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Abstract

A significant number of documents, reports and Web pages –an analysis reports 233M
relational tables within the Common Crawl repository of 1.81 billion documents– makes use
of tables to convey information that cannot be easily processed by humans, and understood
by computers. To address this issue, we propose a new approach that allows computers to
interpret the semantics of a table, and provides humans with a more accessible representation
of the data contained in a table. To achieve the objective, the general problem has been
broken down into three sub-problems: (i) define a method to provide a semantic interpretation
of table data; (ii) define a descriptive model that allows computers to understand, access and
share table data via Web services; and (iii) define processes, techniques and algorithms to
generate natural language representation of the table data.

Regarding sub-problem (i), the semantic representation of a data has been obtained
through the application of table interpretation techniques, which supports users to identify in
a semi-automatic way the meaning of the data in the table and the relationships between them.
Such techniques take a table and a Knowledge Graph (KG) as input, and deliver as output
an RDF representation –a set of tuples <subject, predicate, object>–. The output contains
the input table annotated with the KG concepts and properties. This thesis presents a new
approach, rooted in the existing literature, to laid the foundations for the development of a new
tool -called MantisTable- which automatically performs a complete semantic interpretation of
a table. The conducted experiments have shown good results compared to similar techniques.

Sub-problem (ii) has been addressed by exploiting the results of semantic table interpre-
tation techniques to enhance a popular description format and allow automatic retrieval and
processing of table data. The delivery is a new kind of description format that combines the
OpenAPI specification with JSON-LD.

Sub-problem (iii) has been addressed by defining a natural language generation technique
that uses a neural network to translate Resource Description Format (RDF) data obtained
from table interpretation into sentences. Thanks to these sentences, it is possible to create
a textual representation of the content of the table, and possibly extend it with additional
information from data sources that can be selected automatically using semantic annotations.
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Chapter 1

Introduction

In today’s society, the value of information is considerably higher than any other sort of
contribution. With the term “information” we mean the formula that binds a certain amount
of data to a specific context. The latter is crucial to allow the data itself to describe many
different scenarios, according to the social context, moment and place when they are read.
Digitisation has caused an explosion of data in every sector of our society that generates
a huge amount of information, basically useless on its own because it is disorganised and
complex.

This huge amount of data, commonly defined as Big Data, can be categorised as structured
(tables) or non-structured (text) and can originate not only from human beings, but also from
technology (think about sensors and other tools of data acquisition).

One of the enabling technologies that allowed an ever-increasing production of data
was created in the 90’, when a British physicist that worked at CERN, in Geneva, Tim
Berners-Lee, had an intuition: make knowledge universal by creating a system that could
host a huge amount of information, mutually connected to grant a flexible and open exchange.
This led to the origin of the World Wide Web, a project that brought Internet into our homes.

The Web as it was conceived would contain resources mainly designed and produced for
human consumption, rather than machines. As a matter of facts, reading and understanding
a web page is very simple for a user, but it is not so easy for computers, which are able to
distinguish different markup elements that define a page but cannot comprehend its meaning
or how those elements are interrelated. The attempt to correct this weakness led to the
creation of Semantic Web [8]. The idea behind this is precisely to transform web documents
into data to which we assign a unique and well-defined meaning, adding information on how
they can be linked together.

A huge source of data are the tables embedded into Web documents. When we happen
to consult a table, some cognitive processes that get triggered inside our brains allow us
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to give table values –expressed in form of free text– a meaning (or a semantic), that can
be more or less accurate depending on several factors, like our familiarity with the domain
of the exposed data, the background knowledge, or the presence of contextual information.
The free-text content of tables cannot be understood by machine if it does not refer to a
Knowledge Graph (KG) that assigns well-defined meaning to terms and support the creation
of links between them –the real added value of the Semantic Web. Therefore, the issue is
to find the right association between values in tables and concepts/properties of a KG that
describes real-world entities and their interrelations, organised in a graph [74]. The attempt to
solve this problem led to the birth of Semantic Table Interpretation (STI) techniques, which
are processes though which, given a table and a KG as input, it is possible to interpret the
structure and the semantic of the table by associating its content to semantic concepts taken
from the KG.

The semantic interpretation of tables has different application fields of great importance,
such as: (i) Data search, which is the option of making the relational data contained within
tables accessible through human searches; (ii) Data enrichment, which is the option of
completing and extend the table’s content with other data and therefore with additional
information that come from other sources; and (iii) KG construction/KG population, meaning
the option of building or enrich a KG thanks to the semantic information found by the
annotation process.

Moreover, there is an emerging application of STI, which is the translation of tables
into natural-language sentences to help users understand the table content even if they are
not familiar with the KG terminology, or use devices that cannot fully display tables (e.g.
smartphones with audio interaction capability via chatbots).

In this thesis we address the Semantic Table Interpretation, the API composition using
Semantic Annotations and Natural Language Generation of tabular data.

1.1 The Semantic Interpretation of Tables and its Use

To provide an overview of STI and how it is exploited to describe resources and generate
natural-language sentences, let’s consider an example.

In Figure 1.1 is shown a table that contain the description of some mountains:
A human reader can reach the conclusion that the table’s domain is mountains. Other

users will also understand that for each listed mountain in the first column, the position, the
height and the chain to which it belongs are in the next columns.

On the contrary, a computer will consider the information inside the table as a collection
of strings, not really understanding which real entities they represent, which relations exist
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Figure 1.1 An example of a table.

between them, etc. So it is necessary to identify a method to annotate strings, so that machines
can “understand” and then manage, integrate, and process them. STI techniques can add
semantic annotations that associates additional information to say, for example, that Mont
Blanc is of type Mountain, and that it is in relation with “4808”, which is of type integer,
via the property elevation. (Figure 1.2).

geoRss:point

dbo:eleva�on
dbo:mountainRange

Figure 1.2 An example of an annotated table.

Moreover, semantic annotations allow machines to “understand” that the string Mont
Blanc is not only a mountain, but also that it is located between the regions of Aosta Valley
in Italy, and Savoie and Haute-Savoie in France. This kind of contextualisation ans expansion
–named extension– can be achieved by integrating information from different sources, in this
case Wikipedia1.

1 <rdf:RDF
2 xmlns:rdf="http :// www.w3.org /1999/02/22 -rdf -syntax -ns#"
3 xmlns:rdfs="http :// www.w3.org /2000/01/ rdf -schema #"
4 xmlns:dbo="http :// dbpedia.org/ontology /" >
5
6 <rdf:Description rdf:about ="http :// dbpedia.org/resource/Mont_Blanc">
7 <rdf:type rdf:resource ="http :// dbpedia.org/ontology/Mountain" />
8 <dbo:firstAscendYear rdf:datatype ="http ://www.georss.org/georss/point">
9 XXX

10 </dbo:firstAscendYear >
11 <dbo:elevation rdf:datatype ="http ://www.w3.org /2001/ XMLSchema#integer">
12 4804
13 </dbo:elevation >
14 <dbo:moutainRange rdf:resource ="http :// dbpedia.org /../ Mont_Blanc_massif" />

1https://en.wikipedia.org/wiki/Mont_Blanc

https://en.wikipedia.org/wiki/Mont_Blanc
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15 <rdfs:label rdf:datatype ="http ://www.w3.org /2001/ XMLSchema#string">
16 Mont Blanc
17 </rdfs:label >
18 <dbo:locatedInArea rdf:resource ="http :// dbpedia.org/resource/Aosta_Valley" />
19 <dbo:locatedInArea rdf:resource ="http :// dbpedia.org/resource/Italy" />
20 <dbo:locatedInArea rdf:resource ="http :// dbpedia.org/resource/Haute -Savoie" />
21 <dbo:locatedInArea rdf:resource ="http :// dbpedia.org/resource/France" />
22 </rdf:Description >
23
24 </rdf:RDF >

Listing 1.1 An example of a STI output.

An example of the RDF output of an STI process can be read in Listing 1.1. Such
descriptions are not so easy to read for humans, in particular if they are not familiar with
semantic web technologies. Therefore, it may be convenient to apply NLG techniques to
convert RDF into text –a process named lexicalization– as shown in Listing 1.2.

1 Mont Blanc is a mountain which rises 4,808 m above sea level.
2 It belongs to the Mont Blanc massif mountain range and it is located between
3 Aosta Valley and Haute -Savoie ...

Listing 1.2 The example of Listing 1.1 rendered in text form.

The example about mountains dealt with a table with enough contextual information to
let a human reader understand the content of the table. Let’s now consider another example
with much less contextual information like the one in Figure 1.3.

Figure 1.3 An example of a table with no contextual information.

The lack of a header row, and the use of fancy names in the first column make it very
difficult to define what the table is about.

After applying the STI and NLG techniques discussed in this thesis, the content of the
first row in the table can be translated into the sentences shown in Listing 1.3. Thanks to the
semantic annotations, we can contextualise the data within the table, and so we can reach the
conclusion that even if at first glance it might seem a list of medicines or plants, in reality
this is a list of Pokémons2.

1 Blacephalon is a Fire Ghost -type Pokemon introduced in Generation VII.
2 It is mainly white in color and has a height of 1.8 m.
3 It weighs is 13 kg.

Listing 1.3 The example of Figure 1.3 rendered in text form.

2www.wikidata.org/wiki/Q41791949

https://www.wikidata.org/wiki/Q41791949
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1.2 Research Questions

In this thesis, we mainly focus on the implementation of a semantic table interpretation
approach, with the ultimate goal of making the data within the table more accessible, both to
machines and humans. This leads to the following research questions:

• Question 1: What does it mean to annotate semantically a table? What are the table’s
elements that must be taken into consideration?

• Question 2: How can elements within a table be made unambiguous? How can the
context to support disambiguation be created?

• Question 3: What enables the presence of semantic annotations with respect to the
processing of data by a machine?

• Question 4: What make data more accessible for a user? Is it possible to create a
representation of the tabular data in natural language? What is the most relevant
information inside the table for the user?

• Question 5: What are the techniques for converting a RDF triple into natural language?

1.3 Contribution

The contributions of this thesis can be grouped in three main chapters:

1. A fully automated approach to a complete STI (Part I);

2. A practical approach to services composition by exploiting light semantic annotations
(Part II);

3. A pipeline for RFD lexicalization (Part III).

Most of the the state-of-the-art approaches focus on individual aspects of the STI like, for
example, the analysis of columns that contains entities or literal. Only recently few works
attempting a comprehensive approach have been published. In particular, [123] proposed a
very interesting and promising breakdown of the STI problem. We took inspiration from it
to revise our work and deliver the novel, comprehensive approach that is described in the
next chapter. In summary, our approach creates contexts using elements of the input table,
i.e. headers of columns and cells in the same row in order to disambiguate the text elements
within a cell [21, 22, 20]. More specifically, the approach calculates the similarity between
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the representation (union of contexts) of the element in the table and the representation of the
candidate entities in the reference KG. This task is repeated several times until the correct
annotation is identified (annotation with highest score).

Once a table has been semantically annotated, it can be used to populate the semantic
description of informative services that consume the data of the table. In the second part of
this thesis, the STI is used to (semi) automatically create semantic descriptions that correlate
API’s properties at a semantic level [62, 18, 19]. To enhance interoperability we propose to
enrich OpenAPI descriptions, a standard that is getting popular in the domain of services. By
exploiting semantic descriptions, machines can automatically invoke services and process the
results. Moreover, semantic descriptions are enabling the definition of automatic procedures
for discovery and composition of services.

The RDF output of a STI process can be difficult to exploit by human readers, hence a
more human friendly representation is desirable. The third part of this thesis proposes an
approach aimed at converting groups of triples into natural-language textual descriptions [17].
The conversion takes place by applying a Neural Machine Translation (NMT) supervised
technique: a neural network model receives a set of RDF triples in input, and produces a
textual description containing the information present in the triples. The use of a supervised
approach, however, requires the construction of a training dataset composed of a set of
triple-text pairs to train the model. For this reason, we propose a pipeline for the creation
of a new training dataset. This pipeline uses a combination of state-of-the-art tools to make
alignments between triples and text.

An important contribution of the thesis are the tools that implement the proposed theoret-
ical approaches:

1. STI approach - MantisTable: bitbucket.org/disco _unimib/mantistablex-tool.py/

2. STI validation tool - STILTool: bitbucket.org/disco_unimib/stiltool/

3. Semantic Description for API - AutomAPIc: bitbucket.org/disco_unimib/automapic-tool/

4. Pipeline for RDF-text alignment - SeaLion: bitbucket.org/disco_unimib/sealion/

5. Tool that creates soccer articles automatically for RDF - GazelLex3

3The project was funded by a Digital News Innovation Fund call (newsinitiative.withgoogle.com/dnifund/)
and commissioned by an italian newspaper publisher; currently it is not possible to release the code, but the
description of the project is in [17].

https://bitbucket.org/disco_unimib/mantistablex-tool.py/
https://bitbucket.org/disco_unimib/stiltool/
https://bitbucket.org/disco_unimib/automapic-tool/
https://bitbucket.org/disco_unimib/sealion/
https://newsinitiative.withgoogle.com/dnifund/
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approach to a complete semantic table interpretation. Manuscript submitted for publi-
cation

1.4 Thesis Structure

The rest of this thesis are structured as follows:

• Chapter 2 introduces some core concepts and notation related to Semantic Web stan-
dards, Linked Data publishing, tables, API and Neural Network (NN).

• Part I: Semantic Table Interpretation

– Chapter 3 positions this thesis with respect to related works. It gives an overview
of the state-of-the-art techniques in the field of STI.

– Chapter 4 describes our fully automated approach to a complete STI.

– Chapter 5 describes the MantisTable tool, a tool that integrates the STI set out
in this thesis. In the final part of the chapter an evaluation of the approach is
proposed through the use of different Gold Standards. The last section shows a
formalisation of the approach.

• Part II: API Composition using Semantic Annotations

– Chapter 6 shows an analysis of the state-of-the-art relating to methods for the
description and composition of APIs.

– Chapter 7 the section proposes a new approach for the creation of semantic
descriptions for the APIs and the use of these in the composition of services.

– Chapter 8 describes the AutomAPIc tool. This tool allows the analysis of the
semantic annotations in the descriptions in order to identify the possible compo-
sitions between different services. In the final part of the chapter, the evaluation
part of the approach is presented.

• Part III: Natural Language Generation with Neural Networks

– Chapter 9 shows an analysis of the pipeline of NLG. In the second part a
comparative analysis of the datasets for the generation of natural language from
triple RDF is proposed.
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– Chapter 10 proposes the description of a alignment pipeline (from RDF to text)
for the creation of datasets for the training of neural networks.

– Chapter 11 describes the SeAlion tool and GazelLex tool. The first implements
the alignment pipeline, while the second shows the use of neural networks for the
automatic generation of newspaper articles.

• Part IV: Natural Language Generation from Tabular Data

– Chapter 12 deals with the study of the interpretation of tables by the user, with
the ultimate aim of identifying a series of requirements to be implemented in a
tabular data lexicalization tool.

– Chapter 13 describes the MantisTablex tool which allows to generate text starting
from the data contained in a table, selecting the information in relation to the
user’s information needs.

• Chapter 14 finally summarises the results and compares them to the motivation pre-
sented in this chapter. We collect and comment on research questions that remain open,
and outline the expected future work and impact of the research topic.





Chapter 2

Preliminaries

This chapter covers the fundamental knowledge of topics that are essential to understand
this dissertation. It starts by describing the Semantic Web, resource description formats, and
discusses publicly open KG. Afterwards, a definition for a table is provided along with a
classification according to the different type of structure. The last two Sections are dedicated
to the definition of the concept of Application Programming Interface (API), and the use of
NN as a translation instrument that goes from data to natural language.
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2.1 The Semantic Web and Resource Description Format

Most of the contents that are present online are designed to be read and interpreted by humans,
therefore they are difficult to understand for machines, which fail to process them effectively.
Computers can scan a Web page and identify critical elements such as titles, paragraphs and
links to other pages, but, in general, they are not able to get the semantics, or to understand
the meaning of these elements and the relationships among them. The continuous and rapid
evolution of the Web is, however, increasingly starting to switch from a document-based
Web to the so-called “Semantic Web”, which is not to be considered as a type of separate
Web, but rather as an extension of the current one. In the Semantic Web, the information is
expanded by a unique and well-defined meaning to allow better cooperation between people
and computers [8]. The basic unit of information exchange is no longer the document as a
whole, but the data included in it: while the first can be read, the second can be processed in
different ways to create new information. With this approach, the Web becomes a Web of
Data, a space meant for global data sharing. The Semantic Web can also be considered as a
third evolutionary phase of it (Web 3.0), whose goal is to create an environment that is both
human- and machine-understandable.

The Semantic Web provides a way to publish data in structured formats using standards
such as RDF and Web Ontology Language (OWL). The machine-readable aspect of web
documents can be achieved by adding supplementary tags to the current Hypertext Markup
Language (HTML) based documents. For instance, compare the HTML statement given in
line 1 of Listing 2.1 with the one in line 2. The latter has been augmented with semantic tags
that machines could use to interpret the HTML content: the tag rdf:about qualifies the text
“Semantic Web” by setting a relation with the “about” concept defined in the rdf KG.

1 <item>Semantic Web</item>
2 <item rdf:about="https ://www.w3.org/standards/semanticweb/">SemanticWeb </item>

Listing 2.1 Example of HTML statement with semantic web tags.
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2.1.1 Linked Data

The technology that allows the aggregation is called “Linked Data” [10], and enables everyone
to contribute to the Semantic Web by (i) publishing their data in a shared format, such as the
RDF format, and (ii) making each of these resources unambiguously identified by a specific
Uniform Resource Identifier (URI).

A resource could be anything: a person, a country, an abstract idea or a simple document
on the Web. Linked Open Data (LOD) refers to the open-access RDF datasets that provide
links among them. Specifically, the term LOD refers to a series of best practices for the
publication of structured data on the Web. The principles of LOD are that: (i) URIs have to
be used as names for things [8]; (ii) provide useful information about what a name identifies
when it is looked up, using open standards such as RDF, SPARQL, etc; (iii) use HTTP
URIs so that people can look up those names; and (iv) refer to other things using their
HTTP URI-based names when publishing data on the Web. The LOD Cloud is the largest
collections of interlinked LOD datasets on the web; is an ongoing project to which everybody
can contribute. Thanks to projects such as DBpedia [3] and Wikidata [114], the LOD Cloud
has already reached a significant dimension. The current LOD Cloud [1] is showed in Figure
2.1 where datasets are grouped by domains. Cross-domain datasets such as DBpedia and
Freebase [11] are visualised as main hubs with many links coming from other datasets.
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Figure 2.1 Linked Open Data Cloud showing links between datasets. lod-cloud.net.

http://lod-cloud.net/
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2.1.2 Resource Description Format

RDF is a standard model proposed by W3C1, designed for those situations in which Web
information needs to be processed by applications as well as shown to the user. The informa-
tion thus represented can be exchanged between various applications without losing meaning.
As we said, this data model allows data to become LOD. It is based on the idea that URIs
can be used to name not only entities but also relationships between things.

RDF is composed of three parts2:

• resource: what RDF describes. It can be anything (documents, people, physical objects
and abstract concepts) and resources are always identified by a URI;

• property: a property, attribute or relationship used to describe a resource;

• statement: it describes the resource and it is represented in the form of triples,
⟨Sub ject,Predicate,Ob ject⟩ where:

– subject can be a URI or a BLANK NODE;

– object can be a URI, or BLANK NODE or a LITERAL;

– predicate is the relationship between subject and object, and is a URI.

The use of the word “predicate” to indicate relationships comes from the fact that the
relation, from a logic point of view, can be seen as a two-arguments predicate p(x,y).

An example of a triple with a resource as object is shown in Listing 2.2. A triple with a
literal as object is shown in Listing 2.3.

1 (http:// dbpedia.org/page/Mount_Everest ,
2 http:// dbpedia.org/ontology/mountainRange ,
3 http:// dbpedia.org/page/Himalayas)

Listing 2.2 Example of triple with a resource as object.

1 (http:// dbpedia.org/page/Mount_Everest ,
2 http:// dbpedia.org/ontology/elevation ,
3 "8848")

Listing 2.3 Example of triple with a literal as object.

The same resource can be mentioned several times in different triples, both as a subject
and as an object: this allows us to identify connections between triples that can be displayed
in a graph called RDF Graph (Figure 2.2), where the nodes represent resources and arcs
represent predicates.

1www.w3.org/RDF/
2www.w3.org/TR/rdf11-concepts/

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf11-concepts/
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Figure 2.2 Example of RDF Graph.

The representation of RDF triples can be achieved using different kinds of syntax, among
which the most common ones are: RDF/XML (.rdf), N-Triples (.nt), Turtle (.ttl) e JSON-LD
(.json).

RDF/XML3. This type of syntax represents a RDF graph as a XML document. It is the
first kind of syntax that has been introduced. However, to the present day, there are more
simple and brief representations that are generally preferred. A feature in common with other
syntax is the option of defining prefixes in the initial part of the XML document, to identify
part of URIs so that we can express them in a shortened form. An example of RDF/XML
representation is shown in Figure 2.3.

N-Triples4. The triples expressed as N-Triples are sorted in a document where each
line represents a single triple (<subject> <predicate> <object>); the RDF/XML example in
Figure 2.3 is written in N-Triples notation in Figure 2.4.

Turtle5. This kind of syntax allows us to represent a RDF Graph in a compact and
readable form, thanks to the option of defining prefixes at the start of the document, so as to
make possible to shorten each triple; triples clustering is also planned if they share the same
subject (in this case, the triples are separated by “;” and the subject is written only once), or
if they share the same subject and predicate (subject and predicate are listed only once and
triples are separated by “,”)

The Figure 2.5 shows the RDF/XML example in Figure 2.3 written in Turtle notation.

3www.w3.org/TR/rdf-syntax-grammar/
4www.w3.org/TR/n-triples
5www.w3.org/TR/turtle/

https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/turtle/
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JSON-LD6. This type of serialisation is mainly intended for Web-based environments;
it is based on JSON format and therefore it proves easy to read and write. The RDF/XML
example in Figure 2.3 is listed in JSON-LD notation in Figure 2.6.

Figure 2.3 Example of RDF/XML syntax.

Figure 2.4 Example of N-Triples syntax.

6www.w3.org/TR/json-ld/

https://www.w3.org/TR/json-ld/
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Figure 2.5 Example of Turtle syntax.

Figure 2.6 Example of JSON-LD syntax.
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2.1.3 Resource Description Format Schema

RDF alone is not expressive enough to encapsulate all the knowledge that an approach with
more semantics can convey. However, it has been extended with RDF schema, or Resource
Description Format Schema (RDFS), that is a simple ontology language that allows us to
define properties and classes (Listing 2.4).

1 example:Animal rdf:type rdfs:Class .

Listing 2.4 Example of triple with RDF schema.

rdf:type is used to indicate the type of a resource, and rdfs:Class can be used to
define a set of resources that represents entities in the real world. In the triple above we
stated an example of this: Animal is an RDFS Class. We can now populate the Class with
new elements (Listing 2.5).

1 resource:Otter rdf:type example:Animal .
2 resource:Hamster rdf:type example:Animal .

Listing 2.5 Example of triple with classes.

It is possible to define a hierarchical relation between Classes using the term rdfs:subclassOf
(Listing 2.6).

1 example:Organisms rdf:type rdfs:Class .
2 example:Animal rdfs:subclassOf example:Organisms .

Listing 2.6 Example of triple with subclasses.

From these statements, thanks to the relation introduced by rdfs:subclassOf, it is pos-
sible to make an inference. For example, resource:Hamster and resource:Otter belong
to the class example:Animal. Given that example:Animal is a subclass of Organisms, we
can infer that the two resources are also part of example:Organisms. In this way, we can
begin to form an ontology.
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2.1.4 Web Ontology Language

RDFS is considered a “lightweight” ontology language, however, other and more powerful
languages do exist. Probably, the most well known is OWL, which is much more expressive
than RDFS, and allows detailed and efficient reasoning. OWL gives us the possibility to
compose new classes from others, and also to give them an internal structure. With OWL, it is
possible to build a class as the union or the intersection of other classes, or as a complement of
one of them, or to enumerate its members. OWL has some predefined terms, like owl:Thing
(that acts as super-class of every OWL class) or owl:ObjectProperty. Going back to
the previous example, we can describe the class Organisms (and its subclasses) in a more
effective way (Listing 2.7).

1 SubClassOf( :Organisms owl:Thing )
2 SubClassOf( :Animal :Organisms)
3 SubClassOf( :Plant :Organisms)
4 SubClassOf( :Bacteria :Organisms)
5 ClassAssertion( :Animal {Otter , Hamster , Fish} )
6 ClassAssertion( :Plant {Pine , Oak} )
7 ClassAssertion( :Bacteria {Cyanophyta , Nitrospirae} )

Listing 2.7 Example of OWL.

In the example, we defined a child class of the built-in class owl:Thing, and three
subclasses (SubClassOf) with two or three members each (using ClassAssertion). Propo-
sitional logic operators can be used to build new classes using the existing ones. For example,
we can make use of these operators to create an extemporaneous class by selecting only two
subclasses of Organisms (imagine that we want to retrieve only eukaryotes Organisms: with
these operators we would be able to search for Plant or Animal, excluding Bacteria). Even
though an individual can be an instance of several classes, in some cases we need to state that
belonging in one class excludes membership in another. OWL enables us to do that, thanks
to what is called class disjointedness (Listing 2.8).

1 DisjointClasses( :Plant :Animal )

Listing 2.8 Example of DisjointClasses OWL.

These examples, however, are just the beginning. OWL allows us to compose new
properties that describe relations between individuals, to make statements about classes,
property, or individuals.
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2.1.5 Knowledge Graph

The term Knowledge Graph was coined by Google in 2012, referring to their use of semantic
knowledge in Web Search , and is also used to refer to Semantic Web knowledge bases
such as DBpedia. From a broader perspective, any graph-based representation of some
knowledge could be considered a knowledge graph (this would include any kind of RDF
dataset, as well as description logic ontologies) [74]. An example is shown in Figure 2.7.
It’s a form of knowledge representation based on a graph in which nodes represent entities
and the arcs that connect them represent the relations between them. For example, in the
sentence “Shakespeare wrote the Hamlet”, “Shakespeare” and “Hamlet” represent two nodes,
“wrote”, on the other hand, represents the arc that links them. Entities can also have some
types characterised by a “is a” relation (e.g. Shakespeare was a writer). Generally, the set
of possible types and relation is organised in a schema or in an ontology that defines their
interrelations.

A KG follows this properties [74]:

• the real-world entities and their interrelations are represented in a graph layout;

• the possible entities’ classes and relations are defined in a schema;

• it is possible to define arbitrary relations between entities;

• a great portion of domains that exist in the real world are processed.

This excludes, for example, all the knowledge bases that refer to tiny domains, or
ontologies that don’t include real instances but only abstract concepts.

So, in a KG, we can find:

• classes or concepts: they represent the abstract references of what we want to describe,
e.g. “writer”;

• instances or entities: they represent the factual materialisation of classes; e.g. “Shake-
speare” is an instance of the class “writer”;

• datatypes: the types, such as String o Date, of literal data, namely the data that cannot
be associated to any concept;

• properties: they represent the existing connections between concepts, datatypes, in-
stances and properties themselves.
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Figure 2.7 Example of Knowledge Graph.

Given the popularity of publishing RDF data as LOD, many domain specific and cross-
domain knowledge bases have emerged. For instance, DBpedia [3], YAGO [99], Wikidata
[114] and Freebase [11] are open-access knowledge bases that have factual information
about entities and their relationships. The BabelNet [72] is another example of open-access
knowledge base that contains multilingual linguistic data by combining data from other
knowledge bases.
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2.2 Tables

Tables refer to a matrix-type data structure that organises information in rows and columns; a
cell is the intersection of a column with a row. Data is contained within a cell (Figure 2.8)
[121].

Figure 2.8 Structure of a table.

Types of Tables

A table can also have one or more headers containing an identifier of the column (or row)
under review; it is situated in the first row when we talk about horizontal tables (Figure 2.9),
in the first column when we talk about vertical tables (Figure 2.10) or in both places when
we deal with bi-dimensional tables (Figure 2.11).

Figure 2.9 Example of a horizontal table.

Figure 2.10 Example of a vertical table.

Figure 2.11 Example of a two-dimensional table.
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A further classification is provided based on the structure of the table; in particular we
have:

• Complex tables, when they contain multi-line cells, nested headers, multi-dimensional
data or other irregular shapes (Figure 2.12); these features can coexist;

Figure 2.12 Example of a complex table.

• Simple tables, when they have a horizontal or vertical header, a regular form and they
do not include any of the features of the complex tables (Figure 2.9 and Figure 2.10).
This type of table is the most common one on the web.

A table is called relational when the columns have relations between them; an example is
depicted in Figure 2.13.

Figure 2.13 Example of relational table: the table’ subject is defined by the column “Title” and it identifies
some music albums. The other rows are related to it because they represent, respectively, the artist, the record
label, the price and the release year.

Finally, we define a table as well formed if:

• the values within a column belong to the same domain;

• the number of columns is the same for each row;

• the number of rows is the same for each column.
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2.3 Application Programming Interface

With the term API we indicate an interface that facilitates the communication between the
hardware and the programmer, in order to avoid duplicating each time the code necessary
to implement recurring operations and to hide the real complexities of the machine. The
concept of API has been evolving and, in a World Wide Web perspective, there is the need to
create new interfaces that abstract the implementation from the protocol. Consequently, web
applications developed web API, that can be used by the application itself or by some third
party software. Web APIs allows websites, mobile apps and any other device to interact and
share data online. The development of Web APIs breaks down into two paths: Simple Object
Access Protocol (SOAP), mainly used in enterprise environments, and REpresentational
State Transfer (REST), the last technology created and already the most used in mobile
environments and Internet of Things (IoT) applications.

SOAP is a lightweight protocol meant for information exchange in a decentralised and
distributed environment. It is based on eXtensible Markup Language (XML), which consists
of three parts: an envelope that defines the structure used to describe what’s inside a message
and how to process it, a group of encoding rules and lastly a schema to define a Remote
Procedure Calls (RCP) and how to respond. SOAP can send messages using various transport
protocols, but for the most part it uses HTTP [76].

