE international conference on acoustics,

speech and signal processing. IEEE. 2013, pp. 6645–6649.

[85] I. Sutskever, O. Vinyals, and Q. Le. “Sequence to sequence learning with neural

networks”. In: Advances in NIPS (2014).

[86] K. Xu et al. “Show, attend and tell: Neural image caption generation with visual

attention”. In: International conference on machine learning. 2015, pp. 2048–

2057.

[87] K. Gregor et al. “Draw: A recurrent neural network for image generation”. In:

arXiv preprint arXiv:1502.04623 (2015).

[88] K. He et al. “Mask r-cnn”. In: IEEE International Conference on Computer Vi-

sion (ICCV). 2017, pp. 2961–2969.

[89] S. Wang et al. “Deepvo: Towards end-to-end visual odometry with deep recurrent

convolutional neural networks”. In: IEEE International Conference on Robotics

and Automation (ICRA). IEEE. 2017, pp. 2043–2050.

[90] N. Yang et al. “Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction

for Monocular Direct Sparse Odometry”. In: Computer Vision – ECCV 2018. Ed.

by V. Ferrari et al. Cham: Springer International Publishing, 2018, pp. 835–852.

[91] H. Zhan et al. “Unsupervised learning of monocular depth estimation and visual

odometry with deep feature reconstruction”. In: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2018, pp. 340–349.

Bibliography 153

[92] A. Kendall and R. Cipolla. “Geometric Loss Functions for Camera Pose Regres-

sion With Deep Learning”. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). July 2017.

[93] A. Kendall and R. Cipolla. “Modelling uncertainty in deep learning for camera

relocalization”. In: IEEE International Conference on Robotics and Automation

(ICRA). 2016, pp. 4762–4769.

[94] T. Naseer and W. Burgard. “Deep regression for monocular camera-based 6-

DoF global localization in outdoor environments”. In: IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). 2017, pp. 1525–1530.

[95] R. Girshick et al. “Rich feature hierarchies for accurate object detection and

semantic segmentation”. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2014, pp. 580–587.

[96] R. Girshick. “Fast r-cnn”. In: IEEE International Conference on Computer Vision

(ICCV). 2015, pp. 1440–1448.

[97] J. Redmon et al. “You only look once: Unified, real-time object detection”. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,

pp. 779–788.

[98] L.-C. Chen et al. “Encoder-Decoder with Atrous Separable Convolution for Se-

mantic Image Segmentation”. In: Computer Vision – ECCV 2018. Ed. by V.

Ferrari et al. Cham: Springer International Publishing, 2018, pp. 833–851.

[99] Y. Zhu et al. “Improving Semantic Segmentation via Video Propagation and Label

Relaxation”. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2019, pp. 8856–8865.

[100] S.-L. Yu et al. “Vehicle detection and localization on bird’s eye view elevation

images using convolutional neural network”. In: IEEE International Symposium

on Safety, Security and Rescue Robotics (SSRR). IEEE. 2017, pp. 102–109.

[101] B. Yang, W. Luo, and R. Urtasun. “Pixor: Real-time 3d object detection from

point clouds”. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2018, pp. 7652–7660.

154 Bibliography

[102] S. Shi, X. Wang, and H. Li. “Pointrcnn: 3d object proposal generation and detec-

tion from point cloud”. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2019, pp. 770–779.

[103] Y. Zhou and O. Tuzel. “Voxelnet: End-to-end learning for point cloud based 3d

object detection”. In: IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). 2018, pp. 4490–4499.

[104] Y. Yan, Y. Mao, and B. Li. “Second: Sparsely embedded convolutional detection”.

In: Sensors 18.10 (2018), p. 3337.

[105] X. Chen et al. “Multi-View 3D Object Detection Network for Autonomous Driv-

ing”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

July 2017.

[106] C. R. Qi et al. “Frustum pointnets for 3d object detection from rgb-d data”. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018,

pp. 918–927.

[107] J. Ku et al. “Joint 3d proposal generation and object detection from view aggrega-

tion”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE. 2018, pp. 1–8.

[108] Z. Wu et al. “3d shapenets: A deep representation for volumetric shapes”. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015,

pp. 1912–1920.

