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When you find yourself, in a morning, averse to rise, have this
thought at hand: I arise to the proper business of a man: And shall I
be averse to set about that work for which I was born, and for which

I was brought into the universe? Have I this constitution and
furniture of soul granted me by nature, that I may lie among
bed-clothes and keep myself warm?

— Marcus Aurelius Antoninus Augustus, Meditations

Study hard and all things can be accomplished; give up and you will
amount to nothing.

— Yamaoka Tesshu

Dedicated to all the people that have helped me during these years
of study. I love you all.






ABSTRACT

One of the main goals of artificial intelligence is understanding how
intelligent agent acts. Language is one of the most important media
of communication, and studying theories that can account for the
meaning of natural language expressions is a crucial task in artificial
intelligence.

Distributional semantics states that the meaning of natural lan-
guage expressions can be derived from the context in which the ex-
pressions appear. This theory has been implemented by algorithms
that generate vector representations of natural language expressions
that represent similar natural language expressions with similar vec-
tors.

In the last years, several cognitive scientists have shown that these
representations are correlated with associative learning and they cap-
ture cognitive biases and stereotypes as they are encoded in text cor-
pora. If language is encoding important aspects of cognition and our
associative knowledge, and language usage change across the con-
texts, the comparison of language usage in different contexts may
reveal important associative knowledge patterns. Thus, if we want to
reveal these patterns, we need ways to compare distributional repre-
sentations that are generated from different text corpora. For example,
using these algorithms on textual documents from different periods
will generate different representations: since language evolves during
time, finding a way to compare words that have shifted over time is
a valuable task for artificial intelligence (e.g., the word "Amazon" has
changed its prevalent meaning during the last years).

In this thesis, we introduce a corpus-based comparative model that
allows us to compare representations of different sources generated
under the distributional semantic theory. We propose a model that is
both effective and efficient, and we show that it can also deal with
entity names and not just words, overcoming some problems that fol-
low from the ambiguity of natural language. Eventually, we combine
these methods with logical approaches. We show that we can do log-
ical reasoning on these representations and make comparisons based
on logical constructs.
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INTRODUCTION

Artificial intelligence (AI) can be defined as the field that studies the
synthesis and analysis of computational agents that act intelligently [102].
An agent is something that acts and a computational agent is an agent
whose action can be explained in terms of computations [102]. One of
the main goals of Al is understanding the principle of intelligent be-
havior. There are many currents in Al, but two of them have been
influential to the development of computational agents in the last
decades, Knowledge Representation (KR) and Natural Language Process-
ing (NLP). Knowledge Representation has the objective of defining
models that can be used to structure information and uses logic as
its main foundation. Key property of logic is inference: starting from
structured information, new information can be inferred with the use
of deductive, inductive or abductive reasoning methods. In order to
structure information, artificial languages have been defined. These
languages contain symbols that are used to refer to real-world indi-
viduals. One now widely adopted method for KR is the Knowledge
Graph (KG), a knowledge abstraction model in which entities (e.g., in-
dividuals like Barack Obama, the city Honoluluy, etc...) are connected
by relationships (e.g., Barack Obama, birth Place, Honolulu). The suc-
cess of these methods inspired people from the computational linguis-
tic community to use artificial languages to treat natural language
properties; for example, natural language inference studies the ways
in which one sentence is a consequence of other sentences using logi-
cal approaches.

While NLP employed with success artificial languages, from the
'50s a new theory of language, called distributional semantics, started
to get the attention of linguists. This theory roughly states that the
meaning of language expressions can be inferred from their usage
in natural language (e.g., the words “cat” and “kitten” are used in
similar contexts). In the last years, with the advent of algorithms able
to process large amounts of data, algorithms based on distributional
semantics have been widely employed in NLP. These algorithms cre-
ate a vector based representation of linguistic items and have been
effectively applied to different tasks such as natural language infer-
ence [26], word similarity [100], natural language generation [136],
question answering [149]. Part of this success is also due to the re-
cent growth in popularity of deep learning approaches [54] that can
now ingest a large amount of data and have outperformed other algo-
rithms in several tasks. The success of these methods got the attention
of researchers in the KR field that started to use these algorithms to
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generate vector representations of structured information [25, 126].
More recently, approaches that learn to combine reasoning and neu-
ral networks have been proposed [114], this last family of approaches
is usually called neuro-symbolic [48].

1.1 BACKGROUND

Vector representations of words and entity names [25, 93]) have been
widely adopted as approaches in knowledge representation. In these
representations, knowledge is encoded into dense vectors with the
general aim of representing elements that are deemed to be similar
with similar vectors (i.e., similar entities should be represented with
close vectors).

Representations that are based on distributional semantics can be
generated from textual documents by considering the co-occurrence
of elements in text [92]. These representations are contextual in a sense
that they use information that comes from the usage of language ex-
pressions in textual documents to derive the representations. These
representations have got much attention in the literature and have
been applied to different tasks [6, 26, 37, 73, 100, 109, 120, 136, 145,
149]. Word2vec [93] is an out-of-the-box algorithm that efficiently gen-
erates vector representations of words; these representations are also
called word embeddings. The introduction of wordavec had a great
impact in the Al community. These representations capture intrin-
sic properties of languages thus offering the possibilities of solving
propositional analogical reasoning task with words (e.g., “Rome” is
to “Italy” as ? is to “France”) and of evaluating the similarity between
words. However, distributional semantic based representations do not
allow structured logical reasoning in the same way KR approaches
do.