REST can’t be described as a protocol like we did for SOAP, but rather as an architectural
style. REST is a combination of principles and design methods that outline how the resources,
basic functioning elements, are defined and addressed. A resource is any entity that can be
addressable through the Web. Speaking of Web, the best way to locate a resource is provided
by the concept of URI, since it can be easily tracked online. The principles that a REST
architecture must respect are:

• client-server: to follow this principle, the activities that we have to perform on client
and on server must be kept separated. In particular, the client can’t deal with data
processing and persistence, while the server can’t manage the user’s status and the
graphic interface. By maintaining this separation, it is possible to develop these two
components in a distinctive way, keeping the interfaces unchanged and making them
scalable;

• stateless: the server must not keep track of the communication it shares with the client.
Each request made by the client towards the server must be considered independent
from the others, so each request should contain the necessary information to be
processed by the server;
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• cacheable: the information shared by client and server can be saved by caching. This
allows us to evaluate when information is not valid or correct anymore, besides limiting
the number of interactions between client and server, thus making possible to improve
the system’s scalability and performance;

• uniform interface: a coherent communication interface between components allows us
to simplify the whole system, since we can develop client and server independently;
furthermore, it improves the interactions’ visibility. The only downside of this principle
is the lowered system’s efficiency, since the information gets transferred in standardised
form rather that in a specific one suited for the application. The REST interfaces are
designed to be efficient when it comes to large-scale transferring of hypermedia data;

• code-on-demand: REST grants the client features that can be extended by downloading
and running code in the form of applet or script.

Another main principle of REST’s architecture based applications is HATEOAS, abbreviation
of Hypermedia as the Engine of Application State. This concept refers to a client that interacts
with a web application exclusively through hypermedia that are dynamically provided by the
server of the application itself. This way, a REST client doesn’t need additional knowledge
besides normal comprehension of hypermedia to interact with a specific app or server.

REST fully exploits the semantics and the HTTP protocol’s methods, so its goal is to
create servers capable of accepting HTTP methods defined by the protocol as input, to
redefine them and use them to its advantage. The seven methods that get redefined in REST
apps are:

• POST: it sends data to the server so that they can be processed by the given URI;

• GET: it requests the resource associated with the given URI;

• PUT: it updates or modifies the state of the resource associated with the given URI;

• DELETE: it deletes the resource associated with the given URI;

• PATCH: it allows the partial modification of a resource;

• HEAD: it is used to retrieve only the header information of the server’s response. It
can also be used to find out if a specific resource does exists or to learn information
about the resource itself;

• OPTIONS: it allows us to check which are the methods supported by each resource.
This method isn’t usually specified during the definition phase.
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2.4 Neural Networks

NN are mathematical models composed of artificial neurons. They are inspired by the
biological functioning of the human brain and require advanced hardware chip to work.
These models, can learn how to process the input: at the beginning, the network has no
knowledge, but it can acquire concepts of a high level of abstraction, thanks to the so-called
backpropagation. The most used Neural Networks (NNs) are the ones called Recurrent
Neural Networks (RNNs). They have the advantage to be able to process long sequences of
input.

Long Short-Term Memory Networks

A neural network is composed of a network of small computing units. Each unit takes a
vector of input values and, after some computations, generates a single output value. Modern
networks have different layers of these units, and are often deep (this is why their use is called
“deep learning”). Between input layer and output layer there is the hidden layer, formed by
the so-called hidden units. We can see a simple example of NNs architecture in Figure 2.14.
The functioning core of neural networks is that values in input vector of each neural unit are
weighted by different factors. Moreover, a bias term is added to the vector.

Figure 2.14 A simple example of NNs architecture.

The most straightforward kind of neural network is called “feed-forward network”. Often
applied to classification, in this kind of network the computation proceeds from one layer to
the next, and no outputs are passed back to lower layers. In this network, the correct output
for the computation is known. So, the training procedure aims to learn the weights and the
bias parameters for each layer, to obtain from the network a result as close as possible to
the correct one [46]. With language models, feed-forward networks can be applied to make
predictions about the next word in a sequence, having a limited context of preceding words.
What’s different about RNNs is that they are explicitly designed to process sequences [46].
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This NN makes possible to handle inputs of variable lengths without the use of windows with
arbitrary size. A Recurrent Neural Network (RNN) contains a cycle within its connections:
the value of a unit also depends on its own output (from a previous time-step) as an input.
These architectures proved to be very useful when we deal with language issues. The most
simple ones are Simple Recurrent Networks (SRNs). The main difference from a feed-
forward network is that the input sent to the hidden layer receives the contribution from a
previous one. This “recurrence” is a form of memory, or context, that influences the decisions
that have to be made later. There is no fixed-length limit to this context, but the main problem
of this simple RNNs is that it is difficult to train a system that makes use of information
when it is particularly distant from the current point of processing. Hidden states tend to
consider local information, but in many language application, long-distance information can
be critical. So, more complex network architectures as Long Short-Term Memory (LSTM)
networks have been designed. These networks can handle the task of maintaining contextual
information over time. In these approaches, context is treated as a kind of memory unit that
has to be managed. Information that is no longer needed must be forgotten, and information
that will be needed for later tasks must be remembered.

LSTM satisfies these needs by using specialised neural units that employ “gates” to
control the flow of information entering and exiting the units of network layers.

LSTM networks are used for tasks such as lexicalisation [44], because of the many
advantages they provide. As we said, one of them is that they do not have limitations in
input and output length. Furthermore, input and output are not independent, and that is
a vital advantage in language generation. To predict a word in a sentence, it is useful to
know and consider the previous one, and the hidden states of the network keep in memory
what happened in previous time-steps. This way, LSTM can combine the previous state, the
memory collected and the input, allowing dependencies to be maintained in the long run.

As described, RNN memorises the sequential context using cycles. The sequential nature
of these models, however, makes a computation expensive [67, 120]. This point makes it
difficult to scale to large corpora. The Transformer architecture [108] replaces RNN cells
with self-attention and point-wise fully connected layers, which are highly parallelisable
and thus cheaper to compute. Together with positional encoding, Transformers can capture
long-range dependencies with vague relative token positions. This results in a coarse-grained
sequence representation at the sentence level. Recent works such as GPT (or GPT2) [81, 82]
and BERT [27] show that the representations learned on large-scale language modelling
datasets are useful for fine-tuning both sentence-level tasks, such as GLUE benchmark [116]
and token-level tasks. There are two existing strategies for applying pre-trained language
representations to downstream tasks: feature-based and fine-tuning. The feature-based
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approach, such as ELMo [77], uses task-specific architectures that include the pre-trained
representations as additional features. The fine-tuning approach, such as the Generative
Pre-trained Transformer (OpenAI GPT) [81], introduces minimal task-specific parameters
and is trained on the downstream tasks by simply fine-tuning all pre-trained parameters.
The two approaches share the same objective function during pre-training, where they use
unidirectional language models to learn general language representations. Therefore, these
Language Models (LMs) can be used, after appropriate modifications, also in NMT activities.





Part I

Semantic Table Interpretation





Chapter 3

State-of-the-art

Tables represent a universal language used to express relational data and they’re actually
very common on the Web. To size the phenomenon, an analysis reports 25M relational
tables within 500M Web pages [59], and another estimates 150M HTML tables represented
in the English language [12]. A more recent work highlighted the popularity of tables by
collecting 233M of them through the analysis of the Common Crawl1 repository [55]. This
large increase can be linked to the uptake of the Open Data movement, whose purpose is
to make a large number of tabular data sources freely available, addressing a wide range of
domains, such as finance, mobility, tourism, sports, or cultural heritage [73]. Tables express
references to entities, attributes and relations, but since such data are shown in form of free
text and without using a controlled vocabulary, Web searches struggle to benefit from this
huge source of information. Tables are essential to perform queries, but the implicit or visual
structures employed in tables are not easily machine-readable. In order to allow computers
to interpret, combine and reuse such data for several artificial-intelligence tasks (such as
classification, clustering, filtering, and retrieval [71]), the semantic of data should become
explicit. The retrieval of semantic information from tables, therefore, plays a crucial role in
the realisation of Semantic Web; the research aimed at solving this particular problem takes
the name of STI. The input of STI is (1) a well-formed and normalised relational table (i.e. a
table with headers and simple values, thus excluding nested and figure-like tables), as the
one in Figure 3.1, and (2) a KG which describes real world entities in the domain of interest
(i.e. a set of concepts, datatypes, predicates, instances, and the relations among them), as the
example in Figure 3.2. The output returned is a semantically annotated table, as shown in
Figure 3.3.

1commoncrawl.org

http://commoncrawl.org/
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Figure 3.1 Example of a well-formed relational table, with labels that are used in this Section.

xsd:string

Figure 3.2 A sample of KG.

Figure 3.3 Example of a table’s semantic annotation.

So, the purpose of STI is, as previously mentioned, to read tables’ structures and seman-
tics, associating their content to semantic concepts existing in a KG. To obtain this result,
we need to establish some fundamental points on which to base this kind of activity, such as
[123]:
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• Named Entity Disambiguation: the content of cells that belong to the entity columns
(NE-columns) gets associated to a regular entity of the knowledge base;

• Column Classification: the NE-columns are annotated thanks to the use of a semantic
concept, while the columns that contain literal data like, for example, numbers, strings
or dates (L-columns), are annotated by using properties that belong to the concept of
the subject column;

• Relation Extraction: some binary relations between columns are detected.

Given that, generally, a table addresses a specific topic found in the subject column, we
can also add to the previously mentioned activities the detection of the S-column among the
various NE-columns; this implies that binary relations will always occur between the subject
column and each one of the others.

To illustrate this process, let’s take into consideration the table shown in Figure 3.3, that
is about mountains. Through the STI it is possible to pinpoint the columns that contain
entities, aka “Name” and “Range”, and the ones that contain literal data, aka “Coordinates”
and “Height”.

Among the NE-columns, “Name” is the subject column, i.e. the column whose con-
tent, in this case a list of mountain’s names, represents the main topic of the table it-
self. The content of type NE columns can be associated with the entities present in a
KG: for example, “Mont Blanc” refers to http://dbpedia.org/page/MontBlanc while “Mont
Blanc Massif” refers to http://dbpedia.org/page/Mont_Blanc_massif. Each one of the NE-
column gets associated with a knowledge base’s class (e.g. “Name” is represented by
http://dbpedia.org/ontology/Mountain) while each L-column is identified by a datatype (e.g.
“Height” is a xsd:integer). Also the relations that occur between the subject column and each
of the other ones are identified within the knowledge base: for example the relation that
exists between the column “Name” and the column “Range”, meaning between mountains
and mountain ranges is defined by the property http://dbpedia.org/ontology/mountainRange
and the one between “Name” and “Height” by http://dbpedia.org/ontology/elevation.

Consequently, the first row of the table can be represented using RDF triples in the
following way:
⟨dbr : Mont_Blanc,georss : point,45.8336.865(xsd : string)⟩
⟨dbr : Mont_Blanc,dbo : elevation,4808(xsd : double)⟩
⟨dbr : Mont_Blanc,dbo : mountainRange,dbr : Mont_Blanc_massi f ⟩.

The annotation steps of the STI involve several key challenges [31]: (i) disambiguation,
the entities’ concepts described in a table are not known in advance, and the entities described
may correspond to more than one concept in the KG. For example, the entity Mont_Blanc

http://dbpedia.org/page/MontBlanc
http://dbpedia.org/page/Mont_Blanc_massif
http://dbpedia.org/ontology/Mountain
http://dbpedia.org/ontology/mountainRange
http://dbpedia.org/ontology/elevation
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in Figure 3.3 can refer to different entities associated with different concepts. As we might
know, Mont_Blanc is the name of a mountain, but, also, the name of a tunnel, a poem, and a
dessert2; (ii) homonym, which is related to the presence of different entities with the same
name and the same concept. In addition to the famous mountain located on the French-Italian
border3, there is also a mountain with the same name on the Moon4; (iii) matching: the name
of the entities in the table may be syntactically different from the name in a KG. Johannisberg
mountain refers to the Johannisberg (High Tauern) entity in DBpedia5; (iv) missing context:
it is often easier to extract the context from textual documents than from tables, due to the
amount of content that has to be processed. Disambiguating possible meanings of literals is
therefore more difficult.

In the last years, there has been a ton of works on STI which can be mainly classified
as supervised (they exploit already annotated tables for training) [78, 101, 83, 50] or unsu-
pervised (they do not require training data) [123, 88, 26, 80]; and as automatic [78, 83, 69]
and semi-automatic [50]. Moreover, some approaches [59, 123, 88, 26, 80, 117, 109] largely
focus on content analysis of Web tables, such as Web page title, table caption, or surrounding
text, while others [78, 101, 83, 69, 100] address independent tables which can only rely on
their own data.

We identify some limits of the state-of-the-art approaches as follows: i) they adopt lexical
comparisons for matching, which ignore the contextual semantics; ii) they rely on metadata
like column names and sometimes even external information like table description, both of
which are often unavailable in real world applications; iii) they use personalised KG; iv) they
perform only a few steps of STI.

To overcome such limitations, we propose a comprehensive approach and a tool, named
MantisTable6, which provides an unsupervised method to annotate independent tables,
possibly without a header row or other external information. Our experiments with T2Dv2
Gold Standard7 from the general Web and Limaye Gold Standard [59] from Wikipedia pages
have shown that our method is effective and can outperform the state-of-the-art approaches.

2en.wikipedia.org/wiki/Mont_Blanc_(disambiguation)
3dbpedia.org/page/Mont_Blanc
4dbpedia.org/page/Mont_Blanc_(Moon)
5dbpedia.org/page/Johannisberg_(High_Tauern)
6mantistable.disco.unimib.it
7webdatacommons.org/webtables/goldstandardV2.html

https://en.wikipedia.org/wiki/Mont_Blanc_(disambiguation)
http://dbpedia.org/page/Mont_Blanc
http://dbpedia.org/page/Mont_Blanc_(Moon)
http://dbpedia.org/page/Johannisberg_(High_Tauern)
http://mantistable.disco.unimib.it/
http://webdatacommons.org/webtables/goldstandardV2.html
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3.1 Application Scenarios in Semantic Table Interpretation

The main application of STI can be discerned into the following activities:

• data search: the lack of semantic information in Web tables makes difficult to exploit
the high quality data offered by such sources during a Web research. Thanks to the use
of specific techniques for tables’ semantic interpretation, it is possible to simplify the
annotation process to make these data sources more accessible during users’ searches;

• data enrichment: thanks to the identification of the semantic component of the elements
in a table, it is possible to complete, extend and enrich the content in question with
additional information or data from other sources;

• KG construction/KG population: the data contained in Web tables, when rightly
associated to semantics, can be used to build knowledge bases or to expand already
existing ones.
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3.2 Approaches Supporting Semantic Table Interpretation

This section gives an overview of state-of-the art approaches on the STI. More than 50 papers
collected from different sources have been studied in order to get an overview of the existing
approaches for the semantic table interpretation.

For the analysis of the state-of-the-art, 18 approaches have been selected as representative
because they are complete with respect to the workflow of STI and are thus considered the
front line for comparison. To begin with, we give a short overview of the approaches and
analyse them, considering 4 criteria as shown in Table 3.1. The first criterion, according
to which we organised this section, is the learning technique: unsupervised and supervised.
While the former category does not rely on labelled input data, the latter is only applicable
for labelled data. In our analysis, the second criterion refers to the completeness with respect
to the STI workflow. The third and the fourth criterion refers to the publication year and to
the KG that these approaches use to annotate tables.

Table 3.1 Approaches supporting STI.

Year STI workflow
Learning
Technique

KG
Data
Prep.

Column
Type

Analysis

Concept and
Datatype

Annotation

Predicate
Ann.

Entity
Link.

NE L S NE L S
Kruit et al [52] 2019 - ✓ ✓ ✓ - - - ✓ ✓ Unsup DBpedia
Chen et al [14] 2019 - ✓ - - ✓ - - - ✓ Sup DBpedia
Takeoka et al [102] 2019 - ✓ ✓ - ✓ ✓ - - - Sup Wordnet
Zhang et al [122] 2018 - - - ✓ - - ✓ - - Sup Wikipedia
Zhang et al [123] 2017 - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Unsup DBpedia
Efthymiou et al [31] 2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Unsup DBpedia
Pham et al. [78] 2016 - ✓ ✓ - ✓ ✓ - ✓ - Sup Domain independent
Taheryian et al. [101] 2016 - ✓ ✓ - ✓ ✓ - ✓ - Sup Domain independent
Ritze et al. [88] 2015 ✓ ✓ ✓ - ✓ ✓ - ✓ ✓ Unsup DBpedia
Ramnandan et al. [83] 2015 - - ✓ - - ✓ - - - Sup Domain independent
Deng et al. [26] 2013 - ✓ ✓ - ✓ ✓ - - - Unsup Freebase, Yago
Quercini et al. [80] 2013 ✓ ✓ ✓ - ✓ ✓ - - ✓ Unsup DBpedia
Mulwad et al. [69] 2013 ✓ ✓ ✓ - ✓ ✓ - ✓ ✓ Unsup DBpedia, Yago, Wikitology
Wang et al. [117] 2012 ✓ ✓ - - ✓ - - ✓ ✓ Unsup Enriched Probase
Knoblock et al. [50] 2012 - ✓ ✓ - ✓ ✓ - ✓ - Sup Domain independent
Venetis et all. [109] 2011 - ✓ ✓ ✓ ✓ ✓ ✓ ✓ - Unsup isA, relation database
Syed et al. [100] 2010 - ✓ ✓ - ✓ ✓ - ✓ ✓ Unsup Wikitology
Limaye et al. [59] 2010 - ✓ - - ✓ - - ✓ ✓ Unsup Yago
MantisTable 2019 ✓* ✓* ✓* ✓** ✓** ✓* ✓** ✓** ✓ Unsup DBpedia

* refers to the improvement of the technique for the STI step
** refers to the propose of novel techniques for the STI step

Approaches such as [78, 101, 83, 50, 14, 122, 102] use supervised machine learning
techniques to label new sources of structured data with the support of training data which
have been previously labelled manually. Such approaches use machine learning techniques in
which a function of inference is created [101, 50, 14, 122, 102] or a classifier is trained with
features corresponding to similarity metrics [78, 83]. Supervised approaches are sometimes
more effective than the others, since a set of training data is enough to label new tables
covering specific domains. However, in this regard, they can be limited for three reasons:
(i) they require a set of training data that should be provided, (ii) such training set may not
be available, thus forcing the user to create it by means of a manual labelling, and (iii) the
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results are comparable to the ones achieved by unsupervised approaches with respect to the
quality of the annotations. In order to avoid these limitations, MantisTable uses unsupervised
learning techniques, so the approach can be applied to general purpose domains.

The remaining approaches apply unsupervised techniques. Approaches such as [69, 117,
109, 100] use custom or personalised KGs, while the rest use Open Source KGs available
on the Web. In [117] the authors focus on Web tables and synthetically define the process
of semantic interpretation of a table as finding its correct positioning within a taxonomy
(hierarchical organisation of knowledge). Therefore, the approach tries to associate a specific
table with one or more concepts contained in a KG. In particular, after establishing such
associations, each row of the table describes the attributes of an entity, which has as ’type’
a concept in a custom version of Probase (a general purpose taxonomy). For each concept,
Probase returns a list of entities associated with a set of scores (plausibility and ambiguity).
In order to select eligible entities of a class, authors score and merge candidate attributes and
choose the top-ranked.

[100] makes custom queries to Wikitology (a hybrid knowledge base of structured and
unstructured information extracted from Wikipedia, augmented by RDF data from DBpedia
and other Linked Data resources) using the information inside the rows of a table. This
approach infers automatically a (partial) semantic model for the tables using the information
in the headings and the information stored in the table cells. Moreover it offers the possibility
to export the data in the table as linked data.

[109] uses a majority-rule mechanism, where a potential concept that should be annotated
to a specific column is selected because it is the one that occurs more often within the cells
of the same column. A characteristic of this approach is that the search for the relevant
semantic labels is performed directly on the Web rather than from a predefined KG. The
subject column must not necessarily be a key to the table and may contain duplicate values.
Moreover, it is possible that the subject column is represented by several columns of the
same table. This principle can be ineffective in many aspects, for example the presence of
general concepts (e.g. music) can be often combined with different textual content. Besides
that, the consideration of a KG that does not have a hierarchical classification.

For the STI process, [69] uses queries and ranking metrics to generate an initial set of
concepts, predicates and entities to be assigned as the headers of the columns, the content of
the cells and the relationships between the columns. This approach uses the data in DBpedia,
Yago and Wikitology. As for the columns, two sets of candidate concepts are generated (one
for DBpedia concepts and the other for Yago concepts), which are formed by the union of
the concepts retrieved from the queries performed with the values of the cells belonging
to each column. The set of relationships to be considered when annotating the semantic
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connections between the columns is obtained by the union of the set of candidate relations
for each pair of cells within each row of the table. Unlike the above approaches, MantisTable
uses Open Source KG, freely available on the Web. Moreover, querying KG is onerous and
our approach reduces the number of queries, as it selects only a limited number of rows in
a table. These rows are considered more significant as a result of ranking metrics. Finally,
MantisTable generates context utilising the elements inside the table to discriminate the
entities and to create high quality annotations.

Approaches such as [52, 123, 31, 88, 26, 80, 69, 117, 100] and [59] are unsupervised
approaches that use Open Source KGs for the annotation.

[59] uses a comprehensive strategy for semantic annotation which examines the entire
content of the table (for example, the classification of a column depends on all the cells
in that column) through the application of a probabilistic graphic model. Such model has
been identified by [69] as too expensive in terms of computational effort, thus the authors
suggest an alternative Semantic Message Passing Algorithm that applies the same type of
joint inference to a similar light-weight graphic model. Also, their approach takes into
consideration semantic relations among columns as [59] does, but in contrast it takes into
account both the headers of the columns and the entities within the rows. [123] uses a
similar Semantic Message Passing Algorithm as [69]. Moreover, [123] includes steps such
as the identification of the S-column, the L-column annotation, the analysis of a sample
data extracted from the entire data source to reduce computational effort, etc. [31] proposes
different unsupervised methods for matching entities of a table to entities of a KG on the
Web. The similarity between entities is computed as the cosine distance between their vector
representations. Such approaches work well with table contents alone, without relying on
any metadata, but cells often lack entity correspondences, thus resulting in a decrease of
their performance. The annotation process proposed by [88] uses similarity metrics for the
creation of candidate concepts for the semantic annotation. Such candidate concepts are
then sorted accordingly to the principle of weighted majority voting, where the weights are
based on the matching scores, calculated between the values in the table and the entities in
the KG associated with them. [26] offers a scalable and efficient solution for determining
concepts associated to each NE-column within a table, using a MapReduce algorithm with
two supporting techniques: knowledge concept aggregation and knowledge entity partition.
These techniques allow the identification of top k candidate concepts for the NE-column of
the table. In contrast to other approaches, fuzzy matching algorithms calculated between
the values in the table and the entities of the KG, do not compromise the efficiency of the
algorithm itself. The fuzzy matching and the ordering of the obtained results are based on
generic similarity functions. Thus, such algorithm obtains better results, in particular with
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respect to [109]. [80] proposes a mechanism for the annotation of cell value with entities
that are not present in a KG, through Web searching.

Finally, the goal of [52] is to complete the KG with the information in the Web tables. The
approach uses a Probabilistic Graphical Model which considers first the label similarity and
then updates the likelihood score to maximise the coherence of entity assignments across the
rows using Loopy Belief Propagation (LBP). Unlike other approaches, for entity matching
the authors compute coherence as a combination of properties that are shared by the entities
in the table and do not use class membership. If the label matching is not sufficient, the
approach make use of embeddings of KG entities. This feature helps the approach to identify
novel facts for KG completion. Similarly, MantisTable also uses Open Source KG. Anyhow,
the performance of the MantisTable approach is compared to just some of the approaches in
the state-of-the-art because (i) the code is not always available, and (ii) when available, it is
difficult to be executed. Moreover, the embeddings cannot be always utilised as tables have
often missing values.

Considering the annotation steps as in Table 3.1, [31] is the only approach that applies all
the predefined annotation steps for the STI. Most of the approaches do not perform the Data
Preparation step but only [31, 88, 80, 69] and [117] do. Most of the approaches do column
type analysis and annotation for both NE and L columns. Even though the approach in [101]
does not identify the S-column, it supports the annotation of the relations between columns.
Differently from all the approaches, MantisTable performs the steps of STI proposing novel
techniques in order to improve and provide high quality annotations.

Approaches such as [26, 117, 80, 109] mainly focus on the analysis of Web tables,
thus limiting their range of actions to the content of Web pages. Such approaches use the
information offered by Web tables (Web page title, table caption, or surrounding text, etc.) in
the semantic annotation process, while approaches such as [123, 59, 100, 101, 83, 78, 69, 88]
can rely on the data in the table. Moreover, considering only Web tables excludes the
possibility of analysing data sources that contain a large number of tuples, thus ignoring the
problem of performance and execution time. MantisTable does not consider only Web Tables
but also other kinds of tables.

If in this section we have concentrated on comparing the approaches, in the next one we
will propose the comparison of the tools.
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3.3 Comparison of Tools

The purpose of the analysis presented in this section is to gather information on the current
tools available for the STI process of a table or, more in general, of a structured data source.

3.3.1 DataGraft

DataGraft8 [90] is a cloud-based service, which provides an integrated web environment
for data hosting (linked data and file storage, dataset sharing, data querying) and table data
transformations (interactively building, modifying, and sharing of repeatable and reusable
data transformations). About semantic annotations, DataGraft integrates two tools: Grafter-
izer9 and ASIA10; the first one is responsible for data cleaning and transformation, while the
second one deals with the annotation itself. The interface’s part that is devoted to operations
on tables is made of three sections: “Tabular Transformation” in which the pipeline for
data transformation gets defined (Figure 3.4a); “Tabular Annotation” where it is possible to
manually associate the tables’ columns wiht concepts and datatypes referring to a knowledge
base and to indicate the relations that occur between them (Figure 3.4b); and “RDF Mapping”,
that allows us to manually create or automatically generate RDF triples based on the table
notations (Figure 3.4c).

Moving to the tab “Tabular Annotation”, it is possible to start the table’s semantic
annotation process; this operation requires manual intervention, but the tool provides support
in the filling of required fields thanks to the integration of ABSTAT11 [94], which provides
suggestions about concepts and datatypes. For each column a dialog box allows the user to
define it as L-column, and consequently associate a datatype, or as NE-column for which the
user needs to identify a type. A section is also devoted to the definition of the relation that
occurs between a selected column and another one that could be selected from a dropdown
menu. The subject column is automatically established based on the inserted relations. An
example of annotation is shown in Figure 3.5, where the column “CONQUERED_ON” has
been identified as a literal of type “date”, and the relation with the column “MOUNTAIN” has
been referred as http://dbpedia.org/ontology/firstAscentYear (Figure 3.5a), while the column
“RANGE” has been identified as a URI of type http://dbpedia.org/ontology/MountainRange.
The relation with the column “MOUNTAIN” has been referred as
http://dbpedia.org/ontology/mountainRange (Figure 3.5b).

8datagraft.io
9eubusinessgraph.eu/grafterizer-2-0/

10inside.disco.unimib.it/index.php/asia/ - eubusinessgraph.eu/asia-2/
11abstat.disco.unimib.it

https://datagraft.io/
http://eubusinessgraph.eu/grafterizer-2-0/
http://inside.disco.unimib.it/index.php/asia/
http://eubusinessgraph.eu/asia-2/
http://abstat.disco.unimib.it
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(a) Section “Tabular Transformation”. (b) Section “Tabular Annotation”.

(c) Section “RDF mapping”.

Figure 3.4 DataGraft: interface devoted to operations on tables.

(a) L-column Annotation (b) NE-column Annotation

Figure 3.5 DataGraft: columns’ annotation.

The annotation’s results can be exported in different formats such as RDF (N-Triples),
CSV and JSON.
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3.3.2 Karma

Karma12 [42] is an Open Source information integration tool that allows users to integrate
data coming from different sources such as databases, spreadsheets, delimited text files,
XML, JSON, KML and Web API. The tool is available through an executable13, and it
requires some configuration activities to run.

The graphical interface provides an easy way to transform data in order to normalise,
restructure and express them in different forms. It is built to help users to integrate information
by modelling it according to one or more ontologies. Karma learns to recognise the mapping
of data to ontology classes and then uses the ontology to propose an automatically generated
model that ties together these classes; this model can be refined by the user. Once the model
is complete, the integrated data can be published as RDF or stored in a database.

Figure 3.6 Karma: example of an empty model.

When the initial table is loaded, if a model for that specific source has never been defined,
Karma will show an empty model represented by small red circles on top of each column
(Figure 3.6). The mapping process is made of two phases: specifying the semantic types
and specifying the relations between classes. The system shows some available suggestions
regarding a column; the user can select one of those suggestions (Figure 3.7a) or click on
the empty node to define a new class and subsequently on the label to define its property.
For example, if a column contains names of artists, the user may want to set foaf:Person
as a class and foaf:name as property. A new annotation can be identified by using a

12usc-isi-i2.github.io/karma/
13github.com/usc-isi-i2/Web-Karma/wiki/Installation%3A-One-Click-Install

https://usc-isi-i2.github.io/karma/
https://github.com/usc-isi-i2/Web-Karma/wiki/Installation%3A-One-Click-Install
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specific window that will suggests all the available classes or properties categorised as
“recommended”, “compatible” and “all” (Figure 3.7b).

(a) Automatic suggestions. (b) Selection of a new class.

Figure 3.7 Karma: class annotation.

Once the semantic type of a certain column gets chosen by the user, Karma will learn the
annotation and use it as a future suggestion in case of similar columns. Once the types of each
column are defined, the user can determine the relations between them by following the same
process previously described; it is also possible to drag an empty node on an existing class
to activate a connection and build hierarchies; Figure 3.8 shows an example of a relation’s
display.