[109] D. Maturana and S. Scherer. “Voxnet: A 3d convolutional neural network for real-

time object recognition”. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE. 2015, pp. 922–928.

[110] C. R. Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification and

Segmentation”. In: IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR). July 2017.

[111] C. R. Qi et al. “Pointnet++: Deep hierarchical feature learning on point sets

in a metric space”. In: Advances in neural information processing systems. 2017,

pp. 5099–5108.

[112] Y. Wang et al. “Dynamic Graph CNN for Learning on Point Clouds”. In: ACM

Transactions on Graphics (TOG) 38.5 (2019), pp. 1–12.

Bibliography 155

[113] R. Klokov and V. Lempitsky. “Escape from cells: Deep kd-networks for the recog-

nition of 3d point cloud models”. In: IEEE International Conference on Computer

Vision (ICCV). 2017, pp. 863–872.

[114] P.-S. Wang et al. “O-cnn: Octree-based convolutional neural networks for 3d shape

analysis”. In: ACM Transactions on Graphics (TOG) 36.4 (2017), p. 72.

[115] A. Geiger et al. “Vision meets Robotics: The KITTI Dataset”. In: International

Journal of Robotics Research (IJRR) (2013).

[116] H. Fu et al. “Deep ordinal regression network for monocular depth estimation”. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018,

pp. 2002–2011.

[117] C. Godard, O. Mac Aodha, and G. J. Brostow. “Unsupervised monocular depth

estimation with left-right consistency”. In: IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2017, pp. 270–279.

[118] Y. Kuznietsov, J. Stuckler, and B. Leibe. “Semi-supervised deep learning for

monocular depth map prediction”. In: IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2017, pp. 6647–6655.

[119] A. Bar Hillel et al. “Recent progress in road and lane detection: a survey”. In:

Mach. Vis. Appl. 25.3 (Apr. 2014), pp. 727–745.

[120] M. Bertozzi and A. Broggi. “GOLD: a parallel real-time stereo vision system for

generic obstacle and lane detection”. In: IEEE Transactions on Image Processing

7.1 (1998), pp. 62–81.

[121] C. J. Taylor, J. Malik, and J. Weber. “A real-time approach to stereopsis and

lane-finding”. In: IEEE Intelligent Vehicles Symposium (IV). 1996, pp. 207–212.

[122] Y. Wang, E. K. Teoh, and D. Shen. “Lane detection and tracking using B-Snake”.

In: Image Vis. Comput. 22.4 (2004), pp. 269–280.

[123] J. McCall and M. Trivedi. “Video-Based Lane Estimation and Tracking for Driver

Assistance: Survey, System, and Evaluation”. In: IEEE Transactions on Intelli-

gent Transportation Systems 7.1 (Mar. 2006), pp. 20–37.

[124] F. Kuhnt et al. “Lane-precise Localization of Intelligent Vehicles Using the Sur-

rounding Object Constellation”. In: IEEE International Conference on Intelligent

Transportation Systems (ITSC) November (2016).

156 Bibliography

[125] G. Cao et al. “Camera to map alignment for accurate low-cost lane-level scene

interpretation”. In: IEEE International Conference on Intelligent Transportation

Systems (ITSC). Nov. 2016.

[126] T. Gao and H. Aghajan. “Self lane assignment using egocentric smart mobile

camera for intelligent GPS navigation”. In: IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2009, pp. 57–62.

[127] Z. Kim. “Robust lane detection and tracking in challenging scenarios”. In: IEEE

Transactions on Intelligent Vehicles 9.1 (2008), pp. 16–26.

[128] T. Kuhnl, F. Kummert, and J. Fritsch. “Visual ego-vehicle lane assignment using

Spatial Ray features”. In: IEEE Intelligent Vehicles Symposium (IV). Iv. 2013,

pp. 1101–1106.

[129] J. Rabe, M. Necker, and C. Stiller. “Ego-lane estimation for lane-level navigation

in urban scenarios”. In: IEEE Intelligent Vehicles Symposium (IV). Vol. 2016-

Augus. Iv. IEEE, June 2016, pp. 896–901.

