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Abstract
Complex systems typically display emergent dynamic behaviors, which cannot be
outlined by a mere description of their constituting parts. Such systems are ubiqui-
tous in natural and artificial settings, ranging from biology and physics, to engineer-
ing and economics, and spark the interest of many scientists belonging to different
research fields. To gain better insights on their inner working, complex systems are
studied by means of computational methods, which allow to model and reproduce
their behavior in silico. As a consequence, several mathematical formalisms were de-
veloped in the last decades to model complex systems, capture different features of
their dynamic behavior, and leverage any available quantitative or qualitative data
about their components. The aim of this thesis is to show how fuzzy logic can be ex-
ploited to overcome some of the limitations that still affect the modeling of complex
systems, namely: predict emergent dynamic behaviors even when there is a lack
of precise quantitative information; deal with the presence of heterogeneous sys-
tems components, spanning different levels of temporal, spatial of functional orga-
nization; bridge the gap between quantitative and qualitative modeling, in order to
define hybrid models that can simultaneously exploit the peculiar advantages pro-
vided by both approaches. This thesis presents two novel modeling frameworks,
based on fuzzy logic, which fill a gap in the scene of the modeling and simulation
techniques currently available to analyze heterogeneous complex systems. To test
their effectiveness, such modeling frameworks have been employed to analyze the
behavior of two real world systems, in the context of cellular biology. The results
show that the developed frameworks correctly reproduce the behavior of complex
systems and assess their response to perturbations, even when quantitative infor-
mation is missing or some system components are not fully characterized. These
frameworks could find applications in several fields, including, but not limited to,
biology, medicine and pharmacology, which often face such challenges.
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Chapter 1

Introduction

“Complex system” is often used as an umbrella term to cover a wide variety of nat-
ural or artificial structures, whose functioning cannot be outlined by a mere descrip-
tion of their constituting parts. Indeed, a common feature of all complex systems
is that they display emergent dynamic behaviors, resulting from the physical or
functional interactions existing among their components [1]. Given their ubiquity
in nature, scientists in several fields of research developed different mathematical
modeling tools and simulation techniques in order to grasp the inner working of
such systems, often leading to relevant breakthroughs [2].

The reasons for such flourishing of modeling techniques can be found in the
differences existing in the educational backgrounds and expertise of the scientists
working on these systems [1, 3, 4]. However, the need of devising different mod-
eling techniques stemmed also from other reasons: complex behaviors can emerge
at multiple scales of spatial, temporal and functional organization, the nature of the
available data can vary significantly, and the existing knowledge about the system
can be incomplete. Even though they display many differences, each modeling tech-
nique aims at capturing distinct characteristics of the system under analysis and
tackle open questions about it. The existing modeling approaches can be roughly
partitioned in two main classes: quantitative (or mechanistic) and qualitative models
[5, 6].

Mechanistic models are generally characterized by a high level of detail, they
are based on numerical data, display the presence of parameters that control the
dynamic behavior of the whole system, and are close to the physical reality of the
processes that are being modeled. Common examples include approaches based on
ordinary/partial differential equations [7], Monte Carlo and Markov chain meth-
ods [8], algebraic and agent-based modeling [9, 10]. On the contrary, the definition
of qualitative models is based on uncertain or imprecise information, so that phe-
nomena are described in a more approximate way with respect to the physical real-
ity [11]. The approximations introduced by qualitative models, however, can bring
several advantages: qualitative models are closer to human perception and natural
language than their quantitative counterpart, making their understanding easier to
researchers with basic or no expertise in mathematical modeling, and their simu-
lation is generally computationally less demanding. Qualitative modeling includes
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Chapter 1. Introduction

models based on Bayesian inference [12], Boolean logic [13] or multi-valued discrete
logic [14, 15], fuzzy logic [16], and graph theory [17].

Among the existing qualitative modeling approaches, models based on fuzzy
logic [18] had a huge impact in the last decades, finding applications across multiple
research fields. Fuzzy logic was the first (and probably the most successful) attempt
to formalize in a sound mathematical framework the way humans “compute” with
words [18]: it is an extension of multi-valued logic, introduced by Lotfi A. Zadeh [19,
20], specifically designed to deal with approximate reasoning. Nowadays, its appli-
cations include pattern recognition, information retrieval, classification/regression
and decision making [21, 22], but in its first years it became visible mostly because
of its success in the fields of process control and modeling of complex systems [11].
One key feature that distinguishes fuzzy logic from classical logic is that fuzzy logic
statements (or fuzzy rules) can be either true or false “to a certain degree”. This pe-
culiar characteristic was made possible by the introduction of fuzzy sets [19]. This
particular extension of classical sets provides a means to effectively represent vague,
non-crisp concepts, and describe sets whose boundaries are not well defined, which
are often used in everyday spoken language (e.g., when describing the height of a
person, we can say that they are short, medium, tall or very tall). In addition to com-
mon language, vague or “fuzzy” quantities can be used to model imprecise knowl-
edge regarding the system under analysis, or components that cannot be measured
in a precise way. Such cases, which at first might appear very unlikely when dealing
with “hard” sciences, can be common in several research areas: for example in med-
ical studies or in cellular biology, where researchers deal with extremely intricate
systems, like cells or whole organisms, and data is often available only for limited
parts of the system and in qualitative form (e.g., MRI images, gene expression stud-
ies). Moreover, one key advantage of fuzzy sets is their flexibility, which allows them
to be suitable to represent components or properties of the systems whose nature can
be highly heterogeneous (e.g., not representable by means of real-valued variables,
and/or spanning different orders of magnitude, and/or having units of measure of
different nature). This characteristics of fuzzy sets can be exploited to integrate into
one single framework different modeling approaches.

As a matter of fact, qualitative and quantitative modeling have been separately
used to address different problems, in several research fields [5, 11, 23, 24]. Contacts
between this two worlds have been limited, and efforts in trying to bridge them
together have been restricted to domain-specific applications. For example, in [25,
26] the authors review and discuss several approaches that try to reconcile different
mathematical formalisms with the aim of modeling cellular systems; the most no-
table one is the approach presented in [27], where the authors managed to simulate
a whole cell belonging to one of the most simple living organisms, the bacterium
M. genitalium. Other examples include modeling of the cardiovascular system by
means of fuzzy inference systems and ordinary differential equations [28], meth-
ods for refining a qualitative model predictions with quantitative data [29, 30], and
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1.1. Aims and motivations

mechanistic simulators with embedded methods that generate qualitative models to
provide a causal explanation of the observed dynamics [31].

The existence of profound differences between the plethora of mathematical for-
malisms adopted to represent complex systems undoubtedly poses an additional
challenge and hinders the process of their integration. However, as it can be seen
from the aforementioned examples, complex systems generally show features that
could benefit from a description that simultaneously exploits the advantages pro-
vided by both the qualitative and quantitative approaches. Indeed, adopting both
approaches to represent different parts of a complex system might improve its over-
all representation and understanding. Moreover, precise and quantitative data is not
always available or measurable for all system components and their mutual inter-
actions. Thus, integrating uncertain and qualitative information with precise and
quantitative data, whenever available, could result in the definition of more com-
plete models able to take into account all the processes occurring in the system under
analysis, and to uncover unexpected or yet unknown emergent behaviors in normal
and perturbed conditions.

1.1 Aims and motivations

The aims of this work are twofold.
The first aim is to design and implement a novel and general-purpose computa-

tional method, based on fuzzy logic, to allow the modeling and analysis of heteroge-
neous complex systems. This new method can be used to define fuzzy models, that
display the following features:

• they are dynamic models, able to simulate and predict the temporal evolution
of the system in both unperturbed and perturbed conditions, although they do
not require the availability of quantitative parameters and exact values of the
state or the amount of the system components;

• they allow to represent heterogeneous components, spanning different orders
of magnitude of spatial, temporal or functional organization, with a formalism
that is close to natural language, and thus able to provide interpretable models;

• they can be coupled to optimization algorithms, in order to automatically iden-
tify sets of system components whose perturbation can maximize, or mini-
mize, a desired behavior, and ultimately facilitate the control over the system.

Although several fuzzy logic tools and libraries are available in the literature,
none of them was specifically designed to support the modeling and the dynamical
simulation of heterogeneous systems, as well as the optimization of their behavior.
For this reason, a novel software was developed to support the definition, editing,
export and simulation of heterogeneous fuzzy models of complex dynamical sys-
tems. Moreover, an application of this novel method is also provided: a dynamic
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Chapter 1. Introduction

fuzzy model of a complex, heterogeneous system consisting of oncogenic K-ras can-
cer cells, which was defined to study the mechanisms that drive cancer cells to death
or survival.

The second aim of this thesis is to develop a novel framework, called FuzzX,
able to model and simulate hybrid models of complex systems, consisting in both a
qualitative module and a mechanistic module. In particular, the mechanistic mod-
ule allows to accommodate mechanistic models formalized by means of any kind
of fully parameterized modeling approach (e.g., algebraic equations, ordinary dif-
ferential equations, Markov jump processes), while the qualitative module is for-
malized as a fuzzy inference network. The final purpose of this framework is to
bridge together qualitative and mechanistic models: it is designed to allow the com-
munication and exchange of information between the two modules (by means of
a common interface), in order to perform simulations in which both modules can
influence each other’s behavior. A software implementation of FuzzX is presented,
as a new, general purpose simulator of hybrid models. Lastly, in order to show its
potentiality, an application of this new framework is shown, where a mechanistic
model of a biochemical signaling pathway in the yeast S. cerevisiae, characterized by
complex non-linear behaviors, is redefined and analyzed in terms of a hybrid model.
This application shows that FuzzX provides several advantages, including: the sim-
plification of model complexity by means of a formalism close to human language,
requiring a reduced number of free parameters; the possibility to run simulations of
hybrid models, conveying both quantitative and qualitative information; the ability
of hybrid models to reproduce the outcome of a detailed mechanistic model.

Together, these two contributions fill a gap in the scene of the modeling and sim-
ulation techniques currently available to analyze heterogeneous complex systems.

1.2 Overview of contents

This thesis is structured into two parts.
Part I contains prerequisites and basic notions that will be exploited in the de-

velopment of this work. In particular, Chapter 2 provides an introduction to fuzzy
set theory, fuzzy logic and fuzzy reasoning; Chapter 3 gives a brief description of
optimization algorithms, with a focus on Simulated Annealing; Chapter 4 contains
a description of the mechanistic modeling approaches employed in this work.

Part II presents the novel contributions developed during this thesis work. First,
the description of dynamic fuzzy modeling and its coupling to optimization algo-
rithms is given in Chapter 5; Chapter 6 presents a newly developed Python library
to handle fuzzy logic, together with some practical examples; lastly, the descrip-
tion of a novel framework for hybrid modeling and simulation is given in Chapter
7. The applications of these methods to the modeling of cancer cell death and bio-
chemical signaling pathways are provided in Chapter 8, together with a discussion
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of the obtained results. Finally, in Chapter 9 some concluding remarks and future
developments are presented and discussed.

The thesis also includes three appendices: Appendix A contains the fuzzy rules
of the model defined in Section 8.1, while Appendix B provides information regard-
ing the experimental procedures used for its validation; Appendix C presents the
mechanistic model considered in Section 8.2.

1.3 Scientific production

The contents of this thesis are based on the following publications.

Journal papers

• Nobile M.S., Votta G., Palorini R., Spolaor S., De Vitto H., Cazzaniga P.,
Ricciardiello F., Mauri G., Alberghina L., Chiaradonna F., Besozzi D.
Fuzzy modeling and global optimization to predict novel therapeutic targets
in cancer cells
Bioinformatics, 2019 [pending decision].

• Spolaor S., Nobile M.S., Mauri G., Cazzaniga P., Besozzi D.
Coupling mechanistic approaches and fuzzy logic to model and simulate
complex systems
IEEE Transactions on Fuzzy Systems, 2019.

Conference proceedings

• Spolaor S.
Bridging qualitative and quantitative modeling with FuzzX
20th Italian Conference on Theoretical Computer Science (ICTCS2019), 2019
[in press].

Book chapters

• Spolaor S., Gribaudo M., Iacono M., Kadavy T., Oplatková Z.K., Mauri G.,
Pllana S., Senkerik R., Stojanovic N., Turunen E., Viktorin A., Vitabile S.,
Zamuda A., Nobile M.S.
Towards human cell simulation
High-Performance Modelling and Simulation for Big Data Applications.
Springer, Cham, 2019. p. 221-249.

Posters and abstracts

• Spolaor S.
Hybrid modeling of biological systems with FuzzX
16th International Conference on Computational Intelligence methods for
Bioinformatics and Biostatistics (CIBB2019), 2019, Bergamo, Italy
[oral presentation].
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• Cazzaniga P., Besozzi D., Nobile M.S., Spolaor S., Mauri G.
A fuzzy logic based approach to handle cellular heterogeneity and the lack
of quantitative parameters in dynamical models of biological systems
11th Annual q-bio Conference, 2017, New Brunswick, NJ, USA.

• Besozzi D., Nobile M.S., Cazzaniga P., Spolaor S., Mauri G.
Dealing with cellular heterogeneity and lack of quantitative parameters in
dynamical modeling of biological systems: a fuzzy logic based approach
CSHL Meeting “Cellular Dynamics & Models”, 2017, Cold Spring Harbor, NY,
USA.

Manuscript in preparation

• Spolaor S., Nobile M.S., Cazzaniga P., Besozzi D.
Simpful: a simple fuzzy logic library

Additional work on related topics resulted in the following publications, which are
not covered in this thesis.

Journal papers

• Besozzi D., Castelli M., Cazzaniga P., Manzoni L., Nobile M.S., Ruberto S.,
Rundo L., Spolaor S., Tangherloni A., Vanneschi L.
Computational Intelligence for life sciences
Fundamenta Informaticae, 2020, 171: 1-4.

• Nobile M.S., Vlachou T., Spolaor S., Bossi D., Cazzaniga P., Lanfrancone L.,
Mauri G., Pelicci P.G., Besozzi D.
Modeling cell proliferation in human acute myeloid leukemia xenografts
Bioinformatics, 2019, 35.18: 3378–3386.

• Tangherloni A., Spolaor S., Cazzaniga P., Daniela Besozzi D., Rundo L.,
Mauri G., Nobile M.S.
Biochemical parameter estimation vs. benchmark functions: a comparative
study of optimization performance and representation design
Applied Soft Computing, 2019, 81: 105494.

• Tangherloni A., Spolaor S., Rundo L., Nobile M.S., Cazzaniga P. Mauri G.,
Liò P., Merelli I., Besozzi D.
GenHap: a novel computational method based on genetic algorithms for
haplotype assembly
BMC Bioinformatics, 2019, 20.4: 172.

• Nobile M.S., Porreca A.E., Spolaor S., Manzoni L., Cazzaniga P., Mauri G.,
Besozzi D.
Efficient simulation of reaction systems on Graphics Processing Units
Fundamenta Informaticae, 2017, 154.1-4: 307-321.
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Conference proceedings

• Spolaor S., Fuchs C., Kaymak U., Nobile M.S.
A novel multi-objective approach to fuzzy clustering
2019 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2019
[accepted].

• Nobile M.S., Vlachou T., Spolaor S., Cazzaniga P., Mauri G., Pelicci P.G.,
Besozzi, D.
ProCell: investigating cell proliferation with swarm intelligence
2019 IEEE Conference on Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB). IEEE, 2019. p. 1-8.

• Fuchs C., Spolaor S., Nobile M.S., Kaymak U.
A swarm intelligence approach to avoid local optima in fuzzy c-means clus-
tering
2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE,
2019. p. 1-6.

• Tangherloni A., Rundo L., Spolaor S., Nobile M.S., Merelli I., Besozzi D.,
Mauri G., Cazzaniga P., Liò P.
High performance computing for haplotyping: models and platforms
European Conference on Parallel Processing. Springer, Cham, 2018. p. 650-
661.

• Nobile M.S., Tangherloni A., Rundo L., Spolaor S., Besozzi D., Mauri G.,
Cazzaniga P.
Computational intelligence for parameter estimation of biochemical sys-
tems
2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2018. p. 1-8.

• Tangherloni A., Rundo, L., Spolaor, S., Cazzaniga, P., Nobile, M. S.
GPU-powered multi-swarm parameter estimation of biological systems: a
master-slave approach
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Network-based Processing (PDP). IEEE, 2018. p. 698-705.

• Spolaor S., Tangherloni A., Rundo L., Nobile M.S., Cazzaniga P.
Estimation of kinetic reaction constants: exploiting reboot strategies to im-
prove PSO’s performance
International Meeting on Computational Intelligence Methods for Bioinfor-
matics and Biostatistics. Springer, Cham, 2017. p. 92-102.
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Chapter 2

Fuzzy logic

L. A. Zadeh used to describe fuzzy logic as the act of computing with words [18].
Indeed, the primary aim of fuzzy logic is representing the mechanisms underlying
approximate modes of reasoning, that are common in our everyday language. Fuzzy
logic is a mathematical framework that can be exploited to connect the qualitative
world of words to the quantitative world of measures. The numerous advantages
that fuzzy logic is able to provide stem from this characteristic. Fuzzy logic can
be applied to increase the interpretability of computational models and/or to pro-
vide cost-effective approximations, even in the absence of precise quantitative in-
formation. Moreover, the flexibility of fuzzy sets allows to model a wide variety of
phenomena, including heterogeneous entities and concepts that are not amenable
of precise measurement. This flexibility can also be employed to “fuzzify” existing
mathematical frameworks and/or to connect them, in order to deal with multiple
sources of uncertainty. The following sections will briefly describe some elements of
fuzzy logic, essential to the understanding of the novel work presented in this thesis.

2.1 Fuzzy sets

In classic set theory, an object can either belong or not to a given set. Intuitively,
we perceive these sets as provided with well-defined, crisp borders: for example,
“dog” and “cat” undeniably belong to the set of “animals”. A fuzzy set represents
an extension of the ordinary set [19]: its boundaries are not sharp, so that elements
can belong to it to “some degree”. Fuzzy sets allow to represent concepts of human
reasoning that cannot be represented by crisp sets: for example, the set of “tall peo-
ple” may contain people that are undoubtedly tall (i.e., with a maximum degree of
“membership” to the set), but also people that are not as tall, but definitely not short
(i.e., with a lower degree of membership).

Formally, given a universe of discourse U , and u as its generic element, a fuzzy
set A is characterized by a membership function, denoted by µA : U → [0, 1], which
maps an element u to its degree of membership; in other words, µA(u) is the degree
of membership of u to A. If A is an ordinary set, then its membership function
µA(u) will assume only values 1 or 0. An example of this concept is given in Figure
2.1. On the left side, two crisp sets are used to partition the temperature of water
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Chapter 2. Fuzzy logic

into two sets, “cold” and “hot”, and a clear threshold separate what can be defined
as cold or hot water; on the right, side instead, three fuzzy sets are employed to
partition the same set of temperatures. The fuzzy partition allows to have a smooth
transition from “cold” to “warm” water, as well as from “warm” to “hot” water,
in a continuous way, without a clear, crisp threshold. The right panel in Figure 2.1
therefore shows an example of a representation that is closer to human perception.

Temperature

M
em

be
rs

hi
p

µ

0

1
Cold Hot

Crisp set

Temperature

µ

0

1
Cold Warm Hot

Fuzzy set

FIGURE 2.1: Comparison between crisp sets (left) and fuzzy sets (right) used to
represent water temperature.

Several definition and properties of fuzzy sets are also direct extensions of the
corresponding ones for ordinary sets:

• the fuzzy set A is empty if and only if µA(u) = 0, ∀u ∈ U ;

• two fuzzy sets A and B are equal if and only if µA(u) = µB(u), ∀u ∈ U ;

• the complement of A, denoted by A, is defined by µA(u) = 1− µA(u);

• the fuzzy set A is contained in B if and only if µA(u) ≤ µB(u), ∀u ∈ U ;

• the union of fuzzy sets A and B is a fuzzy set C, defined by
µC(u) = max(µA(u), µB(u)), u ∈ U ;

• the intersection of fuzzy sets A and B is a fuzzy set C, defined by
µC(u) = min(µA(u), µB(u)), u ∈ U .

Extension of additional properties (De Morgan laws, distributive laws) and addi-
tional operations on fuzzy sets can be found in [19].

It should be noted that fuzzy sets represent a form of vagueness and uncertainty
that is typical of human language, but that is not related to uncertainty derived by
randomness, as fuzzy sets do not represent probability distributions [19]. As sug-
gested in [32], a degree of membership represented by a fuzzy set can be interpreted,
depending on its application, in three ways:

• as a degree of similarity to a prototype object/condition. The most common in-
terpretation, it is used in clustering, regression analysis but also control theory
and modeling;

12



2.2. Linguistic variables

• as a degree of preference, representing an intensity of preference in favor of
a particular object, or the feasibility of selecting a certain value in a decision
task. This view is commonly adopted in the fields of optimization or decision
making;

• as a degree of uncertainty, inside the framework of possibility theory [33],
adopted in approximate reasoning.

When applying fuzzy sets, it is advisable to identify a correct interpretation, which
has to be common among all fuzzy sets. Since this work deals with modeling, all the
fuzzy sets presented in the following sections will fall under the first interpretation,
that is, they describe degrees of similarity to a prototypical condition (e.g., the state
of a system component).

It should also be noted that higher-order fuzzy sets, commonly referred to as
type-2 fuzzy sets exist [34]. These fuzzy sets are characterized by membership func-
tions that are fuzzy as well, thus they feature more degrees of freedom and they can
model additional layers of uncertainty. Since all the works presented here employ
classic, type-1 fuzzy sets, this thesis will not deal with type-2 fuzzy sets.

2.2 Linguistic variables

The definition of fuzzy sets allows to introduce another fundamental concept in
fuzzy logic, that is, linguistic variables. Differently from common numerical vari-
ables, a linguistic variable can assume as values words or sentences in some natural
or artificial language [35–37]. Linguistic variables effectively connect the quantita-
tive world of measures, to the qualitative world of human reasoning. In fact, they
provide a means to approximate phenomena that are too complex or too ill-defined,
so that they can be amenable of a description in conventional quantitative terms.
This is possible thanks to fuzzy sets, which represent broad collections of elements
inside a universe of discourse, analogously to the role played by words in a natural
language. For example, referring again to Figure 2.1, the linguistic variable “wa-
ter temperature” can be represented by partitioning the universe of discourse into
three fuzzy sets, which roughly describe what could be represented as a precise and
quantitative value of temperature as “cold”, “warm” and “hot” terms, according to
human perception.

Formally, in this work a linguistic variable l is defined as the quadruple

l = {X,U , Λ, M},

where:

• X is the name of the linguistic variable;

• U denotes the universe of discourse in which X has meaning;

13
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• Λ = {λ1, . . . , λk} is the term set of X, that is, the set of k linguistic values that l
can assume;

• M = {µλ1 , . . . , µλk} is the set of fuzzy subsets in which U is partitioned. Each
term λ ∈ Λ is associated with one and only one fuzzy set µ ∈ M.

