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Chapter 1

Introduction

One of the most spectacular features of string theory is the presence of dualities
relating apparently different theories. This characteristic is usually inherited by
quantum field theories that are supposed to describe the low-energy behavior of
some brane system. The first example where this inheritance has been pointed
out is N = 4 SU(N) super Yang-Mills (SYM) theory in four dimensions, that
is supposed to describe low energy field theory on a stack of N D3-branes on
flat space. It turns out that Type-IIB brane setups actually come in SL(2,Z)
orbits of dual configurations. SL(2,Z) duality leaves D3-branes invariant while
transforms

(
p
q

)
-branes into M

(
p
q

)
branes, where M is a 2×2 matrix in the group.1

As a consequence, Type-IIB supergravity also enjoys SL(2,Z) duality; given a
vacuum solution, we can generate a dual background with the same metric but
different fluxes. For instance, the axio-dilaton 2 τ = C0 + ie−φ transforms as
follows:

τ → dτ + c

bτ + a
,

(
a b
c d

)
∈ SL(2,Z) . (1.1)

Since the axio-dilaton is usually identified with the complexified coupling τ =
θ

2π + 4π i
g2 on the field theory side, it is natural to think that N = 4 SYM theories

with different couplings can be actually dual [1]. One can imagine to apply the
following transformation, usually called S-transformation:

S =

(
0 −1
1 0

)
, τ → −1

τ
(1.2)

and, assuming τ to be initially large, we can dualize the original strongly-coupled
theory into a weakly-coupled one which we know how to deal with. From this
example, it is clear how dualities can in general help in gaining insight about
the strong-interacting regime of gauge theories.

Another notable example where the duality heritage of string theory mani-
fests consists of three-dimensional N = 4 field theories dual to Hanany-Witten
(HW) configurations [2], made of D3, D5 and NS5 branes. In absence of ori-
entifold planes, such configurations are dual to linear or circular quivers with
U(ni) gauge nodes and (bi-)fundamental matter. A general linear quiver and

1In our conventions, a
(1
0

)
-brane is an NS5-brane while a

(0
1

)
-brane is a D5.

2Here C0 is the potential for the one-form RR flux while φ is the dilaton.
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associated brane configuration is depicted in (1.3).

n1◦
|
�
f1

− n2◦
|
�
f2

− · · · − nr◦
|
�
fr

•
f1

•
f2

•
fr

n1

n2

nr

(1.3)

where a vertical line represents an NS5 brane, an horizontal line represents a
stack of ni D3 branes and a dot stands for a set of fi D5 branes. The branes
span the following directions:

0 1 2 3 4 5 6 7 8 9
D3 × × × ×
D5 × × × × × ×
NS5 × × × × × ×

(1.4)

HW configurations possess a supergravity dual that allowed for a number of
remarkable holographic checks [3–6]. The background dual to a linear quiver is
of the form AdS4×S2×S2×Σ where Σ is Riemann surface with the topology of
the infinite strip. Whenever the strip can be cut and glued at two sides, we can
get a new Riemann surface with the topology of the annulus: in such a case the
background is dual to a circular quiver theory. Brane configurations associated
to circular quivers can be constructed taking x6 direction in (1.4) to be an S1.

Let us look at the action of the element S ∈ SL(2,Z) on this models. S-
duality, together with an appropriate rotations of coordinates, acts swapping
D5 and NS5 branes [2,7,8] and manifests field-theoretically as mirror symmetry
[9]; if two theories flows to the same IR fixed point and form a mirror pair,
mirror symmetry swaps Coulomb and Higgs branch of such theories.3 Observe
that mirror symmetry maps Higgs branch, which is classically exact and that
we can access using UV knowledge only, to Coulomb, which receives quantum
corrections instead. It is interesting to note that S-duality action can be also
realized on the supergravity backgrounds, i.e. it swaps the two S2 factors in the
metric. S-duality can be generalized considering other elements of SL(2,Z). A
typical example is provided by the action of the following element:

T k =

(
1 0
k 1

)
. (1.5)

It leaves D5-branes invariant while transforming NS5s into
(

1
k

)
-branes [12, 13],

responsible for turning on±k Chern-Simons (CS) level in the dual quiver [14,15].
This means that T k duality transformations maps N = 4 theories to ones with
non-trivial CS terms, responsible for breaking supersymmetry down to N = 3 at
the Lagrangian level; however, the duality suggests that these theories actually
have enhanced supersymmetry in the IR.4

As proposed [15, 17, 18], a duality transformation can be also performed
locally in a given brane configuration. Let us focus on the case of S ∈ SL(2,Z)

3Even if mirror symmetry is much more simpler to recognize in N = 4 theories, where
the moduli space is made of two branches, Coulomb and Higgs, it is actually a duality for all
three-dimensional theories with N ≥ 2 supersymmetry, as first observed in [10,11].

4In the IR, supersymmetry can also get enhanced to N > 4, like in the famous ABJM
case [16].
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action: this means that there exists a surface, called S-duality wall, passing
through which the system undergoes an S-duality transformation. Following
[15], where such interface is realized as a Janus domain wall in 4d N = 4
SYM theory, the intersection between an S-duality wall and a stack of N D3-
branes gives rise to a T [U(N)] theory, that can be actually thought as a product
theory, T [U(1)]× T [SU(N)]. The first theory, T [U(1)], is almost empty theory
and consists of a mixed CS level between two U(1) vector multiplets while the
second one has the following Lagrangian realization:

1◦ − 2◦ − 3◦ − · · · − N−1◦ −
N
� (1.6)

T [U(N)] is a self-mirror theory and possesses U(N)×U(N) global symmetry.5

The SU(N) group in the first factor is realized on the Higgs branch, i.e. it
coincides with the flavor symmetry group manifest in (1.6); the second factor is
emergent at low energies and it is not manifest in the UV. In a Hanany-Witten
configuration where an S-duality wall has been inserted, the two U(N) factors
are gauged at the same time and the T [U(N)] theory, also referred as T-link
in the following, serves as coupling between two U(N) vector multiplets. An
example is depicted in figure (1.7), where we used a red line to denote a T [U(N)]
theory with gauged global symmetries.

N D3• •

S

N N1 1

T [U(N)]

(1.7)

Using the same nomenclature proposed in [19], an S-duality wall is also called
S-fold, or S-flip if we want to stress the absence of Chern-Simons terms. CS
levels can be turned on considering walls for other elements in SL(2,Z):

Jk = ST k =

(
k 1
−1 0

)
. (1.8)

Whenever a Jk duality wall, or J-fold for brevity, intersects a stack of N D3-
branes, a T [U(N)] theory appears: its global symmetries get gauged and a
Chern-Simons level k is turned on for one of the two linked U(N) gauge nodes.
Circular Hanany-Witten configurations with one or more S-fold possess a su-
pergravity dual, first proposed in [19, 20]. Such backgrounds have the form
AdS4 × S2 × S2 × Σ where this time Σ is an infinite stripe cut and glued at
two points using an SL(2,Z) element (S or Jk depending on the case). In other
words, we perform a SL(2,Z) quotient of the stripe, giving rise to a background
with a non-trivial monodromy. 6 It is interesting to observe that this kind of
construction represents a notable example of non-geometric background.

5One can think the U(1) factors in U(N) × U(N) to act trivially. Moreover, one can
add background vector multiplets and mixed CS term for such multiplets. The backgrounds
fields do not affect the 3d theory in any way. However, they become relevant in the gauging
procedure, since they become dynamical and the mixed CS interaction gives rise to a T [U(1)]
theory.

6The idea of using SL(2,Z) monodromy to obtain new solutions was also applied in other
dimensions. For example, those in AdS5 was considered in [21, 22], and those in AdS3 were
considered [23,24].

7



The stringy origin and the existence of a supergravity dual make S-fold mod-
els a particularly interesting class to study. Investigating their properties turns
out to be intriguing and challenging on the field theory side, due to the non-
Lagrangian nature of the T [U(N)] coupling. In fact, as we stressed above, the
two SU(N) global symmetries are not manifest at the same time in the descrip-
tion (1.6), but they co-exist only at low energies where an effective Lagrangian
is not available. The aim of the works reviewed in this thesis is to gain insight
about the main properties of this new class of SCFTs.7

In [29], we studied the moduli space of S-fold SCFTs dual to circular Hanany-
Witten models with one S-fold inserted. We approach the problem in two dif-
ferent manners, depending on the nature of the duality wall. In the S-flip case,
we considered configurations with an arbitrary number of D3-branes. We pro-
pose that the Higgs branch of an S-flip model can be computed performing
a hyperkähler quotient: the T [U(N)] link contributes to the quotiented space
through a double copy of NSU(N), the maximal nilpotent orbit of SU(N). Such
orbit is a hyperkähler manifold and coincides with both Higgs and Coulomb
branch of T [U(N)]. Moreover, we propose that the Coulomb branch can be
computed similarly to usual N = 4 theories using the monopole formula pro-
posed in [30], with the prescription that the vector multiplets from the gauge
groups linked by T [U(N)] do not contribute to the Coulomb branch dynam-
ics. This means that the linked gauge groups are actually frozen and behave
as fundamental matter. We refer to this prescription as freezing rule and we
check our proposal against mirror symmetry, computing the Hilbert series in
various classes of examples. J-fold models deserve a different treatment due
to the presence of non-trivial Chern-Simons levels: in fact, in this case we are
not able to provide a unique prescription in order to compute Coulomb and
Higgs branches. For this reason we prefer to study a simpler class where only
1 D3-brane is present and thus all the gauge nodes are Abelian. T [U(1)] is the
unique theory that admits a Lagrangian description as mixed Chern-Simons
term between the linked nodes. For this reason, we are able to perform explicit
computations of moduli spaces of Abelian J-fold models. We show that the
moduli space generically present a rich structure of branches, parametrized by
mesons as well as dressed monopole operators. We present the various difficulties
typical of this new class of theories studying selected and instructive examples.
Finally, we show how S-fold theories can be used to study more general brane
setups involving

(
p
q

)
-webs.

T [U(N)] theory admits and interesting generalization, denoted by T [G],
where G is a compact Lie group. A T [G] theory possesses G × G∨ global
symmetry group, where G∨ is the Langlands dual group of G. The factor G is
realized on the Higgs branch while G∨ factor is realized on the Coulomb branch
and only emerges at low energies. The Higgs branch coincides with the maximal
nilpotent orbit of G, NG, and similarly the Coulomb branch is identified with
NG∨ . We propose that whenever G = G∨, i.e. G is self-Langlands, the global
symmetries of T [G] can be commonly gauged, giving rise to a new T-link. In
the case of G = SO(2N) or G = USp′(2N), we also propose that such coupling

7It is worth pointing out that the authors of [25–27] have studied (mainly in the context of
the 3d-3d correspondence) very closed cousins of the S-fold theories á la [19]. The difference
between the two is that the gauge group is taken to be SU(N) in the former, instead of U(N)
as in the latter. In absence of fundamental matter, the two cases turn out to be actually the
same [28].
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arises from the intersection of a duality wall and N D3 branes in a circular
Hanany-Witten configuration where O3-planes or O5-planes planes have been
inserted. The analysis in [15] suggests that these setups also have a stringy ori-
gin, even if a supergravity dual background is not available up to now. In [31]
we studied the moduli space of S-flip models involving real classical groups. We
computed the Hilbert series of various mirror pairs and check their consistency
with mirror symmetry. We find that the freezing rule proposed in [29] still holds
in this case and we also observe new phenomena such as the screening effect:
an S-fold cannot be inserted “too close” to an O5-plane. The meaning of “too
close” is specified in the main text. Together with real classical groups, we
also studied an exceptional case consisting of circular quivers made of USp(4),
SO(5) and G2 gauge nodes. We propose for the first time, to the best of our
knowledge, classes of mirror pairs involving G2 gauge groups. Moreover, we
observe that a T [G2] link can be inserted consistently with mirror symmetry.

Finally, we study the superconformal index of S-fold SCFTs. One purpose is
studying in detail the amount of supersymmetry preserved by an S-fold theory.
In fact, supersymmetry is naively broken down to N = 3 because we gauge
Coulomb and Higgs symmetries at the same time. However, an enhancement
to N = 4 or N = 5 supersymmetry can occur at the IR fixed point for several
models, including those with non-trivial Chern-Simons levels, which generically
preserve N = 3 supersymmetry. The enhancement of supersymmetry in large N
limit has in fact been observed in [19], using holographic dual. At finite N , we
study the possibility of supersymmetry enhancement computing the supercon-
formal index in various examples, with and without flavor matter, stressing the
agreement with the previous literature [28]. We also used the superconformal
index to test dualities between S-fold theories having different quiver realization.
In fact, as pointed out in [19], we can always make, for instance, a D5 brane
pass a duality wall, trading it for NS5 branes. This move generates a chain of
dual S-fold theories. We use the superconformal index to study how operators
are mapped under the local duality transformation.

The presentation of the thesis is organized as follows. In the first part we
collect some background material. In chapter 2 we review matter content and
Lagrangian construction of N = 3 and N = 4 three-dimensional theories, with
particular emphasis on the operators entering the low-energy dynamics and
the moduli space. We put attention on the brane realization of such theories
proposed by Hanany and Witten [2] and we present the main features of the
Type-IIB backgrounds of [4,5]. In chapter 3, we review in detail the construction
of Gaiotto and Witten of an S-duality wall. We present S-fold theories and the
main features that can be inferred by the brane realization. We also comment
on the dual Type-IIB vacua constructed in [19].

In the second part, we collect all the original contributions. In chapter 4
we present the main results of [29]. In particular, we study the moduli space
of S-fold SCFTs dual to Hanany-Witten configurations made of N D3-branes
wrapping S1 and an S-fold. We propose an effective way to compute the moduli
space of S-flip models and check it against mirrors symmetry, performing explicit
computations of Hilbert series in various examples. We also explicitly compute
the moduli space of Abelian J-fold models and comment on the peculiarities
of this class. In chapter 5 we studied the generalization of S-fold theories to
models with more general T [G] links. Using mirror symmetry as main tool, we
deduce when an T [G] link can be inserted in a consistent way, and we analyze in
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detail models involving classical real groups. We propose such S-fold SCFTs to
be dual to Hanany-Witten configuration where O-planes and S-folds co-exists.
We also comment on the exceptional case G = G2, for which we provide new
classes of mirror pairs, with and without T-links. In chapter 6 we study the
index of S-fold theories at finite N , focusing on supersymmetry enhancement,
global symmetry enhancement and dualities; we comment and compare with
previous literature.

Finally, in the appendix we collect some known facts about Hilbert series
and superconformal index, together with some technical results used in the main
text.
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Part I

N = 3 and N = 4
supersymmetric theories in

three dimensions
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Chapter 2

Hanany-Witten
construction

2.1 osp(n|2, 2) super-algebra

N = 4 field theories in 2+1 dimensions preserve half the maximal amount of su-
persymmetry, i.e. eight real supercharges; the fermionic generators of the super-
symmetry transformations can grouped in 4 (Majorana) spinors QI , I = 1 . . . , 4
such that: {

QIα , Q
J
β

}
= 2σµαβ δ

IJPµ + 2 εαβZ
IJ (2.1)

where µ = 0, 1, 2 are space-time indices, α, β = 1, 2 are spinor indices and
σµ denotes Pauli matrices; the momentum Pµ generates space-time translation
while ZIJ is the matrix of central elements. The algebra is invariant under
SO(4) rotations of the four supercharges QI , transforming in 4 representation:
SO(4)R ∼ SU(2)C × SU(2)H is the R-symmetry group. This super-Poincaré
algebra admits a conformal extension named osp(4|2, 2), whose maximal bosonic
sub-algebra is so(2, 2)× su(2)H × su(2)C .1

Lagrangian field theories enjoying N = 4 supersymmetry can be built using
two building blocks: vector multiplet and hypermultiplet; their field content
can be described in a more familiar fashion in terms of N = 2 vector and chiral
multiplets. A chiral multiplet Φ is complex and, introducing the Grassmann
variable θ, can be written as:

Φ = φ+
√

2 θ ψ + θ2F , (2.2)

where φ is a complex scalar, ψ is a Dirac fermion and F is an auxiliary complex
scalar as well; all such fields are assumed to depend on the composite coordi-
nates yµ = xµ + iθσµθ. The vector multiplet is instead a real super-multiplet,
containing a vector Aµ, a Dirac fermion λ and two (real) scalars, σ and D, with
the latter being auxiliary; as usual, they can be collected in a unique super-field
that, in the Wess-Zumino gauge, admits the following expansion:

V = −
(
θσµθ

)
Vµ − θθσ + iθ2θ λ− iθ 2

θλ+
1

2
θ2 θ

2
D , (2.3)

1In general, the super-conformal algebra osp(N|2, 2) has maximal bosonic sub-algebra
so(2, 2)× so(N ) and possesses 2N fermionic generators.
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where all the fields must be understood as depending on the usual space-time
coordinates xµ; the kinetic term of the vector field is contained in the chiral field
strength Wα = 1

4DDe−VDαe
V , where we introduced the “covariant” deriva-

tives:

Dα = ∂α + iσµαβθ
β
∂µ , Dα = ∂α + iθ

β
σµβα∂µ (2.4)

anti-commuting with supersymmetry generators. Using these building blocks,
the most general N = 2-preserving Lagrangian can be written as follows2:

SN=2 =

∫
d3xd2θd2θ

(
1

g2
WαW

α − Φ†e2V Φ

)
+

∫
d3xd2θW(Φ) + c.c. , (2.5)

where Φ is assumed to transform in some representation R of the gauge group
and W is the superpotential.

N = 2 fields can be now joined in order to define N = 4 vector and hyper
multiplet. In a schematic way, we can write:

hyper N = 4 : Q + Q̃† (2.6)

vector N = 4 : V + Φ (2.7)

where Q and Q̃ are chiral multiplets transforming in conjugate representations
while the chiral field Φ is assumed to transform in the adjoint representation of
the gauge group.3 More precisely:

N = 4 hyper :

Q = (q, χ, F )
⊕

Q̃† =
(
q̃†, χ̃†, F̃ †

) ⇒

(
q, q̃†

)
∈
(

1
2 , 0
)

⊕
(χ, χ̃) ∈

(
1
2 ,

1
2

)
⊕(

F, F̃ †
)
∈
(
0, 1

2

) (2.8)

where we specified how multiplet components mix in order to form representa-
tions (s1, s2) of SU(2)C × SU(2)H R-symmetry group. Observe that, in order

to define a honest N = 4 multiplet, Q and Q̃ must be taken in conjugate repre-
sentations R and R under global and gauge symmetries. In the same way, we
can summarize the vector-multiplet content as follows:

N = 4 vector :
V = (Vµ, λ, σ,D)

⊕
(φ, ψ, FV )

⇒

(σ,Reφ, Imφ) ∈ (1, 0)
⊕

(λ, ψ) ∈
(

1
2 ,

1
2

)
⊕

(D,ReFV , ImFV ) ∈ (0, 1)

(2.9)

The vector field Vµ is an R-symmetry singlet and ΦV is taken in the adjoint
representation of the gauge group. Given this decomposition, we can always
write the most general Lagrangian preserving eight real supercharges in N = 2

2For simplicity we focused on the case of one vector and one chiral multiplet: generalization
to N = 2 quiver gauge theories is straightforward.

3In the following, a chiral super-field Φ will be always understood as belonging to a N = 4
vector multiplet; in the same way latin capital letters, as (A, Ã) , (B, B̃) , (Q, Q̃) and so on,
will be used to label chiral components of hypermultiplets.
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language; the kinetic terms of a vector multiplet and a charged hyper can be
written as

SN=4 vector =
1

g2

∫
d3xd2θd2θ tr

(
WαW

α − Φ†V e
2V ΦV

)
, (2.10)

Shyper, Kin = −
∫

d3 xd2θd2θ
(
Q†e2VQ+ Q̃†e2V Q̃

)
. (2.11)

The most general form of the superpotential preserving N = 4 supersymmetry
is highly constrained. Let us consider a given hyper (Q, Q̃) transforming under
a gauge group with gauge connection (V,Φ); then, the hyper enters a cubic
superpotential by means of the following Lagrangian contribution:

Ssuperpotential = −i
√

2

∫
d3xd2θd2θ Q̃ΦQ + c.c. ; (2.12)

when more than one hyper is present, each of them enters the superpotential
in the same way. As usual, the auxiliary fields F and D can be integrated out
providing the actual scalar potential.

The N = 4 multiplets and the Lagrangian terms we have met are also
at the base of theories preserving N = 3 supersymmetry. In that case, the
algebra preserves six real supercharges only, rotated by an SO(3) R-symmetry
group, and admits a conformal extension osp(3|2, 2). Supersymmetry can be
broken explicitly by adding a simple contribution to an N = 4 Lagrangian, (the
supersymmetric version of) a Chern-Simons (CS) term:

SCS =
κ

4π

∫
d3xd2θd2θ

∫ 1

0

dt tr
[
V D

α (
e−tVDαe

tV
)]
− κ

4π

∫
d2θd3x tr Φ2+c.c.

(2.13)
Observe that the second contribution in (2.13) makes Φ enter the superpotential
in a new way; the first contribution, instead, can be recognized to be an N = 2
Chern-Simons term and needs the introduction of an auxiliary coordinate t in
order to be written in a compact way exploiting superspace formalism; for this
reason, it can be more illuminating writing down the N = 2 CS term using the
explicit field content:

SN=2
CS =

κ

4π

∫
d3x tr

[
A ∧ dA+

2

3
A ∧A ∧A− λλ+ 2Dσ

]
(2.14)

2.2 Monopole operators

Other than vector and hyper multiplets, that can be defined in terms of usual
local fields entering the UV Lagrangian, in three dimensions a new class of local
operators can be introduced, monopole operators, playing a fundamental role in
the following. Even if local, monopoles do no admit any polynomial expansion
in terms of fundamental fields and various technique are needed in order to
study their behavior or taking into account their contribution to dynamics.

A monopole operator, Vm(x), is interpreted as a disorder operator generating
a Dirac monopole singularity [32]; this means that gauge fields are required to
behave as a Dirac monopole when approach the point of insertion x:

A± ≈
m

2
(±1− cos θ) dϕ (2.15)

15



where θ and φ parametrize a 2-sphere surrounding x.4 m ∈ g stands for an
element of the gauge algebra and with an appropriate rotation, it can be always
assumed to be in the Cartan sub-algebra of g; thus, it can be expanded on a
basis of Cartan generators,

m =

dim(G)∑
i=1

miH
i , (2.16)

where mi are named magnetic charges. Dirac quantization requires the re-
spective group element, e2πim, to act as the identity of the group on all the
operators. Without loss of generality, we can take an operator whose quantum
numbers specify a weight of a representation, µ, such that Hi(µ) = µi. Dirac
quantization implies [33]:

e2πmµ
D.Q.
= 1 ⇒ mi µ

i ∈ Z (2.17)

This condition can be recast in an elegant way as the requirement of {mi} to
span the weight lattice of the Langlands dual group of G, usually denoted by
G∨. The presence of a monopole operator breaks the gauge symmetry down
to a subgroup; this is generated by all the elements of the algebra commuting
with m: they form an algebra hm named commutant of m in g. When turning
to N = 2 theories, a monopole also specifies a boundary condition for the real
scalar sitting in a vector multiplet [32,34]:

σ ≈ m

r
(2.18)

where r denotes the radial distance from the insertion point x; in this sense,
the monopole operator sits in an N = 2 chiral multiplet. The same definition
of monopole operator still holds in the N = 3 and N = 4 cases, i.e. the scalars
belonging to the adjoint chiral multiplet Φ do not acquire any singular behavior.

Observe that any time the Langlands dual of the gauge group possesses
a non-trivial center, Z(G∨) ∼ U(1)j for some j, then a new global symme-
try emerge, named topological symmetry; in fact, given the corresponding
abelian gauge connections Ai, we can always build new conserved currents
J iT = 1

2π ? dAi whose conservation is guaranteed by Maxwell equations of
motion. It turns out that monopoles are charged under topological symmetry.
As an example, we can consider a U(N) N = 2 vector multiplet and magnetic
charges (m1, . . . ,mN ); the topological symmetry GT = U(1)T is associated to
the U(1) factor of the gauge group and the topological charge of the monopoles
reads JT [Vm] =

∑
imi. Classically, monopoles are only charged under topo-

logical symmetry; however, at the quantum level, gauge and global charge of
monopoles can become non-trivial thanks to quantum corrections due to all
the fermions in the theory. Given Nf fermions {ψI} transforming in represen-
tations RI of the gauge group with weights µaI , the R-charge of a monopole
reads [32,35,36]:

R[Vm] = −1

2

Nf∑
I=1

(
R[ψI ]

dimRI∑
a=1

|µaI (m)|
)

(2.19)

4As it is known, a Dirac monopole is actually specified by a couple of connections on the
north and south hemisphere of the two-sphere. The two connections, A±, are related by a
gauge transformation.
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where the index a runs over all the weights of a given representation. The
monopole gauge charge with respect to a simple group with level κ has the
following form:

Jgauge[Vm] = −κm − 1

2

Nf∑
I=1

(
ΛI

dimRI∑
a=1

|µaI (m)|
)
, (2.20)

where ΛI =
∑dimRI
a=1 µa is the Weyl vector of the representation RI . A similar

formula holds for global charges with −κm and ΛI substituted by background
magnetic charges and global symmetry Weyl vectors respectively. Every time a
monopole operator is not gauge invariant, it can be composed with an appropri-
ate field in such a way to form a new gauge-invariant operator named dressed
monopole.

Finally, let us notice that another definition of monopole operator is quite
common in literature [10, 37], at least in the Abelian case. In fact, given an
Abelian connection Aµ, it can be dualize in order to define a compact scalar ã
called dual photon:

εµνρ F
νρ = ∂µã . (2.21)

If Aµ belongs to an N = 2 vector multiplet, the dual photon can be combined
with the adjoint scalar σ to form a new holomorphic operator:

Vm ∼ e
m
g2

(σ+iã)
. (2.22)

This can be understood as a definition of a monopole operator as a non-polynomial
function of fundamental local fields.

2.3 Moduli space of N = 3 and N = 4 theories

The moduli space of a supersymmetric gauge theory is the space of all vacuum
field configurations preserving all supercharges; moduli spaces of N = 3 and
N = 4 gauge theories in three dimensions show particular interesting properties.
In general, the space of vacua is defined as the set of solutions of F -terms
minimizing the superpotential

∂W
∂QI

=
∂W
∂Q̃I

=
∂WI

∂Φa
= 0 , (2.23)

together with solutions of D-terms. The superpotential is constrained to have
the form (2.12) 5 while {QI , Q̃I} and Φa collectively denote all chiral fields
participating to hyper and vector multiplets. In order to understand which
interesting properties arise, let us begin with a simple example. Consider an
N = 4 U(1) vector multiplet with Nf charge-1 hypermultiplets, i.e. N = 4
QED with Nf flavors; in the following we will often write down quivers both in

5(2.13) must be also taken into account if non trivial CS levels are present.
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N = 4 and N = 2 languages:

1

Nf

N=2
=⇒

1

Φ

Nf

Q Q̃ (2.24)

Using (2.12), the superpotential reads:

WQED,Nf =

Nf∑
I=1

Q̃I ΦQI . (2.25)

Since Φ by definition transforms in the adjoint representation of the gauge
group, it is actually a singlet under U(1) gauge symmetry, while Q and Q̃ have
charge ±1 respectively; the theory also possesses an SU(Nf ) flavor symmetry
together with the topological U(1)T symmetry that charges monopoles only. We
collected all the charges in table 2.3, where [m1 , . . . ,mNf ] are Dynkin labels.

Fields R U(1)gauge U(1)T SU(Nf )
Φ 1 0 0 [0, 0, . . . , 0]
Q 1/2 +1 0 [1, 0, . . . , 0]

Q̃ 1/2 −1 0 [0, . . . , 0, 1]

We can immediately read the F and D terms:

ΦQI = Q̃I Φ =
∑
J

Q̃J QJ = 0 , (2.26)

σQI = Q̃I σ =
∑
J

(QJQ
†
J − Q̃JQ̃J †) = 0 , (2.27)

where σ is the scalar in the N = 2 vector multiplet; with a little abuse of no-
tation, we used the same symbol to indicate a chiral multiplet and the scalar
contained in. (2.26)-(2.27) admit two solutions:

[σ = Φ = 0] : In this case F and D terms are solved imposing QI and Q̃I

to be orthogonal (Q̃JQ
J = 0) and to have equal norms (QJQ

†
J = Q̃JQ̃J †).

These two condition can be recasted in a more elegant way. Let us consider the
meson operator MI

J = QI Q̃
J . This matrix has by definition rank one, being

the tensor product of two vectors, and it is constrained by F and D terms to
have vanishing trace and square:

trM = QI Q̃
I = 0 , M2 = QI (Q̃K QK) Q̃I = 0 . (2.28)

Let us stress that this branch is parametrized by VEV of hypermultiplets only
and it is usually called Higgs branch, H, since the non-trivial expectation values
of the hypermultiplets cause a completely Higgsing of the U(1) gauge field. It
can be described in a purely mathematical way as:

H [QEDN=4, Nf flav.] =
{
M ∈ GL(Nf ,C)

∣∣ trM = M2 = 0
}
. (2.29)
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It is widely believed that Higgs branch is not corrected at quantum level [38].
It is defined through expectation values of the mesons MI

J , that become the
effective degrees of freedom at low energy. The space in (2.29) is well known in
literature: it is a hyperkähler manifold also describing the moduli space of one
SU(Nf ) instanton on C2.

[Q = Q̃ = 0] : With this choice, all the constraints (2.26)-(2.27) are solved.
One could think that this branch is thus parametrized by the expectation values
of σ and Φ. However, it is important to stress that in this case it is necessary to
take into account quantum effects [39,40]. First of all, σ combines with the dual
photon to form monopole operators, that it turns out to be the correct degrees
of freedom in the deep IR. Monopoles are labeled by the magnetic charge with
respect to the U(1) gauge group, Vm. Using (2.19)-(2.20), it is possible to
determine the quantum numbers of a given monopole with magnetic charge m:

R[Vm] =
Nf
2
|m| , JU(1)[Vm] = 0 , JT = m. (2.30)

It is common lore that the whole magnetic lattice can be covered by combina-
tions of monopoles with lowest R-charge, in our case V±1 or simply V±. We can
thus expect this branch to be generated by V± and Φ; however, as anticipated,
quantum corrections induce constraints among them. Matching of the quantum
numbers of such operators leads to the following guess:

V+ V− = ΦNf (2.31)

This branch of moduli space can be considered as parametrized by monopole
expectation values only and is usually named Coulomb branch, since a U(1)
gauge group remains unHiggsed. As before, the space described in (2.31) is well
known in literature and it is nothing but the orbifold C2/ZNf . As for the Higgs
branch case, this orbifold possesses an hyperkähler structure on it.

The fact that the moduli space of an N = 4 theory always contains a
Coulomb and Higgs branch6 and that both the cones are hyperkähler mani-
folds is not a coincidence but a completely general fact [7, 9, 40]. This can be
seen in the following way: let us consider a completely generic N = 4 theory
with gauge group G and Nh hypermultiplets {QiI , Q̃Ij} where i, j are gauge rep-

resentation indices and I = 1, . . . , Nh; σba and φa
b will represent the real and

complex scalar of the G vector multiplet. The F and D terms always have the
following form:

(Φa)ijQ
j
I = Q̃Ij (Φa)ji =

∑
K

Q̃Kj (T a)jiQ
i
K = 0 , (2.32)

∑
K

(
Q†K T

aQK − Q̃K T a (Q̃†)K
)

+ g [Φ,Φ]a = 0 , (2.33)

(σa)ijQ
j
I = Q̃Ij (σa)ji = [Re Φ , σ] = [Im Φ, σ] = 0 . (2.34)

6 In more complicated cases, also mixed branches can appear, where some mesons and
monopoles are non-vanishing at the same time. However, it must be stressed that also in
this case the two sets of operators participate to the dynamics independently and the mixed
branch is actually a product of two manifolds. One factor of the product is parametrized by
monopoles and the other by mesons. See for instance [41] for a detailed discussion.
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On the Higgs branch, adjoint scalars VEVs are set to zero; for this reason, it
is usually said that only SU(2)H factor of R-symmetry group acts non-trivially
on Higgs branch. In order to impose the F and D terms, the following vector
needs to vanish:

µH =


Re
(∑

K Q̃
K
j (T a)jiQ

i
K

)
Im
(∑

K Q̃
K
j (T a)jiQ

i
K

)
∑
K

(
Q†K,jQ

i
K − Q̃Kj (Q̃†)Ki

)
(T a)ji

 = 0 . (2.35)

This can be seen as the mathematical definition of hyperkähler quotient with
the components of vector µH being the moment maps; thus, by definition,
the Higgs branch of an N = 4 theory must be an hyperkähler manifold, with
SU(2)H being identified with the automorphism rotating the three hyperkähler
complex structures. Observe that when the number of hypermultiplets is big
enough, their non-trivial VEVs trigger a complete Higgsing of the gauge group;
in the following, we always assume this to be the case. On the other hand, on the
Coulomb branch all the hypermultiplets have zero expectation value, Q = Q̃ = 0
and the Coulomb branch is parametrized by adjoint scalars, {Re Φ, Im Φ, σ} be-
ing rotated by SU(2)C factor of R-symmetry group. Because of (2.34), scalars
must commute and they cause a Higgsing of the gauge group down to its maxi-
mal torus U(1)rank(G): on the Coulomb branch we still have an Abelian theory,
as the name suggests. Due to quantum effects, it is much trickier to recognize
that Coulomb branches always possess an hyperkähler structure but we can
provide some hints about the correctness of this statement. First of all, we can
think the triplet of adjoint scalars as associated to three complex structures
of a manifold, rotated by an SU(2) automorphism: this would be exactly the
quaternionic structure underlying an hyperkähler manifold. Moreover, they can
combine together with the dual photon to form the four real scalar components
of rank(G) hypermultiplets that can be thought of as living on the Coulomb
branch strictly. Their VEVs can be taken as the coordinates on an hyperkähler
manifold.