[130] S. Lee, S. W. Kim, and S. W. Seo. “Accurate ego-lane recognition utilizing mul-

tiple road characteristics in a Bayesian network framework”. In: IEEE Intelligent

Vehicles Symposium (IV). Vol. 2015-Augus. Iv. 2015, pp. 543–548.

[131] M. Nieto et al. “Robust multiple lane road modeling based on perspective anal-

ysis”. In: Int. Conf. Image Process. ICIP. 2008, pp. 2396–2399.

[132] Y. Jiang, F. Gao, and G. Xu. “Computer vision-based multiple-lane detection on

straight road and in a curve”. In: Int. Conf. Image Anal. Signal Process. Vol. 2.

2010, pp. 114–117.

[133] S.-N. Kang et al. “Multi-lane detection based on accurate geometric lane esti-

mation in highway scenarios”. In: IEEE Intelligent Vehicles Symposium (IV). Iv.

IEEE, June 2014, pp. 221–226.

[134] J. Kim and M. Lee. “Robust lane detection based on convolutional neural network

and random sample consensus”. In: International conference on neural informa-

tion processing. Springer. 2014, pp. 454–461.

[135] D. Neven et al. “Towards end-to-end lane detection: an instance segmentation

approach”. In: IEEE Intelligent Vehicles Symposium (IV). IEEE. 2018, pp. 286–

291.

Bibliography 157

[136] S. Lee et al. “Vpgnet: Vanishing point guided network for lane and road mark-

ing detection and recognition”. In: IEEE International Conference on Computer

Vision (ICCV). 2017, pp. 1947–1955.

[137] L.-C. Chen et al. “Encoder-Decoder with Atrous Separable Convolution for Se-

mantic Image Segmentation”. In: Computer Vision – ECCV 2018. Ed. by V.

Ferrari et al. Cham: Springer International Publishing, 2018, pp. 833–851.

[138] X. Pan et al. “Spatial as deep: Spatial cnn for traffic scene understanding”. In:

Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[139] Y. Hou et al. “Learning lightweight lane detection cnns by self attention distilla-

tion”. In: arXiv preprint arXiv:1908.00821 (2019).

[140] S. Suzuki. “Topological structural analysis of digitized binary images by border

following”. In: Computer Vision, Graphics, and Image Processing 30.1 (1985),

pp. 32–46.

[141] H. Hirschmüller. “Accurate and efficient stereo processing by semi-global match-

ing and mutual information”. In: IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR). IEEE, 2005.

[142] A. Geiger, M. Roser, and R. Urtasun. “Efficient Large-Scale Stereo Matching”.

In: Asian Conference on Computer Vision (ACCV). 2010.

[143] M. Aly. “Real time detection of lane markers in urban streets”. In: IEEE Intelli-

gent Vehicles Symposium (IV). IEEE. 2008, pp. 7–12.

[144] J. Hur. “Multi-Lane Detection in Highway and Urban Driving Environment”. MA

thesis. Seoul National University, Dept. of Electrical and Computer Engineering,

2013.

[145] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, sect. 15.5.

2nd ed. Pearson Education, 2003.

[146] J. Bilmes. On virtual evidence and soft evidence in Bayesian networks. Tech. rep.

retr. 09.Jan.18 at https : / / www2 . ee . washington . edu / techsite / papers /

refer/UWEETR-2004-0016.html. Washington Univ., 2004.

[147] D. Obradovic, H. Lenz, and M. Schupfner. “Fusion of Sensor Data in Siemens

Car Navigation System”. In: IEEE Transactions on Vehicular Technology (Jan.

2007).

158 Bibliography

[148] I. P. Alonso et al. “Accurate Global Localization Using Visual Odometry and

Digital Maps on Urban Environments”. In: IEEE Transactions on Intelligent

Transportation Systems (Dec. 2012).

[149] M. Raaijmakers and M. E. Bouzouraa. “In-vehicle Roundabout Perception Sup-

ported by A Priori Map Data”. In: IEEE International Conference on Intelligent

Transportation Systems (ITSC). Sept. 2015.

[150] S. Nedevschi et al. “Accurate Ego-Vehicle Global Localization at Intersections

Through Alignment of Visual Data With Digital Map”. In: IEEE Transactions

on Intelligent Transportation Systems (June 2013).