Figure 3.8 Karma: example of relation.
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3.3.3 Odalic

Odalic14 [49] is a tool for interpreting tabular data and publishing them as Linked Data.
Odalic annotates columns using a KG, and links cell values to the entities of a KG. It takes as
input CSV files and one or more KG. Odalic Server wraps the TableMiner+ algorithm [123].
Along the process users can provide feedback anytime since they can delete the suggested
class/property for the annotation and suggest a new one, which is then added to the KG.
Odalic allows users to manually specify multiple S-columns; supports any knowledge base
accessible via SPARQL query language; and supports PoolParty KG15. The result of the STI
process can be exported in several formats, including an extended CSV version and a RDF
dataset.

The interface is made of different screens whose purpose is to allow the user to import
new files or new Knowledge Bases, define new tasks, and view a summary of them in a
dedicated page. Once a task has been defined and started, the semantic annotation process
happens automatically; at the end, the user can view a page that shows the results of the
classification of the columns, the disambiguation of the cells, the identification of the subject
column and, finally, the identification of the relations between the columns. The user can
modify the results to improve the final annotation.

The first tab (Figure 3.9) shows the results of column annotation and cells’ reunion. The
identified resources have different colours depending on their Knowledge Base (that can be
viewed through tooltip); the links that we find next to each resource lead to their specific
browser pages.

The header’s tooltip of each column shows how they’ve been considered by the algorithm
during the process:

• Named Entity: the column contains entities that are univocally identifiable through
URIs from the Knowlege Base;

• Non-named entity: the column contains literals and therefore it had been ignored
during the classification and disambiguation’s process;

• Ignored: the column had been intentionally ignored because of a prior explicit request
from the user;

• Compulsory: the column wasn’t recognized as Named-Entity, but the user requested to
include it in the process anyway.

14github.com/odalic/
15www.poolparty.biz

https://github.com/odalic/
https://www.poolparty.biz/
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Figure 3.9 Odalic: classification e disambiguation’s results summary.

The user can modify the results by deleting the annotations that he considers incorrect
or non-significant; additionally, he can suggest a new disambiguation of a cell or a new
column’s classification that will be added to the knowledge base, or research a different
annotation between the ones already listed in a dialog box that shows more information
compared to the usual table view (Figure 3.10).

Subject columns. The second tab allows us to edit the subject column in case of wrong
detection, since selecting the correct column is vital to pinpoint the right subject of the
relations we found.

Relations. The third tab enable us to revise the relations found between the subject column
and the other ones. Such relations are shown as arcs, in a graph whose nodes represent the
table’s columns (Figure 3.11). The graph can be explored in two modes: “Node Dragging”,
that allows to drag the vertices on the screen to change their position, and “Link Creation” that
allows to add new arches and define new relations that can be selected through a dedicated
modal window.

When the review process is done, the algorithm must be rerun; the adjustments made
will be used as constraints. Then, the process’ results can be exported anytime by clicking
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Figure 3.10 Odalic: cell disambiguation.

a specific button, but only the output of the last performance will be considered (if some
manual changes were made but the algorithm wasn’t rerun, those changes will be ignored).
The annotation can be exported as RDF Turtle, JSON-LD or as extended CSV, in which the
initial columns and the additional ones that contain the annotations are reported.

Figure 3.11 Odalic: graph that represents the relations between columns.
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3.3.4 OpenRefine

OpenRefine16 is a tool for cleaning, transforming and extending messy data. It can perform a
semi-automatic reconciliation process against any database that exposes a web service using
Reconciliation Service API17 specification or a SPARQL endpoint. If a cell has multiple
entity candidates the user needs to pick manually the correct one. To improve the quality
of the matches, a class for the rows can be selected in order to restrict the matches, only to
items which are instances of any subclass of the given class. In addition, the reconciliation
interface can be configured to take into account other columns in the dataset in the matching
scores. OpenRefine functionalities can be extended by installing extensions; moreover there
are other distributions of the tool that have been customized for a specific usage or integration
with other technologies (e.g. LOD refine).

OperRefine supports a huge range of input formats including CSV, Excel (.xls, xlsx),
Google Spreadsheets, XML, RDF/XML, RDF N3 e JSON.

Figure 3.12 OpenRefine: reconciliation.

To execute the cells’ reconciliation, we need to select the dropdown menu located in the
header of the targeted column and click “Reconcile > Start reconciling” (Figure 3.12); this
operation will open a dialog box where we can select the service of reconciliation we want
(Wikidata is the default, to use others we’re required to add them first). These settings define
the minimal configuration to lauch the process, but the tool provides more of them to make
the results as accurate as possible (Figure 3.13).

The first additional configuration that can be chosen is the type of data that we need to an-
alyze: for example, if the column in question is about university, restricting the search to the

16openrefine.org
17github.com/OpenRefine/OpenRefine/wiki/Reconciliation-Service-API

http://openrefine.org/
https://github.com/OpenRefine/OpenRefine/wiki/Reconciliation-Service-API
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Figure 3.13 OpenRefine: additional settings to improve reconciliation.

type “university” will avoid the incorrect selection of https://www.wikidata.org/wiki/Q2966
(which represents the city of Heidelberg) as a possible candidate for “University of Heidel-
berg”. The tool provides some possible suggestions identified on the basis of the dataset’s
first elements: if the correct type is listed among these suggestions it can be selected right
away, otherwise it’s possible to manually add another one.

A second parameter that can be set is about the addition of other columns of the dataset
to solve ambiguity issues: for example, if we want to run the reconciliation of people of
the sporting world and one of the table’s columns says which sport they practice, we can
configure OpenRefine so that it will take into consideration this extra column.

After configuration, we can launch the process: once it finishes it will be possible to view
the reconciliation results directly in the cells involved (Figure 3.14) and two situations can
occur:

• inside the cell, a single result will be shown as a dark blue link; in this case the
reconciliation was successful and the match is correct; there is no need for further
interventions from the user;

• inside the cell there are multiple candidates, represented by lighter blue links; in this
case we need to select one manually; the choice can be only applied to the single cell,
or to all the ones still not reconciled for good that share the same content.
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Figure 3.14 OpenRefine: the result of reconciliation.

3.3.5 STAN

STAN is an online tool that semantically annotates tables from popular KGs. Like DataGraft,
it uses a self-completion API offered by ABSTAT [94], for the properties and concepts
contained in a KG. It considers CSV files as input. STAN proposes an introductory page
where the user can launch a new annotation or, if present, retrieve the last file he was working
on; this latter operation is possible even without a registration process thanks to the use of
specific cookies. When starting a new process, the first fundamental step is to import the
table that we want to annotate; STAN supports the CSV format for which it is necessary
to provide the separator that identifies the columns, if the table has a header or not and,
eventually, a delimiter character from the text if present (Figure 3.15).

Once we complete the upload, the table will be shown. The annotation must be executed
manually but, as DataGraft, the user gets offered support to correctly fill in the required
fields thanks to an API of auto-completion offered by ABSTAT. By clicking on the header’s
label of each column a dialog box will pop up, which allows the annotation of the column in
question:

• if it’s the subject column, it must be written in the appropriate field and we will have
to specify the semantic type that needs to be associated with it; if this type refers to
DBpedia, an auto-completion system helps the user to fill in the form (Figure 3.16);

• If we’re dealing with a column of any other kind, it will be necessary to provide the
annotation as a property that will be automatically associated with the subject column
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previously defined; even in this case, the user is helped by the auto-completion service
that suggests the possible property that could be assigned to the column in question.
Furthermore, it is also possible to define the type of object (datatype or ontological
concept) that should be assigned to the column’s values (Figure 3.17).

Figure 3.15 STAN: the upload of a new table.

Figure 3.16 STAN: the selection of the subject column’s annotation.

Figure 3.17 STAN: column annotation.

The uniqueness of the tool is the ability to define a personal ontology during the annotation
process, without referring to a known KB. After the annotation, we can export the mapping
in RML format and the table’s data in RDF triples.
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3.3.6 TableMiner+

The TableMiner+ [65] tool refers to the homonymous approach [123]. It only supports Web
tables for which the user must provide an URL. The whole process is executed in batches
and users can be notified with an email message when it finishes. The annotation is provided
in JSON format which is interpreted and displayed using an annotated table and a graph
visualisation module. Both visualisation components are interactive to allow users feedback
and an output customisation. It was not possible to test TableMiner+ because, although the
code for the tool is available, it was not possible to install it because of inter-dependencies in
the code. The following analysis was conducted from the description provided in [65].

In input we must provide the URL of a web page in which there is at least one HTML
table: then, a preview of the identified tables that contain relational data appears; the user
can select which column he wants to annotate (Figure 3.18). Because of the length of the
annotation process, we are given the option to enter an email address to be notified when the
procedure ends.

Figure 3.18 TableMiner+: adding an URL and the selection of a specific table.

The outcome of annotation processing is a JSON file that gets interpreted and visualised in
the two main components of the tool: an interactive annotated table and a graph visualisation
module.

The interactive annotated table. The annotated table is the first point of interaction with
the user; it shows the original annotated table with the identified entities, concepts and
relations. The headers of each column present a set of concept candidates that describe the
headers and the column’s data in the most accurate way; each concept has a score that states
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the system’s confidence value; such concept candidates can be view through a dropdown
menu and are additionally defined by a colour-code: those with a higher score are highlighted
in green, while the ones with the lowest score are shown in red. By default the concept with
the highest score gets selected as the winning one and put directly under the column’s name
(Figure 3.19-B). The user can, at any time, change the winning concept by selecting another
among the listed ones.

Figure 3.19 TableMiner+: interactive annotated table.

About the cells, inside each one we can view, when found, the corresponding entity in
the knowledge base (Figure 3.19-A); in case of wrong or missing annotation, the user can
double click on the cell itself and provide an URI (Figure 3.20).

Figure 3.20 TableMiner+: the edit of a cell’s associated entity.

Graph visualisation. By clicking the button “inspect” (the magnifying glass) we have
access to the visualisation through graph. This kind of visualisation, referring to the header
line, shows the headers as numbered nodes and the candidate concepts as nodes linked to



3.3 Comparison of Tools 55

them, where the most relevant class is shown as a solid and coloured line, while all the other
classes are shown as dotted lines (Figure 3.21); right-clicking on one of the dotted lines
allows us to choose that class as a winner for the corresponding node. In this mode, it is also
possible to visually isolate a certain node and its connections by simply clicking on them: all
the non-connected arcs and nodes will be made semi-transparent.

Figure 3.21 TableMiner+: graph of concepts and relations.

The numbered nodes, in addition to being connected with the knowledge base’s classes,
are also connected between themselves by lines that represent a relation: if they are indicative,
the lines will be dashed, if, instead, TableMiner+ is able to establish a valid relation between
the two columns, the line will be shown as solid and coloured.

The graph can be also visualised with single rows of the table and not only with the
header.
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3.3.7 Final comparison

Table 3.2 provides a comparison of the described tools on the basis of 7 criteria: the
availability of the tool; the possibility to import the ontology; the annotation method; the
availability of an auto-completion support for manual annotation; the STI tasks; and the
possibility to export the results.

Regarding the possibility of defining an ontology to support the STI tasks, only Karma,
Odalic and Datagraft allow users to import one or more and combine them, while the others
only use predefined KG. In order to prepare data, Karma, OpenRefine and Datagraft give the
users the ability to manipulate tables and refine them by allowing the modification of columns,
such as renaming, deleting, or exchanging order. Moreover OpenRefine has peculiar features,
such as the automatic creation of new columns, the exploration of the cells through facets that
allows the comparison of values on the basis of a chosen constraint, and the use of clustering
to consider groups of cells.

While for the STI tasks TableMiner+ and Odalic are based on an automatic process,
Karma and Open Refine require user interaction. Datagraft and Stan, on the other hand,
support only manual annotation although they provide an auto-complete service using
ABSTAT. In STAN, if the class which is being examined refers to a class in DBpedia, uses
the auto-completion feature both for the annotation of the S-column and properties of the
other columns. All tools, except OpenRefine provide an annotation for the S-column, the NE
columns, the L columns and the relationships between them. Karma, Odalic and TableMiner+
offer a list of suggestions for the correct semantic annotation that users can select in order
to adjust the tool output. The linking of the cells with specific entities within the KG is
performed by TableMiner+, Odalic, OperRefine and Datagraft. Furthermore, Tableminer+,
Odalic and Karma offers a graphical representation of the semantic mapping. Apart from
TableMiner+, all the other tools have the automatic saving feature.

Regarding the export of the mappings, Karma and Odalic allow the export in RDF format
or in JSON-LD while STAN in RML format. In order to export the tabular data Karma uses
the R2RM format, which allows to highlight the association between table and the ontology.
STAN converts the tabular data into RDF triples while OpenRefine into JSON, YAML, RDF,
and others.

Finally, an interesting feature is the use of APIs which allows the integration of external
services. These services are present in Karma, OpenRefine and in particular in STAN, they
allow two different annotation services, publicly accessible through HTTP GET and POST
operations.

In the next Chapter the MantisTable approach will be described in detail, taking into
account the attributes present in the Table 3.2.
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Table 3.2 Tool comparison.

Tool Working
and Available

Ontology
import

Annotation
method

Auto-complete
support
(if manual)

Annotations Entity
Link. ExportCol. Pred.S NE L

Datagraft ✓(online) ✓ manual ✓with ABSTAT ✓ ✓ ✓ ✓ - -
Karma ✓(installer) ✓ semi-auto - ✓ ✓ ✓ ✓ - -
Odalic ✓(docker) ✓ auto - ✓ ✓ ✓ ✓ ✓ ✓
Open Refine ✓(exe) - semi-auto - - - - - ✓ ✓
Stan ✓(online) - manual ✓with DBpedia ✓ ✓ ✓ ✓ - ✓
TableMiner+ - - auto - ✓ ✓ ✓ ✓ ✓ ?
MantisTable ✓(online) - auto - ✓ ✓ ✓ ✓ ✓ -





Chapter 4

New Semantic Table Interpretation
Approach

4.1 MantisTable approach

In this section we describe in detail the MantisTable approach which consists of the following
phases:

0. Data Preparation, which aims to prepare the data inside the table;

1. Column Analysis, whose tasks are the semantic classification that assigns types
to columns (NE-column or L-column), and the detection of the subject column (S-
column);

2. Concept and Datatype Annotation, which deals with mappings between columns
(or headers, if they are available) and semantic elements (concepts or datatypes) in a
KG;

3. Predicate Annotation, whose task is to find relations, in the form of predicates,
between the main column and the other columns to set the overall meaning of the table;

4. Entity Linking, which deals with mappings between cells and entities in a KG.

To describe each phase of the STI approach we consider Table 4.1, which lists the highest
peaks in the world with additional information, such as heights, coordinates, etc. The table
has been extracted from the T2D Gold Standard1, and extended by adding new columns (i.e.

1T2D table index: 14311244_0_7604843865524657408 - webdatacom-
mons.org/webtables/goldstandardV2.html

http://webdatacommons.org/webtables/goldstandardV2.html
http://webdatacommons.org/webtables/goldstandardV2.html
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COORDINATES, URL, DESCRIPTION, TEMPERATURE and a column with booleans) in
order to demonstrate each phase of the approach2.

Table 4.1 The table reports a list of the highest peaks in the world from T2D Gold Standard, extended with
other columns to consider a variety of situations (grey columns).

ID PEAK HEIGHT RANGE CONQUERED
ON COORD. B URL DESCRIPTION T

11 Mount Everest 8.848 km Himalayas May 29, 1953 27.98785,
86.92502 1 https://en.wikipedia.org

/wiki/Mount_Everest

Mount Everest, known in
Nepali as Sagarmāthā and
in Tibetan as Chomolungma,
is Earth’s highest mountain
above sea level [..]

-35C

b22 K-2 8,611 m Karakoram July 31, 1954 35.87998,
76.51510 0 https://en.wikipedia.org

/wiki/K2

K2, also known as Mount
Godwin-Austen or Chhogori,
is the second highest moun-
tain in the world, after Mount
Everest (8,848 metres), at
8,611 metres (28,251 ft).

-30C

c33 Kanchenjunga 8.597 km Himalayas Wednesday,
25 May 1955

27.70249,
88.14753 true https://en.wikipedia.org

/wiki/Kangchenjunga

Kangchenjunga, also spelled
Kanchenjunga, is the third
highest mountain in the
world, and lies partly in
Nepal and partly in Sikkim,
India.

-29C

D44 Lhotse 8,511 m Himalayas -429926400 27°57’45.4”N
86 56’1.4”E no en.wikipedia.org

/wiki/Lhotse

Lhotse is the fourth high-
est mountain in the world at
8,516 metres (27,940 ft), af-
ter Mount Everest, K2, and
Kangchenjunga.

-28C

...

4.1.1 Data Preparation

Before starting the annotation process, it is advisable to apply standard transformation rules
to the values and the structure of the table so to preserve only the relevant information.
Examples of transformation are the following: deletion of HTML tags and of some characters
(i.e. " ‘), transformation of text into lowercase, deletion of text in brackets, explanation
of acronyms and abbreviations, and normalisation of units of measurement. To decrypt
acronyms and abbreviations, the Oxford English Dictionary3 is used. The normalisation of
units of measurement is performed by applying regular expressions, as described in [88].
MantisTable extends the original set of regular expressions to cover a complete set of units,
which includes area, currency, density, electric current, energy, flow rate, force, frequency,
fuel efficiency, information unit, length, linear mass density, mass, numbers, population
density, power, pressure, speed, temperature, time, torque, voltage and volume. For each type
of unit of measurement, a series of conversion rules has been defined, as the ones presented
in Listing 4.1, which shows the equivalent ways to express measures of area.

1 area | squareMetre | squaremetre, m2, m2, µ2, µ2, τ.µ.
2 area | squareMillimetre | squaremillimetre, mm2, µµ2, µµ2 | 1.0E-6
3 area | squareCentimetre | squarecentimetre, cm2, cm2 | 0.0001

2bitbucket.org/disco_unimib/mantistable-tool/src/master/app/private/tables/test/mountains/
3public.oed.com/how-to-use-the-oed/abbreviations/

https://bitbucket.org/disco_unimib/mantistable-tool/src/master/app/private/tables/test/mountains/
http://public.oed.com/how-to-use-the-oed/abbreviations/
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4 area | hectare | hectare, ha | 10000.0
5 area | squareMile | squaremile, sqmi, mi2, mi2 | 2589988.110336

Listing 4.1 Conversion table for units of measurement of area.

Table 4.2 shows the transformation of Table 4.1 after the completion of the Data Prepara-
tion phase. It is worth noticing that in this simulation the data preparation phase failed in the
normalisation of some rows (e.g. the CONQUERED ON column). Despite this the tool will
be able to treat these values.

Table 4.2 Table 4.1 after the Data Preparation phase.

ID PEAK HEIGHT RANGE CONQUERED
ON COORD. B URL DESCRIPTION T

11 mount everest 8848 m himalayas may 29, 1953 27.98785,
86.92502 1 ..

mount everest, known in nepali
as sagarmāthā and in tibetan as
chomolungma, is earth’s highest
mountain above sea level [..]

-35C

b22 k-2 8611 m karakoram july 31, 1954 35.87998,
76.51510 0 ..

k2, also known as
mount godwin-austen or chhogori is the
second highest mountain in the world,
after mount everest (8,848 metres),
at 8,611 metres (28,251 ft).

-30C

c33 kanchenjunga 8597 m himalayas may 25, 1955 27.70249,
88.14753 true ..

kangchenjunga,
also spelled kanchenjunga, is the third
highest mountain in the world, and lies
partly in nepal and partly in sikkim, india.

-29C

d44 lhotse 8511 m himalayas -429926400 27°57’45.4”N
86 56’1.4”E no ..

lhotse is the fourth mountain in the world at
8,516 metres (27,940 ft), after
mount everest, k2, and kangchenjunga.

-28C

4.1.2 Column Analysis

The column analysis starts with the semantic classification of columns which takes into
account the values of a column to mark it as Literal column (L-column) if values are datatypes
(e.g. strings, numbers, dates, such as 4808, 10/04/1983), or as Named-Entity column (NE-
column) if values are concepts (e.g. Mountain, Mountain Range, such as Mont_Blanc,
Mont_Blanc_massif). Identifying good L-columns candidates is the first step of Column
Analysis phase. To accomplish this task, we follow and extend some approaches in the state-
of-the-art [123, 88, 80, 69, 56]; we consider 16 regular expressions identifying the following
Regextypes: geo coordinate, address, hex color code, numeric, boolean, URL, image type,
credit card number, email, IP address, ISBN code, date, ID, textual description, IATA code
and currency. If the number of occurrences of the most frequent Regextype exceeds a certain
threshold γ̄ (the value of γ̄ will be discussed in Section 5.2.3), the Regextype is assigned to
the analysed column. Otherwise it will be annotated as NE-column.

For example, in the mountain table (Table 4.2), this step assigns the L-column tag to the
COORD. column, and the NE-column tag to the PEAK column.

The second step deals with the subject column detection that takes into account the
detected NE-columns. The subject column (S-column) can be defined as the main column
in the table: this column contains entities for which the other columns provide additional
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information. Our approach considers different features (characteristics of the table, such
as empty cells, cells with unique content, etc.) to identify the column that most likely
corresponds to a subject. Table 4.3 shows a list of features. Our approach does not consider
costly features such as the Web Search (ws) which requires the use of a search engine,
and Context Match Score (cm) which analysesbeh the external contexts (e.g. texts present
in a web page). The use of features related to the presence of acronyms does not bring
improvements in the detection of the S-column. Instead, we added the feature Average
Number of Words (aw), which considers the average number of words in each cell. Like
[123], we adopt the features Fraction of Empty Cells (emc), Fraction of Cells with Unique
content (uc) and Distance from the First NE-column (df).

Table 4.3 Features for Subject Column Detection.

Feature Notation
Fraction of empty cells emc
Fraction of cells with unique content uc
Distance from the first NE-column df
Average number of words in each cell aw

The aw feature [109] calculates the average number of words within the cells of each
column. The column with the lowest average number of words per cell is considered the best
candidate.

Finally, features are combined to compute the subcol(c j) score for each NE-column, as
follows:

subcol(c j) =
2ucnorm(c j)+awnorm(c j)− emcnorm(c j)√

d f (c j)+1
(4.1)

The column with the highest score will be selected as the S-column for the considered
table. Formula 4.1 is an adaptation of the one presented in [123], more details on its validation
are in Section 5.2.3.

The values of the features for the S-column detection related to the mountain table (Table
4.1) are shown in Table 4.4. In this case the PEAK column is the S-column of the table (Table
4.5).

Table 4.4 Values of the features of the S-column detection for the mountain table.

Feature PEAK column RANGE column
emc 0 0
uc 1 0,1
df 0 2
aw 1,8 1
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Table 4.5 The example table after Column Analysis phase.

L S L NE L L L L L L

ID PEAK HEIGHT RANGE CONQUERED
ON COORD. B URL DESCRIPTION T

11 mount everest 8848 m himalayas may 29, 1953 27.98785,
86.92502 1 en.wikipedia.org

/wiki/Mount_Everest mount everest, known in nepali [..] -35C

b22 k-2 8611 m karakoram july 31, 1954 35.87998,
76.51510 0 en.wikipedia.org

/wiki/K2 k2, also known as [..] -30C

c33 kanchenjunga 8597 m himalayas may 25, 1955 27.70249,
88.14753 true en.wikipedia.org

/wiki/Kangchenjunga kangchenjunga also spelled [..] -29C

d44 lhotse 8511 m himalayas -429926400 27°57’45.4”N
86 56’1.4”E no en.wikipedia.org

/wiki/Lhotse lhotse is the fourth [..] -28C

4.1.3 Concept and Datatype Annotation

The main purpose of the Concept and Datatype Annotation phase is to search and extract
entities, and the related concepts, to annotate the NE-columns. The task is accomplished by
implementing a Entity Matcher and a Concept Matcher. The phase starts by considering the
S-column, since it should contain a high number of distinct values and unambiguous entities
(see features in Section 4.1.2). These characteristics allow for an easy identification of a
valid candidate concept for the annotation of the S-column.

a. Concept Annotation: in the first step of this phase, we perform the entity-linking by
searching the KG with the content of a cell tx(i, j). The approach selects at most k cells
of the column (the value of k will be discussed in Section 5.2.3). We use such terms to
search the KG and get a set of entities. The similarity between the content of the cell tx(i, j)
and the candidate entities ei, j ∈ Ei, j ∈ E is used to disambiguate the content of the cell.
Given a candidate entity ei, j, the similarity depends on two components: entity context EC
(econtext) and entity name EN (ename). EC is a score representing the similarity between
the representation of the entity in the KG with the row and the column elements to which the
cell belongs to. EN is a score that represents the similarity between the name of the entity in
the KG and the text in the cell. EC is calculated by computing a candidate entity ei, j with the
cell’s context xi, j ∈ Xi, j which considers header and row content:

1. row content: is the concatenation of all the words in the cells in the same row j from
every columns i, without considering the content of cell (i, j);

2. header content: is the concatenation of all the words of header (0, j) plus the concate-
nation of all the synonyms (e.g. from Wordnet4 or Oxford dictionary5).

We calculate the EC as follow:

econtext(ei, j) = |bow(abstract(ei, j))∩bow(rcontent(i, j))|+ |bow(abstract(ei, j))∩bow(hcontent(i, j))|
(4.2)

4wordnet.princeton.edu
5oed.com

https://wordnet.princeton.edu/
https://oed.com/
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EN is calculated by computing the edit distance (Levenshtein) between the labels (in
different languages) of candidate entity ei, j ∈ Ei, j and the content of the cell tx(i, j):

ename(ei, j) = editDistance(tx(i, j),ei, j) (4.3)

The final objective is to identify the entity with the highest confidence score ECF, which
will then be used for annotating the cell. The confidence score ECF (econf) is computed as
follows:

econ f (ei, j) = bonus(ei, j)+ econtext(ei, j)− ename(ei, j)∗2 (4.4)

The score bonus(ei, j) in the Formula 4.4 is used to rank the entities most related to the
content of the cell by considering the presence of the tokens of the text in the cell, within the
entity labels and the entity abstract (Formula 4.5).

bonus(ei, j) = |bow(tx(i, j))∩bow(ei, j)|+ |bow(tx(i, j))∩bow(abstract(ei, j))| (4.5)

For each cell tx(i, j) a set of candidate entities Ei, j is extracted from the KG, through the
query shown in Listing 4.2. The query searches the entities considering both the entire content
of the cell and the individual words. In addition, we search the descriptions associated with
the entities according to the synonyms of the header. Values in the header are assumed to be
nouns, thus the respective synonyms are extracted from WordNet, which is a semantic-lexical
database of the English language, and from the thesaurus of Oxford dictionary. For instance,
considering the example in Table 4.1, the approach searches the KG with the synonyms
of PEAK, which is the header of the S-column, which results in summit, mountain, bluff,
ridge6. The maximum number of results per query is set at 10; this number has been defined
empirically with several tests which gave evidence that the correct result is mostly within the
first 5 results.

1 SELECT DISTINCT (str(?s) as ?s) (str(? abstract) as ?abstract)
2 WHERE {
3 {
4 ?s dbo:abstract ?abstract .
5 ?s a ?type .
6 ?s rdfs:label ?label .
7 ?label <bif:contains > ’mount AND everest ’ .
8 ?abstract <bif:contains > ’("peak" OR "summit" OR "mountain" OR [synonyms])’ .
9 }

10 FILTER NOT EXISTS { ?s dbo:wikiPageRedirects ?r2 } .
11 FILTER (! strstarts(str(?s), ’http:// dbpedia.org/resource/Category :’)) .
12 FILTER (! strstarts(str(?s), ’http:// dbpedia.org/property /’)) .
13 FILTER (! strstarts(str(?s), ’http:// dbpedia.org/ontology /’)) .
14 FILTER (strstarts(str(?type), ’http:// dbpedia.org/ontology /’)) .

6www.lexico.com/en/synonym/peak

https://www.lexico.com/en/synonym/peak
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15 FILTER (lang(? abstract) = ’en ’) .
16 }
17 ORDER BY ASC(strlen (?label))
18 LIMIT 10

Listing 4.2 SPARQL query to retrieve a set of candidate entities for a text in a cell.

In this example the row and header content are

1. row content: 11 8848 himalayas may 29 1953 27.98785 86.92502 ...;

2. header content: the synonyms of the header “peak” are “summit, mountain, bluff,
ridge, ben, beg, jebel, mount”.

Applying the Formulas 4.2,4.3,4.4, the EC, EN and ECF are calculated for candidate
entitites:

1 "dbr:Mount_Everest"
2 score EC 1
3 score EN 0
4 score BONUS 1
5 score ECF 2.5 # winning entity
6 "dbr:Mount_Everest_Nepal"
7 score EC 0.06
8 score EN 0.31
9 score BONUS 1

10 score ECF 0.79
11 "dbr:Mount_Everest_webcam"
12 score EC 0.11
13 score EN 0.35
14 score BONUS 1
15 score ECF 0.61
16 "dbr:Joint_Himalayan_Committee"
17 score EC 0.10
18 score EN 0.8
19 score BONUS 0.5
20 score ECF -0.78
21 [..]

Listing 4.3 List of entities with entity context score, entity name score and confidence score.

In this case the winning entity is dbr:Mount_Everest7.
In the second step, a set of concepts COi, j ∈CO associated with the winning entities ei, j,

identified in the previous step, are obtained. This set will then be used to identify a concept
to be associated with the column.

In particular, for each winning entity, all the rdf:type values are extracted. Then, for
each extracted type, the frequency (considering different ontologies) and the number of cells
in which the type appears are calculated. Table 4.6 reports the frequencies referred to the
example in Table 4.1 and the column PEAK.

To avoid possible incorrect links, we decide to select a set of types whose frequency score
is close to the maximum frequency score of all types of the candidate list, up to a certain
threshold. In other terms, we select the set of type candidates which fall within the range
defined by the maximum frequency score as upper bound and by a threshold δ̄ as lower

7dbpedia.org/resource/Mount_Everest

http://dbpedia.org/resource/Mount_Everest
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Table 4.6 Class frequencies for each extracted entity.

PEAK entity rdf:type type frequency

mount everest http://dbpedia.org/page/Mount_Everest

dbo:Place, dbo:Location,
dbo:Mountain, dbo:NaturalPlace,
schema:Mountain, schema:Place,
umbel:Mountain [..]