These text-based representations have been found to be correlated
with associative learning by psychologists [77] and there is evidence
that these representations encode bias and stereotypes that are typi-
cally present in text [27]. Thus, studying how this kind of represen-
tations mutate is a valuable task for artificial intelligence. Moreover,
since these representations capture bias coming from context, repre-
sentations generated from different contexts will be different. For example,
in the "50s, people used words in a way that is different from how we
use them now; we can think of the word “amazon” or the word “gay”
in the fifties (i.e., temporal context). At the same time, an English
speaker and an American speaker might use different terms to refer
to the same object (e.g., lift/elevator) or use the same term to identify
different things, for example the word “football” can be interpreted
as two completely different sports (i.e., language context).

As we said in the last years, several cognitive scientists have shown
that these representations are correlated with associative learning and
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they capture cognitive biases and stereotypes as they are encoded in
text corpora. If language is encoding important aspects of cognition
and our associative knowledge, and language usage change across
the contexts, the comparison of language usage in different contexts
may reveal important associative knowledge patterns. Thus, if we
want to reveal these patterns, we need ways to compare distributional
representations that are generated from different text corpora.

Different approaches have been introduced to study and compare
these representations [5, 6, 27, 49, 52, 145], but there is currently no in-
tegrated framework that allows to effectively compare corpus-based
representations that come from different sources. Moreover, these
frameworks analyze language expressions that are ambiguous: us-
ing entity names in place of words in the representations can better
characterize the problem. Eventually, once we represent entity names,
we can use logical reasoning, via a method that deals with vector
representations, to logically compare different representations.

In this thesis, we present a framework to compare distributional
representations of words, entities, and types. This framework pro-
vides means of aligning representations that come from different cor-
pora and to compare them by looking at semantically similar words
and effectively computing the similarities. On top of this framework,
we show that we can use a neuro-symbolic system (i.e., a system that
combines symbolic logic and neural networks) to provide support for
logical inferences over different vector spaces.

1.2 MOTIVATIONS

Different people have different representations of the world and this
is reflected in the way they speak and write. As we said before, lan-
guage evolves during time. Two examples of this kind are the entity
name “dbr:Amazon” or the word “apple”: the entity was once less
ambiguous but the advent of the company brought us ambiguity in
the usage of the symbol “amazon”, the same has happened with the
word apple. The same problem happens also across different parti-
tions of the same language, English vs American (e.g., lift/elevator).
Comparing different representations of language becomes important
to understand how language evolves across time [73] and to map lan-
guage differences. Moreover, distributional representations lack the
possibility of defining reasoning methods that are proper of logical
languages.

Caliskan et al. [27] have found that word representations that are
currently used in artificial intelligence are biased towards different as-
pects and some of them are critical like race and gender. This means
that when we use algorithms we might include bias without being
aware of it. It is important to find way to understand, compare and
evaluate the representations and how they evolve: think for example



INTRODUCTION

of an algorithm that use word representation to suggest possible can-
didates for a new job position: we do not want these algorithms to be
biased towards race and gender, but we want them to focus on the
specific aspects that we want to evaluate.

1.3 PROBLEM STATEMENT

Recently introduced algorithms [93] allow us to consider textual doc-
uments and generate vector representations of words by considering
word-context co-occurrences; these algorithms are based on the dis-
tributional hypothesis that states that similar words appear in sim-
ilar contexts. These algorithms try to create similar vectors for sim-
ilar words. A simple way to study these differences in language is
to generate different vector representations for different corpora, but
this does not allow to compare all the different representations: while
neural networks provide extensive methods to generate embeddings,
their low-level stochasticity does not allow us to generate comparable
representation. For example, running the word2vec algorithm two
times on the same corpus generates different vectors for the same
words. Effectively aligning language representations is fundamental
for many different tasks: looking at language evolution between text
produced in different periods is useful to explore the evolution in
meaning [73, 109, 120, 145]. Nonetheless, aligning language coming
from different sources can help to evaluate the intrinsic language dif-
ferences (e.g., geographic differences [6]) between these sources and
study language bias [27].

State-of-the-art approaches to align representations of word embed-
dings have focused on temporal data [73, 109, 120, 145]; while a lot
of work has been done to study language bias and stereotypes, few
works have explored language variations aligning embeddings [6]. To
the best of our knowledge, no general framework to compare differ-
ent corpora has been proposed.

The research problem that we will discuss and study in this thesis
is related to the creation of a framework for the comparative analy-
sis of language items. We refer to this framework as a corpus-based
framework since it is based on textual documents.

1.4 CONTRIBUTIONS

This thesis has the aim of defining an efficient and effective frame-
work to compare natural language expressions with an efficient and
effective method. The major contributions of this research work are
related to the definition of a framework for the comparison of dis-
tributional models, aiming to compare both words and structured
knowledge that comes from a knowledge graph. In detail we define:
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1. An alignment methodology for distributional representations
that is both effective and efficient and that can be used to align
representations that come from different sources;

2. A purely distributional model of Knowledge Graphs’ elements
like entities and types that can have multiple contexts of usage:
This model is based on an entity linker and it can be thus ap-
plied to different sources of text;

3. An approach that combines neuro-symbolic techniques with en-
tity embeddings to provide support for logical reasoning on dis-
tributional representations.