[151] A. Vu et al. “Real-Time Computer Vision/DGPS-Aided Inertial Navigation Sys-

tem for Lane-Level Vehicle Navigation”. In: IEEE Transactions on Vehicular

Technology (June 2012).

[152] G. Floros and B. Leibe. “Joint 2D-3D temporally consistent semantic segmen-

tation of street scenes”. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). June 2012.

[153] C. Fernández et al. “A Comparative Analysis of Decision Trees Based Classifiers

for Road Detection in Urban Environments”. In: IEEE International Conference

on Intelligent Transportation Systems (ITSC). Sept. 2015.

[154] B. Hummel, W. Thiemann, and I. Lulcheva. “Scene Understanding of Urban

Road Intersections with Description Logic”. In: Logic and Probability for Scene

Interpretation. 2008.

[155] A. Gupta, A. A. Efros, and M. Hebert. “Blocks World Revisited: Image Under-

standing Using Qualitative Geometry and Mechanics”. In: Computer Vision –

ECCV 2010. Ed. by K. Daniilidis, P. Maragos, and N. Paragios. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2010, pp. 482–496.

[156] D. Hoiem, A. A. Efros, and M. Hebert. “Closing the loop in scene interpretation”.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June

2008.

[157] J. M. Álvarez et al. “Combining Priors, Appearance, and Context for Road Detec-

tion”. In: IEEE Transactions on Intelligent Transportation Systems (June 2014).

Bibliography 159

[158] E.-H. Choi. Crash factors in intersection-related crashes: An on-scene perspective.

Tech. rep. 2010.

[159] A. Geiger, M. Lauer, and R. Urtasun. “A generative model for 3D urban scene un-

derstanding from movable platforms”. In: IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). June 2011.

[160] A. Barth, J. Siegemund, and J. Schwehr. “Fast and precise localization at stop

intersections”. In: IEEE Intelligent Vehicles Symposium (IV). June 2013.

[161] T. R. Kushner and S. Puri. “Progress In Road Intersection Detection For Au-

tonomous Vehicle Navigation”. In: Proc. SPIE. 1987.

[162] J. D. Crisman and C. E. Thorpe. “SCARF: a color vision system that tracks

roads and intersections”. In: IEEE Transactions on Robotics and Automation

(Feb. 1993).

[163] T. M. Jochem, D. A. Pomerleau, and C. E. Thorpe. “Vision-based neural net-

work road and intersection detection and traversal”. In: IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). Aug. 1995.

[164] Q. Zhu et al. “3d lidar point cloud based intersection recognition for autonomous

driving”. In: IEEE Intelligent Vehicles Symposium (IV). IEEE. 2012, pp. 456–

461.

[165] A. Y. Hata et al. “Road geometry classification using ANN”. In: IEEE Intelligent

Vehicles Symposium (IV). IEEE. 2014, pp. 1319–1324.

[166] L. Wang et al. “3D-LIDAR based branch estimation and intersection location

for autonomous vehicles”. In: IEEE Intelligent Vehicles Symposium (IV). IEEE.

2017, pp. 1440–1445.

[167] A. L. Ballardini et al. “A Framework for Outdoor Urban Environment Estima-

tion”. In: IEEE International Conference on Intelligent Transportation Systems

(ITSC). Sept. 2015.

[168] F. Yu and V. Koltun. “Multi-Scale Context Aggregation by Dilated Convolu-

tions”. In: ICLR. 2016.

[169] M. Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene Understand-

ing”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2016.

160 Bibliography

[170] Z. Deng. PyTorch for Semantic Segmentation. 2017. url: %7Bhttps://github.

com/zijundeng/pytorch-semantic-segmentation%7D.

[171] H. Alhaija et al. “Augmented Reality Meets Computer Vision: Efficient Data

Generation for Urban Driving Scenes”. In: 2018.

[172] F. Smarandache and J. Dezert. Advances and Applications of DSmT for Infor-

mation Fusion, vol. III. American Research Press, 2009.

[173] A. Geiger, J. Ziegler, and C. Stiller. “StereoScan: Dense 3D Reconstruction in

Real-time”. In: IEEE Transactions on Intelligent Vehicles. 2011.