A much stronger argument comes from Mirror symmetry. Mirror symmetry
consists of a duality between (N = 4) theories in three dimensions flowing to the
same IR fixed point7; it states that for any theory TA with Higgs and Coulomb
branches {HA , CA}, there always exist a companion field theory TB with the two
moduli space cones swapped, HB = CA and CB = HA. Since any Higgs branch is
hyperkähler, then any Coulomb branch must have a hyperkähler structure on it
too. We will not enter in the mathematical details about hyperkähler manifolds:
in the following, it is enough for us to know that their real dimension is alway a
multiple of 4, due to their quaternionic structure. Even if determining the Higgs
or Coulomb cone of a given Lagrangian N = 4 gauge theory can be sometimes
a difficult task, determining their quaternionic dimension often reduces to a
simple counting problem. Let us consider Higgs branch first: as we have seen,
this is parametrized by the VEVs of scalars in hypermultiplets; each of them
contains in particular 4 real scalars, (ReQI , ImQI ,Re Q̃I , Im Q̃I) that can be
thought of as coordinates of an hyperkähler manifold and we can guess that

7Mirror symmetry has been proposed first in [9] for N = 4 theories, due to the particular
form of the moduli space. In [10, 11], mirror symmetry has been shown to be a duality also
for N = 2 theories.
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the quaternionic dimension of such space equals the number of hypermultiplets.
Nevertheless, we must recall that once hypers get a VEV, the gauge group is
Higgsed, and the vectors “eat” a number of scalars equal to the dimension of
the group. Thus we can state that:

dimHH = #hyper − dim(G) . (2.36)

Now we can consider the Coulomb branch; it is parametrized by expectation
values of scalars sitting in vector multiplets together with the dual photons.
Again, such VEVs cause a Higgsing of the gauge group down to the maximal
torus U(1)rank(G) and the original theory reduces at low anergy to an N = 4
Abelian theory. We can claim that:

dim C = rank(G) . (2.37)

When Chern-Simons couplings are present, the story is slightly different. In
order to understand the main differences when supersymmetry is broken down
to N = 3, let us begin again with an instructive example, QED with Nf flavors
and level κ; equations (2.26),(2.27) get modified in the following way:

ΦQI = Q̃I Φ = 0 ,
∑
J

Q̃J QJ = κΦ , (2.38)

σQI = Q̃I σ = 0 ,
∑
J

(QJQ
†
J − Q̃JQ̃J †) = κσ , (2.39)

In this case the branch where hypermultiplets vanish, Q = Q̃ = 0 is completely
lifted, since now F and D terms would imply Φ = σ = 0. On the other
hand, when φ = σ = 0, we again recognize the moduli space of one SU(Nf )
instanton on C2. Generalizing the previous discussion, we observe that the
presence of a Chern-Simons level can lift the Coulomb branch while the Higgs
branch is untouched. Due to the corrections to F and D terms because of the CS
level, mesons and monopoles can acquire expectation value at the same time.8

For this reason, on these branches there can be a complicated dynamics where
mesons and monopoles participate at the same time and do not decouple (in
contrast to mixed branches of N = 4 theories, see footnote 6). These branches
may be not unique: we call the one with maximal dimension Coulomb branch
and the other ones mixed branches. Also for N = 3 theories, Higgs, Coulomb
and mixed branches are hypekähler manifolds, because scalars and equations of
motions always organize into triplets rotated by an SU(2) R-symmetry; such
R-symmetry can be thought of as the N = 4 R-symmetry SU(2)C × SU(2)H
broken down to the diagonal subgroup. Mirror symmetry is still a duality and
N = 3 theories always come in pairs.

As a final comment, let us observe that information about a hyperkähler
space can be encoded in a generating function called Hilbert series; it consists
of a formal series of the following type 9:

H[t, (w)] =
∑
n=0

χn[w] tn (2.40)

8This is evident, for instance, in 2.38 where the trace of the meson operator is set equal to
the VEV of an adjoint scalar.

9See for instance [42,43] as interesting reviews.
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where t is a fugacity relative to R-symmetry and χn(w) are characters of global
symmetries depending on fugacities w. This means that the coefficient of tn

contains information about the number of chiral operators having R-charge n
together with their representation under non-R global symmetries. As an exam-
ple, the moduli space of one SU(Nf ) instanton on C2 has the following Hilbert
series [44]:

H(2.29)[t,w] =
∑
n=0

χ
SU(Nf )

[n,0,...,n] t
n . (2.41)

We immediately recognize that we have an operator with R-charge one and
transforming in the representation with Dynkin label [1, 0, . . . , 1], i.e. the ad-
joint representation: this is nothing but the meson! With similar considerations,
it is possible to extract information about the moduli space of N = 3 and N = 4
gauge theories in a simpler way. We will present various available techniques
that allows to compute Hilbert series in the following.

2.4 T σ
ρ [SU(N)] theories

Among the all possible N = 4 theories that can be built, the so-called Tσρ
theories represent a very notable example. A lot of their features have been
studied in the past years, such as their partition function [6, 45, 46], Hilbert
series [47–50] or superconformal index [51]. Part of the interest in such theories
is due to the fact that they possess an holographic dual in Type-IIB supergravity
providing several checks. All the Tσρ [SU(N)] models consist of linear quivers:

n1 n2 n3 nr−1

f1 f2 f3 fr−1

(2.42)

Each quiver is formed by r − 1 gauge nodes, each with gauge group U(ni) and
fi fundamental hypermultiplets rotated by U(fi) flavor symmetry group. Lines
connecting two gauge nodes represent hypermultiplets in the bifundamental
representation of the linked nodes. It must be stressed that not all possible
sets {ni}, {fi} are admitted: some choices corresponds to theories where some
monopoles go under the unitarity bound, signaling a so-called bad theory in the
sense of [15]. The two sets of positive integers specifying a Tσρ [SU(N)] theory
can be exchanged in favor of two Young tableaux. ρ is tableau specified by the
length of its r rows, ρ1 ≥ · · · ≥ ρr and such that

∑r
i=1 ρi = N for some fixed

N . In the same way, σ is made of p rows of increasing length σi and such that∑p
i=1 σi = N . However, it is also convenient introducing the transpose tableau

σT , made of pT rows of length σTi . The flavor symmetry groups are simply
determined by σT :

fi = σTi − σTi+1 , σTi = 0 if i > pT , (2.43)

while the ranks of the gauge groups are determined by the following relation:

ni =

r∑
j=i+1

ρj −
pT∑

j=i+1

σTj . (2.44)
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The condition on unitarity of the theory is thus replaced by the condition,
σT ≤ ρ, using the so called dominance ordering of Young tableaux. Observe
that symmetries on the Higgs branch can be always read directly from the
quiver, S (

∏r
i=1 U(fi)). Global symmetry group on the Coulomb branch, in-

stead, is more subtle: at the classical level it consists of topological symmetries
U(1)r only; however, it can enhance to a non-abelian group in the IR. Let us
assume that a subset of r′ of adjacent nodes is balanced, meaning that each of
them satisfies the relation ni+1 + ni−1 + fi = 2ni. This subset of nodes can
be put in correspondence with a Dynkin diagram, suggesting that the topo-
logical group U(1)r

′
actually enhances to SU(r′ + 1). In fact, as pointed out

in [15], when a not is balanced, there exists in the infrared a monopole operator
with conformal dimension 1 and it is the lowest component of a superconfor-
mal multiplet containing a conserved current. When r′ consecutive gauge nodes
are balanced, such conserved currents generates the maximal torus U(1)r

′
of

SU(r′ + 1) and the global symmetry enhances. Beside the global symmetries
on the Higgs and Coulomb cones, a completely geometrical description of the
moduli space of such theories is available. Using the Jacobson-Morozov theo-
rem [52], to each tableau ρ = [ρ1, ρ2, . . . ] with N blocks, it is possible to assign
a nilpotent element of SU(N), that we will denote as ρ(+). Each ρ(+) can be
always put in a standard form:

ρ(+) =

JρT1 JρT2
. . .

 , JρTi =

0 1
0 1

. . .
. . .


 ρTi . (2.45)

Observe that each JρTi can be seen as a raising operator of su(2) in the ρTi -

dimensional representation; for this reason, it is often said that ρ(+) defines
an embedding of su(2) into su(N) with rising operator ρ(+), lowering operator
ρ(−) = (ρ(+))† and Cartan generator ρ(3) = [ρ(+),ρ(−)]. From each raising
operator, we can built an orbit in SU(N):

Oρ = {g−1 ρ(+) g
∣∣∀g ∈ SU(N)} . (2.46)

Oρ is said nilpotent orbit of ρ and it is a manifold with a hyperkähler structure
on it; an orbit Oσ is contained in Oρ if σ < ρ in the sense of dominance
ordering. The nilpotent orbit O[1N ] is the biggest orbit of SU(N) and it is often
referred to as maximal nilpotent orbit of SU(N), NSU(N). Given a Tσρ theory,
its Coulomb and Higgs branches can be identified with the following hyperkähler
spaces:

H[Tσρ ] = Oρ ∩ SσT , C[Tσρ ] = Oσ ∩ SρT , (2.47)

where Sρ is the so-called Slodowy slice transverse to Oρ. It can be defined
as follows: let us consider the embedding defined by ρ(+): the elements of
su(N) decompose in representations of this su(2) sub-algebra. One may pick in
particular elements ta such that:

[ρ(3), ta] = mat
a . (2.48)

Using this elements, we can construct the Slodowy slice as the following subset
in su(N):

Sρ = {ρ(+) +
∑
a

ya t
a} (2.49)
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with ya arbitrary coefficients. Finally, action of mirror symmetry simply map
Tσρ in Tρσ .

The most important model for the following discussion corresponds to the
case ρ = σ = [1N ]; it is usually denoted simply by T [SU(N)] and the corre-
sponding quiver is:

1 2 N − 1 N (2.50)

Higgs and Coulomb branches are both the maximal nilpotent orbitsNSU(N) with
SU(N) flavor groups acting on them; in fact, all the N − 1 gauge nodes of the
quiver (2.50) are balanced so that the U(1)N−1 topological symmetry completely
enhances in the IR. Because of this enhancement, it is not possible to find a
Lagrangian description at the fixed point with manifest SU(N)2 symmetry. One
can also imagine the theory in (2.50) to possess extra U(1)2 global symmetry
acting trivially. Moreover, one may decide to turn on background gauge fields
aBki for such Abelian factors, adding to the Lagrangian a mixed Chern-Simons
term for them:

δLT [SU(N)] = − 1

4π

∫
abackg.

1 ∧ dabackg.
2 + susy completion . (2.51)

This interaction does not affect the dynamics at this stage. However, it is rele-
vant in a gauging procedure, since this induce a mixed CS interaction between
two gauge vector multiplets. This slightly deformed theory is called T [U(N)]
and is said to possess U(N)2 global symmetry (at the infrared fixed point) in
the sense discussed. (2.51) is sometimes thought of as an almost empty theory
by its own and called T [U(1)]. Observe that T [U(N)] is a self-mirror theory.

Up to now, we discussed gauge theories with U groups only. However, it is
possible to build classes of N = 4 linear quivers, analogue to Tσρ , but with dif-
ferent symmetry groups realized on Higgs and Coulomb branches; again, these
theories can be put in one-to-one correspondence with pairs of nilpotent orbits
of a given Lie group.10 In the following, we will be interested in models, usu-
ally denoted by T [G], whose moduli space is realized as a product of maximal
nilpotent orbits NG ×NG with flavor symmetry G × G. It turns out that this
is possible if and only if the group G is self-Langlands dual and in particular
in the rest of the thesis we focus on SO(2N), USp′(2N) and G2 cases.11 We
will provide the explicit quiver construction of such models in the appropriate
sections.

2.5 Brane engineering

N = 4 linear quivers admit a general brane engineering first proposed by Hanany
and Witten [2] and named after them. Hanany-Witten (HW) setup consists of

10The relation between nilpotent orbits of classical and exceptional groups and Moduli
spaces of N = 4 theories is an argument extensively studied in literature. A more exhaustive
analysis can be found in [53–55].

11USp′(2N) group is subtle. Its definition is intrinsically related to its use in quantum field
theory as gauge group; in particular it differs from USp(2N) for the matter representations
and magnetic charges admitted. In four dimensions this is also related to the presence of a
non-trivial theta angle θ = π [56].
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NS5, D5 and D3 branes spanning the following directions:

0 1 2 3 4 5 6 7 8 9
D3 × × × ×
D5 × × × × × ×
NS5 × × × × × ×

(2.52)

Observe that in this configuration the ten-dimensional Lorentz group SO(1, 9) is
broken down to SO(1, 2)×SO(3)345×SO(3)789; the first factor, SO(1, 2), can be
identified with the Lorentz group of the effective three-dimensional theory living
on the stack of D3-branes. The two SO(3) groups acting on {3, 4, 5} and {7, 8, 9}
directions can be identified with R-symmetry instead; in particular, SO(3)789

can be identified with the SU(2)H , while SO(3)345 is related to SU(2)C . The
most general brane system has the following form:

•
f1

•
f3

•
f3

•
fr−3

•
fr−2

•
fr−1

n1

n2

n3

nr−3

nr−2

nr−1

(2.53)

Each vertical line represents an NS5-brane. The i-th and (i+1)-th NS5-brane
are connected by ni D3-branes ending on them; in the i-th interval, fi D5-branes
can be added and they are signaled by black dots. Given a brane configuration,
the effective N = 4 gauge theory living on the D3-branes is quite simple to
determine. To each stack of ni D3s in the i-th interval we associate a U(ni)
gauge group and two consecutive nodes are “connected” by an hypermultiplet
transforming in the bi-fundamental representation (ni, ni+1). If the i-interval
also contains fi D5-branes, we add to the quiver fi hypermultiplets transforming
in the fundamental representation of the i-th gauge node. Using these rules, one
immediately recognize that the brane configuration (2.53) is associated to the
linear quiver (2.42). Observe that NS5-branes are in general related to vector
multiplets while D5 ones bring information about hypermultiplets.

The positions of branes in a given setup also have a suggestive interpretation.
In order to make the discussion lighter, let us consider the following brane
configuration:

w

x6z

x6
1 x6

2 x6
3

• • • •
(2.54)

In the previous picture we collect the coordinates {x3, x4, x5} in the vector
w and the coordinates {x7, x8, x9} in the vector z. Moreover, we represented
fundamental strings with wiggly lines. Let us also stress that in (2.54), the dots
should be understood as branes extending in the z direction. Following our
previous discussion, on each stack of coincident D3-branes lives a U(2) gauge
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theory, whose coupling constant is identified with the distance along x6 of two
consecutive NS5-branes.

1

g2
i

= |x6
i − x6

i+1| . (2.55)

In this sense, the limit of coincident NS5-branes is translated as a strong cou-
pling limit on the quantum field theory side. Vector field degrees of freedom
are usually identified with fluctuations of fundamental strings connecting D3s
in the same stack. When the two D3-branes get separated in some direction,
the fundamental strings acquire a non-trivial tension, interpreted as the mass
of a W-boson; in figure (2.54), the D3-branes in the first segment are separated
in the w direction and the gauge group has been Higgsed down to the maximal
torus U(1)2. This is exactly what usually happens on the Coulomb branch! We
can thus expect that the positions wa

D3 to parametrize the VEV of the scalars in
vector multiplets; any time D3s are free to move in the w directions, this signals
a non-trivial Coulomb branch. Let us consider now strings in (2.54) connecting
D3-branes in adjacent stacks: Chan-Paton decoration suggests that their fluctu-
ations are nothing but bi-fundamental hypermultiplet degrees of freedom. Any
time two adjacent D3-branes are displaced in the w direction, wa

i −wb
i+1 6= 0,

fundamental strings possess non-vanishing tension and the hypers become mas-
sive; when D3-branes align, bi-fundamental hypermultiplets become massless.
In the very same way, strings stretching between a D5-brane and a D3-branes
carry the degrees of freedom of flavor hypermultiplets transforming in the fun-
damental of the gauge group; moreover the distance in the w direction can be
again interpreted again as a mass. When some D5-branes align with a stack of
D3-branes, some flavor multiplet becomes massless. At the same time, portion
of D3-branes now links D5-branes and are free to displace in the z direction and
the displacement can be thought as a mass for W-bosons. Since we can always
add an arbitrary number of D5-branes, we can in principle reach a configuration
in which the gauge group gets completely Higgsed, similarly to what happens
on the Higgs branch. Any time a D3-brane is free to move in z direction, this
signals a non-trivial Higgs branch.

In terms of brane configuration, mirror symmetry exchanging Higgs and
Coulomb branch has a simple interpretation: its action is the same of S-duality,
exchanging D5 and NS5 branes. Building the S-dual brane configuration can
we sometimes tricky; in fact, we must respect some physical requirement:

• Before taking the S-dual, all the D5-branes must be aligned to the D3-
branes and separated along the x6 direction.

• The net number of D3-branes ending on a 5-brane12 must be conserved.

• Only one D3-brane can have a given D5-NS5 pair as endpoints; in fact it
turn out that this is the unique configuration preserving supersymmetry
and this rule is often referred to as “S-rule”. Such D3-brane connecting
branes of different kind is considered stacked and not free to move, since
it ends on branes spanning different directions.

• Segments of D3-branes stretching between two NS5(D5)-branes are con-
sidered free to move in {3, 4, 5}({7, 8, 9}) directions.

12i.e. the number of D3s ending from the left minus the number of D3s ending from the
right in the NS5 case, vice-versa for a D5.
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Let us apply this rules to an explicit example; let us consider a U(2) gauge
theory with four flavors and its companion brane configuration:

2

4

• • • •
(2.56)

In order to get the mirror theory, we can take brane configuration, align the
D5 and D3 branes and apply an S-transformation without violating S-rule and
preserving the net number of D3s ending on a 5-brane:

• • • • S−Trans.
=⇒ • • (2.57)

The S-dual brane configuration can be refined using a so-called Hanany-Witten
move. Given a D5 and an NS5 brane connected by a D3-brane, this configuration
can be traded for a new one, where the D3 brane disappeared and the D5-brane
crossed the NS5 one:

• HW-move
=⇒ • (2.58)

As observed in [2], Hanany-Witten move is nothing but the manifestation of
the conservation law for RR and NS three-form fluxes. Applying HW moves to
the external D5-branes in (2.57), we finally obtain the theory dual to U(2) with
four flavors:

1 2 1

2

• •

(2.59)

The same procedure can be used in more general settings in order to obtain
couples of mirror configurations and theories. Using HW moves, it is possible
to construct Tσρ theories in a simpler fashion. Let us consider two diagrams
ρ = (ρ1, . . . , ρr) and σ = (σ1 . . . σs), both with total number of blocks N .
We can draw a brane system consisting of s consecutive D5-branes and then r
consecutive NS5s. σ1 represents the number of D3 brane ending on the more
internal D5-brane and so on; in the same way, ρ1 is the net number of D3-branes
ending on the more internal NS5-brane and so on. S-rule uniquely fixes such
an initial configuration and using HW moves we can trade it for a usual setup
where all the D3s stretch between NS5s:

T
[2,1]
[1,1,1][SU(N)] :

•

•

HW-move
=⇒

•
• (2.60)
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2.6 Supergravity realization

All the N = 4 three-dimensional linear quivers admit a Type-IIB holographic
background AdS4×M6, first discovered in [3]; the holographic duality proposed
has been subsequently studied and checked in [4, 5] and it is one of the most
notable examples of AdS/CFT duality. Some features of the internal space M6

can be guessed thinking at the supposed dual conformal theory: for instance, R-
symmetry is realized, on the supergravity side, as isometry group of the internal
space with non-trivial action on the supercharges. In the case of our interest, R-
symmetry group is a double copy of SU(2), whose unique orbits are S2 or S3. An
educated guess for the holographic background is then AdS4×S2×S2×Σ2 where
Σ2 is a to-be-determined Riemann surface. The background is thus specified by
the choice of warpings, dilaton and fluxes. Since all these quantities must be
invariant under isometries, the most general ansatz is:

ds2 = e2Ads2
AdS4

+ e2∆1 ds2
S2
1

+ e2∆2 ds2
S2
2

+ ρ2dzdz , (2.61)

F1 = f(z, z) , F5 = u ∧ volS2
1
∧ volS2

2
, (2.62)

F3 =

2∑
i=1

vi ∧ volS2
i
, H =

2∑
i=1

wi ∧ volS2
1
. (2.63)

We decided to introduced a complex coordinate z on Σ, whose metric can be
always put in warped diagonal form; the functions A,∆i, ρ depend on z, z only,
while vi, wi and u are one-forms on Σ. The exact functional dependence of such
functions and one-forms in order to solve BPS equations is not relevant for us.
What is really important is that all the quantities can be specified in terms of
a couple of arbitrary harmonic functions, Ai(z), on the Riemann surface. If
the harmonics are smooth, Σ must have the topology of the strip, R× Interval
with coordinates (y, x), and the ten-dimensional space asymptote to AdS5 × S5

for y → ±∞; the dilaton has two different asymptotic values φ
(±)
∞ and thus

the solution is actually a Janus solution. On the field theory side, this means
that such a solution is dual to N = 4 SYM in four dimensions with coupling
constant jumping across an interface. However, the harmonic functions can also
have singularities. A first kind of singularity can be introduced at points sitting
on the two boundaries of the strip, as we illustrate in the following picture:

AdS5 ⇥ S5 AdS5 ⇥ S5

AdS4 ⇥ B6 AdS4 ⇥ B6

(2.64)

We represented the singularities with dots; the singular behavior close to the
upper side of the strip signals the presence of a D5-brane, while the poles on the
other boundary of the strip are NS5 singularities. However, none of these two
kinds of singularities can change the behavior at y →∞ and we only obtained a
different Janus solution. With an appropriate choice of Ai, we can still add two
D3 singularities at infinity. In this way, the internal space has the topology of
the six-dimensional ball, B6 ∼ S5× I with I an interval. The backgrounds built
in this way can be put in one-to-one correspondence with N = 4 linear quivers
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in three-dimensions. In figure (2.65), we provide a pictorial representation of
the surface Σ built in this way.

AdS5 ⇥ S5 AdS5 ⇥ S5

AdS4 ⇥ B6 AdS4 ⇥ B6

(2.65)
It must be stressed that explicit insertion of D3 branes in the background is
not the unique way to obtain a compact internal manifold M6. In fact, let us
consider a choice of harmonics periodic in y with period T :

Ai(y) = Ai(y + T ) . (2.66)

This implies that we can quotient the strip with respect to the shift symmetry
y → y + T , performing the following identification of coordinates:

(y, x) ≡ (y + T, x) . (2.67)

We can also imagine to cut the strip at given reference points y0 and y0 + T
and gluing together the cut edges. Σ has now the topology of the annulus, as
depicted in figure (2.68).

(2.68)

The last kind of backgrounds we have presented are dual to a different class of
theories, i.e. N = 4 circular quivers. Similarly to the supergravity construction,
we can imagine to take a linear quiver with external nodes of equal rank and
identifying them. The most general circular quiver is represented in (2.69).

n1

n2

n3n4

nr

f2

f1

f3f4

fr

(2.69)
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Chapter 3

S-duality walls

3.1 Gaiotto-Witten construction

Up to now, we considered brane configurations without really caring about
the physics of brane intersections, except in rare cases as S-rule. In general,
whenever a brane has and endpoint, rich and interesting physics arises. Let us
consider, for instance, a semi-infinite D3-brane; it spans directions as in (2.52),
but now it extends along x6 > 0 only. Since an endpoint occurs, we must
specify some boundary conditions and we would like to impose them in such a
way to preserve some supersymmetry. At low energy, the brane dynamics can
be usually traded for the dynamics of some quantum field theory living on the
worldvolume; in the case at hand, it is well known that small fluctuations of a
stack of N D3-branes admit a description in terms of 4d SU(N) N = 4 SYM
living on the worldvolume. The bosonic content consists of a SU(N) vector
AM with M = 0, 1, 2, 3 and six real scalars rotated by SO(6) R-symmetry. The
scalars can be collected into two sets W and Z describing the fluctuations of
the brane in w = {x3, x4, x5} and z = {x7, x8, x9} directions. Observe that
the splitting of the coordinates fits an eventual breaking of R-symmetry down to
SO(3)×SO(3). In what follows, it is convenient to define t = x6 and to perform
the splitting AM = {Aµ, A3} with µ = 0, 1, 2. The scalars and the vectors
depend on both xµ and t but we need to specify boundary conditions as t→ 0.
A way to preserve half of supercharges is imposing usual Neumann and Dirichlet
boundary conditions on the effective 3d hypermultiplet {A3,Z} and 3d vector
multiplet {Aµ,W }. The two multiplets cannot have equal boundary behavior:
if {A3,Z} obeys Neumann boundary condition, then {Aµ,W } has Dirichlet
ones, i.e. vanishes at t = 0. We will refer to this configuration as D5-like
boundary conditions; vice-versa, we will have a NS5-like boundary conditions.
Besides those two cases, more complicated situations can occur. As an example,
D5-like conditions can be modified as follows:

(∂t − iA3)Z +Z ×Z = 0 , (3.1)

(∂t − iA3)W = [W ,W ] = [Z,W ] = 0 , (3.2)

where we introduced the vector product (Z ×Z)i = εijk[Zj , Zk]. We can think
the brane degrees of freedom along the w directions as frozen. Z can assume,
instead, a non-trivial profile depending on the solution to (3.1). These equations
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are called Nahm equations and they have been extensively studied in literature.
A class of solutions is of the form:

Zi =
ti

y
+ o(y) , (3.3)

where ti are matrices forming a (reducible) su(2) representation embedded in
su(N). As we learnt in section 2.4, each embedding can be described in terms of
a Young tableaux ρ. From a brane perspective, we can think the solution (3.3)
in the following way: as the D3-branes approach to y = 0, they start opening
in the w directions, “polarizing” into r concentric stacks of D5-branes, with
r number of rows in ρ. An artist’s impression of such situation is illustrated
in (3.4). This kind of brane dynamics is similar to the Myers effect described
in [57].

ρ = [2, 2, 2] ,
•
•
•

(3.4)

Understanding the effective three-dimensional field theory arising from this kind
of configurations is not obvious. One reason is that the gauge group is broken
down to the commutant of ρ in su(N) and the way the boundary theory couples
to the original 4d theory is not quite clear. S-duality helps to address this
problem; in fact, we can dualize the brane setup in (3.4) in order to get a new
system involving NS5s only:

2 4 6 6 (3.5)

In (3.5), the D5-branes are traded for NS5s and we obtained a usual linear
quiver. 4d SU(6)N = 4 SYM is represented by an hexagonal purple node and
its coupling to the purely 3d boundary theory is represented by a purple dashed
line. This coupling is nothing but the usual minimal coupling of the SU(6) flavor
current to the bulk gauge field. The 4d coupling constant is considered finite,
even if semi-infinite branes are usually interpreted as flavors. Freezing out the 4d
gauge symmetry theory can be obtained by ending the semi-infinite D3-branes
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on additional D5s. In fact, the vector multiplet must now obey Dirichlet and
Neumann boundary conditions at the same time.

2 4 6 (3.6)

In general, understanding boundary conditions for D3-branes, or equivalently
for the worldvolume four-dimensional theory, is of primary interest. For this
reason, it is better to address a more systematic study by means of examples of
growing complexity. Let us start with a single D3-brane with NS5-like boundary
conditions, completely freezing {A3,Z}. We can couple the bulk theory to n
additional hypermultiplets on the boundary by inserting n D5s not serving as
endpoints. The new setup is illustrated in (3.7).

• • . . . •

n 1 (3.7)

Again, in (3.7) we make a clear distinction between the boundary theory (n
free hyper) and the bulk SYM theory; the coupling, represented by the purple
dashed line, is the usual minimal coupling if we can think the hypers to possess
charge 1 under the bulk gauge symmetry. In order to investigate the dual D5-
like boundary conditions, we can simply S-dualize the previous configuration.
Let us stress that S-duality in this context cannot be identified with mirror
symmetry, that is a purely three-dimensional transformation: in fact, we also
have a bulk 4d theory to take into account. The S-dual of (3.7) consists of n
NS5 brane, a D5 and a semi-infinite D3:

•
1

1 1 1 1

1 1

(3.8)
The brane system dual to the boundary theory in (3.10) can be built just by
ending the n semi-infinite D3s on n additional D4s. Knowledge of the brane
system allows us to construct the mirror companion of the 3d boundary theory:

1

1 1 1 1

1

S−Mirror
=⇒

n

1

(3.9)

The mirror of (3.10) resembles something: this is nothing but the initial bound-
ary n free hypermultiplets now coupled to a purely three-dimensional vector
multiplet. Finally, instead of coupling the bulk theory to a flavor hypermul-
tiplet as in (3.7), we can couple it to the mirror theory on the right of (3.9).
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Because we are performing a mirror transformation, this coupling cannot oc-
cur on the Higgs branch1 but we need to gauge a Coulomb global symmetry
instead. We already know which symmetry lives on the Coulomb branch, topo-
logical symmetry, whose current is the field strength of the U(1) connection. We
can thus couple minimally the bulk SYM and (3.9), providing a new description
of the S-dual configuration of (3.7):

•
n

1 1
− 1

4π

∫
A4d ∧ dA3d

(3.10)
The minimal coupling between the 3d topological current and the 4d vector is
nothing but the BF coupling − 1

4π

∫
A4d ∧ dA3d. As we commented in section

2.4, this mixed Chern-Simons coupling can be thought of as theory on its own,
even if empty, i.e. T [U(1)].

Let us now consider a more involved example, two D3 branes with NS5-like
boundary conditions and n additional D5-branes; This corresponds to N = 4
SYM coupled to n boundary hypermultiplets:

• • . . . •

n 2 (3.11)

In order to understand the S-dual D5-like boundary condition, we can simply
dualize the setup (3.11) getting the following one:

•
1

1 2 2 2

n− 2 U(2) nodes

2 2

(3.12)
Instead of considering the minimal coupling between the bulk theory and SU(2)
flavor symmetry on the Higgs branch as in (3.12), we can instead couple the
bulk theory to Coulomb branch symmetries of the mirror boundary theory:

1 2

1 2 2 2

n− 2 U(2) nodes

Mirror
=⇒

n

2 1

=

n

2

(3.13)

In (3.13), we denoted with a red octagon a T [SU(2)] theory whose Higgs branch
SU(2) global symmetry has been gauged in order to be coupled to the original n

1Meaning that we cannot gauge a symmetry rotating hypermultiplets.

33



free hypermultiplets. Finally, (3.12) admits the following equivalent description:

n 2 2
H C (3.14)

The gauging between the n free hypermultiplets and the bulk theory is now
“mediated” by a T [SU(2)] theory whose global symmetries has been gauged.
The Coulomb SU(2) factor has been minimally coupled to the original bulk
theory while the Higgs SU(2) factor is gauged and minimally coupled to the
original n free hypermultiplets. Let us stress again that there does not exist a
Lagrangian description of T [SU(2)] that makes the whole SU(2)2 global sym-
metry manifest. In fact, the Coulomb branch factor arises at low energy as
result of an enhancement of the U(1) topological symmetry. For this reason, we
have to consider such coupling non-Lagrangian.

With the previous two examples at hand, we are ready to fully generalize
the result. The starting point is a stack of N D3-branes with NS5-like boundary
conditions and a number of D5s participating as flavors and not as endpoints;
respect to the previous study cases, we admit the D3s to end in various way
on a number of NS5s. This situation can be understood in an abstract way as
a bulk N = 4 SYM coupled to some boundary theory B with SU(N) global
symmetry on his Higgs branch.

B

N

(3.15)

Applying S-duality to this general setup, we obtain the bulk theory to be coupled
to Higgs global symmetry of a new boundary SCFT that we denotes as B∨.
Let us stress again the B∨ is not the mirror of B because S-duality cannot be
identified with mirror symmetry at this stage. A description of B∨ is not alway
at hand. However, we can now provide a way to bypass the problem: we can
consider the bulk theory to be coupled to the Coulomb branch symmetry of the
mirror theory, Mir[B∨] = B̃∨. The mirror B̃∨ can be built generalizing what we
observed in the previous examples: it is nothing but the original B coupled to
the Higgs symmetry of T [SU(N)] , B ×H T [SU(N)].

Mir
[
B∨

]
=

B

H

N

(3.16)

Finally, the S-dual of (3.15) consists of T [SU(N)] coupled on the Higgs branch to
B and on the Coulomb branch to the bulk theory. Again, we stress that gauging
the Coulomb branch SU(N) global symmetry makes this kind of coupling non-
Lagrangian. A summary is illustrated in (3.17), where C and B denote which
symmetry factor of T [SU(N)] has been gauged.

B

N

S-dual
=⇒

B∨

N

Mirror
=⇒

B̃∨
C

N

=

N

C

N

H
B

(3.17)
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The coupling between two theories by means of a T [SU(N)] theory will be
denoted in the following as:

B B′
T [SU(N)]

(3.18)

It must be pointed out that, up to now, we only assumed the presence of NS5-like
boundary conditions. Nonetheless, more general constraints involving D5-like
boundary conditions are possible. In such cases, we need to deal with Nahm pole
singularities for worldvolume fields. Following the most general story in [15], it
is always possible to trade exotic boundary conditions in favor of a coupling to
some Tσρ theory, generalizing our previous analysis.

3.2 S-fold theories

Using the Gaiotto-Witten construction, it is possible to build a new class of
three-dimensional N = 4 SCFTs that are object of study of this thesis. Let us
start considering the following field theory setup in four dimensions {x0, x1, x2, t}:
in the region t < 0 physics is described by N = 4 SYM with gauge group SU(N)
and coupling constant g− while the region t > 0 differs for a different choice
g+. The two constants are chosen in such a way the left region to be at weak
coupling and the right one to be strong coupling. Usually, it is also common to
think the coupling constant as a smooth function g(t) sharpened on t = 0 and
with asymptotic values g±. Such a setup is usually named Janus configuration.
It can be thought to be engineered by two stacks of semi-infinite D3-branes
spanning respectively y > 0 and y < 0 and both ending at an t = 0 interface.

g+

g−
N D3s

N D3s

g(t) (3.19)

In order to deal with the strongly coupled sector, we can use Gaiotto-Witten
proposal. First we perform an S-duality transformation in the t > 0 region.
What we land on is N = 4 SYM weakly coupled to some boundary 3d theory
with SU(N) symmetry on its Higgs branch. Following the steps of section 3.1,
we can expect the t > 0 region to be described by N = 4 SYM minimally
coupled to boundary theory, T [SU(N)], gauging the Coulomb SU(N) factor.
In this sense, we can think of T [SU(N)] as the theory living on a duality wall,
emerging because of the effect of a local S-duality transformation. We can
reduce to a pure three-dimensional configuration if we end the semi-infinite D3-
branes on some NS5s: in fact, the new boundary conditions kill the fluctuations
of the fields depending on t. The new configuration can be represented as
follows:

N D3s

N D3s

N N

T [U(N)]

(3.20)
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The red wiggly line in the brane system (3.20) represents an interface passing
through the system undergoes an S-duality transformation: we will call such
interface an S-duality wall or “S-fold”. Observe that the duality transformation
is only local and is not implemented on the whole space. We used a straight
red line to denote the associated coupling to T [U(N)]. Let us stress that, once
we reduce to the 3d modes only, we are considering a slightly different coupling
T [U(N)] instead of T [SU(N)]. One could expect this noticing that in three-
dimensions, quivers dual to Hanany-Witten setups have gauge symmetry made
of U(N) factors. Let us also remind that T [U(N)] is actually a product theory:

T [U(N)] = T [U(1)]× T [SU(N)] , (3.21)

where T [U(1)] has been already introduced in section 3.1 and section 2.4. Be-
cause T [U(1)] will play a fundamental role for us, let us write the exact form
in N = 2 language of the BF coupling induced on two abelian vector multiplets
{Vi,Φi} by a this almost empty theory (see for instance [58]):

LBFT [U(1)] = − 1

4π

∫
d3xd2θd2θ (Σ1V2 + Σ2V1) +

1

2π

∫
d3xd2θΦ1Φ2 + c.c. .

