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Abstract.
Several issues in transferring AI results in crowd modeling and simulation are due to the fact that control applications are

aimed achieving optimal solutions, whereas simulations have to deal with the notions of plausibility and validity. The latter
requires empirical evidences that, for some specific phenomena, are still scarce and hard to acquire. To face this issue, the present
work presents an investigation on the route choice decisions of pedestrians, by producing empirical evidences with an experiment
executed in a controlled setting. The experiment involves human participants facing a relatively simple choice among different
paths (i.e. choose one of two available gateways leading to the same target area) in which, however, they face a trade-off situation
between length of the trajectory to be covered and estimated travel time, considering the level of congestion in the different
paths. The data achieved with the experiment are used to design and evaluate a general simulation model for pedestrian route
choice. The proposed model firstly considers the fact that other pedestrians are generally perceived as repulsive and that choice
of route is generally aimed at avoiding congestion (as for proxemics theory). On the other hand, we also introduce an additional
mechanism due to the conjecture that the decision of a pedestrian to reconsider the adopted path is a locally perceivable event
that is able to trigger a similar reconsideration by nearby pedestrians, that can imitate the former one. The model is experimented
and evaluated in the experiment scenario, for calibration and validation, as well as in a larger scale environment, for exploring
the implications of the modeling choices in a more complex situation.
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1. Introduction

The simulation of pedestrians’ and crowd move-
ment in spatial structures is an established and al-
ready successful application of the domain of complex
system simulation, widely dealt with the multi-agent
paradigm [27]. Nonetheless, many open challenges are
still present and new ones are emerging for researchers
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in different fields and disciplines: both the automated
analysis and the synthesis of pedestrian and crowd be-
havior, as well as attempts to integrate these comple-
mentary activities [35], present issues and potential de-
velopments in a smart environment perspective [31].
Although the currently available commercial tools are
used on a day-to-day basis by designers and planners,
according to a report commissioned by the Cabinet Of-
fice [6] there is still room for innovations in models,
to improve their effectiveness in modeling pedestrians
and crowd phenomena, their expressiveness (i.e. sim-
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plifying the modeling activity or introducing the pos-
sibility of representing phenomena that were still not
considered by existing approaches) and efficiency.

Even if we only consider choices and actions related
to walking, modeling human decision making activi-
ties and actions is a complicated task: different types
of decisions are taken at different levels of abstrac-
tion, from path planning to the regulation of distance
from other pedestrians and obstacles present in the en-
vironment. Models producing interesting results in rel-
atively small scale situations such as the crossing of
corridors or bends, the evacuation from a room, might
have difficulties in scaling to situations in which agents
associated to pedestrians are not simply required to
perform locomotion level activities, regulating their
distance from obstacles and other pedestrian while pur-
suing a predefined destination. Choosing among dif-
ferent alternative routes, abstracting away from details
of low level locomotion, implies considering cogni-
tive level aspects such as the knowledge of the envi-
ronment by the pedestrians, but also their preference
with respect to the length of the covered trajectory, the
possibility to maintain a certain walking speed or to
avoid congestions. Moreover, the measure of success
and validity of a model is definitely not the optimality
with respect to some cost function, as (for instance) in
robotics, but the plausibility, the adherence of the sim-
ulation results to data that can be acquired by means of
observations or experiments.

The present research effort is aimed at producing in-
sights on this aspect: an experiment involving pedes-
trians has been set up to investigate to which ex-
tent pedestrians facing a relatively simple choice (i.e.
choose one of two available gateways leading to the
same target area) in which, however, they can face a
trade-off situation between length of the trajectory to
be covered and estimated travel time. The closest gate-
way, in fact, is initially selected by most pedestrians
but it is too narrow to allow a smooth passage of so
many pedestrians, becoming increasingly congested.
The other choice can therefore become much more rea-
sonable, allowing a higher average walking speed and
comparable travel time. Modeling this kind of choices
with current approaches can be problematic.

The present work represents a step in the direction
of both producing empirical evidences to fill this gap
and producing a general model fitting the achieved
ground truth. In particular, after a discussion of rele-
vant related works, Section 3 will introduce an exper-
iment in which pedestrians were forced to take a de-
cision involving a trade-off between length of the tra-

jectory to be covered and the estimated travel time,
due to increasing congestion in one of the passages
to be selected to reach the final target of the move-
ment. Results of the experiment will be presented and
discussed, and they represent the starting point for an
analysis of different alternatives for modeling and sim-
ulating this kind of scenario, which will be illustrated
in Section 4. Conclusions and future works will end
the paper.

2. Related Works

The inclusion in simulation models of decisions
related to trade off scenarios, such as the one be-
tween overall trajectory length and presumed travel
time (considering congestion in perceived alternative
gateways), represent an issue in current modeling ap-
proaches.

Commercial instruments, for instance, mostly pro-
vide basic tools to the modelers, that are enabled and
required to specify how the population of pedestri-
ans will behave: this implies that the operator con-
structing the simulation model needs to specify how
the pedestrians will generally choose their trajectory,
by means of annotation of the actual spatial struc-
ture of the simulated environment through landmarks
representing intermediate or final destinations (some
relevant work [20] explored the possibility to auto-
matically generate the intermediate destinations). The
choice of paths does not necessarily have to follow the
so called “least effort principle”, which suggests that
pedestrians generally try to follow the (spatially) short-
est path toward their destination. Space, in fact, rep-
resents just one of the relevant aspects in this kind of
choice: since most pedestrians will generally try to fol-
low these “best paths” congestion can arise and pedes-
trians can be pushed to make choices that would be
sub–optimal, from the perspective of traveled distance.