Place 2
Mountain 3
NaturalPlace 1
Location 1

k-2 http://dbpedia.org/resource/K-2_(Kansas_highway)

dbo:Place, dbo:Location,
dbo:ArchitecturalStructure, dbo:Infrastructure,
dbo:Road, dbo:RouteOfTransportation,
schema:Place [..]

Place 2
Location 1
ArchitecturalStructure 1
Infrastructure 1
Road 1
RoadOfTransportation 1

kangchenjunga http://dbpedia.org/page/Kangchenjunga

dbo:Place, dbo:Location,
dbo:Mountain, dbo:NaturalPlace,
schema:Mountain, schema:Place,
umbel:Mountain [..]

Place 2
Mountain 3
NaturalPlace 1
Location 1

lhotse http://dbpedia.org/page/Lhotse

dbo:Place, dbo:Location,
dbo:Mountain, dbo:NaturalPlace,
schema:Mountain, schema:Place,
umbel:Mountain [..]

Place 2
Mountain 3
NaturalPlace 1
Location 1

bound and if the type belongs to a number of cells greater than a threshold β̄ (the value of δ̄

and β̄ will be discussed in Section 5.2.3).
Therefore, the final result from the phase is the one shown in Table 4.7.

Table 4.7 Global frequency values for the PEAK column.

Type Global frequency # cells
Place 28 14
Mountain 36 13
NaturalPlace 13 13
ArchitecturalStructure 1 1
Infrastructure 1 1
Road 1 1
RouteOfTransportation 1 1

The hierarchy of the concept in the example above is Place > NaturalPlace > Mountain,
Place > Location. The occurrences of NaturalPlace are added to the occurrences of
Mountain. The minimal concept is used to annotate the column. Figure 4.1 shows the
workflow of Concept Annotation.

b. Datatype Annotation: for the Datatype Annotation, the results of the Column Type
Analysis (Section 4.1.2) are taken into consideration. In that phase, a column is associated
with a specific Regextype. To identify the correct Datatype, a mapping between the Regextype
and the Datatype was created (Table 4.8).

For some Regextype the correspondence with the Datatype is univocal; for example,
geo cordinates is associated with xsd:float. The numeric Regextype instead corresponds
to more Datatypes. In this case further analysis in the last step of the approach (Predicate
Annotation) is necessary to identify the correct Datatype in relation of the occurrences. Table
4.9 shows the example in Table 4.1 with final columns annotations.
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Figure 4.1 Concept annotation workflow.

4.1.4 Predicate Annotation

For Predicate Annotation, the MantisTable approach considers the winning concept of the
S-column as the subject of the relationship, and annotations of the other columns as objects.
With this regard, KG is searched for the subject and the object. However, a clear distinction
is made for the annotation of the properties between the S-column and NE-columns or
S-column and L-columns. To perform predicate annotations we exploit two complementary
techniques based on exploratory queries and summary profiles.

Predicate Annotation using exploratory queries

a. Predicate Annotation for NE-column: after annotating the NE-columns successfully, we
proceed with the retrieval of all relations (predicates in the respective RDF triples) between
the instances of the S-column concept and the instances of the NE-columns. Given the
concept coi of the S-column and the entities of the NE-column, we find the predicate whose
subjects are of type coi and the objects are instances of the NE-column. In addition, we
execute a query where given the concept com of the NE-column and the instances of the
S-column, we find the predicate whose subjects are all instances of the S-column and the
objects are of type com. In order to identify the correct p j ∈ Pj ∈ P, we compare the content
of the column and the candidate predicates. Given a candidate predicate, the confidence score
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Table 4.8 Datatype and Regextype mapping.

Regextype Datatype Description
geo coordinates xsd:float 32-bit floating point
address xsd:string string
hex color xsd:string string
numeric xsd:double 64-bit floating point

xsd:float 32-bit floating point
xsd:integer integer value

xsd:nonPositiveIntegerbyte integer containing only non-positive values (..,-2,-1,0)
xsd:negativeInteger integer containing only negative values (..,-2,-1)

xsd:nonNegativeInteger integer containing only non-negative values (0,1,2,..)
xsd:positiveInteger integer containing only positive values (1,2,..)

boolean xsd:boolean boolean (true or false)
URL xsd:anyURI Uniform Resource Identifier
image xsd:string string
credit card xsd:string string
email xsd:string string
IP xsd:string string
ISBN xsd:string string

Table 4.9 Table 4.1 with column annotations.

- dbo:Mountain xsd:integer dbo:MountainRange xsd:date xsd:string - xsd:string - -

ID MOUNTAIN HEIGHT RANGE CONQUERED
ON COORD. B URL DESC. T

11 mount everest 8848 m himalayas may 29, 1953 27.98785,
86.92502 1 en.wikipedia.org

/wiki/Mount_Everest [..] -35C

depends on two components: the predicate context PC (pcontext) and predicate frequency PF
(pfreq). PC is a score that represents the similarity between the representation of the predicate
from the KG with the representation of the NE-column. PC is calculated by comparing a
candidate predicate p j with the column context x j ∈ X j which is further divided into in-table
context and out-table context as in Table 4.10.

Table 4.10 Types of context for a table inside Predicate Annotation.

In-table context Out-table context
column header web search
column content

We calculate the overlap between the representation of the candidate property p j and the
representation of each context x j using the Dice similarity, computed as follows:

pcontext(p j) = dice(p j,x j) =
2 ·∑wεbowset(p j)

⋂
bowset(x j)( f req(w,bow(p j))+ f req(w,bow(x j)))

|bow(p j)|+ |bow(x j)|
(4.6)

PF refers to the ratio between the candidate predicate frequency and the sum of all
candidate predicate frequencies.

p f req(p j) =
|p j|

∑ j |p j|
(4.7)
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The selection of the predicate is computed using predicate confidence score (PCF):

pcon f (p j) = pcontext(p j)+ p f req(p j) (4.8)

Listing 4.4 shows a query returning a set of candidate predicates Pj from the KG. The
maximum number of the returned result is set at k = 50 for performance reasons. Two
distinct parts in the query can be identified. In the first part, we look for all the properties
having entities of type dbo:Mountain as their subject and some values extracted from the
NE-column (e.g. Himalayas, Karakoram) as object. In the second part, we look for all
properties having some values extracted from the S-column as their subject (e.g. Mount
Everest, Kangchenjunga) and some entities of type dbo:Mountain_Range as objects.

1 SELECT DISTINCT ?p (str(? plabel) as ?plabel) (count(?p) as ?count)
2 WHERE {
3 {
4 VALUES ?o {
5 <http:// dbpedia.org/resource/Himalayas >
6 <http:// dbpedia.org/resource/Karakoram >
7 [..]
8 } {
9 ?s ?p ?o .

10 ?p rdfs:label ?plabel .
11 ?s a <http:// dbpedia.org/ontology/Mountain > .
12 FILTER (lang(? plabel )="en")
13 }
14 }
15 UNION {
16 VALUES ?s {
17 <http:// dbpedia.org/resource/Mount_Everest >
18 <http:// dbpedia.org/resource/Kangchenjunga >
19 [..]
20 } {
21 ?s ?p ?o .
22 ?p rdfs:label ?plabel .
23 ?o a <http:// dbpedia.org/ontology/MountainRange > .
24 FILTER (lang(? plabel )="en")
25 }
26 }
27 }

Listing 4.4 SPARQL query to retrieve a set of candidate properties for a NE-column.

In this case the In-table context is

• column context: himalaya karakoram

• header context: range limit sierra line span

The Out-table context is

• web search: karakoram wikipedia the karakoram or karakorum is a large mountain
range spanning the border of pakistan a significant part 28 50 of the karakoram range
is glaciated compared to the himalaya 8 12 and alp 2 2 mountain glacier may serve a
karakoram range mountain asia britannica com pakistan the himalayan and karakoram
range the himalaya which has long been a physical and cultural divide between south
and central asia ...
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Applying the Formulas (4.6) (4.7) (4.8), PC, PF and PCF are calculated for predicate
entitites:

1 "dbo:locatedInArea"
2 frequency 13
3 score PC 0.0868
4 score PF 0.0050
5 score PCF 0.0918
6 "dbo:mountainRange"
7 frequency 1904
8 score PC 0.9898
9 score PF 0.9294

10 score PCF 1.9193 # winning predicate
11 "dbo:regionCode"
12 frequency 13
13 score PC 0.0050
14 score PF 0.0193
15 score PCF 0.0244

Listing 4.5 List of predicates with predicate context score, predicate frequency score and predicate confidence
score.

In this case the winning predicate is dbo:mountainRange8.
b. Predicate Annotation for L-column: in a similar way to the Predicate Annotation for

NE-column, we execute a query that given the concept co j of the S-column and the values
of the L-column, finds all predicates where the subject is co j and the objects are values. In
contrast to the previous query, we consider the synonyms of the headers (if present) in order
to increase the number of predicate candidates. The query shown in Listing 4.6 returns a set
of candidate predicates from the KG.

1 SELECT DISTINCT ?p (str(? plabel) as ?plabel) (count(?p) as ?count)
2 WHERE {
3 {
4 VALUES ?o {
5 8.848 8.611 8.597 8.511 8.481 8.167 8.156 8.153 8.124 8.078
6 } {
7 ?s ?p ?o .
8 ?p rdfs:label ?plabel .
9 ?s a <http:// dbpedia.org/ontology/Mountain > .

10 FILTER (lang(? plabel )="en")
11 }
12 }
13 UNION {
14 ?s ?p ?o .
15 ?p rdfs:label ?plabel .
16 ?plabel bif:contains ’("height" OR "meters" OR [synonyms])’ .
17 FILTER (lang(? plabel )="en") .
18 FILTER isLiteral (?o)
19 }
20 }
21 LIMIT 50

Listing 4.6 SPARQL query to retrieve a set of candidate properties for a L-column.

The scores are computed with formula (4.6) (4.7) (4.8) as in the previous step.

1 "dbo:elevation"
2 frequency 238
3 score PC 0.9674
4 score PF 1.0635
5 score PCF 1.321 # winning predicate

8dbpedia.org/ontology/mountainRange

http://dbpedia.org/ontology/mountainRange
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6 "dbo:heightMetric"
7 frequency 1
8 score PC 0.0040
9 score PF 0.8634

10 score PCF 0.2918
11 "dbo:heightDatum"
12 frequency 5
13 score PC 0.0203
14 score PF 0.8634
15 score PCF 0.3081

Listing 4.7 List of predicates with predicate context score, predicate frequency score and predicate confidence
score.

c. Predicate Annotation for numerical values: the approach proposed for the Predicate
Annotation for L-column often produces unsatisfactory results in case of columns containing
numerical values (further discussion in Section 5.2.3). This is due to how numerical values
are stored in the KG. To improve the quality of this step, we extended the idea proposed
in [73], which applies a hierarchical clustering algorithm on a reference KG to build a
Background Knowledge Graph (BKG). This BKG contains information about “numerical
representative” of “contexts”, i.e. predicates and their shared domains (subject concept). For
example, city temperatures, people age, longitude and latitude of cities. Starting from a set
of numerical data, a k-nearest neighbours search is performed to associate a set of semantic
labels with numerical values. Such labels enable the association of a value with a context.
For example, if numerical values associated with label height are considered, such values
can represent either the height of a building, of a person, or the elevation of a mountain.

More specifically, given two numerical sets, we analyse and compare the distribution
of numerical values through the distance of Kolmogorov - Smirnov. This distance verifies
whether two samples are taken from the same distribution by comparing the cumulative
distribution functions F1 and F2:

ksdist = supx|F1(x)−F2(x)| (4.9)

where sup is the supremum of the distances. If two samples are equally distributed, i.e. the
two bags hold the same numeric values, then the distance ksdist converges to 0.

The application of this technique returns top-k candidate predicates with related concepts.
In order to identify among the top-k the most suitable predicate for the annotation of the
numerical column, it is possible to exploit the annotations obtained in the previous phases.
Starting from the annotation co j of the S-column, we propose a technique supporting the
rearrangement of the top-k results on the basis of their relevance with respect to co j to obtain
the most probable predicate candidates for the numerical columns. We propose three different
methods of integration:
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• Exact Match. An exact match is made between the co j concept of the S-column and
the top-k concepts obtained as a result of the search in the BKG. If the exact concept
is present among the top-k results, the associated predicate is chosen as a semantic
annotation.

• Similarity match. It is possible that the concept co j of the S-column is not in the
top-k results, but an equivalent concept is present. Starting from co j, we then derive
the list of similar concepts from DBpedia (using predicate owl:equivalentClass)
which are compared one by one to the top-k candidate concepts. If at least one of
the identified equivalent concepts is present among the top-k results, the associated
predicate is chosen as the semantic annotation.

• Filter for common ancestor. A further level of filtering is performed by comparing
the super-class of co j (the classes that are hierarchically above the co j class) with
the super-class of each of the obtained top-k concepts, with the aim to exclude the
candidates that do not belong to the same branch of the ontology. As we already
described, numerical values referring to different concepts and predicates can share
the same distribution, thus obtaining the discordant results that existing concepts and
relative predicates belong to very different domains. For example, the results related
to the capacity of stadiums are Location (with predicate populationTotal) and
Agent (with predicate numberOfStudents). Therefore, starting from the set of top-
k candidates, the SPARQL query in Listing 4.8 allows for counting the number of
common super-class to co j. In this case the only common ancestor is the owl:Thing
class, thus the candidate and its predicate are deleted. This way, the ordering of the
predicates is maintained, and, at the end of the comparisons, the predicate with the
highest confidence score (PCF) is selected among the top-k results.

1 SELECT ?numentity (count(distinct ?entity) as ?count)
2 WHERE {
3 VALUES ?numentity { <top -k candates > }
4 <subjectConcept t> rdfs:subClassOf* ?entity .
5 ?numentity rdfs:subClassOf* ?entity2 .
6 FILTER (? entity = ?entity2 ).
7 }

Listing 4.8 SPARQL query to retrieve a set of super-classes of a concept.

In case the application of the three filters does not identify a single predicate (e.g. because
more predicates are valid, or no predicates share common ancestry types), then the one with
the highest predicate confidence score is selected.

For example, starting from the HEIGHT column of Table 4.1 containing numeric values
that refer to mountain elevation, if the search within the BKG produces ambiguous results,
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such as populationTotal and elevation, the concept associated with the subject column
of the table becomes useful to disambiguate the correct annotation. In this specific case, if
the subject column concept is Mountain the result of the numerical column annotation is
elevation. Figure 4.2 shows the predicate annotation for Table 4.1.

xsd:string

dbo:wikiPageDisambiguates

Figure 4.2 The example table with Predicate Annotations.

Predicate Annotation using summaries profiles

The queries shown in Listings 4.4 and 4.6 may take too long to get an answer due to the num-
ber of synonyms to look for in the labels. Moreover, queries often cannot be executed because
of timeout issues at the endpoint server. To increase the efficiency of the approach, we have
integrated ABSTAT9, a distributed tool for calculating and exploring profiles for RDF data.
ABSTAT takes a dataset and the related ontology (in OWL10 format) as input, and produces a
summary and statistics about the dataset. The summary is composed of patterns in the form of
tuples ⟨E,P,V ⟩ which represent the presence of instances of E that are linked to instances of
V via instances of P. Statistics includes frequencies for classes and predicates that are present
in patterns. Figure 4.3 shows an example of patterns extracted by ABSTAT. The first line is a
pattern ⟨ dbo:Mountain dbo:mountainRange dbo:MountainRange ⟩ that states that there
are instances of type Mountain linked to instances of type MountainRange via the predicate
mountainRange. For each pattern several statistics are returned. Considering the highlighted
pattern, the frequency of the pattern shows how many times does this pattern occur in the data
set. The number of instances shows how many instances have this pattern including those for
which the types Mountain and MountainRange and the predicate mountainRange can be
inferred. Max (Min, Avg) subjs-obj cardinality is the maximal (minimal, average) number of
distinct entities of type Mountain linked to a single entity of type MountainRange through

9backend.abstat.disco.unimib.it
10www.w3.org/OWL/

http://backend.abstat.disco.unimib.it
https://www.w3.org/OWL/
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the predicate mountainRange. Max (Min, Avg) subj-objs is the maximal (minimal, average)
number of distinct entities of type MountainRange linked to a single entity of type Mountain
through the predicate mountainRange. Frequency is given also for types and predicates.

Figure 4.3 ABSTAT profiling tool.

For the annotation of the predicates, MantisTable exploits the ABSTAT’s APIs to extract
the top n predicates (ranked with ABSTAT frequency statistics) that link two classes. For
each predicate the PCF (Formula 4.8) must be calculated as previously specified in order to
identify the predicate for the annotation.

4.1.5 Entity Linking

Entity Linking is the last phase of the approach. The annotations obtained in the previous
steps are used to create a query for the disambiguation of the cell contents (Listing 4.9).

1 SELECT (str(?s) as ?s) ?type
2 WHERE {
3 ?s rdfs:label ?l .
4 ?l <bif:contains > ’("mount everest" OR ("mount" AND "everest "))’ .
5 ?s rdf:type ?type .
6 FILTER (lang(?l) = "en")
7 }

Listing 4.9 SPARQL query to retrieve entities.

However, the use of the winning class for filtering results was too stringent. This is
because, from a series of experiments, it was noted that not all elements within a column
have the same values for the rdf:type property due to some inconsistency of DBpedia. For
this reason, to increase the number of results, we have chosen to consider only the entities
for which, within the values of rdf:type, it is possible to find the label of the winning class.
If more than one entity is returned, the one with a smaller edit distance (i.e. Wagner-Fischer
distance) is taken.
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4.2 Formalisation

In the following, we propose a formalisation of the STI approach. The formalisation takes into
consideration the definition of STI proposed in the previous section. In order to understand
the outputs of the approach, a formalisation of the inputs, a table and a KG, are proposed.

Definition 1 A rectangular array (matrix) of strings arranged in n rows and m columns is
called a table. Every pair (i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ m, unambiguously identifies a
cell of the table.

Definition 2 Given an n×m table, let ri denote respectively the i-th row of the table, that is
ri = {(i, j)|1 ≤ j ≤ m} and c j denote the j-th column of the table, that is c j = {(i, j)|1 ≤ i ≤
n}. Let R = {ri|1 ≤ i ≤ n} and C = {c j|1 ≤ j ≤ m} be the set of all rows and columns of the
table, respectively.

Definition 3 A function header that associates each column c j of the table with a word of a
language LA(c j → LA) is called a Column Header Function.

Definition 4 The pair Th = (T,h) where T is a table and h is a column header function we
define H = h(C) as the header of table T .

See Fig 3.1 as an example of the elements just described.
The second input of STI is a KG. Inside a KG is possible to identify an ontology.

Ontologies are structures for the organisation of knowledge in a particular domain. They are
used to classify the terms, possible relationships, and define possible constraints on using
those terms.

Definition 5 An ontology is a multigraph O = (S,P,A), where:

• S = CO∪DT is the set of semantic elements (e.g. DBpedia Ontology, GeoNames
Ontology);

– CO is the set of concepts (e.g. dbo:Mountain, dbo:MountainRange);

– DT is the set of datatypes (e.g. xsd:date, xsd:integer);

• P is the predicate label set (e.g. “mountainRange”, “elevation”);

• A is a set of labeled directed edges A ⊂ S2 ×P, where an edge can exist only between
concepts or between a concept and a datatype.
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According to the definition proposed in [92] and the definition of an ontology described
above, the definition of a KG is given as follows:

Definition 6 Given an ontology O = (S,P,A), a KG is a directed multigraph defined by the
tuple KG = (V,B,O,map, pmap) where:

• V = E ∪L is the set of vertices;

– E is a set of entities (e.g. dbr:Mont_Blanc, dbr:Lyskamm);

– L is a set of literals (e.g. “4808”, “45.833 6.865”);

• B is a set of directed edges connecting two vertices B⊂V 2, they represent links between
entities, or between entities and literals;

• map is the ontology mapping function map : V → S, which links a vertex to a con-
cept or datatype in the ontology (e.g. dbr:Mont_Blanc maps to dbo:Mountain con-
cept, dbr:Mont_Blanc_massif maps to dbo:MountainRange concept, “4808” maps to
xsd:double datatype);

• pmap is the predicate mapping function pmap : B → P, which maps an edge to a predi-
cate (e.g. dbr:Mont_Blanc dbo:mountainRange dbr:Mont_Blanc_massif, dbr:Mont_Blanc
dbo:elevation “4808”).

A set of knowledge graph KGs is defined as follows: KGs = {KG1,KG2, . . . ,KGx}.
Table and Knowledge Graphs (KGs) allow us to define a threesome of matcher, in order

to associate a concept or a datatype with a column and an entity (vertex) with a cell.

Definition 7 Given a knowledge graph KGx, the Concept Matcher is a function comatcherx :
T →COx ∪ /0:

comatcherx(i, j) =

cox ∈COx

/0
∀(i, j) ∈ T (4.10)

Definition 8 Given a knowledge graph KGx, the Datatype Matcher is a function dtmatcherx :
T → DTx ∪ /0:

dtmatcherx(i, j) =

dtx ∈ DTx

/0
∀(i, j) ∈ T (4.11)

Definition 9 Given a knowledge graph KGx, an Entity Matcher is a function ematcherx :
T → Ex ∪ /0:

ematcherx(i, j) =

ex ∈ Ex

/0
∀(i, j) ∈ T (4.12)
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The application of the matchers can support the journey of the cell value and ontology In
the scope of STI passing through the identification of an entity or a literal.

Lemma 1 Given a knowledge graph KGx, a table T and an Entity Matcher ematcherx, a
particular Concept Matcher is defined as:

comatcherx(i, j) =

{
mapx(ematcherx(i, j)), i f ematcherx(i, j) ∈ Ex

/0, otherwise
∀(i, j) ∈ T (4.13)

(i, j) ∈ T ex ∈ Ex cox ∈COx
ematcher map

The next definition supports the identification of L-column and NE-column from the
output produced by the Datatype Matcher.

Definition 10 A Column Identifier is a function colidx : C →{“NE-column”,“L-column”}.

Lemma 2 Given a knowledge graph KGx, a table T, a threshold value γ̄ ∈ R and a function
isdtx : T →{1,0} defined as follows:

isdtx(i, j) =

{
1, i f dtmatcherx(i, j) ∈ DTx

0, otherwise
∀(i, j) ∈ T (4.14)

a particular Column Identifier can be defined as:

colidx(c j) =

{
“L-column”, if ∑i isdtx(i, j)≥ γ̄;

“NE-column”, otherwise.
∀c j ∈C (4.15)

The next part provides a definition of semantic annotation for the elements of a table.
In particular, the results of the Concept Matcher and the Datatype Matcher are considered
in order to extrapolate the winning concepts and datatypes in relation to the number of
occurrences.

Definition 11 Given a knowledge graph KGx and table defined by a set of columns C, a
Semantic Column Annotator is a function semannotatorx : C → Sx.
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Lemma 3 Given a knowledge graph KGx, a table T, a Concept Matcher comatcherx and
Datatype Matcher dtmatcherx; sets D j

cox and D j
dtx defined as follows:

D j
cox

= {(i, j)|(i, j) ∈ T ∧ comatcherx(i, j) = cox ∧ i ∈ {1, . . . ,n}}, ∀cox ∈COx ∧∀ j ∈ {1, . . . ,m}
D j

dtx = {(i, j)|(i, j) ∈ T ∧dtmatcherx(i, j) = dtx ∧ i ∈ {1, . . . ,n}}, ∀dtx ∈ DTx ∧∀ j ∈ {1, . . . ,m}

a Semantic Column Annotator is the function:

semannotatorx(c j) =


argmax
dtx∈DTx

|D j
dtx |, if colid(c j) = “L-column”;

argmax
cox∈COx

|D j
cox

|, otherwise.
(4.16)

Definition 12 Given a knowledge graph KGx, the Predicate Matcher is a function pmatcherx :
C2 → Ax ∪ /0:

pmatcherx((i, j),(i∗, j∗)) =

ax ∈ Ax

/0
∀((i, j),(i∗, j∗) ∈ T ∧ colid(ci) = “N − column′′;

(4.17)

Lemma 4 Given a knowledge graph KGx, a table T and Predicate Matcher pmatcherx

Q = {(i, j),(i∗, j∗)|(i, j),(i∗, j∗) ∈ T ∧ pmatcherx((i, j),(i∗, j∗)) = ax

∧i, i∗ ∈ {1, . . . ,n}
∧ j, j∗ ∈ {1, . . . ,m}},∀ax ∈ Ax

a Predicate Annotator is the function:

pannotatorx((i, j),(i∗, j∗)) = argmax
ax∈Ax

|Q| (4.18)



Chapter 5

MantisTable Tool

5.1 Architecture and Interface

MantisTable is a web application developed with Python1 and the Django framework2. A
MongoDB3 database acts as table and KG repository. The code is freely available through a
Git repository4. In order to achieve the scalability of the application, and therefore improve
efficiency, MantisTable has been installed in a Docker container to achieve parallelisation
at the application level and to facilitate the deployment on servers. The management of
resources is performed by using Task Queues (i.e. Celery Workers5). At database level, we
exploited the capability of MongoDB to use the Sharding6 method to distribute data across
multiple machines. For the correct management of data collections we used a unique key
(i.e. Shard Key7). The five phases of the STI have been modularly implemented, allowing an
easy replacement or extension by other developers.

Figure 5.1 shows the modular architecture of MantisTable, which is organised in three
layers: the View Layer that provides a graphic user interface to serve different types of tasks
such as storing and loading tables, exploring the annotated tables to navigate every executed
step and analyse the result, executing the STI steps, and editing to modify and enhance the
results; the Controller Layer that creates the abstractions between the View layer and the
Model layer, and implements all the STI steps; and the Model Layer that manages mainly

1www.python.org
2www.djangoproject.com
3www.mongodb.com
4bitbucket.org/disco_unimib/mantistable-tool.py
5docs.celeryproject.org/en/latest/userguide/workers.html
6docs.mongodb.com/manual/sharding/
7docs.mongodb.com/manual/core/sharding-shard-key

https://www.python.org/
https://www.djangoproject.com/
https://www.mongodb.com/
https://bitbucket.org/disco_unimib/mantistable-tool.py
https://docs.celeryproject.org/en/latest/userguide/workers.html
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/core/sharding-shard-key
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Figure 5.1 Architecture of MantisTable tool.

data access components to communicate with external data sources such as DB connector
and DBpedia connector.

Figure 5.2 MantisTable interface overview: Visualization Mode (1. process, 2. console), Info Mode (3. right
side bar), Edit Mode (4. edit form).

This tool provides the following features: i) loading and storing ii) execution iii) explo-
ration, and iv) editing.

MantisTable Loading and Storing. Tables are imported and stored in a MongoDB
database. In MantisTable, a list of loaded tables is displayed on the main page (Figure
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5.3). For each table, a series of metadata is provided, such as name, date of loading, date of
last modification, which tasks have already been performed and which are being executed
thus making the user aware of the status of the annotation process. Finally, users can down-
load the annotated tables at the end of the annotation process. Through the interface it is
possible to add and load new tables (in JSON format), delete all tables of the Gold Standard
(T2Dv28 and Limaye200 [59]) and process all tables in batch. It is also possible to update or
delete every single table.

Figure 5.3 List of loaded tables on MantisTable main page.

MantisTable Execution. Having selected a table, it is possible to manage the execution
of the five phases described in Section 4.1. The user can either run all steps together or run
them step-by-step to supervise the execution.

MantisTable Exploration. It is possible to navigate all the executed steps by clicking on
each phase and analyse the results in the visualization mode (Figure 5.2 - 1. process). For all
phases, additional information about the execution is shown in the console located under the
table (Figure 5.2 - 2. console). By clicking on a header or body cell, information about the
current phase is reported in the info mode (Figure 5.2 - 3. right sidebar). Figure 5.4 shows
the final annotated table at the end of MantisTable STI process.

8webdatacommons.org/webtables/goldstandardV2.html

http://webdatacommons.org/webtables/goldstandardV2.html
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Figure 5.4 Final step of MantisTable STI process.

MantisTable Editing. Even if MantisTable implements a fully automated annotation pro-
cess, it is important to allow users to understand what has been achieved and give them
the opportunity to modify and enhance the results. The former has been achieved with the
exploration features sketched above, the latter has been accomplished by providing a widget
to edit the annotations (Figure - 4. edit mode). The annotation validation and editing require
that the user has previous knowledge about the structure of the KG. Therefore, to support the
user we integrate ABSTAT9 [94].

9backend.abstat.disco.unimib.it

http://backend.abstat.disco.unimib.it
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5.2 Validation

This section describes the evaluation of our approach. The aim of the experiments is to
evaluate the correctness of the overall approach and, separately, of each single phase. We
also compare our results with state of the art approaches. Finally, we describe STILT tool
that is used to support the evaluation of the approach.

5.2.1 Datasets

For the first part of the experiments, we use two Gold Standards: Version 2 of the T2Dv210

and Limaye200 [59].

• The T2Dv2 consists of manually annotated row-to-instance, attribute-to-property and
table-to-concept correspondences between 779 Web tables and the DBpedia Knowledge
base Version 201411. The tables originate from the English-language subset of the
Web Data Commons Web Tables Corpus12. As described in [87], during the extraction,
the tables have been classified in layout, entity, relational, matrix and other tables.
Concerning our goal, we select the relational tables because they contain information
about an entity. In particular, from the 779 tables in the Gold Standard, we select
234 tables which share at least one instance with DBpedia. The tables cover different
topics including places, works, and people. Altogether, the Gold Standard contains
234 concepts, 25119 instances and 618 property correspondences. About half of the
property correspondences refer to entity label attributes, while 381 correspondences
refer to other attributes (object as well as data type attributes). The correspondences
were created manually. Inside the T2Dv2, the tables are structured in JSON format;
the JSON also contains additional text, which represents the external context of the
respective table. The correspondences between the data in the table and the KG (the
semantic annotations) are contained in 3 CSV files, where the different types row-to-
istance, attribute-to-property and table-to-concept are respectively illustrated. The first
type annotates each row of a table to an entity within the KG; the second provides
an annotation for each attribute of the table to an ontological property; the last one
associates the whole table with a unique ontological concept.