We will use (1) to generate comparable representations of natural
language expressions. This will allow us to compare representations
that come from different sources as text from different time periods
or from different newspapers. Since language is ambiguous we will
need to rely on (2) to first find entity names and type names from
a knowledge graph inside the text before generating the actual rep-
resentations. Since using (2) allows us to generate representations of
entities we can use a (3) neuro-symbolic model to learn to reason over
these distributional representations.

1.5 ORGANIZATION OF THIS THESIS

Figure 1 depicts the structure of the following thesis. Chapters 4 and
5 cover two different aspects of the problem that are closely related
but independent. The rest of the thesis has a linear structure.

We now show more details of the chapters of this thesis, publica-
tions are listed following a chronological order, we highlight the most
important ones using a red *:

Chapter 1: Introduction In this chapter, we have introduced the con-
tent of this thesis, outlining the main concepts and the most relevant
content. The rest of the chapter will also outline the main research
questions that this research work aims to answer.

Chapter 2: Preliminaries In this chapter we explain the basic notions
that are part of this research work. We explain the main applications
and differences between logic-inspired semantics and distributional
semantics, showing the main components and some differences.

Chapter 3: Related Work We explore related approaches by analyzing
three different areas: comparative methods, word embeddings and
knowledge graph embeddings. Notions related to knowledge graph
embeddings approaches will also be present in an upcoming book
chapter:
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Figure 1: The structure of this thesis. Red ellipses represent the more gen-
eral chapters; yellow ellipses contain the material that is related to
what we describe in this research work and outline the main con-
tributions; the green ellipses contain the main contributions of this
research while the blue ellipse contains applications and possible
future directions that come out from this thesis.

e Bianchi, F, Rossiello, G., Costabello, L,. and Palmonari, M. (2020).
Knowledge Graph Embeddings to Support Explainability. In:
I. Tiddi, P. Hitzler and F. Lecue, ed., Knowledge Graphs for eX-

plainable Al IOS (to appear).

Chapter 4: Comparative Distributional Framework In this chapter,

we outline the ideas behind our Corpus-based Comparative Distribu-

tional Framework and we introduce Compass-Aligned Distributional

Embeddings (CADE) a novel method to efficiently and effectively

align distributional representation that comes from different sources.
The research questions answered by the following chapter are:

* Q4.1 which are the performance of an unsupervised method for
the implicit alignment of distributional models on a paradig-

matic case?
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* Q4.2 can this method be used even in context when some sources
provided less data than others?

* Q4.3 to which extent can this method be used in different con-
texts?

Results described within this chapter are based on the following
work, in which we show how distributional representations of tem-
poral word embeddings can be aligned.

e *Di Carlo, V., Bianchi, F. and Palmonari, M. (2019). Training
Temporal Word Embeddings with a Compass. In AAAL

This method has been extended in this thesis and novel experi-

ments to show the level of generalization of the method have been
run. The contents of this chapter are meant to describe a paper, that
extends the one stated above, that will be submitted after the conclu-
sion of this thesis.
Chapter 5: Distributional Knowledge Graph Embeddings with En-
tity Linking This chapter focuses on one of the contributions of this
research work, which is the introduction of a purely distributional
model for the representation of entities and types of a knowledge
graph using entity linking. In this chapter we aim to answer the fol-
lowing research questions:

* Q5.1 can we create purely distributional models of KG elements
(i.e., entity and types) that can be applied to any text?

* Q5.2 is the notion of similarity computed within this space
good enough to support similarity-based approaches to reason-
ing like analogical reasoning?

* Q5.3 which is the effect of the entity linking phase on the em-
beddings?

* Q5.4 which are the properties of a distributional representation
of types?

Recent work about the topic of this chapter has been published in
the following articles:

e Bianchi, F, Soto, M., Palmonari, M., and Cutrona, V. (2018, June).
Type Vector Representations from Text: An empirical analysis.
In DL4KGS@ESWC.

e Bianchi, F. and Palmonari, M. (2017, November). Joint Learn-
ing of Entity and Type Embeddings for Analogical Reasoning
with Entities. In NL4AI@QAIIA.

e *Bianchi, F, Palmonari, M., and Nozza, D. (2018, October). To-
wards Encoding Time in Text-Based Entity Embeddings. In
ISWC.

9



10

INTRODUCTION

Chapter 6: Reasoning with Distributional Embeddings

In this chapter, we add one more layer to our comparative frame-
work and we show how we can combine distributional representa-
tions of entities and types with a neuro-symbolic system, the Logic
Tensor Networks. This will allow us to do a comparison over distri-
butional spaces using logical axioms.

The research question answered by the following chapter is:

* Q6.1 Can we provide a method to do logical inference over dis-
tributional representations?

This chapter is mainly based on the following work:

e *Bianchi, F.,, Palmonari, M., Hitzler, P.,, and Serafini, L. (2019).
Complementing Logical Reasoning with Sub-Symbolic Com-
monsense. In International Joint Conference on Rules and Rea-
soning.