In order to avoid an excess of notation, it should be pointed out that: (i) since a fuzzy
set is defined by its membership function, µ will be used to denote both the fuzzy
set and its membership function; (ii) we can refer to l just by using its name X.

Worthy of note, in the original definition of linguistic variables [36], L. A. Zadeh
took into account the presence of linguistic hedges, such as “very”, “more”, “less”,
able to modify the membership values of the linguistic terms. It should be pointed
out that this work does not deal with linguistic hedges, and whenever modifiers
such as “very” or “more” appear inside fuzzy models, they do appear only as part
of different linguistic terms.

2.3 Fuzzy rules

IF/THEN rules are commonly employed in classic logic to express implication and
represent “pieces of knowledge”. They can be extended into fuzzy IF/THEN rules
for the purpose of fuzzy set-based approximate reasoning [38]. Fuzzy IF/THEN
rules are logic rules in which the antecedent, or both antecedent and consequent,
are fuzzy sets rather than crisp. Although different interpretations of fuzzy implica-
tion can be found in the literature (see, e.g., [38]), they are generally defined by an
expression in the form:

IF X IS λ THEN Y IS z, (2.1)

where X and Y are the names of two linguistic variables, λ is a term of X and z
is either a crisp value, a term of Y, or a function of the variables appearing in the
antecedent. In general, the antecedent of a fuzzy rule can be any well-formed logic
expression, formed by means of the operators AND, OR, NOT. For example,

IF X IS λ AND X′ IS λ′ THEN Y IS z.

The degree of satisfaction w is defined as the degree to which the given values
of the input linguistic variables match the antecedent of a fuzzy rule. In particular,
for rules in the form given by Expression 2.1, given vX ∈ UX as the value of X,
then w = µλ(vX). In general, for rules whose antecedent is a well-formed logic
expression, w can be computed by applying each operator (in order of appearance)
as follows. Given X and X′ as two linguistic variables, λ and λ′ has their linguistic
terms, and vX and vX′ as their values:

• X IS NOT λ corresponds to the complement of λ: w = 1− µλ(vX);

• X IS λ AND X′ IS λ′ corresponds to the intersection of λ and λ′:
w = min(µλ(vX), µλ′(vX′));

14
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• X IS λ OR X′ IS λ′ corresponds to the union of λ and λ′:
w = max(µλ(vX), µλ′(vX′)).

The complete set of fuzzy rules is known as a “fuzzy rule base”.
Different definitions of the logic operators, implication and fuzzy rules exist;

these gave rise to a vast body of literature and, ultimately, affect the conclusions that
are drawn by a fuzzy rule base in fuzzy reasoning. This chapter will focus in par-
ticular on the two most common and successful interpretations of fuzzy rules and
fuzzy inference: the Mamdani method, and the Takagi Sugeno Kang (also known
as TSK or Sugeno) method. In both methods, fuzzy rules provide a rough descrip-
tion of the relation between their input (i.e., appearing in the antecedent) and output
(i.e., appearing in the consequent) variables. In fact, fuzzy antecedents in fuzzy rules
provide the basis for an interpolation mechanism, as explained in the next section.

2.4 Fuzzy inference systems

Linguistic variables and fuzzy rules represent the foundations of Fuzzy Inference
Systems (FISs) [39]. Fuzzy inference can be described as the process of mapping a
given input to an output by means of fuzzy logic. FISs found successful applica-
tions in several fields, ranging from automatic control and expert systems, to clas-
sification, regression analysis, computer vision etc. Because of this strong multi-
disciplinarity, they are known by different names, such as fuzzy logic controllers,
fuzzy systems, fuzzy-rule-based systems, fuzzy expert systems, and fuzzy models.
This success was also due to the fact that, as neural networks, it was proven that a
broad number of FISs are universal approximators [40–42], that is, they are capable
of approximating any real continuous function on a compact set with an arbitrary
accuracy. Notably, among these there are the Sugeno FISs, commonly employed in
control and modeling.

In general, a common architecture of FISs (depicted in Figure 2.2) can be de-
scribed as follows:

1. fuzzification of crisp inputs into their linguistic variables and evaluation of
their membership degree by means of the membership functions;

2. inference of rule conclusions (i.e., rule evaluations) and their aggregation into
a single output;

3. defuzzification (optional) of the fuzzy rules’ output into a single crisp value.

The fuzzy knowledge base, that is, the set of linguistic variables together with their
fuzzy sets and fuzzy rules, is exploited in each passage of the inference process. Ini-
tially, FISs were designed and developed mainly for automatic control purposes: the
earliest example being [43], where the authors developed what is now known as the
Mamdani inference method to control a steam engine. In this setting, the knowledge
base is generally built by domain experts. However, nowadays there exist a number
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Inputs
(Crisp) Fuzzification Fuzzy inference Defuzzification

Knowledge base
Linguistic variables

Fuzzy sets Fuzzy rules

Output
(Crisp)

FIGURE 2.2: Graphical representation of the general architecture of a fuzzy infer-
ence system.

of applications in which the knowledge base is automatically built starting from a
given data set (for example classification, regression analysis, etc. [44]). This thesis
work will focus on modeling and simulation of complex systems, thus all knowl-
edge bases presented are to be considered as expert-defined. Some remarks on pos-
sible data driven applications and future developments on the automatic inference
of fuzzy rule bases will be given in Chapter 9.

The Mamdani [43] and the Sugeno [45] inference methods—the two most com-
mon and widely accepted fuzzy inference methods, especially in the field of control
and fuzzy modeling—share the general architecture described above, although they
differ in the definition of the consequents of the fuzzy rules and how they aggregate
the rules evaluations. These two inference methods are described in detail in the
following subsections.

2.4.1 Mamdani fuzzy inference systems

The Mamdani method [43] was the first proposed method of fuzzy inference. Mam-
dani type fuzzy rules are characterized by having fuzzy sets as consequents: thus,
the conclusions drawn after a rule evaluation must be combined into a single output,
which can then be defuzzified.

The most common Mamdani inference method—adopting min as implication op-
erator, max as aggregation operator and center of gravity (COG) as defuzzification
method—can formally be defined as follows. Let L = {l1, . . . , l f } be a set of input
linguistic variables, with v1, . . . , v f being their values, andR = {R1, . . . , Rq} be a set
of fuzzy rules, where Rj ∈ R, j = 1, . . . , q, is defined as in Expression 2.1 and has
as antecedent a well-formed logic expression composed of variables belonging to L.
Additionally, let Y be the name of the output variable and z a linguistic term of Y.
To obtain the final output value σ of Y, the Mamdani inference method proceeds as
follows:

• fuzzify the values v1, . . . , v f into their respective membership functions;

• calculate the degree of satisfaction wj of each rule Rj, as described in Sec-
tion 2.3;

16



2.4. Fuzzy inference systems

• for each rule, identify the fuzzy subset zw
j of z defined by the function

min(w, µz);

• calculate the output fuzzy set Z =
q⋃

j=1
zw

j ;

• calculate the defuzzified output as the center of the area covered by
σ = COG(Z).

An example of Mamdani inference is depicted in Figure 2.3.
Mamdani FISs are generally considered easy to understand and characterized

by more interpretable rules, since the consequents are defined by fuzzy sets. How-
ever, their performance is strongly dependent on the aggregation and defuzzifica-
tion methods, and they give unreliable results when many rules are firing together
(e.g., the outputs converge towards the center of the universe of discourse).

IF     IS λ   AND  IS λ  THEN              IS 

IF     IS λ     THEN                IS 

min

Apply logic 
operators

Fuzzify

Final output

1st rule

2nd rule

Inputs

σ

Aggregate

Defuzzify

FIGURE 2.3: Graphical representation of an example of Mamdani inference, con-
sisting of two input linguistic variables and two fuzzy rules.

2.4.2 Sugeno fuzzy inference systems

The Sugeno inference method [45] is characterized by the presence of fuzzy rules
in which the consequent is a function of the variables appearing in the antecedent.
Contrary to the Mamdani method, since the rules’ evaluation returns crisp values,
there is no need for defuzzification.

The Sugeno inference is formally defined as follows. Let L = {l1, . . . , l f } be a set
of input linguistic variables, with v1, . . . , v f being their values, andR = {R1, . . . , Rq}
be a set of fuzzy rules, where Rj ∈ R, j = 1, . . . , q, is in the form

IF X IS λ AND X′ IS λ′ THEN Y IS zj,

where the antecedent can be any well-formed logic expression composed of vari-
ables belonging to L, Y is the name of the output variable and zj is a function of the

17



Chapter 2. Fuzzy logic

linguistic variables appearing in the antecedent. To obtain the final output value σ

of Y, the Sugeno inference method proceeds as follows:

• fuzzify the values v1, . . . , v f into their respective membership functions;

• calculate the degree of satisfaction wj of each rule Rj, as described in Sec-
tion 2.3;

• for each rule, compute the value of zj;

• calculate the final output as σ =
q
∑

j=1

wjzj
wj

.

An example of Sugeno inference is described in Figure 2.4.

IF    X IS λ   AND X’ IS λ’ THEN       Y IS z1

IF    X IS λ’’    THEN       Y IS z2

min w1

w2

z1= f(uX, uX’)

z2= f(uX)

vX vX’

Apply logic 
operators

Fuzzify

Final output

1st rule

2nd rule

Inputs

σ = 
w1+w2

w1z1+w2z2

FIGURE 2.4: Graphical representation of an example of Sugeno inference, consist-
ing of two input linguistic variables and two fuzzy rules.

Sugeno FISs are considered less interpretable, due to the fact that the conse-
quents are in the form of functions. This is particularly true if higher-order func-
tions are adopted. However, Sugeno FISs display several advantages: their output
surface was proven to be continuous [46], thus they are more prone to mathematical
analysis, and they are computationally less demanding compared to Mamdani FISs.
Sugeno FISs are generally classified according to the order of the functions expressed
in the consequent of the fuzzy rules. In particular, 0-order Sugeno FISs are charac-
terized by the presence of a constant function (i.e., a crisp value) in the consequent
of the fuzzy rules. These FISs conserve all the advantages of higher-order Sugeno
FISs, although they remain more interpretable to domain experts with respect to
their higher-order counterparts.
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2.5. Fuzzy networks

2.5 Fuzzy networks

The definition of a multiple-input, single-output FIS might not be sufficient for sev-
eral practical applications, especially if the variables to be modeled are strongly in-
terdependent. To overcome this limitation, different formalisms were devised to
efficiently “connect” more than one FIS, and, in particular, to feed the output of a
FIS as input to a downstream one. Among these, one can find hierarchical FISs [47],
multi-layer FISs [48], and fuzzy inference networks [49]. Fuzzy inference networks,
or in short fuzzy networks (FNs), are the most versatile form of interacting FISs. A
FN can be depicted as a directed graph, where nodes represent linguistic variables,
and arcs the presence of some fuzzy rules governing them. Thus, connections be-
tween the nodes represent interactions in the form of rule outputs fed as variable
inputs to a downstream FIS. These networks can be defined with arbitrary topolo-
gies, including cycles and feedback loops, a feature that proves particularly useful
to model the non-linear interactions existing in complex systems [49–52].
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Global optimization

An optimization problem consists in finding, among the set Π of all possible solu-
tions, the optimal solution π able to maximize (or minimize) the value of a given
objective function F(·). Stated otherwise, in the case of maximization problems, it
means finding π ∈ Π such that F(π) ≥ F(π′) for any π′ ∈ Π. Optimization prob-
lems are generally classified in discrete or continuous, according to the nature of the
search space of the possible solutions. When the size of the search space is large,
a complete enumeration of the solutions becomes clearly impractical; several com-
putational strategies exist, to explore the search space in a smart way, in order to
determine the optimal solution or a close approximation of it.

3.1 Local and global optimization methods

Optimization methods are commonly divided in local and global optimization tech-
niques. Local optimization includes the methods that improve the found solution
only in its neighborhood of the search space, until they converge to a (local) opti-
mum. Typical methods belonging to this class are Hill Climbing (HC) and Gradient
Descent (GD) algorithms [53]. HC and GD start by choosing an initial putative solu-
tion π, usually on a random basis, exploiting some probability distribution, or any a
priori knowledge about the search space. Then, at each iteration, they adopt a greedy
approach in order to accept only new solutions that improve the value F(π), until
no further improvement is possible. A major drawback of local methods is that they
can reach only the locally optimal solution of the basin of attraction in which they
are initialized. Hence, they do not provide any guarantee that the best solution will
be found. Although several variations exist to tackle this limitations (e.g., multi-start
strategies), they are not suited to optimize objective functions characterized by noisy,
non-convex or multi-modal search spaces.

When dealing with a high number of local minima, global optimization tech-
niques are preferred: these methods perform an effective and efficient exploration
across the whole search space, increasing the chances of converging to the global op-
timum. Global optimization methods include several heuristics and metaheuristics
methods (based, for example, on evolutionary computation or swarm intelligence),
which, despite being approximate methods, become especially performing when
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facing analytically intractable problems [54]. One of the most widespread method
of global optimization is Simulated Annealing.

3.2 Simulated annealing

Simulated Annealing (SA) is a meta-heuristic, stochastic global optimization method,
adapted from the Metropolis-Hastings sampling algorithm [55]. SA draws inspira-
tion from the annealing in metallurgy, a process in which a metal is heated and then
undergoes a controlled cooling in order to modify its crystal structure. A key fea-
ture of SA is that it can accept, with a given probability, worse solutions during the
optimization process. This allows SA to escape local minima, switching between
an exploration of the search space and the exploitation of the neighborhood of the
found solution.

SA proceeds as follows. Starting from an initial solution π, at each iteration of the
algorithm a new solution π′ is created by perturbing π (i.e., by sampling its neigh-
borhood); the generation of π′ is done accordingly to the structure of the solutions to
the optimization problem. Then, given F(π) and F(π′) as the goodness of fit of the
previous and the new solutions, respectively, in the case of maximization problems
π′ is accepted with a probability:

P(accept π′|F(π), F(π′)) =

1 if F(π′) > F(π)

exp(−(F(π′i)−F(πi))
T ) otherwise,

(3.1)

where T is the “temperature” hyper-parameter, affecting the exploration capability
of SA. This process iterates until a termination criterion is met (most commonly,
a maximum number of iterations). The output produced by SA is the solution π

characterized by the best value F(π).
The parameter T deeply affects the performance of SA; usually, the tempera-

ture starts from an initial value T0 and linearly decreases to 0 during the iterations,
progressively reducing the exploration capabilities of SA in favor of an exploitative
behavior towards the end of the optimization. Since SA is a stochastic algorithm,
different runs may yield different solutions; nevertheless, it is expected that SA will
converge more often to optimal solutions, representing the attractors of the search
space, as it was proven to asymptotically converge to the global optimum [56].
Among the advantages of SA, it should be noted that, differently from some local
methods (such as GD, which exploits the gradient of F(·) in π), it does not require
the objective function to be differentiable, and thus it is commonly used in discrete
optimization problems.
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Mechanistic modeling and
simulation

Mechanistic models have a key role in our understanding of natural phenomena
and in the design of artificial systems. These models allow to integrate in a system-
atic manner the available data and help in the formulation of testable hypothesis,
facilitating the analysis of complex systems and their behaviors. A relevant feature
of these models is that they describe the mechanisms underlying the functioning of
such systems and allow to simulate their evolution over time, by adopting mathe-
matical formalisms whose representation is close to the physical reality.

Although several formalisms exists to represent the different nuisances of each
system, they all share a general structure. Given a complex system Ω, a mechanistic
model of Ω is characterized by a set V of variables, representing the components
of the system, a set P of processes, describing the interactions existing between the
components and how the system’s dynamics evolve, and a set θ of parameters reg-
ulating such processes. The following sections will provide a brief description of
the mechanistic modeling and simulation approaches exploited in this work, which
focus on the simulation of biochemical systems.

4.1 Reaction-based models

A reaction-based model (RBM) [57] is a common formalism employed to model
biochemical systems. Given a biochemical system Ω, a RBM is defined by a set
P = {P1, . . . , Pp} of reactions, involving a set of chemical species V = {x1, . . . , xm},
and a set of parameters θ = {c1, . . . , cp}. A species variable xi ∈ V , with i = 1, . . . , m,
can assume values in N if the variables of the model represent number of molecules,
or in R+ if they represent concentrations in a given volume V. A reaction Pj ∈ P ,
with j = 1, . . . , p, has the general following form:

Pj =
m

∑
i=1

αijxi
cj−→

m

∑
i=1

βijxi, (4.1)
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where αij, βij ∈N are the stoichiometric coefficients, that is, the number of molecules
of species xi involved in the reaction Pj as reactants and products, respectively. Fi-
nally, cj ∈ θ represents a kinetic parameter, a constant that can assume values in R+

and encompasses the physical and chemical properties of the reaction.
Additionally, let the vector X(t) = (x1(t), . . . , xm(t)) describe the state of the m

species at time t. X0 denotes the initial state of the system Ω represented by the
RBM, that is, the state of the system X(t0) at time t0. Lastly, for each reaction Pj,
a state change vector νj = (νj1, . . . , νjm) can be defined, consisting of the elements
νji = βij − αij, with νji ∈ Z, which represent the change in the amount of species xi

due to reaction Pj.
Biochemical reactions defined in RBMs are generally assumed to happen in a

well-stirred, fixed volume at thermal equilibrium, and to obey the mass-action kinet-
ics (MAK) [58, 59]. MAK is an empirical law stating that, in a well-stirred solution,
the rate of an elementary reaction (i.e., a reaction consisting in a single mechanistic
step) is proportional to the product of the concentration of its reactants, raised to
the power of the corresponding stoichiometric coefficients. Under this assumption,
the temporal evolution of a RBM can be simulated by means of both deterministic
or stochastic approaches. Common approaches include defining and numerically
integrating the associated system of ordinary differential equations (deterministic),
or sampling trajectories from the associated Chemical Master Equation (stochastic).

4.2 Ordinary differential equations

Traditionally, the temporal evolution of complex systems is modeled by means of
a system of coupled ordinary differential equations (ODEs). Biochemical systems
make no exception, and systems of coupled ODEs are often used to describe the rate
of change of the species concentrations.

In particular, an RBM defined as in Section 4.1 can be represented as a system of
ODEs as follows. Given xi(t) as the concentration of the i-th species at time t and
p reactions in the form of Equation 4.1, by assuming MAK the system of coupled
ODEs can be written as:

dxi(t)
dt

=
p

∑
j=1

νji cj (
m

∏
i=1

xi(t)αij), for i = 1, . . . , m.

It is worth noting that ODE based models are not limited to MAK, but can exploit
different kinetics, depending on the context of their application (e.g., in the case of
biochemical systems, Hill functions and Michaelis-Menten kinetics are frequently
used [58]).

ODE based models describe systems whose components can be represented with
continuous variables and whose behaviors can be described by deterministic dy-
namics. If stochastic phenomena do play a role in the emergence of the system
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behaviors (e.g., the system shows bistability), stochastic modeling and simulation
approaches are preferred (see Sections 4.4 and 4.5).

4.3 Numerical integration algorithms

Given an initial condition of Ω, the dynamics of the corresponding model can be
obtained by solving the system of ODEs. Since obtaining the exact solution of such
systems is not always analytically possible, numerical integration algorithms are
commonly employed to obtain approximate solutions.

The simplest numerical integration algorithm is known as Euler’s Method (EM)
[60]. EM is an iterative algorithm that exploits, at regular points, the slope of the
tangent to the unknown solution of the ODE system to approximate it. Precisely, let
y′(t) = f (t, y(t)) be a generic ODE, y(t0) be an initial point, and [t0, tend] be the time
interval in which the approximate solution has to be determined. Given a step size ε,
it is possible to define a set of γ time instants t0, . . . , tγ = tend, such that tn = t0 + nε,
n = 1, . . . , γ, and ε = tend−t0

γ . Starting from t0, at each step the unknown curve can
be approximated as:

yn+1 = yn + ε f (tn, yn), ∀n = 0, . . . , γ− 1

where yn = y(tn). EM is a first-order, single step method, whose global error at a
given time t is proportional to ε.

The idea underlying the EM often serves as the basis to construct more complex
methods, such as the Runge-Kutta methods [60]. The Runge-Kutta methods are a
family of iterative algorithms that improve the approximation provided by EM. The
most popular Runge-Kutta algorithm is the fourth order Runge-Kutta method, or
RK4. RK4 exploits a weighted average of four values at each integration step to
calculate the solution. Specifically, RK4 calculates each new point yn+1 as

yn+1 = yn +
ε

6
(h1 + 2h2 + 2h3 + h4),

where h1, h2, h3 and h4 are calculated as

h1 = f (tn, yn),

h2 = f (tn +
ε

2
, yn +

ε

2
h1),

h3 = f (tn +
ε

2
, yn +

ε

2
h2),

h4 = f (tn + ε, yn + εh3).

Being RK4 a fourth order method, its global approximation error at any given time
is proportional to ε4, resulting in an improved solution with respect to EM.

Although widely used, the RK4 method might be not efficient in solving sys-
tems of ODEs characterized by stiffness. Informally, stiffness can be described as the
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phenomenon by which highly stable ODE systems show a high degree of instabil-
ity when approximated by classical numerical methods [60]. A way to cope with
this problem is reducing the step size of integration algorithms, but this might lead
to a considerable increase in simulation time; additionally, in some ODE systems
this instability leads to a significant propagation of approximation errors, eventu-
ally achieving poor solutions [61]. Several ODE systems of practical importance in
scientific modeling exhibit stiffness, and over the years many methods were devel-
oped in order to cope with this phenomenon. One of the most efficient algorithms
up to date for the numerical integration of stiff and non-stiff systems of ODEs is the
Livermore Solver of Ordinary Differential Equations (LSODA) [62]. LSODA is an
ODE solver that automatically detects the presence of stiffness during the execution,
and dynamically switches to the class of integration methods that is likely to be more
efficient on that part of the problem. In particular, LSODA adopts two families of
integration algorithms: a class of explicit methods, called Adams methods, in the
absence of stiffness, and a class of implicit methods, the Backward Differentiation
Formulae (BDF), otherwise. In order to efficiently switch between these two meth-
ods, LSODA initially assumes the problem to be non-stiff and collects data at the
end of each integration step; if the problem changes character during the integration
step, LSODA switches to the most efficient method. Three functional settings control
the performance of LSODA and the quality of the integration, namely, the absolute
and relative error tolerance and the maximum number of internal iterations allowed
for each integration point.

4.4 Chemical Master Equation

If the biochemical system Ω is characterized by the presence of species appearing
in low numbers, their quantities cannot be approximated with concentrations and
the impact of noise (i.e., stochastic fluctuations in the number of molecules) becomes
significant. In these cases, stochastic approaches are preferred, as they can capture
the discrete nature of the system’s components and they take into account the in-
fluence of stochastic fluctuations on the system’s behavior. This feature allows to
investigate emergent phenomena that are due to the presence of random noise in
the system, such as bistability.