Recent works in the area of pedestrian and crowd
simulation began to investigate this aspect. In partic-
ular, Wagoum et al.[36] explored the implications of
four different strategies for the management of route
choice operations, through the combination of apply-
ing the shortest or quickest path, with a local (i.e., min-
imize time to vacate the room) or global (i.e., minimize
overall travel time) strategies. Guo and Huang [13]
proposed the modification of the floor-field Cellu-
lar Automata [4] approach for considering pedestrian
choices not based on the shortest distance criterion but
also considering the impact of congestion on travel
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time. This model is used to simulate a situation of
evacuation. The dynamics in case of evacuation is dif-
ferent from a standard situation due to the faster-is-
lower effect [28]: while the desired velocity of peo-
ple increases, the delays generated by cloggings at bot-
tlenecks becomes more significant and the evacuation
times gets higher. Guo and Huang [12] proposed an ex-
tension of the floor field model [4] for the simulation
of evacuation situation, introducing parameters to deal
with pushing and bumping forces arising for the rush
of people (another work by Henein and White [17]
has analogous aims and methods). This model has
been later extended in [14] to simulate route choice in
case of evacuation and reproduce the observed data of
an experiment. The work of Liu et al. [24] discusses
the results of an experiment about the evacuation of
a classroom with two exits, proposing a cellular au-
tomata model for its simulation and comparing the re-
sults. Tang et al. [33] further investigates the evacu-
ation of two exits classroom, proposing a differentia-
tion between rational behavior, mainly aimed to opti-
mize the own travel time, and irrational one, attracted
by the choices of other people and leading to higher
evacuation times. Results of the above works are not
conclusive: shortest path is not necessarily the adopted
criterion for path planning, which can be reasonable in
case of congestion, but pedestrians are generally not
even making optimal choices, individually and glob-
ally (see, e.g., [9]).

Iterative approaches, borrowing models and even
tools from vehicular transportation simulation, are
aimed at the simulation of ordinary situation and pro-
pose to adopt a more coarse grained representation of
the environment, i.e. a graph in which nodes are as-
sociated to intersections among road sections, but the
process can be also adopted in buildings and pedes-
trian environments [8,20]. In this kind of scenario,
pedestrians can start by adopting shortest paths on a
first round of simulation: as suggested before, the fact
that all pedestrians take the best path generally leads
to congestion and sub-optimal travel times. Some se-
lected pedestrians, especially those whose actual travel
time differs significantly from the planned one, will
change their planned path and a new simulation round
will take place. The iteration of this process will lead
to an equilibrium or even to system optimum, accord-
ing to the adopted travel cost function [21]. This it-
erative scheme has also been employed in multi-scale
modeling approaches [9,22]. It must be stressted that,
unlike game theoretic studies like a recent work by
Gatti et al. [11], this kind of work is not aimed at prov-

ing properties of the overall system, solution concepts,
equilibria characterization, or overall learning dynam-
ics, but rather at providing practical tools to study spe-
cific complex pedestrians and crowd management sit-
uations.

The above approach naturally leads to consider that
this kind of problem has been paid considerable at-
tention in the field of Artificial Intelligence, in par-
ticular by the planning community. Hierarchical plan-
ning [30] approaches, in particular, provide an elegant
and effective framework in which high level abstract
tasks can be decomposed into low level activities. De-
spite the fact that the formulation of the approach date
to the seventies, it is still widely considered and em-
ployed in the close area of computer graphics [18], in
which actions of virtual pedestrians are planned with
the aim of being visually plausible and decided within
real-time constraints. Within this framework, also is-
sues related to the reconsideration of choices and plans
were analyzed, mostly within the robotics area [23]. In
the pedestrian simulation context, one could consider
that microscopic decisions on the steps to be taken can
follow a high-level definition of a sequence of inter-
mediate destinations to be reached by the pedestrian.
This kind of approach, which we experimentally in-
vestigated in [10], also allows exploiting already ex-
isting models dealing with low level aspects of pedes-
trian actions and perceptions [2]. The latter resembles
an approach to trajectory planning devised in the area
of robotics [19]: the environment in which robots are
positioned and act is associated to a representation in
which the presence of robots themselves and other rel-
evant objects is associated to alterations in a field of
forces. The overall rationale of the approach is to move
the burden of computation from agents to the environ-
ment they are situated in [38]. In our approach, the en-
vironment is characterized by a set of discrete repre-
sentations comprising both static information, such as
the distance from each cell to relevant areas (creating a
sort of gradient enabling agent navigation towards that
region of interest), as well as dynamic information, for
instance the currently perceived density of pedestrian
in cells.

The main issues in transferring AI planning results
within this context of application, and more gener-
ally producing generally applicable contributions to
the field, are partly due to the above suggested fun-
damental difference between the measures of suc-
cess between simulation and control applications.
Whereas the latter are targeted at optimal solutions
(see, e.g., [26]), the former have to deal with the no-



4 L. Crociani et al. / Route Choice in Pedestrian Simulation

tions of plausibility and validity. Moreover, we are
specifically dealing with a complex system, in which
different and conflicting mechanisms are active at the
same time (e.g. proxemics [15] and imitative behav-
iors [16]). Finally, whereas recent extensive observa-
tions and analyses (see, e.g., [3]) produced extensive
data that can be used to validate simulations within
relatively simple scenarios (in which decisions are
limited to basic choices on the regulation of mutual
distances among other pedestrians while following
largely common and predefined paths like corridors
with unidirectional or bidirectional flows, corners, bot-
tlenecks), we still lack comprehensive data on way-
finding decisions, especially in relatively large scale
settings (e.g. large train stations).

This lack of knowledge has been in some cases over-
come by means of experiments, largely aimed at inves-
tigating evacuations situations in simple settings. The
work of Guo et al. [14] presents an experiment of evac-
uation from a classroom with a single exit, analyzing
the impact of absence of visibility. Liu et al. [24] pro-
posed an experiment of evacuation from a classroom
with two exits, with the aim to study the impact of con-
gestion and density on the route choice of the students.

The experiment presented in the next Section is
aimed at studying the effect of both congestion avoid-
ance and following behaviors and it proposes a dif-
ferent scenario consisting in two rooms connected by
up to 3 doors, where pedestrians are asked to pass
through. The authors do not want to consider it as
an evacuation experiment, since all participants have
been explicitly asked to not rush or push others during
their movement, thus it aims at investigating the route
choice in standard situations.

3. An Experiment to Understand Tactical
Decisions

The experiment has been performed at the Univer-
sity of Tokyo in November 2015. A group of 46 per-
sons has participated, uniformly composed of male
students aged around 20 years old. The setting has
been configured with the intention to acquire empiri-
cal evidences on the influence of crowding conditions
on route choice decisions. The setting is designed to
describe an elementary choice: it is characterized by
a rectangular environment of 7.2 × 12 m2 divided in
two areas of equal size; the access is regulated by
three gates positioned to create three paths of different

Fig. 1. Configuration of the setting for the experiment.

lengths. A schematic representation of the scenario is
illustrated in Figure 1.