• The Limaye200 [123] is a dataset consisting of 200 Wikipedia tables extracted from
LimayeAll [59]. For each table the types of columns (i.e. NE-column, L-column

10webdatacommons.org/webtables/goldstandardV2.html
11wiki.dbpedia.org/data-set-2014
12commoncrawl.org

http://webdatacommons.org/webtables/goldstandardV2.html
http://wiki.dbpedia.org/data-set-2014
http://commoncrawl.org/
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and S-column) are identified. For the NE-columns, annotation is provided using the
concepts in Freebase. As previously specified, MantisTable uses DBpedia as KG. For
this reason, as explained in Section 5.2.3, for each entity associated with a cell, the
corresponding DBpedia concepts were extracted. The concepts are then used as a
concept annotation for the column. In this case the tables are structured as XML.

Considering the two Gold Standards, the total number of annotated tables is 434. The
characteristics are summarised in Table 5.1.

Table 5.1 Characteristics of the Gold Standards.

Table Columns Rows Structuredness Columns Concepts Pred.total min max avg total min max avg S NE L
T2Dv2 234 1157 1 13 4 27966 5 585 119 0.92 231 - - 39 154
Limaye200 200 919 2 11 4 4036 3 102 20 0.97 200 504 216 84 -

Limaye200, compared to T2Dv2, is much smaller in terms of the total number of rows,
while the number of total columns for both Gold Standards is the same. The “Structuredness”
field indicates how many blank cells are present within tables. In particular, the Structuredness
is a weighted sum of each table’s structuredness, where the weight of each table is based on
its sum of columns and rows, normalised by the total sum of columns and rows [28].

In addition, we extend the experiments and run MantisTable on additional tables proposed
by the challenge, “Tabular Data to Knowledge Graph Matching” 13 which includes the
following tasks organised into several evaluation rounds: i) assigning a type to a column
(CTA task), ii) matching a cell to a KG entity (CEA task), iii) assigning a KG property to the
relationship between two columns (CPA task). We considered 69 tables with 120 columns to
annotate for the CTA task, 64 tables with 8418 cells to annotate for the CEA and 49 columns
with 110 pairs of columns to annotate for the CPA.

5.2.2 Evaluation Measures

To measure the effectiveness of the annotation process, we adopt the metrics proposed in
the challenge14. Precision P of the mapping between the table data and the KG is calculated
using the following formula:

P =
|PA|
|SA|

(5.1)

where a perfect annotation PA refers to the annotation returned by the STI algorithm
which corresponds to the annotation of the Gold Standard. A submitted annotation SA refers
to the annotation returned by the STI algorithm.

13www.cs.ox.ac.uk/isg/challenges/sem-tab/
14www.aicrowd.com/challenges/iswc-2019-column-type-annotation-cta-challenge

http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
https://www.aicrowd.com/challenges/iswc-2019-column-type-annotation-cta-challenge
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Recall R is calculated as follows:

R =
|PA|
|GA|

(5.2)

where the number of ground truth annotations GAs correspond to the number of anno-
tations in the Gold Standard. Finally, we combine the predefined measures through the
F-measure (F1), which represents the harmonic mean between precision and recall.

5.2.3 Experimental Settings

Approaches and implementation choices. MantisTable is evaluated against two state of
the art approaches and a baseline as follows:

1. the two state of the art approaches are [87] and [123]. The solution described in
[87] applies the T2Dv2 described above, while [123] uses Limaye200. For a detailed
description, please refer to the Section 3.2.

2. a further comparison is made with the results obtained from a Baseline semantic
annotation algorithm, defined below.

The approach described in [123] could not be directly tested, as no runnable code was
available at the time of conducting the evaluation, as reported also in [14]. The data shown
in the comparison tables have been extracted from a new implementation15.

Baseline Method. The Baseline method executes the Subject Column Detection phase
as defined for MantisTable, while it uses a different method for the Concept and Datatype
Annotation and the Predicate Annotation steps. In this case, we use the contents of the cells
to look for the corresponding entities within the KG, using a SPARQL query. The recovered
entity is the one that has a label equivalent to the exact value of the cell. Subsequently, for
the annotation of the NE-columns with a semantic concept, the candidate with the highest
number of occurrences is selected. The Predicate Annotation follows a similar procedure:
the candidate relationships are retrieved by looking for the predicate which exists between
the entities identified in the S-column, and the value/entity in the same row of the other
columns. The most frequent predicate is chosen for the final annotation.

15bitbucket.org/disco_unimib/tableminer-imp

https://bitbucket.org/disco_unimib/tableminer-imp/
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Configuration of the hardware. All experiments have been performed on a Linux ma-
chine with 2 cores (2.3 Ghz) and 8GB RAM. As KG the local replica of the online version of
DBpedia was used16.

Parameters settings. In our approach, different parameters are included. During the
evaluation we use different configurations to define the final values of these parameters; in
particular for k, relative to the number of cells to be considered during the Concept and
Datatype annotation phase. Figures 5.5 represents the variation of the precision when the k
value changes. As from the graph, the maximum Precision is obtained for a value of k equal
to 30. Regarding the thresholds γ̄ for the identification of types of columns (NE-column
or L-column) in the Column Analysis (Section 4.1.2) phase, Figure 5.6 shows the different
values of Precision and Recall. The analysis shows that at least 50% of the cells must belong
to a specific Regextype in order to consider a column as an L-column. Figure 5.7 shows the
precision for different values of δ̄ and β̄ , used for filtering candidate concepts during the
Concept and Datatype annotation phase (Section 4.1.3). The best results are obtained with
δ̄ = 0.5 and β̄ = 0.4. δ̄ . As described above, δ̄ is the threshold relating to the frequency of
a candidate type (considering different ontologies) while β̄ is the threshold relating to the
number of cells that can be associated with that particular type.

Figure 5.5 Precision of the approach when the k
value changes.

Figure 5.6 Precision and Recall of the approach
when the γ̄ value changes.

The ECF threshold (Formula 4.4) refers to the number of words in the name of the
corresponding entity. Considering the way our score is calculated, ECF will be lower if the
entity name has only one word and will be higher if the entity name is composed of two
or more words. At the same time entities with more than 2 words will get a global ECF
score similar to the one with 2 words because the context will get a higher weight. In order
to determine the best ECF threshold for entities with more than two words we analysed

16dbpedia.org/sparql

https://dbpedia.org/sparql
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Figure 5.7 Precision of the approach when the δ̄ and β̄ value change.

the worst performing table without using any threshold. The T2Dv2 table considered is
1438042986423_95_20150728002306-00329-ip-10-236-191-2_805336391_10 that is about
Swimmers and only one entity per column has a corresponding DBpedia entity. With this
analysis we determined that cells containing name and surname should both simultaneously
find a match with the corresponding entities of DBpedia in order to be accepted. Therefore,
the threshold we considered for entities composed of 2 or more word is 2.4. The best
content to test a valid threshold for 1 word entities in T2Dv2 is a column with a list of
countries (they contain 1 word cell for a great part of the columns), hence we consider table
24859353_0_7027810986004269522 that as a subject has a list of countries. In this way we
determined that all the candidate entities with an ECF score lower than 1.5 are not correctly
assigned, thus, these entities should not be considered in the process.

5.2.4 Evaluation results and Discussion

Subject Column Detection . Table 5.2 shows the evaluation of the Subject Column Detec-
tion phase. We test the MantisTable for the Subject Column Detection with four different
configurations: i) with acronym features, ii) with context match features, iii) without web
search score features, and iv) MantisTable without the first two features and with the third
one, that is the web search score. As can be noticed from the results, we outperform the
state of the art approaches [122] which use additional features such as the acronym and the
context. MantisTable (fourth configuration) provides a slightly better result than the other
approaches. However, there can still be problems to reach a precision equal to 1 as shown
by the examples in Table 5.3. In general, the problems regard the disambiguation of entities
containing unique values, or two different columns with very similar entities.
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Method T2Dv2
Zhang et al. [123] 0.87
MantisTable 0.98
MantisTable - fraction of empty cells feature 0.9444
MantisTable - fraction of cells with unique content feature 0.9401
MantisTable - distance from the first NE-column 0.9444
MantisTable - average number of words in each cell 0.93

Table 5.2 Results of the Subject Column Detection step.

Table name GS Example Topic Note
12125836_0_1134348206297032434 T2Dv2 AM 900; KALI AM; Spanish News/Talk; 747 E

Green St, Pasadena 91101; (626) 844-8882
Radio Both the frequency and the name of the

radio station are unique and have a similar
score

6310680_0_5150772059999313798 T2Dv2 Afghanistan; Afghani; AFA; 4 Currency Possible T2Dv2 error
80184932_0_4240003884724905487 T2Dv2 Diversified Industrials; 3M Co.; Solutions videos,

demo videos
Companies and
Industries

The two NE columns are very similar to
each other

Table 5.3 Problem on Subject Column Detection step.

Concept and Datatype Annotation. Table 5.4 shows the results of precision and recall
for Concept and Datatype Annotation. The table-to-concept annotations of the T2Dv2 Gold
Standard can be associated with the Concept and Datatype Annotation defined above. This
association is based on the assumption that the annotation made by the technique is considered
valid, according to the Gold Standard, if the table-to-concept annotation present for a specific
table corresponds to the concept annotation made for the subject column of the same table.
The first issue in this phase regard heterogeneous entities for which it is not possible to identify
a common and specific concept. For example, table 48456557_0_3760853481322708783
(T2D) contains animal of various species including frogs (e.g. Bullfrog), deer (e.g. Elk) and
birds (e.g. Gray Catbird). Our algorithm finds as the winning concept the one having the
greater cumulative frequency which, in the example, corresponds to the Bird concept. If
we change the parameters thus taking the general concept for this particular example, it will
provide errors with other tables for which we should take the most specific concept. Another
issue occurs when there is no corresponding entity in the KG. This is due to entities that are
not popular as shown in table 1438042989018_40_20150728002309-00067-ip-10-236-191-
2_57714692_2 (T2Dv2) containing the surnames of cricket players. As a consequence it is
not possible to identify the concept.

Method T2Dv2 Limaye200
P R F1 P R F1

Zhang et al. [123] 0.9 0.89 0.9 0.63 0.56 0.59
Ritze et al. [88] 0.89 0.88 0.89 0.51 0.26 0.35
Baseline 0.83 0.45 0.58 0.68 0.60 0.63
MantisTable 0.95 0.95 0.95 0.77 0.93 0.84

Table 5.4 Results of the Concept Annotation.
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Property Annotation. The T2Dv2 Gold Standard attribute-to-property annotations can
be traced back to the previously defined Property Annotation. Table 5.5 shows the results
of Property Annotation, respectively for the Baseline, T2K [87] and MantisTable. While
we get better results for the property annotation between two NE-columns, lower results are
provided for the property annotation between an NE-column and a L-column. As shown in
Table 5.5, all the approaches get lower results for L-columns (having numerical values). The
reason for that is that connecting correctly an entity to a literal through a predicate is not
straightforward because is necessary to have a context in order to better disambiguate literals.

Method T2Dv2
P R F1

Zhang et al. [123] 0.43 0.31 0.36
Ritze et al. [88] 0.23 0.73 0.35
Baseline 0.49 0.38 0.43
MantisTable 0.57 0.45 0.51

Table 5.5 Results of the Predicate Annotation for NE-column.

Method T2Dv2
P

Neumaier et al. [73] 0.32
MantisTable 0.16
MantisTable + Neumaier et al. [73] + schema 0.43

Table 5.6 Results of the Predicate Annotation for L-column.

5.2.5 Challenge Evaluation Results

Tasks Challenge Datasets
F1 P

CEA 1.0 1.0
CTA 0.929 0.933
CPA 0.965 0.991

Table 5.7 Results of the Challenge Tasks.

Table 5.7 shows the results of precision for the three tasks of the challenge. The main
issues faced in these tasks were: i) tables with few rows (1-2) are sometimes difficult to
be linked; this may be addressed by trying to integrate some other data sources (maybe
considering Wikidata) for the entity linking; ii) some target columns are very complex to
annotate because the cell contents cannot be directly linked to entities in the KG, so we
decided to exclude the columns that our tool identified as L-columns; iii) tables about people
with only surnames are frequently linked to homonymous entities, some specific solutions to
expand the context in this kind of situation need to be adopted.
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5.2.6 STILT tool

To support an automatic evaluation we developed STILT tool17. The STILT tool allows to
evaluate MantisTable annotations for T2Dv2 and Limaye200 Gold Standard tables. The tool
takes a JSON as input, that can be downloaded from the MantisTable tool via the download
annotation feature. The input file contains information about the tables of the Gold Standard
and the annotations that MantisTable obtained on various tables. The output returned by
STILT tool is an analysis of the results obtained by MantisTable which shows the correctness
of the annotations. In particular, it is possible to compare MantisTable annotations and those
of the Gold Standard for each table. This comparison can be done by calculating evaluation
metrics. STILT tool is developed in NodeJs and Meteor. The code is freely avaialble at a Git
repository18.

17mantistable.disco.unimib.it
18bitbucket.org/disco_unimib/ti_eval/

http://mantistable.disco.unimib.it
https://bitbucket.org/disco_unimib/ti_eval/
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Chapter 6

State-of-the-art

The ability to provide appropriate and complete API descriptions, to let users discover
services that satisfy a set of requirements and compose them to fulfil more complex needs,
is critical for the success of any modern ICT solution. Extensive researches have been
conducted with the intention to create automatic integration of Web Services and APIs.
Most of these approaches deal with making candidate APIs communicate to each other,
which is problematic because of the lack of semantic matching between input and output
data. Although implementing APIs has become common practice, meta-level API definition
and implementation have yet to be settled to widely-accepted standards [91]. To automate
the interactions between APIs, a semantics description of the exchanged data is needed.
Approaches to achieve this goal are: creating API descriptions in a logic-based language
(e.g. RDF), or linking existing descriptions to shared domain vocabularies or ontologies (e.g.
DBpedia). As the former demands expertise in logic-based languages, its adoption proved to
be limited; the latter is more approachable, and enriching existing descriptions reduces the
effort required.

There are many active initiatives to promote the creation and publication of descriptions
associated with APIs. However, a shortcoming is the lack of support to add detailed informa-
tion that qualifies the properties of them (e.g. classification of input and response data). As a
result, these formats are suitable to complete simple tasks, but inefficient in automatic API
discovery and composition due to the lack of machine processable semantics [111]. A critical
aspect is the capability of including metadata, which can be interpreted by machine agents in
a bottom up way (i.e. information structure should be in pieces to whole) [112]. In the real
world, a developer may need to compose APIs that refer, for example, to location information.
He or she may search directories such as Programmable Web1, collect descriptions, and
understand the meaning of involved terms, e.g. understand that address refers to city and

1www.programmableweb.com

http://www.programmableweb.com
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street, and latitude/longitude refer to a geographic area; but a machine agent is unable to
understand those links without a shared representation of property semantics. The use of
links to concepts in shared vocabularies allows machine agents to address the issue.

In the last decade, we have witnessed the evolution of web services models from the
WSDL/SOAP to the REST. This change is tangibly visible, for example, by searching
ProgrammableWeb2. One of the reasons for this evolution is the need to simplify the service
reference model to enhance comprehensibility and standardisation, and therefore provide
the bases for automatic management of descriptions and composition. A similar evolution is
needed in the realm of semantic web services. As a matter of facts, well-defined proposals
that deliver machine-readable descriptions, such as OWL-S: Semantic Markup for Web
Services [64], Semantic Annotation for WSDL and XML Schema (SA-WSDL) [54], Micro
Web Service Model Ontology (MicroWSMO) [51] and Semantic Annotations for REST
(SA-REST) [38], failed to become widely used mainly because of their complexity that
requires the involvement of experts.

The current description models address services accessible through API REST, and
provide meta-languages to describe services as documents based on property-value pairs.
OpenAPI Specification3, also known as Swagger4, API Blueprint5 and RAML6 are the
most representative. However, these models do not support semantic annotations to make
property-value inter-operable pairs. In this chapter, we discuss an extension of the popular
OpenAPI model, to add semantic annotations on input parameters and output properties of
services. Such annotations are compliant to the JSON-LD7 format, following the REST
philosophy in order to minimise the user involvement in many practical situations.

The availability of semantic descriptions of APIs enables the development of automatic
techniques and tools to support services composition [89]. A general definition states that
a process of composition is defined as the aggregation of different Web services into a
single compound service to perform more complex functions [91]. In this context, we refer
to information services and the mash-up of results obtained from independent services in
delivering comprehensive answers to users’ requests, or about preparing data coming from
a set of services to invoke another service. We call the former merge composition and the
latter sequence composition. Merge composition involves more services that are invoked in
parallel with the same input data, whose answers are then composed. Sequence composition

2www.programmableweb.com/apis/directory
3www.openapis.org
4swagger.io
5apiblueprint.org
6raml.org
7json-ld.org

https://www.programmableweb.com/apis/directory
https://www.openapis.org
http://swagger.io
https://apiblueprint.org
http://raml.org
https://json-ld.org
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involves a service which is invoked using input data coming from the composition of answers
from one (adaptation) or more (mash-up) services.

The goal of our project is to (semi)automatically create semantic descriptions that corre-
late properties at a semantic level to enhance inter-operability and composition by machine.
The adopted methodology is: (i) evaluate the current approaches to create API descriptions
to identify a reference format; (ii) integrate MantisTable approach 4.1 to collect sample data
from existing APIs and associate them to appropriate concepts from shared vocabularies; and
finally (iii) develop methods to support automatic composition.
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6.1 Approaches Supporting Service Descriptions and Com-
position

6.1.1 Service Descriptions

Descriptions have been classified as: functional, when they deal with provided APIs and
exchange parameters to state what a service provides and how to access it, and non-functional,
when they deal with meta information that allow potential users to understand how a given
service provides its service [57]. A further classification splits descriptions in syntactic and
semantic. The former deals with the format of calls and exchanged messages, and the latter
adds a meaning to the description terms.

The most popular syntactic description model is WSDL 2.0 (Web Services Description
Language) [15], which defines an XML format for describing Web services by separating the
abstract functionality offered by a service from concrete details such as “how” and “where”
that functionality is offered. Although it supports descriptions of both SOAP-based services,
and REST/API services, it is the de-facto standard for the former, but is rarely adopted for
the latter. The Web Application Description Language (WADL) [43] is a machine-readable
XML format that was explicitly proposed for API services. WADL was also proposed for
standardisation, but there was no follow-up.

More recently, user-friendly and easy-to-use metadata formats have been introduced,
along with editors to support developers in the creation of descriptions for REST APIs.
Among others, popular description formats are the Open API Specification (OAS)8 (also
known as Swagger specification), which provides human-readable API descriptions based
on YAML and JSON. RAML is a YAML-based language for describing RESTful APIs.
API Blueprint is a documentation-oriented web API description language, which provides a
set of semantic assumptions laid on top of the Markdown syntax. The Hydra specification,
which is currently under heavy development, tries to enrich current web APIs with tools and
techniques from the semantic web area.

The OAS is the most promising choice at the moment [105], since (i) a simple format
to specify descriptions, and (ii) a large set of vendor-neutral API tools, supported by a very
large community of active users, are provided. Such tools provide great support to almost
every modern programming languages to create and test APIs. Moreover, the Open API
Initiative is an open source project sustained by relevant stakeholders, such as Google, IBM,
Microsoft and PayPal9.

8www.openapis.org/specification/repo
9www.openapis.org/membership/members

https://www.openapis.org/specification/repo
https://www.openapis.org/membership/members
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The description formats discussed so far are mainly syntactic, which means that little
support to automate operations such as services discovery and composition, and verification
of coherence to given interaction and building patterns is provided. Although there are
many approaches proposed to enrich services descriptions with semantics, the manual work
required to create descriptions, and the lack of inter-operability standards limit their adoption.
The initial approach proposed by the semantic web community was to define a global
ontology to include model, definitions and descriptions in a coherent system that can be
used to make discovery and automatic composition. The most popular proposals are OWL-S
(Ontology Web Language for Services) [64] and WSMO (Web Service Modelling Ontology)
[89]. The major problem with these approaches is the expertise required to build and manage
such descriptions. Although some approaches have been proposed in the past to automate the
creation of descriptions [4], nobody currently uses both these approaches and descriptions.
Anyway, the knowledge gained with these semantic studies has led to the definition of simpler
and easier models that use the annotation approach introduced by hRESTS and RDFa.

Table 6.1 illustrates the characteristics of API description models with respect to the sup-
ported type of services (SOAP and/or REST), the capability of hosting semantic annotations,
the serialisation language to publish the descriptions, the availability of supporting tools, and
finally the human readability of the descriptions.

Table 6.1 Comparison of API description standards.

Description Service type Semantics Serialization Tool Human
ReadableYes/No Format

WSDL [15]
v1.1 SOAP
v2.0 REST No - XML Yes No

WADL [43] REST No - XML Yes No
hREST [51] REST No - Microformat No Yes
RDFa [2] REST No - HTML+RDF No Yes
OpenAPI Specification REST No - YAML, JSON Yes Yes
RAML REST No - YAML Yes Yes
API Blueprint REST No - Markdown Yes Yes

OWL-S [64]
SOAP
REST Yes OWL OWL No No

WSMO [89]
SOAP
REST Yes MOFa MOF No No

SA-WSDL [54]
v1.1 SOAP
v2.0 REST Yes RDF XML No No

Micro WSMO [51] REST Yes RDF RDF No Yes

SA-REST [38] REST Yes
RDF,
OWL RDF No Yes

a Meta-Object Facility

Within the Semantic Web, several existing approaches recognise the value of combining
REST services and Linked Data [53, 95, 113]. Among these, a valid alternative is represented
by Data-Fu10 [97]. Data-Fu is a data and resource-driven programming approach leveraging

10https://linked-data-fu.github.io/
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the combination of REST with Linked Data. Data-Fu enables the development of applications
built on semantic web resources with a declarative rule language. The main goal of Data-Fu
is to minimise the manual effort to develop web based applications and the preservation of
loose coupling by:

• leveraging links between resources provided by Linked Data, and

• specifying desired interactions dependent on resource states, which is enabled by a
uniform state description format (i.e. RDF).

6.1.2 Service Composition

In the last decade, the composition of services has been widely investigated without achieving
effective results for many reasons. Among others, the most relevant are the use of different
architectural styles, the unexpected evolution of services, and the use of different description
languages and different conceptual models [84]. Moreover, composition may occur at the
design stage, leading to static compositions, or at runtime, leading to dynamic composition.
The latter is best suited to address the issues in real environments that change continuously
and requires automatic tools to search for, select and compose Web services automatically.
The main issue affecting automatic composition is the limited number of available machine-
readable descriptions associated with services.

A traditional way to compose services is the use of orchestration languages, such as
BPEL (Business Process Execution Language) [118] or OWL-S (Ontology Web Language
for Services) [64], which support the manual definition of abstract processes that can be
implemented by actual services. On the other side, dynamic composition in automatic way
can be achieved by exploiting the semantic Web and the planning techniques. However, the
realisation of a completely automatic composition process is complex and presents several
issues [91]. Some approaches try to exploit the languages described above (e.g. WSDL) to
create semi-automatic composition frameworks [93]. The main problems are the missing of
semantics associated with services, and the capability of understanding the semantics even
when present.

Table 6.2 is an extension of the one presented in [105] to compare the number of questions
posed in Stack Overflow and the number of Git stars (showing appreciation to a project)
received by the four description models under study. The increasing number of available
descriptions highlights the growing popularity of descriptions, and the relevance of tools
that support the creation, publication, use and maintenance of service descriptions. The
common limitation of such models is the lack of semantic descriptions, which motivated our
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previous paper [18]. In order to be effective, we extended the most popular model, OpenAPI,
to support semantic-enabled tools for describing, discovering, and then compose APIs.

Table 6.2 Comparison of API description models.

Detail/Model API Blueprint RAML WADL OpenAPI Spec
Format Markdown YAML XML YAML, JSON
Licence MIT ASL2.0 Sun ASL 2.0

Version Format 1A
revision 9 1.0.1 31 August 2009 3.0.1

Initial commit Apr 2013 Sep 2013 Nov 2006 Jul 2011
Pricing plan Yes Yes No No

StackOverflow
Questions

2015
2016
2017
2018

88
61
40
15

153
168
174
56

86
84
74
33

13
166
319
218

Github Stars 2015
2016
2017
2018

1,819
X

5,390
6566

1,058
X

2,735
3060

N/A

2,459
X

6,360
9836

Google Search 985K 1M 486K 8M





Chapter 7

New API Description Model

7.1 AutomAPIc Approach

In this Section we describe in details the AutomAPIc approach which consists of the following
phases:

1. Semantic Description Creation, which aims to create a semantic description of API
using OpenAPI specification;

2. Composition Types and Rules Analysis, which aims to identify the possible compo-
sitions between different API.

7.1.1 Semantic Description Creation

The OpenAPI is the most promising description model since it defines a simple format to
specify descriptions supported by a broad set of vendor-neutral API tools, whose development
involves a massive community of active users. Such tools provide significant support to
almost every modern programming languages to create and test APIs. Moreover, the OpenAPI
Initiative is an open source project sustained by relevant stakeholders, including Google,
IBM, Microsoft and PayPal. There are several repositories collecting API REST described
using OpenAPI, such as SmartAPI1 and APIs.guru2.

An OpenAPI description is a YAML or JSON document that contains a list of resources
and a list of operations that can be applied to those resources. An example is provided in
Listing 7.1, which describes the Google Books API. Notice that the API is described by
name:value pairs of strings without any semantics.

1smart-api.info/registry
2apis.guru/openapi-directory/

http://smart-api.info/registry
http: https://apis.guru/openapi-directory/
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We propose to extend such descriptions by inserting annotations (i.e. links to ontology
classes and ontology properties) through the use of the JSON-LD3 format. JSON-LD provides
(i) a universal identification mechanism for JSON objects through the use of Internationalised
Resource Identifiers (IRIs); (ii) a way to disambiguate shared keys between different JSON
documents through IRIs mapping and context; (iii) the possibility to annotate the strings
with indications on the used language; and (iv) a way to associate data types with values (e.g.
dates, times).

1 "paths": {
2 "/volumes": {
3 "get": {
4 "parameters": [{
5 "name": "title", [...]
6 }],
7 },
8 "responses": {
9 "200": {

10 "schema": {
11 "title": "result",
12 "type": "object",
13 "properties": {
14 "isbn": { "type": "string"},
15 "author": { "type": "string" },
16 "title": { "type": "string" }, [...]

Listing 7.1 OpenAPI description of the Google Books API.

The union of JSON-LD and OpenAPI descriptions occurs through the introduction of the
semanticAnnotations property (e.g. Listing 7.2, line 8 and 27), which is composed of two
parts: the definition of a context, by the keyword @context (e.g. line 9 and 28), to set short
names for the reference ontologies used throughout the description; and a list of annotations
for parameters (input values) and responses (output values). Each annotation is a pair to
annotate the name, introduced by the keyword @id (e.g. line 14 and 33), and the value,
introduced by the keyword @type (e.g. line 15 and 34). Annotations are IRIs that uniquely
identify elements.

1 "basePath": "/books/v1",
2 "paths": {
3 "/volumes": {
4 "get": {
5 "parameters": [{
6 "name": "title", [...]
7 }],
8 "semanticAnnotations": { /** Input semantics **/
9 "@context": {{

10 "dbp": "http :// dbpedia.org/property/",
11 "xsd": "http ://www.w3.org /2001/ XMLSchema #"
12 },
13 "title": {
14 "@id": "dbp:title",
15 "@type": "xsd:string"
16 }
17 },
18 "responses": {
19 "200": {

3json-ld.org/spec/latest/json-ld/#basic-concepts

https://json-ld.org/spec/latest/json-ld/#basic-concepts
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20 "schema": {
21 "type": "object",
22 "properties": {
23 "isbn": { "type": "string" },
24 "author": { "type": "string" },
25 "title": { "type": "string" }
26 },
27 "semanticAnnotations":{ /** Output semantics **/
28 "@context": {
29 "dbp": "http :// dbpedia.org/property/",
30 "xsd": "http ://www.w3.org /2001/ XMLSchema #"
31 },
32 "isbn": {
33 "@id": "dbp:isbn",
34 "@type": "xsd:integer"
35 },
36 "author": {
37 "@id": "dbp:author",
38 "@type": "xsd:string"
39 },
40 "title": {
41 "@id": "dbp:title",
42 "@type": "xsd:string"
43 }, [...]

Listing 7.2 Semantic OpenAPI description of the Google Books API.

7.1.2 Composition Types and Rules Analysis

In this context, we consider the composition of information services and the interest in
mashing up results from independent services to deliver a comprehensive answer to users’
requests, or to prepare data coming from a set of services to invoke another service. We
call the former merge composition and the latter sequence composition. Merge composition
involves more services that are invoked in parallel with the same input data, and the results
are composed [75]; while sequence composition involves a service which is invoked with
input data that are coming from one (data adaptation) or more (data mash-up) services.

When dealing with automatic sequence composition, semantic compatibility needs to be
verified. In this context, semantic compatibility occurs when a semantic relationship holds
up between the semantic classes4 of output properties of an API and input parameters of
another API. In such cases, output properties can be used as input parameters, possibly after
some transformations (Figure 7.1).

Figure 7.1 Schema of sequence composition.

To evaluate semantic compatibility, we can define four rules:

Rule 1: single ontology, same concepts. If annotations refer to the same ontology, and
name/value pairs refer to the same concept, or two concepts in relation owl:sameAs,

4www.w3.org/TR/owl2-syntax/#Classes

https://www.w3.org/TR/owl2-syntax/#Classes
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then the composition is straightforward since they are compatible. If the property and
the parameter of two different descriptions contain the same semantic annotation, it
means that they are composable. This case is the simplest one since the presence of the
same annotation indicates that the property of an API and the input parameter of another
API refer to the same class. As an example, see the composition shown in Figure
7.2.1. The API 1 produces as output an object Book with one property annotated with
the concept @id: dbo:author, and the API 2 has a input parameter with the same
annotation. In this case, the Book produced by API 1 represents the same concept of
Book which is required as input from API 2, thus making the composition possible. If
the parameter and the property have been annotated with @type: xsd:string, then
of type literal, it is necessary to carry out a further check, considering the parameter
@id. If the two APIs have the same value for the @id parameter, then they are
composable.