(3.22)
where V,Φ and Σ = iDDV respectively denote the N = 2 vector multiplet,
the adjoint chiral multiplet and the linear multiplet of an N = 4 vector mul-
tiplet. Let us observe that up to now we assumed that the two U(N) flavor
symmetries of a T-theory are naively identified with the gauge groups of the
adjacent nodes. As pointed out in [19], there are actually two possibilities
for coupling the U(N) flavor symmetry to the U(N) gauge field on each side,
namely U(N)+ = diag (U(N)× U(N)) or U(N)− = diag

(
U(N)× U(N)†

)
.

For T [U(N)] , the gauging is chosen to be U(N)+ on both sides, whereas we
define as T [U(N)] the case in which the gauging is chosen to be U(N)+ on one
side and U(N)− on the other side.

The configuration shown in (3.20) is linear. This means that we can make
all the branes pass the interface S-dualizing them, reaching a new system where
no coupling to T [U(N)] (T-link in what follows) is involved. Let us consider,
instead, a circular brane system as the follows:

N D3• •

S

N N1 1

T [U(N)]

(3.23)

In this case, moving a brane across the S-fold only produces a new configuration
equivalent to the original one. Each of this systems contains a T-link coupling
two adjacent nodes: circular models are really non-trivial. We expect such
theories to flow to a super-conformal fixed point at low energy. We call this
class of super-conformal theories S-fold SCFTs.

As a last comment, let us observe that the number of supercharges preserved
by S-fold models is not obvious. In fact, since we are gauging at the same time
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Coulomb and Higgs symmetries of T [U(N)], the two factors of R-symmetry,
SU(2)C and SU(2)H , must be identified. R-symmetry is naively broken down
to a diagonal SU(2) factor and one could be tempted to claim that now only
N = 3 supersymmetry is preserved. This claim can be considered to be true
in the cases we have presented up now. However, we will see how non-trivial
Chern-Simons levels can modify the previous statement.

3.3 Supergravity realization

One of the features that makes S-fold SCFTs interesting is the presence of a
holographic dual, first studied in [19, 20]. As the field theory construction sug-
gest, the starting point is the class of N = 4 backgrounds we presented in
section 2.6. Let us recall the main features. The Type-IIB solutions have the
form AdS4 × S2 × S2 × Σ, where Σ is a Riemann surface with the topology of
the strip. The solutions are fully characterized by a choice of two harmonic
functions Ai(z) on Σ and in particular eventual singularities are of first rele-
vance in describing the backgrounds. We presented three kind of singularities,
signaling presence of D3, D5 and NS5 branes. We observed that whenever the
harmonic functions Ai are periodic, we can cut and glue the strip at two sides,
obtaining the holographic duals of circular quivers. In that case, we exploited
the shift symmetry Ai(y) = Ai(y + T ) where y is the non-compact direction
of the strip and T is a given period. However, this is not the most general
gluing procedure one can imagine. In fact, we can think to use the fact that
Type-IIB supergravity possesses an SL(2,Z) action on it. Such transforma-
tions rotates the axio-dilaton τ = C0 + ie−φ and the complexified three-form
G3 = eφ/2F3 − ie−iφ/2H. The five-form flux and the metric are instead invari-
ant. Because the solution is specified by metric and fluxes, we can focus on their
orbits under SL(2,Z). We can imagine to pick a couple of harmonic functions
such that2:

τ(y + T ) = M τ(y) , (3.24)

where M is an element in SL(2,Z). Elements of SL(2,Z) can be always written
as combination of two generators:

S =

(
0 −1
1 0

)
, T =

(
1 0
1 1

)
. (3.25)

The effects of these transformations are better understood in terms of brane
systems involving webs of

(
p
q

)
5-branes. In our conventions,

(
1
0

)
is an NS5 brane

while
(

0
1

)
is a D5. As we know S swaps D5s and NS5s while the effect of T k is

quite different: it leaves D5-branes invariant and rotates NS5s as follows

T k
(

1

0

)
=

(
1 0
k 1

) (
1

0

)
=

(
1

k

)
. (3.26)

A
(

1
k

)
brane turns on Chern-Simons levels k and −k on the left and right node

respectively.

2An appropriate SL(2,Z) element M ′ must rotate at the same time also the complex 3-form
flux.
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Let us assume that the choice of harmonic functions in our background is
such that:

τ(y + T ) = S τ(y) . (3.27)

We can perform a quotient of the strip with respect to the T -shift symme-
try and S-transformation; this means that we make an identification of points
on Σ, (y, x) ∼ (y + T, x), such that the background is left invariant up to an
S-transformation. In other words, the system undergoes an S-duality transfor-
mation when passing trough the cut. In order to get an honest supergravity
solution, a third transformation must be performed at the cut: we need an an-
tipodal identification of the compact coordinate x. We end up with a Riemann
surface with the topology of the Moebius strip and a non-trivial monodromy
under SL(2,Z). The gluing procedure is illustrated in (3.28).

y=0 y=T

S S

(3.28)

The cut can be understood an S-interface in a brane system while the antipodal
identification of the compact coordinate consists of a flip of coordinate at the
S-interface (x3,4,5, x7,8,9) → (x7,8,9,−x3,4,5). Because of such identification, we
expect the two SU(2) factors of R-symmetry to be broken to the diagonal SU(2)
subgroup and only N = 3 supersymmetry to be preserved, as expected. We will
prefer to call this interface “S-flip”.

Another possibility is:

τ(y + T ) = Jk τ(y) , Jk = −ST k =

(
k 1
−1 0

)
. (3.29)

This time, in order to obtain a good supergravity solution we do not need
any antipodal identification and the R-symmetry group is left unbroken. This
suggests that the class of SCFTs dual to this background preserve all the initial
supercharges. This can sound strange, since the action of the element T turns on
CS a level, explicitly breaking supersymmetry at Lagrangian level. We identify
the points (y, x) ∼ (y + T, x) up to a Jk transformation. We obtain a new
Jk-interface that we will refer to as J-fold. Observe that passing through the
J-fold the background, or equivalently the brane system, undergoes an S-duality
transformation, signaling the presence of a T-link coupling two adjacent nodes,
and a Tk transformation, that has the effect to turn on a CS level k for the left
T-linked gauge nodes. The choice of the left node is purely conventional and it
will be kept all along the thesis. Together with Jk, we can also consider J−1

k :

it couples two adjacent gauge nodes by means of T [U(N)] and turns on a CS
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level −k on the right node. The Jk cut is represented in (3.30).

y=0 y=T y=0 y=T

J J

(3.30)
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Chapter 4

The moduli spaces of S-fold
CFTs

4.1 Models with one S-flip

In this section we want to study models dual to circular Hanany-Witten con-
figurations where an S-flip surface has been inserted. From a quantum field
theory perspective, the dual models consist of circular quivers where a couple of
adjacent gauge nodes is connected by a T [U(N)] theory whose SU(N)2 global
symmetry has been gauged. Moreover, let us stress that no Chern-Simons cou-
pling are included. Since the T-link is by definition a non-Lagrangian coupling,
we need an ad hoc proposal for the moduli space of S-flip models to be tested
against mirror symmetry. This means that, given two theories A and B related
by S-duality, our proposal must satisfy the condition HA = CB and HB = CA.
Let us summarize the main results. We propose that the Higgs branch can be
computed as an hyperkähler quotient of a given initial quaternionic manifoldM.
Each cone of T [U(N)] is described by the maximal nilpotent orbit of T [SU(N)]
while each hypermultiplet defines the quaternionic space C2dimR where R is
the representation under which the multiplet transforms. The product of such
spaces defines the parent manifoldM. The hyperkähler quotient is nothing but
the gauging of some symmetries do to the presence of vector multiplets. At
geometric level, this means the we need to identify all points onM that can be
related by a gauge transformation. The Higgs branch of a generic S-flip model
thus admits a generic form:

HS-flip =
NSU(N) × NSU(N) ×

∏
I=1 C2dimRI

G
, (4.1)

where I runs over the whole set of hypermultiplets and G is the total gauge
group. (4.1) can be translated in the language of Hilbert series. Consistency
with mirror symmetry suggests the Coulomb branch of an S-flip theory can be
also computed in a systematic way. We impose that the scalars in the vector
multiplets connected by the T-link are frozen and thus cannot participate to the
Coulomb branch. Using this prescription, we remain with a wreck quiver where
the T [U(N)] theory disappeared and the linked nodes behaves like usual SU(N)
flavor hypermultiplets. We claim that the Coulomb branch of the wreck quiver
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coincides with the one of the initial S-flip model. We will refer to this prescrip-
tion as freezing rule. Observe that the freezing rule has a natural interpretation
at the level of brane configuration. In fact, expectation values of scalars sitting
in vector multiplets are put in correspondence with the positions of D3s along
the directions spanned by NS5 branes. The fact the such scalars get frozen,
means that D3 branes ending on an S-fold are stacked at fixed position: observe
this is a non-trivial prediction about brane dynamics. In the rest of the section,
we will test the conjecture in various examples.

4.1.1 Flavored affine A1 quivers

The first example we want to present is the following: Let us consider the
following brane set-up and the following theory.

N D3

NS5

•D5

•

S

N N2

T [U(N)]

(4.2)

We will refer to this model as a flavored affine A1 model, because of the partic-
ular pattern of the gauge nodes. As first example, we will study it in full detail.
Let us start analyzing the Higgs branch of such model. First of all, we can
easily compute the (quaternionic) dimension of such space, using the general
prescription presented in section 2.3. The only non-trivial information that we
need is the dimension of the maximal nilpotent orbit NSU(N). However, it can
be computed using the quiver description (2.50) of T [U(N)]:

dimHH [T [U(N)]] = dimHC [T [U(N)]] =
1

2
N(N − 1) . (4.3)

With this information at hand, we can conclude that:

dimHH(4.2) = N(N − 1) +N2 + 2N −N2 −N2 = N , (4.4)

where 2N is the contribution of flavor hypermultiplets, +N2 comes from bi-
fundamental matter and the the the gauge vectors are taken into account by
means of the two negative contributions −N2. H(4.2) also admits a formal
description as in (4.1). Denoting the three gauge groups in (4.2) as U(N)i,
i = 1, 2, we claim the following to hold:

H(4.2) =
H ([U(2)]− [U(N)1])×NSU(N)1 ×NSU(N)2 ×H([U(N)1]− [U(N)2])

U(N)1 × U(N)2
,

(4.5)
HereH[[U(2)]−[U(N)1]] is nothing but the flat hyperkähler space C4N parametrized
by the VEVs of the flavor hypermultiplets, while bi-fundamental hypers enter
the Higgs branch as H([U(N)1] − [U(N)2]) = C2N2

. Observe that in the nu-
merator of (4.5) we considered all hypers as free: gauging of SU(N)2 global
symmetries is taken into account by means of the quotient operation. A more
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detailed and quantitative description of the hyperkähler space (4.5) can be done
using Hilbert series. Let us review the main rules:

• A hypermultiplet, with chiral components (Q, Q̃) transforming in some
representation (R,R) of global and gauge symmetry group G, contributes
to the Hilbert series in the following way1:

H(Q,Q̃) = PE
[
t(χGR(x) + χGR(x))

]
, (4.6)

where χR is the character or the representation R of G and x collectively
denotes al possible fugacities for global and gauge symmetries; t is the
R-symmetry fugacity.

• The Hilbert series describing the maximal nilpotent orbit of SU(N) is
explicitly known [47,53]:

H[NSU(N)](t,x) =

 N∏
j=2

(1− t2j)

× PE
[
t2χ

SU(N)
adj (x)

]
, (4.7)

Here, x are fugacity for the SU(N) global symmetry group.

• The quotient operation, i.e. gauging, can be performed integrating over
the gauge group fugacities:

Gauging:

∫
dµG(z) , (4.8)

where µG(z) is the Haar measure of the gauge group. For instance, in the
case G = U(N) we have:

∫
dµU(N)(z) =

(
N∏
i=1

∮
|zi|=1

dzi
2πizi

) ∏
1≤i<j≤N

(
1− zi

zj

)
. (4.9)

The adjoint chiral multiplets Φ contribute as following:

HΦ = PE
[
−t2χGadj(z)

]
. (4.10)

Such contribution is usually also interpreted as implementing the con-
straints on gauge-invariant generators imposed by F terms (2.32). Ob-
serve, in fact, that (2.35) sets to zero a triple of operators with R-charge
2 and transforming in the adjoint representation of the gauge group. The
same information is encoded in (4.10). Every time we want to impose a
constraint setting to zero an R-charge r operator transforming in some
representation R of the gauge group, we can add to the integrand of the
Hilbert series a contribution PE[−tr χR(z,x)], where z are gauge fugaci-
ties and x possible global symmetry fugacities; the minus in the PE always
signals a constraint.

1The plethystic exponential (PE) of a multivariate function f(x1, x2, . . . , xn) such that
f(0, 0, . . . , 0) = 0 is defined as PE[f(x1, x2, . . . , xn)] = exp

(∑∞
k=1

1
k
f(xk1 , x

k
2 , . . . , x

k
n)
)
.
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Using these ingredients, we can compute:

H[H(4.2)](t, x) =∫
dµU(N)(u)

∫
dµU(N)(w)× PE

[
−t2χadj(u)− t2χadj(u)

]
× PE

[
t(x+ x−1)

{
χfund(u) + χfund(u)

}]
×H[NSU(N)](t,u)H[NSU(N)](t,w)

× PE
[
t χfund(u)χfund(w) + t χfund(w)χfund(u)

]
,

(4.11)

where u and w are SU(N) fugacities for the left and right node in (4.2) respec-
tively and x is the fugacity for the SU(2) flavor symmetry; all the characters

χ are understood as U(N) characters while x + x−1 = χ
SU(2)
fund = χ

SU(2)

fund
. Such

integral can be evaluated analytically:

H[H(4.2)](t, x) = PE

χSU(2)
adj (x)

N∑
j=1

t2j −
N∑
j=1

t2N+2j

 , (4.12)

where
χ
SU(2)
adj (x) = x2 + 1 + x−2 . (4.13)

This provides a rigorous description of the hyperkähler space (4.5). We can
immediately recognize that such space possesses SU(2) isometries, realized as
flavor symmetry in (4.2); this is in agreement with the general expectation for
Higgs branch global symmetries. Lt us observe that (4.12) also tells us that the
Higgs branch of (4.2) is generated by N chiral operators of dimension t2j , j =
1, . . . , N and transforming in the adjoint representation of the global symmetry
group. However, N constraints must be in imposed on such generators, as
we can read from the negative contributions in (4.12). Thus, we can claim to
the branch to be generated by dim(SU(2))N − N = 2N complex independent
generators only and the quaternionic dimension of H(4.2) to be N , in perfect
agreement with (4.4).

We can now switch to the Coulomb branch of (4.2). Since all the gauge
nodes of the quiver are connected by a T-link, the conjectured freezing rule
implies that the Coulomb branch must be actually empty:

dimH C(4.2) = 0 . (4.14)

This actually concludes the analysis of the moduli space of the flavored affine
A1 model. However, this highly non-trivial prediction must be tested against
mirror symmetry. The S-dual theory of (4.2) is the following:

N D3

NS5

D5
•

S

N N

N

1

T [U(N)]

(4.15)
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We can immediately compute the dimensions of Higgs and Coulomb branches,
taking into account the general prescription we presented and the proposed
freezing rule2:

dimH H(4.15) = N2 +N2 +N + 2

[
1

2
(N − 1)N

]
− 3N2 = 0 ,

dimH C(4.15) = N .

(4.16)

This is in perfect agreement with the previous results in (4.4)-(4.14). Moreover,
freezing rule states that:

C(4.15) = C
[
◦
N
− �

2N

]
, (4.17)

because the linked nodes in (4.15) get frozen on the Coulomb branch. The
Coulomb branch of U(N) theory with 2N flavors possesses an SU(2) isometry
group, since the unique node is balanced. This is in perfect agreement with the
global symmetries of H(4.2). The Hilbert series of the Coulomb branch of U(2)
theory with 2N flavors is known in literature and using the results of [30] it is
possible to see that:

H[C(4.15)] = H[H(4.2)] . (4.18)

This completes the analysis of the flavored affine A1 model, fully confirming the
general proposal we made.

4.1.2 Quivers with a T [U(N)] loop

A second example where testing the conjecture for S-flip model moduli space is
the following:

N D3

S

••

•

. . .

n D5s

N

T [U(N)]

n

(4.19)

We will refer to it as model with a T-loop. Because we want to study its moduli
space and check it against mirror symmetry, we can immediately write down
the S-dual configuration of (4.19):

2Let us remind that the quaternionic dimension of the Coulomb branch can be identified
with the rank of the total gauge group.
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N D3

S

. . .

n NS5s

N

N

NN

N

N
(n+ 1) nodes

T [U(N)]

(4.20)
Let us start providing a formal description of Higgs branches as hyperkähler
quotients:

H(4.19) =
NSU(N) ×NSU(N) ×H ([U(N)]− [U(n)])

U(N)
, (4.21)

H(4.20) =
NSU(N) ×NSU(N) ×H[U(N)− U(N)]n

U(N)n+1/U(1)N
. (4.22)

Observe that in (4.22) we have not performed the quotient with respect to the
whole gauge group U(N)n+1. This is due to the fact the on the Higgs branch
the gauge group is not completely Higgsed but an abelian factor U(1)N survives
(for a description of such phenomenon, see for instance [59]). Using the freezing
rule, we can provide instead the effective description for Coulomb branches:

C(4.19) = ∅ , (4.23)

C(4.20) = C[�
N
− ◦
N
− · · · − ◦

N︸ ︷︷ ︸
(n−1) nodes

−�
N

] . (4.24)

A first check that the proposed set of hyperkähler manifold provide good pairs
of cones exchanged under mirror symmetry comes from counting of quaternionic
dimensions:

dim[H(4.19)] = N(N − 1) + nN − N2 = (n− 1)N , (4.25)

dim[H(4.20)] = N(N − 1) + nN − ((n+ 1)N2 −N) = 0 , (4.26)

dim[C(4.19)] = 0 , (4.27)

dim[C(4.20)] = (n− 1)N . (4.28)

The quaternionic dimensions we found are completely in agreement with mir-
ror symmetry. Observe that H(4.20) and C(4.19) are both empty and thus they
trivially equal. What we need to check is that the two hyperkähler cones C(4.20)

and H(4.19) are actually the same. This can be done, as before, computing their
associated Hilbert series. However, we do not really need to compute them this
time. In fact, using again mirror symmetry, one can observe that [60]:

C[�
N
− ◦
N
− · · · − ◦

N︸ ︷︷ ︸
(n−1) nodes

−�
N

] = H[ ◦
1
−◦

2
−· · ·− ◦

N−1
−
�n
|◦
N
− ◦
N−1
−· · ·−◦

2
−◦

1
] . (4.29)
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Let now focus on the righthand side of (4.29): we can think it as the hyperkähler
quotient of the following building blocks:

H[ ◦
1
− ◦

2
− · · · − ◦

N−1
−
�n
|◦
N
− ◦
N−1
− · · · − ◦

2
− ◦

1
] =(

H[ ◦
1
− ◦

2
− · · · − ◦

N−1
−�
N

]2 × H[�
N
−�

n
]

)
//U(N)

(4.30)

We immediately recognize two copies of T [U(N)] so that we can also claim the
following equality:

C(4.20) =
NSU(N) ×NSU(N) ×H ([U(N)]− [U(n)])

U(N)
= H(4.19) . (4.31)

This completes the study of the moduli space of the T-loop model and again
confirms the consistency of our conjecture with mirror symmetry.

4.2 Warm-up: Abelian theories with CS levels

Our proposal for moduli space of S-flip SCFTs is essentially based on an edu-
cated guess, suggested by the required consistency with mirror symmetry. More-
over, we only considered S-flip models, i.e. we chose to consider theories where
all Chern-Simons levels are set to zero. In the following, we would like to gener-
alize to models where Chern-Simons level are non-trivial and provide some more
evidence about the freezing rule conjecture. From a brane perspective, we want
to consider Hanany-Witten setups with n D3-branes on S1 and one or more J-
folds. Presence of Chern-Simons levels usually make the study of moduli space
harder: in fact, the Coulomb branch is described in terms of both monopoles
and mesons and taking into account their dynamics at the same time is not an
easy task. For instance, there is no a generic prescription to take into account
constraints imposed on gauge-invariant generators due to F and D terms (2.32)-
(2.33)-(2.34). In some simple models, a full set of constraints can be computed
using computational tools like Macaulay package. A particular class of models
where F and D terms can be solved with simple algebraic computations is the
class of Abelian models. Moreover, the S-fold SCFTs involving only Abelian
nodes is suitable for our purpose since T [U(1)] is a Lagrangian coupling and
the theories can be studied in full generality. Before we enter into details with
Abelian S-fold theories, it is better to warm up studying studying linear Abelian
quivers: most features of their moduli space will extend to S-fold models. In this
section we only study linear Abelian quivers with arbitrary Chern-Simons levels
and without fundamental matter. Each model is specified by a vector of levels
k = (k1, . . . , kn) where ki is the Chern-Simons level of the i-th gauge node.3

We will start with an example and then we will consider the most general case
and will provide a general description for moduli space. The study of Abelian
linear quivers with Chern-Simons levels has been also addressed in [61].

3We denote the CS level by a subscript, for example U(N)k denotes a group U(N) with
CS level k. In a quiver node, we abbreviate this as Nk.
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4.2.1 Example: k = (−1,+1,−1,+1)

Consider the following gauge theory:

1−1 1+1 1−1 1+1 (4.32)

Here we assume k > 0 without loss of generality. Let us also show the same
quiver in N = 2 language, in order to fix the notation:

1−1 1+1 1−1 1+1

Ã1 A1 Ã2 A2 Ã3 A3

ϕ1 ϕ2
ϕ3 ϕ4

(4.33)

The i-th node is connected to the (i− 1)-th one by an hyper-multiplet (Ai, Ãi)
while ϕj denotes the adjoint chiral multiplet of the j-th node. The superpoten-
tial reads:

W =

3∑
i=1

(ÃiϕiAi −Aiϕi+1Ãi) +
1

2

4∑
i=1

kiϕ
2
i . (4.34)

Due to N = 3 supersymmetry of the theory, we are allowed to collect at the
same time both F-terms and D-terms, in such a way we really need to solve
a unique set of equations. Let us define the two vectors θi = (ϕi , σi), µi =

(Ai Ãi , |Ai|2 − |Ãi|2): the whole set of F -terms and D-terms now read

Ai(θi+1 − θi) = 0 , Ãi(θi+1 − θi) = 0 i = 1 , . . . , 3 (4.35)

k1 θ1 = µ1 ,

k2 θ2 = µ2 − µ1 ,

k3 θ3 = µ3 − µ2 ,

k4 θ4 = −µ3 .

(4.36)

We can turn one a magnetic charge for each U(1) gauge symmetry and we
will denote them with mi. Monopole operator are labeled by a choice of fluxes,
V(m1,...,m4) and their R-charge and gauge charges can be computed using (2.19)-
(2.20) :

R[V(m1,...,m4)] =
1

2

3∑
i=1

|mi+1 −mi| , qi[V(m1,...,m4)] = −kimi , (4.37)

where qi is the gauge charge with respect to the i-th U(1) gauge group. Let us
explain the general strategy in order to solve equations (4.35)-(4.36). Equations
(4.35) suggests that it is convenient to study the solutions the vacuum equations
according to the vanishing of the VEVs of the bi-fundamental hypermultiplets.
Let us assume the VEV of µ1, or equivalently of the VEV of (A1, Ã1), to be non
vanishing. F-terms imply that in such a case θ1 = θ2, i.e. the scalars sitting in
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the first two vector multiplets must be set equal. This new condition as a direct
consequence on the first two equation in (4.36):

k1θ1 = µ1 ,

k2 θ1 = µ2 − µ1 ;
(4.38)

summing the two equations, we get (k1 +k2)θ1 = µ2. However, with our choice
of levels k1 + k2 = −1 + 1 = 0, so that we need to impose that µ2 = 0! If we
set the second hypermultiplet (A2, Ã2) to zero, the system (4.35)-(4.36) splits
into two sub-systems: one involving µ1 and θ1 = θ2 and another involving µ2

and θ3,θ4 only. This two sub-systems correspond to F and D terms of two
sub-quivers formed by the first two nodes and last two nodes respectively; each
sub-quiver is made of two U(1) nodes with opposite CS level and can be thus
identified as the half-ABJM theory4 [42]. We will refer to this situation as a
cut: the vacuum equations set to zero a hypermultiplet, fractionating the initial
quiver in sub-quivers. The presence of a cut is not incidental but follows a
precise pattern. Observe that in the case under investigation, the cut emerged
as consequence of the condition k1 +k2 = 0. More in general, every time a given
quiver contains a connected sub-quiver with vanishing total CS level,

∑
i ki = 0,

a cut occurs. The cut is performed in such a way to “isolate” the sub-quiver
from the rest of the nodes. For instance, in the model (4.32), there are two
possible cuts:

I : 1−1 1+1 1−1 1+1

A2 = Ã2 = 0

II : 1−1 1+1 1−1 1+1

A1 = Ã1 = 0 A3 = Ã3 = 0

(4.39)

Cut I is the same we observed in out previous analysis while cut II is a new case
corresponding to the case µ1 = µ3 in (4.35). Once all the cuts are taken into
account, the F and D terms can be univocally solved. We can thus continue
the analysis of the moduli space of (4.32) but we need to consider two different
branches, corresponding to the two different patterns of cuts.

Branch I. The cut implies µ2 = 0. The moduli space is actually a product
of moduli space, each associated to one sub-quiver. The remaining vacuum
equations implies:

θ1 = θ2 = µ1 , θ3 = θ4 = µ3 . (4.40)

When scalars sitting in some vector multiplets are set equal, this means that
their behavior in a monopole background must be the same and thus also the
associated magnetic charge must be set equal. A monopole is parametrized by
the following choice of magnetic fluxes (mL,mL,mR,mR) where m1 = m2 = mL

and m3 = m4 = mR; L and R stand for left and right respectively. The branch

4We define the half-ABJM theory by a theory with U(1)k × U(1)−k gauge symmetry
with a single bi-fundamental hypermultiplet.
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is thus parametrized by the expectation values of mesons A1Ã1 and A3Ã3,5

together with the monopoles V(mL,mR) with charges:

R[V(mL,mR)] =
1

2
|mL −mR| ,

q1[V(mL,mR)] = −q2[V(mL,mR)] = −mL ,

q3[V(mL,mR)] = −q4[V(mL,mR)] = −mL .

(4.41)

The monopoles are not gauge invariant and they can enter the chiral ring only
if the can be dressed using matter fields. Assuming mL > 0 and mR > 0, gauge
invariant dressed monopoles are:

V (mL,mR) = V(mL,mR)A
mL
1 AmR3 . (4.42)

If mL < 0(mR < 0) the dressing must be performed with Ã1(Ã3) instead of
A1(A3). R-charge of dressed operators take into account the contribution of
matter:

R
[
V (mL,mR)

]
=

1

2

(
|mL −mR|+ |mL|+ |mR|

)
. (4.43)

The dressed monopoles with lowest R-charge are V (±,0) and V (0,±), whose com-
binations are supposed to span all the charge lattice. Even if we know the pos-
sible generators of chiral rings, we do not which quantum relations can emerge
at low energy. The puzzle can be solved computing the Hilbert series associated
to such configurations of fields. In fact, it is common lore that Hilbert series
contain the full quantum information once dynamics of (dressed) monopoles is
taken into account. Let us briefly review how Hilbert series can be computed
in this case, using the same procedure as presented in [42]. The first step is to
compute the so called baryonic generating function of each half-ABJM sector. A
baryonic generating function [62–64] is a Hilbert series counting gauge-invariant
operators together with operators with non-trivial gauge charge that can be used
in order to dress monopoles. It can be constructed with a procedure analogous
to the one explained in section 4.1: each hypermultiplet transforming in the
representation R enters through PE[tχ(z,x)] where z is a vector of gauge fu-
gacities and x is a vector of flavor fugacities; adjoint chiral multiplets enter as
a constraints, PE[−t2χadj(z)]. Gauging is implemented integrating over the
gauge fugacities. If we want to count operators with charge B under some
Abelian gauge symmetry with fugacity z, it is enough to add to the baryonic
generating function integrand a contribution z−B . In the half-ABJM case, we
know that gauge invariant operators that can dress monopoles must have charge
B with respect to one node and charge −B with respect to the other one. The
generating function admits an analytic form:

gABJM/2(t;B) =

∮
|u1=1

dz1

2πiz1

∮
|z2=1

dz2

2πiz2
u−B1 zB2 PE

[
(z1u

−1
2 + z−1

1 z2)t
]

=
t|B|

1− t2 .
(4.44)

In order to correctly dress the monopoles, we will set B = mL or B = mR. The
baryonic generating function needs to be combine it with bare monopole con-
tribution. Monopoles enter through the multiplicative factor t2R[m]

∏
i=1 x

mi
i

where t is the R-symmetry fugacity, R[m] is the bare monopole R-symmetry

5Or equivalently ϕ1 and ϕ3 using F-terms.
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depending on the vector of fluxes m = (m1, . . . ,mn) while xi is the fugacity for
the i-th topological symmetry. Finally, we need to sum over all possible mag-
netic fluxes. At the end of the day, we are able to compute the Hilbert series of
(4.32) with cut I:

H
(I)
(4.32)(t;x1, x2) =

∑
mL∈Z

∑
mR∈Z

t|mL−mR|gABJM/2(t;mL)gABJM/2(t;mR) =

=
∑
mL∈Z

∑
mR∈Z

t|mL−mR|
t|mL|

1− t2
t|mR|

1− t2x
mL
1 xmR2 =

∞∑
m=0

χ
SU(3)
[m,m](x1, x2)t2m .

(4.45)

As we have discussed in section 2.3, this is the Hilbert series for the moduli
space of one SU(3) instanton on C2, or equivalently the minimal nilpotent orbit
of SU(3). This admits a description in terms of 3× 3 complex matrices M such
that trM = M2 = 0. With a bit of guesswork, one can show that this matrix
M can be written in terms of the following eight generators of the chiral ring:

M =

 ϕL V(1,0) V(1,1)

V(−1,0) ϕR V(0,1)

V(−1,−1) V(0,−1) −ϕL − ϕR

 (4.46)

where ϕL = ϕ1 = ϕ2 and ϕR = ϕ3 = ϕ4.

Branch I. The second possible cut in (4.39) sets µ1 = µ3 = 0. Moreover, vac-
uum equations also implies that θ1 = θ4 = 0. This means that the two external
nodes are completely frozen and do not participate to the moduli space. We
can study the effective sub-quiver formed by the two internal nodes in (4.32).6

The F and D terms now implies that:

A2(θ2 − θ3) = Ã2(θ2 − θ3) = 0 , θ2 − µ2 = −θ3 − µ2 = 0 . (4.47)

A unique non-trivial solution is admitted: θ2 = θ3 = µ2. This also implies that
the unique non-vanishing magnetic charges are m2 = m3 ≡ m. As before, we
prefer to trade the vector multiplet scalars for monopoles, that are right degrees
of freedom in the IR. In the case at hand, monopoles are labeled by the unique
magnetic charge m and have charges:

R[Vm] =
1

2

3∑
i=1

|mi −mi+1| = (|0−m|+ |m−m|+ |m− 0|) = |m| ,

q1[Vm] = q4[Vm] = 0 , q2[Vm] = −q3[Vm] = −m.

(4.48)

Monopoles are not gauge invariant and need to be dressed:

V m>0 = Vm(Ã2)m , V m<0 = Vm(A2)m , (4.49)

with R-charge R[V m] = |m|
2 . We can compute the Hilbert series associated

to this branch. We first need to compute the baryonic generating function
counting the operators with charges q2 = −q3 = B made out the hypermultiplet

6This is not entirely true: the presence of the two external nodes leaves a footprint in the
R-charge of the monopoles
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(A2, Ã2). It turns out that such generating function is gABJM/2(t;m) defined
before. taking into account the dressing by the monopole operators, we get:

H
(II)
(4.32)(t; z) =

∑
m∈Z

t2|m|gABJM/2(t;m)zm

=
∑
m∈Z

t2|m|
tm

1− t2 = PE
[
t2 + (z + z−1)t3 − t6

]
.

(4.50)

This indicates that this branch is isomorphic to C2/Z3. The generators of this
moduli space are V+, V− and ϕ2 = ϕ3 ≡ ϕ, satisfying the relation

V+V− = ϕ3 . (4.51)

Branches I and II of (4.32) are the Higgs and Coulomb branches of 3d N = 4
U(1) gauge theory with 3 flavors, as pointed out in [65]. The brane system of
the former can be obtained by applying the SL(2,Z) action TT to the brane
system of the latter.

4.2.2 General Abelian linear quivers

With the lessons learned from the previous example, we are ready to study
Abelian linear quivers with arbitrary CS levels in full generality.

1k1 1k2 1kn−1 1kn

(4.52)

This is made up of n U(1) gauge nodes with Chern-Simons levels ki , i =
1, . . . n. The i-th node is connected to the (i − 1)-th one by a hyper-multiplet

(Ai, Ãi). In N = 2 language, the quiver appears as:

1k1 1k2 1kn−1 1kn

Ã1 A1 Ãn−1An−1

ϕ1 ϕ2 ϕn−1 ϕn

(4.53)

with the superpotential

W =

n−1∑
i=1

(ÃiϕiAi −Aiϕi+1Ãi) +
1

2

n∑
i=1

kiϕ
2
i . (4.54)

We introduce again the vectors θi = (ϕi , σi) and µi = (Ai Ãi , |Ai|2 − |Ãi|2)
that allows to write F and D terms in a compact way:

Ai(Φi+1 − Φi) = 0 , Ãi(Φi+1 − Φi) = 0 i = 1 , . . . , n− 1 (4.55)
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k1 θ1 = µ1

ki θi = µi − µi−1 i = 2 , . . . , n− 1

kn θn = −µn−1

(4.56)

Moreover, the R-charge and gauge charges of the monopole operators with flux
(m1, . . . ,mn) read, respectively:

R[V(m1,...,mn)] =
1

2

n−1∑
i=1

|mi+1 −mi| , qi[V(m1,...,mn)] = −kimi (4.57)

where mi is the magnetic flux of the i-th gauge group. The general technique
in order to solve the vacuum equation is quite similar to the one before. The
various branches can be studied according to the vanishing of the VEVs of
the bi-fundamental hypermultiplets. Every time a sub-quiver with vanishing
total CS level is present, a cut occurs; this means that we need to set to zero
the “boundary” hypermultiplets and divide the sub-quiver from the remaining
node. In (4.58) we illustrate a typical situation with two cuts; we will refer to
this setup to make discussion lighter, but generalization to an arbitrary number
of cuts is straightforward.