The entrance and exits of the environment are
aligned on the x-axis, in order to generate a shortest
path (Patha) and to induce the decisions of the par-
ticipants. Table 1 describes the average lengths of the
three possible paths, calculated as the sum of distances
between the central points of the crossed openings.

The difference between Patha and Pathb is relatively
small (< 1 m) while Pathc is significantly longer than
the shortest path. These differences will be reflected on
the achieved results pointing out, as generally known,
that the main element influencing the route choice is
the distance. The two starting areas in the scenario
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Id Distance [m]

Patha 12.08

Pathb 12.85

Pathc 14.76
Table 1

Average distance of the three paths.

have been used individually one after the other, in or-
der to optimize the procedural times, on one hand, and
to test the potential influence of a mirror placement
of the gates, by reversing the flow direction in the en-
vironment. The openings related to Pathb and Pathc
were eventually closed to configure different proce-
dures. Each procedure has been repeated 4 times to
achieve a more consistent dataset. The procedures are
described in the following:

1. only Patha allowed;
2. Patha and Pathb allowed;
3. Patha and Pathc allowed;
4. all gates are open.

The procedure iterations have been performed with
a randomized schedule, to possibly avoid bias provided
by the learning of participants. Finally, to stimulate the
will to minimize the traveling time towards the destina-
tion, the participants have been asked to reach quickly
the opposite side of the setting.

3.1. Methodology for the Analysis

The experiment has been performed under an ar-
cade of the university buildings, due to weather con-
ditions. The lack of safe points to attach any camera
to the ceiling did not allow to have a zenithal perspec-
tive in the video recordings, which would be useful
for an automatic tracking. Hence, four HD cameras
positioned on tall tripods (5m circa) have been used
to record the experiment. The videos have been syn-
chronized by means of a global chronometer shown to
the cameras at the beginning of the recording. Since
the frame rate of the two cameras with the highest
resolution was slightly variable (a small number of
frames was skipped during the recording), some man-
ual adjustment has been done to the video synchroniza-
tion. This was possible by using visible events in the
overlapping areas of multiple camera views and also
by using the audio track of the videos. The software
AviSynth has been employed to achieve the synchro-
nization and merge the multiple video tracks. The re-
sults that will be presented in the following subsection

has been achieved by means of manual counting and
tracking.

3.2. Results and Discussion

The video footages of the performed experiments
did not allow us to perform a fine tracking of the ex-
act trajectories followed by the different pedestrians,
mainly due to the positioning of cameras. Nonetheless,
different types of analysis will be carried out to acquire
novel empirical evidences on pedestrian route choice
in presence of crowding conditions.

So far, we focused on two relatively simple analy-
sis that regarded: (i) the number of participants who
passed through each gate depending on the experimen-
tal procedure, and therefore on the level of congestion;
(ii) the time passed from the start signal of the staff
until the last person leaves the observed area, which
we denoted as completion time of the procedure. The
principal aim of the analysis was to verify if the ex-
perimental results supported the conjecture that pedes-
trians, when the perceived level of congestion makes
less appealing the shortest path, choose a longer trajec-
tory to preserve their walking speed. Additional anal-
yses will be carried out, within the limits posed by the
vantage point, as a consequence of the results of this
first round of integrated analysis and synthesis activi-
ties [35].

Table 2 shows the data achieved with the experi-
ment. As briefly introduced, procedure 2 and 3 are
characterized by a decision among two choices, the
shortest path and a longer one; in procedure 2 the
difference among the alternatives is quite small (i.e.
less than a meter, less than 10% of the shortest tra-
jectory, considering the middle point of the gates for
the measurement), whereas in procedure 3 the longer
trajectory is more significantly worse than the short-
est path (i.e. over 20% longer). Finally, procedure 4
allows pedestrians to choose among all three alterna-
tives. Nonetheless, intermediate gates are small (1 m)
but the evidence shown that they still allow the pas-
sage of two pedestrians almost at the same time. More-
over, the passage between the starting area and the re-
gion before the gates is relatively wide (2.4 m) and
here pedestrians are able to walk side by side; this im-
plies that some of them are naturally closer to the best
trajectory while for others the worst ones are not that
longer.

Results are in line with the conjecture that pedes-
trians would distribute among the alternative passages
in case of congestion. In fact, in procedure 2, almost
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half of the pedestrians chooses the slightly longest
path to avoid the congestion in the Eastern door and
to possibly preserve their desired speed: in average,
the completion time of procedures in which two pas-
sages are present (i.e. procedure 2 and 3) are at least
5 s lower than for procedure 1, meaning that this de-
cision allowed a higher flow throughout the environ-
ment. The fact that, in procedure 3, the longer alter-
native (Pathc) is more significantly worse than the
shortest path, makes this choice appealing to a slightly
lower number of pedestrians. On the other hand, this
did not lead to a significant impact on the average com-
pletion time, which is similar to the one of procedure 2.
Procedure 4, finally, shows that the Patha and Pathb
are perceived as almost equivalent, but a few pedestri-
ans even choose Pathc allowing to decrease the com-
pletion time of about half second on average: this also
suggests that, considering this crowding level, two pas-
sages are sufficient to grant a smooth flow of pedestri-
ans.

A few general qualitative considerations on all the
analyzed procedures can be done:

– pedestrians choosing longer paths (Pathb and
Pathc) generally enter the area before the gates
on the Western side;

– pedestrians choosing longer paths generally do so
after some preceding ones have perceivably cho-
sen the best path, and therefore can be considered
as potential future competitors either for the oc-
cupation of the gate or for the path leading to it;
this is particularly apparent for procedure 3 and
4;

– sometimes, when choosing the longer path (Pathc)
pedestrians seem to follow someone before them
that had chosen this trajectory before and, at the
same time, avoiding much closer pedestrians that
have perceivably chosen other shorter paths.

Figure 2 emphasizes these considerations by show-
ing 4 screen captures of the footage of one iteration of
the experiment. While these results are still quite ag-
gregated, they suggest that pedestrians consider the ex-
pected travel time rather than just the length of the tra-
jectory. Moreover, they also suggest that there might
be a form of behavioral implicit interaction [5], to
some extent reminding conflicting but simultaneously
present behavioral components of cohesion and sepa-
ration of the boids model [29]. In particular, the mod-
eling approach that will be introduced in the following
Section, will consider both the fact that other pedestri-
ans are generally perceived as repulsive (as for prox-

emics theory) but also the fact that the decision of a
pedestrian to detour (i.e. change a previous decision on
the path to be followed) is a locally perceivable event
that might trigger a similar reconsideration by nearby
pedestrians.