One of these approaches is modeling Ω by means of a Chemical Master Equation
(CME) [63], which describes the probability of finding the system in a particular state
X(t) at time t, starting from a given initial state X0 = X(t0). Formally, the CME is
defined as:

∂P(X, t|X0, t0)

∂t
=

p

∑
j=1

[aj(X− νj) P(X− νj, t|X0, t0)− aj(X) P(X, t|X0, t0)], (4.2)

where aj(X(t)) = cj · dj(t) is the propensity function of reaction Pj at time t, and dj

represents the number of distinct combinations of the reactant molecules appearing
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in reaction Pj and occurring in the system at time t.

4.5 Stochastic simulation algorithms

Although the CME allows to compute the probability P(X(t)) given an arbitrary
time t and initial state X0, its analytical solution is impractical in most cases. As a
matter of fact, solving the CME involves computing the probabilities of all the possi-
ble states that the system could reach, whose number grows exponentially with the
number of chemical species (for some systems, this number might even be infinite
[64, 65]). For this reason, analytical and numerical solutions are often intractable, or
possible only in the case of simple models, with limited practical applications [66].

An alternative approach is represented by sampling possible trajectories of the
underlying Markov-chain process, by means of stochastic simulation algorithms.
One of the first method to generate exact realizations of the CME was Gillespie’s
Stochastic Simulation Algorithm (SSA) [67]. Given a state X(t) ∈ Nm of the bio-
chemical system, SSA determines which reaction will be executed during the next
time interval [t, t + τ) by calculating the probability of each reaction to occur in the
next infinitesimal time step [t, t + dt). Such probability is proportional to aj(X(t))dt,
where aj(X(t)) is the propensity function of reaction Pj at time t. Then, the waiting
time τ before a reaction fires is calculated according to the following equation:

τ =
1

∑
p
j=1 aj(X(t))

ln
(

1
ρ1

)
, (4.3)

while the index j of the firing reaction is chosen as the smallest integer j such that:

j−1

∑
j′=1

aj′(X(t)) < ρ2

(
p

∑
j=1

aj(X(t))

)
≤

j

∑
j′=1

aj′(X(t)). (4.4)

In Equations 4.3 and 4.4, ρ1 and ρ2 are two random numbers sampled from a uniform
distribution in the interval (0, 1]. Once τ and the index j are chosen using Equations
4.3 and 4.4, the amounts of the species are updated according to reaction Pj: αij

molecules of xi are removed and βij molecules of xi are added to the system state
X(t + τ), for all i = 1, . . . , m. The simulation time t is then updated to t + τ, and the
algorithm is iterated until t exceeds the maximum simulation time tmax.

After the original formulation of SSA, the so-called “Direct Method” [67], several
variations and improvements of this algorithm were proposed, notably the First Re-
action Method [68], the Next Reaction Method [69], and the Tau-leaping algorithm
[70]. Other stochastic simulation approaches, not based on SSA, are also exploited
in the field of biochemical modeling, such as Stochastic Differential Equations [71],
and objects based methods [65, 72].
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Chapter 5

Dynamic fuzzy modeling

Dynamic models of complex systems are used in several disciplines to elucidate
emergent properties in normal and perturbed conditions, reveal possible failures
and/or counter-intuitive mechanisms, and envisage new hypotheses that can be
tested. Although mechanism-based models provide a detailed description of the un-
derlying processes, they require a profound knowledge of the system under inves-
tigation, including quantitative parameters (e.g., kinetic rates) that are often difficult
to be measured, especially in natural or large-scale systems, therefore hampering
the effectiveness of many computational analyses. Moreover, some systems might
be characterized by the presence of heterogeneous components (e.g., represented by
real and non-real valued variables, spanning multiple orders of magnitude, having
different units of measures), and/or the data available for them might be present
only in a qualitative form, or as a “fuzzy” concept, as described in Chapter 2, high-
lighting uncertainty and experimental measurement limitations.

The tools provided by fuzzy logic and fuzzy reasoning can overcome these lim-
itations in complex systems modeling [11, 21, 49]. Just to mention a few, models
based on fuzzy logic were applied to model cellular signaling pathways [73], stock
market [74], or control industrial processes [75, 76]. However, to date a general pur-
pose simulator of dynamic fuzzy models is still missing. This chapter introduces
dynamic fuzzy models (DFMs), a computational paradigm to describe and analyze
the emergent behavior of heterogeneous complex systems characterized by uncer-
tainty, and a novel general purpose simulator of DFMs. In addition, a description
of how to couple such simulator to global optimization techniques, in order to auto-
matically optimize a desired system’s behavior, is also provided.

In order to prove the effectiveness of DFMs, an application of this computational
method is presented in Section 8.1 for the analysis of programmed cell death in can-
cer cells, in order to understand the glucose-dependent mechanisms driving cancer
cells to death or survival. This system is characterized by the presence of hetero-
geneous components, for whom precise quantitative information is often missing.
This work shows how the coupling of DFM simulation and a global optimization al-
gorithm can guide the design of novel chemotherapies, by combining existing drugs
directed to well-established cancer specific targets. The modeling framework intro-
duced in this chapter, together with its application to the study of programmed cell
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death, has been extensively presented in [77].

5.1 DFM definition and simulation

5.1.1 Model definition

A DFM of a complex system Ω consists of a set of linguistic variables L and a set of
fuzzy rulesR. Each linguistic variable, together with its associated linguistic terms,
describes a component of Ω, providing a qualitative description of all the possible
states that the component can assume over time. The linguistic variables in L and
their terms are used to define the fuzzy rules in R, which provide a qualitative de-
scription of the mechanisms (e.g., feedback regulation) driving the overall behavior
of the system.

The fuzzy rules inR are written as in Expression 2.1, and they are 0-order Sugeno
rules, thus their consequent is a constant function. The value of this constant func-
tion is defined as “output crisp value”. Output crisp values are associated to a
unique string of text, which can be used for the definition of fuzzy rules. A 0-
order Sugeno rule base has been chosen in order to run computationally efficient
simulations of the model, while, at the same time, maintaining a high degree of in-
terpretability of the rules thanks to the use of constant functions associated to output
crisp values.

A DFM can be considered as a fuzzy network (FN) [49], and thus depicted as
a directed graph, where nodes represent linguistic variables, and arcs the presence
of some fuzzy rules governing them. The arcs either represent positive or negative
regulations existing among the variables. Consequently, DFMs can be defined with
arbitrary topologies, including cycles and feedback loops. The variables belonging
to a DFM are partitioned into two sets: outer and inner variables. The set of outer
variables contains input and output variables, which can only appear as antecedents
and consequents of fuzzy rules, respectively; in other words, input variables are
represented by nodes without ingoing edges, while output variables by nodes with-
out outgoing edges. In particular, input variables correspond to the components
that trigger the dynamic evolution of the system, while output variables represent
the components of interest for the analysis of the system (e.g., some experimentally
measurable component). On the contrary, inner variables can appear on both sides
of fuzzy rules, and they are used to represent mutual regulations among the system
components.

Since the input variables appear only in the antecedents, their state is not up-
dated as a result of fuzzy inference. The state of such variables is set by means of
a function over time, also called “input function”, which describes the evolution of
an input variable throughout the simulation. Thus, let Lin ⊂ L denote the subset of
input variables that do not appear in the consequent of any fuzzy rule belonging to
F , and T = [t0, . . . , tmax] denote the sequence of time steps of the model simulation,
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as described in Subsection 5.1.2. For each ln ∈ Lin, φn : T → Un denotes the input
function of ln, where Un represents its universe of discourse.

5.1.2 Simulation

Let Y = {y1, . . . , yN} be the set of initial values of each linguistic variable, that is,
the numerical value yn ∈ Un that each linguistic variable ln ∈ L assumes at t0.
The simulation of a DFM is performed in discrete time steps, starting from t0 and
updating the values of each ln ∈ L synchronously.

Namely, given a time step t ∈ T , the state of the DFM in t is defined as S(t) =

St = [st
1, . . . , st

N ], where st
n = sn(t), st

n ∈ Un, is the numerical value of ln in t. The
transition St → St+1 is performed by updating the values st+1

n of each linguistic
variable ln as follows:

• if ln ∈ Lin, then st+1
n = φn(t + 1);

• otherwise, st+1
n is obtained by applying the Sugeno fuzzy inference method as

described in Section 2.4.2.

The process iterates until the maximum simulation time tmax is reached.
To explore the emergent behavior of the system in different scenarios, FUMOSO

allows to define “perturbations” of the DFM over one or more time intervals. For the
sake of conciseness, in what follows only perturbations over a single time interval
are considered.

Formally, to define a perturbation π, consider a subset of perturbable linguistic
variables L̃ ⊆ L, with |L̃| = Ñ, and a chosen time interval [tb, te] ⊆ [t0, tmax]. A
perturbation is defined as the set of couples π = {(l̃n, φ̃n)|1 ≤ n ≤ Ñ}, where l̃n ∈ L̃
and φ̃n is a user-defined function that determines the value of l̃n over [tb, te]. Al-
though perturbations may be defined by means of arbitrary functions in FUMOSO,
for the remaining part of this thesis the function φ̃n associated to l̃n will be equal
either to any element of a given finite set of states, composed of the crisp values (i.e.,
constant functions) associated to l̃n, or to the term “unperturbed”, a state indicating
that the perturbable variable will be actually updated by using the Sugeno inference.
This definition of perturbation, which includes the “unperturbed” state, will prove
useful to carry out the global optimization of the DFM and for the identification of a
(potentially) minimal set of variables to be perturbed.

5.2 FUMOSO: a general-purpose simulator of DFMs

The FUzzy MOdels SimulatOr (FUMOSO) is a novel, open source and cross-platform
software, specifically designed to define, simulate and analyse DFMs. FUMOSO is
provided with an intuitive Graphical User Interface (GUI), devised in order to guide
the user through the required steps for the creation of a DFM, that is, the definition of
linguistic variables, together with their linguistic terms and membership functions,
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output crisp values, and fuzzy rules (see Figure 5.1). Additionally, FUMOSO allows
the user to enter all the information required to simulate the dynamics of a DFM:

1. the simulation interval [t0, tmax];

2. the initial state of all variables;

3. the functions that drive the dynamics of input variables (if any);

4. the perturbation functions (if any).

Optionally, for each variable involved in a perturbation π, the user can specify a list
of time intervals in which that perturbation becomes active over that variable.

Once the simulation has ended, FUMOSO plots the dynamics of any chosen sys-
tem component. Moreover, FUMOSO allows to plot its membership functions and
the degree of satisfaction of the firing rules, involved in the update of a component
state at any arbitrary time step. The analysis of the simulation outcome is facili-
tated thanks to the possibility of creating groups of components, that is, subsets of
variables whose dynamics are shown in the same plot.

FUMOSO was implemented using the Python programming language [78], ver-
sion 2.7. FUMOSO’s dependencies are: PyQT4, numpy [79], and PyFuzzy [80]. The
latter module—used to handle the membership functions evaluations—requires the
Python runtime for the ANTLR 3 language processing library [81]. In order to re-
duce the dependencies and simplify the installation, a porting to the Simpful fuzzy
library is under development [82] (see Chapter 6).

FUMOSO currently supports the import and export of fuzzy models encoded
using the Fuzzy Control Language (FCL), standard IEC 61131-7 [83]. Since the
FCL file does not encode some of the information required to implement a DFM
(notably, the initial states of variables, the input functions and the perturbations),
this additional data is saved into an external project file with extension .fms. FU-
MOSO provides an Application Programming Interface (API) to define new mod-
els, load models previously saved as .fms files, run simulations in unperturbed
or perturbed conditions, and perform a global optimization analysis (see Section
5.3). The support for the Fuzzy Markup Language (FML, IEEE standard 1855-2016
[84]) for models storage is currently under development. The source code of FU-
MOSO is available under the GPL 2.0 license on GitHub at the following URL:
https://github.com/aresio/FUMOSO.

5.3 Global optimization of DFMs

Given a DFM, FUMOSO allows to automatically explore the emergent behavior of
the system in different scenarios, where the state of one or more linguistic variables
is altered in order to simulate the effects of perturbations on some desired system
behaviors.
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FIGURE 5.1: Graphical User Interface of FUMOSO. (a) Fuzzy rules visualization.
The list of fuzzy rules is shown in a dockable subwindow on the left. Rules are
grouped according to the consequent variable. By clicking on a set of rules (e.g.,
“ROS” in the figure), FUMOSO shows the membership functions of all antecedent
variables, along with the values of the crisp consequents (on the right). The last row
shows the final value calculated by the Sugeno inference method. (b) FUMOSO
main window. Besides the menu on the top—which allows to create, open, edit,
and save DFMs—the Graphical User Interface consists in three sections: a subwin-
dow listing any user-defined group of model components, a subwindow listing the
membership functions defined in the current DFM, the plots for selected groups

and selected membership functions. All subwindows are dockable.

In general, a user-defined function F(π) can be employed to evaluate the effec-
tiveness of π in obtaining the desired system behavior. However, the search space
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of possible perturbations of a DFM grows exponentially with the number of per-
turbable variables. For example, in a DFM with Ñ perturbable variables, each char-
acterized by k + 1 possible perturbed states (k crisp values, plus the term “unper-
turbed”), the possible perturbations are (k + 1)Ñ . Thus, when dealing with DFMs
characterized by a high number of variables and/or possible perturbed states, per-
forming an exhaustive search might not be feasible and the use of optimization
methods relying on local search strategies might return unreliable results. To face
these challenges, global optimization methods can be adopted to realize an effective
and efficient exploration of such huge search space. In particular, in this thesis FU-
MOSO has been coupled with SA [56] (Section 3.2), a stochastic optimization algo-
rithm suitable for discrete optimization problems, as in the case of the optimization
of a desired DFM behavior, since the set of possible perturbations is finite.

FUMOSO employs F(π) as the objective function of SA. The SA procedure inte-
grated in FUMOSO starts from an initial perturbation π0—where all the variables in
L̃ are set to the “unperturbed” state—and then explores the neighborhood of such
perturbation in the search space. During the i-th iteration of SA, a new putative
perturbation π′i = ηe(πi) is generated, where ηe is a neighborhood function that
randomly modifies the current perturbation by changing the perturbed state of at
most e variables belonging to L̃. To be more precise, the perturbation π′ is obtained
by randomly selecting e ≤ Ñ variables, and setting their state to one of the pos-
sible perturbed states (i.e., their output crisp values or “unperturbed”), chosen at
random. The “unperturbed” state is leveraged by SA during the optimization to
avoid the generation of solutions with an excessive number of perturbations, which
might be not strictly necessary to obtain the desired system behavior. So doing, and
thanks to the use of the “unperturbed” state, SA can generate the minimal set of
variables that need to be effectively perturbed in order to maximize or minimize the
given objective function. The output produced by a SA run is the perturbation π

characterized by the best value of F(π).
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Simpful

The huge impact that fuzzy set theory and fuzzy logic had in several scientific fields,
especially related to computer science and engineering [21], brought to the develop-
ment of several methods, frameworks and software tools involving fuzzy sets or full
FISs, usually aimed at specific applications. On the contrary, examples of general
software libraries and toolboxes to handle fuzzy sets and/or fuzzy logic have been
limited in number and scope. The reasons for this shortcoming can be found in the
difficulties of dealing with the complex objects required by fuzzy logic (i.e., fuzzy
sets, fuzzy rules and natural language), and in the wide number of existing types of
FISs and their applications.

Among the existing softwares, one of the most popular is the Fuzzy Logic Tool-
box in Matlab [85]. This toolbox offers a comprehensive and up to date list of func-
tions for managing a wide variety of applications involving fuzzy logic, but it is
commercially distributed only. Thus, in the last years open source alternatives were
developed by the scientific community.

Although numerous, most of these alternatives are outdated, discontinued or de-
signed for specific applications. PyFuzzy [80] was the first general purpose library
for designing FISs, developed using the Python programming language (version
2.7). This library allows to manage all the entities needed to construct FISs, and
supports the creation of numerous types of fuzzy sets and FISs. Moreover, PyFuzzy
supports the export and sharing of FISs by means of FCL files. FCL files implement
the old standard IEC 61131 (IEC61131-7) [83], which was designed for fuzzy control
applications and remained for many years the only de facto standard for represent-
ing FISs. Despite its completeness, PyFuzzy is now outdated and not maintained
anymore.

Most of the recent open-source softwares for fuzzy logic are aimed at data driven
applications, including machine learning, classification and regression analysis, or
decision support systems. Among the most popular, one can find: FuzzyLite [86],
a collection of C++ libraries designed for fuzzy control; Fispro [87], a C++ software
provided with a GUI, specifically designed for data driven applications of FISs and
their automatic learning from a dataset; Juzzy [88], a Java based toolkit for handling
type-2 fuzzy sets. One of the most recent and interesting implementations in the
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fuzzy community is represented by the JFML library [89], the only open source li-
brary (implemented in Java) incorporating the most recently developed standard for
representing FISs, IEEE 1855-2016 [90], which defines a new W3C eXtensible Markup
Language (XML)-based language, named FML [91].

Excluding the outdated and discountinued PyFuzzy, a general purpose, open
source, and intuitive Python library is still missing. To overcome these limitations,
during this thesis project, a new general purpose library for fuzzy logic, named
Simpful, was developed. Simpful is a Python library for fuzzy reasoning, designed
to provide a simple and lightweight Application Programming Interface (API), as
close as possible to natural language. Simpful allows to define FISs for any purpose,
providing a set of classes and methods to intuitively define and handle fuzzy sets,
fuzzy rules and perform fuzzy inference. In particular, fuzzy rules can be defined by
means of strings of text in natural language, simplifying the definition of fuzzy rule
bases.

Although not limited to it, Simpful allows to define and simulate DFMs of com-
plex systems. This is achieved by supporting the creation of FNs, in which some FIS
output can be fed as input to a different FIS (see Section 2.5), and supporting fuzzy
inference across multiple components of the network. These networks can be char-
acterized by any arbitrary topologies, including cycles and feedback loops, a feature
that proves useful to represent the interactions existing in complex systems (for a
few examples, see Section 6.2, or Chapters 5 and 7). A detailed description of this
novel library and some practical examples will appear in [82].

6.1 Implementation and supported features

Simpful was implemented using the Python programming language, and it is com-
patible with both versions 2.7 and 3.7 [78]; its dependencies are numpy [79] and
scipy [92]. The latest version of Simpful currently supports the following features:

• the definition of polygonal fuzzy sets;

• the definition of fuzzy rules as strings of text written in natural language;

• the logic operators AND, OR, NOT;

• the Sugeno inference method.

A fuzzy set is defined as an ordered list of points in a plane, where the first co-
ordinate is their value in the universe of discourse, while the second represents the
degree of membership, ultimately identifying a polygon. Simpful performs an in-
terpolation between these points to identify the membership function characterizing
the fuzzy set, and possibly allowing for fuzzy sets with infinite support over their
universe of discourse. The user is also required to associate to each fuzzy set a mean-
ingful linguistic term. The defined fuzzy sets can be added to a linguistic variable
object, provided with its own name, as given by the user.
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The user has to define also the functions exploited by the Sugeno inference. In
the case of 0-order functions, i.e., constant functions, these are defined as “output
crisp values”. In the case of higher order Sugeno systems, the user can define “out-
put functions” as strings of text: these will be evaluated by exploiting the eval()

function of Python, which parses the expression given as a string argument and ex-
ecutes it as code within the program. Both output crisp values and output functions
must have an associated meaningful and unique string to identify them, which will
be exploited in the definition of the fuzzy rules.

Fuzzy rules are defined by well formed strings, written in natural language and
in the form showed in Expression 2.1. The logic operators are currently defined as
in Section 2.3. The rules must contain the name associated to the linguistic variable
objects, use linguistic terms contained in them, and the strings identifying the output
crisp values or the output functions defined by the user.

Linguistic variables, fuzzy rules, output crisp values and output functions are
added to a fuzzy reasoner object, which implements the whole FIS. Given input
values for the variables appearing in the antecedents of the fuzzy rules, the method
implementing the Sugeno inference can be called for one or more of the variables
appearing in the consequent of fuzzy rules, in order to obtain their final output. The
state of the variables and the result of the inference are returned to the user as key-
value couples inside a dictionary, where keys represent the names of the variables.
Figure 6.1 shows an overview of how to construct a fuzzy reasoner object and how
to perform inference in Simpful. The source code of Simpful is available, under GPL
license, on GitHub at the following URL: https://github.com/aresio/simpful.

Simpful

Linguistic variables

Fuzzy rules

Output crisp values
Output functions

Fuzzy reasoner
object

Inputs

Outputs

FIGURE 6.1: Graphical representation of the fuzzy reasoner object in Simpful.

Simpful will be extended to support other commonly used types of fuzzy sets, in-
cluding non-polygonal fuzzy sets, such as Gaussian and sigmoidal ones. Moreover,
the support for additional types of fuzzy inference methods is also planned, includ-
ing for example the Mamdani [43], the Tsukamoto [93] and the AnYa [94] methods.
Finally, in the future Simpful will implement the FML format defined in the IEEE

39

https://github.com/aresio/simpful


Chapter 6. Simpful

Std 1855-2016 [90], in order to facilitate the import, export and sharing of the FISs
defined within this library.

6.2 Examples

In what follows, some example code of Simpful is provided.

6.2.1 Tipping problem

The tipping problem consists in computing the appropriate tip in a restaurant, taking
into account as inputs the food and service quality.

Listing 6.1 shows how to define a simple FIS for the tipping problem by means
of Simpful. In line 5 a fuzzy reasoner object is created. The fuzzy sets and the lin-
guistic variable “Service” are defined in lines 8 to 11; this variable contains three
fuzzy sets, “poor”, “good” and “excellent”, ranging from 0 to 10. The universe of
discourse is not explicitly defined. In the current implementation, fuzzy sets are
supposed to have infinite support, thus an input value outside the defined polyg-
onal fuzzy set will be fuzzified as its closest point to the polygonal fuzzy set (e.g.,
µexcellent(11) = 1). From line 13 to 15 the linguistic variable for food quality is de-
fined, exploiting two fuzzy sets, “rancid” and “delicious”. Fuzzy output crisp values
“cheap”, “average” and the output function “generous”, referring to the tip amount,
are defined in lines 18 to 20. Fuzzy rules are defined in lines 23 to 26. Once the input
values are set (in this example, lines 29 and 30, “Service” and “Food” quality scored
4 and 8 points, respectively), fuzzy inference is performed in line 33 to obtain the
final tipping amount, which is equal to 14.77% in this example.

