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ABSTRACT

Program repair techniques can dramatically reduce the cost of
program debugging by automatically generating program fixes.
Although program repair has been already successful with sev-
eral classes of faults, it also turned out to be quite limited in the
complexity of the fixes that can be generated.

This Ph.D. thesis addresses the problem of cost-effectively gen-
erating fixes of higher complexity by investigating how to exploit
failure information to directly shape the repair process. In particu-
lar, this thesis proposes Failure-Driven Program Repair, which is a
novel approach to program repair that exploits its knowledge about
both the possible failures and the corresponding repair strategies, to
produce highly specialized repair tasks that can effectively generate
non-trivial fixes.
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1 RESEARCH PROBLEM

Debugging and fixing faults are time-consuming tasks that can
account for a relevant portion of the development process, as re-
ported in multiple studies [3, 20]. Indeed, debugging and fixing
software faults require analyzing the failures, understanding their
causes, locating faults, designing appropriate fixes, and validating
the patched code. These activities must be repeated every time a
new problem is investigated, regardless of the nature of the fault.
While some techniques can be exploited to partially automate
some steps of the debugging process [18, 24], a promising direction
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is given by program repair techniques [5, 16], which can poten-
tially deliver a fully automated program repair process, drastically
reducing the effort needed to debug and repair programs. For in-
stance, program repair techniques might be used to automatically
repair or suggest repairs for a subset of the faults, while letting the
developers focus their effort on the faults that cannot be addressed
automatically.

Although program repair techniques have been already success-
ful with several classes of faults, they also turned out to be quite
limited in the complexity of the faults that can be repaired. In many
cases the fixes consist of single or few statements that are modified
relying on the plastic surgery hypothesis [2], which assumes that
the statements necessary to fix a fault can be found in the faulty pro-
gram itself, or using program synthesis techniques [17, 23], which
are often limited to the generation of simple expressions. Tech-
niques working with fix patterns learned from version histories
can sometimes produce larger fixes [8—10], but their effectiveness
is limited by the set of samples used to infer the templates.

In this context, the research challenge addressed by this Ph.D.
thesis is to increase the complexity and size of the fixes that can be
generated automatically, dramatically improving the effectiveness
of automatic program repair techniques. The research hypothesis
investigated in this work is that failures usually disclose semantic
information that has been partially exploited so far and that can
be extremely useful to organize effective ad-hoc program repair pro-
cesses. For instance, a program that fails with an
ArrayIndexOutOfBoundsException or with an out of range value
checked by an assertion would be investigated differently by a
developer.

Indeed, the ArrayIndexOutOfBoundsException suggests that an
index used in a statement that accesses an array location may have
a wrong value, that the wrong variable may have been used as
index of the array, or that the wrong array may have been used.
The value of a variable outside the expected range suggests that
an erroneous value might have been computed for that variable or
the correct computation might have been performed an erroneous
number of times. The intuition is that instead of having a generic
repair process that is supposed to fit all the faults, the repair process
can be defined ad-hoc based on the observed failure and the guesses
about its likely causes.

In order to achieve the ability to formulate a repair process spe-
cific to an observed failure, the repair technique must be aware of
the different failure types that can be observed and known strate-
gies to address them. Because of this knowledge embedded in the
technique, I called this new approach to the automatic program re-
pair problem Failure-Driven Program Repair. The intuition is that a
repair strategy optimized on certain classes of failures can produce
more sophisticated fixes than state of the art approaches.
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The key contributions that will be delivered by this thesis are:
(i) the definition of Failure-Driven Program Repair, that is, a new
framework to elaborate program repair tasks dynamically based on
the observed failures, (ii) the demonstration of the broad applicabil-
ity of the framework, (iii) a study of the impact of the deployment
architecture (e.g., sequential vs parallel) on the effectiveness of the
framework, (iv) empirical evidence demonstrating effectiveness,
efficiency and flexibility of Failure-Driven Program Repair.

In the rest of this paper, I discuss related work in automatic
program repair (Section 2), illustrate the concept of Failure-Driven
Program Repair (Section 3), report the early results achieved so far
(Section 4), and finally discuss future work (Section 5).