Procedure Patha Pathb Pathc Completion time [s]

1 46 0 0 24.29
46 0 0 24.35
46 0 0 24.33
46 0 0 24.25

Average 46 0 0 24.305

2 22 24 0 19.78
23 23 0 19.55
25 21 0 18.90
23 23 0 19.45

Average 23.25 22.75 0 19.42

3 27 0 19 19.81
28 0 18 19.61
30 0 16 19.18
27 0 19 19.64

Average 28 0 18 19.55

4 18 16 12 19.50
22 19 5 18.82
21 18 7 19.44
22 19 5 18.48

Average 20.75 18 7.25 19.06
Table 2

Number of people per path and completion times observed in the
experiment procedures.

4. A Model To Encompass the Pedestrian
Movement and Route Choice

This Section will propose a multi-agent model de-
signed for the simulation of pedestrian movement and
route choice behavior. The model of agent is composed
of two elements, respectively devoted to the low level
reproduction of the movement towards a target (i.e. the
operational level, considering a three level model de-
scribed in [25]) and to the decision making activities
related to the next destination to be pursued (i.e. the
route choice at the tactical level). The component de-
voted to the operational level behavior of the agent is
not extensively described since, for this purpose, the
model described in [2] has been applied. For a proper
understanding of the approaches and mechanisms that
will be defined at the tactical level, on the other hand,
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(a) 19 s (b) 21 s

(c) 23 s (d) 25 s

Fig. 2. Screenshots from the video of the camera positioned at the bottom part of the setting, related to one iteration of procedure 4. The behavior
qualitatively considered in this paper can be recognized in these images: at 19s of the video, the crowding of gates relative to Patha and Pathb

leads a first person to employ the Pathc. After 2 seconds, other students have taken the same decision, successively followed by some others.
In the last two pictures, a decision change is apparent: the last person entered the setting was firstly headed to the central gate, but after a short
while he noticed that the eastern gate (Patha) is getting empty again and thus he starts employing it.

a brief description on the representation of the envi-
ronment, with different levels of abstractions, is firstly
provided in this Section. More attention will then be
devoted to the introduction and discussion of the model
for the management of the route choice, which repre-
sents the main contribution of this paper.

4.1. The Representation of the Environment and the
Knowledge of Agents

The adopted agent environment [38] is discrete and
modeled with a rectangular grid of 40 cm sided square
cells. The size is chosen considering the average area
occupied by a pedestrian [37], and also respecting the
maximum densities usually observed in real scenarios.

The cells have a state that informs the agents about the
possibilities for movement: each one can be vacant or
occupied by obstacles or pedestrians (at most two, so
as to be able to manage locally high density situations).

To allow the configuration of a pedestrian simula-
tion scenario, several markers are defined with differ-
ent purposes. This set of objects has been introduced
to allow the movement at the operational level and the
reasoning at the tactical level, identifying intermediate
and final targets:

– start areas , places were pedestrians are gen-
erated: they contain information for pedestrian
generation both related to the type of pedestrians
and to the frequency of generation;
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– openings , sets of cells that divide, together
with the obstacles, the environment into regions.
These objects constitutes the decision elements
for the route choice;

– regions , markers that describe the type of
the region where they are located: with them it
is possible to design particular classes of regions
(e.g. stairs, ramps) and other areas that imply a
particular behavior of pedestrians;

– final destinations , the ultimate targets of
pedestrians;

– obstacles , non-walkable cells defining ob-
stacles and non-accessible areas.

An example of environment annotated with this set
of markers is proposed in Figure 3(b). This model uses
the floor fields approach [4], using the agents’ environ-
ment as a container of information for the management
of the interactions between entities. In this particular
model, discrete potentials are spread from cells of ob-
stacles and destinations, informing about distances to
these objects. The two types of floor fields are denoted
as path field, spread from openings and final destina-
tions (one per destination object), and obstacle field, a
unique field spread from all the cells marked as obsta-
cle. In addition, a dynamic floor field that has been de-
noted as proxemic field is used to reproduce a proxemic
behavior [15] in a repulsive sense, letting the agents
to maintain distances with other agents. This approach
generates a plausible navigation of the environment as
well as an anthropologically founded means of regu-
lating interpersonal distances among pedestrians.

This framework, on one hand, enables the agents to
have a position in the discrete environment and to per-
form movement towards a user configured final desti-
nation. On the other hand, the presence of intermediate
targets allows choices at the tactical level of the agent,
with the computation of a graph-like, topological, rep-
resentation of the walkable space, based on the con-
cept of cognitive map [34]. The method for the com-
putation of this environment abstraction has been de-
fined in [7] and it uses the information of the scenario
configuration, together with the floor fields associated
to openings and final destinations. In this way a data
structure for a complete knowledge of the environment
is pre-computed. Recent approaches explores also the
modeling of partial knowledge of the environment by
agents (e.g. [1]), but this aspect goes beyond the scope
of the current work. The cognitive map identifies re-
gions (e.g. a room) as nodes of the labeled graph and
openings as edges. An example of the data structure

associated to the sample scenario is illustrated in Fig-
ure 3(c). Overall the cognitive map allows the agents to
identify their topological position in the environment
and it constitutes a basis for the generation of an addi-
tional knowledge base, which will enable the reason-
ing for the route calculation.

This additional data structure has been called Paths
Tree and it contains the information about plausible
paths towards a final destination, starting from each re-
gion of the environment. The concept of plausibility
of a path is encoded in the algorithm for the compu-
tation of the tree, which is discussed in [10] and only
briefly described here. The procedure starts by defin-
ing the destination as the root of the tree and it recur-
sively adds child nodes, each of them mapped to an in-
termediate destination reachable in the region. Nodes
are added if the constraints describing the plausibility
of a path are satisfied: in this way, trajectories that im-
ply cycles or a not reasonable usage of the space (e.g.
passing inside a room to reach the exit of a corridor, as
illustrated in Figure 3(a)) are simply avoided.

The results of the computation is a tree whose nodes
are mapped to targets in the environment and each
edge refers to a particular path between two targets.
The root of the tree is mapped to a final destination,
while the underlying nodes are only mapped to open-
ings. Hence, each branch from the root to an arbitrary
node describes a minimal (i.e. plausible) path towards
the final destination associated to the tree. To complete
the information, each node n is labeled with the free
flow travel time1 associated to the path starting from
the center of the opening associated to n and passing
through the center of all openings mapped by the par-
ent nodes of n, until the final destination. In this way,
the agents knows the possible paths through the envi-
ronment and their respective estimated traveling times.