LISTING 6.1: A FIS for the tipping problem, defined in Simpful

1 from simpful import *
2
3 # A s i m p l e f u z z y i n f e r e n c e sys t em f o r t h e t i p p i n g prob l em
4 # C r e a t e a f u z z y r e a s o n e r o b j e c t
5 FR = FuzzyReasoner ( )
6
7 # D e f i n e f u z z y s e t s and l i n g u i s t i c v a r i a b l e s
8 S_1 = FuzzySet ( points = [ [ 0 . , 1 . ] , [ 5 . , 0 . ] ] , term=" poor " )
9 S_2 = FuzzySet ( points = [ [ 0 . , 0 . ] , [ 5 . , 1 . ] , [ 1 0 . , 0 . ] ] , term=" good " )

10 S_3 = FuzzySet ( points = [ [ 5 . , 0 . ] , [ 1 0 . , 1 . ] ] , term=" e x c e l l e n t " )
11 FR . add_membership_function ( " S e r v i c e " , MembershipFunction ( [ S_1 , S_2 , S_3 ] ,

concept=" S e r v i c e q u a l i t y " ) )
12
13 F_1 = FuzzySet ( points = [ [ 0 . , 1 . ] , [ 1 0 . , 0 . ] ] , term=" rancid " )
14 F_2 = FuzzySet ( points = [ [ 0 . , 0 . ] , [ 1 0 . , 1 . ] ] , term=" d e l i c o i u s " )
15 FR . add_membership_function ( " Food " , MembershipFunction ( [ F_1 , F_2 ] ,

concept=" Food q u a l i t y " ) )
16
17 # D e f i n e ou t pu t c r i s p v a l u e s
18 FR . se t_cr i sp_output_va lue ( " cheap " , 5 )
19 FR . se t_cr i sp_output_va lue ( " average " , 15)
20 FR . se t_output_ func t ion ( " generous " , " Food+S e r v i c e +5 " )
21
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22 # D e f i n e f u z z y r u l e s
23 R1 = " IF ( ( S e r v i c e IS poor ) OR ( Food IS rancid ) ) THEN ( Tip IS cheap ) "
24 R2 = " IF ( S e r v i c e IS good ) THEN ( Tip IS average ) "
25 R3 = " IF ( ( S e r v i c e IS e x c e l l e n t ) OR ( Food IS d e l i c o i u s ) ) THEN ( Tip IS

generous ) "
26 FR . add_rules ( [ R1 , R2 , R3 ] )
27
28 # S e t a n t e c e d e n t s v a l u e s
29 FR . s e t _ v a r i a b l e ( " S e r v i c e " , 4 )
30 FR . s e t _ v a r i a b l e ( " Food " , 8 )
31
32 # Per form Sugeno i n f e r e n c e and p r i n t ou tpu t v a l u e s
33 print FR . Sugeno_inference ( [ ’ Tip ’ ] )

6.2.2 Repressilator

The repressilator is a synthetic genetic regulatory network consisting in three genes
placed in a feedback loop, where the genetic product of each gene inhibits the ex-
pression of the next gene in the network (the system is depicted in Figure 6.2). The
repressilator was designed, studied by means of mechanistic modeling, and finally
implemented in vivo by exploiting a strain of the bacterium E. coli for the first time
in [95]. This simple system was specifically designed to exhibit a stable oscillatory
regime, thanks to the presence of the negative feedback loop, a behavior that was
successfully reproduced both in the simulations of the model and in the in vivo ex-
periments. Here, a simple redefinition of the original model in terms of a DFM is
provided, in order to show how Simpful can be applied to this kind of fuzzy model-
ing of complex systems.

LacI

TetRCI

FIGURE 6.2: Graphical representation of the repressilator. Blunt arrows represent
inhibitory interactions.

The example code of the repressilator is given in Listing 6.1. In line 6 a fuzzy
reasoner object is created. From line 9 to 19, the three linguistic variables related to
the three species constituting the repressilator are defined. In particular, all three
species are characterized by a universe of discourse ranging from 0 to 1, and by
the presence of two fuzzy sets, “low” and “high”, representing the quantity of each
protein. In this example, a value of 1 in the universe of discourse corresponds to the
maximum quantity, while 0 to the absence of the protein. Analogously, the output
crisp values are defined in lines 23 and 24, by setting “low” to 0 and “high” to 1.
Lines 27 to 34 contain the definition of the fuzzy rules, representing the negative
feedbacks existing between the three proteins.
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LISTING 6.2: A DFM of the repressilator, defined in Simpful

1 from simpful import *
2 from copy import deepcopy
3
4 # A s i m p l e dynamic f u z z y model o f t h e r e p r e s s i l a t o r
5 # C r e a t e a f u z z y r e a s o n e r o b j e c t
6 FR = FuzzyReasoner ( )
7
8 # D e f i n e f u z z y s e t s and l i n g u i s t i c v a r i a b l e s
9 L_1 = FuzzySet ( points = [ [ 0 . , 1 . ] , [ 1 . , 0 . ] ] , term=" low " )

10 L_2 = FuzzySet ( points = [ [ 0 . , 0 . ] , [ 1 . , 1 . ] ] , term=" high " )
11 FR . add_membership_function ( " LacI " , MembershipFunction ( [ L_1 , L_2 ] ,

concept=" LacI quant i ty " ) )
12
13 T_1 = FuzzySet ( points = [ [ 0 . , 1 . ] , [ 1 . , 0 . ] ] , term=" low " )
14 T_2 = FuzzySet ( points = [ [ 0 . , 0 . ] , [ 1 . , 1 . ] ] , term=" high " )
15 FR . add_membership_function ( " TetR " , MembershipFunction ( [ T_1 , T_2 ] ,

concept=" TetR quant i ty " ) )
16
17 C_1 = FuzzySet ( points = [ [ 0 . , 1 . ] , [ 1 . , 0 . ] ] , term=" low " )
18 C_2 = FuzzySet ( points = [ [ 0 . , 0 . ] , [ 1 . , 1 . ] ] , term=" high " )
19 FR . add_membership_function ( " CI " , MembershipFunction ( [ C_1 , C_2 ] ,

concept=" CI quant i ty " ) )
20
21
22 # D e f i n e ou t pu t c r i s p v a l u e s
23 FR . se t_cr i sp_output_va lue ( " low " , 0 . 0 )
24 FR . se t_cr i sp_output_va lue ( " high " , 1 . 0 )
25
26 # D e f i n e f u z z y r u l e s
27 RULES = [ ]
28 RULES . append ( " IF ( LacI IS low ) THEN ( TetR IS high ) " )
29 RULES . append ( " IF ( LacI IS high ) THEN ( TetR IS low ) " )
30 RULES . append ( " IF ( TetR IS low ) THEN ( CI IS high ) " )
31 RULES . append ( " IF ( TetR IS high ) THEN ( CI IS low ) " )
32 RULES . append ( " IF ( CI IS low ) THEN ( LacI IS high ) " )
33 RULES . append ( " IF ( CI IS high ) THEN ( LacI IS low ) " )
34 FR . add_rules (RULES)
35
36 # S e t a n t e c e d e n t s v a l u e s
37 FR . s e t _ v a r i a b l e ( " LacI " , 1 . 0 )
38 FR . s e t _ v a r i a b l e ( " TetR " , 0 . 5 )
39 FR . s e t _ v a r i a b l e ( " CI " , 0 . 0 )
40
41 # S e t s i m u l a t i o n s t e p s and s a v e i n i t i a l s t a t e
42 s teps = 14
43 dynamics = [ ]
44 dynamics . append ( deepcopy (FR . _ v a r i a b l e s ) )
45
46 # At e a c h s i m u l a t i o n s t e p , p e r f o r m Sugeno i n f e r e n c e , up da t e s t a t e and s a v e

t h e r e s u l t s
47 for i in range ( s t eps ) :
48 new_values = FR . Sugeno_inference ( )
49 FR . _ v a r i a b l e s . update ( new_values )
50 dynamics . append ( new_values )

The initial state of the DFM is set in lines 37 to 39, the number of simulation steps
is defined in line 42, while the data structure containing the results of the simulation
is initialized in lines 43 and 44. Lines 47 to 50 contain the for loop in which the
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simulation is performed. In particular, the new state of the system is inferred in line
48, updated in line 49 and then stored in the previously defined data structure. The
final output of the simulation can be plotted as shown in Figure 6.3. Despite its sim-
plicity and the lack of a precise kinetic parameterization, this model can reproduce
the typical oscillatory dynamics of the three species already shown in the original
model.
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FIGURE 6.3: Dynamics of the species of the DFM representing the repressilator.
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Chapter 7

Hybrid modeling with FuzzX

In the modeling and simulation of complex systems, a common problem faced by
modelers is that the knowledge and the data regarding the system’s components
and interactions might be available in various types and forms, hindering their inte-
gration inside a unified modeling framework. When dealing with such a variety of
information, different mathematical formalisms could be potentially exploited and
connected together to represent different parts of the modeled system. This is par-
ticularly relevant when mechanistic information is available for some parts of the
system, since mechanistic models are closer to the physical reality of the modeled
phenomena and generally introduce less approximations both on the system de-
scription and the outcome of the computational analysis.

In this context, the advantages provided by fuzzy logic, and in particular the
flexibility of fuzzy sets, can prove very useful for bridging together different types of
information. Indeed, several approaches made use of fuzzy logic to tackle this prob-
lem, with different strategies. A few examples include the approximation of com-
plex non-linear functions with fuzzy logic [96] or Adaptive-Network-Based Fuzzy
Inference System [97], the fuzzy aggregation of a set of local linear models [98], the
modeling of complex systems with Fuzzy Cognitive Maps that oversee and control
different local models [99], and the definition of fuzzy lattices [100], which exploit
lattice computing [101] to define decision making systems that take into account het-
erogeneous type of data. Fuzzy logic was also exploited to approximate missing pa-
rameters [102] in existing mechanistic approaches (see, e.g., Fuzzy Petri Nets [103]).

These approaches employ fuzzy logic to improve existing formalisms and ad-
dress their limitations, or aggregate the results of different local models. However,
none of them deals with the definition of different sub-models that represent both
qualitative and mechanistic knowledge, and that are able to generate the emergent
system dynamics by an iterative exchange of information. Attempts to bring to-
gether mechanistic modeling with fuzzy systems within a unified framework have
been limited so far (an example of ODE models coupled to fuzzy inference systems
can be found in [104]). Even when considering approaches that do not involve
fuzzy logic, attempts to reconcile qualitative and quantitative models were made
by defining new formalisms (such as the ANIMO framework [105]), or by automat-
ically transforming logic-based models in ODEs by means of piece-wise differential
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equations [106] or multivariate polynomial interpolation [107].
Differently from the approaches mentioned above, the framework presented in

this chapter, named Fuzzy-mechanistic modeling of compleX systems (FuzzX), rep-
resents the first attempt to bring together mechanistic modeling with fuzzy sys-
tems in a unique, general-purpose and dynamic framework in which two differ-
ent regimes (i.e., mechanistic and fuzzy) control each other. Specifically, FuzzX is a
novel computational framework for the definition and simulation of hybrid mod-
els of complex dynamical systems, composed of a mechanistic module and a fuzzy
module. The mechanistic module can be defined by means of any kind of fully
parameterized modeling formalism (e.g., algebraic equations, ODEs, Markov jump
processes). Any variable of the mechanistic module can serve as input for the qual-
itative module, which is formalized as a FN [49] and is in turn able to control ei-
ther some variables or parameters of the mechanistic module. The key peculiarity
of FuzzX is that it allows to define, within the hybrid model, feedback regulations
that simultaneously involve both the mechanistic and the fuzzy regimes. FuzzX pro-
vides modelers with an effective methodology to couple the description and analysis
of well-known and detailed processes, along with other phenomena whose func-
tioning is not well characterized and can only be described by means of linguistic
concepts. FuzzX is a completely general-purpose approach that can be applied to
any complex system. In the next sections, a general description and notation of this
novel formalism is provided.

In order to show its potentiality, FuzzX has been applied to redefine, in terms of
a hybrid model, a stochastic mechanistic model of a biochemical signaling pathway
that is characterized by complex non-linear behaviors arising from several feedback
regulations among the system components [108]. The model definition, its simula-
tion and its analysis are reported in Section 8.2. This application shows that, albeit
mechanistic interactions are substituted by a set of expert-defined fuzzy rules, the
hybrid model is able to reproduce the emergent behaviors of the system, such as the
presence of a transient phase and the establishment of stable or damped oscillations,
both in normal and perturbed conditions.

A complete description of FuzzX and its application can be found in [109, 110].

7.1 Hybrid models definition and simulation

7.1.1 Model definition

In FuzzX, a hybrid model of a complex system Ω is defined by specifying two com-
ponents: a mechanistic moduleM and a fuzzy module F . The moduleM = 〈VM, θM,P〉
consists in three disjoint sets corresponding to, respectively, the set of variables, the
set of parameters and the set of mechanistic processes governing the functioning of
Ω. M is used to model all those processes of the system that are known at a high
level of detail. The module F = 〈VF,R〉 consists in two disjoint sets corresponding
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Fuzzy module F

Fuzzy rules R

Mechanistic module M

Variables V M Parameters θ M

Variables V F

Interface I

Mechanistic 
processes P

FIGURE 7.1: Scheme of the FuzzX framework for hybrid modeling. The mechanis-
tic and fuzzy modules are represented in blue and orange color, respectively.

to, respectively, the set of linguistic variables and the set of fuzzy rules. F is used to
represent all the processes that are not known in full detail, cannot be represented
by crisp quantities, or require a higher degree of approximation. Importantly, in
FuzzX the interface of Ω is defined as the set I = (VM ∩ VF) ∪ (θM ∩ VF). The inter-
face between the mechanistic and the fuzzy modules allows them to communicate,
effectively resulting in the two modules influencing the dynamic behavior of each
other, as explained in what follows. It should be noted that the moduleM treats ele-
ments appearing in the interface either as variables (if they belong to the set VM ∩VF)
or parameters (if they belong to the set θM ∩ VF), while the module F treats all the
elements of the interface as fuzzy variables. This is indeed a peculiar feature of this
modeling framework: since both parameters and variables of the mechanistic module
can be treated as fuzzy variables by the fuzzy module, FuzzX can be employed for
the modeling of the dynamic behavior of complex systems that requires handling
both precise and uncertain data. Figure 7.1 shows a graphical schematization of the
two modules and their interface, as defined in FuzzX.

Let us denote by VM = {xM1 , . . . , xMm} and VF = {xF1 , . . . , xFf } the elements in the
sets of mechanistic and fuzzy variables, respectively. The variables in VM can as-
sume values in some given set XM, according to the mathematical formalism used
to define the module M, while the variables in VF assume values in R. Then, let
XM(t) = (xM1(t), . . . , xMm(t)) denote the state of the mechanistic module at time t, and
XF(t) = (xF1(t), . . . , xFf (t)) denote the state of the fuzzy module at time t. Overall,
these two vectors represent the state of the system Ω, described as a hybrid model.

7.1.2 Simulation

The update of the states of the mechanistic and fuzzy modules is achieved by means
of two functions. The first function, denoted by UM : X m

M → X m
M, maps the current
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state XM(t) ofM into the state XM(t + 1) at the next time step, by taking into account
the parameters in θM and the mechanistic processes expressed inP . Stated otherwise,
UM describes the temporal evolution of the processes described inM in mechanis-
tic detail. This function can be formally evaluated by means of any computational
method that is suitable to the specific mathematical formalism that has been used to
defineM (e.g., UM can be a numerical integration algorithm ifM is formalized as a
system of ODEs). The second function, denoted by UF : R f → R f , maps the current
state XF(t) of F into the state XF(t + 1) at the next time step, by taking into account
the fuzzy rules specified in R. Hence, UF represents the evolution of parts of the
system that are known at a lower level of detail and/or precision.

In FuzzX, a simulation step of the hybrid model of Ω consists in the application of
UM to calculate the dynamics of the mechanistic module, followed by the application
of UF to perform a fuzzy inference (see Figure 7.2). To be more precise, the temporal
evolution of M is simulated by applying the function UM for a user-defined time
interval of length ∆, for some ∆ ∈ R+. The choice of ∆ determines how frequently
the two modules will interact with each other.

Initial state

t ≥ tmax?

Simulation ends

Mechanistic simulation 
update until t = t+Δ

Fuzzification of 
interface elements

Fuzzy inference

Update interface 
elements

FuzzX

yes no

FIGURE 7.2: General procedure for the simulation of a hybrid model defined in
FuzzX. The state update of the mechanistic and fuzzy modules are represented
in blue and orange color, respectively. White boxes represent the update steps of
interface elements, occurring between mechanistic simulation and fuzzy inference,

or vice versa.

The application of the functions UM and UF on the elements that belong to the
interface enables the communication between the two modules, and their mutual
regulation. Namely, the value of an interface element I ∈ VM ⊆ I (i.e., a mechanistic
variable x1, . . . , xm) is first updated by UM and then fuzzified. So doing, the state of
the fuzzified mechanistic variable at the interface affects the dynamics of the fuzzy
module, by means of the fuzzy inference operated by UF. As a matter of fact, the
values of any element I ∈ I can be updated by UF, thus modifying the values of
variables and parameters belonging toM, eventually affecting the dynamics of the
mechanistic module during the next step of the simulation.
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The simulation of the hybrid model ends when a user-defined time limit tmax ∈
R+ is reached, which corresponds exactly to κ = d tmax

∆ e simulation steps. Without
loss of generality, FuzzX can be adapted to simulate hybrid models using time steps
of arbitrary length, instead of adopting a uniform advancement of length ∆: in such
a case, the function UM has to be modified appropriately in order to take into account
a vector ∆ = (∆1, . . . , ∆D) of different time intervals.

To sum up, a hybrid model can be defined by using the following workflow:

• Step 1: identify all the components of the system and their interactions;

• Step 2: assign each component to either the mechanistic or the fuzzy module,
and identify the components that will belong to the interface of the hybrid
model;

• Step 3: describe the variables and the processes governing the mechanistic
module with a suitable mathematical formalism (e.g., ODEs, Markov chains,
etc.). The description of these mechanistic processes (e.g., interactions among
the system components) has to be curated by the user, according to the avail-
able knowledge about the system;

• Step 4: define the linguistic variables (together with their fuzzy sets and lin-
guistic terms) and the fuzzy rules belonging to the fuzzy module. The uni-
verse of discourse of the linguistic variables belonging to the interface must be
suitable for, and in accordance with, the formalism employed for the definition
of the mechanistic module;

• Step 5: choose a suitable value of ∆ to control how frequently the two modules
will exchange information.

7.2 Implementation details

FuzzX was implemented exploiting the Python programming language, v.2.7 [78].
Its dependencies are numpy [79] and Simpful (see Chapter 6). A porting to Python
version 3.7 is currently under development.

In order to properly define a hybrid model and to run simulations, the user must
specify a mechanistic and a fuzzy module by means of the provided classes. The
mechanistic module is defined by means of the mech_module class: its initialization
requires a dictionary containing the initial state of the variables, a dictionary con-
taining the parameters of the module and a function that implements the mechanis-
tic simulation; additional arguments required by this latter function can be passed
and stored in the mech_module object. The fuzzy module is defined as a fuzzy rea-
soner object in Simpful, as shown in Chapter 6. The main class implementing the
hybrid simulation is the FuzzX class. Once a FuzzX object is created, the mecha-
nistic and fuzzy modules are added to it by means of the add_mech_module() and
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add_fuzz_module() methods, respectively. Finally, a simulation can be performed
be means of the simulate() method, providing tmax and ∆ as arguments.
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Chapter 8

Applications

In this chapter, two real world applications of the modeling frameworks defined
in this thesis are shown. In particular, a DFM of programmed cell death in cancer
cells is presented in Section 8.1 (see also [77]), whereas Section 8.2 describes a hybrid
model of a biochemical signaling pathway in yeast defined with FuzzX (see also
[109]). In addition, two novel applications of DFMs and FuzzX started to be devel-
oped in the context of this thesis. A brief description of them is given in Section 8.3.

8.1 A dynamic fuzzy model of programmed cell death

To show the potentiality of DFMs in investigating complex, heterogeneous systems,
this section presents a DFM that describes the programmed cell death processes tak-
ing place inside oncogenic K-ras cancer cells—characterized by the so-called “War-
burg effect”—grown in a progressive limiting amount of glucose. The aim of this
model is to understand the glucose-dependent mechanisms driving cancer cells ei-
ther to death or survival. Briefly, the Warburg effect, or aerobic glycolysis, is a
metabolic hallmark of cell malignancy, and it refers to the ability of tumor cells to
favor metabolism via glycolysis rather than the much more efficient oxidative phos-
phorylation pathway (employed in physiological conditions) [111]. Accordingly, nu-
merous cancer cells, grown either in low glucose availability or in free glucose, are
strongly susceptible to cell death with respect to normal cells. However, it has also
been observed that not all cancer cells undergo cell death when grown in a harsh
environment, such as in glucose starvation, since some of them might acquire the
ability to survive in this new environmental condition by activating compensatory
signaling pathways [112, 113] and alternative metabolic routes [114, 115]. These
metabolically rewired cancer cells are often more aggressive [116], and can be se-
lected by chemotherapy, by therapies exploiting synergism between chemothera-
peutic treatments and anti-metabolic drugs, or by genetic and pharmacological ab-
lation of oncogenic pathways [117–119]. Overall, the emerging cell behavior is influ-
enced by highly interconnected processes with multiple levels of regulations (e.g.,
protein-protein interactions and modifications, positive and negative feedbacks),
and able to promote opposite effects on cancer cells (i.e., sensitivity vs. resistance
to chemotherapy). In this scenario, the combination of therapies targeting aerobic
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glycolysis, adaptive mechanisms (i.e., increased autophagy) and well-established
cancer specific targets (i.e., tyrosine kinase signaling pathways) represent a poten-
tial approach to be explored in cancer cure.

The DFM here presented was defined on the basis of an extensive prior knowl-
edge of the main components involved in K-ras transformed cells grown in this per-
turbed condition. In particular, cancer cell death processes occurring upon glucose
starvation along two major pathways were considered: (i) a pathway centered on
mitochondria (reactive oxygen species (ROS), Adenosine Triphosphate (ATP) deple-
tion, calcium (Ca2+) overloading) [120, 121], and (ii) an endoplasmic reticulum (ER)-
stress pathway associated with reduction of N-glycosylation and cell attachment,
and a consequent activation of the Unfolded Protein Response (UPR) leading to cell
death [122, 123]. By contrast, two major mechanisms were indicated as survival
routes: (i) mitochondrial activity rewiring, and (ii) autophagy. The model was val-
idated against experimental data obtained from mouse fibroblasts transformed by
oncogenic K-ras expression (NIH3T3 K-ras cells) and a human K-ras mutated breast
cancer cell line (MDA-MB-231), both grown in unperturbed and different perturbed
conditions (see Appendix B for additional details). Ultimately, this DFM approach
aims at efficiently identifying novel therapeutic treatments that maximize apoptosis
over survival in cancer cells in the above mentioned growth conditions.