Rule 2: different ontologies, same concepts. If annotations refer to different ontologies
(see Figure 7.2.2), we need to verify if the annotations of involved name/value pairs
are equivalent (i.e. they refer to the same ontology concepts or property). For ex-
ample, some ontologies such as DBPedia5 and Wikidata6 provide the properties
owl:equivalentProperty and owl:equivalentClass to address the issue. These
properties, however, are not supported by all ontologies, therefore some Ontology
matching [34] techniques may need to be exploited to check for compatibility.

Rule 3: single ontology, different concepts in relation to each other. If annotations refer
to the same ontology, and name/value pairs refer to different ontology concepts or
properties, then values’ compatibility need to be checked. If between the involved
concepts relations such as subclass and subproperty hold, then they may be compatible
and the composition may occur. An example is shown in Figure see Figure 7.2.3, where
the annotation @type: dbp:zipCode refers to a subproperty of dbp:postalCode.
Therefore, API 1 and API 2 are compatible.

Rule 4: different concepts not related to each other. If annotations of the name/value pairs
refer to different ontology concepts or properties in the same ontology or different
ontologies, and among these elements none of the above rules apply, compatibility
may occur after a transformation (e.g. by invoking a third-party service). For example
(see Figure 7.2.4), if API 1 returns a address, and API 2 requires latitude and longitude
values as input parameters, then a third API is needed to perform the conversion.

5dbpedia.org
6www.wikidata.org

https://dbpedia.org
https://www.wikidata.org
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Figure 7.2 Sequence composition: examples of the four compatibility cases.

As previously described, two different methods of composition have been defined: se-
quence and merge. In sequence method is the most straightforward composition mode
because it follows a linear workflow. This method happens when, all or only part of the
output of an API, it is used as input to another API. To ensure a high level of automation,
it is essential that the API output contains all the information needed to satisfy the input
requests of the second API. If this condition is not met, it is possible to invoke an additional
API that allows the conversion or integration of the data necessary to invoke the second API.
The merge method, or composition of the outputs, is more complex since the composition is
built on the outputs obtained by invoking the APIs. More precisely, the results obtained by
invoking the second API are filtered through the output obtained from the first API.

Let’s consider a use case to discuss the composition rules described above. Assume
we seek an application that helps students to retrieve information to access textbooks. The
application should provide information about different options: bookshops or e-commerce
purchase, library consultation, or free download. The composition related to this use case is
shown in Figure 7.3: we consider a process that starts with Google Books API, which gets a
title in input and delivers a full report about accessing the requested book in output.
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Figure 7.3 Example of a process of composition of the use case.

A first example of sequence composition type, is the service that collects information
about a book from Google Books API7 and calls Amazon Market API8 to check if it is
available. The Semantic OpenAPI Description of Amazon Market API is in Listing 7.3. The
semantic annotation in line 6 finds a correspondence in the description of the Google Books
API, in line 33 of Listing 7.2; in both descriptions the concept of ISBN is described with the
same semantic annotation. Therefore, the services can be composed (rule 1).

1 "get": {
2 "parameters": [{
3 "name": "IsbnItem", [...]
4 }],
5 "semanticAnnotations": {
6 "IsbnItem": {
7 "@id": "dbp:isbn",
8 "@type": "xsd:integer"
9 }, [...]

Listing 7.3 The input part of the description of the Amazon Market API.

A second example is the sequence composition of the Google Books API, the Library
API, and the Google Transit API: first the Library API is invoked to check the presence and
availability of the book, and then the Google Transit API is invoked to check the existence of
public transport to reach the library.

The composition of Google Books API and the Library API can be performed according
to rule 1, and rule 3. The annotations on line 8 and line 16 of Listing 7.4 are compatible
with the annotations in line 32 and 40 of Listing 7.2 (rule 1). The parameter on line 12 of
Listing 7.4 is compatible with the property present in line 36 of Listing 7.2 since the relation
rdfs:SubPropertyOf holds between them (rule 3).

1 "get": {
2 "parameters": [
3 { "name": "Isbn" },
4 { "name": "author" },
5 { "name": "title" }
6 ],
7 "semanticAnnotations": {
8 "Isbn": {
9 "@id": "dbp:isbn",

10 "@type": "xsd:integer"
11 },

7developers.google.com/books/
8developer.amazonservices.it/gp/mws/docs.html

https://developers.google.com/books/
https://developer.amazonservices.it/gp/mws/docs.html
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12 "author": {
13 "@id": "dbp:writen",
14 "@type": "xsd:string"
15 },
16 "title": {
17 "@id": "dbp:title",
18 "@type": "xsd:string"
19 }, [...]

Listing 7.4 Extract from the description of the Library API.

The composition between the Library API and the Google Transit API cannot be per-
formed directly because the first API returns the mail address of a library in text format, while
the Google Transit API gets geographic coordinates as input. For this reason, between the
two compositions, a third API (Google Maps geocoding API) is used to perform geocoding
(rule 4). Listing 7.5 shows the annotations of the Google geocoding API.

1 "get": {
2 "parameters": [
3 { "name": "address" }
4 ],
5 "semanticAnnotations": {
6 "address": {
7 "@id": "dbp:address",
8 "@type": "xsd:string"
9 },

10 }
11 },
12 "responses": {
13 "200": {
14 "location": {
15 "properties": {
16 "lat": { "type": "number" },
17 "long": { "type": "number" }
18 },
19 "semanticAnnotations": {
20 "lat": {
21 "@id": "dbp:latitude",
22 "@type": "xsd:float"
23 },
24 "long": {
25 "@id": "dbp:longitude",
26 "@type": "xsd:float"
27 }, [...]

Listing 7.5 Extract from the description of Google geocoding API.

Now that all the information about the different ways to get access to the textbook have
been collected, we can compose the results to deliver the requested report to the user.

Dealing with merge composition, we need to verify the semantic compatibility of at least
two different outputs (Figure 7.4).

Figure 7.4 Schema of merge composition.
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To evaluate semantic compatibility in the merge composition, we can define an additional
rule:

Rule 5: concepts as unique identifiers. If two or more descriptions share compatible con-
cepts (i.e. they are linked by properties like owl:sameAs, owl:equivalentClass,
rdfs:subClassOf, or rdfs:subPropertyOf), and these concepts uniquely identify
the represented resources (e.g. ISBN for a book, VAT ID for a company, BARCODE
for a products), then the outputs of the APIs can be merged.

The Listing 7.6 is a fragment of the Archive.org API9 description; as shown in line 10,
14, 18, respectively the annotation of the output properties, ISBN, title, author; it is possible
to observe how these properties are compatible with the response of Google Books API
(Listing 7.1). According to rule 5, the merge composition can occur if compatible properties
allow us to conclude that outputs refer to the same resources. In the use case, the ISBN can
be adopted as unique identifier for books, thus allowing composition of outputs into the final
comprehensive report.

1 "200": {
2 "Book": {
3 "type": "object",
4 "properties": {
5 "ISBN": { "type": "string" },
6 "title": { "type": "string" },
7 "author": { "type": "string" }, [...]
8 },
9 "semanticAnnotations": {

10 "ISBN": {
11 "@id": "dbp:isbn",
12 "@type": "xsd:integer"
13 },
14 "title": {
15 "@id": "dbp:title",
16 "@type": "xsd:string"
17 },
18 "author": {
19 "@id": "dbp:author",
20 "@type": "xsd:string"
21 }, [...]

Listing 7.6 Extract from the output part of the description of the Archive API.

9blog.archive.org/developers/

http://blog.archive.org/developers/


Chapter 8

AutomAPIc Tool

8.1 Architecture and Process

AutomAPIc is a comprehensive tool created to manage semantic descriptions and input/ouput
composition of services. In this Section, we concentrate on the the description editor, which
supports semi-automatic creation of semantic descriptions, and automatic composer, which
supports compatibility matching. AutomAPIc is available via Git repository1. The Figure 8.1
shows the architecture of the tool.
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Figure 8.1 Architecture of AutomAPIc tool.

It is possible to identify 6 main components: (i) Description Editor, useful for the defini-
tion and management of API descriptions in OpenAPI format; (ii) Description Annotator,

1bitbucket.org/disco_unimib/automapic-tool/

https://bitbucket.org/disco_unimib/automapic-tool/
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useful for adding semantic annotations; (iii) Composition Editor, which allows for the selec-
tion of a set of composable APIs by the user; (iv) API Connector, a component for automatic
identification of the composable APIs in relation to the composition rules described above;
(v) Ontology Connector, a component that extracts semantic relations by performing queries
to the LOD Cloud through SPARQL; (vi) Composer API, useful for the execution of the
composition previously defined by the user.

8.1.1 Getting OpenAPI Descriptions

The description process is semi-automatically managed by augmenting existing API de-
scriptions, which can be retrieved from existing repositories (e.g., ApisGuru, SmartAPI), or
created manually using the Description Editor. These descriptions are represented in JSON
or YAML format, and include all relevant information such as available HTTP operations,
the list of input parameters and output responses for each operation. The process of creating
a description is detailed in Algorithm 1.

Algorithm 1: Retrieve or create API description.
Result: API description

1 if description is available then
2 retrieve description from existing repositories and registries of services;
3 else
4 create it manually using the Description Editor;

8.1.2 Adding Semantic Annotation

If semantic annotations are missing, we need to annotate input and output data. To annotate
output data, AutomAPIc provides users with a service that collects a set of output values of
GET calls into a table and apply Semantic Table Interpretation.

Table interpretation consists of associating data with semantic concepts in an ontological
structure, within the LOD Cloud, which aims to represent the knowledge of a certain domain
through the connections that exist between these same elements. The GET method is mainly
considered since it is the most frequent. In this way API’s parameters and properties can be
managed by a computer. The code related to the Table Interpretation technique used in this
proposal is available through a Git repository2.

The input parameters are annotated differently because it is not possible to transform
the parameters into a table. AutomAPIc provides a service based on Natural Language

2bitbucket.org/disco_unimib/mantistable-tool/

https://bitbucket.org/disco_unimib/mantistable-tool/
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Processing [16] techniques. In particular the Stanford CoreNLP tools3 [63] has been adopted.
These tools provide several libraries that allow for the extraction of entities from API
descriptions, which will then be associated with concepts. The application of these techniques
on hundred descriptions from the repository APIs.guru led to the correct identification of
entities and properties for 93% of the cases. Algorithm 2 defines the process to insert
semantic annotations in API descriptions.

3stanfordnlp.github.io/CoreNLP/index.html

https://stanfordnlp.github.io/CoreNLP/index.html
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This algorithm revises and extends the one presented in [18].
Algorithm 2: Create and add semantic annotation to API descriptions.

Data: API description
Result: API description with semantic annotations

1 Detect all resources’ end-point;
2 foreach end-point do

// collect data

3 repeat
4 generate input parameters following the API description;
5 generate semantic annotation of the input parameters using NLP technique;
6 insert semantic annotation of the input parameters in API description;
7 if input parameters cannot be generated then
8 take input parameters from the user

9 invoke API with input parameters;
10 collect results;

11 until at least N results are collected; /* default N=10 */

// create tables

12 foreach results do
13 create a header row with API properties;
14 fill content-cells with values from inputs and responses;

// add semantic annotations

15 foreach tables do
16 apply MantisTable approach;
17 show table to the user;
18 if table annotation is not complete then
19 show related vocabularies and/or alternatives to the user;
20 ask the user to manually add links;

21 if the user wants to review the annotations then
22 show related vocabularies to the user;
23 let the user confirm or modify the links;

24 insert semantic annotation of properties in API description;
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8.1.3 Performing Automatic Composition

The presence of semantic annotations allows the automatic identification of the composable
APIs given a starting API. The API composer component automatically shows the compatible
APIs. The possible combinations have been previously calculated by the API connector,
through the use of SPARQL queries, in order to apply the compatibility rules (Algorithm 3).

Algorithm 3: Identification of compatibility between the APIs.
Result: Composed APIs

1 inserting a new API into the system;
2 parsing of the description;
3 extraction of semantic annotations;
4 foreach APIs do
5 creation and execution of SPARQL queries to identify the relationships between the

annotations of the APIs;
6 update the graph of possible compositions;
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8.2 Validation

To verify the validity of the composition approach we propose, we collected a set of APIs
(Table 8.1) for the creation of a benchmark with characteristics that cover all possible cases.
The chosen APIs comes from various domains, including public transport, films, books,
music and events.

Table 8.1 Validation dataset.

API Description Source
GEOCODING Converts an address into latitude and longitude Google Maps
MARINE CONDITION Forecast of marine conditions World Weather Online
WEATHER FORECAST Weather forecasts Weather Underground
PHOTOS Photos geolocated in a specific position Flickr
NEWS List of news NewsAPI
BOOK List of information about a book Google
MOVIE List of information about a film OMDb API
POI Points of interest of a city Sygic API
LIBRARY List of information about the availability of a book Opac Unimib
E-COMMERCE Information regarding the price of a product Amazon Market
FREE EBOOK Information on the presence of a free eBook Archive.org
PLAYLIST List of songs contained in a playlist Spotify
LYRICS Text of a song Musixmatch API
FLIGHTS Airport information Ryanair API
BIKE SHARING List of bicycles available City Bike
EVENTS List of events in a city EventiFul
HOTEL BOOKING List of hotels available on a specific date on a certain day HotelsCombined API
REVIEWS List of reviews of places and events TripAdvisor Content API
PUBLIC TRANSPORT List of information about public transport in a particular place Google Transit
RESTAURANTS List of restaurants in a specific city Zomato API

In a second phase the descriptions and their annotations were analyzed, to identify
the possible compositions. Through a combinatorial calculation it is possible to calculate
the maximum number of combinations. In particular, given 20 APIS, using provisions
without repetitions (since an API cannot be composed with itself), the maximum number of
compositions is 380.

Figure 8.2 List of the possible compositions.
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As shown in Figure 8.2, depending on parameters and annotations, the actual combina-
tions are twenty four. AutomAPIc was able to identify the 85% of them. Table 8.2 reports the
confusion matrix of the results, where attributes are: (i) TP: number of correctly composed
APIs, (ii) FP: number of APIs that were composed but which should not be composed,
(iii) FN: number of APIs that were not composed but that had to be composed, (iv) TN:
number of APIs that were not to be composed and were not composed. The accuracy of
the system is (T P+ T N)/Total = 0.99. Going into detail, the combinations that led to
composition failures are mainly three: weak support to manage concepts connected by the
owl:subProperty relation, incomplete relationships between ontologies (e.g. DBpedia and
KBpedia), and inaccurate semantic annotations of parameters returned by table interpretation
techniques.

Table 8.2 Confusion matrix.

Tot. = 380 Composed Not - Composed
Composed TP = 17 FP = 0

Not - Composed FN = 3 TN = 360
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Chapter 9

State-of-the-art

NLG is a “sub-field of artificial intelligence and computational linguistics that is concerned
with the construction of computer systems that can produce understandable texts in English
or other human languages from some underlying non-linguistic representation of information”
[85, 86].

NLG’s field of action is about creating a textual output that contains information from
various formats of input resources, like tables, graphs, numeric data and many others [68].
Its aim is to make the output text as indistinguishable as possible from text generated by a
human author. Modern technologies also allow more sophisticated and complex outputs, like
interactive info-graphics and conversational interfaces for chatbots. It is rather challenging to
give a precise definition of NLG, because if the output of these systems’ classes is text, the
input may vary, so we can distinguish data-to-text generation and text-to-text generation. In
the former, input data could include semantic representations, numerical data and structured
knowledge bases. Instead, examples of text-to-text generation are machine translation,
summarization or simplification of text and paraphrases generation [37].

We can classify NLG technologies in different subfields, according to different communi-
cation goals and different formats of data received as input. To understand the functioning
of NLG algorithms we must remember that, given structured data as input, there are three
logical steps to achieve output text: the first is the planning of information that we want to
express; the second is the concatenation of information in the output text; the third is the
actual expression of the designed messages.

A common practice in Natural Language Generation is dividing the process in several
sub-task, to make them more straightforward to manage. The architecture proposed by Reiter
and Dale [85] is constituted by a pipeline divided into different steps. According to [37], it is
possible to identify six primary tasks:
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• Content determination - What to say?

• Text structuring - Which is the preferable order?

• Sentence aggregation - Could some phrases be gathered together?

• Lexicalization - Through which words the information can be expressed?

• Reference expression generation - What does a word refer to?

• Linguistic realisation - How can be generated the right morphological forms?

In the following Sections, for each task, we will present a brief description and some
examples extracted from a scenario concerning the highest mountains.
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9.1 Sub-tasks of Natural Language Generation

Content Determination . As mentioned before, in the beginning of the Natural Language
Generation process we start from data (RDF). Input data is always more detailed and richer
compared to what we want to cover in the text [37]. So, one of the first aims is to filter and
choose what to say. It’s probably the most important task in this process. The content of a text
is particularly relevant to users, because they pay a lot of attention on what they’re reading. If
there are some mistakes or some linguistic form problems, readers can still understand text,
however when content is incomplete the whole meaning might not be understood [29]. In this
phase, data are filtered and abstracted to form a set of preverbal messages, often represented
in a formal language, such as logical or database languages, attribute-value matrices or graph
structures [37]. Usually, approaches are related to the domain of application. That being
said, in the last years, researchers have focused on data-driven techniques [37], a trend that
we observe in almost all the NLG task. The reason for that is that domain-dependent and
handcrafted techniques are usually more time-consuming and challenging to implement in
other domains. Data-driven approaches, when implementable, are the most elegant solution
to reduce time and to design more versatile systems. Starting from the key idea that clustering
could help to develop a content determination strategy, many authors tried to extract rules
from the comparison between text and data. Some researches used Hidden Markov Models,
a class of probabilistic graphical models that enables the prediction of a sequence of the
unknown variable from a set of existing ones. These models are used to cluster topics
together (represented as hidden states), for example, in earthquake domain [7]. Other authors
used texts paired with a knowledge base in order to understand main rules in the biography
domain. The idea behind this approach is that a system can automatically learn content
selection rules from human written corpus data: the algorithm compares desired outputs with
related semantic data in order to understand which input is relevant [29]. Often, the target
test is explicitly written to make a comparison with data, while other times researchers used
Wikipedia articles associated with metadata provided by Wikipedia itself [110]. In any case,
human written corpora helps to understand what is relevant and meaningful.

Listing 9.1 shows an example of content determination results, encoded in RDF/XML.
We are selecting some relevant information about Mont Everest, to prepare a text to describe
it.

1 <?xml version="1.0" encoding="utf -8" ?>
2 <rdf:RDF
3 xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#"
4 xmlns:rdfs="http://www.w3.org /2000/01/ rdf -schema#"
5 xmlns:dbo="http:// dbpedia.org/ontology/" >
6
7 <rdf:Description rdf:about="http:// dbpedia.org/resource/Mont_Everest">
8 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
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9 <dbo:firstAscendYear rdf:datatype="http://www.georss.org/georss/point">
10 1956
11 </dbo:firstAscendYear >
12 <dbo:moutainRange rdf:resource="http:// dbpedia.org/resource/Himalayas" />
13 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">
14 8848
15 </dbo:elevation >
16 <rdfs:label rdf:datatype="http: //www.w3.org /2001/ XMLSchema#string">
17 Mont Everest
18 </rdfs:label >
19 <rdfs:comment xml:lang="en">
20 Mount Everest , known in Nepali as ...
21 </rdfs:comment >
22 </rdf:Description >
23
24 <rdf:Description rdf:about="http:// dbpedia.org/resource/K-2">
25 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
26 <dbo:firstAscendYear rdf:datatype="http://www.georss.org/georss/point">
27 1954
28 </dbo:firstAscendYear >
29 <dbo:moutainRange rdf:resource="http:// dbpedia.org/resource/Karakoram" />
30 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">
31 8611
32 </dbo:elevation >
33 <rdfs:label rdf:datatype="http: //www.w3.org /2001/ XMLSchema#string">
34 K-2
35 </rdfs:label >
36 <rdfs:comment xml:lang="en">
37 K2 , also known as Mount Godwin -Austen or Chhogori , is ...
38 </rdfs:comment >
39 </rdf:Description >
40
41 </rdf:RDF >

Listing 9.1 Example of the output of Content Determination in RDF/XML format.

When the content determination is complete, the next step is text structuring.

Text Structuring. A clear text structure and the order of presentation of information are
critical for readers. The second phase of Natural Language Generation, so, is about the
order of presentation to the reader. There are different possible parameters to determine the
disposition, such as temporal, based on importance and based on relatedness. The application
domain may force constraints on ordering choices. For this reason, pre-defining the templates
is necessary. For example, in football, it could be useful to give a general description during
the first phase, and after the match to report events in a chronological order [107]. In neonatal
care domain, instead, specific events could be highlighted, and others could be grouped
[79]. In the history of approaches for text structuring, we can see three main stages of
developments: a handcrafted past, a Rhetorical Structure Theory (RST) stage and a more
recent Machine Learning approach. The first attempts relied on domain-dependent and
handcrafted structuring rules (called schemata, a sort of template). The advantage was that
its straightforward implementation, but it was strictly domain-dependent and could not be
extended to other fields. The second phase was based on the idea that order could arise from
relations between messages. Many authors focused on the so-called Rhetorical Structure
Theory, which uses a hierarchical structure to understand relations among parts of the text,
even though this approach is also domain-dependent and relies on specific rules. The last and
current phase of the text structuring task is based on machine learning techniques [37].
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After this phase, our data present a more clear structure and a defined order (Listing 9.1).

1 <rdf:Description rdf:about="http:// dbpedia.org/resource/Mont_Everest">
2 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
3 <dbo:firstAscendYear rdf:datatype="http://www.georss.org/georss/point">
4 1956
5 </dbo:firstAscendYear>
6 <dbo:moutainRange rdf:resource="http:// dbpedia.org/resource/Himalayas" />
7 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">
8 8848
9 </dbo:elevation >

10 <rdfs:label rdf:datatype="http://www.w3.org /2001/ XMLSchema#string">
11 Mont Everest
12 </rdfs:label >
13 <rdfs:comment xml:lang="en">Mount Everest, known in Nepali as ...</rdfs:comment>
14 </rdf:Description >

Listing 9.2 The output of text structuring for data seen in Listing 9.1.

After this step, information need to be aggregated.

Sentence aggregation. Having defined the structure and the contents, we need to group
the text blocks. The definition of this step is not always clear in literature: some authors
see it as redundancy elimination, but it could also be considered as a linguistic structure
combination. Anyway, the final aim is to have a fluid and readable text. As for the other tasks,
we observe a shift from handcrafted domain-dependent methods to the recent data-driven
approach where the comparison with corpus data allows to pinpoint linguistic rules [37].
Paralleling between the corpus of sentences and a corresponding database can make a system
learn how to aggregate, combined with grammar constraints and global rules (some examples
of this could be “which order should have the sentence” and “how many sentences should be
aggregated in a document” [6]). Recently, some authors have started to consider an automatic
acquisition of rules from text. It is interesting to note that sometimes aggregation can be
avoided to enforce emotion or comprehension through redundancy [37].

After the sentence aggregation step, our information will be structured (Listing 9.3).

1 <rdf:Description rdf:about="http:// dbpedia.org/resource/Mont_Everest">
2 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
3 <dbo:moutainRange rdf:resource="http:// dbpedia.org/resource/Himalayas" />
4 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">
5 8848
6 </dbo:elevation >
7 <rdfs:label rdf:datatype="http://www.w3.org /2001/ XMLSchema#string">
8 Mont Everest
9 </rdfs:label >

10 <dbp:highest rdf:resource="http:// dbpedia.org/resource/Himalayas" />
11 </rdf:Description >
12 <rdf:Description rdf:about="http:// dbpedia.org/resource/Himalayas">
13 <dbo:country rdf:resource="http:// dbpedia.org/resource/Bhutan" />
14 [..]
15 </rdf:Description >

Listing 9.3 The output of sentence aggregation. Note that, from the DBpedia resource “Himalayas”, we
retrieved new knowledge about the countries where it is located.

In the next phase, our data will undergo the lexicalization process.
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Lexicalisation . One of the most critical phases of NLG process is about how to express
message blocks through words and phrases. Once the content of the sentence is defined, it is
possible to convert it in natural languages. This task is called lexicalisation. This process
involves the decision of which words and phrases are to be used. It is not easy to make this
choice because a single event can be expressed in many different ways. One of the aims is the
generation of a non-repetitive text, by varying the chosen wording to express something. To
achieve this, the system can randomly select a lexicalisation option among a set of possible
solutions. There are, however, different constraints, not only the contextual ones but also
the stylistic ones: not all the possible ways to express a concept can elegantly describe
the situation in question [37]. When we deal with well-defined domains, lexicalisation can
operate on preverbal messages, directly converting concepts into lexical items. In many other
cases, however, lexicalisation encounters more difficulties. One is that it can involve selection
between semantically similar, near-synonymous or taxonomically related words. Another is
the potential vagueness which we encounter when we deal with terms indicating gradable
properties, such as adjectives like “wide” or “tall”. In this case, the system would have to
reason about the relative value of the property when the object is compared to other members
of the same class (for example “tall glass” is shorter than a “short man”) [37]. Gatt [37] notes
that many issues related to lexicalisation have also been discussed in the psycholinguistic
literature about lexical access. For years, researchers have investigated on how speakers
choose the right word to use, and when they tend to make errors, given the complexity of the
mental lexicon. It is a densely connected network and contains items with different levels of
connection between different kinds of information.

Lexicalisation will produce an output like in Listing 9.4.

1 Mount Everest belongs to the Himalayan mountain range.
2 Mount Everest rises 8848 m above sea level.
3
4 Mount Everest is the highest peak in the Himalayas.
5
6 Himalayas is located in Bhutan.
7 Himalayas is located in China.
8 Himalayas is located in Pakistan.
9 Himalayas is located in Nepal.

10 Himalayas is located in India.

Listing 9.4 Output of lexicalization process has a more human-friendly form.

This text, already understandable by humans, has to be further refined if we want to
present it in an optimal fashion.

Reference Expression Generation . To avoid repetitions, selecting ways to refer to entities
using different methods (such as pronouns, proper nouns, or descriptions) is essential.
Referring Expression Generation (REG) is defined as “the task of selecting words or phrases
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to identify domain entities” [85]. When the system needs to decide how to refer to an
entity, it needs to consider if they have already been mentioned. In this case, a pronoun can
be used to indicate the entity, but another thing that has to be considered is whether they
need to be distinguished from similar entities. If that is the case, the system performing
Referring Expression Generation has to convey enough information to allow the receiver
of the message to discriminate one entity from others of the same domain. The way by
which entity is expressed, be it with a pronoun, a name or a description, is called referential
form. In every part of the text, to choose the referential form, it is essential to identify
which is the salient entity, i.e. the one “in focus”. When the chosen form is a description,
we need to determine what is called the referential content. This can be seen as a search
through the known properties of the referent until the right combination is found. The ideal
formula is the one that will distinguish the entity from the others, following the Gricean
maxim of quantity [40], which states that speakers have to be as informative as possible
and to give as much information as is needed, but no more than that. Different algorithms
have accomplished this task in various ways. Some of them, like the one of Full Brevity
Procedure [23], conduct a thorough search through the possible description, choosing the
least number of properties that can guarantee discrimination. Others select the properties
incrementally, choosing every time the one that rules out most distractors. In this way, there is
less possibility of including no relevant information. This type of solution is implemented in
the Greedy Heuristic algorithm [23]. A third possibility is to select properties incrementally
but on the base of domain-specific preference or cognitive salience [24].

Having undergone the REG process, our output will be like in Listing 9.5.

1 Mount Everest belongs to the Himalayan mountain range.
2 It is rises 8848m above sea level.
3 It is the highest peak in the Himalayas.
4 Himalayas is located in Bhutan , China , Pakistan , Nepal and India.

Listing 9.5 The output of REG: "Mount Everest" has been replaced with anaphoras in two sentences.

Linguistic Realisation . Linguistic realisation is all about combining relevant words and
phrases to form a sentence. To perform linguistic realisation, systems need to choose an
order of constituents of the sentences. Moreover, the right morphological forms, as verb
conjugations, have to be generated, together with function words such as auxiliary verbs
and prepositions. An issue within this process is represented by the fact that output will
comprise some linguistic components that may not be present in the input (this is a case of
what is called “generation gap”) [37]. Historically, there have been different approaches to
the linguistic realisation:

• human-crafted templates;
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• human-crafted grammar-based systems;

• statistical approaches.

The templates approach is convenient when the domain of application is small. In this case,
the realisation can be relatively easy, and templates can be used to have full control over
the quality of the output, avoiding the generation of poorly grammatical sentences. Recent
versions of the template-based approach incorporate syntactic information and complex rules
for filling the gaps. Thus, these methods are becoming difficult to distinguish from more
sophisticated approaches [25]. The main disadvantage of these systems is the hand-work
required during their realisation [37]. Unlike the templates ones, grammar-based realisation
systems are general-purpose and domain-independent. These approaches make their choices
following a hand-written grammar that refers to the language under consideration. One of
the problems of this kind of approach is the difficulty to create hand-crafted rules with the
right sensitivity to context [37]. The idea at the foundation of statistical approaches is to
obtain probabilistic grammars by acquiring them from large corpora. The main advantage is
the critical reduction of manual labour and the maximisation of coverage.

With linguistic realisation, the process of converting RDF information in natural language
is finally complete (Listing 9.6).

1 Mount Everest belongs to the Himalayan mountain range and rises 8848m above sea level.
2 It is the highest peak in the Himalayas that it is located in Bhutan , China , Pakistan ,
3 Nepal and India.

Listing 9.6 The final output of NLG.

As we stated above, lexicalisation is one of the most critical and complex tasks in the
NLG process. Natural language vagueness and the need to choose the right words to express
a concept are intricate issues to manage. Analysing the state-of-the-art, we see that recent
research on this topic shows that an attractive solution in these cases is based on Machine
Learning (ML) [37]. Moreover, a recent challenge in the NLG field, launched and published
in 2017, called WebNLG [36] confirms the idea that not only we need to combine ML
methods to generate language, but we can also use KGs to enrich sentences with additional
contextual information (e.g. contextual information about a player).