For the choice of their path, agents access the infor-
mation of a Paths Tree generated from a final destina-
tionEndwith the function Paths(R,End). Given the
regionR of the agent, the function returns a set of cou-
ples {(Pi, tti)}. Pi = {Ωk, . . . , End} is the ordered
set describing paths which start from Ωk, belonging to
Openings(R), and lead to End. tti is the associated
free flow travel time.

1The travel time that the agent can employ without encountering
any congestion in the path, thus moving at its free flow speed.
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(a) (b)

(c) (d)

Fig. 3. (a) An example of plausible (continuous line) and implausible (dashed) paths in a simple environment. (b) A simulation scenario with the
annotation tools introduced and its respective cognitive map (c) and shortest path tree (d).

4.2. The Route Choice Model of Agents

This aspect of the model is inspired by the behav-
iors observed in the experiment presented in Section 3.
The objective is to propose an approach that would en-
able agents to choose their path considering distances
as well as the evolution of the dynamics. At the same
time, the model must provide a sufficient variability of
the results (i.e. of the paths choices) and a calibration
over possible empirical data.

To understand the mechanisms designed in the
model, the discussion must start with an overview of
the agent life-cycle, illustrating which activity is per-
formed and in which order. The workflow of the agent,
encompassing the activities at operational and tacti-

cal level of behavior at each time-step, is illustrated in
Figure 4.

First of all, the agent performs a perception of its sit-
uation considering its knowledge of the environment,
aimed at understanding its position and the markers
perceivable from its region (e.g. intermediate targets).
At the very beginning of its life, the agent does not
have any information about the location, thus the first
assignment to execute is localization. This task anal-
yses the values of floor fields in its physical position
and infers the location in the Cognitive Map. Once the
agent knows the region where it is situated, it loads
the Paths Tree and evaluates possible paths towards its
final destination.

The evaluation has been designed with the concept
of path utility, assigned to each path to successively
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Fig. 4. The life-cycle of the agent, schematized among the two component of the agent architecture.

compute a probability to be chosen by the agent. The
probabilistic choice of the path outputs a new interme-
diate target of the agent, used to update the reference
to the floor field followed at the operational layer with
the local movement.

The scheme points out that the evaluation of the plan
is not only performed at the beginning of the simula-
tion. The wayfinding component is in fact activated at
the beginning of every step, yet the plan is reconsid-
ered only in two cases: (i) the agent has just entered
into a new region or (ii) the current way that the agent
is following has been perceived as congested.

The first case means that the agent enters in a new
region and it is able to perceive new information about
its current path and the possible alternatives, thus it
performs a new evaluation. In the second case, how-
ever, the evaluation is performed while reaching the in-
termediate target, if the path passing through this has
been perceived congested. Basically this implies that
until this congestion is perceived, the agents recon-
sider their decisions in favor of alternatives, thus as-
suming an uncertain behavior in case of having multi-
ple congested ways. To improve the dynamics in this
situations, an inertia mechanisms preserving the cur-
rent decision is introduced. This is managed by means

of two parameters, configuring two time intervals: a
short one (τshort), to use right after a new decision has
been taken, and a longer one (τlong), to be used if the
evaluation led again to the current or previously chosen
choice.

In particular, when an agent reconsiders the chosen
plan due to congestion and then chooses again the orig-
inal plan, then the choice will not be reconsidered be-
fore a longer period of time τlong. The rationale be-
hind this modeling choice is that the agent has tried
an alternative path, but eventually it turned out to be
less convenient than initially expected. Therefore the
agent will have some inertia and it will try to stand by
the original plan at least for τlong, limiting erratic forth
and back movements.

The utility-based approach fits well with the needs
to easily calibrate the model and to achieve a suffi-
cient variability of the results. The core functions of
the wayfinding model are Evaluate Paths and Choose
Paths, which will be now discussed.

4.2.1. The Utility and Choice of Paths
The function that computes the probability of choos-

ing a path is exponential with respect to the utility
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value associated to it. This is completely analogous to
the choice of movement at the operational layer:

Prob(P ) = N · eU(P ) (1)

The usage of the exponential function for the com-
putation of the probability of choosing a path P is a
good solution to emphasize the differences in the per-
ceived utility values of paths, limiting the choice of
relatively bad solutions (that in this case would lead
the agent to employ relatively long paths). U(P ) com-
prises the three observed components influencing the
route choice decision, which are aggregated with a
weighted sum:

U(P ) = κttEvaltt(P )−κqEvalq(P )+κfEvalf (P ) (2)

where the first element evaluates the expected travel
times; the second considers the queueing (crowding)
conditions through the considered path and the last one
introduces a positive influence of perceived choices of
nearby agents to pursue the associated path P (i.e. imi-
tation of emerging leaders). All the three functions pro-
vide values normalized within the range [0, 1], thus the
value of U(P ) is included in the range [−κq, κtt+κf ].

In theory, there is no best way to define these three
components: the usage of very simple functions as well
as complicated ones might provide the same quality to
the model. The only way to evaluate the reliability of
this model, in fact, is with a validation procedure over
some empirical knowledge. Hence, these three mech-
anisms have been designed with the main objective to
allow the calibration over empirical datasets, prefer-
ring the usage of simple functions where possible.

4.2.2. The Evaluation of Traveling Times
Building a function for the evaluation of traveling

times is a arduous task, despite the mere usage of the
traveling times information could be thought already
as a good solution. First of all, the information about
the travel time tti of a path Pi is derived from the Paths
Tree with Paths(R,End) (where End is the agent’s
final destination, used to select the appropriate Paths
Tree, and R is the region in which the agent is situated
and it is used to select the relevant path Pi in the Paths
Tree structure) and it is integrated with the free flow

travel time to reach the first opening Ωk described by
each path:

TravelTime(Pi) = tti +
PF Ωk

(x, y)

Speedd

(3)

where PF Ωk
(x, y) is the value of the path field as-

sociated to Ωk in the position (x, y) of the agent and
Speedd is the desired velocity of the agent, that can be
an arbitrary value ∈ R (see [2] for more details of this
aspect of the model).