Other articles that we published in the neuro-symbolic field:

e Ebrahimi, M., Sarker, M. K., Bianchi, F., Xie, N., Doran, D., and
Hitzler, P. (2018). Reasoning over RDF Knowledge Bases using
Deep Learning. arXiv preprint arXiv:1811.04132.

¢ Bianchi, F. and Hitzler, P. (2019). On the Capabilities of Logic
Tensor Networks for Deductive Reasoning. AAAI Spring Sym-
posium.

e *Hitzler, P, Bianchi, F., Ebrahimi, M., and Sarker, M. K. (2019)
Neural-symbolic integration and the Semantic Web. Semantic
Web, 1-9.

Chapter 7: Applications This chapter contains applications of the
models we have defined in the previous chapters. We will show that
the use of a purely distributional model for types and entities in a
comparative framework can bring value in different tasks such as
knowledge exploration and neuro-symbolic reasoning.

Chapter 8: Conclusions Finally, we end this thesis by providing con-
clusions to this work by also highlighting the most important content.
Eventually, we provide possible research directions that may start
from the results provided within this thesis.

Appendix: Neural Networks We also add an appendix with a short
introduction to neural networks and machine learning. For a more
complete introduction, we refer to the book by Goodfellow, Bengio,
and Courville [54].
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1.6 REPRODUCIBILITY

Recently, reproducibility has become a great issue in Al-related fields.

Thus, each of the experiments that were run for this thesis can be
replicated using codes and models freely available online. Since the
experiments have been introduced in different papers which contain
links to different GitHub repositories, we decided to create a single
GitHub repository that contains all the instructions and the references
to the contributions that are described within this thesis".

1 https://github.com/vinid/phd_thesis

11


https://github.com/vinid/phd_thesis




PRELIMINARIES

In the following chapter, we introduce the notions that stand behind
this research work. This chapter should give the reader most of the
required knowledge to access the rest of this work. We will begin this
chapter with an overview related to what meaning is and about two
different methods that have been introduced to deal with it. Then, we
explore the details and some applications of these methods, and we
eventually end the chapter with the notation used in this thesis and
a summary of the chapter.

2.1 TWO DIFFERENT AND INTERLACING STORIES

Logic has been introduced to describe the properties of mathemat-
ics [43] and can be considered as a family of artificial languages used
to describe general properties. For example, First-order Logic (FOL)
can be used to describe the properties of mathematical relations and
functions as shown by Peano’s axiomatization of arithmetic [128, 131].
Logic defines means to do reasoning over properties, and thus logical
reasoning became the preferred tool to provide account for inferences
about the world that surrounds us because of its robust mathemati-
cal foundations. The meaning we assign to a sentence is related to the
concept of truth, a key concept in logic. Our world contains objects
and we want to be able to use a logic language to build representa-
tions of these objects in order to use them in computational settings
and subsequently infer meaningful facts [102]. Rapidly skipping in
time, logical approaches have become popular in the knowledge rep-
resentation community. We can cite logic programming languages
like Datalog [55] and logical languages like Description Logics [3]
as examples of influential methods in the knowledge representation
field. The two central notions in symbolic logic are consequences and
inferences. Representing properties like “each mammal is an animal”
Vx : mammal(x) — animal(x) and supporting inference over sym-
bols allows us to derive new knowledge.

The linguistic community has taken much inspiration from these
approaches and has extensively used logical approaches for tasks car-
ried out on natural language expressions [71]. Artificial languages
based on and inspired by formal logic have been used to account for
the meaning of natural language expressions [71].

In the context of linguistics, we can mention truth-conditional se-
mantics [71, 103], in which the meaning of a sentence is in function
of its truth conditions: the meaning of a sentence comes from the

13
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conditions that make the statement true or false. Note, that this is
independent from the actual truth value of the sentence. One can un-
derstand the meaning of a sentence even if it has no evidence related
to the validity of the statement included in the sentence.

Human language is a communication system based on a discrete
set of arbitrary and conventional symbols and a set of rules of how to
compose them to convey meanings [83]. Logical methods and infer-
ential processes had a significant impact on natural language process-
ing. The main principle is that to interpret natural language under
the form of artificial languages. For example, “the cat is on the table
which is in the room” opens up to the possibility of inferring sen-
tences as “the cat is in the room”.

On the other hand, starting from the "50s a theory of meaning was
introduced in the field of linguistics. This theory is generally called
distributional semantics. The leading advocates were the linguists Har-
ris and Firth [46, 62], but other hints of this theory have been also
found in the late writings of the philosopher Wittgenstein [139]. This
theory advocates for a usage-based perspective on language: the gen-
eral idea is that the meaning of linguistic items derives from the us-
age in language of those items. This theory was widely adopted by
linguists [77] and has captured the attention of psycho-linguistics and
researchers with cognitive science backgrounds [27].

In more recent years, algorithms that are based on this theory have
been widely adopted in natural language processing [36, 93, 100,
101]; these algorithms have been of inspiration for similar approaches
onKR as knowledge graphs [25, 41, 81, 98, 126, 133, 134, 138, 140, 141].

In the next section, we will explore the main characteristics of these
two approaches that have different stories but were used to solve
similar tasks and influenced one another.