2 RELATED WORK

There are two main classes of approaches to automatic program
repair: generate-and-validate and semantics-driven techniques.
Approaches based on Generate-and-Validate typically exploit
Spectrum-Based Fault Localization (SBFL) [1, 22] to identify the set
of suspicious statements in a faulty program and then iteratively
modify these statements with a set of change operators to possibly
obtain a plausible fix. Multiple change operators are normally ex-
ploited in a repair process, with the operator that copies statements
or expressions from a program location to another one being the
most popular operator used to achieve non-trivial changes (this
operator assumes that a plausible fix can be obtained from the
code already available in a program, a.k.a. the plastic surgery hy-
pothesis [2]). These operators can be applied systematically [21],
randomly [19], or in a genetic programming process [6] to generate
many different program variants until either a plausible solution is
found or the time budget expires. A plausible solution is a program
variant that passes all the available test cases, which does not nec-
essarily mean that it implements a correct fix. Indeed, a program
variant that passes the available test cases is not guaranteed to be
correct or acceptable by the developers, this is why the generated
fixes are normally manually inspected before they can be finalized.
Approaches based on semantics-driven techniques also exploit
classic or modified SBFL techniques [4] to identify the suspicious
statements that must be targeted with the repair process. The be-
havior of the program in the suspicious locations is then analyzed
to infer a specification of how the fixed statements should affect the
executions to obtain a plausible fix. This information is exploited to
define a program synthesis task whose solution is a piece of code
that can replace the existing code to obtain the fix [8, 14, 15, 17].
Failure-Driven Program Repair defines ad-hoc repair tasks flex-
ibly exploiting Generate-and-Valide and Semantics-Driven tech-
niques, depending on the observed failure and the guessed fault
that must be tentatively repaired. Moreover, Failure-Driven Pro-
gram Repair does not use standard versions of these techniques, but
customize them based on the specific needs of the faulty program,
possibly obtaining extremely efficient repair processes.
Conceptually, Failure-Driven Program Repair might be consid-
ered close to Semantics-Driven techniques because they both ex-
ploit semantic information. However, the specific repair strategies
are extremely diverse, in fact Failure-Driven Program Repair im-
plements the repair process as a set of dedicated repair tasks that
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address the possible faults with semantics-driven techniques being
just one of the options for the definition of a repair task.

3 FAILURE-DRIVEN PROGRAM REPAIR

The Failure-Driven Program Repair approach consists of the fol-
lowing three steps: (1) test execution, (2) failure-driven hypothesis
formulation, and (3) failure-driven task generation. Figure 1 visually
illustrates these steps.

The Test Execution step executes the available test suite on a
faulty program in order to extract information about the failure.
For instance, if a failing test case terminates with an exception, its
stack trace usually contains relevant details about the failure, such
as the failure type, the statement that threw the exception, and the
set of pending method calls at the time of the failure.

The Failure-Driven Hypothesis Formulation step exploits this in-
formation, in addition to prior knowledge about the types of failures
that can be addressed, to identify a set of repair targets, which can be
effectively addressed with ad-hoc repair strategies. A repair target
includes information about a guessed fault and its possible location,
and can be derived directly from an observed failure. For instance, a
failure originated by an ArrayIndexOutOfBoundsException may pro-
duce the following repair targets: the assignment that defines the
value of the variable used as array index in the statement that
produces the exception, assuming the index value is incorrect; the
name of the array variable used in the statement that produces the
exception, assuming the wrong array has been used; the statements
just before the one that raises the exception, assuming the values of
the variables involved in the exception have not been properly mod-
ified at least in the failing scenario. Note that the location of a repair
target is often defined at a granularity level finer than statements
(e.g., a variable in a statement rather than the full statement).

The repair targets are then managed by the Failure-Driven Task
Generation step, whose aim is to define repair tasks that include
specific repair strategies and optimal configurations to address the
available repair targets. This step also organizes the repair tasks
according to a suitable scheduling policy.

The concrete repair tasks associated with the repair targets are
the results of two levels of specialization. The higher level of spe-
cialization consists of the choice of the repair strategy, while the
fine-grained level of specialization is the configuration of the se-
lected repair strategy. For the moment, I envision the usage of three
possible strategies: systematic, genetic, and synthesis-based.

The systematic strategy consists of systematically applying sim-
ple change operators to the target locations until exhausting the
possible changes that can be produced [21]. The configuration con-
sists in the selection of change operators designed ad-hoc to address
the guessed fault. For instance, if the guess is that a wrong array
variable has been used in a program location, the systematic strat-
egy can be exploited to systematically change the array variable
with every other array variable defined in the scope.

The genetic strategy exploits genetic programming to generate
and explore non-trivial fix spaces [6]. However, compared to the
general problem of using genetic strategies to explore huge spaces
with very few plausible fixes [11], the failure-driven approach de-
fines a very limited and well focused fix space that must be explored.
T achieve this by limiting the application of the approach to a specific
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Figure 1: Failure-Driven Program Repair.

program location, possibly changed according to a template that
captures the guessed high-level structure of the fix. For instance, the
template might consist of the addition of a new if condition with
its body, and the genetic strategy is used to explore possible variants
for the condition and the body. In addition, the genetic strategy is
customized in terms of the mutation operators that must be used
to modify the code and the ingredients that the mutation operators
can exploit in the repair task. For example, the ingredients may
consist of conditions and assignments extracted from the faulty
program and that can be used to define the if condition and its
body, while the mutation operators may alter variables, constants
and expressions to consider additional fixes.

The synthesis strategy can generate code fragments based on a
set of constraints formulated by analyzing the program during the
execution of the test cases [17]. Failure-Driven Task Generation ex-
ploits program synthesis in a specialized form to produce fragments
that may fix the guessed faults. For instance, if the guessed fault is a
faulty initialization of an array variable, program synthesis can be
used to produce a new expression that combines components that
are typically used in array initializations, such as integer variables,
constants, arithmetic operators, and the length attribute of arrays.