Then, as just introduced, this travel time value could
be used as-it-is to design the cost of a path regarding
this component of the utility function:

Eval tt(P ) = −Ntt · TravelTime(P ) (4)

whereNtt is the normalization factor, i.e., 1 over the
sum of TravelTime(P ) for all paths. Hence, the great-
est the travel time, the closer the value of the func-
tion to -1 and the lower the utility for the choice of
that path (assuming κtt > 0). However, let us con-
sider a simple case in which the agent can choose be-
tween two doors relatively side-by-side, separated by a
small wall. The probability to choose each door should
change according to the position of the agent and the
target, making the choice of one door predominant in
cells from which its choice would imply a shorter tra-
jectory and producing a much less predictable behav-
ior in the area in which the choice of the door to fol-
low is less relevant (i.e. the alternative trajectories have
similar length), from the point of view of the length
of the trajectory. To represent and analyze this uncer-
tainty in the route choice, the concept of entropy heat
map has been introduced (see the Appendix for more
detail) and it is tested with a simplification of the large
scenario used for the experiment in the next Section:
for the moment, it is sufficient to say that there are four
starting areas connected to a large atrium by relatively
large corridors, whereas the atrium has a variable num-
ber of exits, used to explore the entropy landscape in
different situations.

Figure 5(a) illustrates the entropy over the space
of the setting with two gates leading to the outside
area, located in the upper part, achieved with calibra-
tion weights configured as κtt = 100, κq = 0, κf =
0 (only this component of the utility influences the
agents choice in this test). It is possible to see that the
choice from each cell of the environment seems to re-



12 L. Crociani et al. / Route Choice in Pedestrian Simulation

(a) (b)

(c) (d)

Fig. 5. Entropy maps relative to a benchmark scenario of the ones used in Section 5. The heat maps in (a) and (b) are generated with the Eq. 4,
while Eq. 5 is used for (c) and (d).

spect the desired behavior: very low entropy in the sur-
rounding of each door, high entropy in the space be-
tween them (the size of this area depends on κtt). Let
us now introduce a gate in a relatively far position from
the two considered so far, as shown in Figure 5(b).
Since the exit is this distant, it should not influence the
decisions in the portion of space close to the previous
two gates. As depicted in the entropy map, however, it
does have a noticeable impact. With this configuration
of Evaltt, the entropy values gets sensibly higher in
the part of the environment where the choice, before
the introduction of this additional path, was essentially
deterministic. This is due to the normalization element
Ntt of the travel time values, which smooths the dif-
ferences in the distance between the first two paths –
related to the closer doors– with the introduction of the

very long one. This means that this simple function is
not effective to model this component.

This problem has been avoided by using the min-
imum value of the traveling times over the possible
paths in the function as follows:

Eval tt(P ) = Ntt ·
min

Pi∈Paths(r)
(TravelTime(Pi))

TravelTime(P )
(5)

In this way the range of Eval tt is changed to (0,1],
being 1 for the path with minimum travel time and de-
creasing the higher the difference with this. As it is
shown in Figure 5(c) and 5(c), the introduction of an
additional but locally irrelevant path does not affect
anymore the probability distribution in the area sur-
rounding the close doors. In addition, a comparison
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between Figure 5(a) and 5(c) highlights that the new
equation did not make a sensible difference in the val-
ues of the simple case with two gates, thus Equation 5
is now suitable to model this utility component.

4.2.3. The Evaluation of Congestion
The behavior modeled in the agent in this model

considers congestion as a negative element for the
evaluation of the path. This does not completely reflect
the reality, since there could be people who could be
attracted by congested paths as well, showing a mere
following behavior. On the other hand, by acting on the
calibration of the parameter κq it is possible to define
different classes of agents with customized behaviors,
also considering attraction to congested paths with the
configuration of a negative value.

For the evaluation of this component of the route de-
cision making activity associated to a path P , a func-
tion is first introduced for denoting agents a′ that pre-
cede the evaluating agent a in the route towards the
opening Ω of a path P :

Forward(Ω, a) = |{a′ ∈ Ag\{a} : Dest(a′) = Ω ∧

PFΩ(Pos(a′)) < PFΩ(Pos(a))}|
(6)

where Pos and Dest indicates respectively the po-
sition and current destination of the agent; the fact
that PF Ω(Pos(a′)) < PF Ω(Pos(a)) assures that a′

is closer to Ω than a, due to the nature of floor fields.
Each agent is therefore able to perceive the main direc-
tion of the others (its current destination). This kind of
perception is plausible considering that only preceding
agents are counted, but we want to restrict its applica-
tion when agents are sufficiently close to the next pas-
sage (i.e. they perceive as important the choice of con-
tinuing to pursue that path or change it). To introduce a
way to calibrate this perception, the following function
and an additional parameter γ is introduced:

PerceiveForward(Ω, a) ={
Forward(Ω, a), if PFΩ(Pos(a)) < γ

0, otherwise

(7)

The function Evalq is finally defined with the nor-
malization of PerceiveForward values for all the
openings connecting the region of the agent:

Evalq(P ) =

N · PerceiveForward(FirstEl(P ),myself )

width(FirstEl(P ))

(8)

where FirstEl returns the first opening to cross of
a path, myself denotes the evaluating agent and width
scales the evaluation over the width of the door (larger
doors sustain higher flows).

4.2.4. Propagation of Choices - Following Behavior
This component of the decision making model aims

at representing the effect of an additional stimulus per-
ceived by the agents associated to sudden decision
changes of other persons that might have an influence.
An additional grid has been introduced to model this
kind of event, whose functioning is similar to the one
of a dynamic floor field. The grid, called ChoiceField,
is used to spread a gradient from the positions of agents
that, at a given time-step, change their plan due to the
perception of congestion.