1k1 1kl 1kl+1
1kl+m 1kl+m+1 1kn

Al = Ãl = 0 Al+m = Ãl+m = 0

(4.58)
The initial quiver, made of n nodes, contains a sub-quiver of m nodes such
that

∑m
i=1 kl+i = 0. The two extremal nodes are labeled by l + 1 and l + m

respectively. Following the previous discussion, we need to perform a cut, µl =
µl+m = 0, dividing the initial quiver into three sub-quiver, that we will refer to
as “left”, “central” and “right”. The vacuum equations split into three systems
of equation, one for each sub-quiver.

Let us consider the left sub-quiver and assume that µi are non-vanishing for
all i = 1, 2, . . . , l. Then (4.55) implies that θi = θL = (ϕL , σL) ∀i = 1, 2, . . . , l.
The sum of the first l equations in (4.56) provides the following additional
constraint: (

l∑
i=1

ki

)
θ = µl = 0 . (4.59)

Since µ 6= 0 (otherwise µi would be zero, contradicting our assumption), we see
that a necessary condition for the left sub-quiver to contribute non-trivially to
the moduli space of vacua is

l∑
i=1

ki = 0 . (4.60)

A similar argument also applies for the right sub-quiver. We assume that
µi are non-vanishing for all i = l+m+ 1, . . . , n. A necessary condition for this
sub-quiver to contribute non-trivially to the moduli space is

n∑
i=l+m+1

ki = 0 , (4.61)
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Moreover, θi = θR = (ϕR , σR) ∀i = l + m, . . . , n. Finally, the central quiver
participates non-trivially to the moduli space by construction. Since all the
θ in each sub-quiver are set equal, also the magnetic fluxes for the monopole
operators for all nodes in each sub-quiver are equal:

m1 = m2 = . . . = ml ≡ mL ,

ml+1 = ml+2 = . . . = ml+m ≡ mC ,

ml+m+1 = ml+m+2 = . . . = mn ≡ mR .

(4.62)

and monopoles are thus parametrize by a triple of fluxes (mL,mC ,mR) only;
their R-charge reads:

R[V(m1,...,mn)] =
1

2

n−1∑
i=1

|mi −mi+1| =
1

2
(|mL −mC |+ |mC −mR|) . (4.63)

The Hilbert series can be computed in the same way we explained in section
4.2.1. The idea is to count the monopole operators dressed by appropriate
chiral fields in the theory such that the combination is gauge invariant. The
appropriate combination of chiral fields that are used to dress the monopole
operators are counted by the baryonic generating function [63].

Let gL(t,B), gC(t,B) and gR(t,B) be baryonic generating functions for the
left, central and right sub-quivers, respectively. Then, the Hilbert series for the
moduli space for quiver (4.58) is given by

H(t; zL, zC , zR) =
∑
mL∈Z

∑
mC∈Z

∑
mR∈Z

t|mL−mC |+|mC−mR|zmLL zmCC zmRR ×

gL(t, {k1mL, . . . , klmL}) gC(t, {kl+1mC , . . . , km−1mC})×
gR(t, (kmmR, . . . , knmR}) ,

(4.64)

where zL,C,R are fugacities for the topological symmetries. The first line is the
contribution from the monopole operators and the second and third lines are
the contribution from an appropriate combination of chiral fields in the quiver
that will be used to dress the monopole operators. In general, this sum is hard
to evaluate. However, there is a special class whose moduli space is explicitly
known: the class of linear Abelian quivers with no cut at all.

4.2.3 Example: No cut in the quiver (4.52)

We assume that µi are non-vanishing for all i = 1, . . . , n, i.e. there is no cut in
the quiver. In this case, (4.55) implies that

θ = θ = (ϕ , σ) ∀ i = 1, . . . , n (4.65)

We know that this quiver admits a non-trivial moduli space if and only if:

(k1 + k2 + · · ·+ kn)θ = 0 (4.66)

55



Note that θ = 0 would imply µi = 1 ∀ i contradicting the initial assumption
that all µi 6= 0. Thus, as we discuss before, the moduli space is non-trivial if7

n∑
i=1

ki = 0 (4.67)

The bare monopoles Vm = V(m,...,m), with flux (m, . . . ,m), have R-charge
R[V(m,...,m)] = 0. They need to be dressed in order to make them gauge invari-
ant, because of their gauge charge under the i-th gauge group is qi[V(m,...,m)] =
−kim. Let us define for convenience

Ki =

i∑
j=1

kj (4.68)

If Ki ≥ 0 for all i = 1, . . . , n − 1, we can form the following gauge invariant
dressed monopole operator:

V + ≡ V(1,...,1)A
K1
1 AK2

2 . . . A
Kn−1

n−1 ,

V − ≡ V(−1,...,−1) Ã
K1
1 ÃK2

2 . . . Ã
Kn−1

n−1 .
(4.69)

Note that if Kj < 0 for some j, we replace A
Kj
j in the first equation by Ã

−Kj
j ,

and Ã
Kj
j in the second equation by A

−Kj
j . In any case, the R-charges of the

above dressed monopole operators are

R[V ±] =
1

2

n−1∑
i=1

|Ki| =
1

2
K (4.70)

with

K ≡
n−1∑
i=1

|Ki| . (4.71)

The chiral ring is generated by the three operators {ϕ , V + , V −}, satisfying the
following relation:

V + V − = ϕK . (4.72)

Thus, the variety associated to this branch is:

C2/ZK . (4.73)

We can obtain the same result using the Hilbert series. Let us call {q1 , q2 , . . . , qn}
the fugacities associated to the n gauge nodes and t the fugacity associated to
the R-symmetry. The ingredients entering the Hilbert series are:

• The n− 1 bi-fundamental hypermultiplets contribute as:

PE[t(q1q
−1
2 + q−1

1 q2)] PE[t(q2q
−1
3 + q−1

2 q3)] . . . PE[t(qn−1q
−1
n + q−1

n−1qn)]
(4.74)

7For circular quiver, the constraint (4.67) is a necessary condition for the theory to be
holographically dual to some background in Type-IIA supergravity with vanishing Romans
mass [66].
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• There is also a contribution from ϕ which gives PE[t2].

• The F -terms (4.56) impose further (n−1) constraints on the former, after
taking into account the condition (4.66), which is the overall sum of (4.56).
These contribute PE[−(n− 1)t2] to the Hilbert series.

The baryonic generating function is thus:

g(t;B) = PE[−(n−1)t2] PE[t2]

∮
dq1

2πiq1+B1
1

. . .

∮
dqn

2πiq1+Bn
n

n−1∏
i=1

PE[t(qiq
−1
i+1+q−1

i qi+1)]

(4.75)
and can perform a change of variable:

{y1 , y2 , . . . , yn} = {q1q
−1
2 , q2q

−1
3 . . . , qn−1q

−1
n , qn} (4.76)

Thus, the baryonic function becomes:

PE[−(n− 2)t2]
n−1∏
i=1

∮
dyi

2πiy1+B̃i
i

PE[t(yi + y−1
i )]

∮
dyn

2πiy1+B̃n
i

(4.77)

where we defined B̃i =
∑i
j=1 Bj . The previous integrals are known:∮

dyi

2πiy1+B̃i
i

PE[t(yi + y−1
i )] =

t|B̃i|
1− t2 ,

∮
dyn

2πiy1+B̃n
i

= δB̃n , 0 (4.78)

and then the baryonic generating function simplifies to

g(t;B) =
t
∑n−1
i=1 |B̃i|

1− t2 δB̃n , 0 , with B̃i =

i∑
j=1

Bj . (4.79)

Recall that the charge of the monopole operator under the U(1)i gauge symme-
try is qi[V(m,...,m)] = −kim. As a consequence, the Hilbert series reads:

H(t; z) =
∑
m∈Z

g(t; {k1m, . . . , knm})zm

=
1

1− t2
∑
m∈Z

t|m|
∑n
i=1 |

∑i
j=1 kj |zm

=
1

1− t2
∑
m∈Z

tK|m|zm

= PE
[
t2 + (z + z−1)tK − t2K

]
,

(4.80)

where B̃n in (4.79) is m
∑n
i=1 ki = 0 and hence the Kronecker delta gives 1.

Here z is the fugacity for the topological symmetry. We obtained exactly the
Hilbert series of C2/ZK .

4.3 Theories with one J-fold

In this section we want to present the analysis of moduli space of a class of
theories dual to a brane configurations with one J-fold and a collection of (1, k)
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branes. The associated quiver is

1k1 1k2 1k3 1kn

T [U(1)]

(4.81)

In the 3d N = 2 notation, this can be rewritten as

1k1 1k2 1k3 1kn

Ã1 A1 Ã2 A2

ϕ1 ϕ2
ϕ3 ϕn

T [U(1)]

(4.82)

with the superpotential

W =

n−1∑
i=1

(−ÃiϕiAi +Aiϕi+1Ãi) +

 n∑
j=1

1

2
kjϕ

2
j

−ϕ1ϕn . (4.83)

where we emphasize the contribution from the mixed CS term due to the T [U(1)]
theory in blue. In fact, as we observed in section (3.1), T [U(1)] is nothing but
a mixed Chern-Simons coupling between the two linked nodes. Using the same
notation introduced in section 4.2, the vacuum equations can be written in the
following compact way:

Ai(θi+1 − θi) = 0 , Ãi(θi+1 − θi) = 0 i = 1 , . . . , n− 1 (4.84)

k1 θ1−θn = µ1

ki θi = µi − µi−1 i = 2 , . . . , n− 1

kn θn−θ1 = −µn−1

(4.85)

Again, we emphasized in blue the deformation of the vacuum equations due to
the T [U(1)] theory in blue. The charges of the monopole operators V(m1,...,mn)

under the i-th U(1) gauge group are

q1[V(m1,...,mn)] = −(k1m1−mn)

qi[V(m1,...,mn)] = −kimi , i = 2 , . . . , n− 1

qn[V(m1,...,mn)] = −(knmn−m1) .

(4.86)

The R-charges of V(m1,...,mn) is given by

R[V(m1,...,mn)] =
1

2

n−1∑
i=1

|mi −mi+1| . (4.87)
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In section 4.2 we observed that branches of solutions to this kind of vacuum
equations are strictly related to the expectation value of bi-fundamental hyper-
multiplets. In particular, the existence of sub-quiver with a particular value
of total CS level can induce a cut, meaning that we are forced to set to zero
the VEVs of all the hypermultiplets connecting the sub-quiver to the remaining
nodes. Moreover, after all the needed cuts have been performed, each sub-quiver
can participate non-trivially on the moduli space only if some constraint on the
total CS level is satisfied.

4.3.1 Cuts are needed

In order to understand when a cut needs be performed, we can follow an opposite
approach with respect to the analysis in section 4.2: this time we assume that
we are forced to perform the cut and we will deduce the constraint on CS level
forcing the cut a posteriori. Let us assume that only one cut is needed and this
sets to zero µl = 0. The quiver branches into two sub-quivers still connected by
the T-link:

1k1 1kl 1kl+1 1kn

Al = Ãl = 0

T [U(1)]

(4.88)

As we learned, every time a cut occurs, equations (4.84) set all vector multiplet
scalars to be equal in each sub-quiver; this condition extends also to magnetic
fluxes:

θ1 = · · · = θl = θL = (ϕL , σR) , θl+1 = · · · = θn = θR = (ϕR , σR)

m1 = . . . = ml = mL , ml+1 = . . . = mn = mR . (4.89)

Moreover, F-terms (4.85) split into two sub-systems:

k1θ − θ̃ = µ1 , k2θ = µ2 − µ1 , . . . , klθ = −µl−1

kl+1θ̃ = µl+1 , kl+2θ̃ = µl+2 − µl+1 , . . . , knθ̃ − θ = −µn
(4.90)

Constraints on CS levels usually come from the sums over the equations in each
subsystem. Also in this case, we get the following to consistency equations:(

l∑
i=1

ki

)
θL − θR = 0 ,

(
n∑

i=l+1

ki

)
θR − θL = 0 (4.91)

Since we can not set to zero neither θL nor θR, we discover that a cut must
occur every time the following relation is satisfied by Chern-Simons levels:(

l∑
i=1

ki

)(
n∑

i=l+1

ki

)
= 1 . (4.92)

Since all Chern-Simons levels are integers, the above equation is equivalent
to

l∑
i=1

ki =

n∑
i=l+1

ki = ±1 (4.93)
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The system of equations (4.91) is now simply solved by θR = ±θL (and conse-
quently mR = ±mL). Let us analyze separately the two cases:

• Φ = Φ̃ : In this case we choose

l∑
i=1

ki =

n∑
i=l+1

ki = 1 . (4.94)

This moduli space is parametrized by ϕ and the two basic dressed monopole
operators. Let us define for convenience

k̃j = (k1 − 1 , k2 , . . . , kn−1 , kn − 1) , K̃i =

i∑
j=1

k̃j . (4.95)

If K̃i ≥ 0 for all i = 1, . . . , l−1, l+1, . . . , n−1, the basic dressed monopole
operators are8

V + = V(1,1,...,1)A
K̃1
1 . . . A

K̃l−1

l−1 A
K̃l+1

l+1 . . . A
K̃n−1

n−1

V − = V−(1,1,...,1) Ã
K̃1
1 . . . Ã

K̃l−1

l−1 Ã
K̃l+1

l+1 . . . Ã
K̃n−1

n−1 ,
(4.96)

The R-charge of the above dressed monopole operators are

R[V ±] =
1

2

∑
1≤i≤n−1

i 6=l

|K̃i| ≡
1

2
K̃ (4.97)

where the bare monopole operators have R-charge R[V±(1,1,...,1)] = 0, and
we define

K̃ =
∑

1≤i≤n−1
i 6=l

|K̃i| . (4.98)

Thus, V ± satisfy

V +V − = ϕK̃ . (4.99)

This branch of the moduli space is therefore

C2/ZK̃ . (4.100)

The same result is confirmed from a Hilbert series computation. Let
gL(t,B) and gR(t,B) be baryonic generating functions for the left sub-
quiver (containing nodes 1, . . . , l) and the right sub-quivers (containing
nodes l + 1, . . . , n), respectively. Then, the Hilbert series for this case is
given by

H(t; z) =
∑
m∈Z

zmgL(t, {(k1 − 1)m, k2m, . . . , klm})×

gR(t, {kl+1m, . . . , kn−1m, (k − 1)m})(1− t2) ,

(4.101)

8If K̃j < 0 for some j, we replace A
K̃j
j in the first equation by Ã

−K̃j
j , and Ã

K̃j
j in the

second equation by A
−K̃j
j .
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where z is a fugacity for the topological symmetry. Using the expressions
for gL and gR given by (4.79). we obtain

H(t; z) =
∑
m∈Z

zm
t|m|

∑l−1
i=1 |K̃i|

1− t2 δ∑l
i=1 ki,1

× t|m|
∑n−1
i=l+1 |K̃i|

1− t2 δ∑n
i=l+1 ki,1

(1− t2)

=

{
PE
[
t2 + (z + z−1)tK̃ − t2K̃

]
if
∑l
i=1 ki =

∑n
i=l+1 ki = 1

0 otherwise .

(4.102)

The Hilbert series in the first line in the second equality is indeed that of
C2/ZK̃ .

• Φ = − Φ̃ : In this case, we choose

l∑
i=1

ki =

n∑
i=l+1

ki = −1 . (4.103)

The basic monopole operators are V+− ≡ V(1l,(−1)n−l) and V−+ ≡ V((−1)l,1n−l),
whose R-symmetry are

R[V+−] = R[V−+] = 1 . (4.104)

Let us define for convenience

k̃′j = (k1 + 1 , k2 , . . . , kn−1 , kn + 1) ,

K̃ ′i =

i∑
j=1

k̃′j .
(4.105)

For K̃ ′i > 0 for i = 1, . . . , l − 1 and K̃ ′j < 0 for j = l + 1, . . . , n − 1, the
basic dressed monopole operators can be written as

V +− = V+−A
K̃′1
1 . . . A

K̃′l−1

l−1 A
−K̃′l+1

l+1 . . . A
−K̃′n−1

n−1

V −+ = V−+ Ã
K̃′1
1 . . . Ã

K̃′l−1

l−1 Ã
−K̃′l+1

l+1 . . . Ã
−K̃′n−1

n−1 ,

(4.106)

where it should be noted that in this case
∑l
i=1 ki =

∑n
i=l+1 ki = −1.

Similarly as before, V ± satisfy

V +−V −+ = ϕK̃
′+2 , (4.107)

where we define
K̃ ′ =

∑
1≤i≤n−1

i 6=l

|K̃ ′i| . (4.108)

This branch of the moduli space is therefore

C2/ZK̃′+2 . (4.109)

This result can be confirmed computing Hilbert series along the very same
lines of the θL = θR case. The only difference is the choice of baryonic
charges to assign to the baryonic generating functions other then R-charge
and topological charge of the monopole.
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The previous result is at the base of the generalization to more cuts. Let us
consider for simplicity the following configuration with two cuts, generalization
to more than two cuts is straightforward:

1k1 1kl 1kl+1
1kl+m 1kl+m+1 1kn

Al = Ãl = 0 Al+m = Ãl+m = 0

T [U(1)]

(4.110)
There are three possible reasons why we have been forced to implement the cut:

• The central sub-quiver has vanishing total Chern-Simons level but the
two external T-linked sub-quivers do not satisfy (4.92): in this case the
moduli space trivially coincides with the one of the central quiver, already
investigated in section 4.2.

• The central sub-quiver has non-trivial total CS level and the two external
T-linked sub-quivers satisfy (4.92). In this case, the central sub-quiver
do not participate at all and the moduli space coincides with the one of
the T-linked sub-quiver. Observe, however that this differs from (4.100) or
(4.109). In fact, the presence of the central quiver modifies the R-charge of
the monopole operator from 1

2 |mL−mR| to 1
2 (|mL−mC |+ |mC−mR|) =

1
2 (|mL|+ |mR|).

• The central sub-quiver has vanishing total CS level and the external T-
linked sub-quiver satisfy (4.92):

l∑
i=1

ki =

n∑
i=m+1

ki = ±1 ,

m∑
i=l+1

ki = 0 . (4.111)

In this case, all the sub-quivers participate non-trivially to the moduli
space. There is no unique prescription to describe such moduli space.
However, a general formal expression exists for the associated Hilbert se-
ries:

H(t; zL, zC , zR)

=
∑
mL∈Z

∑
mC∈Z

∑
mR∈Z

t|mL−mC |+|mC−mR|zmLL zmCC zmRR ×

gL(t, {k1mL −mR, k2mL, . . . , klmL}) gC(t, {kl+1mC , . . . , km−1mC})×
gR(t, (kmmR, . . . , kn−1mR, knmR −mL})(1− t2)δmR,±mL ,

(4.112)

where δmR,±mL takes into account the two possible solutions to (4.111).

This completely exhausts the cases where a cut is needed. However, there is a
last case left over: the case when no cuts at all are required.
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4.3.2 No cutting at all

In this case µi are non-zero for all i. A necessary condition for the non-trivial
moduli space is

n∑
i=1

ki = 2 . (4.113)

This again can be obtained from the sum of the equations in (4.85), with
θi = θ = (ϕ, σ) 6= 0 (otherwise we would have µ1 = 0 which contradicts
our assumption). The monopole operators V(m1...mn) are not gauge invariant;
however, the following basic dressed monopole operators are gauge invariant

V + = V(1,...,1)A
K1
1 AK2

2 . . . A
Kn−1

n−1

V − = V−(1,...,1) Ã
K1
1 ÃK2

2 . . . Ã
Kn−1

n−1 ,
(4.114)

for Ki ≥ 0 for all i = 1, . . . , n− 1, where we define

κi = {k1 − 1 , k2 , . . . , kn−1 , kn − 1} , Ki =

i∑
j=1

κj . (4.115)

If Kj < 0 for some j, we replace A
Kj
j by Ã

−Kj
j in the first equation and Ã

Kj
j by

A
−Kj
j in the second equation.

Since theR-charges of V±(1,...,1) are zero, theR-charges of V ± are 1
2

∑n−1
i=1 |Ki|.

The moduli space is thus generate by the operators {V + V − , ϕ} subject to the
quantum relation

V + V − = ϕK , with K =

n−1∑
i=1

|Ki| ; (4.116)

this is the algebraic definition of:

C2/ZK . (4.117)

A very simple example of such kind of configuration is the following:

1k1 1k2

T [U(1)]

(4.118)

Whenever (k1, k2) 6= (1,±1) or (k1, k2) 6= (−1,±1), no cut needs to be intro-
duced. As a result, from (4.113), it is necessary that k1 + k2 = 2 for this
theory to have a non-trivial moduli space. Assuming this, κi = {k1− 1, k2− 1},
Ki = {k1 − 1, k1 + k2 − 2 = 0}, and so K = |k1 − 1| = |k2 − 1|. Therefore the
moduli space of this theory is C2/Z|k1−1|.

4.4 Abelian models with fundamental matter

An interesting generalization of the discussion in section 4.2 and 4.3 consists of
models where fundamental matter is added. In this section we want to present
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the main features of this generalization. However, in order to make our dis-
cussion lighter, we want to study a particular example rather than explore this
new possibility in full generality. A detailed study of this class of models can be
found in [29]. As usual, we will start studying a model dual to a Hanany-Witten
setup without J-folds and then we will consider the T-linked version.

4.4.1 Warp-up: a model without J-folds

Let us consider a model consisting of two Abelian nodes with Chern-Simons
levels k1 and k2 and connected by a bi-fundamental hypermultiplet (A, Ã). We
also add f1 fundamental hypers with charge 1 with respect to the first node and
f2 fundamental hypers with charge 1 with respect to the second node. We will
denote the two sets of fundamental hypermultiplets as (Qi, Q̃i) where i = 1, 2.

1k1 1k2

f1 f2

(4.119)

In the N = 2 notation, this quiver can be written as

1k1 1k2

A

Ã

f1 f2

Q1 Q̃1 Q2 Q̃2

ϕ1 ϕ2

(4.120)

Defining the vectors

µ = (AÃ, |A|2 − |Ã|2) , νj = (QjQ̃j , |Qj |2 − |Q̃j |2) , θ = (ϕi, σi) (4.121)

the vacuum equations can be written in the following compact way:

A(θi − θi−1) = 0 , A(θi+1 − θi) = 0, (4.122)

also with A↔ Ã,
Q1 θ1 = 0 , Q2 θ2 = 0 (4.123)

also with Q↔ Q̃, and

k1θ1 = µ1 + ν1

k2θ2 = µ2 − µ1 + ν2 .
(4.124)

The R-charge of the monopole operators Vm with flux m = (m1, . . . ,mn) is

R[Vm] =
1

2

(
|m1 −m2| +

2∑
i=1

fi |mi|
)
. (4.125)
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Observe that (4.124) implies that fundamental matter and vectors scalar mul-
tiplets cannot take expectation value at the same time. We thus have different
sets of branches depending on which kind of scalars takes VEV: we will refer
to the two kind of choices as Higgs-like and Coulomb-like. In this case we have
three possibilities:

Higgs-like σi = ϕi = 0: First of all, let us observe that such branch is not
sensitive to Chern-Simons level, since we turned off all vector multiplet scalars.
(4.122) are automatically solved while (4.123) becomes:

µ+ ν1 = 0 , −µ+ ν2 = 0 . (4.126)

The gauge invariant operators parametrizing this branch are the mesons:

M1 = Q̃I1 Q1,J , M2 = Q̃A2 Q2,B , (4.127)

and the two (complex conjugate) baryons

BIA = Q̃I1 AQ2,A , B
A
I = QA2 ÃQ1,I . (4.128)

Observe that the other meson AÃ is nothing but − trM1 = trM2, because of
(4.126). Vacuum equations impose other constraints, for instance

BB = Q̃I1 A (Q2,BQ̃
B
2 ) ÃQ1,J = Q̃I1Q2,J(AÃ)2 = M3

1 (4.129)

and so on. The associated Hilbert series can be easily computed since no
monopoles are present:

HHiggs(t;x1,x2) = (1− t2)2

∮
du1

2πiu1

∮
du2

2πiu2
PE
[
tq1q

−1
2 + tq−1

1 q2

]
PE
[
tq1χ

SU(f1)

fund
+ tq−1

1 χ
SU(f1)
fund

]
PE
[
tq2χ

SU(f2)

fund
+ tq−1

2 χ
SU(f2)
fund

]
,

(4.130)

where the pre-factor (1− t2)2 takes into account the two constraints (4.126). In
general, it is not an easy task to recognize the variety associated to this Hilbert
series, however, being an hyperkähler quotient, it must correspond to the Higgs
branch of a Tσρ [SU(N)] for some appropriate choice of N,ρ,σ.

Coulomb-like QIi = Q̃Ii = 0: This time, vacuum equations (4.122)-(4.123)-
(4.124) reduce to:

θ1 = θ2 , k1θ = µ , k2µ = −µ . (4.131)

The branch is non-trivial only if k1 = −k2 ≡ k, consistently with the results of
section 4.2. Let us assume this is the case. Monopole operators are labeled by
a unique magnetic flux m = m1 = m2 and have R-charge:

R[Vm] = R[V(m,m)] =
1

2
|m|F , F ≡ f1 + f2 . (4.132)

Moreover, since monopoles have non-trivial gauge charge, we need to dress them.
The appropriate dressed monopoles are V m>0 = VmA

km and Vm<0 = V mÃ
km
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whose R-charge is R[V m] = 1
2 |m|(k + F )|. The monopoles and the vector

multiplet scalar ϕ1 = ϕ2 =≡ ϕ parametrize the branch and are subject to the
quantum constraint:

V + V − = ϕk+F (4.133)

Let us observe that this is quite similar to the moduli space of the half-ABJM
model without flavors: fundamental matter participates shifting the monopole
R-charge and, in this particular case, results in an effective shifting of the Chern-
Simons level k → k + F .

Mixed branch: In this case, we want to impose mixed condition on the two
nodes. Without loss of generality, we can think to set to zero the fundamental
hypermultiplets of the first node, Q1 = Q̃1 = 0, and set to zero the vector
multiplet scalars of the second node θ2 = 0. With this choice, (4.122) force us
to set bi-fundamental matter expectation value to zero. Vacuum equations split
into two sets, describing independently the two nodes. The moduli space is thus
the product of the Coulomb branch of the first node, that we know to be lifted
because of the Chern-Simons level, and the Higgs branch of the second node,
that we analyzed in details in section 2.3 and consists of the minimal nilpotent
orbit of SU(f2).

4.4.2 A model with one J-fold

Let us now consider the model where the two nodes are also linked by a T [U(1)]
theory:

1k1 1k2

f1 f2

T [U(1)]

(4.134)

The mixed Chern-Simons term induced by the T [U(1)] coupling modifies the
vacuum equations as follows:

A(θi − θi−1) = 0 , A(θi+1 − θi) = 0, (4.135)

Q1 θ1 = 0 , Q2 θ2 = 0 (4.136)

also with Q↔ Q̃, A↔ Ã, and

k1θ1 − θ2 = µ1 + ν1

k2θ2 − θ1 = µ2 − µ1 + ν2 .
(4.137)

Again, (4.136) implies that we need to choose, for each node, if set to zero the
vector multiplet scalars or the fundamental matter expectation value. We have
three options: Higgs-like, Coulomb-like and mixed:
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Higgs-like σi = ϕi = 0: Because all the vector multiplet scalars have vanish-
ing VEV, the presence of the mixed Chern-Simons coupling is irrelevant. The
moduli space is the same as the one described in the model without J-folds.

Coulomb-like Qi = Q̃i = 0: In this case, the vacuum equations set θ1 =
θ2 ≡ θ = (ϕ, σ) and require that:

(k1 − 1)θ = (−k2 + 1)θ = µ . (4.138)

This set of equations can be solved only if k1 + k2 = 2, consistently with our
discussion in section 4.3. let us assume this is the case and let us define k1−1 =
−k2 + 1 = k̃ and F = f1 + f2. The Coulomb branch is parametrized by ϕ and
the monopoles. Bare monopoles have the following charges:

tR[Vm = V(m,m)] =
1

2
|m|F ,

q1[Vm] = −(k1−1)m = −k̃ m , q2[Vm] = −(k2+1)m = k̃ m

(4.139)

The Coulomb branch is thus actually parametrized by the dressed monopoles

V m>0 = VmA
k̃m, V m<0 = Vm Ã

k̃m. Monopoles and ϕ are constrained by the
following quantum relation:

V + V − = ϕk̃+F , (4.140)

so that we can claim this branch to coincide with C2/Zk̃+F . The only effect of
the flavors is to provide an effective shifting of the Chern-Simons level through
the contribution to the monopole R-charge.

Mixed branch: This is the most interesting case. We want to set, without
loss of generality, Q1 = Q̃1 = 0 and θ2 = 0. Let us recall that in the case
without J-folds this has implied the splitting of the moduli space in a product:
each factor was associated to one of the node. In the case with a T [U(1)] link
this can be no longer true because of the mixed Chern-Simons interaction. In
fact, the vacuum equation are solved requiring A = Ã = 0 and:

k1θ1 = 0 , −θ1 = ν2 . (4.141)

This branch is really non-trivial if we require k1 = 0 and we will assume this to
be the case. The monopoles have the following charge:

R[Vm = V(m,0)] =
1

2
(|m− 0|+ f2|m|) =

1

2
|m|(f2 + 1) ,

q1[Vm] = 0 , q2[Vm] = m.
(4.142)

Let us stress that because of the mixed CS interaction, the monopole has a
non-trivial gauge charge with respect to the first node, but depending on the
magnetic fluxes of the first one! In particular, we need a dressing with funda-
mental matter of the second node:

(Wm>0)A1,...Am = Vm Q̃
A1
2 . . . Q̃Am2 . . . , (Wm<0)A1...Am = VmQ2,A1

. . . Q2,Am ,
(4.143)
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where A1, . . . , Am are flavor indices and the monopoles now transform in a non-
trivial way under the SU(f2) global symmetry. The moduli space is highly
non trivial. It is parametrized by dressed monopoles WA

+ ,W−,A transforming

in the (anti-)fundamental representation of SU(f2) and the mesons Q̃A2 Q2,B .
The Hilbert series can be computed as before: first we need to determine the
baryonic generating function of the fundamental matter:

g[t,x;B] =

∮
du

2πiu1+B
PE[t χ

SU(f2)
fund + t−1χ

SU(f2)

fund
] . (4.144)

Then, we need to sum over the magnetic fluxes, adding the contribution of bare
monopoles, depending on their charges:

Hmix branch[t, z,x] =
∑
m

t(f2+1)|m| zmg[t,x;−m] . (4.145)

4.5 A case with more J-folds

Up to now, we considered case where only a J-fold has been inserted. However,
it is possible to consider also models where more than one J-fold appear at the
same time, let us say {Jk1 , . . . , Jkn}. This system of duality walls corresponds
to the SL(2,Z) element J =

∏n
i=1 Jki , and this can be classified according to

the value of |TrJ |. If |Tr J | < 2, then J is said to be elliptic. If |TrJ | > 2,
then J is said to be parabolic. If |TrJ | = 2, then J is said to be hyperbolic.
The abelian case of N = 1, with J hyperbolic, has been extensively studied
in [67]. More generally, the authors of [19] studied the holographic dual of such
a system9 as well as the three sphere partition function in the large N limit and
with J hyperbolic, and showed that supersymmetry of the theory is enhanced to
N = 4. It should be noted that any parabolic element of SL(2,Z) is conjugate
to ±T p, for some p 6= 0.

For definiteness, let us focus on the following model with U(1)k1 × U(1)k2
gauge group10:

1 D3

•
...n1 D5

•

•
... n2 D5

•

Jk1 = −STk1

Jk2 = −STk2

1k1 1k2n1 n2

T (U(1))

T (U(1))

(4.146)
For the moment we allow for generic CS levels k1 and k2, but we will see that
the vacuum equations admit solutions for non-trivial branches of the moduli
space when J1J2 is parabolic, i.e. | tr J1J2| = 2, or equivalently k1k2 = 0 or 4.

9To be precise, the authors considered the case of a single gauge node with more T-link
loops and no matter.

10A more general detailed discussions can be found in [29].

68



Let us rewrite the quiver (4.146) in N = 2 language:

1k1 1k2n1 n2
A1 Ã1 Ã2 A2

ϕ1 ϕ2

T (U(1))

T (U(1))

(4.147)

with superpotential:

W = − tr(A1ϕ1Ã1 +A2ϕ2Ã2) +
1

2
(k1ϕ

2
1 + k2ϕ

2
2)−2ϕ1ϕ2 . (4.148)

where we denoted in blue the contribution due to the two T -links, consisting of
a mixed CS coupling. The vacuum equations are as follows:

A1ϕ1 = Ã1ϕ1 = 0 , A2ϕ2 = Ã2ϕ2 = 0 , (4.149)

and

k1ϕ1−2ϕ2 = (A1)A(Ã1)A ,

k2ϕ2−2ϕ1 = (A2)I(Ã2)I .
(4.150)

where A,B,C = 1, . . . , n1 and I, J,K = 1, . . . , n2.
The vacuum equations (4.149) and (4.150) admit the solutions in which

ϕ1 = ϕ2 = 0, regardless of the CS levels. This branch of the moduli space
is generated by the mesons (M1)BA = (A1)A(Ã1)B and (M2)JI = (A2)I(Ã2)J

subject to the following relations:

rank(M1,2) ≤ 1 , M2
1,2 = 0 , (4.151)

where the first relations come from the fact that each of the matrices M1 and
M2 is constructed as a product of two vectors, and the second matrix relations
follow from (4.150). We refer to this branch of the moduli space as the Higgs
branch, denoted byH(4.146). Indeed, it is isomorphic to a product of the closures
of the minimal nilpotent orbits:

H(4.146) = OSU(n1)

min ×OSU(n2)

min . (4.152)

There are also other non-trivial branches of moduli spaces, which we are analysing
in the following.

Let us consider the branch on which ϕ1 6= 0 and ϕ2 6= 0. From (4.149), we

have A1 = Ã1 = A2 = Ã2 = 0. Equations (4.150) admit solutions only if:

k1ϕ1 = 2ϕ2 , k2ϕ2 = 2ϕ1 , k1k2 − 4 = 0 ; (4.153)

the latter implies that J1J2 has to be parabolic such that either (k1, k2) = (1, 4)
or (k1, k2) = (2, 2). (The case the (k1, k2) = (4, 1) can be considered by simply
exchanging n1 and n2.) We analyze these cases below.