8.1.1 Model definition

The model can be represented as a FN consisting of 25 nodes, corresponding to het-
erogeneous components—e.g., proteins, small molecules and metabolites, biochem-
ical pathways, cellular processes, output phenotypes—while edges between nodes
indicate the known positive or negative regulations among these components (Fig-
ure 8.1). To describe cell death processes as a result of glucose starvation in cancer
cells, the following cellular components were considered:

1. the main cellular processes and components involved in energy production,
such as glucose, glycolysis, ATP, mitochondria and autophagy;

2. different mitochondrial processes and components, such as mitochondrial po-
tential (DeltaPsi) variation, ROS generation, mitochondrial Complex I (CI) ac-
tivity, and B-cell lymphoma 2 (Bcl2) expression and activity;

3. some processes and components related to the ER, such as UPR, Ca2+, C/EBP-
homologous protein (CHOP), and c-Jun N-terminal kinase (JNK);

4. processes and proteins involved in cellular adhesion, such as Hexosamine Bio-
synthesis Pathway (HBP), N-glycosylation, attachment, and Src;

5. proteins and processes involved in the regulation of cell death and survival
mechanisms, such as Ras, Extracellular-signal-regulated kinase (ERK), Death-
associated protein kinase 1 (DAPK), Bcl2, Beclin1 (BCN1), Caspase 3 (Casp3),
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protein kinase A (PKA), and the phenotypes related to apoptosis, necrosis and
survival of cells;

6. the protein Ras-GTP to mimic the hyperactivation of K-ras inside tumor cells
displaying both the Warburg effect, and PKA as a key node involved in cancer
cells survival to glucose starvation.

FIGURE 8.1: Interaction network of the model of cell death and survival. Yellow
circles represent metabolites and ions, green rectangles represent proteins, red rect-
angles represent pathways or cellular processes, light blue hexagons represent the
system phenotypes related to cell death. Positive and negative regulations are pic-
tured as arrows and blunt-ended arrows, respectively. Glucose, Ras-GTP and PKA
are the input variables; survival, autophagy, apoptosis and necrosis are the output

variables, while the remaining are inner variables.

Since not all of these components (e.g., apoptosis, survival, UPR, HBP, etc.) can
be formally represented by a quantitative variable, and some interactions cannot be
specified by means of kinetic reactions, fuzzy logic proves useful to handle the het-
erogeneity of this system and the lack of parameters by defining suitable linguistic
variables representing general concepts such as concentration, activation, or pres-
ence of a component.

Literature and expert knowledge were exploited in order to formalize the inter-
actions existing among the components considered in the model, resulting in 252
fuzzy rules. The list of the linguistic variables, together with the references em-
ployed for the definition of the model, can be found in Table 8.1. The complete list
of linguistic variables and their associated linguistic terms employed to describe all
the possible states of the variable (e.g., High or Low concentration) are given in Table
8.2, while the set of fuzzy rules defined for each linguistic variable can be found in
Appendix A. The list of output crisp values associated to each variable can be found
in Table 8.3. Moreover, the complete model can be downloaded as a .fms file from
https://github.com/aresio/FUMOSO.
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TABLE 8.1: Programmed cell death model: variables, regulatory elements and lit-
erature references

Variable Regulatory elements Reference

Apoptosis Caspase 3 [120, 121]

ATP Complex I/DeltaPsi/Glycolysis [124, 125]

Attachment N-glycosylation [126–128]

Autophagy

Calcium [129–131]

BCN1 [132]

PKA [112]

ATP/Glycolysis [131, 133]

ROS [134, 135]

Bcl2

CHOP/JNK [122, 136–140]

BCN1 [141–143]

ATP [144, 145]

PKA [146, 147]

BCN1
Bcl2 [141–143]

DAPK [148]

Calcium UPR [149]

Caspase3
ATP/Bcl2/Calcium/DeltaPsi/ROS [120, 129, 130, 150–152]

ERK [153]

CHOP UPR [112, 122, 123, 126, 136]

Complex I Glycolysis/PKA [124, 125]

DAPK

ERK [154]

SRC [155]

Calcium [156, 157]

DeltaPsi

Bcl2 [158–160]

Complex I/Glycolysis [120, 125, 161]

Calcium [150, 162]

ERK

Ras-GTP [163]

DAPK [164]

SRC [165]

Glycolysis Glucose [111, 166]
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TABLE 8.1 (CONTINUED): Programmed cell death model: variables, regulatory
elements and literature references

Variable Regulatory elements Reference

HBP
Glucose [136, 167, 168]

Autophagy [112, 169]

JNK HBP [136, 170]

Necrosis ATP/Bcl2/ROS [135, 171–173]

N-glycosylation HBP [126, 167]

PKA [112]

Ras-GTP [124, 125, 136, 166]

ROS
Complex I [124, 151, 174]

DeltaPsi [150]

SRC
Attachment [175–177]

PKA [112, 178, 179]

Survival ATP/Autophagy/Caspase 3/DeltaPsi [112, 133, 150, 180]

UPR
N-glycosylation [126, 181, 182]

ATP [183]
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TABLE 8.2: Linguistic variables, together with their linguistic terms and initial state
in the programmed cell death model

Variable Terms Initial state

Apoptosis Low, Medium, High Low

ATP Very-Low, Low, Medium, High High

Attachment Low, High High

Autophagy Low, Medium, High Low

Bcl2 Low, Medium, High High

BCN1 Low, Medium, High, Very High Low

Calcium Low, Medium, High Low

Caspase3 Low, Medium, High Low

CHOP Low, Medium, High Low

ComplexI Less func., Medium func., More func. Medium func.

DAPK Low, High Low

DeltaPsi Low, High High

ERK Low, High High

Glycolysis Low, Medium, High High

HBP Low, High High

JNK Low, High Low

Necrosis Low, High Low

N-glycosylation Low, Medium, High High

PKA Low, High Low

RAS-GTP On, Off On

ROS Low, Medium, High Medium

SRC Low, High High

Survival Low, High High

UPR Low, Medium, High Low
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TABLE 8.3: Output crisp values of linguistic terms in the programmed cell death
model

Term Output crisp value

ATP concentration

Very low 0.0
Low 0.1
Medium 0.5
High 1.0

BCN1 concentration

Low 0.0
Medium 0.33
High 0.66
Very high 1.0

Complex I activity
Less functional 0.0
Medium functional 0.5
More functional 1.0

Ras-GTP activation
Off 0.0
On 1.0

State of other components
Low 0.0
Medium* 0.5
High 1.0

*when present

Three variables in the DFM represent the input of the system, namely, Glucose,
Ras-GTP and PKA. Glucose is formally regulated by a custom input function that
simulates glucose consumption. The update function φ1(t) for the Glucose variable
is defined as follows:

φ1(t) =


1.0 if t < 0.075,

1.0
7 t0.75 − 0.185 if 0.075 ≤ t ≤ 0.7,

0.0 if t > 0.7,

where t is the current time step in the simulation interval [t0, tmax] = [0, 1] (arbitrary
units). Function φ1(t) mimics the availability of glucose at the beginning of the sim-
ulation (t < 0.075) and its consumption by the cancer cell (when 0.075 ≤ t ≤ 0.7),
until its complete depletion (t > 0.7) from the culture medium.

The Ras-GTP variable is updated by using a constant function φ2(t) = 1.0, for all
t ∈ [0, 1], which mimics the hyperactivation of the Ras protein in cancer cells.

The PKA variable is updated by using two constant functions: φ3(t) = 0.0 and
φ4(t) = 1.0, for all t ∈ [0, 1], to mimic the normal and the hyperactivated PKA states,
respectively.
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8.1.2 Model validation

The DFM was experimentally validated against data obtained from cell cultures
grown in different glucose availability, and in presence or absence of several protein
and process-modulating molecules. Experimental data were obtained on NIH3T3
K-ras cells and a human model of breast cancer, the MDA-MB-231 cell line, carrying
the oncogenic K-ras gene. The two cell lines were used in an exchangeable manner,
since previously published results indicated that they have a comparable behavior
as regard to metabolic and pro-survival responses, when grown in 25 mM or 5 mM
glucose (high glucose, HG) or 1 mM glucose (low glucose, LG) [112, 124, 136, 184].
A detailed description of the experimental protocols employed for this work is pro-
vided in Appendix B.

The outcome of the model simulation is provided in Figure 8.2, where the dy-
namics of each variable are plotted against the dynamics of Glucose, the main input
of the model. Altogether, these results were in strong agreement with previously
published findings (see Table 8.1 for reference). Additionally, the DFM was vali-
dated against new experimental data, measured both in unperturbed and perturbed
conditions.

Figure 8.3 shows the simulated dynamics of the observable output variables of
the DFM, that is, survival, autophagy, apoptosis and necrosis, as well as the ex-
perimental data obtained on the MDA-MB-231 cell line, confirming the glucose-
dependent model outcome in unperturbed conditions. Indeed, both the simulations
and the experimental results show a decrease in cell survival (dark green line in Fig-
ure 8.3a vs. Figure 8.3b), associated with an increase in cell death either by apoptosis
(orange line in Figure 8.3a vs. Casp3 activation in Figure 8.3b) or necrosis (magenta
line in Figure 8.3a vs. High Mobility Group Box 1 (HMGB1) release in the medium
in Figure 8.3b). Moreover, they show a decrease in cell adhesion (light blue line in
Figure 8.3a vs. Figure 8.3c), associated with a significant reduction of membrane
proteins N-glycosylation (Figure 8.3d).

Additional simulations were also performed to consider the effects of the hyper-
activation of PKA. Figure 8.4 shows that the DFM correctly predicts an increase in
cell survival and attachment given by the activation of PKA (Figure 8.4a, dark green
and light blue lines, respectively), as validated by previous experimental results and
literature data [112, 124, 185, 186]. Indeed, under glucose starvation (right side of
the plot in Figure 8.4a), PKA activation—obtained by cell growth in 1 mM glucose
and by a daily treatment with 10 µM forskolin (FSK), a specific activator of PKA—
induces cell survival associated with increased MDA-MB-231 cell adhesion (Figure
8.4b) and increased N-glycosylation of membrane proteins (Figure 8.4c-d).

The DFM was also validated in perturbed conditions, namely, HBP or N-glyco-
sylation inhibition by azaserine (aza) and tunicamycin (tuni), respectively, in HG
availability (experimental scheme provided in Figure B.1a, Appendix B), and ATP
addition in glucose starvation (experimental scheme provided in Figure B.1b, Ap-
pendix B). The simulations of HBP or N-glycosylation inhibition (Figure 8.5a and d)

58



8.1. A dynamic fuzzy model of programmed cell death

FIGURE 8.2: Simulated dynamics of the 22 regulated variables (i.e., all but PKA,
Ras-GTP, Glucose) of the cell death model, with respect to the function describing

glucose availability.

show an increase in cell death (orange line for apoptosis and magenta line for necro-
sis, in Figure 8.5a, d), which is in line with the experimental data shown in Figure
8.5b, c, e and f. Conversely, 100 µM ATP added in glucose starvation recovers cell
survival capabilities, similarly to 10 mM N-acetylglucosamine (GlcNAc), a specific
HBP substrate. This was highlighted both in the DFM simulation (dark green line
in Figure 8.5g), and in the experimental results, by an increase in alive cells (Figure
8.5h) and the reduction of Casp3 activation and HMGB1 release (Figure 8.5i).
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FIGURE 8.3: Validation of the model for cancer cells grown in progressive limiting
amount of glucose. (a) Simulation outcome of the three main model output compo-
nents (apoptosis, necrosis and survival), and of one cellular process (attachment)
upon time-dependent glucose depletion. (b) Total protein extract from MDA-MB-
231 cells cultured in HG (25 mM) and LG (1 mM) glucose for 72h analyzed by West-
ern blotting at indicated time points. Apoptosis was evaluated by Casp3 cleavage,
necrosis by HMGB1 release in the culture medium. Casp-3 was normalized by
using eIF2α protein level, while HMGB1 secretion by a Ponceau staining of the
loaded medium. (c) Cell adhesion evaluation in cells cultured for 72h in HG or LG
by using Boyden chamber. (d) Fluorescence intensity quantitation of membrane
N-linked protein levels of Phaseolus vulgaris (PHA-L) lectin staining cells grown as
in (b). All data represent the average of at least three independent experiments (±

s.d.); *p<0.05, **p<0.01 (Student’s t-test).
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FIGURE 8.4: Validation of the model for cancer cells grown in progressive limiting
amount of glucose upon PKA hyperactivation (PKA in High state). (a) Simula-
tion outcome of the three main model output (apoptosis, necrosis and survival),
and of one cellular process (attachment), upon time-dependent glucose depletion
and PKA hyperactivation. (b) MDA-MB-231 cells were cultured for 72h in LG and
treated or not with FSK (daily treatment with 10 µm) to mimic in vivo the PKA hy-
peractivation, and then analyzed for cell adhesion. (c) Membrane N-linked protein
levels of cells grown as in (a) by confocal microscopy of PHA-L lectin staining (40×
magnification, 10 µm scale), and (d) relative fluorescence intensity quantitation.
All data represent the average of at least three independent experiments (± s.d.);

*p<0.05, **p<0.01 (Student’s t-test).
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FIGURE 8.5: Validation of the model for cells that underwent HBP or N-
glycosylation inhibition, and ATP addition. (a) Simulation outcome of the three
model outputs (apoptosis, necrosis and survival) upon HBP inhibition at time
t = 0.0. (b)-(c) MDA-MB-231 cells were grown in HG and in presence of increasing
doses of the HBP inhibitor aza (single treatment at time 0h), in order to evaluate
either (b) cell proliferation or (c) cell death. The analysis was performed by Try-
pan Blue Exclusion Method; the experimental scheme is shown in Figure B.1a. (d)
Simulation outcome of the three model outputs (apoptosis, necrosis and survival)
upon N-glycosylation inhibition at time t = 0.0. (e)-(f) MDA-MB-231 cells were
grown in HG and in presence of increasing doses of the N-glycosylation inhibitor
tuni (single treatment at time 0h), in order to evaluate either (e) cell proliferation
or (f) cell death. The experimental scheme is shown in Figure B.1a. The analysis
was performed as in (b) and (c). (g) Simulation outcome of the three model outputs
(apoptosis, necrosis and survival) upon ATP node increase at time t = 0.75, when
the glucose in the medium is 0 mM, as previously experimentally evaluated [124].
(h) MDA-MB-231 cells were grown in LG for 48h and then treated for 24h with 100
µM ATP (single treatment at time 48h) or 10 mM GlcNac, in order to evaluate cell
death. The experimental scheme is shown in Figure B.1b. The analysis was per-
formed as in (b) and (c). (i) Total protein extracts from cells grown as in (h) were
analyzed by Western blotting to evaluate induction of apoptosis by Casp3 cleavage,
and necrosis by HMGB1 release in the culture medium. Representative images of
at least three independent experiments are shown. All data represent the average
of at least three independent experiments (± s.d.); *p<0.05, **p<0.01, ***p<0.001

(Student’s t-test).
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8.1.3 Perturbation analysis

The coupling of the DFM simulation by means of FUMOSO and a global optimiza-
tion algorithm, namely SA, allowed to automatically search for and detect the com-
binations of perturbations that maximize pro-apoptotic processes in cancer cells, to
the purpose of guiding the development of novel therapeutic treatments. Indeed,
apoptosis, unlike necrosis, does not induce inflammation in the surrounding tissues,
thus it is a preferred outcome during the treatment of cancer cells.

Accordingly, the objective function used in this work aims at maximizing the
level of Apoptosis while minimizing the level of Survival, by perturbing the min-
imal number of model components. Given a perturbation π generated by SA, the
objective function is defined as:

F(π) =
[sπ

Apoptosis(tb + δ)− sπ
Apoptosis(tb)]− [sπ

Survival(tb + δ)− sπ
Survival(tb)]

δ · |π| ,

where sπ
Apoptosis(·) and sπ

Survival(·) are the numerical values of the Apoptosis and Sur-
vival linguistic variables, respectively, at the indicated time steps, obtained in a sim-
ulation where π is applied, tb is the time step at which the perturbation π is applied,
δ > 0 is a sampling time instant, that is, the time delay after which the effect of the
perturbation is evaluated (with tb + δ ≤ te, being te ≤ tmax the end of the pertur-
bation π), and |π| is the number of linguistic variables that are perturbed in π. A
graphical representation of the evaluation of the objective function is given in Fig-
ure 8.6.

FIGURE 8.6: Evaluation of the objective function used by Simulated Annealing.
The evaluation interval (i.e., tb + δ) is highlighted in gray.

The results showed in this work were obtained by setting tb = 0, te = tmax, and
δ = 0.13 in all tests. These values were chosen in order to match the experimental
protocols, that is, the perturbation is carried out by some modulating molecules that
persist in the culture medium until glucose depletion, while cell death is measured
when the amount of glucose is approximately halved. The starting temperature of
SA was set to T0 = 0.1, linearly decreasing to 0 during the iterations, and the number
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of perturbed variables per iteration was set to e = 2. This value of e ensured the
generation of combination of perturbations, while at the same time minimizing the
number of perturbed variables. Lastly, since some perturbations are known to be
unfeasible due to technical or biological reasons, a subset of all the possible output
crisp values of the system was selected to perform the optimization; this subset is
listed in Table 8.4.

TABLE 8.4: Model components and corresponding states that were
perturbed during SA optimization

Model component States

Attachment
Unperturbed

Low
High

Autophagy

Unperturbed
Low

Medium
High

Bcl2

Unperturbed
Low

Medium
High

Calcium

Unperturbed
Low

Medium
High

CHOP

Unperturbed
Low

Medium
High

Complex I

Unperturbed
Less functional

Medium functional
More functional

DAPK
Unperturbed

Low
High

DeltaPsi
Unperturbed

Low
High

ERK
Unperturbed

Low
High
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TABLE 8.4 (CONTINUED): Model components and corresponding states that were
perturbed during SA optimization

Model component States

HBP

Unperturbed
Low

Medium
High

JNK
Unperturbed

Low
High

N-glycosylation

Unperturbed
Low

Medium
High

ROS

Unperturbed
Low

Medium
High

SRC
Unperturbed

Low
High

UPR

Unperturbed
Low

Medium
High

Since SA is a stochastic algorithm, different runs generally yield different so-
lutions, still commonly converging to the optimal perturbations that represent the
attractors of the global optimization. The optimization analysis was carried out both
in the case of low and hyperactivated states of PKA, for a total of 30 runs each, in
order to collect a set of different perturbations. The resulting list of perturbations
found by SA—validated either in this work or confirmed by previous experimental
evidences—is given in Table 8.5 and Table 8.6 for the PKA Low and High conditions,
respectively, ranked by their objective function value in descending order. From
these, a subset of promising single/double perturbations was selected and tested in
laboratory to assess their effectiveness in inducing death by apoptosis in MDA-MB-
231 cells.
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TABLE 8.5: Perturbations found by SA with PKA set to the Low state

Rank Variable State Reference

1 DeltaPsi Low [187–189]

2 UPR High This work

3
DeltaPsi Low

[190, 191]
UPR High

4 Complex I Less functional This work

5 Bcl2 Low [192]

6
UPR High

This work
Autophagy Low

7
Complex I Less functional

This work
Autophagy Low

8
N-glycosylation Low

This work
HBP Low

9
N-glycosylation Low

This work
Autophagy Low

TABLE 8.6: Perturbations found by SA with PKA set to the High state

Rank Variable State Reference

1 UPR High This work

2 DeltaPsi Low [187–189]

3
DeltaPsi Low

[190, 191]
UPR High

4
ROS High

[190, 191]
UPR High

5
N-glycosylation Low

This work
Autophagy Low

6
N-glycosylation Low

This work
HBP Low
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8.1. A dynamic fuzzy model of programmed cell death

FIGURE 8.7: Assessment of the effects of perturbations (UPR activation) predicted
by the global optimization algorithm. (a)-(b) Simulation outcome of the three
model outputs (apoptosis, necrosis and survival) upon UPR activation, either in
(a) PKA Low state or (b) PKA High state. The perturbation was applied from time
tb = 0 to the end of the simulation, and evaluated after δ = 0.13 a.u. (shaded area).
(c) MDA-MB-231 cells, grown in HG, were daily treated with 10 µM FSK mimick-
ing the PKA High state, or 5 µM H89 mimicking the PKA Low state and, upon 24h,
also with 10 nM thap (single treatment). Samples were evaluated for cell death at
48h and 72h post-treatment by using Trypan Blue Exclusion Method. The experi-
mental scheme is shown in Figure B.1c. All data represent the average of at least

three independent experiments (± s.d.); *p<0.05 (Student’s t-test).

Figure 8.7 and Figure 8.8 show the comparison between the simulated dynam-
ics and the experimental data for single perturbations predicted by SA. In particular,
Figure 8.7 shows the effects of UPR activation achieved by using 10 nM thapsigar-
gin (thap), while Figure 8.8 shows the effects of CI inhibition achieved by using 10
nM rotenone (rot) or 20 nM piericidin (pier) in high and low glucose availability, re-
spectively (the experimental scheme for both perturbations is shown in Figure B.1c,
Appendix B). Both perturbations were chosen taking into account their rank and
the existence of previous data indicating that the pharmacological over-activation
of the UPR pathway, as well as CI inhibition, can lead to cancer cell death [193,
194]. For both perturbations, high or low activation of PKA was also experimentally
analyzed. In particular, to avoid the endogenous activation of PKA under the ex-
perimental conditions, low PKA was achieved by cell treatment with a known PKA
inhibitor, H89 [195] (experimental details are available in Figure B.1, Appendix B).

Notably, the model properly predicted the experimental data. Indeed, an en-
hanced cell death was observed in the simulations (orange line for apoptosis and
magenta line for necrosis in Figure 8.7a and b) as well as in the experimental data
upon both treatments (Figure 8.7c). This increase is evident when moving from a
high availability of glucose (left side of the simulation plots) to a situation of glucose
starvation (right side of the simulation plots), and especially in the PKA Low state
with respect to the PKA High state, suggesting an important role of PKA in cancer
cell survival in acute UPR activation or in glucose starvation. These computational
results are consistent with the experimental measurements, as represented by the
graph bars in Figure 8.7c, which show a higher level of cell death in glucose star-
vation (72h), with the fold change being higher when PKA is not activated. Similar
considerations can be done for chronic CI inhibition, as shown in Figure 8.8.
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FIGURE 8.8: Assessment of the effects of perturbations (CI inhibition) predicted by
the global optimization algorithm. (a)-(b) Simulation outcome of the three model
outputs (apoptosis, necrosis and survival) upon Complex I inhibition, either in (d)
PKA Low state or (e) PKA High state. The perturbation was applied from time
tb = 0 to the end of the simulation, and evaluated after δ = 0.13 a.u. (shaded
area). (c) MDA-MB-231 cells were grown in LG for 48h and then treated for 24h
with 10 nM rotenone or 20 nM piericidin (single treatment at time 48h), in order
to evaluate cell death by using Trypan Blue Exclusion Method. The experimental
scheme is shown in Figure B.1c. (d) Representative morphological images of MDA-
MB-513 231 cells treated as in (c). The experimental scheme is shown in Figure B.1c.
All data represent the average of at least three independent experiments (± s.d.);

*p<0.05, **p<0.01 (Student’s t-test).