The functioning of this field is described by two pa-
rameters ρc and τc, which defines the diffusion radius
and the time needed by the values to decay. The dif-
fusion of values from an agent a, choosing a new tar-
get Ω′, is performed in the cells c of the grid with
Dist(Pos(a), c) ≤ ρc with the following function:

Diffuse(c, a) =

{
1/Dist(Pos(a), c) if Pos(a) 6= c

1 otherwise
(9)

The diffused values persist in the ChoiceField grid
for τc simulation steps, then they are simply discarded.
The index of the target Ω′ is stored together with the
diffusion values, thus the grid contains in each cell a
vector of couples {(Ωm, diff Ωm

), . . . , (Ωn, diff Ωn
)},

describing the values of influence associated to each
opening of the region where the cell is situated. While
multiple neighbor agents changes their choices to-
wards the opening Ω′, the values of the diffusion are
summed up in the respective diff Ω′ . In addition, af-
ter having changed its decision, an agent spreads the
gradient in the grid for a configurable amount of time
steps represented by an additional parameter τa. In this
way it influences the choices of its neighbors for a cer-
tain amount of time.
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The existence of values diff Ωk
> 0 for some open-

ing Ωk implies that the agent is influenced in the eval-
uation phase by one of these openings, but the proba-
bility for which this influence is effective is, after all,
regulated by the utility weight κf . In case of having
multiple diff Ωk

> 0 in the same cell, a individual in-
fluence is chosen with a simple probability function
based on the normalized weights diff associated to the
cell. Hence, for an evaluation performed by an agent
a at time-step t, the utility component Evalf can be
equal to 1 only for one path P , between the paths hav-
ing diff Ωk

> 0 in the position of a.

5. Experimental Application

The evaluation of the model is discussed with two
simulation scenarios: (i) the simulation of the experi-
ment performed at the Tokyo university and (ii) a sim-
ulation of a larger scenario, with the aim of verifying
the behavior of the model in a real-world environment
and to perform a qualitative comparison of the results
with another wayfinding model from the literature.

All presented results have been achieved with the
calibration weights of the utility function configured as
Ωtt = 100,Ωq = 25; Ωf = 5, while the parameters re-
lated to the ChoiceF ield have been set to ρc = 1.2m,
τc = 0.5s and τd = 1s. The configuration of these pa-
rameters has been achieved after an exploratory work
on the calibration of the model, in which various abso-
lute values and proportions among the parameters have
been experimented with the aim to fit the range of the
empirical dataset. A more thorough sensitive analysis
and discussion of the effects of each parameter on the
simulation results is object of ongoing works.

In the first scenario a unique desired speed of agents
of 1.6 m/s has been configured, since all participants to
the experiment were young male students instructed to
move quickly. For the large scenario, instead, this kind
of homogeneity cannot be assumed (due to the large
number of simulated pedestrians), therefore a normal
distribution of desired speeds is generated, centered in
1.4 m/s and with standard deviation of 0.2 m/s, in ac-
cordance with the pedestrians speeds usually observed
in the real world (e.g. [39]). The distribution is dis-
cretized in classes of velocity, starting from 1.0 m/s
and with a maximum of 1.8 m/s, each 0.1 m/s wide
(see the blue boxes in Figure 8(c)). To allow a maxi-
mum speed of 1.8 m/s —considered plausible in this
outflow scenario— the time-step duration is assumed
to τ = 0.22s.

(a) 4 s

(b) 6 s

(c) 8 s

(d) 10 s

Fig. 6. Screenshots from the simulation of procedure 4 of the exper-
iment scenario described in Sec.3. The color of the agent identifies
their current destination. Their “tail” keeps trace of their previous
position.

5.1. Validation in the Experiment Scenario

Figure 6 shows some screenshots of a simulation run
(with procedure 4, i.e. all paths available), where the
scenario configuration is also displayed. A unique start
area has been configured for all the runs: at this point,
in fact, no mechanism has been introduced to induce
decisions on one particular direction (e.g. left or right
turn in case of conflict), thus the model is not reproduc-
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(a) Gate usage - procedure 2 (b) Gate usage - procedure 3

(c) Gate usage - procedure 4 (d) Completion times - all procedures

Fig. 7. Comparison of results between empirical data and simulations for each procedure, showing the counting of pedestrians passed through
each gate (a – c) and completion times (d).

ing any difference by inverting the direction of flow in
this environment. To configure the three procedures of
the experiment, center and right doors are eventually
filled with obstacles.

A set of 50 iterations are run for each procedure, to
exhaustively explore the variability of the results and
achieve a reliable average. In order to understand the
improvement achieved through the proposed approach
in the simulation results, an additional set of 50 iter-
ations is executed in the same scenario with a base-
line version of the model, not employing the wayfind-
ing functionality described in Section 4: this baseline
is essentially a floor-field model in which pedestrians
non-deterministically follow the least-effort principle,
mitigated by proxemic considerations but only on the

choice of the next cell to occupy. Within this set of ex-
periments, a unique floor field is spread out from the
cell of the final destination (the blue object in Figure 6)
and throughout all of the environment. In this way the
agents try to avoid congestion only locally, and pedes-
trians can pass through a sub-optimal gate f only be-
cause, at a certain point of the simulation, the overall
system dynamics brought it closer to f than to the ini-
tially optimal gate to choose.

A comparison between the simulation results and
the empirical data achieved with the experimental
procedures, regarding the counting of people pass-
ing through each door, is shown in Figure 7(a), 7(b)
and 7(c). By looking at the results achieved with the
baseline model, there is a sensible error produced for
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the procedure 2, where agents passing through the cen-
tral door have been about 15 on average while in the
observations this path was used by around 23 per-
sons. In addition, the baseline model provides higher
variability of results for this procedure, which over-
all cannot be calibrated in a effective way. The error
is particularly noticeable in the other two procedures
where, due to the pure floor field approach that leads
the agents to try to follow the shortest path, the west
door has not been employed at all during all simulation
runs.

Figure 7(d) shows a comparison of the completion
times observed in the experiment and achieved with
the simulation iterations. Despite the variability of re-
sults provides also provides data in a range of about 5
seconds, the average completion times achieved with
the usage of the proposed model is close to the em-
pirical one in all the simulated procedures. Overall
the trend is also respected. Firstly, in procedure 3 it
has been observed an average completion time slightly
higher than in procedure 2 (see Table 2) and this is also
reflected in the model, even though more significantly.
In addition, simulations shown that procedure 4 pro-
vides a lightly lower average completion time than all
the other procedures and this has also been observed in
the experiment.

The proposed wayfinding model is instead more ef-
fective in reproducing the empirical dataset. The av-
erage values are very close to the observed ones and
the range of variability is also contained. This empha-
sizes that this model can be successfully calibrated to
fit this empirical data range achieved with the experi-
ment runs, for all the tested procedures.