• The case of (k1, k2) = (2, 2). The first equation of (4.153) sets ϕ1 =
ϕ2 ≡ ϕ. Since the real scalars in the vector multiplets belong to the same
multiplets as ϕ1,2, the magnetic fluxes of the monopole operators V(m1,m2)

69



satisfy m1 = m2 ≡ m. The R-charge and the gauge charges with respect
to the first and second nodes are respectively

R[V(m,m)] =
1

2
(n1 + n2)|m| ,

q1[V(m,m)] = −(k1m− 2m) = 0 , q2[V(m,m)] = −(k2m− 2m) = 0 .

(4.154)

Observe that the V(m,m) are gauge neutral for all m. This branch is
generated by the basic monopole operators V±(1,1) and ϕ (the latter has
R-charge 1), satisfying the quantum relation.

V(1,1) V−(1,1) = ϕn1+n2 . (4.155)

This branch is thus a Coulomb branch and it is isomorphic to

Ck1=k2=2
(4.146) = C2/Zn1+n2 . (4.156)

In the special case of one flavor, i.e. (n1, n2) = (1, 0) or (0, 1), we see that
the Coulomb branch is isomorphic to C2 ∼= H. Indeed, the basic monopole
operators decouple as a free hypermultiplet.

• The case of (k1, k2) = (1, 4). In this case ϕ1 = 2ϕ2 = 2ϕ and the
allowed magnetic fluxes for the monopole operators V(m1,m2) are such that
m1 = 2m2 ≡ 2m. The R-charge and the gauge charges with respect to
the first and second nodes are respectively

R[V(2m,m)] =
1

2
(n1|2m|+ n2|m|) =

(
n1 +

1

2
n2

)
|m|

q1[V(2m,m)] = −[k1(2m)− 2m] = 0 , q2[V(2m,m)] = −[k2(m)− 2(2m)] = 0 .

(4.157)

Observe that V(2m,m) are gauge neutral for all m. This branch of the mod-
uli space is generated by V±(2,1) and ϕ, satisfying the quantum relation:

V(2,1)V−(2,1) = ϕ2n1+n2 . (4.158)

This branch is thus a Coulomb branch and it is isomorphic to

C(k1,k2)=(1,4)
(4.146) = C2/Z2n1+n2

. (4.159)

It is worth pointing out that for both (k1, k2) = (2, 2) and (1, 4), the vacuum
equations admit the solutions such that there is a clear separation between the
Higgs and Coulomb branches, in the same way as general 3d N = 4 gauge
theories. This is mainly due to the fact that the monopole operators are gauge
neutral. Note also that both branches are hyperkähler cones.

Next, we analyze the case in which one of ϕ1 and ϕ2 is zero. For definiteness,
let us take ϕ2 = 0 and 0 6= ϕ1 ≡ ϕ. From (4.149), we see that A1 = Ã1 = 0,
and so (4.150) admits a solution only if k1 = 0. Let us suppose that

k1 = 0 . (4.160)
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Observe that the CS levels (0, k2) satisfy the parabolic condition on J0Jk2 ,
because |Tr(J0Jk2)| = 2 for any k2. Then the second equation of (4.150) implies
that

(A2)I(Ã2)I = −2ϕ . (4.161)

The fluxes (m1,m2) of the monopole operators V(m1,m2), satisfies m2 = 0. For
convenience, we write m1 = m. The R-charge and the gauge charges of the
monopole operators V(m,0) are

R[V(m,0)] =
1

2
(n1|m|+ n2|0|) =

1

2
n1|m|

q1[V(m,0)] = −[k1(m)− 2(0)] = 0 , q2[V(m,0)] = −[k2(0)− 2(m)] = 2m.

(4.162)

In this case the monopole operator V(m,0) is no longer neutral under the gauge
symmetry, but it carries charge 2m under the U(1)k2 gauge group. We can form
the basic gauge invariant dressed monopole operators as follows:

(W+)IJ = V(1,0)(Ã2)I(Ã2)J , (W−)IJ = V(−1,0)(A2)I(A2)J . (4.163)

These operators transform under the representation [2, 0, . . . , 0] and [0, . . . , 0, 2]
of SU(n2) respectively. They carry R-charges

R[W±] =
1

2
n1 + 1 , (4.164)

and satisfy the quantum relation

Tr(W+W−) = (W+)IJ(W−)JI = ϕn1+2 . (4.165)

Since the dressed monopole operators W± are generators of this branch of the
moduli space, we can regard this as a “mixed” Higgs and Coulomb branch.

Note that if we take instead ϕ1 = 0 and 0 6= ϕ2 ≡ ϕ, the situation is reversed.
In order for the vacuum equations to admit a solution we must have k2 = 0.
This leads to the gauge invariant dressed monopole operators

(U+)IJ = V(0,1)(Ã1)I(Ã1)J , (U−)IJ = V(0,−1)(A1)I(A1)J , (4.166)

which transform under the representation [2, 0, . . . , 0] and [0, . . . , 0, 2] of SU(n1)
respectively. The carries R-charges R[U±] = 1

2n2 + 1 and satisfy the quantum
relation Tr(U+U−) = ϕn2+2.

Finally, we remark that if (k1, k2) = (0, 0), which is another possibility for
Jk1Jk2 to be parabolic, then both dressed monopole operators W± and U±, as
described above, are generators of the moduli space.

4.6 (p, q)-branes and J-fold theories

T [U(N)] couplings are particularly useful in order to describe the field theories
dual to brane configurations where more general

(
p
q

)
-branes have been inserted.

As before, we will focus on the case of a single D3 brane wrapping S1, in such a
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way to reduce to Abelian Lagrangian theories. Let us consider for instance the
following brane system

1 D3

(p, q)

NS5

(4.167)

For simplicity, let us take (p, q) to be the following value: (p, q) = Jk3Jk2 Jk1(1, 0),
so that11

p = k1k2k3 − k1 − k3 , q = k1k2 − 1 . (4.168)

Since we are able to perform (local) SL(2,Z) transformations, we can first apply

the following duality transformation, J
−1

k2 J
−1

k3 to the whole system and then

perform a Jk1 local transformation in the region where the
(
p
q

)
-brane is located.

We can study the following SL(2,Z) equivalent problem:

1 D3

(k1, 1)

(−1,−k2)

1 D3

NS5

J
−1
k1

Jk1

(−1,−k2)

(4.169)

Let us observe that this equivalent setup does not depend at all by the choice
of k3 in (4.168). The associated quiver involves T [U(1)] couplings. Let us stress
again that we traded the problem of describing

(
p
q

)
-brane system into the field-

theoretical problem of T [U(N)] interactions.

1k1 1−k1

1−k21k2

T [U(1)] T [U(1)] (4.170)

11Jk is shorthand notation for −J−k.
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In N = 2 language, this can be written as

1k1 1−k1

1−k21k2

T [U(1)]

A Ã

B̃B

T [U(1)]

φ1 φ2

φ4φ3

(4.171)

The vacuum equations are

A(ϕ1 − ϕ2) = 0 = Ã(ϕ1 − ϕ2) , B(ϕ3 − ϕ4) = 0 = B̃(ϕ3 − ϕ4)

k1ϕ1 − ϕ3 = AÃ , k2ϕ3 − ϕ1 = B B̃

−k1ϕ2 + ϕ4 = −AÃ , −k2ϕ4 + ϕ2 = −B B̃ .
(4.172)

where we emphasized the contributions due to the mixed CS levels in blue.
Observe that the only difference between T [U(1)] and T [U(1)] consists in the
sign of the mixed Chern-Simons interaction. We have two branches, that we are
going to analyze:

Branch I: AÃ 6= 0 and BB̃ 6= 0

In this case the F -terms implies:

ϕ1 = ϕ2 = ϕ , ϕ3 = ϕ4 = ϕ̃ ; (4.173)

moreover, two constraints are still present, fixing ϕ , ϕ̃ in terms of the mesons:

k1ϕ− ϕ̃ = AÃ , k2ϕ̃− ϕ = BB̃ . (4.174)

An analogous analysis of the D-terms can be performed. The flux m for the
monopole operator Vm takes the form

m = (m,m, m̃, m̃) . (4.175)

The gauge charges and the R-charges of Vm are

q1[Vm] = −q2[Vm] = −(k1m− m̃) ,

q3[Vm] = −q4[Vm] = −(k2m̃−m) .
(4.176)

and
R[Vm] = 0 . (4.177)

Let us now determine the moduli space and compute the Hilbert series of
this theory. The baryonic generating function is given by

G(t;B, B̃) =

(
4∏
i=1

∮
dqi

2πiqi

)
1

qB1 q
−B
2 qB̃3 q

−B̃
4

PE[t(q1q
−1
2 + q2q

−1
1 )] PE[t(q3q

−1
4 + q4q

−1
3 )]

= gABJM/2(t;B) gABJM/2(t; B̃) .

(4.178)
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where

gABJM/2(t;B) =
t|B|

1− t2 . (4.179)

The Hilbert series of (4.171) is thus:

H(4.171)(t, z) =
∑
m∈Z

∑
m̃∈Z

zm+m̃gABJM/2(t; k1m− m̃)gABJM/2(t; k2m̃−m)

=
∑
m∈Z

∑
m̃∈Z

zm+m̃ t
|k1m−m̃|

1− t2
t|k2m̃−m|

1− t2 .

(4.180)

This turns out to be equal to

H(4.171)(t, z) =
1

k1k2 − 1

k1 k2−1∑
j=1

1

(1− t uj)(1− t wj)
1

(1− t/uj)(1− t/wj)

= H[C4/Γ(k1, k1k2 − 1)](t, z) ,

(4.181)

where

uj = z
k1+1
k1k2−1 ej

2πi k1
k1k2−1 , wj = z

k2+1
k1k2−1 ej

2πi
k1k2−1 . (4.182)

This is the Molien formula for the Hilbert series of C4/Γ(p, q) [68], with p = k1

and q = k1k2 − 1, where Γ(p, q) is a discrete group acting on the four complex
coordinate of C4 as:

Γ(p, q) : (z1 , z2 , z3 , z4) → (z1e
2πip

q , z2e
2πi
q , z3e

− 2πip
q , z4e

− 2πi
q ) . (4.183)

This is in agreement with [61,69].

Branch II: AÃ = 0 or BB̃ = 0

The second branch appears when we set one of the bi-fundamental hypers to
zero, say AÃ = 0. In this case, (4.172) implies again that:

ϕ1 = ϕ2 = ϕ , ϕ3 = ϕ4 = ϕ̃. (4.184)

Moreover, we have12:

k1ϕ = ϕ̃ , k2ϕ̃ − ϕ = BB̃ . (4.185)

Because of N = 3 supersymmetry of the problem, the real scalar in the
vector multiplet satisfies the same equation as the complex scalar in the vec-
tor multiplet. As a consequence, the flux m = (m,m, m̃, m̃) of the monopole
operator Vm has to satisfy

k1m = m̃ (4.186)

The gauge charges of Vm are

q1[Vm] = −q2[Vm] = −(k1m− m̃) = 0 ,

q3[Vm] = −q4[Vm] = −(k2m̃−m) = −(k1k2 − 1)m .
(4.187)

12A special case is k1 = k2 = ±1. In this case BB̃ = 0 and we are left with ϕ and the
basic monopole operators. The corresponding moduli space is thus simply C2.
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The R-charge of Vm is R[Vm] = 0. The gauge invariant dressed monopole
operators are

V + = V(1,1,k1,k1)B
k1k2−1 , V − = V(−1,−1,−k1,−k1) B̃

k1k2−1 , (4.188)

for k1k2−1 > 0. If k1k2−1 < 0, we replace Bk1k2−1 by B̃−(k1k2−1) and B̃k1k2−1

by B−(k1k2−1) in the above equations. They carry R-charges R[V ±] = |k1k2−1|
2 .

Since (k1k2 − 1)ϕ = BB̃, we see that these dressed monopole operators satisfy
the quantum relation

V + V − = ϕ|k1k2−1| . (4.189)

Hence the moduli space is C2/Z|k1k2−1|.
Note that (4.186) implies that the magnetic lattice given by m̃ jumps by a

multiple of k1, since m ∈ Z. If we further require that the magnetic lattice do
not jump, we can impose a further condition that k1 = ±1. In this case, the
brane system contains a (±1, 1)-brane and a (−1,−k2)-brane. Applying T∓1 to
this system, (±1, 1) becomes (±1, 0), and (−1, k2) becomes (−1,−k2∓ 1). This
gives rise to the ABJM theory with CS level k2−1 and −k2 +1. Indeed, Branch
I (which is C4/Z|k2−1|) and Branch II (which is C2/Z|k2−1|) are the so-called
geometric branch of the ABJM theory and the moduli space of the half-ABJM
theory, respectively.
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Chapter 5

Variations on S-fold CFTs

Up to now, we only considered S-fold SCFTs with a T [U(N)] link. These
are dual to compact Hanany-Witten configurations where an S-fold has been
inserted. It is interesting to observe that T [U(N)] theories admit a generaliza-
tion, T [G], where G is an arbitrary simple Lie group. Following [15], we can
think of a T [G] theory in the following way: let us consider a Janus configu-
ration in four dimensions. The space, with coordinates {x0,1,2, t}, is divided
into two regions: in the half-space t < 0 a weakly coupled 4d SYM with gauge
group G lives, while for t > 0 physics is described by a strongly coupled 4d
SYM with gauge group G. In order to deal with the strongly coupled sector,
we can perform a local S-duality transformation, so that in t > 0 we end up
with a weakly coupled theory consisting of 4d SYM theory with gauge group
G∨ [70], the Langlands dual group of G, coupled to some boundary theory at
the interface. Flowing in the IR, the four-dimensional vectors are frozen and
we only observe a three-dimensional field theory with symmetry group G×G∨;
the two factors act on Higgs and Coulomb branch respectively. The two cones
coincides with the maximal nilpotent orbits NG and NG∨ . This construction
can be understood as a formal definition of T [G]. Whenever G = G∨, i.e. in
the case of self-Langlands groups, T [G] is a self-mirror theory; otherwise, mir-
ror symmetry maps T [G] into T [G∨].1 In the case of classical real groups, the
unique self-dual theories corresponds to G = SO(2N), USp′(2N), whose quiver
realization are illustrated below:

T [SO(2N)] : 2N 2N − 2 2N − 2 2N − 4 · · · 2 2

(5.1)

T [USp′(2N)] : 2N 2N − 1 2N − 2 2N − 3 · · · 2 1

(5.2)

1Tσρ [G] also exists [15]. It must be stressed that in this case ρ is a Young tableau defining
an embedding of su(2) into g, while σ defines an su(2) embedding into g∨. Moreover, not
all possible tableaux define a good embedding. Some examples can be found in [49]. For the
exceptional groups, it is not possible at all to use the tableaux in order to define the orbits
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We introduced the following convention to distinguish the nodes corresponding
to various groups:

U(N) : N N

USp(M) : M M with M even

O(K) or SO(K) : K K

(5.3)

We shall be explicit whenever we would like to emphasize whether the group is
O(k) or SO(k). Moreover, let us stress that a SO(2N) is always followed by
an USp(M) node while an SO(2N + 1) node is followed by a USp′(2N) node
so that no ambiguities can arise. For sake of clarity, sometimes we will use
also the notation 2N ′ inside blue node in order to specify a USp′(2N) gauge
group. T [SO(2N+1)] and T [USp(2N)] form instead a mirror pair. Their quiver
realization is the following:

T [SO(2N + 1)] : 2N + 1 2N 2N − 1 2N − 2 · · · 2 1

(5.4)

T [USp(2N)] : 2N 2N 2N − 2 2N − 2 · · · 2 2

(5.5)

Compact models with classical real groups can be engineered at brane level in-
serting an O3-plane (wrapping an S1) or two O5-planes into a Hanany-Witten
configuration [71–73]. These brane systems do not possess at the moment a
supergravity realization. In this section, we are interested in understanding
whether S-fold SCFTs admit a generalization where a T [U(N)] link is substi-
tuted by a more general T [G] link. Following the guiding lines of section 4, we
will study the moduli space of models involving different classical real groups,
trying to understand which kind of constraints are imposed by the required con-
sistency with mirror symmetry. We also propose a new class of circular mirror
pairs involving G2 gauge groups.

Some computations performed in this chapter make use of some technical
results about the hyperkähler spaces arising from the coupling of hypermulti-
plets to nilpotent cones. In order to make our discussion lighter, we collected
such technical results in the appendix (A.2).

5.1 Hanany-Witten systems with O-planes

In HW brane configurations we can only insert O3 and O5 planes in order to
preserve supersymmetry. In both case, O-planes are fixed loci of a Z2 involution.
Quotient with respect to such involution implies that Chan-Paton dressing of a
string ending on a D3-brane must be performed in a symmetric or antisymmetric
way: fluctuations of those strings must be interpreted as vector multiplets for
classical real groups.
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5.1.1 O3-plane

Let us consider a configuration where an O3-plane is put on top of 2N D3-branes
wrapping an S1.2 We actually have four different kinds of possible O3-planes,

denoted by O3± and Õ3
±

[56,72]. Each plane differs from the others for its D3-
brane charge and the discrete torsion for the NS and RR two-form connections.
Without entering into details, we can think the two torsion classes in terms of
fluxes through a compact two-cycles in the given background:

(nNS , nRR) = (
1

2πi

∫
S2

B,
1

2πi

∫
S2

C2) ∈ (Z2,Z2) , (5.6)

where nNS and nRR are swapped by S-duality transformation. On each kind
of O-plane, a different gauge group is realized. We collected the feature of the
four O3-planes in the table (5.7).

(nNS , nRR) D3 charge G(nNS ,nRR) S-dual

O3− (0, 0) -1/4 SO(2N) O3−

Õ3
−

(0, 1) +1/4 SO(2N + 1) O3+

O3+ (1, 0) +1/4 USp(2N) Õ3
−

Õ3
+

(1, 1) +1/4 USp′(2N) Õ3
+

(5.7)

Observe that we can think to divide a 5-brane into two half-branes, one being
the mirror of the other under orientifold involution. When the two halves are
brought on the orientifold plane, they combine to give a full 5-brane again.
However, we can also consider half-branes without a companion, stuck at the
orientifold plane.

Conservation of flux integers implies that any time an O3-plane is cut by a
1/2 NS5-brane, nRR has to jump by 1. Thus, in a Hanany-Witten configuration

we find a series of alternating O3+−O3− planes or Õ3
+−Õ3

−
planes. Moreover,

in a circular configuration made out of an O3-plane on top of 2N D3 branes we
can only insert an even number of 1/2 NS5-branes. In an analogous way, any
time a 1/2 D5-brane cuts a D3-brane, nNS must jump by 1 and an O3± plane

must change into an Õ3
±

one and vice-versa. In a circular quiver, the number of
1/2 D5-branes that can be inserted in each segment must be consistent with all
the alternation rules we have presented. Let us assume that in a given segment
with an O3-plane of fluxes (nNS , nRR) additional Nf 1/2 D5-branes are added.
From a quiver perspective, these must be interpreted ad nf fundamental flavors
rotated among them by the action of the global symmetry G(nNS+1,nRR+1).

3 As

an example, let us present a brane configuration consisting of an O3±-plane on
top 2N D3 branes wrapping S1, two half NS5-branes (forcing the plane to change
type) and f 1/2 D5-brane; the dual field theory consists a SO(2N)×USp(2N)
gauge theory with two bi-fundamentals and f flavors for the USp(2N) gauge

2D3-branes always come in pairs. One of the two D3s can be understood as the image
under the orientifold involution.

3For instance, given a gauge node USp′ (i.e. (nNS , nRR) = (1, 1)), Nf flavors transform
in the fundamental representation of SO(2Nf ) (i.e. (nNS + 1, nRR + 1) = (0, 0)).

78



node:

1
2

NS5

− 2N 2N

•
+

•̃
+

+

...

•
1
2

D5+

2N

2N

2n

(5.8)

The mirror configuration can be determined using the rules summarized in
(5.7). The dual field theory is much more complicated in this case and con-
tains SO(2N), SO(2N + 1) and USp′(2N) gauge nodes, as shown in figure
(5.9).

1
2

NS5

...

•

•

2N

2N + 1

2N + 1

2N

2N−

+
+̃

−̃

+
+̃

−̃

...

2N

2N + 1

2N ′

2N + 1

2N

2N2N

One red (2N) node + two blue (2N) nodes

with a half-flavor each, and alternating

(n− 2) blue (2N ′) nodes with no flavor

+ (n− 1) red (2N + 1) nodes with no flavor

1

1

(5.9)
The single flavors transforming in the fundamental representation of the two
USp(2N) gauge nodes must be understood as half-hypers. Half-hypers can be

built starting from a full hypermultiplet (Qa, Q̃
a) with a gauge indices. Let us

assume Q to transform in a pseudo-real representationR and Q̃ in the conjugate
one, R. Since the representation is pseudo-real, there exists an anti-symmetric
rank-two tensor εab. Using this tensor, we can impose the condition Q̃a = εabQ̃

b,
halving the numbers of degrees of freedom.

5.1.2 O5-planes

O5-planes span the same direction as NS5 or D5 branes. In particular the
orientifold involution identifies x6 with −x6 (see table (2.52)). Let us consider
a Hanany Witten configuration with N D3-branes wrapping an S1 and two O5-
plane spanning either x3,4,5 (i.e. parallel to NS5-branes) or x7,8,9 (i.e. parallel
to D5-branes). Between the two planes, an arbitrary number of NS5 and D5
branes can be added. However because of the two orientifold involutions, the
two intervals between the O5-planes must be identified, as illustrated in figure
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(5.10).

N D3

O5

n NS5
f D5

Mirror
under

involutions

O5

⇒

O5

n NS5
f D5

O5

N D3

(5.10)
Thus, in the following, we will consider quivers that are only apparently lin-
ear, but they must be actually understood as circular compact models. As in
the O3-plane case, O5-planes come in four varieties, O5± and ON±; the pairs
{ON±,O5±} are related by S-duality. In the rest of the chapter, we will focus
on the minus case.4 The O5− planes span the same directions as an NS5 brane.
Let us explain how quiver gauge theory can be read from a given Hanany-Witten
configuration. With respect to the case without O-planes, we must only under-
stand the gauge node and flavor matter arising from the segment of D3 ending
on the plane. There are two possibilities [73,76]:

• N D3-branes end on an O5−-plane with no NS5-branes on top. In this
case, because of the O-plane involution, strings fluctuations describe an
USp(2N) vector multiplet. Moreover, additional f D5-branes translate
into f flavor hypermultiplets rotated by an SO(2f) global symmetry
group. For instance, we can consider the model in (5.11), made of two
O3− planes and f D5-branes; the dual field theory is nothing but 3d
N = 4 USp(2N) gauge theory with f flavors:

O5−

• • . . . •

f physical D5s

O5−

2N

D3

2N 2f

(5.11)

• N D3-branes stretch between an O5− plane with an NS5 on top and
another NS5 brane. In this case the gauge group is again U(N) and D5-
branes are interpreted as fundamental hypermultiplets; however, there is
an additional rank two antisymmetric hypermultiplet: this situation is
depicted in figure (5.12). The model is made of two O5− plane with NS5s
on top and f D5-branes. The dual field theory is a 3d N = 4 U(N) gauge

4Describing the dual quiver when an ON+ is present requires the introduction of non-
Lagrangian matter [74, 75]. In order to keep our discussion lighter, we will avoid this further
complication. However, analysis of the moduli space of such models (with and without S-folds)
can be found in [31,74].
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theory with f fundamental flavor and two rank-two antisymmetric hypers
A and A′ (one for each plane).

O5−
with an NS5 on top

• • . . . •

n physical D5s

O5−
with an NS5 on top

2N

D3

2N

A

A′

n

(5.12)

Configurations dual to brane setup with O3− planes involve ON− planes,
eventually with D5-branes on top.5 For instance, the configuration dual to
(5.11) is the following:

ON− ON−

N

N

2N

D3

2N

NS5

N

N

n− 3 intervals

(5.13)

In (5.13), the two (red) stacks of D3-branes in the first segment represent N
D3s and their mirror under orientifold involution. They do not participate in
any way to the dynamics and must considered as frozen. In the next segment,
we can find again two stacks of N D3-branes, that translates into two U(N)
gauge nodes at the quiver level. The field theory dual to the setup in (5.13) is
the following:

2N 2N · · · 2N

N

N

N

N
n− 3 nodes

(5.14)

Whenever a D5-brane is put on top of a ON− plane, we must also take into
account of the degrees of freedom brought by strings stretching between the N
(black) D3-branes in the second segment of (5.13) and the D5: these fluctuation
translate into an additional flavor hypermultiplet transforming in the fundamen-
tal representation of one of the extremal U(N) nodes. Below, we illustrated the

5In fact, ON− planes span the same directions as a D5-brane.
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configuration and field theory dual to (5.12):

ON−

•D5

ON−

•D5

N

N

2N

D3

2N

NS5

N

N

n− 3 intervals

2N 2N · · · 2N

N

N

N

N

1 1

n− 3 nodes

(5.15)

5.2 S-fold models with an orientifold threeplane

In this section, we want to provide evidence that an S-fold can be inserted in a
consistent way into Hanany-Witten setup where an O3 plane has been inserted
on top of N D3-branes wrapping S1. From a quantum field theory side, We
propose that the dual field theories consist of S-fold CFTs where the global
symmetries of a T [G] theory have been gauged, with G classical real group. All
the proposed model must be consistent against mirror symmetry. We check our
proposal studying the moduli spaces of some classes of interesting models.

An important result and observation is that S-fold SCFTs can be con-
structed only gauging the global symmetries of a self-Langlands group, i.e. the
unique admitted T-links are T [SO(2N)] and T [USp′(2N)]. Otherwise, we ob-
tain brane configurations that cannot be consistent with (5.7) and the rules that
we have presented before. For instance, let us consider a circular quiver with the
USp(4)×SO(4)×USp(4)×SO(5) gauge group, where the first USp(4) and the
last SO(5) are connected by the T -link and other groups are connected by bifun-
damental half-hypermultiplets. One cannot realize this theory using a Type-IIB
brane configuration with an orientifold threeplane and an “S-fold” in a simple
way for the following reason. Note that the first USp(4) and the last SO(5)

connected by the T -link must be associated with O3+ and Õ3
−

respectively,
and as the O3 plane crosses a half-NS5 brane it changes sign. Starting from
the left USp(4) as we go through the sequence of the gauge groups to the right,
we obtain the sequence of the associated O3 plane to be (O3+,O3−,O3+,O3−).
However, this is in contradiction with the fact that the SO(5) gauge group must

be associated with Õ3
−

, and not O3−. Thus, there is no way to construct a
consistent brane configuration.
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Another possible configuration that one could imagine is the following:

•1
2

D5 2N

1
2

NS5

+̃

+

− 2N 2N + 11

T [SO(2N + 1)]

(5.16)

The USp(2N) node has an odd number of flavors and this is source of par-
ity anomaly that we can only cancel turning on a non-trivial Chern-Simons
level [10]. However, since we want to consider S-flip theories only, where we
know how to perform computations, we need to exclude this class of model
also. One can convince itself that any other possible model suffers of the same
kind of problems. In the rest of the section we will study the moduli space of
some interesting examples and in particular we will show that the freezing rule
conjecture proposed in [29] and described 4 extends to this case.

All along this chapter, we will denote T-links with a red wiggly line.

5.2.1 Quiver with a T [SO(2N)] loop

We start by examining the following brane configuration and the corresponding
quiver:

••

••1
2

D5

2N

. . .

− −

−̃−̃

2N

T [SO(2N)]

2n

(5.17)

where in the left diagram the red wiggly denotes the S-fold and there are 2n
half D5 branes. In order to obtain the mirror theory, we apply S-duality to the
above brane system. The result is

. . .

2N2N

2N 2N

−−

++

1
2

NS5
...

2N

2N

2N

2N

2N

2N

2N

n blue circular nodes + (n− 1) red

usual circular nodes + 2 red nodes

connected by T [SO(2N)]

T [SO(2N)]

(5.18)
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where in the left diagram there are 2n half-NS5 branes.

In the absence of the S-fold, quivers (5.17) and (5.18) reduce to conventional
Lagrangian theories that are related to each other by mirror symmetry. In
particular, (5.17) reduces to a theory of free 4Nn half-hypermultiplets, namely

2N 2n (5.19)

and quiver (5.18) reduces to

...

2N

2N

2N

2N

2N

2N 2n alternating red/blue circular nodes

(5.20)

where the two SO(2N) gauge groups that were connected by T [SO(2N)] merged
into a single SO(2N) circular node. It can be checked that the Higgs branch
dimension of (5.20) is indeed zero:

(2n)(2N2)− n
[

1

2
(2N)(2N − 1)

]
− n

[
1

2
(2N)(2N + 1)

]
= 0 , (5.21)

and the quaternionic dimension of the Coulomb branch of (5.20) is 2Nn. These
are in agreement with mirror symmetry.

Theory (5.17)

The Higgs branch of this theory is given by the hyperkähler quotient:

H(5.17) =
Nso(2N) ×Nso(2N) ×H ([S/O(2N)]− [USp(2n)])

S/O(2N)
. (5.22)

where the notation S/O means that we may take the gauge group to be SO(2N)
or O(2N). The dimension of this space is

dimH H(5.17) =

[
1

2
(2N)(2N − 1)−N

]
+ 2Nn− 1

2
(2N)(2N − 1) = (2n− 1)N .

(5.23)
Since the circular nodes that are connected by T [SO(2N)] do not contribute to
the Coulomb branch, it follows that the Coulomb branch of (5.17) is trivial:

dimH C(5.17) = 0 . (5.24)

Let us now discuss certain interesting special cases below.
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The Higgs branch of (5.17) for N = 1, 2

For N = 1, since Nso(2) is trivial, it follows that H(5.17) is the Higgs branch
of the 3d N = 4 S/O(2) gauge theory with n flavors. If the gauge group is
taken to be O(2), H(5.17) is isomorphic to the closure of the minimal nilpotent
orbit of usp(2n). On the other hand, if the gauge group is taken to be SO(2),
H(5.17) turns out to be isomorphic to the closure of the minimal nilpotent or-
bit of su(2n). The reason is because the generators of the moduli space with
SU(2)R-spin 1 are mesons and baryons; they transform in the representation
[2, 0, . . . , 0] + [0, 1, 0, . . . , 0] of usp(2n). This representation combines into the
adjoint representation [1, 0, . . . , 0, 1] of su(2n).

For N = 2, let us denote the fundamental half-hypermultiplets by Qia with
i, j, k, l = 1, . . . , 2n and a, b, c, d = 1, 2, 3, 4, and the generators of Nso(4) by a
rank-two antisymmetric tensor Xab. We find that for the O(4) gauge group, the
generators of the Higgs branch are as follows:

• The mesons M ij = QiaQ
j
bδ
ab, with SU(2)R-spin 1, transforming in the

adjoint representation [2, 0, . . . , 0] of usp(2n).

• The combinations QiaQ
j
bXab, with SU(2)R-spin 2, transforming in the

adjoint representation [0, 1, 0, . . . , 0] of usp(2n).

For the SO(4) gauge group, we have, in addition to the above, the following
generators of the Higgs branch:

• The baryons Bijkl = εabcdQiaQ
j
bQ

k
cQ

l
d, with SU(2)R-spin 2, transforming

in the adjoint representation [0, 0, 0, 1, 0, . . . , 0]+ [0, 1, 0, . . . , 0] of usp(2n).

• The combinations εabcdQiaQ
j
bXcd, with SU(2)R-spin 2, transforming in the

adjoint representation [0, 1, 0, . . . , 0] of usp(2n).

• The USp(2n) flavor singlet εabcdXabXcd, with SU(2)R-spin 2.

The Higgs branch of (5.17) for n = 1

In this case, it does not matter whether we take the gauge group to be SO(2N)
or O(2N), the Higgs branch is the same. The corresponding Hilbert series is

H[H(5.17)|n=1] = PE

χsu(2)
[2] (x)

N−1∑
j=0

t4j+2 −
2N−1∑
l=N

t4l

 . (5.25)

Indeed, for N = n = 1, we recover the nilpotent cone of su(2), which is isomor-
phic to C2/Z2.

Theory (5.18)

Since the nodes that are connected by T [SO(2N)] do not contribute to the
Coulomb branch, it follows that the dimension of the Coulomb branch is

C(5.18) = (2n− 1)N . (5.26)

Note, however, that quiver (5.18) is a “bad” theory in the sense of [15], due to
the fact that each USp(2N) gauge group has 2N flavors. Nevertheless, we shall
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analyze the case of n = 1 and general N in detail below. In which case, we shall
see that the result is consistent with mirror symmetry.

The computation of the Higgs branch dimension of (5.18) indicates that the
gauge symmetry is not completely broken at a generic point of the Higgs branch.
Indeed, if we assume (incorrectly) that the gauge symmetry is completely bro-
ken, we would obtain the dimHH(5.18) to be

(5.21) +

[
1

2
(2N)(2N − 1)−N

]
− 1

2
(2N)(2N − 1) = −N . (5.27)

We conjecture that the SO(2N)×SO(2N) gauge group connected by T [SO(2N)]
is broken to SO(2)N , whose dimension is N . This statement can be checked
explicitly in the case of N = 1, where T [SO(2)] is trivial. Taking into account
such an unbroken symmetry, we obtain dimHH(5.18) = 0, which is in agreement
with the Coulomb branch of (5.17).

5.2.2 Quivers with a T [SO(2N)] link or a T [USp′(2N)] link

Let us consider the following triangular configuration:

1
2

NS5

−

−

2N

2N

2N

•
+

•̃
+

+

...

•
1
2

D5+

2N 2N

2N

2n

T [SO(2N)]

(5.28)

The mirror theory consists of a complicated circular model made of several
gauge nodes and two fundamental half hypermultiplets:

1
2

NS5

...

•

•

2N

2N + 1

2N + 1

2N

2N

2N

−

−

+
+̃

−̃

+
+̃

−̃

...

2N

2N + 1

2N ′

2N + 1

2N

2N

2N

n blue circular nodes + (n− 1) red

usual circular nodes + 2 red nodes

connected by T [SO(2N)]

T [SO(2N)]

1

1

(5.29)
Note that for n = 1, the theory is self-mirror.
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Theory (5.28)

The Higgs branch of (5.28) is described by the hyperkähler quotient

H(5.28) =
(
Nso(2N) ×H([SO(2N)]− [USp(2N)])×Nso(2N) ×H(SO(2N)]− [USp(2N)])×

H([USp(2N)]− [SO(2n)])
)
/ (SO(2N)× SO(2N)× USp(2N))

=
Nusp(2N) ×Nusp(2N) ×H([USp(2N)]− [SO(2n)])

USp(2N)
,

(5.30)
where we have used (A.30) to obtain the last line. We remark that both red
circular nodes can be chosen to be either SO(2N) or O(2N) and the results for
both options are the same, thanks to the equality between (A.30) and (A.36).
Moreover, the hyperkähler quotient in the last line of (5.30) suggests the equality
between (5.30) and the Higgs branch of the following theory:

••

••1
2

D5

2N2N

. . .