Analogously, Figure 8.9 shows the comparison between the simulated dynamics
and the experimental data for the double perturbations predicted by SA. In particu-
lar, it shows the effects of UPR activation coupled with autophagy inhibition (Fig-
ure 8.9a-c), N-glycosylation and HBP inhibition (Figure 8.9d-f), N-glycosylation and
autophagy inhibition (Figure 8.9g-i). Both the simulation outcomes and the experi-
mental data show an increase in cell death, especially when moving towards a state
of glucose starvation, and the protective role of PKA. This result is evident by com-
paring, for example, the final states reached in each condition by apoptosis (orange
line) and necrosis (magenta line) in Figures 8.9a, d and g, with the states reached by
the same variables in Figure 8.9b, e and h. These computational results are consis-
tent with the experimental measurements shown by the graph bars in Figures 8.9c,
f, and i.
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FIGURE 8.9: Assessment of the effects of double perturbations predicted by global
optimization. (a)-(b) Simulation outcome of the three model outputs (apoptosis,
necrosis and survival) upon UPR activation and autophagy inhibition, either in (a)
PKA Low state or (b) PKA High state. The perturbation was applied from time
tb = 0 to the end of the simulation, and evaluated after δ = 0.13 a.u. (shaded area).
(c) MDA-MB-231 cells, grown in HG, were daily treated with 10 µM FSK mimick-
ing the PKA High state and, upon 24h, also with 10 nM thap and 20 µM chloro-
quine (CQ) (single treatment of both). Samples were evaluated for cell death at 48h
and 72h post-treatment by using Trypan Blue Exclusion Method. The experimen-
tal scheme is shown in Figure B.1d. (d)-(e) Simulation outcome of the three main
model output (apoptosis, necrosis and survival) upon HBP and N-glycosylation
inhibition, either in (d) PKA Low state or (e) PKA High state. (f) MDA-MB-231
cells, grown in HG, were daily treated with 10 µM FSK mimicking the PKA High
state and, upon 24h, also with 1 µM aza and 50 ng/mL tuni (single treatment of
both). Samples were evaluated for cell death at 48h and 72h post-treatment by us-
ing Trypan Blue Exclusion Method. The experimental scheme is shown in Figure
B.1d. (g)-(h) Simulation outcome of the three model outputs (apoptosis, necrosis
and survival) upon N-glycosylation and autophagy inhibition, either in (g) PKA
Low state or (h) PKA High state. (i) MDA-MB-231 cells, grown in HG, were daily
treated with 10 µM FSK mimicking the PKA High state and, upon 24h, also with 50
nM tuni and 10 µM CQ (single treatment of both). Samples were evaluated for cell
death at 48h and 72h post-treatment by using Trypan Blue Exclusion Method. The
experimental scheme is shown in Figure B.1d. All data represent the average of at
least three independent experiments (± s.d.); *p<0.05, **p<0.01 (Student’s t-test).

To analyze the combinatory effect on cell survival, when possible, sub-toxic con-
centrations of the compounds were employed, previously determined experimen-
tally on this cell model (see, e.g., tuni and aza). In addition, in these set of validation
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experiments, it was also evaluated whether the model could predict the endoge-
nous PKA behavior, since no H89 inhibitor was used (experimental scheme in Figure
B.1d, Appendix B). Combination effects of selected compound pairs exceeded the ef-
fects of single compounds for the majority of combinations, and well fitted with the
model outcome also in absence of exogenous PKA inhibition. Thus, these results
corroborated the capability of the DFM, coupled with the optimization algorithm, in
predicting the system’s response in perturbed conditions.

It is worthy of note that the validity of this modeling approach is supported by
its performance in predicting not only recognized cell death-inducing stimuli, but
also unrecognized stimuli equally leading to cell death. For instance, a sub-toxic
amount of tuni, coupled with both a sub-toxic amount of the HBP inhibitor aza
or the autophagic inhibitor chloroquine, enhances cancer cell death. Remarkably,
both treatments are strongly attenuated by exogenous PKA stimulation, implying
the involvement of this pathway in ER stress response, at least in these experimental
conditions. Confirming results were shown also about the protective role of PKA
upon ER stress induction by thapsigargin that, in combination with PKA inhibition,
induces cancer cell death, an effect that is strongly impaired by exogenous activa-
tion of PKA. Previous data indicated that PKA activation protects cancer cells from
death induced by glucose starvation [112, 124]. Here, it is shown that PKA has a pro-
tective role in cancer cells under acute ER stress. While this protective mechanism
has been shown to be active in mouse embryonic fibroblasts [196] and hepatocytes
[197], it has never been described in cancer cells, a fact that further supports the
predictive value of DFMs coupled with optmization algorithms. Interestingly, also
simultaneous CI and PKA inhibition induces increased cancer cell death, an effect
that is prevented by PKA activation. Therefore, the model also predicted that PKA
activation is involved in mitochondrial CI function and, more in general, in oxida-
tive phosphorylation activity, corroborating previous results [198–200]. Altogether,
these results provide the first evidence of a protective role for PKA against several
treatments mimicking cellular stress conditions, such as ER stress, N-glycosylation
inhibition, mitochondrial CI inhibition, and glucose starvation in cancer cells. These
findings will potentially pave the way for the use of new PKA inhibitors in cancer
therapy.
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8.2 A hybrid model of biochemical signaling

To prove the feasibility and the advantages of FuzzX, this section presents the defi-
nition and analysis of a hybrid model of a biochemical signaling pathway, the Ras/
cAMP/PKA pathway in the yeast S. cerevisiae, that is characterized by complex non-
linear behaviors arising from several feedback regulations among the system com-
ponents. In particular, FuzzX is here applied to redefine, in terms of a hybrid model,
a stochastic mechanistic model of this pathway first proposed in [108]. The results
obtained on the hybrid model are compared to the ones obtained in the original,
fully-mechanistic version of the model. The results show that, albeit mechanistic in-
teractions are substituted by a set of expert-defined fuzzy rules, the hybrid model
is able to reproduce the emergent behaviors of the system, such as the presence of a
transient phase and the establishment of stable or damped oscillations.

A schematic representation of the main components of the hybrid model is de-
picted in Figure 8.10. The Ras/cAMP/PKA pathway consists in an intracellular cas-
cade of biochemical reactions that are involved in the regulation of metabolism and
cell cycle, in response to extracellular nutrients and stress conditions [201–203]. In
particular, this pathway affects the activity of more than 90% of all yeast genes that
are regulated by glucose. This control is carried out through the activation of a key
protein, called PKA, which is able to regulate several downstream target proteins.
In what follows, C denotes the catalytic subunit (i.e., the active form) of PKA. The
activation of PKA is mediated by the chemical bond with cAMP, a so called “second
messenger” molecule acting as a glucose-signal transducer, which is synthesized by
protein Cyr1 and degraded by protein Pde1. Cyr1 activity is controlled, in turn,
by protein Ras2 that can exist in the inactive state, when it is bound to molecule
GDP (i.e., Ras2-GDP), or in the active state, when it is bound to molecule GTP (i.e.,
Ras2-GTP). The switching between the inactive and active states is regulated by two
proteins, called Cdc25 and Ira2.

Proteins Cdc25, Ira2 and Pde1 are regulated by PKA by means of positive and
negative feedback mechanisms. These feedback controls ensure, under certain con-
ditions, the establishment of a stable oscillatory regime in the dynamics of some
pivotal molecular species in this pathway, that is, Ras2-GTP, cAMP and C. Indirect
evidence of the oscillatory regimes of these species were observed in vivo by con-
sidering downstream proteins [204, 205], while the role of feedback regulations was
thoroughly analyzed in different conditions by means of mechanistic models [108,
206, 207]. A complete definition of the original model presented in [108] and em-
ployed in the comparisons shown in the following sections, can be found in Ap-
pendix C.

8.2.1 The mechanistic module

The mechanistic module of the hybrid model is formalized as a RBM (see Section
4.1) whose main components are highlighted in blue in Figure 8.10. In particular, the
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Cdc25
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Ira2

Ras2-GTP
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Pde1

Ras2-GDP

FIGURE 8.10: Diagram of the interactions among the main components of the hy-
brid model of the Ras/cAMP/PKA pathway. Variables belonging to the mecha-
nistic module are represented by blue squares, variables belonging to the fuzzy
module are represented by orange ellipses, while the interface species (Ras2-GTP)
is represented as blue/orange rounded rectangle. Positive and negative regulations

are pictured as arrows and blunt-ended arrows, respectively.

RBM considered in this work consists in the first 10 reactions of the original mecha-
nistic model presented in [108, 206, 207] (see Table C.2, Appendix C). These reactions
describe the switch cycle of the Ras2 protein between its inactive (Ras2-GDP) and ac-
tive (Ras2-GTP) state, and its regulation by the proteins Cdc25 and Ira2. The set P of
reactions of the mechanistic module, together with their kinetic parameters, is given
in Table 8.7. The initial amounts of the chemical species of the mechanistic module
are listed in Table 8.8 (expressed as number of molecules per cell, hence XM = N);
Table 8.8 reports also the initial values of the other variables appearing in the hybrid
model, as described in what follows.

In this application of FuzzX, the dynamics of the mechanistic module is obtained
by means of the “Direct Method” of SSA [67] (see Section 4.5). Since FuzzX proceeds
by steps of length ∆ (see Figure 7.2), during each execution of the function UM the
maximum simulation time of SSA was set to ∆.

In the hybrid version of the Ras/cAMP/PKA model, the variable corresponding
to the Ras2-GTP chemical species belongs to the set VM ∩ VF, and the kinetic param-
eters c1, c8 and c10 belong to the set θM ∩ VF. Together, these four elements constitute
the interface I of the hybrid model. It should be noted that the values of the stochas-
tic constants that do not belong to the interface never change during the simulation
of the hybrid model, that is, they remain fixed to the values given in Table 8.7. On
the contrary, the values of the parameters c1, c8 and c10 can be modified by the fuzzy
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TABLE 8.7: Mechanistic module of the hybrid model

Reaction Stochastic constant

P1: Ras2-GDP + Cdc25→ Ras2-GDP-Cdc25 c1 = 1.0*

P2: Ras2-GDP-Cdc25→ Ras2-GDP + Cdc25 c2 = 1.0

P3: Ras2-GDP-Cdc25→ Ras2-Cdc25 + GDP c3 = 1.5

P4: Ras2-Cdc25 + GDP→ Ras2-GDP-Cdc25 c4 = 1.0

P5: Ras2-Cdc25 + GTP→ Ras2-GTP-Cdc25 c5 = 1.0

P6: Ras2-GTP-Cdc25→ Ras2-Cdc25 + GTP c6 = 1.0

P7: Ras2-GTP-Cdc25→ Cdc25 + Ras2-GTP c7 = 1.0

P8: Ras2-GTP + Cdc25→ Ras2-GTP-Cdc25 c8 = 1.0*

P9: Ras2-GTP + Ira2→ Ras2-GTP-Ira2 c9 = 0.01

P10: Ras2-GTP-Ira2→ Ras2-GDP + Ira2 c10 = 0.25*
*Kinetic parameters belonging to the interface of the hybrid model

TABLE 8.8: Initial amounts of the hybrid model

Variable Initial value

Mechanistic module

Ras2-GDP 20, 000

Cdc25 300

GDP 1.5× 106

GTP 5.0× 106

Ira2 200

Ras2-GDP-Cdc25 0

Ras2-GTP-Cdc25 0

Ras2-Cdc25 0

Ras2-GTP-Ira2 0

Interface Ras2-GTP 0

Fuzzy module

Cyr1 0.0

cAMP 0.0

C 0.0

Pde1 0.0

inference operated by UF, according to the fuzzy rules defined in the fuzzy module,
as specified in the next section.

8.2.2 The fuzzy module

The fuzzy module of the hybrid model consists in a set VF of 8 linguistic variables
and a set R of 16 fuzzy rules; its main components are highlighted in orange in
Figure 8.10.

73



Chapter 8. Applications

0 100 200 300 400 500 600
0.00

0.25

0.50

0.75

1.00
Ras2-GTP

Low
High

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
Inner variables

Low
High

(b)

FIGURE 8.11: Membership functions of the linguistic variables: (a) Ras2-GTP; (b)
Cyr1, cAMP, C, and Pde1.

The fuzzy rule base adopted in this model is a 0-order Sugeno inference system
[45]. Since three linguistic variables of VF—namely, c1, c8 and c10—appear only in
the consequent of the fuzzy rules as singletons, no fuzzy sets are specified for them.
The fuzzy sets of all other linguistic variables, along with their associated linguistic
terms, are shown in Figure 8.11a (for the linguistic variable Ras2-GTP) and Figure
8.11b (for the linguistic variables Cyr1, cAMP, C, and Pde1). Specifically, according
to domain knowledge, it was assumed that the universe of discourse of Ras2-GTP
is equal to [0,+∞), and its amount is Low when it is equal to or smaller than 25
molecules, while it is High when it is equal to or larger than 500 molecules. For
the sake of providing a simple and cost-effective model with as few parameters as
possible, it is assumed that the universe of discourse of all other variables is equal to
[0, 1], partitioned into two triangular fuzzy sets (Low and High).

At the end of each ∆-long simulation of the mechanistic moduleM, one fuzzy
inference step is performed to update the values of the variables in VF. The set R
of fuzzy rules and their output crisp values are given in Tables 8.9 and 8.10, respec-
tively.

The fuzzy rules describe the following processes:

• the activation of protein Cyr1 (rules 1 and 2) according to the amount of Ras2-
GTP;

• the production of cAMP (rules 3 and 4) according to the regulation of Cyr1;

• the activation of the catalytic subunit C of PKA (rules 5 and 6);

• the activation of Pde1 and its feedback control on cAMP (rules 7 to 10);

• the regulation that C exerts on the kinetic parameters of the mechanistic mod-
ule (rules 11 to 16).

The amount of the interface variable Ras2-GTP is updated by the mechanistic
module, and gets fuzzified in the fuzzy module according to its membership func-
tions. This, in turn, determines the activation of Cyr1 that regulates all the other
variables in the fuzzy module. Thus, the dynamic of the fuzzy module is driven
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TABLE 8.9: Rules of the fuzzy module

No. Rule

1 IF Ras2-GTP is Low THEN Cyr1 is Low

2 IF Ras2-GTP is High THEN Cyr1 is High

3 IF Cyr1 is Low THEN cAMP is Low

4 IF Cyr1 is High THEN cAMP is High

5 IF cAMP is Low THEN C is Low

6 IF cAMP is High THEN C is High

7 IF C is Low THEN Pde1 is Low

8 IF C is High THEN Pde1 is High

9 IF Pde1 is Low THEN cAMP is High

10 IF Pde1 is High THEN cAMP is Low

11 IF C is Low THEN c1 is High-c1

12 IF C is High THEN c1 is Low-c1

13 IF C is Low THEN c8 is High-c8

14 IF C is High THEN c8 is Low-c8

15 IF C is Low THEN c10 is Low-c10

16 IF C is High THEN c10 is High-c10

TABLE 8.10: Output crisp values

Term Crisp value

Low 0.0

High 1.0

Low-c1 0.1

High-c1 1.0

Low-c8 0.1

High-c8 1.0

Low-c10 0.25

High-c10 2.5

by the upstream contribution of the mechanistic module. The last six fuzzy rules
determine the values of the stochastic constants c1, c8, and c10. Since the stochastic
constants are used to calculate the propensity functions, which ultimately determine
the probabilities of the reactions to occur, the regulation of the fuzzy module has a
relevant impact onto the mechanistic module, closing the control loop between the
quantitative and the qualitative regimes.
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8.2.3 Analysis of the hybrid model

The hybrid model of the Ras/cAMP/PKA pathway has been simulated, both in
unperturbed and perturbed conditions, in order to verify if the newly defined hybrid
model is capable of accurately describing the same emergent behaviors observed in
the original model [108]. In particular, as a first step, the effects of the choice of ∆
over the dynamics were assessed. Then, the model was simulated and analyzed in
normal and perturbed conditions. Deterministic simulations were also performed to
show that, in FuzzX, different formalisms can be employed to define the mechanistic
module.

All tests were executed on a workstation equipped with an Intel Core 7700HQ
CPU with 2.80 GHz clock frequency, 16GB of RAM, and running the Operating Sys-
tem Microsoft Windows 10. For the analysis of the Ras/cAMP/PKA hybrid model,
the mechanistic and fuzzy modules were also implemented with Python 2.7.16 and
numpy, with the addition of Simpful (Chapter 6) to support the definition of fuzzy
sets and fuzzy rules.

The choice of ∆ and stochastic simulations

The impact of the value of the time step ∆ on the overall dynamics of the Ras/
cAMP/PKA hybrid model was investigated by simulating the model with values
of ∆ equal to 5, 10, 15, 30. These results are reported in Figure 8.12, which shows
a comparison of the simulated dynamics of the interface species Ras2-GTP, and of
the linguistic variables Cyr1, cAMP, C, and Pde1 belonging to the fuzzy module. As
it can be noted, in the case of a very small value of ∆ with respect to the scale of
the phenomena modeled by the fuzzy rules (e.g., ∆ = 5, Figure 8.12a), the system
presents damped oscillations slowly converging to an attractor steady state. By us-
ing a larger value of ∆ (e.g., ∆ = 10, Figure 8.12b), the hybrid model reproduces the
stable oscillations characterizing the behavior of the biochemical pathway. In this
model, it can be observed that an increase in the value of ∆ affects the frequency,
the phase and the amplitude of the oscillations (see Figures 8.12c and 8.12d). As a
matter of fact, since the firing of fuzzy rules is instantaneous, the time step must be
chosen according to the temporal scale of the modeled phenomena:

• on the one hand, very small values of ∆ could lead to small modifications of
the values of the elements belonging to the interface by means of the mech-
anistic module, resulting in the activation of the same subset of fuzzy rules,
with similar firing strength, at each fuzzy inference;

• on the other hand, large values of ∆ imply long intervals between the fuzzy
inferences, so that the impact of the fuzzy regime on the overall dynamics of
the hybrid model is no longer relevant, and the simulation will be primarily
driven by the mechanistic module.
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(a) ∆ = 5
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(b) ∆ = 10
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(c) ∆ = 15
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FIGURE 8.12: Comparison of the dynamics of five key proteins in the Ras/cAM-
P/PKA pathway, using different settings for ∆: (a) ∆ = 5; (b) ∆ = 10; (c) ∆ = 15;
(d) ∆ = 30. For each value of ∆, the dynamics of Ras2-GTP is plotted in the top
plot, while the dynamics of the variables belonging to the fuzzy regime (i.e., Cyr1,
cAMP, C, Pde1) are plotted in the bottom plot. Ras2-GTP represents the interface
between the mechanistic and fuzzy regimes; the degree of membership to the Low
and High states of this protein are represented by lighter and darker shades of blue,

respectively.

Therefore, ∆ should be carefully chosen by the modeler, by comparing the result-
ing dynamics with respect to known behaviors, or considering any available data
concerning the phenomena under investigation. In the case of the Ras/cAMP/PKA
pathway, the model presented in [108] was exploited to produce a reference dynam-
ics that was then used to determine the optimal value for the time step ∆ (in this
case, ∆ = 10).

Figure 8.13 shows a comparison of the dynamics of Ras2-GTP obtained by us-
ing SSA only (Figure 8.13a), and calculated by FuzzX in the hybrid model using
∆ = 10 (Figure 8.13b). The results show that, despite the approximations introduced
by FuzzX and the intrinsic noise of the stochastic simulation, the two temporal evo-
lutions present the same (qualitative) behavior: indeed, both simulated dynamics
begin with a transient peak, in which the amount of Ras2-GTP is approximately
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FIGURE 8.13: Comparison between the dynamics of variable Ras2-GTP in (a) the
original mechanistic model [108], and in (b) the hybrid model.

equal to 2500 molecules, followed by stable oscillations. As a way to prove the ac-
curacy of FuzzX, the mean frequency and amplitude of the oscillations obtained by
simulating the original model and the hybrid model were measured and compared.
Without taking into account the first transient peak, the oscillations are character-
ized by a mean frequency equal to (1.17± 0) · 10−2 a.u. for the hybrid model, and
(1.3 ± 0.1) · 10−2 a.u. for the original model, both evaluated over 20 simulations,
while the amplitude is around 500 molecules for both models (a detailed analysis
of the frequency and amplitude of oscillations in the original model can be found
in [207]).

These results highlight the advantages provided by FuzzX: the simplification of
the model complexity by means of a human-comprehensible formalism, notably re-
quiring a reduced number of free parameters whose values are not always available;
the possibility to run a simulation of the hybrid model, which conveys both quan-
titative and qualitative information, exploiting a sound mathematical approach; the
capability of hybrid models to accurately reproduce the outcome of a detailed mech-
anistic model. In addition, it is worthy of note that the computational effort of FuzzX
is smaller than the execution of SSA only on the original model: a single simulation
of the hybrid model showed a speed-up of approximately 25×, with respect to a
single stochastic simulation of the original model performed by means of SSA.

Simulations in perturbed conditions

In order to evaluate to which extent the hybrid model can reproduce known be-
haviors of the original model, simulations in several perturbed conditions were also
performed, using ∆ = 10. In Figure 8.14a it is shown that Ras2-GTP exhibits a stable
oscillatory dynamics in the original model, thanks to the presence of the regulative
feedback loop exerted by the active unit of PKA (C) on protein Ira2. This behavior is
reproduced also by the hybrid model (Figure 8.14b), where the regulative feedback
loop is exerted via the fuzzy module. As a matter of fact, turning off the regulative
control on Ira2 (i.e., by disabling the firing of the fuzzy rules 15 and 16), the dynam-
ics of Ras2-GTP no longer shows an oscillatory behavior (Figure 8.15b); instead, it
reaches a stable steady state around 10, 000 molecules, as it was already shown in
the original model (Figure 8.15a).
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FIGURE 8.14: Comparison of Ras2-GTP behavior in (a) the original model, and (b)
the hybrid model. The hybrid model conserves a stable oscillatory state.
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FIGURE 8.15: Comparison of Ras2-GTP behavior in (a) the original model, and (b)
the hybrid model, when the feedback control on Ira2 is deactivated. Both models

show the absence of oscillations and the accumulation of Ras2-GTP.

Additionally, simulations were performed, for both the original and hybrid mo-
del, starting from an initial condition that corresponds to the steady state of the
system, where the regulative feedbacks are already activated. In the hybrid model,
this condition is obtained by setting the initial value of Ras2-GTP to 50, cAMP to
0.9, and C to 0.9 (the values of the other variables remained unaltered with respect
to Table 8.8). As it was observed in the original model [108], a stable oscillatory
regime—without the initial transient peak of Ras2-GTP—is reached (Figure 8.16a).
Figure 8.16b shows that the hybrid model correctly reproduces the same dynamical
behavior.