2.2 LOGIC-INSPIRED SEMANTICS
2.2.1  Applications

The definitions of methods to efficiently and effectively organize knowl-
edge is fundamental to many different tasks. For example, databases
can be modeled using logic. Logical reasoning and inferential pro-
cesses are what make logical reasoning a powerful tool for artificial
intelligence. Logical languages provide methods for symbol manipu-
lation, in fact there is a line of research that sustains the hypothesis
that intelligence is strongly related to symbol manipulation. A physical
symbol system has the necessary and sufficient means for general intelligent
action. [96]".

Note that this theory has not reached consensus and have several critics that sus-
tain that there is more to intelligence than symbol manipulation with some people
suggesting that neural networks [54] can actually overcome some of the limits of
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Knowledge has been traditionally considered over distinct layers;
the most classical distinction is between words and concepts [32],
which allows to take into account linguistic phenomena such as ambi-
guity. Moreover, concepts are generally organized in connected layers.
In cognitive psychology, concepts are organized in three layers: super-
ordinate, subordinate and basic [90]. Concepts in layers are connected
by specific hierarchical relations such as hypernymy.

2.2.2  Principles and Definitions

A logical language is specified by a syntax and associated with a se-
mantics. The syntax defines the way symbols are organized in more
complex formulas, while the semantics is (often) given by an interpre-
tation function that associates truth values to formulas.

We hereby give a very intuitive and simplified introduction to first
order logic. For a complete introduction, we refer to one of the many
textbooks present in literature [102]. We will refer again to first or-
der logic when we will describe a method to combine distributional
representations and symbolic logic using neuro-symbolic methods in
Chapter 7. First-order logic allows us to describe knowledge about
a domain such as entities and individuals: we have objects and we
want to be able to build representations of these objects in such a way
we can reason about them in computational settings [102]. We can
make these representations by introducing terms to refer to individ-
uals, which are real elements of the worlds (e.g., people, cities) and
predicates, to talk about properties of individuals. To define an indi-
vidual or a relation we use symbols and we manipulate symbols on
the basis of logical approaches. Logical languages, for example first-
order logic (FOL), offer a syntax that specifies how symbols can be
manipulated and semantics through the interpretation of symbols.

A logical language £ contains the following elements: a set of
terms that contains constants symbols as names for the individuals
(e.g., “Milan”, “Italy”, “University of Milan-Bicocca”) and that con-
tains variables (e.g., x, y and z)?; a set of predicates to express a re-
lation between individuals (e.g., location(x,y)). We define an atomic
formula as a formula that applies a predicate to a series of terms (e.g.,
location(Milan, Italy). Predicates can take different arguments as
inputs and the number of arguments is defined as the arity of the
predicate. More complex formulas can be defined by composing dif-
ferent formulas with the use of connectives and quantifiers (e.g., v, 3,
-, &, |, —=). Note that logic is compositional. Also, we refer to formu-
las that do not contain variables as ground formulas.

logic. This is also why approaches that combine symbolic reasoning and computa-
tional methods (such as neural networks) have been introduced in the state of the
art. See [95] for a nice overview on the symbolic/neural network debate.

For the sake of giving only a simplified introduction we ignore functions in this
definition.

15
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The semantics of the language is given with the use of an interpre-
tation function I over a domain D. We can consider an interpretation
I; and a domain D that represents the set of the things that have ex-
isted in the world. Terms are interpreted as names for elements (e.g.,
[;(Milan) = the city Milan). Predicates are instead interpreted as re-
lations and sets in the domain D (e.g., I1(location(x,y)) the relation
that holds in D between cities and countries).

Atomic formulas are interpreted as true or not in a given interpreta-
tion, that is, satisfied by an interpretation, I; (location(Milan, Italy)),
if and only if the individuals denoted by the symbols “Milan” and
“Italy” are, in Dy , in the relation used in I to interpret the predi-
cate “location”. The interpretation of complex formulas is recursively
defined from the interpretation of variables, connectives and quanti-
fiers.

INFERENCE A key aspect of logic is the inferential process that
allows us to draw new facts from current state of knowledge. We
say that populated_place(Milan) is logical consequence of a set
of premises {Vx, city(x) — populated_place(x), city(Milan)} if and
only if the ground axiom populated_place(Milan) is true in all the
interpretations in which the premises are true (it is satisfied by all
the interpretations that satisfy the premises). If a formula ¢ is true
in at least one interpretation then the formula is satisfied and that
interpretation is a model for ¢.

KNOWLEDGE BASE A knowledge base is a structure to organize
knowledge that supports inferential mechanisms that are inspired by
the notions of logical consequence.

Knowledge Graphs

A special case of knowledge base is the Knowledge Graph (KG) that
is, roughly speaking, a knowledge base in which we have only predi-
cates of arity 2. Considering only predicates with arity 2 allows us to
represent a knowledge base using a graph structure. A KG describes
entities (e.g., the city Milan) of the real world and links them through
the use of edges that represent relationships. Note that this structure
allows us to use an infix notation to describe knowledge facts: the
prefix notation of the following relationship country(Milan, Italy)
can be rewritten using the notation (Milan, country, Italy).