+̃ +̃

++

2N ′

T [USp′(2N)]

2n

(5.31)

where the blue circular node is a USp′(2N) gauge group. In other words, we
have the following equality of the Higgs branch between two different gauge
theories:

H(5.28) = H(5.31) . (5.32)

The quaternionic dimension of (5.30) is

dimHH(5.28) =

[
1

2
(2N)(2N − 1)−N

]
+ 2(4N2) + 2Nn

−
[
2× 1

2
(2N)(2N − 1)

]
− 1

2
(2N)(2N + 1)

= (2n− 1)N .

(5.33)

Since the nodes that are connected by T [SO(N)] does not contribute to the
Coulomb branch of the theory, the Coulomb branch of (5.28) is isomorphic to
the Coulomb branch of the 3d N = 4 USp(2N) gauge theory with 2N + n
flavors, whose Hilbert series is given by [30, (5.14)]. Its quaternionic dimension
is

dimH C(5.28) = N . (5.34)

Example: n = 1. The theory is self-mirror. One can check that the Hilbert
series of the quotient (5.30) is indeed equal to the Coulomb branch of USp(2N)
gauge theory with 2N + 1 flavors [30, (5.14)], which is

PE

 2N∑
j=1

t2j +

N∑
j=1

t4j −
N∑
j=1

t4j+4N

 . (5.35)
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Note that for N = n = 1, we have C2/Z4, as expected from the Coulomb branch
of USp(2) with 3 flavors.

There is another way to check that theory (5.28) for n = 1 (and a general
N) is self-mirror. We can easily compute a mirror theory of (5.31), with n = 1,
by applying S-duality to the brane system; see (5.39). The result is

2N ′ 2N ′

2N + 1

T [USp′(2N)]

(5.36)

The Coulomb branch of this theory is isomorphic to that of 3d N = 4 SO(2N +
1) gauge theory with 2N flavors, whose Hilbert series is given in [30, (5.18)].
However, as pointed out in that reference, this turns out to be isomorphic to
the Coulomb branch of the USp(2N) gauge theory with 2N + 1 flavors, whose
Hilbert series is given by (5.35). We thus establish the self-duality of (5.28) for
n = 1.

Theory (5.29)

The Higgs branch dimension of (5.29) is

dimH H(5.29) = (2)(2N2) + (2n− 2)N(2N + 1) +

[
1

2
(2N)(2N − 1)−N

]
+N +N − n

[
1

2
(2N)(2N + 1)

]
− 2

[
1

2
(2N)(2N − 1)

]
− (n− 1)

[
1

2
(2N + 1)(2N)

]
= N .

(5.37)

The Coulomb branch dimension of (5.29) is equal to the total rank of the gauge
groups that are not connected by T [SO(2N)]:

dimH C(5.29) = (2n− 1)N . (5.38)

These agree with the dimensions of the Coulomb and the Higgs branches of
(5.28).

Similarly to the previous discussion, the red circular nodes that are connected
by T [SO(2N)] can be taken as O(2N) or SO(2N) without affecting the Higgs
branch moduli space of (5.29). Moreover, we find that this applies to other
red circular nodes in the quiver, namely the choice between O(2N + 1) and
SO(2N + 1) does not change the Higgs branch of the theory. This can be
checked directly using the Hilbert series.

It is worth pointing out that there is another gauge theory that gives the
same Coulomb branch as (5.28). This is the mirror theory of (5.31) which is
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given by

1
2

NS5

...

2N + 1

2N

2N

2N + 1

2N

2N

+̃

+̃

−̃

−̃

+̃

+̃

...

2N + 1

2N ′

2N + 1

2N ′

2N + 1

2N ′

2N ′

n red circular nodes + (n− 1) blue

usual circular nodes + 2 blue nodes

connected by T [USp′(2N)]

T [USp′(2N)]

(5.39)
where the number of half-NS5 branes is 2n. We expect that the Coulomb
branch of (5.39) has to be equal to the Coulomb branch of (5.29). This can be
seen as follows. Let us focus on (5.39). Note that the two blue circular nodes
that are connected by T [USp′(2N)] do not contribute to the Coulomb branch
computation, so we can take them to be two flavor nodes that are not connected.
As pointed out below [30, (5.18)], the Coulomb branch of the SO(2N+1) gauge
theory with 2N flavors is the same as that of Coulomb branch of the USp(2N)
gauge theory with 2N+1 flavors. We can apply this fact to every node in quiver
(5.39) and see that the resulting quiver has the same Coulomb branch as that
of (5.29).

5.3 S-fold models with orientifold fiveplanes

In this subsection, we insert an S-fold into a brane interval of the aforementioned
configurations. In general, the resulting quiver theory contains a T [U(N)] link
connecting two gauge nodes corresponding to the interval where we put the S-
fold. The mirror configuration can simply be obtained by inserting the S-fold
in the same position in the S-dual brane configuration. In the following, the
moduli spaces of such a theory and its mirror are analyzed in detail.

We make the following important observation. The Higgs (resp. Coulomb)
branch of a given theory gets exchanged with the Coulomb (resp. Higgs) branch
of the mirror theory in a “regular way”, provided that

1. the S-fold is not inserted “too close” to the orientifold plane; and

2. the S-fold is not inserted in the “quiver tail”, arising from a set of D3
branes connecting a D5 brane with distinct NS5 branes.

Subsequently, we shall give more precise statements for these two points using
various examples. In other words, we use mirror symmetry as a tool to indi-
cate the consistency of the insertion of an S-fold to the brane system with an
orientifold fiveplane.
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5.3.1 Models with one or two antisymmetric hypermulti-
plets

In this subsection, we focus on the models with one antisymmetric hypermul-
tiplet for definiteness. The case for two antisymmetric hypermultiplets can be
treated almost in the same way. Let us insert an S-fold in a model with an O5
plane, an NS5 brane and n1 + n2 D5 branes in between. The S-fold is inserted
in such a way there are n1 physical D5 branes on the left of the S-fold and there
are n2 physical D5 branes on the right. The resulting theory is

O5−
with an NS5 on top

• . . . •

n1

• . . . •

n2

NS5

2N

D3

2N 2N

A

n1 n2

T [U(2N)]

(5.40)

Let us observe that in absence of a second O5-plane at the end of the interval
this model is not actually circular but it must be considered as a linear model.
In the following, it is useful to think the S-folding procedure directly at the
quiver level. S-folding a quiver consists in choosing a node and split it into two
new pair of nodes coupled by a T-link. In doing this, we need also to chose how
to distribute possible flavors between the two nodes. For instance, the model
(5.40) can be thought as the S-folding of the following model:

O5−
with an NS5 on top

• • . . . •

n1 + n2 physical D5s

NS5

2N

D3

2N

A

n1 + n2

(5.41)

Mirrors of the models (5.40) can be obtained as the various possible S-foldings
of the mirror theory of (5.41), whose brane description is

ON−

•D5

N

N

2N

D3 2N

1
2

NS5

· · · · · ·•
D5

2N NS5sn1 + n2 − 2N NS5s

(5.42)
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and the associated quiver is the following:

2N 2N · · · 2N

N

N

2N − 1 2N − 2 · · · 1

1

1

n1 + n2 − 2N − 1 nodes

(5.43)

The case in which n1 ≥ 2 and n2 ≥ 2N

The mirror theory of (5.40) is

2N · · · 2N 2N

T [U(2N)]

N

N

· · · 2N 2N − 1 · · · 1

1

1

n1 − 1 nodes n2 − 2N + 1 nodes

(5.44)
The condition n1 ≥ 2, n2 ≥ 2N ensures that the T [U(2N)] link in the mirror
theory (5.44) stay between the first U(2N) gauge node and the U(2N) gauge
node with 1 flavor.

The Higgs branch of theory (5.40) has dimension

dimHH(5.40) = 2Nn1 +
1

2
2N(2N − 1) + 2 · 1

2
(4N2 − 2N) + 2Nn2

− 4N2 − 4N2

= N(2n1 + 2n2 − 2N − 3),

(5.45)

while the Coulomb branch is empty because there are only two gauge nodes
connected by a T [U(2N)]-link

dimH C(5.40) = 0. (5.46)

Since the moduli space of T [U(2N)] contains the Higgs and Coulomb branches,
each of which is isomorphic to the nilpotent cone of SU(2N), it follows that the
Higgs branch of (5.40) also splits into a product of two hyperkähler spaces which
can be written in the notation of section A.2 as

H(5.40) =
2N 2N

A

n1 n2

× ×
× (5.47)

The symmetry of H(5.40) is U(n1) × (U(n2)/U(1)), coming from the first and
second factors respectively. According to (A.13) and below, the hyperkähler
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space corresponding to the second factor is identified with O(2N+1,1n2−2N−1) for

n2 ≥ 2N + 1 and O(2N) for n2 = 2N .

The mirror theory (5.44) has the following Coulomb branch dimension

dimH C(5.44) = N +N + (2N)(n1 + n2 − 2N − 2) +

2N−1∑
i=1

i

= N(2n1 + 2n2 − 2N − 3),

(5.48)

while the Higgs branch has dimension

dimHH(5.44) =N + 4N2 + 4N2(n1 + n2 − 2N − 1− 1) + (4N2 − 2N)

+ 2N +

2N−1∑
i=1

i(i+ 1)− 2N2 − 4N2(n1 + n2 − 2N)

−
2N−1∑
i=1

i2 = 0

(5.49)

Indeed, we find an agreement for the dimensions of the Higgs and Coulomb
branches under mirror symmetry, namely

dimH C(5.40) = dimHH(5.44), dimH C(5.44) = dimHH(5.40). (5.50)

It should be pointed out that the Coulomb branch of (5.44) is also a product
of two hyperkähler spaces. The reason is that the nodes that are connected by
the T [U(2N)] link do not contribute to the Coulomb branch and hence can be
taken as flavors nodes. Therefore, the Coulomb branch of (5.44) is the product
of the Coulomb branches of the following theories:

2N · · · 2N 2N

N

N

· · · 2N 2N − 1 · · · 1

1

1

n1 − 1 nodes n2 − 2N + 1 nodes

(5.51)
Under mirror symmetry, each of the factor in the product (5.47) is mapped to
the Coulomb brach of each of the above quiver. Let us examine the symmetry of
the Coulomb branch using the technique of [15]. In the left quiver, all balanced
gauge nodes form a Dynkin diagram of An1−1; together with the top left node
which is overbalanced, these give rise to the global symmetry algebra An1−1 ×
u(1), corresponding to U(n1). In the right quiver, all gauge nodes are balanced;
these give rise to the symmetry algebra An2−1, corresponding to U(n2)/U(1).
This is in agreement of the symmetry of the Higgs branch H(5.40).

It is worth commenting on the distribution of the flavors in theory (5.40). It
is clear from the computation of the dimension of the Higgs branch (5.45) that
one can change n1 and n2 keeping their sum n = n1 + n2 constant, without
changing the dimension of the Higgs branch. However, as can be clearly seen
from (5.47), the structure of the Higgs branch depends on n1 and n2. In addition,
modifying the distribution of the flavor will change the position of the T [U(2N)]
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link in the mirror theory (5.44). Let us focus the case of N = 1 with n1 =
3, n2 = 3 and n1 = 4, n2 = 2. The theories and their mirrors are respectively

2 2

A

3 3

T [U(2)]

2

1

1

1

2 2 2

1

1

T [U(2)]

(5.52)

2 2

A

4 2

T [U(2)]

2

1

1

1

2 2 2

1

1

T [U(2)]

(5.53)
As explained in (5.47), the Higgs branch of the left diagram in each case splits

into a product of two hyperkähler spaces. According to (A.14), the second factor
in each line is the Hilbert series for the closure of the nilpotent orbit O(3) and

O(2), coincident with the Higgs branch of the theories T [SU(3)] and T [SU(2)]
respectively. The unrefined Hilbert series for the first factor is∮

|z|=1

dz

2πiz
(1− z2)

∮
|q|=1

dq

2πiq
PE
[
n1(z + z−1)(q + q−1)

+ (q2 + q−2)t+ (z2 + 1 + z−2)t2 − t4 − (z2 + 1 + z−2 + 1)t2
]

× PE
[
(z2 + 1 + z−2)t2 − t4

]
.

(5.54)

We therefore arrive at the following results:

H[Hn1=3,n2=3
(5.40) ] = PE [9t2 + 6t3 − t4 − 6t5 − 10t6 + . . . ] PE [8t2 − t4 − t6],

H[Hn1=4,n2=2
(5.40) ] = PE [16t2 + 12t3 − t4 − 32t5 − 54t6 + . . . ] PE [3t2 − t4],

(5.55)

These indicate that the symmetry of the Higgs branch is U(n1)×(U(n2)/U(1)).
Of course, the above Hilbert series can also be obtained from the Coulomb

branch of the corresponding mirror theory. As an example, as stated in (5.51),
for n1 = 4, n2 = 2, the Coulomb branch of the right quiver of (5.53) is a product
of the Coulomb branches of the following theories:

2

1

1

1

2 3 2 1 (5.56)
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The Coulomb branch Hilbert series of the left quiver can be computed using the
monopole formula proposed in [30] and that we review in appendix A.1:∑

a1≥a2>−∞

∑
m∈Z

∑
n∈Z

t2∆(a,m,n)PU(2)(t,a)PU(1)(t,m)PU(1)(t, n)

= PE [16t2 + 20t3 − 12t5 − 32t6 + . . . ] ,

(5.57)

with a = (a1, a2),

∆(a,m, n) = ∆U(2)−U(1)(a,m) + ∆U(2)−U(1)(a, n) + ∆U(2)−U(2)(a, 0)

+ ∆U(1)−U(1)(m, 0)−∆vec
U(2)(a)

(5.58)

and all of the other notations are defined in (A.5). This is indeed equal to the
first factor in the first line of (5.55). The right quiver in (5.56) is the T [SU(3)]
theory whose Coulomb and Higgs branch Hilbert series is equal to the second
factor in the first line of (5.55).

Issues regarding S-folding the quiver tail

Let us consider the case in which n2 < 2N . The mirror theory of (5.40) is de-
picted in (5.59); the T -link appears on right of the U(2N) node that is attached
with one flavor. Let us suppose that the T -link connects two U(n2) gauge nodes
where 1 ≤ n2 ≤ 2N − 1.

2N 2N · · · 2N

N

N

· · · n2 n2 · · · 1

1

1

n1 + n2 − 2N − 1 nodes

(5.59)
The Higgs branch dimension of such theory is

dimHH(5.59) = dimHH(5.43) + (n2
2 − n2)− n2

2 = 2N − n2 . (5.60)

Observe that this is non-zero for 1 ≤ n2 ≤ 2N − 1. However, as in (5.46),
we have dimH C(5.40) = 0 for any n2, since the two gauge nodes are connected
by a T -link. Hence, this is inconsistent with mirror symmetry, based on our
assumption that the gauge nodes connected by a T -link do not contribute to the
Coulomb branch. One possible explanation of this inconsistency is that, in the
presence of the S-fold, when move the D5 brane into the interval between NS5
branes, as depicted in picture (5.61) (equivalent to (5.42), after the appropriate
Hanany-Witten moves):

ON−

•D5

N

N

2N

D3 2N

1
2

NS5

.

.

.

· · · · · ·

D5
2N NS5sn− 2N NS5s

2N D3s

(5.61)
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Such a D5 brane has to cross the S-fold. Since S-fold can be regarded as
the duality wall, the aforementioned D5 brane turns into an NS5 brane, with
fractional D3 branes ending on it. In this sense, the mirror theory is not (5.59).
We postpone the study of such a brane configuration to the future.

Now let us consider the following possibility:

2N 2N · · · 2N

N

N

2N · · · 1

1

1

n1 − 1 nodes

(5.62)

In the brane picture (5.42), this corresponds to putting the S-fold just next to
the right of the D5 brane located in the the (2N)-th interval from the right.
This also corresponds to taking n2 = 2N . As before, the Higgs branch of this
theory is expected to be a product of two hyperkähler spaces, with one factor
being

× 2N · · · 1 (5.63)

The Higgs branch dimension turns out to be negative if one assume that all
gauge groups are completely broken:

1

2
(4N2 − 2N) +

1

2
(2N − 1)(2N)− (2N)2 = −2N . (5.64)

Since the case of n2 = 2N has been discussed earlier, we shall not explore this
possibility further.

Issues regarding putting the S-fold “too close” to the orientifold plane

Consider the model with one rank-two antisymmetric hypermultiplet where we
put an S-fold next to the O5− plane in the left diagram of (5.41). In this case
we have n1 = 0 and n2 = n (with n ≥ 2N). The corresponding quiver diagram
is

2N 2N

A

n

T [U(2N)]

(5.65)

The dimension of the Higgs branch is

dimHH(5.65) =
1

2
(2N)(2N − 1) + (4N2 − 2N) + 2Nn− 4N2 − 4N2

= 2Nn− 2N2 − 3N ,
(5.66)

assuming that the gauge symmetry is completely broken. For a given N , this
is positive for a sufficiently large n. However, it is also worth pointing out that
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if we split the above Higgs branch into a product as in (5.47), we see that the
first factor

2N

A

× (5.67)

has a negative dimension, provided that the gauge symmetry U(2N) is com-
pletely broken:

1

2
(4N2 − 2N) +

1

2
(2N)(2N − 1)− (2N)2 = −2N . (5.68)

Since both gauge nodes are connected by the T -link, we expect that

dimH C(5.65) = 0 (5.69)

The putative mirror theory can be obtained by inserting an S-fold next to
the ON− plane in (5.42). The corresponding quiver is

2N · · · 2N

N

N

N

2N − 1 · · · 1

T [U(N)]

1

1

n− 2N − 1 nodes

(5.70)

The Higgs and Coulomb branch dimensions read

dimH C(5.70) = N + 2N(n− 2N − 1) +

2N−1∑
i=1

i = 2Nn− 2N2 − 2N ,

dimHH(5.70) = N + (N2 −N) + 2N2 + 2N2 + 4N2(n− 2N − 2)

+ 2N +

2N−1∑
i=1

i(i+ 1)−N2 −N2 −N2

− 4N2(n− 2N − 1)−
2N−1∑
i=1

i(i+ 1)

= N .

(5.71)

We see that these are inconsistent with mirror symmetry, if we assume that
the gauge symmetry is completely broken and that the circular nodes that are
connected by a T -link do not contribute to the Coulomb branch. We see that
these assumptions are violated or (5.70) is not a mirror theory of (5.65) if we
insert the S-fold next to the orientifold plane.

A similar issue also happens if we take n1 = 1 and n2 = n− 1 (with n− 1 ≥
2N). In which case, the putative mirror theory looks like

2N · · · 2N

N

N

N

2N − 1 · · · 1

N

T [U(N)]

1

1

n− 2N − 1 nodes

(5.72)
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Upon computing the Higgs branch of this theory, the lower left part contributes
a factor:

N × (5.73)

Assuming that the gauge symmetry is completely broken, we obtain a negative
Higgs branch dimension:

1

2
(N2 −N)−N2 = −1

2
N(N + 1) . (5.74)

This, again, confirms the statement that under the aforementioned assumptions,
the S-fold cannot be inserted “too close” to the orientifold plane (n1 ≥ 2). In
other words, in order for the S-fold to co-exist with an orientifold fiveplane, it
must be “shielded” by a sufficient number of fivebranes.

5.3.2 S-folding the USp(2N)×U(2N)×USp(2N) gauge the-
ory

Let us consider the following theory:

2N 2N 2N

T [U(2N)]

2N

2n1 F1 F2 2n2

(5.75)

The brane construction for this is given by the S-folding of the following model:

O5−

•
n1

•
F

•
n2

O5−

2N
2N

2N

D3

2N 2N 2N

2n1 F 2n2

(5.76)

with an S-fold inserted in the interval labelled by F = F1 + F2. The S-fold
partitions F D5 branes into F1 and F2 D5 branes on the left and on the right of
the S-fold, respectively. The dimension of the Higgs branch of this theory reads

dimHH(5.75) = 2Nn1 + 4N2 + 2NF1 + (4N2 − 2N) + 2NF2 + 4N2

+ 2Nn2 −N(2N + 1)− 4N2 − 4N2 −N(2N + 1)

= 2N(F1 + F2 + n1 + n2 − 2) ,

(5.77)

and, for the Coulomb branch, we find

dimH C(5.75) = 2N. (5.78)

We remark that it is not possible to insert an S-fold in the interval labelled by
n1 in the diagram (5.76). The reason is that such a brane interval corresponds
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to the gauge group USp(2N), and not USp′(2N). We do not have the notion
of a T [USp(2N)] link since USp(2N) is not invariant under the S-duality. This
supports the point we made earlier that the S-fold cannot be inserted “too
close” to the orientifold plane; it must be “shielded” by a sufficient numbers of
fivebranes.

In order to obtain the mirror configuration, we can perform an S-folding of
the mirror of (5.76), depicted in (5.79).

ON− F ON−

N

N

2N

D3
2N 2N

· · ·

•
D5

· · ·

•
· · ·

2N

NS5

N

N

n1 NS5s n2 NS5s

(5.79)

where the boldface vertical lines labelled by F denote a set of F NS5 branes, with
2N D3 branes stretching between two successive NS5 branes. The associated
quiver is the following:

2N · · · 2N 2N 2N · · · 2N 2N 2N · · · 2N

N

N

N

N

11

n1 − 2 nodes F circular nodes n2 − 2 nodes

(5.80)
We can insert an S-fold anywhere between two D5-branes denoted by the black
dots in (5.79). In terms of the quiver, this means that we can put the T -link
anywhere in between the two (2N)-nodes attached by one flavor. For example,
for N = 1, n1 = n2 = 3, F1 = 1 and F2 = 0, the mirror theory is

2

1

1

2 2 2 2

1 1

T [U(2)]

1

1

(5.81)

In order to compute the dimensions of Higgs and Coulomb branches of the
mirror theory we can simply start with the corresponding non S-folded theory
and observe that inserting a T -link implies the following:

• For the Higgs branch, we need to add the dimension of the T [U(2N)] link,
that in this case gives 4N2 − 2N and subtract the gauging of the extra
U(2N), hence we subtract 4N2; in total we find that

dimHHmirr of (5.75) = dimHH(5.80) + (4N2 − 2N)− 4N2

= dimHH(5.80) − 2N

= (N + 2N +N)− 2N = 2N .

(5.82)
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• For the Coulomb branch, the result of inserting an S-fold is to add one
gauge node and then consider that the ones connected by the T -link are
frozen, so in total we have

dimH Cmirr of (5.75) = dimH C(5.80) − 2N

= 2N(F1 + F2 + n1 + n2 − 2) , with f1 = F1 + F2 .

(5.83)

These are in agreement with mirror symmetry.

In the above example of N = 1, n1 = n2 = 3, f1 = 1 and f2 = 0, one
can compute the Hilbert series for (5.75) and its mirror (5.81). The unrefined
results are

H[H(5.75)] = H[C(5.81)]

= PE [16t2 + 12t3 − 15t4 − 40t5 + 19t6 + . . . ]×
PE [15t2 − 16t4 + 35t6 + . . . ] ,

(5.84)

and

H[C(5.75)] = H[H(5.81)]

= H[CUSp(2) with 5 flv]2 = PE [t4 + t6 + t8 + . . . ]2 .
(5.85)

The above results deserve some explanations. In (5.81), the Coulomb branch
symmetry can be seen from the after taking the two U(2) gauge groups con-
nected by the T -link to be two separate flavor symmetries. The left part gives
an SU(4) × U(1) symmetry due to the fact that the balanced nodes form an
A3 Dynkin diagram and that there is one overbalanced node (namely, the U(2)
node that is attached to one flavor). The right part gives an SU(4) symme-
try due to the fact that the balanced nodes form an A3 Dynkin diagram [15].
The Coulomb branch of (5.75) is identified with a product of two copies of the
Coulomb branch of USp(2) gauge theory with 5 flavors due to the following
reason. The nodes connected by the T -link do not contribute to the Coulomb
branch and therefore each of the left and the right parts contains the USp(2)
gauge theory with 2N + n1 = 2 + 3 = 5 flavors.

5.4 Models with the exceptional group G2

5.4.1 Self-mirror models with a T [G2] link

In this section, we turn to models with a T [G2] link connecting between two
G2 gauge groups. We do not have the Type-IIB brane construction for such
theories. Nevertheless, it is still possible to make some interesting statements
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regarding the moduli space. We consider the following quiver:

...

4′

G2

4′

G2

4′

G2

G2

n blue nodes + (n− 1) G2 usual

circular nodes + 2 G2 nodes

connected by T [G2]T [G2]

(5.86)

Note that every gauge group in the quiver has the same rank, in the same way
as the preceding sections. The Higgs branch dimension of this quiver is

dimH H(5.86) = (14−2)+
1

2
(2n)(4)(7)−10n−14(n−1+2) = 2(2n−1) . (5.87)

On the other hand, the Coulomb branch dimension of this quiver is

dimH C(5.86) = 2(2n− 1) . (5.88)

Observe that the dimensions of the Higgs and Coulomb branches are equal.
Indeed, we claim that quiver (5.86) if self-mirror. We shall consider some
special cases and compute the Hilbert series to support this statement below.

In the absence of S-fold, the two G2 gauge groups merge into a single gauge
group and quiver (5.86) reduces to

...

4′
G2

4′
G2

4′

G2
2n alternating G2/USp′(4)

circular nodes

(5.89)

It can also be checked that the Higgs and Coulomb branch dimensions of this
quiver are equal:

dimH H(5.89) = dimH C(5.89) = 4n . (5.90)

Again, we claim that quiver (5.89) is also self-mirror. Indeed, one can check
using the Hilbert series (say for n = 1, 2), in a similar way as that will be
presented below, that the Higgs and Coulomb branches of (5.89) are equal.

Since we do not know the brane configurations for (5.86) and (5.89), we
cannot definitely confirm if the gauge nodes labelled by 4 is really USp(4) or
USp′(4). Nevertheless, we conjecture that such gauge nodes are USp′(4), due
to the fact that we can perform an “S-folding” and obtain another quiver which
is self-dual. The latter is depicted in (5.99) and will be discussed in detail in
the next subsection.
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The case of n = 1

In this case, (5.86) reduces to the following quiver:

G2 G2

4′

T [G2]

(5.91)

The Higgs branch Hilbert series can be computed as

H[H(5.91)](t) =

∫
dµUSp(4)(z)

{
H[H(A.39)](t; z)

}2
PE
[
−χC2

[2,0](z)t2
]
, (5.92)

where z = (z1, z2) and H[H(A.39)](t; z) is given by (A.43). The integration
yields

H[H(5.91)](t) = PE
[
t4 + t6 + 2t8 + t10 + t12 − t20 − t24

]
. (5.93)

This is the Coulomb branch Hilbert series of 3d N = 4 USp(4) gauge theory
with 7 flavors [30, (5.14)]. On the other hand, since the vector multiplet of the
G2 gauge groups connected by T [G2] do not contribute to the Coulomb branch,
the Coulomb branch of (5.91) is also isomorphic to the Coulomb branch of 3d
N = 4 USp(4) gauge theory with 7 flavors.

We see that the Higgs and the Coulomb branches of (5.91) are equal to each
other. We thus expect that theory (5.91) is self-mirror.

The case of n = 2

In this case, (5.86) reduces to the following quiver:

G2

4′

G2

4′

G2

T [G2]

(5.94)

The Higgs branch Hilbert series can be computed similarly as before:

H[H(5.94)](t) =

∫
dµUSp(4)(u)

∫
dµUSp(4)(v)

∫
dµG2

(w)×

H[H(A.39)](t;u)H[H(A.39)](t;v) PE
[
χC2

[1,0](u)χG2

[1,0](w) + u↔ v
]

PE
[
−χC2

[2,0](u)t2 − χC2

[2,0](v)t2 − χG2

[0,1](w)t2
]
.

(5.95)
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The Coulomb branch Hilbert series can be computed as if the two G2 symmetries
that are connected by T [G2] becomes two separated flavor nodes:

H[C(5.94)](t) =
∑

n1,n2≥0

∑
a1≥a2≥0

∑
b1≥b2≥0

t2∆(n,a,b)PG2
(t;n)PC2

(t;a)PC2
(t; b)

(5.96)

where n = (n1, n2) are the fluxes of the G2 gauge group, a = (a1, a2) and
b = (b1, b2) are the fluxes for the two USp(4) gauge groups. Here ∆(n,a, b) is
the dimension of the monopole operator:

∆(n,a, b) = ∆hyp
G2−C2

(0,a) + ∆hyp
G2−C2

(0, b) + ∆hyp
G2−C2

(n,a) + ∆hyp
G2−C2

(n, b)

−∆vec
G2

(n)−∆vec
C2

(a)−∆vec
C2

(b)

(5.97)

where the various contributions to the monopole R-charge coming from bi-
fundamental and adjoint hypermultiplets are summarized in (A.6). The dressing
factors PC2

(t;a) and PG2
(t;n) are given by [30] and are collected in (A.4).

Upon calculating the integrals and the summations, we check up to order t8

that the Higgs branch and the Coulomb branch Hilbert series are equal to each
other:

H[H(5.94)](t) = H[C(5.94)](t) = PE
[
4t4 + 5t6 + 10t8 + . . .

]
. (5.98)

This again supports our claim that (5.94) is self-mirror.

Self-mirror models with a T [USp′(4)] link

We can obtain another variation of (5.86) by simply S-folding one of the USp′(4)
gauge nodes in (5.89). The result is

...

G2

4′

G2

4′

G2

4′

4′

n G2 circular nodes + (n− 1) blue

usual circular nodes + 2 blue nodes

connected by T [USp′(4)]T [USp′(4)]

(5.99)

The dimension of the Higgs branch is indeed equal to that of the Coulomb
branch:

dimH H(5.99) = dimH C(5.99) = 2(2n− 1) . (5.100)

We claim that (5.99) is also self-mirror for any n ≥ 1. One can indeed check, for
example in the cases of n = 1, 2, that the Higgs and the Coulomb branch Hilbert
series are equal, in the same way as presented in the preceding subsection. As
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an example, for n = 1, these are equal to the Coulomb branch Hilbert series of
the G2 gauge theory with 4 flavors [30, (5.28)]:

H[H(5.99)|n=1] = H[C(5.99)|n=1] = PE
[
2t4 + t6 + t8 + t10 + 2t12 + . . .

]
.

(5.101)
We finally remark that since we can perform an “S-folding” at any blue

node, this confirms that each blue node labelled by 4 is indeed USp′(4).

5.4.2 More mirror pairs by adding flavors

In this subsection, we add fundamental flavors to the self-mirror models dis-
cussed earlier and obtain mirror pairs that are not self-dual.

Let us start the discussion by adding n flavors to the USp′(4) gauge group
in (5.91). This yields

G2 G2

4′

2n

T [G2]

(5.102)

where the flavor symmetry is SO(2n). The dimensions of the Higgs and Coulomb
branches of this quiver are

dimH H(5.102) = 4n+ 2 , dimH C(5.102) = 2 . (5.103)

We propose that (5.102) is mirror dual to

...

4′

5

4′

5

4′

G2

G2

(n+ 1) blue circular nodes + n red

circular nodes + 2 G2 nodes

connected by T [G2]

(5.104)

The Higgs branch dimension of this model is

dimH H(5.104) = (14− 2) + 2

(
1

2
× 7× 4

)
+ 10(2n)

− 14− 14− 10(n+ 1)− 10n

= 2 .

(5.105)

and the Coulomb branch dimension of this is dimH C(5.104) = 2(2n + 1). This
is consistent with mirror symmetry. We shall soon match the Higgs/Coulomb
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branch Hilbert series of (5.102) with the Coulomb/Higgs branch Hilbert series
of (5.104) for n = 1.

Although we do not have a brane construction for (5.104) due to the pres-
ence of the G2 gauge groups, the part of the quiver that contains alternating
USp′(4)/SO(5) gauge groups could be “realized” by a series of brane segments

involving alternating Õ3
+

/Õ3
−

across NS5 branes. In other words, starting
from (5.102), the mirror theory (5.104) can be obtained by making the follow-
ing replacement:

4′ 2n −→ ...

4′

5

4′

5

4′

(n+ 1) blue circular nodes

+ n red circular nodes

(5.106)
In the absence of the S-fold, the two G2 gauge groups that were connected

by T [G2] merge into a single one. We thus obtain the mirror pair between the
following elliptic models:

G2

4′

2n

←→ ...

4′

5

4′

5

4′

G2

(n+ 1) blue circular nodes +

n red circular nodes + 1 G2 node

(5.107)

The case of n = 1

Let us first focus on (5.102). The Higgs branch Hilbert series can be computed
simply by putting the term PE[(x + x−1)χC2

[1,0](z)t] in the integrand of (5.92),

where x is the SO(2) flavor fugacity. Performing the integral, we obtain (after
setting x = 1):

H
[
H(5.102)|n=1

]
(t;x = 1) = 1 + t2 + 9t4 + 15t6 + 60t8 + 113t10 + . . . . (5.108)

The Coulomb branch Hilbert series for (5.102) is equal to that of the 3d N = 4
USp(4) gauge theory with 7 + 1 = 8 flavors. The latter is given by

H
[
C(5.102)|n=1

]
(t) = PE

[
t4 + 2t8 + t10 + t12 + t14 − t24 − t28

]
. (5.109)
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Let us now turn to (5.104). The Higgs branch Hilbert series is given by
(5.95) with the following replacement:

∫
dµG2(w)→

∫
dµSO(5)(w) , χG2

[1,0](w)→ χB2

[1,0](w) , χG2

[0,1](w)→ χB2

[0,2](w) .

(5.110)
We checked that the result of this agrees with (5.109) up to order t10. The
Coulomb branch Hilbert series of (5.104) can be obtained in a similar way from
(5.96) with the following replacement:

∆vec
G2

(n)→ ∆vec
B2

(n) = |n1|+ |n2|+ |n1 + n2|+ |n1 − n2|
∆hyp
G2−C2

(n,a or b)→ ∆hyp
B2−C2

(n,a or b)

PG2
(t;n)→ PC2

(t;n)

(5.111)

with

∆hyp
B2−C2

(n,a) =
1

2
× 1

2

1∑
s1,s2=0

2∑
j=1

[
|(−1)s2aj |+

2∑
i=1

|(−1)s1ni + (−1)s2aj |
]
.

(5.112)
Again, we checked that the result of this agrees with (5.108) up to order t10.

Generalisation of (5.102) to a polygon with flavors added

We can generalize (5.102) to a polygon consisting of alternating G2/USp′(4)
gauge groups, with n flavors added to one of the USp′(4) gauge group. This is
depicted below.