Lastly, Figure 8.17 shows the dynamics obtained by varying the initial amount
of Cdc25. For Cdc25 amounts lower than the reference value (i.e., Cdc25 = 300)
the original model shows stable noisy oscillations of Ras-GTP characterized by a
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FIGURE 8.16: Comparison of Ras2-GTP behavior in (a) the original model, and (b)
the hybrid model, starting from a steady state condition. Both models show a stable

oscillatory state without the presence of a transient phase.
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FIGURE 8.17: Perturbation of the initial value of Cdc25 in (a) the original model,
and (b) the hybrid model. The dynamics obtained with the reference value (Cdc25

= 300) are depicted in black.

smaller amplitude with respect to the standard condition (Figure 8.17a), while the
hybrid model (Figure 8.17b) displays damped oscillations. This behavior can be ex-
plained by the reduced effect of stochasticity in the hybrid model with respect to the
original model, as it was already highlighted by the outcome of deterministic sim-
ulations of the original model [108]. Moreover, the hybrid model cannot reproduce
the increased transient phase and the change in the period of oscillations, observed
in the original model for higher values of Cdc25 (Figure 8.17a). This difference might
be due to the approximation introduced by the choice of ∆, as it was already high-
lighted in Subsection 8.2.3. This issue could be bypassed by placing the feedback
control—exerted by the fuzzy module—over a different variable of the mechanistic
module, and not over a kinetic parameter. A thorough investigation of how the se-
lection of different interface variables might affect the system dynamics is planned
as a future work.

Analysis of fuzzy control over mechanistic parameters

In order to assess the effect of the fuzzy control over the mechanistic parameters,
simulations of the hybrid model were also performed by varying the values of the
output crisp terms Low-c1 and Low-c8 (rule 12 and 14, respectively), which control
the feedback regulation acting on Cdc25, and the value of High-c10 (rule 16), which
controls the feedback regulation acting on Ira2. These results were compared with
the analysis that was carried out on the original model in [108].

Figure 8.18b shows the dynamics of Ras2-GTP obtained by simultaneously vary-
ing the values of the terms Low-c1 and Low-c8. These results show that the magni-
tude of the feedback exerted on Cdc25 does not affect the establishment of an oscilla-
tory regime, as it was already evidenced in the original model (Figure 8.18a). How-
ever, as opposed to the fully mechanistic representation of the biochemical pathway,
the hybrid model was not able to predict the change in the frequency of oscillations
that was observed in [108] by assuming a higher magnitude for the feedback reg-
ulation of C on Cdc25 (i.e., higher values of Low-c1 and Low-c8). Again, it can be
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FIGURE 8.18: Perturbation of the feedback regulation over Cdc25 in (a) the original
model, and (b) the hybrid model. The dynamics were obtained by varying the
parameter c34 in the original model, and the output crisp values Low-c1 and Low-
c8 simultaneously in the hybrid model. The dynamics obtained with the reference

values are depicted in black.
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FIGURE 8.19: Perturbation of the feedback regulation over Ira2 in (a) the original
model, and (b) the hybrid model. The dynamics were obtained by varying the
parameter c36 in the original model, and the output crisp value High-c10 in the
hybrid model. The dynamics obtained with the reference values are depicted in

black.

argued that this difference might be due to the reasons discussed in Subsection 8.2.3.
Figure 8.19b reports the dynamics of Ras2-GTP obtained by varying the value

of the term High-c10. The results show that an increase in the magnitude of the
feedback regulation exerted by Ira2 deeply affects the establishment of oscillations.
Indeed, values lower than the reference one (i.e., 2.5) result in the absence of oscil-
lations and convergence to a steady state; on the other hand, higher values lead to
damped oscillations or to dynamics characterized by an amount of Ras2-GTP close
to zero. This behavior is in agreement with the results obtained with the mechanistic
model (Figure 8.19a), as discussed in [108].

Deterministic simulations

Deterministic simulations of the hybrid Ras/cAMP/PKA model were performed to
show that different formalisms can be employed to define and simulate the mech-
anistic module. Deterministic simulation of the hybrid model was performed by
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FIGURE 8.20: Comparison between the dynamics of variable Ras2-GTP, obtained
in a deterministic simulation of (a) the original mechanistic model [108], and (b) the

hybrid model.

simulating the RBM of the mechanistic module by means of the LSODA algorithm
(Section 4.3). The system of ODEs was obtained by assuming MAK (Section 4.1),
converting the molecular amounts into the related concentrations (in mol/L) in-
side a reaction volume of 30 fL (as given in [108] for S. cerevisiae), and transform-
ing stochastic constants into the corresponding rate constants (see [208] for more
details). Regarding LSODA functional settings, the absolute tolerance was set to
1× 10−12 for all species, relative tolerance was set to 1× 10−6, and the maximum
number of integration steps was set to 10000.

Figure 8.20 shows a comparison between the dynamics of Ras2-GTP obtained in
the original model simulated with LSODA (Figure 8.20a) and in the hybrid model
simulated with FuzzX (Figure 8.20b), employing the same ∆ (i.e., ∆ = 10) as for the
stochastic simulations. Despite the approximations introduced with the fuzzy mod-
ule, the deterministic version of the hybrid model preserves the same qualitative
behavior of the fully mechanistic model, displaying dynamics characterized by the
presence of a transient peak and followed by stable oscillations.

The deterministic simulation of the hybrid model displays the same emergent
behavior of its stochastic counterpart also when perturbing the value of the term
High-c10 (refer to Figure 8.19 for the stochastic simulations). Figure 8.21 shows the
results concerning this analysis. As stated in Subsection 8.2.3, a change in the mag-
nitude of the feedback regulation exerted by Ira2 affects the establishment of oscil-
lations both in the original and in the hybrid model. In particular, decreasing the
feedback regulation of Ira2 (red and blue lines in Figures 8.21a and 8.21b) results in
the absence of oscillations and convergence to a steady state, while its increase leads
to damped oscillations. Such behaviors are in agreement with what was already
observed in [108].

8.3 Additional work in progress

8.3.1 A DFM of phenotypic transitions in stem cells

DFMs allow to explore the dynamic behavior of complex systems, even when precise
mechanistic information about their components is limited. This feature of DFM can
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FIGURE 8.21: Perturbation of the feedback regulation over Ira2 in deterministic
simulations of (a) the original model, and (b) the hybrid model. The dynamics were
obtained by varying the parameter c36 in the original model, and the output crisp
value High-c10 in the hybrid model. The dynamics obtained with the reference

values are depicted in black.

be exploited to model and analyze the complexity of gene regulatory networks that
regulate stem cell differentiation. The study of such systems is crucial to increase
both our understanding of cell fate differentiation and our ability to reprogram stem
and differentiated cells for therapeutic purposes [209]. Indeed, cell differentiation is
controlled by a wide and intricate network of genes, whose properties and interac-
tions are not always fully characterized. In addition, these gene regulatory networks
show many emergent behaviors, including robustness to perturbations and multi-
ple stable states [210]. These behaviors are also due to the stochastic nature of gene
expression, which must be taken into account when modeling these systems. In
order to do so, a modification of the formalism presented in Chapter 5 is under de-
velopment, to the aim of introducing a stochastic update of the linguistic variables
to realize a stochastic DFM. As a starting point to study phenotypic transitions in
stem cells, a DFM is being defined on the basis of the main components and inter-
actions occurring in a regulatory circuit consisting in 12 genes, whose behavior was
previously analyzed by means of different modeling formalisms [211, 212].

8.3.2 A hybrid model of DNA double strand breaks repair

FuzzX has been applied to analyze the repair of DNA double strand breaks in yeast
cells [213], a complex biochemical system whose in-depth investigation could lead to
important insights in cancer cell progression. On the one hand, this system exhibits
the presence of a well-characterized process of assembly of protein complexes on the
site of DNA damage, which have been modeled by means of the mechanistic mod-
ule, defined as a RBM consisting in 11 species and 14 reactions; on the other hand,
a complex regulative protein network, featuring several feedforward and feedback
loops, is also present and it is responsible for the initiation and temporal regula-
tion of the repair process by means of homologous recombination, a repair pathway
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that exploits an intact copy of DNA to produce an error-free repair. Since quantita-
tive information is limited, and only qualitative data is available on the regulative
network, these processes have been modeled by taking advantage of a fuzzy mod-
ule, corresponding to a fuzzy network that consists in 12 linguistic variables and 36
fuzzy rules. Simulations of the hybrid model can reproduce behaviors known in the
literature, both in wild-type and mutant strains of S. cerevisiae.

84



Chapter 9

Conclusions and future works

Complex systems can be found everywhere in nature, ranging from physics and
biology, to social or artificial systems, but for many of them a complete understand-
ing of how complex behaviors emerge is still missing. Since the non-linear dynamic
behaviors arise from negative and positive feedback regulations among a huge num-
ber of different entities, the elucidation of the mechanistic interactions that govern
their functioning is an extremely challenging task from both the experimental and
the computational perspectives. This is strikingly true when information about the
system under investigation is limited, or it cannot be easily subject to accurate ex-
perimental measurements, or the interplay between the negative and positive con-
trol mechanisms is so complex that the system can be analyzed only by considering
a subset of (usually, homogeneous) components. In order to address these prob-
lems, in the last decades scientists developed and exploited several mathematical
approaches to simulate the behavior of these complex systems and grasp their inner
workings, resulting in a wide variety of different formalisms.

In such context, this thesis showed that fuzzy logic can be exploited to address
some of the problems that afflict complex systems modeling—namely, the lack of
quantitative data, and the presence of heterogeneous components—and to bridge
together different mathematical formalisms. This was achieved by presenting two
main contributions, that is, DFMs and their coupling with global optimization algo-
rithms, and FuzzX.

The DFM approach (Chapter 5 and Section 8.1) is able to address two open issues
in the field of system modeling, that is, taking into account the heterogeneous nature
of complex systems, and dealing with the lack of quantitative parameters that might
prevent a precise characterization of some components and processes. This model-
ing approach may be adopted to incorporate data generated from different sources,
using knowledge-based rules, and can integrate multiple data types together (e.g.,
quantitative, semi-quantitative or qualitative, using different unit of measures). As
such, DFMs not only solve some relevant issues related to the modeling and dynam-
ical simulation of heterogeneous systems, but they are also able to provide valuable
predictions that facilitate our understanding in controlling complex systems. Addi-
tionally, DFMs allow for the definition of models in a readable and simple format,
through the use of linguistic variables. Their coupling with optimization algorithms
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is a promising tool to uncover, in an automatic way, an optimal response of the sys-
tem to an extensive number of perturbations, facilitating the design of experiments
and reducing the related costs. In this thesis it was showed that this approach is able
to predict the behavior ofcancer cells grown either under progressive glucose deple-
tion or in different perturbed conditions, as well as to identify potentially novel can-
cer therapeutic treatments. Noteworthy, the dynamic nature and predictive power
of DFMs could prove useful in assessing the effects of different types of perturba-
tions on the behavior of the system under examination in many other application
fields, such as medicine, pharmacology, etc.

Fuzzy logic can also be exploited to integrate different model formalisms and
define hybrid models, able to both represent different layers of complexity (at the
functional, temporal, or phenomenological level) and leverage precise mechanistic
information when available [109]. The aim of this novel computational framework
is to fill the gap between quantitative (mechanism-based) and qualitative models,
in order to simultaneously exploit the peculiar advantages provided by each mod-
eling approach. FuzzX (Chapter 7) was designed to model and analyze systems
characterized by partial uncertainty about the underlying mechanisms, or to reduce
the computational effort by mitigating the complexity of highly detailed mechanis-
tic models. Examples of such applications are economics and finance models [214],
cyber-physical systems [215], and biochemical reaction networks [27, 216].

To test its effectiveness, FuzzX was applied for the definition and analysis of a
hybrid model of the Ras/cAMP/PKA pathway in yeast (Section 8.2), a biochem-
ical system characterized by positive and negative feedback loops and molecular
noise, which give rise to complex behaviors such as oscillations. According to the
obtained results, FuzzX is able to qualitatively reproduce known behaviors of the
system (provided that a suitable ∆ is chosen), therefore proving that the interface
between mechanistic approaches and fuzzy logic represents a suitable and useful
framework for the modeling and simulation of complex systems. Importantly, this
hybrid approach can also reduce the computational effort with respect to the analy-
sis of the fully mechanistic model. Moreover, it was showed that different perturba-
tions applied on variables belonging to either the mechanistic or the fuzzy module
resulted in emergent behaviors that were already observed in the original model.

It is worth noting that the definition of the fuzzy module requires less precise
information with respect to a fully mechanistic model: this provides a cost-effective
solution (in terms of number and accuracy of parameters) to the modeling of com-
plex systems, allowing to reproduce complex behaviors even when detailed mech-
anistic information is not fully known. The great flexibility of fuzzy sets allows for
the definition of knowledge-driven models that can take into account the systems
components that are considerably heterogeneous (e.g., not representable by means
of real-valued variables, and/or spanning different orders of magnitude, and/or
having units of measure of different nature). In addition, fuzzy rules are human-
comprehensible since they are written in simple logic statements, close to natural
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language. For instance, FuzzX could facilitate the design and analysis of cyber-
physical systems [215, 217], a technology that combines computational and physical
components to implement real world processes, where feedback loops between the
two types of components are present.

FuzzX could also be used to model and simulate systems characterized by mul-
tiple scales of time, or of spatial and functional organization, thanks to the flexibility
of fuzzy sets and their ability to handle and connect qualitative and quantitative
data. Moreover, FuzzX can also be applied for the revision and extension of already
validated mechanistic models, in order to describe mechanisms that are not fully
known; this could yield new insights on the systems under investigation, by lever-
aging available qualitative data and knowledge. On the other hand, whenever pre-
cise quantitative information becomes available, parts of previously defined fuzzy
modules could be redefined in terms of mechanistic processes. Thanks to its semi-
quantitative nature, FuzzX could be also exploited to alleviate the computational
effort in black-box global optimization problems, by acting as surrogate model of a
fully detailed mechanistic model during the objective function evaluations [218].

Additional improvements include devising strategies to select optimal values of
∆ and developing methods for automatically inferring fuzzy rule bases from data.
Indeed, even though in the application of FuzzX showed in this thesis the set of
fuzzy rules was curated by an expert according to the available knowledge about
the system, automatic methods based on Evolutionary Computation, such as ge-
netic programming [219], could be coupled to FuzzX to assist in the design of the
fuzzy rule base. This possibility will be investigated in the context of biochemical
parameters estimation [220–222], where FuzzX will be used in the early phases of the
optimization, possibly driving the candidate solutions towards regions of the search
space characterized by a higher quality.
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Fuzzy rules of the programmed cell
death model

Variable Fuzzy rules

Apoptosis
IF (Caspase3 IS Low) THEN (Apoptosis IS Low)
IF (Caspase3 IS Medium) THEN (Apoptosis IS Medium)
IF (Caspase3 IS High) THEN (Apoptosis IS High)

ATP

IF (DeltaPsi IS High) THEN (ATP IS High)
IF (Glycolysis IS High) THEN (ATP IS High)
IF (Glycolysis IS Medium) THEN (ATP IS Medium)
IF (Glycolysis IS Low) THEN (ATP IS Low)
IF (ComplexI IS More-functional) THEN (ATP IS High)
IF (Glycolysis IS High) AND (DeltaPsi IS Low) THEN (ATP IS High)
IF (Glycolysis IS High) AND (ComplexI IS Less-functional) THEN (ATP
IS High)
IF (Glycolysis IS High) AND (ComplexI IS Medium-functional) THEN
(ATP IS High)
IF (Glycolysis IS Medium) AND (DeltaPsi IS Low) THEN (ATP IS
Medium)
IF (Glycolysis IS Medium) AND (ComplexI IS Less-functional) THEN
(ATP IS Medium)
IF (Glycolysis IS Medium) AND (ComplexI IS Medium-functional)
THEN (ATP IS Medium)
IF (Glycolysis IS Low) AND (DeltaPsi IS Low) THEN (ATP IS Medium)
IF (Glycolysis IS Low) AND (ComplexI IS Less-functional) THEN (ATP
IS Very-Low)
IF (Glycolysis IS Low) AND (ComplexI IS Medium-functional) THEN
(ATP IS Medium)

Attachment
IF (N-glycosylation IS High) THEN (Attachment IS High)
IF (N-glycosylation IS Low) THEN (Attachment IS Low)
IF (N-glycosylation IS Medium) THEN (Attachment IS Low)

Continued on next page
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Continued from previous page
Variable Fuzzy rules

Autophagy

IF (Calcium IS High) THEN (Autophagy IS High)
IF (BCN1 IS High) THEN (Autophagy IS High)
IF (ROS IS High) THEN (Autophagy IS High)
IF (Glycolysis IS Low) THEN (Autophagy is High)
IF (PKA IS High) AND (Calcium IS Low) THEN (Autophagy IS High)
IF (PKA IS High) AND (BCN1 IS Low) THEN (Autophagy IS High)
IF (PKA IS High) AND (ATP IS Very-Low) THEN (Autophagy IS High)
IF (PKA IS High) AND (ATP IS Medium) THEN (Autophagy IS High)
IF (PKA IS High) AND (ATP IS High) THEN (Autophagy IS High)
IF (PKA IS High) AND (Glycolysis IS High) THEN (Autophagy IS High)
IF (PKA IS Low) AND (Calcium IS Low) THEN (Autophagy IS Low)
IF (PKA IS Low) AND (BCN1 IS Low) THEN (Autophagy IS Low)
IF (PKA IS Low) AND (ATP IS Very-Low) THEN (Autophagy IS Low)
IF (PKA IS Low) AND (ATP IS Medium) THEN (Autophagy IS Low)
IF (PKA IS Low) AND (ATP IS High) THEN (Autophagy IS Low)
IF (PKA IS Low) AND (Glycolysis IS High) THEN (Autophagy IS Low)
IF (PKA IS High) AND (Calcium IS Medium) THEN (Autophagy IS
High)
IF (PKA IS High) AND (BCN1 IS Medium) THEN (Autophagy IS High)
IF (PKA IS High) AND (Glycolysis IS Medium) THEN (Autophagy IS
High)
IF (PKA IS Low) AND (Calcium IS Medium) THEN (Autophagy IS
Medium)
IF (PKA IS Low) AND (BCN1 IS Medium) THEN (Autophagy IS
Medium)
IF (PKA IS Low) AND (Glycolysis IS Medium) THEN (Autophagy IS
Medium)
IF (ATP IS Low AND PKA IS Low) AND (Calcium IS Low) THEN (Au-
tophagy IS High)
IF (ATP IS Low AND PKA IS Low) AND (BCN1 IS Low) THEN (Au-
tophagy IS High)
IF (ATP IS Low AND PKA IS Low) AND (Glycolysis IS High) THEN
(Autophagy IS High)
IF (ATP IS Very-Low AND PKA IS Low) AND (Calcium IS Low) THEN
(Autophagy IS Low)
IF (ATP IS Medium AND PKA IS Low) AND (Calcium IS Low) THEN
(Autophagy IS Low)
IF (ATP IS High AND PKA IS Low) AND (Calcium IS Low) THEN (Au-
tophagy IS Low)

Continued on next page
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Continued from previous page
Variable Fuzzy rules

Autophagy

IF (ATP IS Very-Low AND PKA IS Low) AND (BCN1 IS Low) THEN
(Autophagy IS Low)
IF (ATP IS Medium AND PKA IS Low) AND (BCN1 IS Low) THEN
(Autophagy IS Low)
IF (ATP IS High AND PKA IS Low) AND (BCN1 IS Low) THEN (Au-
tophagy IS Low)
IF (ATP IS Very-Low AND PKA IS Low) AND (Glycolysis IS High)
THEN (Autophagy IS Low)
IF (ATP IS Medium AND PKA IS Low) AND (Glycolysis IS High)
THEN (Autophagy IS Low)
IF (ATP IS High AND PKA IS Low) AND (Glycolysis IS High) THEN
(Autophagy IS Low)
IF (ATP IS Low AND PKA IS Low) AND (Calcium IS Medium) THEN
(Autophagy IS High)
IF (ATP IS Low AND PKA IS Low) AND (BCN1 IS Medium) THEN
(Autophagy IS High)
IF (ATP IS Low AND PKA IS Low) AND (Glycolysis IS Medium) THEN
(Autophagy IS High)
IF (ATP IS Very-Low AND PKA IS Low) AND (Calcium IS Medium)
THEN (Autophagy IS Medium)
IF (ATP IS Medium AND PKA IS Low) AND (Calcium IS Medium)
THEN (Autophagy IS Medium)
IF (ATP IS High AND PKA IS Low) AND (Calcium IS Medium) THEN
(Autophagy IS Medium)
IF (ATP IS Very-Low AND PKA IS Low) AND (BCN1 IS Medium)
THEN (Autophagy IS Medium)
IF (ATP IS Medium AND PKA IS Low) AND (BCN1 IS Medium) THEN
(Autophagy IS Medium)
IF (ATP IS High AND PKA IS Low) AND (BCN1 IS Medium) THEN
(Autophagy IS Medium)
IF (ATP IS Very-Low AND PKA IS Low) AND (Glycolysis IS Medium)
THEN (Autophagy IS Medium)
IF (ATP IS Medium AND PKA IS Low) AND (Glycolysis IS Medium)
THEN (Autophagy IS Medium)
IF (ATP IS High AND PKA IS Low) AND (Glycolysis IS Medium)
THEN (Autophagy IS Medium)
IF (PKA IS High) THEN (Autophagy IS High)
IF (ROS IS Medium) AND (PKA IS Low) THEN (Autophagy IS Low)

Continued on next page
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Continued from previous page
Variable Fuzzy rules

Autophagy

IF (ROS IS Medium) AND (PKA IS High) THEN (Autophagy IS
Medium)
IF (ROS IS Low) AND (PKA IS Low) THEN (Autophagy IS Low)
IF (ROS IS Low) AND (PKA IS High) THEN (Autophagy IS High)
IF (PKA IS High AND ATP IS Low) THEN (Autophagy IS High)
IF (PKA IS Low AND ATP IS Low) THEN (Autophagy IS Medium)
IF (PKA IS Low AND Calcium IS High) THEN (Autophagy IS High)
IF (PKA IS Low AND BCN1 IS High) THEN (Autophagy IS High)
IF (PKA IS Low AND Glycolysis IS Low) THEN (Autophagy IS High)
IF (BCN1 IS VeryHigh) THEN (Autophagy IS High)