For a more qualitative analysis, the distribution of
pedestrian choices over the space before the three
doors is shown in the screenshots of Figure 6, taken
every 2 seconds from time 4s to 10s. The screenshots
illustrate the current target of the agents by chang-
ing their color: brown for the top door, cyan for the
central one and purple for the bottom. It is evident
that the top rows of cells of the region –according to
this visualization– are crossed for the most by agents
headed towards the top gate, while the remaining part
is characterized by a less decided behavior of agents
near the entrance of the region, which gets more de-
terministic by getting closer to the two doors. Quali-
tatively, the distribution of decisions is in accordance
with what has been observed in the videos of the ex-
periment.

5.2. Large Scale Scenario

The aim of the second simulation scenario is to an-
alyze the outputs of the model in presence of a larger
and more realistic scenario. The simulation scenario
describes the outflow from a portion of the Düsseldorf
Arena, as described in [36]. The annotated environ-
ment used for the simulation with the discussed model
is illustrated in Figure 8(a): 4 starting areas (green
in the figure) model the bleachers of the stadium and
generates the agents in the simulation, whose aim is
to reach the outside area indicated with the blue ob-
ject (i.e. the Northern and Eastern borders of the sce-
nario). Cyan objects are the intermediate targets de-
scribing the potential wayfinding decisions of agents.
250 agents are generated in random positions of the re-
lated start area at the beginning of the simulation, pro-
ducing a total of 1000 pedestrians.

The heat map shown in Figure 8(b) provides infor-
mation about the usage of the space during the sim-
ulation, by describing the average local densities per-
ceived by the agents (so-called cumulative mean den-
sity maps). The major congested areas are located in
front of the exit doors, given their relatively small
width of 1.2 m. An interesting point that comes out
from this analysis (also visible in the screenshot in Fig-
ure 8(a)) is that the present configuration of the envi-
ronment implies that several exits receive an incom-
ing flow from more sources (i.e. corridors), while there
are 3 exits in the upper right corner of the environment
which are not employed at all by the agents during the
simulation. In addition, the usage of the exits is un-
balanced, causing the level of density to be higher in
some of them. An apparent effect of the mechanisms
defined in the proposed wayfinding model is related to
the visible traces of pedestrians that were moving to-
gether with other ones headed towards the most con-
gested exits which actually changed their decision and
moved towards less crowded ones.

The evaluation of this kind of result would require
empirical data that could be used either to support the
modeling choices or to confute the achieved results and
therefore lead to a different calibration (e.g. adopting a
lower weight for the consideration of travel time, that
would lead to an increased usage of the farther exits).

The corridors connecting each bleacher to the atrium
are affected as well by high densities (around 2.5–
3 persons/m2) but their widths guarantee a sensibly
higher flow, causing much lighter congestion —and so
higher speeds— inside the starting regions.
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(a) (b)

(c)

Fig. 8. (a) A screenshot of the simulation of the Düsseldorf Arena. Spatial markers are also displayed and the colors of the agents identifies their
current target. (b) Cumulative mean density map and (c) average speed distributions configured (blue) and achieved (red).

Figure 8(c) shows a comparison between the dis-
tribution of the achieved average walking speeds (red
bars) and initial desired speeds (blue bars) of agents
during the simulation. The congestion arisen in the exit
doors of the atrium sensibly affected the travel time of
the agents. This caused that only a relatively small por-
tion of the simulated population succeeded in main-
taining its desired speed throughout the overall tra-
jectory (the agents that have been generated in posi-
tions closer to the three exit corridors of the bleach-
ers), while most of them experienced a significant de-
lay during their way.

6. Conclusions

The present paper has described a research effort
aimed at improving our understanding of decision
making activities related to pedestrian route choices in
presence of congestion, both by means of an experi-

mental observation and by means of the definition of
a general model for decision making activities related
to pedestrian route choices. The model encompasses
three aspects that has been observed to influence these
choices: expected travel time, perceived level of con-
gestion on the chosen path, and decisions of other pre-
ceding pedestrian to pursue a different path. The re-
sults achieved by means of an experimental observa-
tion describe the number of students choosing each
path and the completion time for all the procedures:
additional analyses we aim to carry out will focus
on when and where the decision to follow a longer
but supposedly faster trajectory is taken, considering
a change in the trajectory (maybe following another
pedestrian that already took such a decision). The de-
fined model is an extension of previous works in this
area, and it preserves desirable properties on the ba-
sic locomotion of pedestrians and aggregated effects
in simple scenarios (e.g. corridors, bends and junc-
tions): the experimental campaign described in this



18 L. Crociani et al. / Route Choice in Pedestrian Simulation

paper shows its adequacy in reproducing the empiri-
cal result achieved through the experimental observa-
tion. Moreover, the model has been applied to a larger
scale scenario, in which it produced interesting results
that would, however, require additional empirical evi-
dences for a more thorough validation.

Ongoing works are aimed to achieve further anal-
ysis on the experiment, in order to acquire additional
data for the validation of the model (especially aimed
at fine tuning and validating the mechanism manag-
ing the change in the planned trajectory) and for possi-
ble improvements. Moreover, the effect of this kind of
modeling approach in more complicated environmen-
tal structures (i.e. deeper trees for path planning) will
also be investigated.
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Appendix – The Entropy Heat Map

The heat map used to evaluate and calibrate the
model of this paper describes the concept of entropy
–conceived as in information theory [32]– calculated
with the set of probabilities of choosing each path from
all points of the scenario. Generally speaking, given
a set of events (e1, e2, . . . , en) and p the function to
compute their probability, the entropy of the probabil-
ity distribution is calculated as:

H =

n∑
i=1

p(ei) · logb
1

p(ei)
(10)

where b indicates the measurement unit of the en-
tropy and, as commonly used in this field, we assumed
bits (b = 2). With this definition, H describes the con-
tent of information of the distribution, but by applying
it to the probability distribution of the choices available
to an agent a in a certain position during the simula-
tion run, it can provide a description of its uncertainty
in choosing the path, due to the current dynamics. In
particular, let us consider a static setting without the

influence of other agents and assume κtt > 0. While
the agent is in a position relatively close to a passage,
the choice of paths employing that passage will get
more probable in favor of the other possibilities, thus
the value of H will get closer to 0. Conversely, if the
agent is at a relatively same distance between alterna-
tive passages, H gets higher values, describing a rele-
vant uncertainty of the agent.

The entropy heat map is then obtained by calculat-
ing the entropy of the probability distribution of the
choices over possible paths for all the cell of the envi-
ronment, at a certain step of the simulation.
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