4′

G2

...

4′

2n

· · ·
G2

4′

G2

G2

m blue nodes + (m− 1) G2 usual

circular nodes + 2 G2 nodes

connected by T [G2]

T [G2]

(5.113)
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The mirror theory can simply be obtain by applying the replacement rule
(5.106). For example, we have the following mirror pair

4′

G2

4′ 2

G2

4′

G2

G2

T [G2] ←→

4′

G2

4′

5

4′

G2

4′

G2

G2

T [G2]

(5.114)
As emphasized before, as a by-product, one may obtain a mirror pair between

the usual field theories, without an S-fold, by simply merging the two G2 nodes
that are connected by T [G2]. The replacement rule described in (5.106) still
applies. As an example, (5.114) becomes

4′ G2

4′ 2

G24′

G2G2
←→

4′

G2

4′

5

4′

G2

4′

G2G2

(5.115)
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Chapter 6

Supersymmetric index of
S-fold SCFTs

In the previous chapters we studied the moduli space of S-fold CFTs. The main
tool that we used is mirror symmetry a duality between 3d N = 3 or N = 4
theories exchanging Higgs and Coulomb branch. The difference between the
two cases with different supersymmetry consists in the structure of the whole
moduli space. In the N = 4 case, the moduli space contains two main branches:
the Higgs branch parametrized by the VEVs of hypermultiplets (in particular of
the mesons and baryons) and the Coulomb branch, parametrized by the VEVs
of the vector multiplet scalars (in particular the monopoles). In the N = 3
case, the moduli space can be more complicated. We can recognize the Higgs
branch to be parametrized again by mesons (and possibly baryons) but this time
Coulomb branch is parametrized not only by monopoles but also by mesons at
the same time. Together with the Coulomb branch, other smaller branches are
parametrized by both monopoles and mesons and they are usually called mixed
branch. Determining all the mixed branches can be particularly complicated
and we often focused on the two maximal cones only. However, this difference
is not strong enough to infer something about the infrared supersymmetry of a
theory. In fact, it can happens that monopoles and mesons conspire in order to
cause a supersymmetry enhancement al low energies [77].

As we observed in chapter 3, one could naively think that S-fold CFTs pos-
sess N = 3 supersymmetry, due to the gauging of Higgs and Coulomb global
symmetry at the same time. The supergravity dual, proposed in [19] and re-
viewed in section 3.3, gives insight about the actual supersymmetry of the model.
S-flip models are dual to supergravity backgrounds with SO(3) isometries act-
ing on the supercharges; this suggest that, at least at large N , such models
still have N = 3 supersymmetry at the fixed point. In contrast, J-fold models
(where Chern-Simons levels are explicitly tuned on) are dual to backgrounds
with full SO(4) isometries, so that we expect the theories to have enhanced
N = 4 supersymmetry at the fixed point. We want to stress that curiously the
models enjoying enhancement are the ones with Chern-Simons terms.

The supersymmetry suggested by supergravity arguments is reliable only at
large N . For finite N it is not clear which is the infrared number of preserved
supercharges. Moreover, the study performed for J-fold theories in [19] only
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focused on J-fold configurations with no 5-branes at all, so that it is not clear
if supersymmetry still gets enhanced when matter in taken into account, even
in the large N limit. The one of purposes of this section is to investigate this
problem from the quantum field theory side. The main tool that we have at
disposal in this case is the supersymmetric index (SSI). The index is nothing
but the supersymmetric partition function on S2 × S1 with periodic boundary
condition for the fields along S1 and counts the number of BPS operators. It
turns out that it is an RG flow invariant, so that it can be also computed in
the UV in order to get insight about the IR fixed point. Whenever the theory
admit a superconformal point, it is also referred as superconformal index (SCI)
and counts the BPS short multiplets up to recombination. As we will see,
signals of supersymmetry (or global symmetry) enhancement can be found in
the index. In the following, we compute the SCI for various S-fold theories,
trying to address the problem of the actual number of preserved supercharges
at the fixed point.

Another interesting phenomenon that we can investigate using superconfor-
mal index is the following. Let us consider a given S-fold configuration: as
pointed out in [19], we can always think to take a D5 brane and make it pass
trough the wall. In this case, we need to perform the appropriate (local) SL(2,Z)
transformation on the brane; in both S and Jk cases the D5 brane becomes an
NS5 and we got an equivalent configuration. In this way, it is possible to gen-
erate a chain of S-fold theories with different quiver realizations but actually
dual. We test such dualities with the superconformal index, taking track of how
operators are mapped under the local duality transformation.

Let us anticipate that in the following we will specify if the choice made
of J-fold corresponds to an hyperbolic, elliptic or parabolic configuration, fol-
lowing the nomenclature already introduced in section 4.5. This is particularly
important to compare the results with the previsions suggested by the large N
study of [19], where only the hyperbolic cases have been taken into account.

6.1 Superconformal multiplets and the index

The supersymmetric index is defined as the partition function on S2 × S1 and
can be computed as a trace over states:

I(x,µ) = Tr

[
(−1)2J3x∆+J3

∏
i

µTii

]
, (6.1)

where ∆ is the energy in units of the S2 radius (for superconformal field the-
ories, ∆ is related to the conformal dimension), J3 is the Cartan generator
of the Lorentz SO(3) isometry of S2, and Ti are charges under non-R global
symmetries. The index only receives contributions from the states that satisfy:

∆−R− J3 = 0 , (6.2)

where R is the R-charge. As a partition function on S2×S1, localization implies
that the index receives contributions only from BPS configurations, and it can
be written in the following compact way:

I(x; {µ,n}) =
∑
m

1

|Wm|

∫
dz

2πiz
Zcl Zvec Zmat , (6.3)

108



where we denoted by z the fugacities parameterising the maximal torus of the
gauge group, and by m the corresponding GNO magnetic fluxes on S2. Here
|Wm| is the dimension of the Weyl group of the residual gauge symmetry in
the monopole background labelled by the configuration of magnetic fluxes m.
We also use {µ,n} to denote possible fugacities and fluxes for the background
vector multiplets associated with global symmetries, respectively. The precise
expression of the various contributions to the index in (6.3) are reviewed in
appendix B. In the following we will focus on superconformal theories so that it
is better to refer to the index as superconformal. It can be expanded as power
series in x, the fugacity for the combination of energy and angular momentum,
∆ + J3 that equals R+ 2J3 in the BPS case:

I(x, {µ,n = 0}) =

∞∑
p=0

χp(µ)xp , (6.4)

where we preferred to put background magnetic fluxes to zero. Recall that
short multiplets are counted up to recombination, so that one may classify
the equivalence classes of the multiplets according to their contribution to the
index.1 Since the shortening conditions for 3d superconformal algebras have
been classified [81, 82]2, we already know which superconformal multiplets can
actually enter the SCI and one can extract a lot of useful information about
the SCFT under investigation studying in the appropriate way the power series
expansion of the index (6.4). We adopt this approach to study enhancement of
supersymmetry and possibly other global symmetries in the context of 3d S-fold
SCFTs.3 A generic operator O can be labeled by its relevant quantum numbers,
i.e. the spin J3 under Lorentz transformations, the energy (or equivalently
scaling dimension) ∆ and the Dynkin label of the representation of SO(N ) R-
symmetry if the theory possesses N supersymmetry. In the N = 2 case, each
operator such that ∆− J3 −R enters the index at level x∆+J3 . As pointed out
in [85], it is useful to define the modified index as follows:

Ĩ(x, {µ,n = 0}) = (1− x2) [I(x, {µ,n = 0})− 1] . (6.5)

Note that all of the terms up to order x2 in the modified index Ĩ are equal to
those in the original index I with the same power. At a given a level xp of the
modified index, only specific operators can enter. Each operator sits in some
short multiplet and N = 2 supermultiplets that can non-trivially contribute to
the modified index at order xp for p ≤ 2 are as follows [80]:

Multiplet Contribution to the modified index Comment

A2B1[0]
(1/2)
1/2 +x1/2 free fields

B1A2[0]
(−1/2)
1/2 −x3/2 free fields

LB1[0]
(1)
1 +x relevant operators

LB1[0]
(2)
2 +x2 marginal operators

A2A2[0]
(0)
1 −x2 conserved currents

(6.6)

1See [78,79] for a detailed discussion about the index of 4d SCFTs, and [80] for 3d SCFTs.
2Here we follow the notation of [82].
3This approach has proved successful, in the context of 3d N = 2 gauge theories, for the

study of global symmetry enhancement (see e.g. [27,80,83,84]) and supersymmetry enhance-
ment (see e.g. [85, 86]).
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We denoted with:

O[j]
(r)
∆ (6.7)

a superconformal primary operator O with spin J3 = j, scaling dimension ∆
and R-charge r. For instance A2B1 is nothing but a free chiral field while B1A2

is an anti-chiral field. The names of the operators in the first column of table
(6.6) are conventional [82]. Observe that the coefficient of x2 in the index counts
the number of marginal operators minus the number of conserved currents. Let
us stress again that the multiplets are counted up to recombination only: this
means that it can sometimes happen that a marginal operator (in the adjoint
representation of the gauge group) exactly cancel with conserved currents and
we cannot detect them in any way.

6.2 A single U(N)k gauge group with a T -link
and n flavors

In this section, we consider the following theory:

N D3

Jk = −STk

••

•
. . .

n D5s

Nk

T [U(N)]

n

(6.8)

In [19], the following statements are proposed:

1. For k = 0, the SCFT has N = 3 supersymmetry.

2. For k ≥ 3 and n = 0, the SCFT has N = 4 supersymmetry. This state-
ment was confirmed at large N using the corresponding supergravity so-
lutions and the computation of the three sphere partition function in the
large N limit.

In the following we compute the superconformal index at low rank N and
small values of n. Whenever possible, we deduce the amount of supersymmetry
of the SCFT from the index.

6.2.1 The abelian case: N = 1

The moduli space of this theory was analyzed in [29]. Recall that the T [U(1)]
is almost an empty theory, with only a prescription for how coupling external
gauge fields A1 and A2, which is the supersymmetric completion of the following
CS coupling [15]

− 1

2π

∫
A1 ∧ dA2 . (6.9)
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In (6.8), we identify the U(1) gauge fields A1 and A2 to a single one, and hence
the above equation gives rise to a CS level −2 to the U(1) gauge group. In other
words, quiver (6.8), with N = 1, can be identify with the following theory

1k−2 n (6.10)

where we emphasize that this theory no longer contains a T -link.
As an immediate consequence, for k = 2, this theory is simply a 3d N = 4

U(1) gauge theory with n flavors. For k = 2 and n = 1, this is dual to a theory
of a free hypermultiplet.

Another interesting case is when k = 1 and n = 1, which is equivalent to
having 3d N = 3 U(1)−1 gauge theory with 1 flavor. The index in this case
reads

I(6.8), N=1, k=1, n=1(x;ω) = IU(1)±1 with 1 flavor(x;ω)

= 1 + x− x2
(
ω + ω−1 + 1

)
+ x3

(
ω + ω−1 + 2

)
− x4

(
ω + ω−1 + 2

)
+ x5 + . . . .

(6.11)

where ω denotes the topological fugacity. The modified index of this theory is

(1− x2)
[
I(6.8), N=1, k=−1(x;ω)− 1

]
= x− x2

(
ω + ω−1 + 1

)
+ . . . . (6.12)

We expect the enhancement of supersymmetry from N = 3 to N = 5 due to the
following argument.4 The presence of the term +x indicates that there must be

an N = 3 flavor current multiplet B1[0]
(2)
1 , which gives rise to the N = 2 multi-

plet LB1[0]
(1)
1 contributing +x and the N = 2 multiplet A2A2[0]

(0)
1 contributing

−x2. Since the coefficient of x2 counts the number of marginal operators minus
the number of conserved currents [80,84] (see also [79]), there must be two extra
conserved currents associated with the terms −

(
ω + ω−1

)
x2. Such extra con-

served currents come from two N = 3 extra SUSY-current multiplets A2[0]
(0)
1 ,

one carries fugacity ω and the other carries fugacity ω−1.

6.2.2 U(2)k gauge group and no flavor

We focus on the following quiver

2k

T [U(2)]

(6.13)

We remark that the theory (6.13) can be also be represented as T [U(2)]/U(2)diag
k ,

where the diagonal subgroup U(2)diag of the symmetry U(2)× U(2) of T [U(2)]

4Upon setting ω = 1, we obtain the unrefined modified index x−3x2 +3x3−x4−3x5 + . . ..
Denoting the coefficient of xk by ak, we see that (−a2) = 3 > a1 = 1. Therefore according
to [85, sec. 4.3], it is expected that supersymmetry gets enhanced from N = 3 to N =
3 − a1 − a2 = 5. Moreover, since a1 = 1, a2 = −3 ≥ −3 and ap = 0 (which is even) for all
non-integers p, the necessary condition in [85, sec. 4.3] for having N = 5 supersymmetry is
satisfied.
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is gauged with CS level k. Nevertheless, we find that the index of such a theory
does not depend on the fugacity associated with the topological symmetry, and it
is equal to T [SU(2)]SU(2))/SU(2)diag

k , where the diagonal subgroup SU(2)diag

is gauged with CS level k.
In fact, the theory T [SU(2)]/SU(2)diag

k was studied in a series of papers
[25–27, 86], mainly in the context of the 3d-3d correspondence. In particular,

it was pointed out in [86] that for k = 3, T [SU(2)]/SU(2)diag
3 is a product of

two identical 3d N = 4 SCFTs. Such an SCFT admits a 3d N = 2 Lagrangian
in terms of the U(1)−3/2 gauge theory with 1 chiral multiplet carrying gauge
charge +1 (denoted by T−3/2,1), where it turns out that supersymmetry of this
theory gets enhanced to N = 4 in the infrared.

In addition to the case of |k| = 3, we find that the supersymmetry gets
enhanced for all k such that |k| ≥ 4. We summarize the results in the following
table.

CS level Index Type of Jk Comment
|k| ≥ 4 (6.14) hyperbolic
|k| = 3 (6.17) hyperbolic Studied in [86], a product of two N = 4 SCFTs

|k| = 2 diverges parabolic

|k| = 1 1 elliptic
k = 0 1 elliptic

We emphasize the cases whose indices indicate supersymmetry enhancement in
yellow. In the following, we discuss the detail of each case.

For |k| ≥ 4, Jk is hyperbolic. We find that the index reads

I(6.13), N=2, |k|≥4(x) = 1− x2 + 2x3 − x4 + . . . . (6.14)

where, for each k such that |k| ≥ 4, the indices differ at order of x greater than
4. For example, up to order x8, the indices are as follows:

|k| = 4 1− x2 + 2x3 − x4 − 4x5 + 10x6 − 10x7 + 8x8 + . . .
|k| = 5 1− x2 + 2x3 − x4 − 2x5 + 6x6 − 8x7 + 4x8 + . . .
|k| = 6 1− x2 + 2x3 − x4 − 2x5 + 6x6 − 8x7 + 6x8 + . . .

(6.15)

The modified index is

(1− x2)
[
I(6.13), N=2, |k|≥4(x)− 1

]
= −x2 + 2x3 + . . . . (6.16)

The fact that the coefficient of x vanishes implies that we have no N = 3 flavor

current multiplet B1[0]
(2)
1 .

The term −x2 indicates the presence of the N = 3 extra SUSY-current

multiplet A2[0]
(0)
1 . We thus conclude that the supersymmetry gets enhanced

from N = 3 to N = 4 when |k| ≥ 4.
For |k| = 3, the index reads

I(6.13), N=2, |k|=3(x) = 1− 2x2 + 4x3 − 3x4 + . . . . (6.17)

According to [86], this is equal to the square of the index of T−3/2,1. In the
notation that we adopt, the index of T−3/2,1 reads

IT−3/2,1
(x;w) = 1− x2 +

(
w + w−1

)
x3 − 2x4 + . . . . (6.18)
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where w is the topological fugacity. Indeed, we find that[
IT−3/2,1

(x;w = 1)
]2

= I(6.13), N=2, k=−3(x) . (6.19)

The modified index corresponding to (6.17) reads

(1− x2)
[
I(6.13), N=2, |k|=3(x)− 1

]
= −2x2 + 4x3 − x4 . . . . (6.20)

Let us denote the coefficient of xp by ap. Naively, from the condition −a2 = 2 >
a1 = 0 discussed in [85], one might expect that supersymmetry gets enhanced
to N = 3− a1 − a2 = 5. However, this cannot be true, for the reason that the
N = 5 stress tensor multiplet in the representation [1, 0] of SO(5) decomposes

into one N = 2 multiplet LB1[0]
(1)
1 , which contributes a1 = 1 [85, (B.25)] (but

here we have a1 = 0). Since this theory is a product of two copies of T−3/2,1,
which has enhanced N = 4 supersymmetry, there are two copies of the N = 3

extra SUSY-current multiplet A2[0]
(0)
∆=1. This is consistent with the fact that

the modified index has a1 = 0 and a2 = −2.
For the theory with |k| = 2 (J2 is parabolic), the index diverges, and so we

have a “bad” theory in the sense of [15]. For |k| = 1 and k = 0 (Jk is elliptic in
these cases), we find that the index is equal to unity.

6.2.3 Adding one flavor (n = 1) to the U(2)k gauge group

We now consider the following theory

2k

T [U(2)]

1 (6.21)

Let us summarize the results in the following table.

CS level Index Type of Jk Comment
k = −2 (6.30) parabolic

k = −1 (6.29) elliptic
k = 0 (6.29) elliptic
k = 1 (6.22) elliptic

k = 2 (6.24) parabolic A free hyper × an N = 4 SCFT
|k| ≥ 3 (6.29) hyperbolic

where we emphasize the cases that have supersymmetry enhancement in yellow.
For k = 1, we find that the index reads

I(6.21), k=1(x;ω) = 1 + x+ x2
[
1− (1 + ω + ω−1)

]
− x3

(
ω + ω−1

)
+ x4(4 + ω2 + ω−2 + 3ω + 3ω−1) + . . . ,

(6.22)

where ω is the topological fugacity. From the above expression, we find that the
modified index is as follows:

(1− x2)
[
I(6.21),k=1(x;ω)− 1

]
= x+ x2

[
1− (1 + ω + ω−1)

]
+ . . . . (6.23)

From this, one can see the enhancement of supersymmetry from N = 3 to
N = 5 as follows. The presence of the term +x indicates that there must be an
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N = 3 flavor current multiplet B1[0]
(2)
1 , which gives rise to the N = 2 multiplet

LB1[0]
(1)
1 contributing +x and the N = 2 multiplet A2A2[0]

(0)
1 contributing

−x2. Since the coefficient of x2 counts the number of marginal operators minus
the number of conserved currents [80,84] (see also [79]), there must be an N =

2 marginal operator (in the multiplet LB1[0]
(2)
2 ) contributing +x2 to cancel

the aforementioned contribution −x2, and there must be two extra conserved
currents associated with the terms −

(
ω + ω−1

)
x2. The latter can only come

from two copies of the N = 3 extra SUSY-current multiplet A2[0]
(0)
1 , carrying

the global symmetry associated with ω and ω−1. (This gives rise to two copies

of N = 2 A2A2[0]
(0)
1 multiplet contributing the term −

(
ω + ω−1

)
x2.) The

presence of such a multiplet leads to the enhancement of supersymmetry from
N = 3 to N = 5.5

For k = 2, the index reads

I(6.21), k=2(x;w)

= 1 +

(
w +

1

w

)
x

1
2 +

(
2w2 +

2

w2
+ 2

)
x+

(
2w3 +

2

w3
+ 2w +

2

w

)
x

3
2

+

(
3w4 +

3

w4
+ 2w2 +

2

w2
+ 1

)
x2 + . . .

(6.24)

The term x1/2 indicates that this theory contains a free part due to the fact
that the R-charge of the basic monopole operators hits the unitary bound. The
above index can be rewritten as

I(6.21), k=2(x;w) = Ifree(x;w)× I(6.21), k=2
SCFT (x;w) (6.25)

where the index of a free hypermultiplet is given by

Ifree(x;w) =
(x2− 1

2w;x2)∞

(x
1
2w−1;x2)∞

(x2− 1
2w−1;x2)∞

(x
1
2w;x2)∞

(6.26)

and the index of the interacting SCFT part is

I(6.21), k=2
SCFT (x;w)

= 1 + x

(
w2 +

1

w2
+ 1

)
+ x2

(
w4 +

1

w4
− 1

)
+ x5/2

(
−w − 1

w

)
+ . . .

= 1 + xχ
SU(2)
[2] (w) + x2

[
χ
SU(2)
[4] (w)− (χ

SU(2)
[2] (w) + χ

SU(2)
[0] (w))

]
− x 5

2χ
SU(2)
[2] (w) + . . . ,

(6.27)

5We remark that one has to use the sufficient condition stated in [85] with great care. Upon
setting ω = 1 in the modified index, we obtain x−2x2. Denoting the coefficient of xk by ak, we
see that −a2 = 2 > a1 = 1, and from [85], one might naively expect that supersymmetry gets
enhanced to N = 3− a1 − a2 = 4, because we have only (−a2)− a1 = 1 extra SUSY-current
multiplet. The unrefinement of the index is misleading here, because we in fact have two
extra SUSY-current multiplets carrying the global fugacities ω and ω−1, and these cannot be
cancelled with −1 at order x2 in the index. The reason for us to write x2

[
1− (1 + ω + ω−1)

]
is to show explicitly that the contribution −1 of the conserved current has to be cancelled
with the contribution +1 from the marginal operator, which is neutral under the symmetry
associated with ω. Note that since a1 = 1, a2 = −2 ≥ −3 and ap = 0 (which is even) for all
non-integers p, the necessary condition in [85] for having N = 5 supersymmetry is satisfied.
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with the unrefinement

I(6.21), k=2
SCFT (x;w = 1) = 1 + 3x+ x2 − 2x5/2 + 4x3 + 4x7/2 + 3x4 + . . . . (6.28)

As can be seen from (6.27), the interacting SCFT has enhanced N = 4 su-
persymmetry. The argument is similar to the one used before. The term

+xχ
SU(2)
[2] (w) indicates that the theory has an SU(2) flavor symmetry. Indeed,

there is an N = 3 flavor current multiplet B1[0]
(2)
1 transforming in the adjoint

representation [2] of this symmetry; this gives rise to the N = 2 multiplet

LB1[0]
(1)
1 contributing +xχ

SU(2)
[2] (w) and the N = 2 multiplet A2A2[0]

(0)
1 con-

tributing −x2χ
SU(2)
[2] (w). The term +x2χ

SU(2)
[4] (w) corresponds to the N = 2

marginal operator6 in the multiplet LB1[0]
(2)
2 . It can be clearly seen that there

is another conserved current corresponding to the term −x2χ
SU(2)
[0] (w). Indeed,

the latter comes from the N = 3 extra SUSY-current multiplet A2[0]
(0)
1 in the

trivial representation [0] of SU(2); this gives rise to an N = 2 conserved cur-

rent multiplet A2A2[0]
(0)
1 contributing the term −x2χ

SU(2)
[0] (w). The existence

of the extra SUSY-current multiplet indicates that there is an enhancement of
supersymmetry from N = 3 to N = 4.

For k = 0, −1 and |k| ≥ 3, we find that the index reads

1 + x+ 0x2 + . . . . (6.29)

The term +x indicates that there must be an N = 3 flavor current multiplet

B1[0]
(2)
1 , which gives rise to the N = 2 multiplet LB1[0]

(1)
1 contributing +x and

the N = 2 multiplet A2A2[0]
(0)
1 contributing −x2. Hence the theory has a U(1)

flavor symmetry. The fact that the term x2 vanishes implies that there is an

N = 2 marginal operator in the multiplet LB1[0]
(2)
2 , contributing +x2, which

cancels the aforementioned −x2 term. Hence, in this case, there is no signal of
the existence of the extra SUSY-current multiplet, i.e. we cannot deduce the
enhancement of supersymmetry.

For k = −2, we find that the index reads

1 + 2x+ x2 + 8x4 + . . . . (6.30)

There are two N = 3 flavor current multiplet B1[0]
(2)
1 which gives rise to two

copies of N = 2 multiplets LB1[0]
(1)
1 contributing +2x and two copies of N = 2

multiplets A2A2[0]
(0)
1 contributing −2x2. Hence the theory has a U(1)2 flavor

symmetry. We may construct three N = 2 marginal operators by taking a

symmetric product of two relevant operators in the LB1[0]
(1)
1 multiplets. Their

contribution +3x2 cancels the aforementioned −2x2 and yields +x2. There is
no signal of the existence of the extra SUSY-current multiplet, i.e. we cannot
deduce the enhancement of supersymmetry.

6It should be noted that the 2nd symmetric power of [2] is Sym2[2] = [4] + [0]. The
representation [4], appearing at order x2 of the index, is a part of this symmetric power.
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6.2.4 Adding n flavors to the U(2)2 gauge group

In this section, we add an arbitrary number of flavors to the parabolic case7,
namely

22

T [U(2)]

n (6.31)

When the number of flavors is one (i.e. n = 1), we have seen from (6.25) that
the theory factorizes into a product of the theory of a free hypermultiplet and an
interacting SCFT with enhanced N = 4 supersymmetry. For n ≥ 2, the index
does not exhibit explicitly the presence of the extra SUSY-current multiplet.
Nevertheless, as we demonstrate below, the theory still has interesting physics
that is bears a certain resemblance to the 3d N = 4 U(1) gauge theory with n
flavors, such as the properties of monopole operators.

For concreteness, let us first consider the case of n = 2. The index reads8

I(6.31), n=2(x;ω, y)

= 1 + x
[
χ
SU(2)
[2] (ω) + χ

SU(2)
[2] (y)

]
+ x2

[(
1 + 2χ

SU(2)
[4] (ω) + χ

SU(2)
[4] (y)

+ χ
SU(2)
[2] (ω)χ

SU(2)
[2] (y) + χ

SU(2)
[2] (y)

)
−
(
χ
SU(2)
[2] (ω) + χ

SU(2)
[2] (y)

) ]
+ . . . ,

(6.32)

with the unrefinement

I(6.31), n=2(x;ω = 1, y = 1) = 1 + 6x+ 22x2 + 18x3 + 29x4 + . . . . (6.33)

where the topological fugacity is denoted by w = ω2. We see that the U(1)
topological symmetry gets enhanced to SU(2). This phenomenon also occurs
for 3d N = 4 U(1) gauge theory with 2 flavors, whose index is

IT [SU(2)](x;ω, y)

= 1 + x
[
χ
SU(2)
[2] (ω) + χ

SU(2)
[2] (y)

]
+ x2

[
χ
SU(2)
[4] (ω) + χ

SU(2)
[4] (y)−

(
χ
SU(2)
[2] (ω) + χ

SU(2)
[2] (y) + 1

)]
+ . . .

(6.34)

with the unrefinement

IT [SU(2)](x;ω = 1, y = 1) = 1 + 6x+ 3x2 + 6x3 + 17x4 + . . . , (6.35)

7Here J2 = −ST 2 is a parabolic element of SL(2,Z). It is related to T−1 by the following
similarity transformation: (TST )J2(TST )−1 = T−1. However, we emphasise that, when
fundamental flavors are added as in (6.31), the theory is different from U(2)−1 with n flavors.
This can be seen clearly from the indices. For example, for n = 1, the index for U(2)−1 with
1 flavor is 1 but (6.25) is non-trivial.

8The symmetric product of the representation [2; 0] + [0; 2] of SU(2) × SU(2) is 2[0; 0] +
[4; 0] + [0; 4] + [2; 2]. The representation in the first bracket of order x2 (i.e. those with plus
signs) can be written as Sym2([2; 0] + [0; 2]) + [4; 0] + [0; 2] − [0; 0]. In the same way as in
footnote 6, one singlet in the decomposition of the symmetric power does not participate in
the index; this explains the term −[0; 0]. Moreover, it is worth pointing out that, in this case,
there are extra representations that are not contained in the symmetric product, namely [4; 0]
and [0; 2].
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For n = 3, we find that the index of (6.31) reads

I(6.31), n=3(x;w, y)

= 1 + x
[
1 + χ

SU(3)
[1,1] (y)

]
+ x

3
2 (w + w−1)

+ x2
[
χ
SU(3)
[2,2] (y) + 2χ

SU(3)
[1,1] (y) + 1

]
+ . . . ,

(6.36)

with the unrefinement

I(6.31), n=3(x;w = 1,y = (1, 1)) = 1 + 9x+ 2x
3
2 + 44x2 + 18x

5
2

+ 117x3 + 34x
7
2 + 188x4 + . . . ,

(6.37)

where w the topological fugacity and y the SU(3) flavor fugacities. Again, this
bears some similarity with the U(1) gauge theory with 3 flavors, whose index is

IT(2,1)(SU(3))(x;w,y) = 1 + x
[
1 + χ

SU(3)
[1,1] (y)

]
+ x

3
2 (w + w−1)

− x2
[
χ
SU(3)
[2,2] (y)− (1 + χ

SU(3)
[1,1] (y))

]
+ . . . ,

(6.38)

with the unrefinement

IT(2,1)(SU(3))(x;w = 1,y = (1, 1)) = 1 + 9x+ 2x
3
2 + 18x2 + 21x3 + 54x4 + . . . ,

(6.39)
We observe that for a general n, (6.31) has a global symmetry SU(n)×U(1),

where the U(1) is the topological symmetry, which is enhanced to SU(2) for
n = 2. Moreover, the terms x

n
2 (w + w−1) indicate that theory (6.31) contains

the basic monopole operators V±(1,0) (with flux ±(1, 0) under the U(2) gauge
group), carrying R-charge n

2 , similar to V±1 in the U(1) gauge theory with n
flavors. Moreover, with CS level k = 2, these basic monopole operators are gauge
neutral, so they are gauge invariant themselves without any dressing by a chiral
field in the fundamental hypermultiplet.9 A non-trivial physical implication is
that the contribution of the T -link cancel the contribution of the non-abelian
vector multiplet in the R-charge of the monopole operator.

6.3 Duality with theories with two gauge groups

Here we examine the duality between the following theories

Nk

T [U(N)]

n N0 Nk n− 1

T [U(N)]

(6.40)

This duality can be seen from the brane system by moving one of the D5-brane
across the J-fold and, thereby, turning it into an NS5 brane. For general values
of N and k, both theories have a global symmetry U(n). However, as can be
seen from the indices, they arise from different origins in the quiver description.

9Note that this statement does not hold when the CS level is not equal to 2, and in order
to form a gauge invariant combination, the monopole operators need to be dressed by chiral
fields in the fundamental hypermultiplet.
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Let us take, for example, N = 2, k = 2 and n = 3. The index of the left
quiver is given by (6.36). The index of the right quiver reads

1 + x
[
2 + (w1 + w−1

1 )χ
SU(2)
[1] (ỹ) + χ

SU(2)
[2] (ỹ)

]
+ x

3
2

(
w1w2 +

1

w1w2

)
+ x2

[
4 + (w2

1 + 3 + w−2
1 )χ

SU(2)
[2] (ỹ) + (w1 + w−1

1 )
(
χ
SU(2)
[3] (ỹ) + 2χ

SU(2)
[1] (ỹ)

)
+ χ

SU(2)
[4] (ỹ)

]
+ . . . .

(6.41)

where w1 and w2 are the topological fugacities associated with the left and right
nodes, and we denote the SU(2) flavor fugacities by ỹ. This expression can be
rewritten in the way that the SU(3) symmetry is manifest by setting

w1 = y
− 3

2
1 , ỹ = y

− 1
2

1 y2 , (6.42)

upon which we recover the expression (6.36).

From the coefficient of x, we see that the mesons in the adjoint representation
[1, 1] of SU(3) of the left quiver in (6.40) are mapped to the following operators
of the right quiver in (6.40):

1. the mesons in the adjoint representation [2] of the SU(2) flavor symmetry;

2. the dressed monopole operators in the fundamental representation [1] of
SU(2) and carrying topological charges ±1 under the left node10; and

3. the trace of the adjoint chiral field associated with the left node.

Moreover, by comparing the terms at order x
3
2 in (6.36) and (6.41), we see that

the basic monopole operators V±, carrying topological charges ±1, in the left
quivers are mapped to the basic monopole operators V±(1,1), carrying topological
charges ±(1, 1), in the right quivers.

These statements can be easily generalized to other values of k and n. Ob-
serve that we can in principle test the duality with other theories. Starting from
6.40, we can move another D5 brane across the J-fold in the brane configura-
tion of the right quiver. In this way, we generate a new dual theory with the
following quiver description:

N0 Nk

N0

n− 2

T [U(N)]

(6.43)

This time, only U(n−2) flavor symmetry is manifest. As before, such symmetry
will combine with the topological symmetries of the gauge nodes in order to
restore the full U(n). However, this require a complicated dynamics involving
mesons and monopoles, analogously to what discussed for the duality in (6.40).

10This is similar to the dressed monopole operators (4.163) in the abelian theory.
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We can keep moving D5-branes across the wall. When all the D5-branes are
moved, we end up with the following quiver:

N0

N0

N0N0

Nk

N0
(n+ 1) nodes

T [U(N)]

(6.44)

For k = 0, this would be exactly the mirror symmetry theory of the quiver
on the left in (6.40). In fact, we can observe that the symmetry group U(n)
is not realized at all as flavor symmetry but it emerges from the topological
symmetries.

6.4 U(2)k1
× U(2)k2

with two T -links

In this subsection we consider the following theory

2 D3

Jk1 = −STk1

Jk2 = −STk2

2k1 2k2

T [U(2)]

T [U(2)]

(6.45)

The three sphere partition function as well as the supergravity solution cor-
responding to U(N)k1 × U(N)k2 gauge group (i.e. N D3 branes), in the large
N limit, were studied in [19]. In such a reference, the CS levels were restricted
such that tr(±Jk1Jk2) > 2, equivalently ±(k1k2 − 2) > 2, where the sign ±
is chosen such that the trace is greater than 2. In which case, Jk1Jk2 is a
hyperbolic element of SL(2,Z), and the theory was predicted to have N = 4
supersymmetry in the large N limit. Here, instead, we focus on the supercon-
formal indices and supersymmetry enhancement when the gauge group is taken
to be U(2)k1 × U(2)k2 for general values of k1 and k2.

Note that if one of k1 or k2 is 1, say k1 = 1, we have J1Jk2 = STST k2 . This is
related by a T -similarity transformation to TJ1Jk2T

−1 = T (STSTT k2−1)T−1 =
−ST k2−2 = Jk2−2, where have used the identity TSTST = −S (see also [19]).
In other words, the two duality walls J1 and Jk2 can be reduced to a single
duality wall Jk2−2 (assuming that there are no NS5 and D5 branes). Henceforth,
we shall not consider such a possibility in the absence of hypermultiplet matter.