9.2 Application Scenarios in Natural Language Generation

With the enormous variety of data that can be given in input to a NLG algorithm, we are
not surprised to notice many application scenarios in which a data-to-text generation can be
extremely useful. The main advantages come from the possibility to free humans of repetitive
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tasks, allowing them to focus on more specific and stimulating activities. Application
Scenarios in NLG include [37]:

• Business Intelligence: currently, there are many tools for data management and analysis,
but there is not a standardized technology that can adapt to the custom needs of
businesses. With NLG techniques, every company can autonomously interpret its data
and manage it with a practical dashboard;

• Finance and Insurance: each client is unique, he has his own needs and takes different
risks to fulfill them. With NLG, a consultant can produce an automatic generation of
the personalized report even without knowing the story of the client;

• Health and Science: in clinical contexts, NLG technologies can swiftly generate
summaries of patient information;

• Media and Entertainment: from the possibility of a personalized communication via
e-mail and in-app to the generation of a report for sports performances and results:
data-driven text generation could be a game-changer technology;

• Industry: the advantages in this field go from the generation of landing pages on
e-commerce sites to automatic report for data from IoT sensors.

After an analysis of the possible solutions that can be used for the implementation
of Natural Language Generation, the ones employing Neural Network turned out to be
particularly promising [37], in particular for the lexicalization task. Since it is a supervised
approach, however, it is necessary to create a proper training dataset. In the next Section will
be presented a review of the main state-of-the-art datasets.

9.3 Training Dataset

The dataset contains an alignment between data triples and natural language. During this
training phase, the network learns which outputs have to be associated with determined
inputs.

In Table 9.1 we can see a comparison between various state-of-the-art datasets for NLG
[33].

NYT-FB is a dataset created with alignments between New York Times articles and
Freebase data triples. New York Times corpus contains 1,855,658 articles, published between
the 1987 and June 19, 2007. In the first step for the creation of dataset, the Stanford named
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Dataset Authors Year KG Domain Corpus Unique
predicates

Aligned
Triples

Available

NYT-FB Mintz et al
2009
2011 FB News from

NYT

1.8M
sentences 258 39K partially

TAC KBP Li et al 2012 Custom News wire
and web
forums

1.7M
documents 41 122K closed

Google-RE - 2013 - Wikipedia
60K
sentences 5 60K partially

FB15K-237 Toutanova
et al

2015 FB ClueWeb
200M
sentences 237 2.7M public

Wikireadings Hawlett et
al

2016 WikiData Wikipedia 4.7M articles 884 n.a. (no
alignment)

public

T-Rex Elsahar et
al

2018 DBpedia Wikipedia 3.09M 633 11M public

Table 9.1 Comparisons between different training datasets for NLG.

entity recognizer is employed to find mentions of entities in text. Each token is classified into
four categories: “person”, “organization”, “location” and “none”. Found entities are then
associated with Freebase entries, matching entity mention phrases and the canonical names
in Freebase. The results are 39K aligned triples with 258 unique predicates, but this dataset
is prone to bias and coverage issues since the Named Entity linking used for its generation
is based on keyword matching with Freebase labels [33]. This entails that there are many
alignments for the same keyword. For example, 30.7% of the alignments are only for the
predicate “/location/country”.

TAC KBP [58] is a dataset built from a corpus of of 1.7 million documents, composed of
newswire articles, audio transcript and other miscellaneous web data, and a knowledge base,
made of 800,000 KB entries. The task of the author was to develop linguistic resources for
Named Entity Linking (NEL) system training and evaluation. The main effort is directed
towards the creation of a system able to perform cross-lingual NEL (both with English and
Chinese). Training and evaluation data are created using human annotations. Training data
are represented by sets of queries that correspond to different name mentions of people,
organisations or geopolitical entities with high levels of ambiguity. We can see some examples
in Figure 9.1.

Each query is characterized by a QueryID, a string corresponding to the name mention of
an entity, and a document containing that mention. The document constitutes an important
reference as it provides context for the disambiguation in the knowledge base, especially for
ambiguous names that could potentially refer to multiple entities. TAC KBP’s dimensions
are limited, as they contain only 41 predicates, representing 5 classes. Moreover, the dataset
is not publicly available.
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Figure 9.1 Examples of queries in TAC KBP.

Google-RE is a Google dataset created with 60K sentences from Wikipedia, manually
aligned with Freebase. It is considered high quality, but it is limited because it is labelled for
only five Freebase relations.

FB15-237 is a dataset derived from FB15K, the latter being an adaptation of the Freebase
Knowledge Graph. From FB15K, the authors of FB15-237 have removed redundant relations,
adding textual mentions derived from the ClueWeb 12 web-scale document collection [103].
The authors then realized a system of knowledge base completion, able to predict new
relations (links between entities) from a given knowledge base. In Figure 9.2 we can see an
example.

The authors employ statistical models to score the existence of any possible triple, taking
into consideration either observed features from the knowledge graph or latent features of the
triple’s three elements. In this dataset, the knowledge graph is paired with textual relations,
derived from sentence co-occurrences of entity pairs. Textual relations are represented as
full lexicalized dependency paths. After pruning, FB15-237 includes 2.74 million textual
relations, occurring in 3.9 million text.

Wikireadings is a dataset created by altering the Wikidata triples (item, property, answer).
In these triples, the subject (item) is replaced with the whole text of the corresponding
Wikipedia article. The aim of this dataset is the prediction of textual values from the open
knowledge base Wikidata, using corresponding articles on Wikipedia. An example of instance
of Wikireadings is seen in Table 9.2:
The approach exploits Recurrent Neural Networks to predict the probability that a word at a
given location is part of an answer. Although it has a large size (18 million instances), the
dataset does not contain actual alignments between text and KB triples.
One of the broader dataset is T-Rex [33]. This tool has proven to be the one that makes more
alignments (it has achieved alignment between over 3 million texts extracted from Wikipedia
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Figure 9.2 An example of relation generation in FB15-237.

Document Folkart Towers are twin skyscrapers in
the Bayrakli district of the Turkish city
of Izmir...

Property country
Answer Turkey

Table 9.2 An example of instance of Wikireadings.

and 11 million of Wikidata triples). Table 9.1 illustrates the statistics of T-Rex, compared
with other datasets.
To create the alignments, T-Rex implements a pipeline with various steps: Document Reader,
Entity Linking, Coreference Resolution, Date-Time Linker, Triple Aligner and Document
Writer (Figure 9.3) [33]. In the first phase, Document Reader, the input text (abstract of
DBpedia) is divided into sentences, for each of which the start character and the end of
sentence character are saved. Each of these pairs of integer values is called Boundary. The
second phase of the pipeline consists of the extraction of the entities present in the text. T-Rex
uses DBpedia-Spotlight [66] as a tool to search the given input text for the various entities
and link to the corresponding resource. In the Coreference Resolution phase, pronouns or in
general mentions referring to entities previously mentioned are searched for in the text. This
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Figure 9.3 The pipeline of T-Rex [33].

step uses Stanford CoreNLP co-reference resolution 1 [63]). For the fourth phase, Date-Time
Linker, entities referring to temporal expressions are extracted from the text. T-Rex also in
this case uses an external tool, the Stanford temporal tagger SUtime [63]). Triple aligners
are the main component of the pipeline. Each “Aligner” deals with aligning a set of triples
expressed in the document through their position, or using the Boundaries calculated in the
previous phases. In the last phase, Document Writer, the JSON or NIF format is used to
represent the text and the related entities and triples aligned.

From the previous comparative analysis, we can identify a series of weaknesses in
the datasets currently present in the state-of-the-art. In particular, these shortcomings are
identified: (i) low quality alignments, (ii) work on specific domains, (iii) are not freely
accessible, (iv) use of ad-hoc Knowledge Graphs. T-Rex [33] is a good resource, but presents
some problems in identifying predicates. For this reason, in the next section, starting from
the pipeline proposed in T-Rex, we hypothesised a series of improvements, in particular in
the predicate alignment part. The result is a new approach called SeaLion.

1www. rangakrish.com/index.php/2019/02/10/coreference-resolution-in-stanford-corenlp

https://www.rangakrish.com/index.php/2019/02/10/coreference-resolution-in-stanford-corenlp




Chapter 10

New Pipeline for triple-text alignment

10.1 SeAlion approach

In this section we describe in detail the SeAlion approach, which consists of the following
phases:

0. Data Preparation aims to clean Wikipedia abstract from brackets, apixes and some
characters in order to simplify the text and improve the results of next steps;

1. Entity Linking finds a group of entities that are in the processed text. Wikifier and
DBPedia-Spotlight are used to perform this task, and from their annotations we keep
the union between them;

2. Literal Extraction searches for literals using regular expressions (extracted from
MantisTable);

3. Relation Extraction finds the predicate that connects entities.

SeAlion (where the “se” and the “ali” stand for Sentence Aligner) is inspired by T-Rex
[33], described in Section 9.3. T-Rex has been considered a good starting point, and SeAlion
is an attempt to enhance and extend its results. SeAlion’s ultimate goal is to generate a
dataset that aligns natural language text with a set of structured data (RDF triples). The very
first step of the pipeline is the acquisition of text (abstract) from Wikipedia. This text has to
be processed to be usable for the following phases.

To describe each phase of the approach we consider the abstract extracted from a
Wikipedia page about the K2 mountain1 (Listing 10.1).

1wikipedia.org/wiki/K2

https://wikipedia.org/wiki/K2
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1 K2 , also known as Mount Godwin -Austen or Chhogori , is the second highest mountain
2 in the world , after Mount Everest , at 8,611 metres (28 ,251 ft) above sea level.
3 It is located on the China -Pakistan border between Baltistan , in the region
4 Gilgit -Baltistan of northern
5 Pakistan , and the Taxkorgan Tajik Autonomous County of Xinjiang , China. K2 is the
6 highest point of the Karakoram range and the highest point
7 in both Pakistan and Xinjiang. K2 is known as the Savage Mountain due to the extreme
8 difficulty of ascent. It has the second -highest fatality rate among the eight
9 thousanders. With around 300 successful summits and 77 fatalities , about one person

10 dies on the mountain for every four who summit. It is more difficult and hazardous
11 to reach the peak of K2 from the Chinese side; thus , it is usually climbed from the
12 Pakistani side. Unlike Annapurna , the mountain with the highest fatality -to-summit
13 rate (191 summits and 61 fatalities), or the other eight thousanders , K2 has never
14 been climbed during winter.

Listing 10.1 Abstract from Wikipedia page of K2 mountain.

10.1.1 Data Preparation

One of the improvements added in the new approach, when compared to T-Rex [33], is
indeed in this step of Data Preparation, which swipes off from the text unusable characters,
i.e. the ones comprised between parenthesis, not-English characters, apex, hyphens, etc. To
accomplish Data Preparation, regex are employed. An example is showed in Listing 10.1.1.
In this case, the pattern specifies to search for every round bracket or square bracket. The “|”
character in the middle of the pattern counts as a boolean OR. The “^” character defines a
negative set. This implies that, inside the pattern (for example, between a “[” and another
“]”), all characters must be matched but not the one specified after the “ ^ ” (in our example,
“]”, because that character is the one that ends the set).

1 Pattern(r ’\([^)]*\)|\[[^\]]*\] ’ , r’’)

Listing 10.2 Regex pattern used for Data Preparation in SeAlion.

In Listing 10.1.1 we can see how, continuing with the K2 example, this step returns a
cleaned, plain text, that is far more easy to process for the other forthcoming operations.

1 K2 , also known as Mount Godwin Austen or Chhogori , is the second highest mountain
2 in the world , after Mount Everest , at 8,611 metres above sea level. K2 is located
3 on the China Pakistan border between Baltistan , in the Gilgit Baltistan region of
4 northern Pakistan , and the Taxkorgan Tajik Autonomous County of Xinjiang , China.
5 K2 is the highest point of the Karakoram range and the highest point in both
6 Pakistan and Xinjiang. K2 is known as the Savage Mountain due to the extreme
7 difficulty of ascent. K2 has the second highest fatality rate among the eight
8 thousanders. With around 300 successful summits and 77 fatalities , about one
9 person dies on the mountain for every four who summit. K2 is more difficult and

10 hazardous to reach the peak of K2 from the Chinese side; thus , K2 is usually
11 climbed from the Pakistani side. Unlike Annapurna , the mountain with the highest
12 fatality to summit rate , or the other eight thousanders , K2 has never been climbed
13 during winter.

Listing 10.3 Abstract of K2 after Data Preparation step.

Data Preparation includes coreference resolution. Coreference occurs when two linguistic
expressions have the same referent. In our case, we see that the pronoun “it”, subject of the
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second sentence, is converted in its referent “K2”. In SeAlion, coreference is implemented
via API calls to external libraries, i.e. Spacy2 and CoreNLP Coreference 3. The former is
a part of the spaCy parser, and uses a neural net scoring model. The latter is a part of the
Stanford Core Natural Language Processing, a tool suite for NLP.

10.1.2 Entity Linking

After Data Preparation, the text is ready for Entity Liking. Entity Linking (EL) is also
called Named Entity Disambiguation: this term focuses on the necessity to tackle the
potential ambiguity among different possible instances [13]. Entity linking begins with Entity
Recognition (ER), the task of identifying and marking entities in the text [115]. At this point,
EL can disambiguate the entities, anchoring them to a KG identifier, such a DBpedia URI.
To perform the linking task, SeAlion uses Wikifier’s4 and DBpedia-Spotlight’s5 APIs. These
calls produce two sets of linked entities, one for each annotator. These sets will then be
intersected and a new, abstract class which will be taken into consideration for the following
steps. Once the annotation is complete, the tool’s interface (Figure 10.1) shows the results
of the process by highlighting linked entities in text. Moreover, a list at the end of the page
illustrates which annotator produced which linking, to allow a faster assessment from the
user.

Entity marked with the black circle (“S”) are found by DBpedia-Spotlight. Entity paired
with the fuchsia circle (“W) are annotated by Wikifier. In this case, the former seems to have
way more coverage.

10.1.3 Literal Extraction

Literal extraction is performed by SeAlion with the help of SUTime Date Linker6, but also
regular expressions to match geo-coordinates, URLs, Email addresses, IP addresses, ISBNs.

As we see in Figure 10.2, in our case the tool extracts different numbers, along with a
(mistaken) geocoordinate. In this case we reuse the set of regex that comes from MantisTable
(Section 4.1.2).

2spacy.io
3stanfordnlp.github.io/CoreNLP/coref.html
4wikifier.org
5www.dbpedia-spotlight.org/demo/
6stanfordnlp.github.io/CoreNLP/sutime.html

https://spacy.io/
https://stanfordnlp.github.io/CoreNLP/coref.html
http://wikifier.org/
https://www.dbpedia-spotlight.org/demo/
https://stanfordnlp.github.io/CoreNLP/sutime.html
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Figure 10.1 Results of Entity Linking in SeAlion.

10.1.4 Relation Extraction

After entities and literals are dealt with, SeAlions tries to perform predicate linking. The
base approach of SeAlion for predicate linking uses ABSTAT [94]7, a distributed tool for
calculating and exploring profiles of RDF data. ABSTAT takes a dataset and the related
ontology (in OWL8 format) as input, and produces a summary and statistics about the dataset.
The summary is composed of patterns in the form of tuples ⟨E,P,V ⟩ which represent the
presence of instances of E that are linked to instances of V via instances of P. Statistics
includes frequencies for classes and predicates that are present in patterns. After entity
linking, the classes of each entity get searched. After the class retrieval, for any couple of
classes representing subject-object instances, an ABSTAT query is done. The result is a set
of predicates between the given classes. The presence of each potential predicate is checked
in text. At the end of the list of predicates, if no correspondence is found, synonyms of them
are searched with the tool RelatedWords [98].

Let’s now imagine that we want to extract relations and information from our abstract
of K2 Wikipedia page, focusing on the first sentence only: “K2, also known as Mount
Godwin-Austen or Chhogori, at 8,611 metres above sea level, is the second highest mountain
in the world, after Mount Everest at 8,848 metres.” SeAlion’s current predicate aligner gives
this output (Figure 10.3).

7backend.abstat.disco.unimib.it
8www.w3.org/OWL/

http://backend.abstat.disco.unimib.it
https://www.w3.org/OWL/
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Figure 10.2 Results of Literal Extraction in SeAlion.

The sentence in output shows the abstraction of some entities, performed the ABSTAT
query. We see that, in this case, SeAlion fails to abstract K2 and Chhogori, even though the
former was correctly detected by entity linking. Suggested triples would therefore put in
relation “Mount Godwin Austen” and “Mount Everest”, and “Mount Everest” and the literal
8,611.

Issues with Relation Extraction. The main problem is that this approach does not take
into account the syntactic characteristics of the sentence. So, it struggles to correctly de-
termine subjects of sentences and, likewise, the subjects of triples. A critical issue is that,
without knowing the functional structure of the sentence, it is impossible to reliably distin-
guish which entities are actually put in relation, and which are not. SeAlion needs a new
approach for the Predicate Extraction step, since the results for this phase are particularly
lacking. We can note, for example, the results about these two sentences “The capital of
Andorra is Andorra la Vella, and this is the highest capital city in Europe. The official
language is Catalan, although Spanish, Portuguese, and French are also commonly spo-
ken.”. In the first one, the predicate is successfully extracted, as ABSTAT considers the
couple (Country, Populated Place) and correctly selects the relation capital. An example
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Figure 10.3 An output from SeAlion’s current predicate aligner.

of wrong alignment, though, is given by the second sentence. The found triple for it is
⟨Portuguese,o f f iciallanguage,Spain⟩. This happens despite the fact that Spain is not an en-
tity expressed in the sentence. With Spain (dbo:Country) and Portuguese (dbo:Language)
marked in the sentence, ABSTAT hypothesises that their relation has to be that the latter is the
official language of the former. We note two things in this example: the first is the incorrect
denotation of Spanish as “Spain”. The second is that the correct object of the triple is actually
not expressed in the sentence, but this system has no clue of it. From this sentence, the cor-
rect triples would be: ⟨Catalan,o f f iciallanguage,Andorra⟩ ⟨Spanish,spokenin,Andorra⟩
⟨Portuguese,spokenin,Andorra⟩ ⟨French,spokenin,Andorra⟩

A human reader, having read the previous sentences of the text, would have no problem
to infer that Andorra, even though not expressed in this particular sentence, is the (implied)
focus of the discourse. This is due to the mental processes similar to the ones that allow us to
resolve coreference. In the process of text comprehension, we form mental models that help
us to identify the element of referential expressions. The factors involved are the cognitive
salience of the element, semantic and syntactic constraints but also the so-called givenness
hierarchy [41]. According to the givenness hierarchy, the more a referent is in focus, the
less the referential expression will need to be specific. A more sophisticated system, even
if it doesn’t understand that a fundamental entity is only implied in the text, at least figures
out that something is missing. For example, in DBpedia the domain of official language is
Populated Place, while the range is Language (the domain refers to the subject while the
range refers to the object of a predicate). Given that, in the discussed sentence, no entity is a
Populated Place, it should be possible to infer that the object of the triple is not assignable,
unless we retrieve a Populated Place entity from some previous sentence.

Improving Relation Extraction. As in the state-of-the-art, good results are undoubtedly
achieved with statistical, pattern-based approaches [32]. Even though they could successfully
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align a satisfying percentage of relations, however, they have more difficulties when it comes
to gathering other information in text. The predicate extraction tool could take various
advantages also from a syntactic analysis as dependency parsing. Dependency parsing
maps a sentence to its dependency tree, extracting the functional structure of the sentence.
Dependency trees are directed trees: one of the nodes is called root, or head. The root
has a certain number of child nodes, that can have children themselves. The result is a
structure where the head node comes before all the others. Nodes are connected by functions,
that specify the relation among them. We can see, for example, that the root node in the
sentences above is represented by the verb. Dependency parsing, thus, can reveal which are
the functional relation between words and constituents, and can help to understand the role
of each part of the sentence.

In Figure 10.4 we see the dependency parsing of the sentence about K2, processed with
Stanford CoreNLP9. We observe how K2 is marked as subject, depending on the “mountain”
element via the function nsubj.

Figure 10.4 An example of how dependency parsing could help relation extraction.

K2 has a dependency that points towards the “known” verb via the function acl. This
function indicates an adjectival clause, a clause that modifies a nominal. If we make the
assumption that the verb are potential relation, we can search in the FrameNet10 a corre-
sponding entry. FrameNet is a linguistic tool provided via semantic frames, i.e. conceptual
structure for the description of entities, events and relations. The FrameNet database also
contains a huge number of lexical units, i.e. the pairing of a word with one of its meaning(s),
with annotated examples that illustrate their usage. This resource is based on a theory of
meaning called Frame Semantics [35]. According to this theory, the meanings of words
can be really understood by only having all the essential information related to the concept
expressed, as the event, the relation and the entities involved. FrameNet’s lexical units
describe every different possible realisation for any entry, with the phrase structure and the
associated semantic information. We can see how the lexical entry “known.a”, shown in
Figure 10.5, contains the information on how different semantic arguments are syntactically
realisable.

9corenlp.run
10framenet.icsi.berkeley.edu/fndrupal/

https://corenlp.run/
https://framenet.icsi.berkeley.edu/fndrupal/
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Figure 10.5 The Frame Elements and Their Syntactic Realisations for known.a in FrameNet.

In our case, we see that the Name argument for the predicate “known” is most commonly
realised with a Prepositional Phrase that begins with “as”. This information can be cross-
checked with the dependencies of “known” in the sentence: we see that “Mountain Godwin-
Austen” depends on it, via a nmod function. Its case, “as”, confirms the fact that it is the
Name element specified in FrameNet. Moreover, we can now leverage another advantage of
dependency parsing: the “conj” function, that individuates conjunctions between elements.
“Mountain Godwin-Austen”, indeed, is connected to “Chhogori” with an “or”. This can help
us to extract not only one triple, but two:

⟨K2,alternativeName,MountainGodwin−Austen⟩
⟨K2,alternativeName,Chhogori⟩
The main difficulty, here, is the lacking of a proper mapping from FrameNet and DBpedia:

we would need a system to lead back to FrameNet “known.a”, that is part of the frame
“Being_named”, to the predicate dbo:alternativeName.

Semantic information associated to FrameNet entries helps to characterise and contextu-
alise the data contained in sentences, and to exploit potentially all of them. Moreover, the
detection of incorrect alignment is facilitated, especially if we use ABSTAT. If the classes of
the two entities, detected by ABSTAT, are radically different from the ones that the hypothe-
sised predicate expects in the semantic description of the verb (e.g. the entities are concrete
objects, but the predicate only accepts abstract concepts) we can infer that something has
gone wrong.

A more linguistically deep analysis has enormous advantages. To face the complexity of
human language, complex tools need to be employed. The contribute given by FrameNet-like
knowledge base is essential. To tackle the problem of the lacking of a proper mapping
to DBpedia’s predicates, an approach that follows the idea beyond PATTY [70] could be
successful. We think that the Semantic Web needs a proper knowledge base for linguistic
realizations, to be paired with DBpedia’s predicate dataset. This knowledge base would be a
more DBpedia-friendly counterpart of tools like FrameNet. Each predicate should have its
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syntactic and semantic realisations, so that when it is found in natural text, a system would
know what to search.

Let’s see a more concrete application of this approach. For example, in a sentence as:
Julia, daughter of Julius Caesar, was born on 76 B.C.
We have to extract two triples:
⟨Julius_Caesar,child,Julia_(daughter_o f _Julius_Caesar⟩
⟨Julia_(daughter_o f _Julius_Caesar),birthDate,−76⟩
If we dependency parse the sentence, we obtain what we see in 10.6.

Figure 10.6 Dependency parsing for the sentence “Julia, daughter of Julius Caesar, was born on 76 B.C.”.

Let’s imagine that we have a knowledge base where DBpedia predicates are represented
with all their possible realisations. Among them, we will have these two (the first one for the
predicate “child” and the second one for “birthDate”):

1 NP.Person.TripleObject -(appos)-> [son/daughter] -(nmod)-> PP[of]. Person.TripleSubject
2 NP.Person.TripleSubject <-(nsubj)- VP.born -(nmod)-> PP[on].Date.TripleObject

Note that the syntax is for illustrative purpose only. This simple example illustrates
how the idea of such a knowledge base could work. The main difficulty would be in the
realisation of such a huge project. All the data contained in existing resources, as FrameNet,
VerbNet, WordNet, PropBank and many others, could be a good starting point. This would
require, though, an appropriate mapping strategy. Moreover, we should elaborate proper
method to syntactically parse the input sentence, assessing whether to use Constituency
Parse (relying on a phrase structure parse), Dependency Parsing or a combination of both.
Dependency parsing could be more efficient when it comes to extracting relations, and it
seems to be more parsimonious [46]. As we see in Figure 10.5, FrameNet works with a
phrase structure grammar, rather than a dependency grammar, and so it describes realisations
by indicating which type of phrase could be used (i.e. prepositional phrase, nominal phrase,
etc). To represent this information, this is indeed an efficient way, because it allows to swiftly
represent constituents that are groups of words that make homogeneous units.





Chapter 11

SeAlion and GazelLex Tools

11.1 SeAlion Architecture and Interface

SeAlion, a tool developed with Python and the Django framework, has been created to
manage and visualise each phase of the homonymous approach described in Section 10.1.
Figure 11.1 shows the Architecture of this tool, which is organised in three layers: the View
Layer that provides a graphic user interface to serve different types of tasks such as loading
abstracts, executing all the step of the alignment process and exploring the results of each
one; the Controller Layer that creates the abstractions between the View layer and the Model
layer, and implements all the phases of the new pipeline; and the Model Layer that manages
data access components to communicate with a DB connector.

SeAlion provides the following features: i) loading and storing ii) execution iii) explo-
ration.

SeAlion Loading and Storing. Abstracts are imported and stored in a MongoDB database.
A list of loaded abstracts is displayed on the main page. For each abstract is provided
with its URI, the date of loading and a progress bar showing the percentage of the process
completeness. Through the interface, it is possible to add and load new abstract providing
the Wikipedia URL.

SeAlion Execution. Having selected an abstract, it is possible to manage the execution of
the four phases described in Section 10.1.

SeAlion Exploration. It is possible to navigate all the executed steps by clicking on each
phase and analyse the results in the visualisation mode. In Data Preparation a comparison
is shown between the original abstract and the text after normalisation: all the removed or
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Figure 11.1 Architecture of SeAlion tool.

changed parts are highlighted; the coreference result is displayed at the bottom of the screen.
In Entity Linking, the identified entities are highlighted in the text; each provides a summary
and an image when hovered. Also, below the abstract, a list of the entities is displayed with
reference to which annotator (Wikifier or DBpedia-spotlight) has found each of them. In
Literal Extraction a list of found literal is shown. Finally, in Relation Extraction all the
predicates found along with the final RDF triples are listed.

11.2 GazzelLex Tool

In order to test our proposal, we decided to apply the techniques previously described in a
specific domain. In this section the GazelLex tool will be described (Gazette Lexicalization)
[17], a prototype that covers several steps of Natural Language Generation, in order to create
soccer articles automatically, using data from Knowledge Graphs. The project was partly
commissioned by an Italian newspaper publisher. GazelLex can be considered as a tool for
Automated Journalism; this new type of journalism uses algorithms to generate news under
human supervision. GazelLex, through the use of deep learning techniques implements a
NMT approach to generate articles (sentences) starting from data composed by RDF triples.
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GazelLex is also able to generate videos containing the images and the prominent information
of the article, and to generate audio using a speech synthesis module (Figure 11.2). To the
best of our knowledge, our prototype is the first to provide an all-in-one integrated approach
to NLG with RDF triples in the context of helping journalist in writing articles.
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Figure 11.2 The workflow of our model.

Our approach is divided into five tasks, in order to address the five classic NLG sub-
problems [37]: in the following, for each phase, implementation details will be provided.

Content Determination. To select the most relevant information, a handcrafted approach
was chosen. To select the information to bring in the final output, we traced the most used data
in soccer articles. One of the primary references was PASS, a personalised automated text
system developed to write soccer articles [107]. We took the kind of information PASS used
to fill its templates and enriched them with our data fields. So we have some entities of type
“TEAM”, “FORMATION”, “COACH” and some predicates like “injuryAt”, “yellowCardAt”,
and “violentFoulAt”1. The software used this data to create triples, that algorithms used to
write the article.

Text Structuring. Being a domain specific process, we developed a handcrafted template,
based on real articles. Aiming to get a similar output we imitated the journalist’s job in the
division of text and about information contained in each part. We also considered the text

1A list of all the entities and the attributes are available here: goo.gl/LonnQ5

https://goo.gl/LonnQ5
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structuring approach usually developed in this domain, that uses more general information
and after that a chronological order [37]. In GazelLex, it is possible to find templates ( e.g.
complete or short article) resulting from the process described above, but it is also possible
to modify them or create new ones (Figure 11.3).

Figure 11.3 Page for creating and editing templates related to Text Structuring.

Sentence aggregation In soccer data, many events could be redundant when written in
an article. If a player scores a hat trick in a match writing the same sentence about each
goal would be unpleasant to read while grouping them in a single sentence could be more
concise and coherent. This task “focused on domain- and application-specific rules” [37].
We aggregated the RDF triples defined in the preceding section to generate a group of triples
that represents the content of our news article.

Neural Lexicalization. Like we said above, we considered lexicalization like a NMT
process, converting RDF data into natural language. To achieve this aim, we used a specific
kind of neural network: LSTM [45]. Their recent success in NLG field is related to many
advantages they provide. Compared to the traditional neural network, LSTM do not have
limitations in input and output length. Furthermore, input and output are not independent,
that is a vital advantage in language generation. To predict a word in a sentence it is useful to
know and consider the previous one, and the hidden states of the network keep the memory
about what happened in previous timesteps. In this way, LSTM can combine the previous
state, the memory collected and the input, allowing dependencies to be maintained in the
long term. We experimented NMT using a now widly recognized tool for neural machine
translation2 [48]. Our neural architecture is based on a standard encoder-decoder structure

2opennmt.net

http://opennmt.net
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with 4 LSTM layers containing 200 hidden neurons on both the encoder and the decoder.
Input tokenization is based on the space character (recall that our RDF triples’ elements are
separated by spaces).

Figure 11.4 Page for the revision of the lexicalized triples.

Reference expression generation. We used different databases to avoid redundancy and
give a fluent text to the reader. Some online resources help us to create a list of possible
replacements for a team or players’ name. Using DBpedia, we can find a nickname for an
entity (Real Madrid players are also called Blancos or Merengues). Other resources we used
are Wikidata list of soccer teams nicknames and Topend Sports database.