Bcl2

IF (CHOP IS High) THEN (Bcl2 IS Low)
IF (CHOP IS Medium) THEN (Bcl2 IS Medium)
IF (CHOP IS Low) THEN (Bcl2 IS High)
IF (CHOP IS Medium) AND (JNK IS High) THEN (Bcl2 IS Low)
IF (CHOP IS Low) AND (JNK IS High) THEN (Bcl2 IS Low)
IF (CHOP IS Medium) AND (JNK IS Low) THEN (Bcl2 IS Medium)
IF (BCN1 IS High) THEN (Bcl2 IS Low)
IF (ATP IS High) THEN (Bcl2 IS High)
IF (ATP IS Medium) THEN (Bcl2 IS High)
IF (ATP IS Low) THEN (Bcl2 IS Low)
IF (ATP IS Very-Low) THEN (Bcl2 IS Low)
IF (CHOP IS High) AND (JNK IS High) THEN (Bcl2 IS Low)
IF (JNK IS Low) THEN (Bcl2 IS High)
IF (BCN1 IS Medium) THEN (Bcl2 IS Medium)
IF (BCN1 IS Low) THEN (Bcl2 IS High)
IF (BCN1 IS VeryHigh) THEN (Bcl2 IS Low)
IF (PKA IS High) THEN (Bcl2 IS Medium)
IF (PKA IS Low) THEN (Bcl2 IS High)

BCN1

IF (Bcl2 IS Low) THEN (BCN1 IS High)
IF (Bcl2 IS High) THEN (BCN1 IS Low)
IF (Bcl2 IS Medium) THEN (BCN1 IS Medium)
IF (DAPK IS High) THEN (BCN1 IS VeryHigh)
IF (DAPK IS Low) THEN (BCN1 IS Low)

Calcium
IF (UPR IS Low) THEN (Calcium IS Low)
IF (UPR IS Medium) THEN (Calcium IS Medium)
IF (UPR IS High) THEN (Calcium IS High)

Continued on next page
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Continued from previous page
Variable Fuzzy rules

Caspase3

IF (ATP IS Low) THEN (Caspase3 IS High)
IF (ATP IS High) THEN (Caspase3 IS Low)
IF (ATP IS Medium) THEN (Caspase3 IS Low)
IF (ROS IS Low) THEN (Caspase3 IS Low)
IF (ROS IS Medium) THEN (Caspase3 IS Low)
IF (Calcium IS Medium) THEN (Caspase3 IS Low)
IF (Calcium IS Low) THEN (Caspase3 IS Low)
IF (ERK IS High) THEN (Caspase3 IS Low)
IF (Bcl2 IS High) THEN (Caspase3 IS Low)
IF (DeltaPsi IS High) THEN (Caspase3 IS Low)
IF (ATP IS Very-Low) AND (ROS IS High) THEN (Caspase3 is Low)
IF (ATP IS Very-Low) AND (Calcium IS High) THEN (Caspase3 is Low)
IF (ATP IS Very-Low) AND (Bcl2 IS Low) THEN (Caspase3 is Low)
IF (ATP IS Very-Low) AND (DeltaPsi IS Low) THEN (Caspase3 is Low)
IF (ATP IS Low) AND (ROS IS High) THEN (Caspase3 is High)
IF (ATP IS Medium) AND (ROS IS High) THEN (Caspase3 is High)
IF (ATP IS High) AND (ROS IS High) THEN (Caspase3 is High)
IF (ATP IS Low) AND (Calcium IS High) THEN (Caspase3 is High)
IF (ATP IS Medium) AND (Calcium IS High) THEN (Caspase3 is High)
IF (ATP IS High) AND (Calcium IS High) THEN (Caspase3 is High)
IF (ATP IS Low) AND (Bcl2 IS Low) THEN (Caspase3 is High)
IF (ATP IS Medium) AND (Bcl2 IS Low) THEN (Caspase3 is High)
IF (ATP IS High) AND (Bcl2 IS Low) THEN (Caspase3 is High)
IF (ATP IS Low) AND (DeltaPsi IS Low) THEN (Caspase3 is High)
IF (ATP IS Medium) AND (DeltaPsi IS Low) THEN (Caspase3 is High)
IF (ATP IS High) AND (DeltaPsi IS Low) THEN (Caspase3 is High)
IF (ATP IS Very-Low) AND (Bcl2 IS Medium) THEN (Caspase3 is Low)
IF (ATP IS Low) AND (Bcl2 IS Medium) THEN (Caspase3 is Medium)
IF (ATP IS Medium) AND (Bcl2 IS Medium) THEN (Caspase3 is
Medium)
IF (ATP IS High) AND (Bcl2 IS Medium) THEN (Caspase3 is Medium)
IF (ATP IS Very-Low) THEN (Caspase3 is Low)
IF (ERK IS Low) THEN (Caspase3 IS Medium)

CHOP
IF (UPR IS Low) THEN (CHOP IS Low)
IF (UPR IS Medium) THEN (CHOP IS Medium)
IF (UPR IS High) THEN (CHOP IS High)

Continued on next page
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ComplexI

IF (PKA IS Low) THEN (ComplexI IS Medium-functional)
IF (PKA IS High) AND (Glycolysis IS High) THEN (ComplexI IS More-
functional)
IF (PKA IS High) AND (Glycolysis IS Medium) THEN (ComplexI IS
More-functional)
IF (PKA IS Low) AND (Glycolysis IS High) THEN (ComplexI IS
Medium-functional)
IF (PKA IS Low) AND (Glycolysis IS Medium) THEN (ComplexI IS
Medium-functional)
IF (PKA IS High) AND (Glycolysis IS Low) THEN (ComplexI IS More-
functional)
IF (PKA IS Low) AND (Glycolysis IS Low) THEN (ComplexI IS Less-
functional)

DAPK

IF (SRC IS High) THEN (DAPK IS Low)
IF (Calcium IS Low) THEN (DAPK IS Low)
IF (ERK IS High) THEN (DAPK IS Low)
IF (SRC IS Low) THEN (DAPK IS High)
IF (Calcium IS High) THEN (DAPK IS High)
IF (Calcium IS Medium) THEN (DAPK IS High)
IF (ERK IS Low) THEN (DAPK IS High)

DeltaPsi

IF (Glycolysis IS Medium) THEN (DeltaPsi IS High)
IF (Glycolysis IS Low) THEN (DeltaPsi IS Low)
IF (ComplexI IS More-functional) THEN (DeltaPsi IS High)
IF (ComplexI IS Medium-functional) THEN (DeltaPsi IS High)
IF (Calcium IS Low) THEN (DeltaPsi IS High)
IF (Bcl2 IS High) THEN (DeltaPsi IS High)
IF (Glycolysis IS High) AND (ComplexI IS Less-functional) THEN
(DeltaPsi IS High)
IF (Glycolysis IS High) AND (Calcium IS High) THEN (DeltaPsi IS
High)
IF (Glycolysis IS High) AND (Calcium IS Medium) THEN (DeltaPsi IS
High)
IF (Glycolysis IS High) AND (Bcl2 IS Low) THEN (DeltaPsi IS High)
IF (Glycolysis IS Medium) AND (ComplexI IS Less-functional) THEN
(DeltaPsi IS Low)
IF (Glycolysis IS Low) AND (ComplexI IS Less-functional) THEN
(DeltaPsi IS Low)
IF (Glycolysis IS Medium) AND (Calcium IS High) THEN (DeltaPsi IS
Low)

Continued on next page
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DeltaPsi

IF (Glycolysis IS Medium) AND (Calcium IS Medium) THEN (DeltaPsi
IS Low)
IF (Glycolysis IS Low) AND (Calcium IS High) THEN (DeltaPsi IS Low)
IF (Glycolysis IS Low) AND (Calcium IS Medium) THEN (DeltaPsi IS
Low)
IF (Glycolysis IS Medium) AND (Bcl2 IS Low) THEN (DeltaPsi IS Low)
IF (Glycolysis IS Low) AND (Bcl2 IS Low) THEN (DeltaPsi IS Low)
IF (Bcl2 IS Medium) THEN (DeltaPsi IS Low)
IF (Glycolysis IS High) THEN (DeltaPsi IS High)

ERK

IF (SRC IS High) THEN (ERK IS High)
IF (RAS-GTP IS On) AND (SRC IS Low) THEN (ERK IS High)
IF (RAS-GTP IS On) AND (DAPK IS High) THEN (ERK IS High)
IF (RAS-GTP IS Off) AND (SRC IS Low) THEN (ERK IS Low)
IF (RAS-GTP IS Off) AND (DAPK IS High) THEN (ERK IS Low)
IF (RAS-GTP IS On) THEN (ERK IS High)
IF (DAPK IS Low) THEN (ERK IS High)
IF (RAS-GTP IS Off) AND (SRC IS High) THEN (ERK IS High)
IF (RAS-GTP IS Off) AND (DAPK IS Low) THEN (ERK IS High)

Glycolysis
IF (Glucose IS High) THEN (Glycolysis IS High)
IF (Glucose IS Medium) THEN (Glycolysis IS Medium)
IF (Glucose IS Low) THEN (Glycolysis IS Low)

HBP

IF (Glucose IS High) AND (Autophagy IS Low) THEN (HBP IS High)
IF (Glucose IS High) AND (Autophagy IS Medium) THEN (HBP IS
High)
IF (Glucose IS High) AND (Autophagy IS High) THEN (HBP IS High)
IF (Glucose IS Medium) AND (Autophagy IS Low) THEN (HBP IS
Medium)
IF (Glucose IS Medium) AND (Autophagy IS Medium) THEN (HBP IS
Medium)
IF (Glucose IS Medium) AND (Autophagy IS High) THEN (HBP IS
High)
IF (Glucose IS Low) AND (Autophagy IS Low) THEN (HBP IS Low)
IF (Glucose IS Low) AND (Autophagy IS Medium) THEN (HBP IS
Medium)
IF (Glucose IS Low) AND (Autophagy IS High) THEN (HBP IS High)

JNK
IF (UPR IS High) THEN (JNK IS High)
IF (UPR IS Medium) THEN (JNK IS High)
IF (UPR IS Low) THEN (JNK IS Low)

Continued on next page
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Necrosis

IF (Bcl2 IS High) THEN (Necrosis IS Low)
IF (Bcl2 IS Medium) THEN (Necrosis IS Low)
IF (ATP IS Very-Low) THEN (Necrosis IS High)
IF (ATP IS Low) THEN (Necrosis IS Low)
IF (ATP IS Medium) THEN (Necrosis IS Low)
IF (ROS IS Medium) THEN (Necrosis IS Low)
IF (ROS IS Low) THEN (Necrosis IS Low)
IF (ATP IS High) AND (Bcl2 IS Low) THEN (Necrosis is Low)
IF (ATP IS High) AND (ROS IS High) THEN (Necrosis is Low)
IF (ATP IS Very-Low) AND (Bcl2 IS Low) THEN (Necrosis is High)
IF (ATP IS Low) AND (Bcl2 IS Low) THEN (Necrosis is High)
IF (ATP IS Medium) AND (Bcl2 IS Low) THEN (Necrosis is High)
IF (ATP IS Very-Low) AND (ROS IS High) THEN (Necrosis is High)
IF (ATP IS Low) AND (ROS IS High) THEN (Necrosis is High)
IF (ATP IS Medium) AND (ROS IS High) THEN (Necrosis is High)
IF (ATP IS High) THEN (Necrosis is Low)

N-glyco-
sylation

IF (HBP IS High) THEN (N-glycosylation IS High)
IF (HBP IS Medium) THEN (N-glycosylation IS Medium)
IF (HBP IS Low) THEN (N-glycosylation IS Low)
IF (ATP IS High) THEN (N-glycosylation IS High)
IF (ATP IS Medium) THEN (N-glycosylation IS High)
IF (ATP IS Low) THEN (N-glycosylation IS Medium)
IF (ATP IS VeryLow) THEN (N-glycosylation IS Low)

ROS

IF (ComplexI IS Less-functional) THEN (ROS IS High)
IF (ComplexI IS Medium-functional) THEN (ROS IS Medium)
IF (ComplexI IS More-functional) THEN (ROS IS Low)
IF (DeltaPsi IS Low) THEN (ROS IS High)
IF (DeltaPsi IS High) THEN (ROS IS Medium)

SRC

IF (Attachment IS Low) THEN (SRC IS Low)
IF (Attachment IS High) THEN (SRC IS High)
IF (PKA IS High) THEN (SRC IS High)
IF (PKA IS Low) THEN (SRC IS Low)
IF (PKA IS High) AND (Attachment IS Low) THEN (SRC IS High)

Continued on next page
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Survival

IF (DeltaPsi IS Low) THEN (Survival IS Low)
IF (DeltaPsi IS High) THEN (Survival IS High)
IF (Caspase3 IS High) THEN (Survival IS Low)
IF (Caspase3 IS Low) THEN (Survival IS High)
IF (Caspase3 IS Medium) THEN (Survival IS Low)
IF (ATP IS Very-Low) THEN (Survival IS Low)
IF (ATP IS Low) THEN (Survival IS Low)
IF (ATP IS Medium) THEN (Survival IS High)
IF (ATP IS High) THEN (Survival IS High)
IF (Autophagy IS Medium) THEN (Survival IS High)
IF (Autophagy IS High) THEN (Survival IS High)
IF (Autophagy IS Low) THEN (Survival IS Low)

UPR

IF (N-glycosylation IS High) THEN (UPR IS Low)
IF (N-glycosylation IS Medium) THEN (UPR IS Medium)
IF (N-glycosylation IS Low) THEN (UPR IS High)
IF (ATP IS High) THEN (UPR IS Low)
IF (ATP IS Medium) THEN (UPR IS Low)
IF (ATP IS Low) THEN (UPR IS Medium)
IF (ATP IS Very-Low) THEN (UPR IS High)
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Experimental methods

The laboratory experiments presented in this work were carried out by R. Palorini,
G. Votta, F. Ricciardiello, H. De Vitto and F. Chiaradonna, Department of Biotechnol-
ogy and Biosciences, University of Milano-Bicocca, Milano, Italy.

Compounds. All chemicals and inhibitors were purchased from Sigma-Aldrich,
except for Thapsigargin (Vinci-Biochem, Firenze, Italy), H89 (AdipoGen Life Sci-
ences, San Diego CA, USA) and Piericidin A (Enzo Life Sciences).

Flow cytometric analyses. All flow cytometric analyses were performed using a
FACScan flow cytometer (Becton-Dickinson, Franklin Lakes, NJ, USA) with Cel-
lQuest software (Becton-Dickinson). Propidium Iodide (PI)/Annexin V-FITC stain-
ing was performed using Apoptosis assay kit from Immunological Sciences. In par-
ticular, 10× 105 cells were collected in 50 µL of binding buffer and stained with 1 µL
of Annexin V-FITC and 1 µL of PI, for 15 minutes at room temperature (RT). After
the incubation, samples were diluted in an appropriate volume of binding buffer (10
mM HEPES/NaOH pH 7.4, 140 mM NaCl, 2.5 mM CaCl2) and analyzed. To deter-
mine the intracellular Ca2+ concentration, 10× 105 cells were suspended in HBSS,
incubated at 37° C for 10 minutes with 0.4 µM Fluo-4-AM (Thermo Fisher Scientific),
washed with HBSS, and thus analyzed.

Confocal microscopy. 1× 105 cells/well were seeded onto clean glass slides (Knit-
tel glass) lodged in six-well plates and incubated according to the described proto-
col. For detection of cell surface expression of N-linked glycoproteins, cells were
stained with 5 µg/mL P. vulgaris (PHA-L), Alexa Fluor 488 conjugate lectin for 1
hour. After washing, the coverslips were fixed with 1% paraformaldehyde for 10
minutes RT, incubated with Dapi 2 mg/ml for 2 minutes at RT and mounted with
Dabco antifading reagent (Sigma-Aldrich). Cells were examined under a A1R Nikon
laser scanning fluorescence confocal microscope at a magnification of 63× to obtain
a minimum of 5 frames per field. Collected fluorescence emission was quantified
using NIS-Elements AR analysis 4.10.00 software by Nikon. To measure the fluores-
cence of the region of interest, centred on the cell membrane, each cell in the field
was considered as a separate event whose intensity fluorescence is put in mean with
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all events captured for the sample and reported in graph. Data presented are the
means of results from five independent experiments performed in duplicate with a
minimum of 15 spots per sample observed.

Adhesion assays. For attachment assays, after a treatment of 24 hours 1× 105 cell-
s/sample were washed, resuspended in DMEM 0.5% serum, seeded and allowed to
adhere for 1 hour at 37° C in 12-well plates coated overnight at 4° C with 0.1% heat-
denatured BSA. Non-adherent cells were then removed by gentle washing with PBS
containing Ca2+ and Mg2+ (Euroclone), whereas adherent cells were trypsinized
and counted.

Western blot analysis. Cells were harvested and disrupted in a buffer containing
50 mM HEPES pH 7.5, 150 mM NaCl, 1% (v/v) glycerol; 1% (w/v) Triton X-100,
1.5 mM MgCl2, 5 mM EGTA, protease inhibitor cocktail (Sigma-Aldrich) and phos-
phatase inhibitors (Sigma-Aldrich). 10 to 30 µg of total protein were resolved by
SDS-PAGE and transferred to the nitrocellulose membrane, which was incubated
overnight with specific antibodies: vinculin (#sc-5573, 1:10000), Eif2α (#sc-133227,
1:1000) from Santa Cruz Biotechnology Inc.; cleaved caspase 3 (#9662, 1:500), LC3
(#2775, 1:1000) from Cell Signaling Technology Inc.; HGMB1 (antibody ab18256 from
Abcam, 1:1000) was detected in the media of the cells.

Transcriptome analysis. Microarray transcriptional profiling of NIH3T3 K-ras cells
grown along a time course of 72 hours in HG and LG (NCBI GEO database accession
from GSM741368 to GSM741375 for NIH3T3 K-ras cells) were analyzed as described
in [136, 166] in order to identify differentially expressed genes (DEGs) associated to
specific cell processes. Gene expression data were analyzed by using several tools
present in the DAVID bioinformatics database and literature searches.

Quantification and statistical analysis. Unless otherwise specified, all results pre-
sented as averages are shown as mean ± s.d. from three or more independent ex-
periments. Statistical significance (*p<0.05; **p<0.01; ***p<0.001) was determined
using a two-tailed Student’s t-test. P-values < 0.05 were used as the cut-off for sta-
tistical significance.
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Appendix B. Experimental methods
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FIGURE B.1: Experimental schemes used for the biological validation of the DFM.
In all experiments the medium change was performed 18 hours after cell seeding,
using medium HG (25 or 5 mM glucose) or LG (1 mM glucose). Independently
from the time and scheme of the treatments, the concentrations of the compounds
were the following: aza 1-50 µM (1 µM in (d)), tuni 10-100 ng/mL (50 ng/mL in
(d)), ATP 100 µM, GlcNac 10 mM, rot 10 nM, pier 20 nM, FSK 10 µM, H89 5 µM,
thap 10 nM, CQ 10 or 20 µM. Different analyses were performed at 24, 48 or 72
hours after the medium change or the first treatment, as indicated in the schemes.
The viable cell count with Trypan Blue was used to calculate the percentage of cell

death in the cell population.
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Appendix C

Original Ras/cAMP/PKA
mechanistic model

TABLE C.1: Molecular amounts of the species occurring in the initial state of the
Ras/cAMP/PKA mechanistic model

Molecular species Copy number (molecules/cell)

Cyr1 200

Cdc25 300

Ira2 200

Pde1 1,400

PKA 2,500

PPA2 4,000

Pde2 6,500

Ras2-GDP 20,000

GDP ∗1.5× 106

GTP ∗5.0× 106

ATP ∗2.4× 107

*Amounts kept constant during the execution of simulations
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Appendix C. Original Ras/cAMP/PKA mechanistic model

TABLE C.2: Reactions of the Ras/cAMP/PKA mechanistic model

Reaction Stochastic constant
P1 Ras2-GDP + Cdc25→ Ras2-GDP-Cdc25 1.0
P2 Ras2-GDP-Cdc25→ Ras2-GDP + Cdc25 1.0
P3 Ras2-GDP-Cdc25→ Ras2-Cdc25 + GDP 1.5
P4 Ras2-Cdc25 + GDP→ Ras2-GDP-Cdc25 1.0
P5 Ras2-Cdc25 + GTP→ Ras2-GTP-Cdc25 1.0
P6 Ras2-GTP-Cdc25→ Ras2-Cdc25 + GTP 1.0
P7 Ras2-GTP-Cdc25→ Ras2-GTP + Cdc25 1.0
P8 Ras2-GTP + Cdc25→ Ras2-GTP-Cdc25 1.0
P9 Ras2-GTP + Ira2→ Ras2-GTP-Ira2 ∗1.0× 10−2

P10 Ras2-GTP-Ira2→ Ras2-GDP + Ira2 ∗2.5× 10−1

P11 Ras2-GTP + Cyr1→ Ras2-GTP-Cyr1 1.0× 10−3

P12 Ras2-GTP-Cyr1 + ATP→ Ras2-GTP-Cyr1 + cAMP 2.1× 10−6

P13 Ras2-GTP-Cyr1 + Ira2→ Ras2-GDP + Cyr1 + Ira2 1.0× 10−3

P14 cAMP + PKA→ cAMP-PKA 1.0× 10−5

P15 cAMP + cAMP-PKA→ (2cAMP)-PKA 1.0× 10−5

P16 cAMP + (2cAMP)-PKA→(3cAMP)-PKA 1.0× 10−5

P17 cAMP + (3cAMP)-PKA→ (4cAMP)-PKA 1.0× 10−5

P18 (4cAMP)-PKA→ cAMP + (3cAMP)-PKA 1.0× 10−1

P19 (3cAMP)-PKA→ cAMP + (2cAMP)-PKA 1.0× 10−1

P20 (2cAMP)-PKA→ cAMP + cAMP-PKA 1.0× 10−1

P21 cAMP-PKA→ cAMP + PKA 1.0× 10−1

P22 (4cAMP)-PKA→ C + C + R-2cAMP + R-2cAMP 1.0
P23 R-2cAMP→ R + cAMP + cAMP 1.0
P24 R + C→ R-C 7.5× 10−1

P25 R-C + R-C→ PKA 1.0
P26 C + Pde1→ C + Pde1p 1.0× 10−6

P27 cAMP + Pde1p→cAMP-Pde1p 1.0× 10−1

P28 cAMP-Pde1p→ cAMP + Pde1p 1.0× 10−1

P29 cAMP-Pde1p→ AMP + Pde1p 7.5
P30 Pde1p + PPA2→ Pde1 + PPA2 1.0× 10−4

P31 cAMP + Pde2→ cAMP-Pde2 1.0× 10−4

P32 cAMP-Pde2→ cAMP + Pde2 1.0
P33 cAMP-Pde2→ AMP + Pde2 1.7
P34 C + Cdc25→ C + Cdc25p 1.0
P35 Cdc25p + PPA2→ Cdc25 + PPA2 1.0× 10−2

P36 Ira2 + C→ Ira2p + C 1.0× 10−3

P37 Ras2-GTP + Ira2p→ Ras2-GTP-Ira2p 1.25
P38 Ras2-GTP-Ira2p→ Ras2-GDP + Ira2p 2.5
P39 Ira2p→ Ira2 10.0

*The constants of reactions P9 and P10 are changed to 3.0× 10−2 and 7.0× 10−1, respectively, when
reactions P36, . . . , P39 are not active, that is, when the negative feedback of PKA on Ira2 is switched off
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