In general, we observe that whenever Jk1Jk2 is a parabolic element of SL(2,Z),
i.e. | tr(Jk1Jk2)| = |k1k2 − 2| = 2 or equivalently k1k2 = 0 or 4, the index di-
verges and the theory is “bad” in the sense of [15]. In which case, we cannot
deduce the low energy behavior of the theory from its quiver description.
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We observe that the index of (6.45) does not depend on the fugacities as-
sociated with the topological symmetries. Similarly to section 6.2.2, the gauge
group in (6.45) can be taken to be SU(2)k1 × SU(2)k2 and this yields the same
index.

Let us now take k1 = 2 and examine various values of k2 as follows.

CS levels (k1, k2) Index Type of Jk1Jk2 Comment
(2, 5) 1 + x4 + . . . hyperbolic
(2, 4) 1 + x4 + . . . hyperbolic
(2, 3) 1− x2 + 2x3 − x4 + . . . hyperbolic New, SUSY enhancement

(2, 2) diverges parabolic

(2, 1) 1 elliptic Same as (6.13), k = 0

(2, 0) diverges parabolic

(2,−1) (6.14) hyperbolic Same as (6.13), k = ±4
(2,−2) 1 + x4 + . . . hyperbolic
(2,−3) 1 + x4 + . . . hyperbolic
(2,−4) 1 + x4 + . . . hyperbolic

The cases whose indices exhibit supersymmetry enhancement are emphasized
in yellow. The indices for the cases not highlighted in yellow do not signal
the presence of extra SUSY-current multiplets. The CS levels (k1, k2) = (2, 3)
gives a new SCFT with enhanced N = 4 supersymmetry, whereas the case with
(k1, k2) = (2,−1) is the same as theory (6.13) with k = −4, which also has
supersymmetry enhancement to N = 4.

For k1 = 3, we find a similar pattern, as tabulated below. Unfortunately,
the cases that has supersymmetry enhancement, namely (k1, k2) = (3, 2) and
(3,−1), are identical with certain theories that have been discussed before.

CS levels (k1, k2) Index Type of Jk1Jk2 Comment
(3, 4) 1 + x4 + . . . hyperbolic
(3, 3) 1 + 2x4 + . . . hyperbolic
(3, 2) 1− x2 + 2x3 + . . . hyperbolic Same as (k1, k2) = (2, 3)

(3, 1) 1 elliptic Same as (6.13), k = ±1

(3, 0) diverges parabolic

(3,−1) (6.14) hyperbolic Same as (6.13), k = ±5
(3,−2) 1 + x4 + . . . hyperbolic

6.4.1 Adding flavors to the parabolic case

In this section, we add fundamental flavors to either or both nodes in the
parabolic case. For definiteness, we consider the theory involving two J2 duality
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walls11 and a collection of D5 branes arranged in the following way:

N D3

•
...n1 D5

•

•
... n2 D5

•

J2

J2

N2 N2n1 n2

T [U(N)]

T [U(N)]

(6.46)
and focus on the cases of N = 1 and N = 2. Such theories have interesting
physical properties as we shall describe below.

Let us first discuss the abelian case. Since this theory admits a conven-
tional Lagrangian description, we can easily analyze this theory along the lines
of [29]. The detailed analysis is provided in section 4.5. We find that whenever
fundamental hypermultiplets are added to the quiver associated with parabolic
J-folds, an interesting branch of the moduli space arises, mainly due to the
presence of the gauge neutral monopole (or dressed monopole) operators. In
particular, for quiver (6.46) with N = 1, we find that there are two branches
of the moduli space. One can be identified as the Higgs branch and the other
can be identified as the Coulomb branch, both of which are hyperkähler cones.
This feature is very similar to that of general 3d N = 4 gauge theories. The
Higgs branch is isomorphic to a product of the closures of the minimal nilpo-

tent orbits OSU(n1)

min × OSU(n2)

min , where each factor is generated by the mesons
constructed using the chiral multiplets in each fundamental hypermultiplet; see
(4.152). The Coulomb branch is isomorphic to C2/Zn1+n2

, which is generated
by the monopole operators V±(1,1) with fluxes ±(1, 1) and the complex scalar
in the vector multiplet; see (4.156). For a general n1 and n2, this theory has

a global symmetry
(
U(n1)×U(n2)

U(1)

)
× U(1), where the former factor denotes the

flavor symmetry coming from the fundamental hypermultiplets and latter U(1)
denotes the topological symmetry. For the special case of n1 +n2 = 2, the U(1)
topological symmetry gets enhanced to SU(2), which is also an isometry of the
Coulomb branch C2/Z2. Interestingly, if we set one of n1 or n2 to zero, say

12 12 n

T [U(1)]

T [U(1)]

(6.47)

This theory turns out to be the same as quiver (6.8) with N = 1, k = 2, which is
identical to 3d N = 4 U(1) gauge theory with n flavors (i.e. the T(n,n−1)(SU(n))
theory [15]). One can indeed check that the moduli spaces and the indices of
the two theories are equal. Such an identification indicates that when n1 = 0
(or n2 = 0), the two J2 duality walls can be “collapsed” into one, and the gauge
node in (6.47) that is not flavored can be removed such that the T -link becomes
a loop around the other gauge node. We remark that this statement only holds
for the abelian case; we will see that for N = 2 this is no longer true.

11Similarly to the remark in footnote 7, even though J2
2 is related to T−2 by a similarity

transformation in SL(2,Z), upon adding hypermultiplet matter, the theory becomes non-
trivial.
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Quiver (6.46) with N > 1 still bears the same features as in the abelian (N =

1) theory. In general, the index of (6.46) contains the terms x
1
2 (n1+n2)(w1w2 +

w−1
1 w−1

2 ), which indicates that there are gauge invariants monopole opera-
tors V±(1,0,...,0;1,0,...,0), with fluxes ±(1, 0, . . . , 0) under each of the U(N) gauge

group, carrying R-charge 1
2 (n1 + n2). Again, for n1 + n2 = 2, the U(1) topo-

logical symmetry gets enhanced to SU(2). Furthermore, when n1 + n2 = 1,
i.e. (n1, n2) = (1, 0) or (0, 1), such monopole operators decouple as a free hy-
permultiplet (this is similar to the one flavor case discussed in section 6.2.3).
Let us consider, in particular, the case of N = 2, n1 = 0 and n2 = 1:

22 22 1

T [U(2)]

T [U(2)]

(6.48)

Indeed the index can be written as

I(6.48) = Ifree(x;w)× I(6.48)
SCFT(x;w) (6.49)

where we define w as the product of the topological fugacities associated with the
two gauge groups: w = w1w2. The index of the free hypermultiplet Ifree(x;w)
is given by (6.26), and the index for the interacting SCFT is

I(6.48)
SCFT(x;w) = 1 + xχ

SU(2)
[2] (w) + x2

[
χ
SU(2)
[4] (w)− χSU(2)

[2] (w)
]

− x 5
2χ

SU(2)
[2] (w) + . . . .

(6.50)

with the unrefinement

I(6.48)
SCFT(x;w = 1) = 1 + 3x+ 2x2 − 2x5/2 − 4x3 + . . . (6.51)

The interacting SCFT has a flavor symmetry SU(2). Notice that the index
of the SCFT (6.50) is different from (6.27). (Hence, we cannot collapse two J2

duality walls into one as in the abelian case.) In particular, while (6.27) exhibits
the presence of the extra-SUSY current multiplet, (6.50) does not.
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Chapter 7

Conclusions and
Perspectives

In this section we want to collect the main results of part II of the text and point
out possible future directions and leftover open problems. The aim of the works
presented in this thesis is studying S-fold SCFTs from various perspectives.

First we studied the moduli space of various theories, computing the asso-
ciated Hilbert series in order to check the consistency with mirror symmetry of
various proposed mirror pairs. In the case of S-flip SCFTs, where no Chern-
Simons levels are turned on for T-linked gauge nodes, we propose that Higgs
and Coulomb branches can be computed using standard techniques. The Higgs
branch of a model can be computed as an hyperkähler quotient, as explained
in details in chapter 4. Using mirror symmetry as a tool, we deduce that the
T-linked gauged nodes are actually frozen and do not contribute to the Coulomb
branch dynamics; we named this feature freezing rule. Let us stress that this
proposal provides information about the behavior of D3-branes, whose posi-
tion along the NS5 directions is stuck when intersecting an S-duality wall. We
observed that more general T[G]-links can be considered, with G being a self-
Langlands compact Lie group. In the case of G = SO(2N) and G = USp′(2N)
we proposed such S-fold theories to be dual to Hanany-Witten configuration
with one S-flip and O3 or O5 orientifold planes. We computed the Hilbert se-
ries of various models and checked the consistency against mirror symmetry; in
particular we checked that the conjectured freezing rule still holds and we ob-
served new phenomena as the screening effect; it states that an S-flip cannot be
inserted too close to an O5 plane, in a sense specified in the main text. Finally,
we also propose an exceptional case, i.e. circular quivers involving G2, USp(4)
and SO(5) gauge nodes where a T [G2] link has been inserted. In both case,
with and without S-fold, we construct mirror pairs involving this exceptional
group and we checked the consistency against mirror symmetry.

It would interesting to understand the stringy origin of exceptional models:
in fact, in this case we do not have any brane construction at disposal but we
used field-theoretical arguments only. It is natural to think that explanation
of this exceptional configuration need some exotic construction for instance in
F-theory. Having such construction at disposal could also shed a light about the
possibility of building models involving T [G] theories for G = E6,7,8 or G = F4.
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We also studied the moduli space J-fold SCFTs. The presence of non-trivial
CS levels makes the study much harder and we focused on the Abelian case
only, since Lagrangian description of such theories is available. We computed
the moduli space for selected examples and observed that it generically enjoys
a rich and complicated structure of mixed branches. This is mostly due to the
fact that monopole dynamics is more involved in the J-fold case. It would be
interesting to understand if there exists a general rule to compute moduli space
in the non-Abelian case. A similar problem also extends to the cases with more
general T [G]-links, for which we studied S-flip configurations only. Let us stress
that introduction of a non-trivial CS levels would allow to build configuration
with T-links for non self-Langland groups SO(2N + 1) and USp(2N).

We also addressed the problem of the infrared amount of supersymmetry
of an S-fold theory, computing the superconformal index of various models and
using the results of [80, 82, 85] to read possible signals of supersymmetry en-
hancement. More in general, we also looked for other interesting phenomena
such as dualities or global symmetry enhancement. We found evidence that
S-flip theories in general have N = 3 supersymmetry in the IR while J-fold
theories enjoy enhancement to N = 4 and possibly N = 5. It would be inter-
esting to study the origin of supersymmetry enhancement in terms of fields in
the quiver description.

The study S-fold SCFTs can be thought as a first step of a more general
program. In fact, as review in section 3.1, a T [SU(N)] theory naturally appears
as the boundary theory on an S-duality wall for 4d N = 4 SYM. For this reason,
one could think that more exotic T -links can be studied, each arising as some
boundary theory on an SL(2,Z) duality wall. For instance, following [15], a
Tσρ [G] theory can be thought as the theory on the wall for N = 4 SYM with
varying coupling constant and appropriate boundary conditions at the interface.
Understanding whether quivers involving Tσρ [G] links can be built consistently
with mirror symmetry is a natural generalization. Moreover, one could think to
consider theories on duality walls for ancestor theories in four dimensions that
differs from N = 4 SYM and thus having a lower amount of supersymmetry. A
first step in this direction has been carried out in [87] where a new link has been
proposed, consisting of the theory on an S-duality wall for 4d SU(N) N = 2
SYM with 2N flavors and varying coupling constant. Such boundary theory has
been proposed in [88]. The authors of [87] considered various quivers with one or
more insertion of such link, computing the supersymmetric index and looking
for signals of supersymmetry enhancement, global symmetry enhancement or
dualities. It could be interesting understand if other links preserving N = 2
supersymmetry only can considered, possibly looking for new boundary theories
living on SL(2,Z) duality walls.

Finally, another open problem is whether it is possible to perform an SL(2,Z)
quotient of other Type-IIB known supergravity solution in other dimensions. A
remarkable class of backgrounds where this is in principle possible consists of the
AdS6 solutions of [89–91]. It would be interesting to study to understand how
a background with monodromy can be constructed in this case and studying, in
the case of positive answer, its holographic counterpart in quantum field theory.
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Appendix A

Hilbert series

A.1 The monopole formula

The monopole formula proposed in [30] allows to compute the Hilbert series for
the Coulomb branch of N = 4 theories. In particular it allows to take into ac-
count the contributions to the dynamics of monopoles, whose expectation value
parametrize the Coulomb branch. The prescription of the monopole formula
requires three main objects:

• The R-charge of BPS bare monopoles; as already observed in (2.19), it
depends on the GNO magnetic charges, collectively denoted by m. In the
N = 4 case, such R-charge has the following compact form:

∆(m) = −
∑
α∈∆+

|α(m)|+ 1

2

∑
i

∑
ρi∈Ri

|ρi(m)| . (A.1)

∆+ is the set of all positive roots of the gauge group and the first sum
represents the contribution of all the N = 4 vector multiplets. The second
sum in (A.1) is instead the contribution of all the hypermultiplets in the
theory, labeled by i: each of them is assumed to transform in some rep-
resentation Ri of the gauge group, with weights {ρi}. Observe that one
should be sure that ∆(m) > 1/2: otherwise, some monopole saturates or
violates the unitarity bound and the theory is ugly or bad in the sense
of [15].

• The other ingredient that is needed is the “classical factor”: such con-
tribution, depending again on the choice of magnetic charges, takes into
account the breaking of the gauge group because of m. We will denote
such contribution with PG(t;m) where t is the R-symmetry fugacity as
usual. We will provide in the following of the section some examples of
classical factors.

• Finally, we can add a contribution taking trace of the charge under topo-
logical symmetries of the monopoles. We introduce a fugacity za for each
topological symmetry (i.e. for each U(1) factor in the center of the gauge
group) and we add the following factor to the Hilbert series:

(za)Ja(m) , (A.2)
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where Ja is the topological charge of the monopole, having an explicit
dependence on the GNO charges, as already observed in section (2.2).

The Hilbert series of a N = 4 theory can be thus written in the following way:

HC [t, z] =
∑
m∈Λ

t∆(m)PG(t;m)
∏
a

zJa(m)
a , (A.3)

where Λ is the magnetic lattice. Let us collect some classical factors used in the
main text:

PU(1)(t;m) = (1− t2)−1

PU(2)(t;m1,m2) =

{
(1− t2)−2 , m1 6= m2

(1− t2)−1(1− t4)−1 , m1 = m2

PC2(t;m1,m2) =


(1− t2)−2 m1 > m2 > 0

(1− t2)−1(1− t4)−1 m1 > m2 = 0 or m1 = m2 > 0

(1− t4)−1(1− t8)−1 m1 = m2 = 0

PG2
(t;m1,m2) =


(1− t2)−2 m1 > m2 > 0

(1− t2)−1(1− t4)−1 m1 = 0,m2 > 0 or m1 > 0,m2 = 0

(1− t4)−1(1− t12)−1 m1 = m2 = 0

.

(A.4)

Finally, in order also to fix some notation used in the main text, let us write
down some examples of the contribution to the monopole R-charge coming from
matter in the bi-fundamental or adjoint representation of U(N):

2∆U(N1)−U(N2)(m,n) =

N1∑
i=1

N2∑
j=1

|mi − nj |

∆vec
U(N)(m) =

1

2

N∑
i=1

N∑
j=1

|mi −mj |
(A.5)

and the contribution coming from matter in bi-fundamental or adjoint repre-
sentation of G2 and USp(4):

2∆hyp
G2−C2

(n,a) =
1

2

∑
±

2∑
i=1

[
|n1 ± ai|+ |n1 + n2 ± ai|+ |2n1 + n2 ± ai|+

+ (n1 → −n1, n2 → −n2) + | ± ai|
]

∆vec
G2

(n) = |n1|+ |n2|+ |n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|
∆vec
C2

(a) = |2a1|+ |2a2|+ |a1 + a2|+ |a1 − a2| .
(A.6)

A.2 Coupling hypermultiplets to a nilpotent cone

In this section we study the hyperkähler space that arises from coupling hy-
permultiplets or half-hypermultiplets to nilpotent cone Ng of the Lie algebra g
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associated with a gauge group G. We start from the nilpotent cone of g, and
denote this geometrical object by

G × (A.7)

Note that a subgroup of G may acts trivially on Ng. For example, we may take
G to be U(N); since the symmetry of the corresponding nilpotent cone is really
SU(n), the U(1) subgroup of G = U(N) acts trivially on the nilpotent cone.

The symmetry G can be gauged and can then be coupled to hypermultiplets
or half-hypermultiplets, which give rise to a flavor symmetry H. We denote the
resulting theory by the quiver diagram:

GH × (A.8)

The hyperkähler quotient H(A.8) associated with this diagram is

H(A.8) =
H ([H]− [G])×Ng

G
(A.9)

where H ([H]− [G]) denotes the Higgs branch of quiver [H]−[G]. We emphasize
that we do not interpret (A.8) as a field theory by itself. Instead, we regard it
as a notation that can be conveniently used to denote the hyperkähler quotient
(A.9).

G = U(N) and H = U(n)/U(1)

We take G = U(N) and couple n flavors of hypermutiplets to G:

Nn × (A.10)

The hyperkähler quotient associated with this diagram is

H(A.10) =
H ([U(n)]− [U(N)])×Nsu(N)

U(N)
(A.11)

where H ([U(n)]− [U(N)]) denotes the Higgs branch of the quiver [U(n)] −
[U(N)]. The quaternionic dimension is

dimHH(A.10) =
1

2
N(N − 1) + nN −N2 . (A.12)

The flavor symmetry in this case is H = U(n)/U(1), whose algebra is h = su(n).
For N = 1, Nsu(N) is trivial. The quotient (A.11) becomes the Higgs branch

of the U(1) gauge theory with n flavors. H(A.10), therefore, turns out to be the

closure of the minimal nilpotent orbit of su(n), denoted by O(2,1n−2) [53, 55].
This space is also isomorphic to the Higgs branch of the T(n−1,1)(SU(n)) theory
of [15], and is also isomorphic to the reduced moduli space of one su(n) instanton
on C2. It is precisely n− 1 quaternionic dimensional.

For N = 2, it turns out that H(A.10) is the closure O(3,1n−3) of the orbit
(3, 1n−3) of su(n). This is isomorphic to the Higgs branch of the T(n−2,12)(SU(n))
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theory, namely that of the quiver [U(n)] − (U(2)) − (U(1)). The quaternionic
dimension of this is precisely 2n− 3. This is indeed in agreement with (A.12).

For a general N , such that n ≥ N + 1, we see that H(A.10) is in fact

H(A.10) = O(N+1,1n−N−1) , (A.13)

and in the special case of n = N , we have the nilpotent cone of su(N):

H(A.10)|n=N = O(N) = Nsu(N) . (A.14)

One way to verify this proposition is to compute the Hilbert series ofH(A.10).
This is given by1

H[H(A.10)](t;x) =

∫
dµSU(N)(z)

∮
|q|=1

dq

2πiq
PE
[
χ
su(N)
[1,0,...,0](x)χ

su(N)
[0,...,0,1](z)q−1t

+ χ
su(N)
[0,...,0,1](x)χ

su(N)
[1,0,...,0](z)q − χsu(N)

[1,0,...,0,1]t
2
]
H[Nsu(N)](t, z)

(A.15)

where x denotes the flavor fugacities of su(N) and dµSU(N)(z) denotes the Haar
measure of SU(N). We refer the reader to the detail of the characters and the
Haar measures in [92]. The Hilbert series of the nilpotent cone of su(N) was
computed in [47] and is given by

H[Nsu(N)](t, z) = PE

[
χ
su(N)
[1,0,··· ,0,1](z)t2 −

N∑
p=2

t2p

]
. (A.16)

The Hilbert series (A.15) can then be used to checked against the results pre-
sented in [53]. In this way, the required nilpotent orbits in (A.13) and (A.14)
can be identified. This technique can also be applied to other gauge groups, as
will be discussed in the subsequent subsections. For the sake of brevity of the
presentation, we shall not go through further details.

We remark that for n ≥ 2N + 1, the hyperkähler space (A.13) is isomorphic
the Higgs branch of the T(n−N,1N )(SU(n)) theory2, which corresponds to the
quiver [15]:

T(n−N,1N )(SU(n)) : [U(n)]− (U(N))− (U(N − 1))− · · · − (U(1)) . (A.17)

Note that quiver (A.10) can be obtained from (A.17) simply by replacing the
wiggly line by the quiver tail as follows:

N × −→ (U(N))− (U(N − 1))− · · · − (U(1)) . (A.18)

G = USp(2N) and H = O(n) or SO(n)

We take G = USp(2N) and couple n half-hypermultiplets to G:

2Nn × (A.19)

1The plethystic exponential (PE) of a multivariate function f(x1, x2, . . . , xn) such that
f(0, 0, . . . , 0) = 0 is defined as PE[f(x1, x2, . . . , xn)] = exp

(∑∞
k=1

1
k
f(xk1 , x

k
2 , . . . , x

k
n)
)
.

2The partition (n − N, 1N ) is indeed the transpose of the partition (N + 1, 1n−N−1) in
(A.13).

130



The corresponding hyperkähler quotient is

H(A.19) =
H ([SO(n)]− [USp(2N)])×Nusp(2N)

USp(2N)
. (A.20)

The dimension of this space is

dimHH(A.19) = nN +
1

2

[
1

2
(2N)(2N + 1)−N

]
− 1

2
(2N)(2N + 1)

= N(n−N − 1) .

(A.21)

For n ≥ 2N + 1, the hyperkähler quotient (A.20) turns out to be isomorphic to
the closure of the nilpotent orbit (2N + 1, 1n−(2N+1)) of so(n):

H(A.19) = O(2N+1,1n−(2N+1)) . (A.22)

For even n, say n = 2m, this is isomorphic to the Higgs branch of Tρ(SO(n)),
with ρ = (n− 2N − 1, 12N+1),3 whose quiver description is

n 2N 2N 2N − 2 2N − 2 · · · 2 2

(A.24)
For odd n, say n = 2m+1, this is isomorphic to the Higgs branch of Tρ(SO(n)),
with ρ = (n − 2N − 1, 2, 12N−2) if n > 2N + 1 and ρ = (12N ) if n = 2N + 1,4

whose quiver description is

n 2N 2N − 1 2N − 2 · · · 2 1 (A.26)

G = SO(N)orO(N) and H = USp(2n)

Let us first take G = SO(N) and take H = USp(2n).

SO(N)2n × (A.27)

This diagram defines the hyperkähler quotient

H(A.27) =
H ([USp(2n)]− [SO(N)])×Nso(N)

SO(N)
. (A.28)

3Note that the partition ρ = (n − 2N − 1, 12N+1) can be obtained from the partition
λ = (2N+1, 1n−(2N+1)) of (A.22) by first computing the transpose of λ, and then performing
the D-collapse. For example, for N = 2 and m = 4 (or n = 8),

λ = (5, 14)
transpose−→ (4, 14)

D-coll.−→ ρ = (3, 15) . (A.23)

4Note that the partition ρ = (n − 2N − 1, 2, 12N−2) can be obtained from the partition
λ = (2N + 1, 1n−(2N+1)) of (A.22) by first computing the transpose of λ, subtracting 1 from
the last entry, and then performing the C-collapse. For example, for N = 3 and m = 4 (or
n = 9),

λ = (7, 12)
transpose−→ (3, 16) −→ (3, 15)

C-coll.−→ (22, 14) . (A.25)
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The quaternionic dimension of this quotient is

dimH H(A.27) =

{
m(2n−m) , N = 2m

m(2n−m− 1) + n , N = 2m+ 1
. (A.29)

It is interesting to examine (A.28) for a few special cases. For N = 2n or
N = 2n + 1 or N = 2n − 1, we find that (A.28) is in fact the nilpotent cone
Nusp(2n) of usp(2n), whose quaternionic dimension is n2:

H(A.27)|N=2n = H(A.27)|N=2n±1 = Nusp(2n) . (A.30)

This statement can be checked using the Hilbert series:

H[H(A.27)](t;x) =

∫
dµSO(N)(z) PE

[
χCn[1,0,...,0](x)χ

so(N)
[1,0,...,0](z)t

− χso(N)
[0,1,0,...,0](z)t2

]
H[Nso(N)](t, z)

= PE

χCn[2,0,...,0](x)t2 −
n∑
j=1

t4j

 , if N = 2n or 2n± 1 .

(A.31)

where the Haar measure and the relevant characters are given in [92]. The last
line is indeed the Hilbert series of the nilpotent cone Nusp(2n) [53].

It is important to note that the quotient (A.28) is not the closure of a
nilpotent orbit in general. For example, let us take n = 4 and N = 3, i.e. G =
SO(3) and H = USp(8). The Hilbert series takes the form

H[H(A.27)|n=4,N=3](t;x) = PE
[
χC4

[2,0,0,0]t
2 + (χC4

[0,0,1,0] + χC4

[1,0,0,0])t
3 − t4 + . . .

]
.

(A.32)
Observe that there are generators with SU(2)R-spin 3/2 in the third rank anti-
symmetric representation ∧3[1, 0, 0, 0] = [0, 0, 1, 0] + [1, 0, 0, 0] of USp(8). These
should be identified as “baryons”. Using Namikawa’s theorem [93], which states
that all generators of the closure of a nilpotent orbit must have SU(2)R-spin 1
(see also [94]), we conclude that H(A.27)|n=4,N=3 is not the closure of a nilpotent
orbit. In general, these baryons can be removed by taking gauge group to be
O(N), instead of SO(N). The reason is because the O(N) group does not have
an epsilon tensor as an invariant tensor, whereas the SO(N) group has one.

Let us now take G = O(N) and take H = USp(2n):

O(N)2n × (A.33)

This diagram defines the hyperkähler quotient

H(A.33) =
H ([USp(2n)]− [O(N)])×Nso(N)

O(N)
. (A.34)

The dimension of this hyperkähler space is the same as (A.29). This quotient
turns out to be isomorphic to the closure of the following nilpotent orbit of
usp(2n):

H(A.33) =

{
O(N,2,12n−N−2) N even

O(N+1,12n−N−1) N odd
. (A.35)
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In the special case where N = 2n, N = 2n− 1 or N = 2n+ 1, we have

H(A.33)|N=2n = H(A.33)|N=2n±1 = O(2n) = Nusp(2n) , (A.36)

which is the same as (A.30).
For even N = 2m, H(A.33) is isomorphic to the Higgs branch of Tρ(USp(2n))

theory, with ρ = (2n−N + 1, 1N ), whose quiver description is

2n 2m 2m− 2 2m− 2 2m− 4 2m− 4 · · · 2 2

(A.37)
On the other hand, for odd N = 2m + 1, H(A.33) is isomorphic to the Higgs
branch of Tρ(USp

′(2n)) theory, with ρ = (2n − N + 1, 1N−1), whose quiver
description is

2n 2m+ 1 2m 2m− 1 2m− 2 · · · 2 1

(A.38)

G = G2 and H = USp(2n)

We take G = G2 and H = USp(2n):

G22n × (A.39)

This diagram defines the hyperkähler quotient

H(A.39) =
H ([USp(2n)]− [G2])×Ng2

G2
. (A.40)

For n ≥ 2, the quaternionic dimension of this space is

dimH H(A.39) = 7n+
1

2
(14− 2)− 14 = 7n− 8 , (A.41)

and the Hilbert series of (A.40) is given by

H[H(A.40)](t,x) =

∫
dµG2

(z) PE
[
χG2

[1,0](z)χ
usp(2n)
[1,0,...,0](x)t

− χG2

[0,1](z)t2
]
H[Ng2 ](t, z) ,

(A.42)

where the relevant characters and the Haar measure is given in [92], and the
Hilbert series of the nilpotent cone of G2 can be obtained from [54]. The special
case of n = 2 is particularly simple. The corresponding space is a complete
intersection whose Hilbert series is

H[H(A.39)|n=2](t;x1, x2) = PE
[
χC2

[2,0](x1, x2)t2 + χC2

[1,0](x1, x2)t3 − t8 − t12
]
.

(A.43)
Note that H(A.39) is not the closure of a nilpotent orbit, due to the existence of
a generator at SU(2)R-spin 3/2 and Namikawa’s theorem.
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The case of n = 1 needs to be treated separately, since (A.41) becomes
negative. We claim that

H(A.39)|n=1 = C2/Z2 = Nsu(2) . (A.44)

The reason is as follows. Let us denote by Qia the half-hypermultiplets in the
fundamental representation of the G2 gauge group5, where i, j, k = 1, 2 are the
USp(2) flavor indices and a, b, c, d = 1, . . . , 7 are the G2 gauge indices. Let us
also denote by Xab the generators of the nilpotent cone of G2. Transforming in
the adjoint representation of G2, Xab is an antisymmetric matrix satisfying6

fabcXab = 0 ; (A.45)

this is because ∧2[1, 0] = [0, 1] + [1, 0]. Moreover, being the generators of the
nilpotent cone, Xab satisfy

tr(X2) = δadδbcXabXcd = 0 , tr(X6) = 0 . (A.46)

The moment map equations for G2 read

εijQ
i
aQ

j
b = Xab . (A.47)

The generators of (A.40), for n = 1, are

M ij = δabQ
i
aQ

i
b (A.48)

transforming in the adjoint representation of USp(2). Note that baryons vanish:

fabcQiaQ
j
bQ

k
c = 0 , f̃abcdQiaQ

j
bQ

k
cQ

l
d = 0 , (A.49)

because i, j, k, l = 1, 2. Other gauge invariant combinations also vanish; for
example, XabQ

i
aQ

j
b has one independent component and it vanishes thanks to

(A.46) and (A.47). Furthermore, the square of M vanishes:

εilεjkM
ijMkl = (εilQ

i
aQ

l
b)(εjkQ

j
aQ

k
b )

(A.47)
= tr(X2)

(A.46)
= 0 . (A.50)

Therefore, we reach the conclusion (A.44).

5The three independent invariant tensors for G2 can be taken as (1) the Kronecker delta
δab, (2) the third-rank antisymmetric tensor fabc and (3) the fourth-rank antisymmetric tensor

f̃abcd. See e.g. [95] for more details.
6Using the identity f [abcfcde] = f̃abde (see [95]), it follows immediately from this relation

that f̃abdeXabXde = 0.
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Appendix B

Superconformal index

The supersymmetric index can be thought of as the supersymmetric partition
function on S2 × S1. It is defined as a trace over states on S2 × R [36, 96–100]
(we also use the same notation as [101,102]):

I(x,µ) = Tr

[
(−1)2J3x∆+J3

∏
i

µTii

]
, (B.1)

where ∆ is the energy in units of the S2 radius (for superconformal field the-
ories, ∆ is related to the conformal dimension), J3 is the Cartan generator
of the Lorentz SO(3) isometry of S2, and Ti are charges under non-R global
symmetries. The index only receives contributions from the states that satisfy:

∆−R− J3 = 0 , (B.2)

where R is the R-charge. As a partition function on S2×S1, localization implies
that the index receives contributions only from BPS configurations, and it can
be written in the following compact way:

I(x; {µ,n}) =
∑
m

1

|Wm|

∫
dz

2πiz
Zcl Zvec Zmat , (B.3)

where we denoted by z the fugacities parameterizing the maximal torus of the
gauge group, and by m the corresponding GNO magnetic fluxes on S2. Here
|Wm| is the dimension of the Weyl group of the residual gauge symmetry in
the monopole background labelled by the configuration of magnetic fluxes m.
We also use {µ,n} to denote possible fugacities and fluxes for the background
vector multiplets associated with global symmetries, respectively. As usual in
localization computations, the index receives contributions from the non-exact
terms of the classical action and from the 1-loop corrections, and each term in
the above equation can be described as follows.

Zcl: The classical contribution is associated to Chern-Simons and BF interac-
tions only. Denoting with k the CS level and with ω and n the fugacity
and the background flux for the topological symmetry, the classical con-
tribution takes the form

Zcl =

rkG∏
i=1

ωmizkmi+n
i , (B.4)
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where rkG is the rank of the gauge group G.

Zvec: This is the contribution of the N = 2 vector multiplet in the theory:

Zvec =
∏
α∈g

x−
|α(m)|

2 (1− (−1)α(m)zαx|α(m)|) (B.5)

where α are roots in the gauge algebra g.

Zmat: The term encoding the matter fields in the theory enters as the product of
the contributions of each N = 2 chiral field χ, transforming in some rep-
resentation R and RF of the gauge and the flavor symmetry respectively.
Denoting by rχ the R-charge of χ, its contribution to the index is of the
form

Zχ =
∏
ρ∈R

∏
ρ̃∈RF

(
zρ µρ̃ xrχ−1

)− |ρ(m)+ρ̃(n)|
2 ×

× ((−1)ρ(m)+ρ̃(n) z−ρ µ−ρ̃ x2−rχ+|ρ(m)+ρ̃(n)|;x2)∞
((−1)ρ(m)+ρ̃(n) zρ µρ̃ xrχ+|ρ(m)+ρ̃(n)|;x2)∞

,(B.6)

where ρ and ρ̃ are the weights of R and RF respectively.

Let us discuss some examples that will be used later. The T [U(1)] theory
is an almost empty theory, containing only the mixed CS coupling between two
U(1) background vector multiplets; its index is

IT [U(1)]({µ, n}, {τ, p}) = τnµp . (B.7)

Next, we consider 3d N = 4 U(1) gauge theory with 2 flavors, whose SCFT is
known as T [SU(2)]. The index of this theory is

IT [SU(2)]({µ,n}, {τ ,p})

=
∑
m∈Z

(
τ1
τ2

)m ∮
dz

2πiz
zn1−n2

2∏
a=1

x
|m−pa|

2
((−1)m−paz∓1µ±1

a x3/2+|m−pa|;x2

)∞

((−1)m−paz±1µ∓1
a x1/2+|m−pa|;x2)∞

,

(B.8)

with the conditions µ1µ2 = τ1τ2 = 1 and n1 + n2 = p1 + p2 = 0 being imposed.
Another important example is the index for T [U(2)]:

IT [U(2)]({µ,n}, {τ ,p})

=

[
2∏
i=1

IT [U(1)]({µi, ni}, {τi, pi})
]
× IT [SU(2)]({µ,n}, {τ ,p}) ,

(B.9)

where in this expression there is no need to impose the constraints on {µ,n}, {τ ,p}
as for T [SU(2)]. Hence we may regard {µ,n} as fugacities and fluxes for the
flavor U(2) symmetry, and {τ ,p} as fugacities and fluxes for the enhanced U(2)
topological symmetry. The fact that T [U(2)] is a self-mirror theory can be
translated into the invariance of IT [U(2)]({µ,n}, {τ ,p}) under the simultaneous
exchange µ ↔ τ , n ↔ p. For our purpose, we usually turn off background
magnetic fluxes.
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