Different definitions of knowledge graph exist [39]. For example,
we can describe a KG as a labeled multi-graph or as a set of subject-
predicate object-triples (s, p,0). It is possible to interpret the triples
as ground formulas under the form predicate(subject, object) (e.g.,
country(Milan, Italy)). See Figure 3 for an example of knowledge
graph.
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We also hereby introduce the concept of ontology, that is closely re-
lated to the concept of KG. An ontology is a representation of conceptual
system via a logical theory [51, 53] that supplies a shared vocabulary
that can be used to model a domain: for example, typing of the indi-
viduals (e.g., City(Milan)). For the scope of this thesis, in which we
focus our attention on entities and entities representation, we use the
following definition of knowledge graph in which we highlight the
main components that are used through this thesis.

Definition 1 (Knowledge Graph) A knowledge graph is 6-tuple that con-
tains (E,L,T,P,A,L):

* E:a set of symbols that identify entities (= constants);

L: a set of literals, i.e., strings, numbers, etc. (= constants) ;

T: a set of type symbols (=~ unary predicate symbols);

P: a set of relation symbols (=~ binary predicate symbols);

A a set of axioms in a logical language L.
The axioms of a knowledge graph can be divided in:

* A-facts:

— Types of entities and literals: type(e) | type(l) - with e € E and
L € L, that specify that an entity is of a given type;

— Relations between entities: r(eq,e2) | r(e, 1) with e; € E and
leLandreP.

* A-general-axioms: they depend on the language used to describe the
ontology; we consider as aminimal requirement for a knowledge graph
having axioms with the form Vx(typej(x) — typea(x)) that specify
subtype dependencies that define a partial order over T.

Observe that this definition accounts for KGs whose semantics is de-
fined more expressively by logical axioms as well as simple KGs used
in the industry and stored in graph databases.

KGs are now a widely adopted method for knowledge represen-
tation: for example, many public KGs exist as DBpedia, YAGO, and
Wikidata. One famous example of KG used in the industry is the
Google KG, used to enrich the results of the Google search engine.
KGs are sources of knowledge and there are different ways to query
this large amount of information. Google uses its knowledge graph to
support is search engine; Figure 2 shows an example of usage of the
Google KG to give additional content to users that search information
about the term "Italy". In fact, knowledge graph are also important
for knowledge exploration [18].

KG'’s entities are generally organized in sub-types hierarchies (e.g.,
(Italy, instance of, Country) and (Country, sub-type of, Populated

17
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Italy officially the Italian Republic is a Southern European country consisting of a peninsula
delimited by the Alps and surrounded by several islands. Located in
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Figure 2: Example of usage of the Google Knowledge Graph to extend query
results (highlighted in red circles).

Place). These types are usually defined in an ontology. In Figure 3,
we show an example of KG in which we highlight the most impor-
tant components: entities share links one with the other and are also
connected to the type hierarchy.

instance of
sub-type of
sub-type of (other types in between)

relationship

entity

type

OO

Populated
Place

Educational
Institution

country

Figure 3: Example of a knowledge graph with a type hierarchy.

A short note on the semantic web languages

To represent, share knowledge on the web specific languages have
been defined. The semantic web [14] is an “extension” of the stan-
dard web where structured metadata is added to pages. In this way,
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information relative to the page is easily accessible to both humans
and machines: the semantic web is focused on the “meaning” of data
and allows us to create interlinked knowledge bases in which to store
data. Linking different resources on the web brings benefits to data
accessibility and interoperability. With the advent of this new method-
ologies, logic languages to describe data have become a well-known
standard. Structured conceptualizations of knowledge have taken the
rise with the advent of the semantic web. Historically, semantic web
languages anticipated the popularity of KGs representations because
those languages were mainly introduced as mechanisms for knowl-
edge sharing and interoperability.
Three are the core components of the semantic web:

* RDF: Resource Description Framework is a language that is used
to describe web resources (e.g., the city Milan). A Uniform Re-
source Identifier (URI) is associated with each resource in such
a way that it can be uniquely identified;

e SPARQL: A query language to query data stored in RDF. SPARQL

can be used to query knowledge bases by using a simple syntax
that is close to SQL;

¢ RDFS and OWL: These two are languages to model web ontolo-
gies. These languages define vocabularies and offer models to
define data. For example, RDFS offers a set of entailment rules
to derive new triples3.

Data in the semantic web is generally represented with the use of
RDF assertions, i.e., triples of RDF resources that are structured in a
subject-predicate-object structure.

DBpedia

A KG that is frequently mentioned in this research work is DBpedia.
DBpedia [2] is a project that aims to create a structured version of
the content available on Wikipedia; the core idea is to create an end-
point for encyclopedic knowledge that can be easily accessed through
the use of query mechanisms. Every page in Wikipedia has a unique
identifier in DBpedia. DBpedia uses an extraction framework to extract
information from a Wikipedia page and represent it using a struc-
tured and interlinked format. For example, from the page of the for-
mer president of the United States Barack Obama, the framework
extracts the fact that Barack Obama was born in the state of Hawaii.
DBpedia contains subject-predicate-object triples and it is one of the
most popular knowledge graphs in the semantic web field. DBpe-
dia contains lots of information; the DBpedia website states that in

3 https://www.w3.0rg/TR/rdfll-mt/#rdfs-entailment
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DBpedia there are more than 4 million entities and more than 3 bil-
lion triples 4. Entities in DBpedia are identified with the URI http://
dbpedia.org/resource/X> while ontological elements are identified
with the following URI http://dbpedia.org/ontology/Y (e.g., http:
//dbpedia.org/ontology/Country for the types and http://dbpedia.
org/ontology/location for the properties®). We will use dbr: and dbo:
prefixes to shorten URIs used to identify DBpedia entities and types
of the DBpedia ontology (e.g., dbr:Milan). For example, if we access
the page of the resource Milan” on DBpedia, we can see many pos-
sible connections links to other resources: for example, through the
use of the predicate country we can access the resource Italy. This in-
terlinked structure generates a graph that is generally referred to as
the Knowledge Graph.