Analysis. In the following section, we shall show some insights into our tool and on how
it works. We shall present a use case, a recent soccer match, for which the generation
process and the resulting text will be shown. The initial dataset for the training was created
manually and consists of 4387 pairs of triples and lexicalizations. We drew inspiration from
the state-of-the-art to devise the architecture of our network [36, 104]. From our primary
experiments the best performing model required two layers of bidirectional LSTM, but still,
the model suffers from some limitations (outlined in the related Section).

Use Case Exploration. To show the valid output of GazelLex, we took an example match
and generated its lexicalization. We considered the football match played by Juventus F.C.
and A.C Chievo on the 21st of January. Our application gathered data from an online provider
and converted data in a triple format. A journalist can edit settings using a form (Figure
11.4): the journalist is in charge of deciding what is worth writing in the article and how it
should appear to the end-user; we recall that we can also define templates for our articles
(Figure 11.3). The final output of this process looks like the one that is shown in Figure 11.5.
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Figure 11.5 Lexicalization of triples from the Juventus-Chivevo football match.

GazelLex, in order to improve the quality of the sentences and to obtain results as
close to the style of the journalist as possible (i.e. style transfer), cyclically re-executes the
training phase using the sentences validated by the journalist. The following is an example
of lexicalization of triples relative to the use case (Listing 11.1).

1 Paulo Dybala , assistTo , Emre
2 Emre Can , scoredAt , 44
3 Emre Can , scoredWithScore , 0 - 2
4
5 Paulo Dybala made an assist to
6 Emre Can who scored at minute 44
7 increasing the gap to 0 - 2.

Listing 11.1 Example of lexicalization.
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11.3 Current Limitations and Lessons Learned

In this section we would like to outline the current limitations of our approach and also
report a few lessons learned that might be useful for other researchers who are currently
exploring this field. One key part of the development process comes from the definition or
the selection of a good Knowledge Graph that can support the lexicalization; moreover, the
definition of the new RDF predicates is a difficult process that must be done carefully in order
to avoid errors in the next steps. Our NLG model is based on a deep learning architecture,
and thus some of the generated sentences are not well-formed owing to the structure of the
net itself. While this is a problem that has to be solved in our settings, we want to involve
the user in revising the generated text: this allows us to have a model that is more flexible
than standard pattern-based NLG, while the precision of the output can be controlled in a
human-in-the-loop setting. Regarding the configuration of our model, we have replicated
the state-of-the-art experiments (i.e. approaches explained in [36]) and we are currently
experimenting those architectures on our new dataset. The results are yet to be quantitatively
validated and they are preliminary, but they are promising. In particular, as reported by
journalists, related to the GazelLex tool, the results are quite good. In the future, we are
planning to explore various architectures and consider the use of word embeddings to solve
some of our current issues.
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Natural Language Generation from
Tabular Data





Chapter 12

Semantic Table Interpretation - Human
Side

The advent of Big Data paved the way to the development of various technologies that allow
the automatic (or semi-automatic) extraction of useful information from big quantity of data,
either in the scientific or in the business domain. Let’s suppose to have a table on the web,
and that a user wants to know the topic without wasting much time analysing it. STI can help
to generate a description for the table. The user would require, though, a software able to
convert structured data into human-readable text.

The aim of this Chapter is to assess the various possible way with which an user can
analyse a table, to finally delineate a process of selection for the data to lexicalise. A
qualitative research resulted in the creation of a corpus of well-formed relational tables, with
different domains and characteristics. These tables were then presented to a group of test
user. With the aid of eye-tracking technology, ocular movements during the execution of
some tasks were monitored.

The results of our analysis led us to the definition of a new tool, MantisTablex. Using
semantic annotation obtained from MantisTable’s approach (Section 4.1), the dataset created
thanks to SeaLion (Section 10.1), the neural network tested for GazzeLex (Section 11.2), it
is possible to generated a natural language description of table data. We will also present the
possibility to extend data to lexicalise with the use of AutomAPIc approach (Section 7.1).
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With the aim to define a process of selection of data presented in a table, in preparation
for the lexicalisation, we investigated how a user can interpreter the table. To accomplish this,
we adopted an Eye Tracker. It is a device that allows to monitor ocular movements during
the execution of a task. The studies with Eye Tracker are based on the so-called Eye-Mind
hypothesis [47], according to which there would be a direct match between gaze position
and the point on which the attention is focused. Ocular movement, thus, can reveal in a
dynamic fashion the point that receives user’s attention. According different studies, indeed,
it is possible to shift the attention without moving the gaze, but not vice versa. Fixations, in
particular, can tell us how much time the brain dedicates to the analysis of a specific object.
The registration of ocular movement, so, allows us to look into the cognitive processes of the
subject, and to know what he finds interesting, important or not very clear.

12.1 Datasets

In this section we will describe the dataset used for the analysis. We delineated three
categories: (i) Tables with concepts existing in DBpedia (ii) Tables with dynamic filters (iii)
Tables extracted from T2Dv2 Gold Standard.

Tables with concepts existing in DBpedia. In the first group we put the tables where there
was at least one NE-column that was possible to annotate with a class present in DBpedia.

Crypto-currencies: this table was found on an online post published on a blog in the
field1 and deals with a very specific topic, i.e. the implication of an attack to crypto-currencies.
It is difficult to understand from who has not a pre-existing knowledge of the field.

1www.cryptominando.it/2018/12/08/attacco-del-51-tabella-costi-stimati

https://www.cryptominando.it/2018/12/08/attacco-del-51-tabella-costi-stimati/
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Figure 12.1 “Crypto-currencies” tables with some related information.
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Fruit: this table is available on a blog about tips2 on how to improve one’s health. The
record number is 50 < x < 100, so a fairly extensive informative content. The domain takes
for granted a superficial knowledge of this topic by the average user.

Figure 12.2 “Fruit” table that show fruit’s nutritional values.

2www.dietabit.it/alimenti/frutta/

http://www.dietabit.it/alimenti/frutta/
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Food that contains water: this table3 has similar standards to the previous one, except
that the amount of triples is larger (in the range of 100 < x < 1500), thus assuming a greater
cognitive load.

Figure 12.3 Excerpt of the "Food that contains water" table, concerning data about the amount of water present
in some groceries.

3www.dietabit.it/alimenti/acqua/

http://www.dietabit.it/alimenti/acqua/
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Tables with dynamic filters. In the second group we have included a set of tables on
which it is possible to apply a filter.

America’s Top 50 Women In Tech: this table shows a ranking from the American
magazine Forbes4 about women that work in technology fields. Despite containing only 50
rows, there are several filters.

Figure 12.4 “America’s Top 50 Women In Tech” table, containing a ranking about women that work in
technology fields.

4www.forbes.com/top-tech-women-america/list/#tab:overall

https://www.forbes.com/top-tech-women-america/list/#tab:overall
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Google Play Store apps 2018: unlike the previous tables, this one is a dataset uploaded
on the platform Kaggle5, obtained through a web scraping procedure. The table contains ten
thousand apps found on Google Play Store6.

Figure 12.5 Table that contains a list of apps available on Google Play Store.

5www.kaggle.com
6play.google.com

https://www.kaggle.com/
https://play.google.com
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Tables extracted from the Gold Standard T2Dv2. The third group is made of tables
extracted from the Gold Standard T2Dv2, described in Section 5.2.1.

Montagne - T2D Goldstandard set - (14311244_0_7604843865524657408.json)

Figure 12.6 “Mountains” table that contains a list of mountains.

12.2 An Exploratory Research through Eye Tracking

The goal of this part is trying to understand how the table interpretation process works,
focusing on the type of questions that the user tries to answer and following the information
extraction process by studying the factors that affect comprehension. Some experimental
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qualitative researches have been conducted using an Eye Tracker, starting from the following
hypothesis:

• Option I: does the output text vary depending on the familiarity with the table’s domain?

• Option II: does the output text vary depending on a specific goal before dealing with
the table?

The main task was to generate a brief text that contained, according to its own view, the
most relevant information shown within the table.

12.2.1 Option I: Experts (E) – Non Experts (NE) Comparison

To perform this analysis a total of 6 people had been involved: 3 categorised as “experts”(E),
because they were distinguished by a proven interest about the topic shown within the table
and 3 people that said they were not experts in the field (NE), but that they had heard about
the topic at best. We used Tables 12.4, 12.3 and 12.6.

“America’s Top 50 Women In Tech” table: NE users focus more on images and on
women’s names, trying to recognise someone familiar. The fields about area of specialisation
and business branches are considered at a later time. A possible explanation of this phe-
nomenon might stem from the availability heuristic that occurs during the decisional process
about selecting information. This is a well-known cognitive shortcut that happens when, in
uncertain situations, we tend to overestimate the freshest information in our memory [106].
Instead, the E users behaviour is the opposite, since they focus straightaway on those latter
fields, stating that they’re performing some sort of ’mental clustering’ to investigate which
are the most prized areas. Furthermore, the expert users identify from the start how the filters
work and evaluate them.

“Food that contains water” table: In this case both groups of users, after an initial
phase of exploratory research, had struggled to identify which information were actually
important among the amount of existing fields (>1500); we didn’t infer other significant
considerations.

“Mountains” table: Similarly to the logic of Table 12.7, the NE user mostly focuses
on the identification of mountains’ names that are perceived as familiar or, as subsequently
highlighted, the ones that are considered curious or funny. The expert user regards as most
interesting the field about the first climb of each mountain, occasionally jumping towards
their names.
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Figure 12.7 Eyetracking screen comparing NE(left)/E(right) about Table 12.4.

Figure 12.8 Eyetracking screen comparing NE(left) / E(right) about Table 12.3.

Figure 12.9 Eyetracking screen comparing NE(left) / E(right) about Table 12.6.
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12.2.2 Option II: Task Oriented (TO) – Not Task Oriented (NTO) Com-
parison

6 people had been involved in this analysis too: 3 of them, called “ask - oriented” (TO) were
notified in advance what was the purpose of the information contained inside the table; the
other 3 people, called “not task oriented” (NTO), were told, like the users from the previous
analysis, just to describe the table summarising all the relevant information.

To perform this analysis we selected tables 12.1, 12.2 e 12.5.
“Cryptocurriencies” table: NTO users declared not to know very well the domain of

the table, and were able to identify the content of half of the table, either from previous
knowledge or from deduction. Their attention was focused on the individuation of familiar
terms, i.e. the first two records. TO users declared likewise not to know all the ontologies
in the table. The fact that they had to imagine a possible future purchase led them to try to
figure out what crypto-currency was more safe. Before starting to analyse the table, this users
would have bought Bitcoin or Ethereum; after the reading of the table, anyway, they were
not still so sure.

Table “Fruit”: In this case, the users’ behaviour was very similar to the one found in the
E/NE analysis with table Water. In that instance, users found difficult to compare information
and to remember the most important ones, due to the high number of records. TO users,
after a distracting phase, performed a vertical scan of the potentially useful fields, making
longer fixations and looking further on the horizontal axis, in particular on the selected fields.
They then decided to generate an intermediate output, i.e. a list of selected terms with which
they could produce, later, a summarising text. When they had been asked to explain this
behaviour, users answered that they searched for their favourite fruits in the first place, to
check then the amount of calories. This process implies a pre-existing knowledge on the
ontology in question.

Table “Google Playstore Apps 2018”: The complexity and the high quality of data has
been recognised, in this instance, by all users. Both TO and NTO users used dynamic filters
on the tables. NTO users scanned the table searching some familiar name, as in the previous
session, and then produced a list of apps to download. TO users focused the attention on
the detection of possible relations between different categories, considering them a useful
resource to assess in which field could be useful to invest.
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Figure 12.10 The comparison of Eyetracking Frame between NTO (left) and TO (right) on the Table 12.1.

Figure 12.11 The comparison of Eyetracking Frame between NTO (left) and TO (right) on the Table 12.2.

Figure 12.12 The comparison of Eyetracking Frame between NTO (left) and TO (right) on the 12.5.
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12.3 Corpus Analysis

Below are the texts produced by users relating to the table of the mountains.

1. List of the highest mountains of the Himalayas and Karakoram. Only one peak in the
Himalayas has not yet been climbed.

2. Himalayas and Karakorum are the mountain ranges with the highest mountains in the
world. The highest mountains were climbed around the middle of the 900s and never
in winter.

3. List of the 33 mountains among the highest in the world (7700mt +), of which only
one ever reached (zemu gap peak). The others were climbed in the twentieth century
for the first time.

4. In this table, there is a list of mountains with the name, height in meters, the mountain
range to which they belong and the date on which they were climbed. Analyzing the
range column, it is clear that all the mountains belong to the Himalayas or Karakoram
mountain range.

5. This table shows the 30 highest peaks on Earth. They belong to the two mountain
ranges of the Himalayas and the Karakoram. The mountains were climbed between
the 30s and 80s; the most recent is the Rakaposhi of the Karakoram mountain range.
It was climbed in 1988 and the Zemu Gap Peak, not yet climbed. The height of the
mountains ranges between 7700 meters and 8800.

6. Most of the mountains are from the Himalayas.

Most users have included numbers in their description approximated to two digits (e.g.
the years of climbing or the height of the mountains) that might suggest the difficulty of
remembering a series of more than two numbers. When asked by the moderator of these
tests what kind of descriptive text would have been useful to read before viewing the table
(or to replace it), some users replied that they prefer a text that explains the structure of the
table describing the categories, others a summary of the data inside. This division can also
be observed from the type of texts produced. No one has opted for a text to list. All users
have noticed the record where the information that differed from the rest was present, or the
only mountain ever climbed.

The experiments shown in this Section are not to be considered significant, both for the
sample size and for the methodology used. However, they allow us to set a basis for future
studies and define a first set of specifications used for the implementation of a tool described
in the next Section.





Chapter 13

MantisTablex Tool

13.1 Process

In this Section, we will describe the process that allows us to obtaining the representation
in natural language of data in the tables. In order to make the individual steps clearer, we
consider the table of mountains1, described in Section 4.1.

The input of the process is the data present in the table and the annotations obtained
through the MantisTable approach (Figure 13.1).

dbo:eleva�on

dbo:mountainRange

dbo:firstAscentYear

georss:point

Figure 13.1 MantisTablex input example.

With MantisTablex, we can identify two ways of selecting the data in the table: (i) single
row and (ii) multiple rows. In the first case, the system lexicalises the single line. In the
second, it provides a higher-level description of the elements present in the columns. Con-
cerning this second mode, the output varies according to the level of background knowledge

1T2D table index: 14311244_0_7604843865524657408 - webdatacom-
mons.org/webtables/goldstandardV2.html

http://webdatacommons.org/webtables/goldstandardV2.html
http://webdatacommons.org/webtables/goldstandardV2.html
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of the user on the table domain. As seen in the previous Section, for the generation of a text
dedicated to an expert user, the columns on the right are more taken in consideration. If the
user is inexperienced, the columns on the left will be considered.

In the Listing 13.1 the triples extracted in relation to the selection by row are reported.
With regards to the selection of multiple lines, in the Listing 13.2 it is possible to view the
triples for the production of a text intended for an expert user, while in the Listing 13.3,
triples for a not expert user.

1 <?xml version="1.0" encoding="utf -8" ?>
2 <rdf:RDF
3 xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#"
4 xmlns:dbo="http:// dbpedia.org/ontology/"
5 xmlns:georss="http: //www.georss.org/georss/">
6
7 <rdf:Description rdf:about="http:// dbpedia.org/resource/Mount_Everest">
8 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
9 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">

10 8848
11 </dbo:elevation >
12 <dbo:mountainRange rdf:resource="http: // dbpedia.org/resource/Himalayas" />
13 <dbo:firstAscentYear rdf:datatype="http://www.w3.org /2001/ XMLSchema#gYear">
14 1953
15 </dbo:firstAscentYear >
16 <georss:point >27.988055555555555 86.92527777777778 </georss:point >
17 </rdf:Description >
18 </rdf:RDF >

Listing 13.1 Selected triples in single-row selection mode.

1 <?xml version="1.0" encoding="utf -8" ?>
2 <rdf:RDF
3 xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#"
4 xmlns:dbo="http:// dbpedia.org/ontology/">
5 <rdf:Description rdf:about="http:// dbpedia.org/resource/Mount_Everest">
6 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
7 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">
8 8848
9 </dbo:elevation >

10 <dbo:firstAscentYear rdf:datatype="http://www.w3.org /2001/ XMLSchema#gYear">
11 1953
12 </dbo:firstAscentYear >
13 </rdf:Description >
14 <rdf:Description rdf:about="http:// dbpedia.org/resource/K2">
15 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
16 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">
17 8611
18 </dbo:elevation >
19 <dbo:firstAscentYear rdf:datatype="http://www.w3.org /2001/ XMLSchema#gYear">
20 1954
21 </dbo:firstAscentYear >
22 </rdf:Description >
23 <rdf:Description rdf:about="http:// dbpedia.org/resource/Manaslu">
24 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
25 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">
26 8156
27 </dbo:elevation >
28 <dbo:firstAscentYear rdf:datatype="http://www.w3.org /2001/ XMLSchema#gYear">
29 1956
30 </dbo:firstAscentYear >
31 </rdf:Description >
32 <rdf:Description rdf:about="http:// dbpedia.org/resource/Nanga_Parbat">
33 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
34 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">
35 8124
36 </dbo:elevation >
37 <dbo:firstAscentYear rdf:datatype="http://www.w3.org /2001/ XMLSchema#gYear">
38 1953
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39 </dbo:firstAscentYear >
40 </rdf:Description >
41 </rdf:RDF >

Listing 13.2 Selected triples for expert users in multi-row selection mode.

1 <?xml version="1.0" encoding="utf -8" ?>
2 <rdf:RDF
3 xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#"
4 xmlns:dbo="http:// dbpedia.org/ontology/">
5 <rdf:Description rdf:about="http:// dbpedia.org/resource/Mount_Everest">
6 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
7 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">
8 8848
9 </dbo:elevation >

10 <dbo:mountainRange rdf:resource="http: // dbpedia.org/resource/Himalayas" />
11 </rdf:Description >
12 <rdf:Description rdf:about="http:// dbpedia.org/resource/K2">
13 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
14 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">
15 8611
16 </dbo:elevation >
17 <dbo:mountainRange rdf:resource="http: // dbpedia.org/resource/Karakoram" />
18 </rdf:Description >
19 <rdf:Description rdf:about="http:// dbpedia.org/resource/Manaslu">
20 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
21 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">
22 8156
23 </dbo:elevation >
24 <dbo:mountainRange rdf:resource="http: // dbpedia.org/resource/Himalayas" />
25 </rdf:Description >
26 <rdf:Description rdf:about="http:// dbpedia.org/resource/Nanga_Parbat">
27 <rdf:type rdf:resource="http:// dbpedia.org/ontology/Mountain" />
28 <dbo:elevation rdf:datatype="http: //www.w3.org /2001/ XMLSchema#integer">
29 8124
30 </dbo:elevation >
31 <dbo:mountainRange rdf:resource="http: // dbpedia.org/resource/Himalayas" />
32 </rdf:Description >
33 </rdf:RDF >

Listing 13.3 Selected triples for non-expert users in multi-row selection mode.

Once the triples are collected, the user has the possibility to edit the groups of triples
to lexicalise. Each group will result in the creation of a sentence. In the case of multi-line
selection, the system will take care of performing two types of aggregations. If the object of
the extracted triples contains the same value, after the lexicalization, the generated sentences
will be appropriately aggregated. If the object contains a literal, we have defined several
rules about the RegexType (Section 4.1.2). For numerical values, the data is first reworked
according to the classic number aggregation functions (e.g. min, max, avg). This leads to the
definition of a further triple which will then be used for the generation of a text containing
the aggregate data. Please refer to the next section for an example. Currently, MantisTablex
only supports aggregations on numbers. The development of a coordinate value management
component is underway. As discussed in Section 10.1, the lexicalisation employs NMT.
In particular, a neural network has been implemented using the framework OpenNMT2.
Listing 13.4 shows the configuration of the network, according to the parameters defined in
OpenNMT.

2opennmt.net

http://opennmt.net
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1 -data data
2 -save_model model -mantistablex
3 -layers 2
4 -rnn_size 200
5 -dropout 0.2
6 -epoch 50

Listing 13.4 Configuration of the neural network.

From our primary experiments we noted that the best performing model required two
layers of bidirectional LSTM [44]. LSTM is a variant of RNN; it adds a way to carry
information across many time-steps. For this reason is a good layer to generate token
sequences. A dropout was also included in the model. Dropout is one of the most effective and
most commonly used regularisation techniques (to prevent overfitting) for neural networks
[96]. Dropout, applied to a layer, consists of randomly dropping out (setting to zero) a
number of output features of the layer during training. The dropout rate is the fraction of the
features that are zeroed out. In this case, after a series of empirical tests, it was set at 0.2.

13.2 Architecture and Interface

MantisTablex is a web application developed with Python3 and the Django framework4. A
MongoDB5 database acts as table and KG repository. The code is freely available through a
Git repository6.

Figure 13.2 shows the modular architecture of MantisTablex, which is organised in three
layers: the View Layer that provides a graphic user interface to serve different types of tasks
such as storing and loading tables, storing and loading the semantic annotations, executing
the lexicalization steps; the Controller Layer that creates the abstractions between the View
layer and the Model layer, and implements all the lexicalization steps; and the Model Layer
that manages mainly data access components to communicate with external data sources
such as DB connector.

This tool provides the following features: i) loading and storing ii) execution iii) visuali-
sation.

MantisTablex Loading and Storing. Tables are imported and stored in a MongoDB
database. In MantisTablex, a list of loaded tables is displayed on the main page. For
each table, a series of metadata is provided, such as name, date of loading, date of last

3www.python.org
4www.djangoproject.com
5www.mongodb.com
6bitbucket.org/disco_unimib/mantistablex-tool.py

https://www.python.org/
https://www.djangoproject.com/
https://www.mongodb.com/
https://bitbucket.org/disco_unimib/mantistablex-tool.py
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Figure 13.2 Architecture of MantisTablex tool.

modification. Through the interface it is possible to add and load new tables (in JSON
format), load annotations for a table, and process a table.

MantisTablex Execution. After selecting a table, it is possible to manage the execution
the lexicalization process.

MantisTablex Visualization. In the final step process all the triples the tool provides are
listed: it is possible to reorder or remove them to change the final result. All the removed
triples will not be taken into consideration in the lexicalization process but can be added
again in a second moment. An example of the interface when a single row is selected is
shown in Figure 13.3, while Figure 13.4 represents a multi-row selection scenario with low
familiarity with the table domain.
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Figure 13.3 MantisTablex interface: triples selection and summary preview for single-row selection mode.

Figure 13.4 MantisTablex interface: triples selection and summary preview for multi-row selection row, low
familiarity.
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Chapter 14

Conclusions

One of primary objectives of this thesis was to define a method that makes tabular data more
accessible, either by a human being or by a machine. To reach this aim, we decomposed it
in sub-tasks: (i) define a new approach to semantically annotate tabular data; (ii) define a
method to extend this data; and (iii) define a method to make semantic data more accessible
and understandable by a human being.

For the first sub-task, we outlined a new STI pipeline, extending some techniques in
the state-of-the-art, as for example the pipeline proposed by [123], the approach to identify
column typology proposed in [87] or the approach for numeric dataset described in [73].

The resulting approach enhances the state of the art approaches, since it: (i) provides
a comprehensive solution to support all annotations steps; (ii) provides an unsupervised
method to annotate independent tables; (iii) generates context for disambiguation; and (iv)
provides the MantisTable tool to support STI workflow and the STILTool tool to support the
evaluation by providing validation indicators. Both tools are open and available.

The STI approach implemented in MantisTable has been deeply tested and validated –an
activity which is still ongoing– to identify weaknesses. The first validation was conducted
against the state-of-art Gold Standards, which are characterised by some problems, as the
small number of tables, incomplete annotations (as they consider only Subject columns) or
wrong annotations. A second, ongoing, validation led us to participate into the Semantic
Web Challenge on Tabular Data to Knowledge Graph Matching1. The final tests show that
MantisTable outperforms all baselines: on the two most different datasets covering multiple
domains and different table schemata, it significantly improves subject identification, concept
and datatype annotation and finally property annotation for NE-column.

As a second achievement of this thesis, we propose an extension of the OpenAPI spe-
cification to support the semantic annotations of services descriptions and therefore the

1www.cs.ox.ac.uk/isg/challenges/sem-tab/

https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
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automatic composition of services. The goal is to help users without specific skills to manage
semantics annotations, thus encouraging the delivery of semantically annotated descriptions.
For this reason, two solutions have been proposed. For the annotation of input parameters,
the use of Natural Language Processing (NLP) techniques has been presented, while for the
annotation of output properties has been suggested the use of MantisTable. The approach has
been implemented in AutomAPIc tool. The validation of the proposal through a subset of
real APIs has underlined how the use of semantic annotations and the definition of a set of
composition rules leads to an effective support to the composition of APIs, even if further
development is necessary to improve both precision and recall.

The last achievement of this thesis is the definition of a lexicalisation process of tabular
data, potentially extended with the data from APIs. Approaches that try to integrate deep
networks and text generation are now common in literature, thanks to their excellent ability
to generate texts. However, the use of these techniques involves a training phase through
the use of a training dataset. Whilst in state-of-the-art it is possible to find different training
datasets, our analysis showed that they were unfit for our objectives. For this reason, we
developed SeaLion, a tool for triple-text alignment. To test the alignment approach, as well
as the deep learning technique, we focused on a specific domain, i.e. automated journalism.
With GazelLex, we showed an application related to the soccer domain, but the principles and
the methodologies described are general, and they can be used in other fields (e.g. finance,
weather reporting). We strongly believe that these tools can greatly help journalists in their
daily activities (e.g. investigation, fact checking), leaving high effort, but low value tasks to
computers. The current prototype should be considered a first step towards this automated
process and the achieved results are surely promising.

14.1 Future Directions

The work presented in this thesis opens up several directions for future research.
The MantisTable approach, as shown in the evaluation Section, produces good results, but

it still has some limitations. Our main goal is to improve the results using the analysis obtained
with STILTool and the results of the Challenge. The STILTool allows the identification of
tables that are critical and thus what needs to be improved. From the tables analysed for
the Challenge, we already identify issues –failures or incorrect annotations– with tables
containing entities belonging to different classes.

We are already making some revisions, such as the use of external resources to improve
the content’s disambiguation within each cell during the Concept Annotation phase. During
the analysis of the Gold Standard datasets, we noticed how some columns have non-annotable
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elements, and detected the presence of tables with an incorrect structure (e.g. presence of
multiple headers, different number of columns in the same table).

Another limit of MantisTable is about property annotation; the main issue is the difficulty
to create a context to support disambiguation. In this case, also, we are developing tech-
niques to resolve this shortcomings, achieving disambiguation via external sources, possibly
employing other KGs.

We will further maintain and enhance the interface of MantisTable, for example by
adding features to support the user when editing annotations. The involvement of users is
fundamental for tuning up the final results. To support the annotation of huge tables we are
developing a clustered version to deploy the tool in different nodes. Furthermore we are
building a new Gold Standard that will provide high quality annotations especially for huge
tables, so that we can also test the performance of the tool.

Relating to AutomAPIc, future work will go in that direction to consolidate the tool,
along with fully integration with the Swagger interface2. In addition, a user-centric evaluation
is planned in order to verify the ability of users to manage this new type of descriptions with
semantic annotations. Finally, to enhance the automation of the entire process, we will study
how to capture and model the user requirements.

Data are becoming more and more important for our lives and for our societies. Semantic
Web promises to take a crucial role in this matter, but its exploitation is not still optimal.
It is fundamental that humans have comfortable ways to interface with them. The more
natural and rapid way for this is language, as it is the foundation of human communication.
If this communication will be fully realised, future systems will destroy the last barrier still
standing between humans and machines. The analysis presented in Section 10.1.4 describes
the alignment task extensively and illustrates a possible new approach, respectful of the
features, the structures and the functions that language evolved in thousands of years. It is
however to be considered a starting point; as described above, it is necessary to investigate
a way to create a knowledge base where DBpedia predicates are represented with all their
possible realisations. This new resource could offer the opportunity to have a large number
of good quality triple-text alignments.

As indicated a valid alternative to LSTM neural networks is represented by the new
language representation models (e.g. BERT and GPT-2). However, introducing BERT to
NMT is non-trivial, directly using BERT in NMT does not always yield promising results,
especially for the huge datasets. As in many other NLP tasks, it is possible to use BERT
as the initialisation of NMT encoder, or even directly replace the embedding layer of the
encoder-decoder framework with the BERT embeddings. This does work in some scenarios

2swagger.io/tools/swagger-ui/

https://swagger.io/tools/swagger-ui/
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with small datasets, but hardly gives encouraging results in high resource NMT benchmarks
(e.g. WMT183 or WMT194, , which always refer to large-size parallel datasets for training.
Furthermore, that way to use a pre-trained model leads to remarkable improvements without
fine-tuning, but gives few gains in the setting of fine-tuning in a resource-poor scenario [30].
While the gain diminishes when more labelled data become available. For these reasons, the
use of Language Model (LM) within NMT scenarios is not immediate [119]. It is necessary
to investigate new best practices on the use and integration of LM within machine translation
techniques, in particular, to avoid the catastrophic forgetting problem (too much updating
in training make the LMs forget its universal knowledge from pre-training) [39] in large
datasets.

Regarding our lexicalization solution of the RDF triples, we have achieved good results
in a specific domain (i.e. journalism). However, it is necessary to extend the evaluation
of the models by considering more general domains and evaluation metrics present in the
state-of-the-art (e.g. BLEU [61], ROUGE [60], METEOR [5]) .

In conclusion, in this thesis, the journey that allows data in a table to be “understood”
both by a machine and by a human was described. The proposed solutions still have some
weaknesses and be considered a starting point for future projects. However, the initial goals
of the present work has been achieved as demonstrated by the extended validation phase
that involved both gold standards and datasets of the “Tabular Data to Knowledge Graph
Matching” challenge.

3http://www.statmt.org/wmt18/parallel-corpus-filtering.html
4http://www.statmt.org/wmt19/parallel-corpus-filtering.html
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