Failure-Driven Program Repair generates multiple repair tasks
that may exploit different repair strategies to address the repair
targets generated for a same problem. The choice depends on the
strategy that is assumed to be more effective for each guessed fault.
For instance, changing variable names can be done systematically,
while generating new code fragments may require strategies based
on synthesis or genetic algorithms depending on the complexity of
the fix that should be generated.

These tasks are processed according to a scheduling policy that
also depends on the deployment of the program repair framework.
For example, repair targets might be processed one after the other
with a timeout assigned with each repair task. Alternatively, all the
repair tasks can be worked out in parallel, or in pools.

A key aspect to stress about the program repair framework in-
vestigated in this Ph.D. thesis is that it is entirely failure-driven
and it extensively exploits both the semantic of failures and the
guessed faults to define highly specialized and effective repair tasks.
That is, unlike the other approaches, Failure-Driven Program Re-
pair dynamically adapts itself to the specific type of failure that
is addressed. Moreover, the approach can potentially handle more
and more program faults and contexts by increasing the knowledge

base of the failure types and the set of strategies and configuration
options available.

4 VALIDATION OF THE WORK

I am currently developing Failure-Driven Program Repair as an
extension of ASTOR [13], which is a general-purpose program
repair framework. To evaluate the approach, I focused on the faults
contained in the DEFECTS4] benchmark [7], which has been used
as benchmark by several other program repair techniques.

Among the faults contained in the DEFECTS4] benchmark, there
are faults that are outside the capabilities of existing program repair
techniques. To discuss the capabilities of Failure-Driven Program
Repair, here I discuss how the approach can address a fault that
cannot be repaired with other approaches (Project Math, Bug ID
3). The considered fault causes one of the test cases in the program
test suite to fail throwing an ArrayIndexOutOfBoundsException. The
fix requires adding to the program a fairly complicated new code
block that is
if (len == 1) {

return afe] * b[o];
}

Failure-Driven Program Repair addresses this fault by first ex-
tracting relevant information about the failure. In addition to the
type of exception raised, it extracts the location accessed in the
array, and the statement that raised the exception. Based on this
information, it formulates a number of hypotheses about possible
faults and their locations, considering the elements involved in an
access to an array, generating the following repair targets:

(1) The array variable is wrong and it is necessary to replace it
with another variable of the same type;

(2) The index used to access the array is wrong and it is necessary
to replace it with another constant or integer expression;

(3) The size of the array is wrong and it is necessary to change its
initialization;

(4) The variables involved in the statement are correct but it misses
a piece of logic that handles the case that led to the exception.

For each repair target, Failure-Driven Program Repair generates
arepair task. The first two repair targets are addressed by instantiat-
ing the systematic repair strategy configured to work with variable
replacement operators that only try with the relevant variables in
scope. The third repair target is addressed with the genetic strategy
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specifically instantiated to alter the initialization statement (note
that this program location is different from the location that gen-
erates the exception). Finally, the last repair target is addressed
selecting the program location preceding the point that raises the
exception and adding a new if code block with its body that is
altered with the genetic strategy. In particular, the conditions and
the statements in the body are extracted from the program and
then altered with mutation operators.

Note that the first two repair tasks can quickly fix simple faults
(e.g., a variable that must be replaced), while the third and the
fourth tasks address more complex scenarios. In this example, the
last strategy is the one that fixes the fault. Interestingly it first
creates the code
if (len == 0) {

return prodLowSum;

3

that is then mutated until achieving the following implementation
if (len == 1) {
return prodHighCur;

3

that is a fix equivalent to the one implemented by the developers
since the value of prodHighCur is exactly a[@] * b[@]. Note that
adding an entire new if condition with a return statement in the
body is practically prohibitive for other program repair approaches.

So far, the initial results concern with a number of specific cases,
but I plan to quickly complete the implementation and evaluate the
approach with benchmarks, such as DEFECTS4] [7] and BEARS [12],
and new faults.

5 FUTURE WORK

In the initial phase of my Ph.D. work I focused on the definition
of the Failure-Driven Program Repair process, the definition of
repair strategies based on failures that produce exceptions, and the
implementation of the approach based on systematic and genetic
repair strategies. The initial results demonstrated that the approach
can perspectively repair faults that cannot be addressed with state
of the art approaches, as discussed in Section 4.

In the next phase, I plan to complete the prototype implementa-
tion of the approach and experiment it with both standard bench-
marks available in the field [7, 12], and new sets of faults. The
prototype will be released as an open source artefact. This effort
will result in the first evidence of the effectiveness of Failure-Driven
Program Repair released to the community.

In the last phase of my Ph.D. thesis I plan to incrementally ex-
tend the applicability of the approach by gradually supporting new
types of exceptions and other types of failures not raising excep-
tions, and by including synthesis techniques among the supported
repair strategies. Also in this case, I plan to release a reference
implementation and extensive evidence of its effectiveness. In this
context, the impact of the scheduling policy on the results will also
be considered.
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