2.3 DISTRIBUTIONAL SEMANTICS
2.3.1  Applications

To reach the point in which Artificial Intelligence can be considered a
real intelligence we must to find ways to give machines the possibility
of understanding how language works and how communication can
be made a relevant component and a relevant skill of autonomous
algorithms. Intelligent agents could have an enormous impact on so-
ciety and could greatly affect the economy through the accomplish-
ment of many difficult human-like tasks [99]. To achieve this goal,
we must be able to account for the representation of meaning. While
logical approaches to model meaning in language have been exten-
sively used, the last two decades have seen a rising wave of interest
in the theory of distributional semantics an approach to semantics that
advocates a “usage-based” perspective on the computation of word
meaning. Distributional semantics is based on the assumption that
the statistical distribution and the frequency of usage of words in-
side textual documents can reveal information about the meaning
of words themselves. The intuition that drove the development of
the algorithms that we will discuss in the future chapters is well de-
scribed by a famous phrase that was pronounced by J.R.Firth’s “you
shall judge a word by the company it keeps”[45]. Distributional seman-
tics has greatly influenced the natural language processing field and
algorithmic implementation of this technique has been applied to dif-
ferent tasks as natural language inference [26], word similarity [100],

4 https://wiki.dbpedia.org/about/facts-figures

5 In general, the last part of the URI, namely X, is equal to the Wikipedia page name
with few exceptions.

6 Note that ontological types have a capital letter in their name while properties are
generally camelcase but start with a lowercase letter.

7 http://dbpedia.org/page/Milan
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natural language generation [136], question answering [149] and oth-
ers.

2.3.2  Principles and Definitions

Distributional Language

To better illustrate how this hypothesis works we give one famous ex-
ample that was originally introduced by Stefan Evert 8: suppose you
do not know the meaning of the word “bardiwac” but you are given
some examples of sentences in which the word “bardiwac” appears:

¢ He handed her a glass of bardiwac;
* Beef dishes are made to complement the bardiwacs;
* Nigel staggered to his feet, face flushed from too much bardiwac;

* Malbec, one of the lesser-known bardiwac grapes, responds well
to Australia’s sunshine;

e | dined off bread and cheese and this excellent bardiwac;

¢ The drinks were delicious: blood-red bardiwac as well as light,
sweet Rhenish.

Even from this short list of sentences, one can capture a general un-
derstanding of the meaning of the word “bardiwac” as a red alcoholic
beverage. This is the essence of distributional semantics: meaning can
be found the context [77]. The definition of the concept context can
vary widely across the different algorithms. The simplest case of con-
text is co-occurrence: a word appears in the context of those words it
co-occurs with. We expect the words cat and kitten to occur in similar
contexts and thus being similar. Note that however also the words cat
and dog could co-occur in some contexts, thus making the two words
similar, but maybe less similar that cat and kitten. Words that occur
in different contexts, such as smartphone, while not be similar to cat.
This effect allows us to define a graded similarity that changes with
the number of contexts. In fact we can summarize what we have said
about the similarity by considering the following: the degree of semantic
similarity between two words wy and w; is a function of the similarity of the
contexts in which wy and w; usually appear. We in fact expect that the
meaning of the words dog and cat to be similar, since both are domes-
tic animals, have four legs, an owner, they eat, and so on. Another
general and interesting idea behind the distributional hypothesis is
that we can say that knowing a word does not mean to know its defi-
nition that comes from the dictionary. Instead, knowing a word is the
fact of being able to use that word in the correct contexts.

https://essl1i2016.unibz.it/wp-content/uploads/2015/10/dsm_tutorial_
partl.slides.pdf
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Strong and Weak Distributional Hypothesis

Lenci [77] explains the distinction between two different possible in-
terpretations of distributional hypothesis: a weak distributional hy-
pothesis and a strong distributional hypothesis of the distributional
hypothesis. We follow Lenci [77] in the discussion of these approaches.

The weak distributional hypothesis is generally used to analyze text
under a semantic point of view. It advocates the correlation between
the meaning of a word and the contexts in which the word appears.
This interpretation is the one that is mainly used currently and is the
one on which different algorithms that will see in the next chapter
are developed: we consider words and contexts and we generate rep-
resentations for those words using a vector space. Roots of this idea
can be found in the work of Harris [62], but also in Wittgenstein [139],
advocating for the need to look at the use of words in the language
to understand meaning.