[174] S. Kong and C. Fowlkes. “Pixel-wise attentional gating for parsimonious pixel

labeling”. In: arXiv preprint arXiv:1805.01556 (2018).

[175] M. Ochs, A. Kretz, and R. Mester. “SDNet: Semantically Guided Depth Estima-

tion Network”. In: arXiv preprint arXiv:1907.10659 (2019).

[176] G. Yang et al. “SegStereo: Exploiting Semantic Information for Disparity Esti-

mation”. In: The European Conference on Computer Vision (ECCV). Sept. 2018.

[177] I. Kreso, S. Segvic, and J. Krapac. “Ladder-style densenets for semantic segmen-

tation of large natural images”. In: IEEE International Conference on Computer

Vision (ICCV). 2017, pp. 238–245.

[178] Y. Zhu et al. “Improving Semantic Segmentation via Video Propagation and Label

Relaxation”. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). June 2019.

[179] A. Geiger, P. Lenz, and R. Urtasun. “Are we ready for autonomous driving? The

KITTI vision benchmark suite”. In: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). June 2012, pp. 3354–3361.

[180] J.-L. Blanco-Claraco, F.-Á. Moreno-Dueñas, and J. González-Jiménez. “The Málaga

urban dataset: High-rate stereo and LiDAR in a realistic urban scenario”. In: The

International Journal of Robotics Research 33.2 (2014), pp. 207–214.

[181] W. Maddern et al. “1 Year, 1000km: The Oxford RobotCar Dataset”. In: The

International Journal of Robotics Research (IJRR) (2017).

[182] G. Fontana, M. Matteucci, and D. G. Sorrenti. “Rawseeds: building a benchmark-

ing toolkit for autonomous robotics”. In: Methods and Experimental Techniques

in Computer Engineering. Springer, 2014, pp. 55–68.

Bibliography 161

[183] X. Huang et al. “The apolloscape dataset for autonomous driving”. In: IEEE Con-

ference on Computer Vision and Pattern Recognition Workshops. 2018, pp. 954–

960.

[184] Z. Tao et al. “Mapping and localization using GPS, lane markings and propri-

oceptive sensors”. In: IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). Nov. 2013, pp. 406–412.

[185] M. Schreiber, C. Knöppel, and U. Franke. “LaneLoc: Lane marking based local-

ization using highly accurate maps”. In: IEEE Intelligent Vehicles Symposium

(IV). June 2013, pp. 449–454.

[186] R. Spangenberg, D. Goehring, and R. Rojas. “Pole-based localization for au-

tonomous vehicles in urban scenarios”. In: IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 2161–2166.

[187] L. Wei, B. Soheilian, and V. Gouet-Brunet. “Augmenting vehicle localization

accuracy with cameras and 3d road infrastructure database”. In: European Con-

ference on Computer Vision. Springer. 2014, pp. 194–208.

[188] J. J. Corso. “Discriminative modeling by Boosting on Multilevel Aggregates”. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June

2008, pp. 1–8.

[189] D. Larnaout et al. “Vision-Based Differential GPS: Improving VSLAM / GPS

Fusion in Urban Environment with 3D Building Models”. In: IEEE International

Conference on 3D Vision (3DV). Vol. 1. Dec. 2014, pp. 432–439.

[190] P. David. Detecting Planar Surfaces in Outdoor Urban Environments. Tech. rep.

ARL-TR-4599. United States Army Research Laboratory DTIC Document, Sept.

2008.

[191] J. A. Delmerico, P. David, and J. J. Corso. “Building facade detection, segmen-

tation, and parameter estimation for mobile robot localization and guidance”. In:

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Sept. 2011, pp. 1632–1639.

[192] R. Gadde et al. “Efficient 2D and 3D Facade Segmentation Using Auto-Context”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 40.5 (2018),

pp. 1273–1280.

162 Bibliography

[193] A. Fond, M.-O. Berger, and G. Simon. “Facade Proposals for Urban Augmented

Reality”. In: IEEE International Symposium on Mixed and Augmented Reality

(ISMAR). 2017, pp. 32–41.

[194] R. Fathalla and G. Vogiatzis. “A Deep Learning Pipeline for Semantic Facade

Segmentation”. en. In: British Machine Vision Conference (BMVC. http : / /

www.bmva.org/bmvc/2017/papers/paper120/index.html. London, UK: British

Machine Vision Association, 2017, p. 120.

[195] H. Su et al. “SPLATNet: Sparse Lattice Networks for Point Cloud Processing”.

en. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

https : / / ieeexplore . ieee . org / document / 8578366/. Salt Lake City, UT:

IEEE, 2018, pp. 2530–2539.

[196] N. Haala and J. Böhm. “A multi-sensor system for positioning in urban envi-

ronments”. In: ISPRS Journal of Photogrammetry and Remote Sensing 58.1-2

(2003), pp. 31–42.

[197] S. Zhu et al. “Video/GIS registration system based on skyline matching method”.

In: IEEE International Conference on Image Processing. IEEE. 2013, pp. 3632–

3636.

[198] M. Bansal, K. Daniilidis, and H. Sawhney. “Ultrawide baseline facade match-

ing for geo-localization”. In: Large-Scale Visual Geo-Localization. Springer, 2016,

pp. 77–98.

[199] P. J. Besl and N. D. McKay. “A method for registration of 3-D shapes”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 14.2 (Feb. 1992),

pp. 239–256.

[200] Y. Chen and G. Medioni. “Object modelling by registration of multiple range

images”. In: Image and Vis. Comp. 10.3 (1992). Range Image Understanding,

pp. 145–155.

[201] A. Segal, D. Haehnel, and S. Thrun. “Generalized-icp”. In: Robotics: science and

systems (RSS). Vol. 2. 4. 2009, p. 435.

[202] F. Pomerleau et al. “Comparing ICP variants on real-world data sets”. In: Au-

tonomous Robots 34.3 (Apr. 2013), pp. 133–148.

Bibliography 163

[203] Q.-Y. Zhou, J. Park, and V. Koltun. “Fast global registration”. In: European

Conference on Computer Vision. Springer. 2016, pp. 766–782.

[204] I. Parra et al. “Visual Odometry and Map Fusion for GPS Navigation Assis-

tance”. en. In: IEEE International Symposium on Industrial Electronics. http:

//ieeexplore.ieee.org/document/5984266/. Gdansk, Poland: IEEE, 2011,

pp. 832–837.

[205] C. Mazzotti, N. Sancisi, and V. Parenti-Castelli. “A Measure of the Distance

Between Two Rigid-Body Poses Based on the Use of Platonic Solids”. In: RO-

MANSY 21 - Robot Design, Dynamics and Control. Ed. by V. Parenti-Castelli

and W. Schiehlen. Cham: Springer International Publishing, 2016, pp. 81–89.

[206] The future of maps: technologies, processes and ecosystem. https://www.here.

com/file/7766/download?token=dwOqPUix. Accessed: 2019-04-13. Dec. 2018.

[207] A. R. Zamir and M. Shah. “Accurate Image Localization Based on Google Maps

Street View”. In: Computer Vision – ECCV 2010. Ed. by K. Daniilidis, P. Mara-

gos, and N. Paragios. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 255–

268.

[208] T. Sattler, B. Leibe, and L. Kobbelt. “Improving Image-Based Localization by

Active Correspondence Search”. In: Computer Vision – ECCV 2012. Ed. by A.

Fitzgibbon et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 752–

765.

[209] J. Shotton et al. “Scene Coordinate Regression Forests for Camera Relocaliza-

tion in RGB-D Images”. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). June 2013.

[210] R. Clark et al. “VidLoc: A Deep Spatio-Temporal Model for 6-DoF Video-Clip

Relocalization”. In: IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR). July 2017.

[211] E. Brachmann et al. “DSAC - Differentiable RANSAC for Camera Localization”.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July

2017.

[212] E. Brachmann and C. Rother. “Learning Less Is More - 6D Camera Localiza-

tion via 3D Surface Regression”. In: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). June 2018.

164 Bibliography

[213] T. Caselitz et al. “Monocular camera localization in 3D LiDAR maps”. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). 2016, pp. 1926–

1931.

[214] R. W. Wolcott and R. M. Eustice. “Visual localization within LIDAR maps for

automated urban driving”. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). 2014, pp. 176–183.

[215] P. Neubert, S. Schubert, and P. Protzel. “Sampling-based methods for visual nav-

igation in 3D maps by synthesizing depth images”. In: IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). 2017, pp. 2492–2498.

[216] N. Schneider et al. “RegNet: Multimodal sensor registration using deep neural

networks”. In: IEEE Intelligent Vehicles Symposium (IV). 2017, pp. 1803–1810.

[217] R. Pintus, E. Gobbetti, and M. Agus. “Real-time rendering of massive unstruc-

tured raw point clouds using screen-space operators”. In: Proceedings of the 12th

International conference on Virtual Reality, Archaeology and Cultural Heritage.

Eurographics Association. 2011, pp. 105–112.

[218] A. Paszke et al. “Automatic Differentiation in PyTorch”. In: NIPS Autodiff Work-

shop. 2017.

[219] M. Angelina Uy and G. Hee Lee. “PointNetVLAD: Deep Point Cloud Based

Retrieval for Large-Scale Place Recognition”. In: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). June 2018.

[220] D. Gálvez-López and J. D. Tardos. “Bags of binary words for fast place recognition

in image sequences”. In: IEEE Transactions on Robotics 28.5 (2012), pp. 1188–

1197.

[221] J. Philbin et al. “Object retrieval with large vocabularies and fast spatial match-

ing”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

June 2007.

[222] O. Chum et al. “Total recall II: Query expansion revisited”. In: IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). June 2011.

[223] R. Arandjelovic et al. “NetVLAD: CNN Architecture for Weakly Supervised Place

Recognition”. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). June 2016.

Bibliography 165

[224] W.-C. Ma et al. “Find your way by observing the sun and other semantic cues”.

In: IEEE International Conference on Robotics and Automation (ICRA). IEEE.

2017, pp. 6292–6299.

[225] S. Choi, Q.-Y. Zhou, and V. Koltun. “Robust reconstruction of indoor scenes”. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015,

pp. 5556–5565.

[226] N. Mellado, D. Aiger, and N. J. Mitra. “Super 4pcs fast global pointcloud reg-

istration via smart indexing”. In: Computer Graphics Forum. Vol. 33. 5. Wiley

Online Library. 2014, pp. 205–215.

[227] M. Bosse and R. Zlot. “Place recognition using keypoint voting in large 3D li-

dar datasets”. In: IEEE International Conference on Robotics and Automation

(ICRA). IEEE. 2013, pp. 2677–2684.

[228] R. Dubé et al. “Segmatch: Segment based place recognition in 3d point clouds”.

In: IEEE International Conference on Robotics and Automation (ICRA). IEEE.

2017, pp. 5266–5272.

[229] B. Williams et al. “A comparison of loop closing techniques in monocular SLAM”.

In: Robotics and Autonomous Systems 57.12 (2009), pp. 1188–1197.

[230] P. Newman and K. Ho. “SLAM-loop closing with visually salient features”. In:

IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2005,

pp. 635–642.

[231] H. Jégou et al. “Aggregating local descriptors into a compact image representa-

tion”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

San Francisco, United States: IEEE Computer Society, 2010, pp. 3304–3311.

[232] R. Hadsell, S. Chopra, and Y. LeCun. “Dimensionality Reduction by Learning

an Invariant Mapping”. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). Vol. 2. June 2006, pp. 1735–1742.

[233] H. Oh Song et al. “Deep Metric Learning via Lifted Structured Feature Em-

bedding”. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). June 2016.

166 Bibliography

[234] K. Sohn. “Improved Deep Metric Learning with Multi-class N-pair Loss Objec-

tive”. In: Advances in Neural Information Processing Systems. Ed. by D. D. Lee

et al. Curran Associates, Inc., 2016, pp. 1857–1865.

[235] M. Feng et al. “2D3D-Matchnet: Learning To Match Keypoints Across 2D Im-

age And 3D Point Cloud”. In: 2019 International Conference on Robotics and

Automation (ICRA). May 2019, pp. 4790–4796.

[236] Y. Zhong. “Intrinsic shape signatures: A shape descriptor for 3D object recogni-

tion”. In: The IEEE International Conference on Computer Vision Workshops,

ICCV Workshops. 2009.

[237] A. H. Lang et al. “PointPillars: Fast encoders for object detection from point

clouds”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2019, pp. 12697–12705.

[238] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale

image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[239] F. Schroff, D. Kalenichenko, and J. Philbin. “FaceNet: A unified embedding for

face recognition and clustering”. In: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). June 2015.

Acronyms

ADAS Advanced Driver Assistance Systems

ANN Artificial Neural Network

ASPP Atrous Spatial Pyramid Pooling

BEV Bird’s-Eye View

BP Back-Propagation

BPTT Backpropagation Through Time

CNN Convolutional Neural Network

CPT Conditional Probability Table

DARPA Defense Advanced Research Projects Agency

DNN Deep Neural Network

EV Embedding Vector

GAN Generative Adversarial Network

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphics Processing Unit

HMM Hidden Markov Model

LiDAR Light Detection And Ranging

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MLP Multilayer Perceptron

NLOS non-line-of-sight

OG Occupancy Grid

167

168 Bibliography

OSM OpenStreetMap

PnP Perspective-n-Point

RNN Recurrent Neural Network

RPN Region Proposal Network

ReLU Rectified Linear Unit

SLAM Simultaneous Localization And Mapping

SVM Support Vector Machine

SfM Structure from Motion

	1 Introduction
	1.1 Motivations
	1.2 Problem Statement
	1.3 Scientific Contributions
	1.4 Publications
	1.5 Thesis Outline

	2 Background
	2.1 Autonomous Driving
	2.2 Localization
	2.2.1 Point Cloud Maps
	2.2.2 Grid Maps
	2.2.3 Topological Maps

	2.3 Artificial Neural Networks
	2.3.1 Convolutional Neural Networks
	2.3.2 Recurrent Neural Networks
	2.3.3 DNNs for Autonomous Driving

	3 Ego-lane estimation in highway-like scenarios
	3.1 Related work
	3.2 Proposed algorithm
	3.2.1 Line detection and tracking
	3.2.2 Tentative vector and reliability of the whole detection
	3.2.3 HMM with Transient Failure Model
	3.2.4 Inference

	3.3 Experimental evaluation
	3.4 Conclusions

	4 Visual localization at intersections
	4.1 Related Work
	4.2 The Sensing Pipeline
	4.2.1 Semantic Segmentation
	4.2.2 3D Reconstruction
	4.2.3 Generation of the SENSOROG

	4.3 Vehicle Localization
	4.3.1 Hypotheses Generation
	4.3.2 Scoring Function
	4.3.3 Prediction Step
	4.3.4 Semantic Segmentation — Training Details

	4.4 Experimental Evaluation
	4.4.1 Dataset Construction
	4.4.2 Evaluation Criteria
	4.4.3 System Parameterization

	4.5 Conclusions

	5 Enhancing localization by leveraging buildings information
	5.1 Related Work
	5.2 Proposed Localization Pipeline
	5.2.1 Particle Filter
	5.2.2 The Point Clouds
	5.2.3 The Registration Step

	5.3 Experimental Evaluation
	5.4 Conclusions

	6 Camera to map registration for 6 DoF localization
	6.1 Related Work
	6.1.1 Camera-only Approaches
	6.1.2 Camera and LiDAR-map Approaches

	6.2 Proposed Approach
	6.2.1 LiDAR-Image Generation
	6.2.2 Network Architecture
	6.2.3 Iterative Refinement
	6.2.4 Training Details

	6.3 Experimental Evaluation
	6.3.1 Dataset
	6.3.2 System Components Evaluation
	6.3.3 Iterative Refinement
	6.3.4 Generalization Capabilities

	6.4 Conclusions

	7 Visual place recognition within HD-maps
	7.1 Related Work
	7.2 Proposed Approach
	7.2.1 2D Network Architecture
	7.2.2 3D Network Architecture
	7.2.3 Learning Methods
	7.2.4 Training Details
	7.2.5 Inference

	7.3 Experimental Evaluation
	7.3.1 Dataset
	7.3.2 Regions Subdivision and Sub-maps Creation
	7.3.3 Evaluation Metrics
	7.3.4 Results
	7.3.5 Further Improvement Attempts

	7.4 Conclusions

	8 Conclusions
	Bibliography
	Acronyms