The strong distributional hypothesis as a psychological point of view [94].
The strong distributional hypothesis starts from the idea that the
distribution of words has a causal effect in the formation of the se-
mantic representations of words. The idea in this case is to consider
the relation with the cognitive associative mechanism of stimuli co-
occurrence: the associations between words representations are stronger
(and become stronger over time) in the human mind when they tend
to appear in the same contexts. Obviously, it is possible to include a
more general view of this hypothesis that includes a wider number of
contexts that are not restricted to the linguistic one. Information about
the sounds and the environment can also be included to account for a
bigger cognitive understanding of these semantic similarity patterns.
As we saw in the example of the word “bardiwac” it is really impor-
tant to observe how learning and understanding words is strongly
related to seeing the usage of the words in contexts.

Different arguments have been thrown against distributional hy-
pothesis to outline (and comprehend) its limits. For example, if lan-
guage is compositional (and also recursive, as formal semantic meth-
ods try to replicate), how can we include composition in distribu-
tional semantics? How can we deal with more complex linguistic
phenomena such has hypernymy? This is a current field of investi-
gation as it is not simple to account for composition in the context of
distributional semantics.

In general, meaning in a sentence derives from the combination of
the words used: we can combine words to express more about the
world that surrounds us. Researcher that have argued against distri-
butional semantics have often used the fact that a theory like distribu-
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tional semantic should be able to cover aspects of formal semantics
like compositionality and inferenced.

In the literature there do exist different work related to solving
compositionality in distributional semantics. The simplest form of com-
positionality comes from summing representations: if we represent
words meaning with vectors'® we can combine them by summing the
vectors. For example, the meaning vector of "New York Times” can be
generated summing the single meaning vectors [78]. Different prob-
lems arise from this method but the easiest to comprehend is that
sum is a commutative operation and thus shuffled phrases will all
have the same vectors (i.e., “the pen is on the table” and “the table is
on the pen” will have the same vector). Note that recently, more ex-
pressive algorithms based on related assumptions as ELMo [101] and
BERT [36] have been introduced in the state-of-the-art to deal more
complex language expressions. Inference has been addressed with the
use of deep-learning models that also integrate information coming
from distributional assumptions [26], but it can be also addressed
with hybrid models that combine logic axioms and use vector as vari-
ables/terms [11, 50]. On this issue, in Chapter 6 we will show an
example of how we can combine distributional representations with
a logical system [20].

Despite all of these problems, the interest and the use of distribu-
tional semantics is growing in natural language processing due to
the fact that corpora of large dimensions are now available on the
web and that the hardware we posses is fast enough to allow us to
use efficient algorithms. Moreover, many of these algorithms work in
practice and have greatly advanced the field and thus, even if distri-
butional semantics does not cover all the aspects of formal semantics,
it is widely recognized as an important theory.

To summarize what we have said about distributional semantic we
introduce the following general definition.

Definition 2 (Word Distributional Semantics) The similarity between
two words is a function of the contexts in which these two words appear.

In Chapter 5, we will compare this definition with similar defini-
tions of distributional semantics for entities and types of KGs.
From Words to Vectors

Given the definition of distributional semantics, it is now important to
find means to apply this theory to computational models. Language

However, recent work [137] has suggested that distributional semantic should not
be “blamed” for some of these limits, since it should be considered as a theory of
meaning.

Something we will see in the next section, but it is relevant to quickly introduce this
concept here.
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is made of words that come from a vocabulary (we will use V to iden-
tify the vocabulary) and we need to find ways to account for the mean-
ing of these words under a computational point of view. One of the
first problems that Natural Language Processing as to deal with how
to represent words meaning inside a computer or a computational
systems by means and by the instruction of distributional semantics.
Today, the most common way to represent word is to use vectors in a
vector space: words are embedded in a multi-dimensional vector space
and we can interpret them as points that can be compared. The pro-
cess of “embedding” words in the vector space is what brought the
community to call these representations “word embeddings”. Word
embeddings is in fact the general term that is used to refer to this
kind of representations (the term “embedding” is used also for other
types of embeddings, when we will discuss knowledge graph repre-
sentations we will talk about knowledge graph embeddings).

To compute the similarity between two words in the vector space
one can use a measure called cosine similarity. This measure com-
putes the cosine of the angle between the vectors of the respective
words: the smaller the angle between two vectors is, the more similar
the vectors are. The cosine similarity is the dot product of the vec-
tors that is divided by the magnitudes of the two vectors; it ranges
from 1 for identical vectors to —1 for opposite vectors. The particu-
lar property of cosine similarity is that dividing by the magnitudes
of the vectors normalizes the computation allowing us to ignore the
vector length. This makes, in general, the similarity more robust to
the effect of the frequency of each word in text (i.e., frequency often
influences the length of the vectors [113]). Cosine similarity is not the
only measure that exist to compute the similarity between word vec-
tors but it is one of the most used. Nonetheless, the distance between
points/vectors in the vector space can be computed using Euclidean
distance or other higher-order distances.

Definition 3 (Cosine Similarity) The cosine similarity between two vec-
tors is given by the cosine of the angle between two vectors.

n
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Local and Distributed Representation

We can distinguish two different ways of representing words with
vectors: we refer to the first as a local representation and to the sec-
ond one as a distributed representations [44]. This distinction comes
from one of the most vivid debates in the Al field during the ‘8os:
how can we store conceptual information inside neural algorithms?
Local representations are meant to represent a single concept with
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the activity of a single neural unit. On the other hand, distributed
representations are meant to account for a pattern of activity of more
neural units [63]. The last interpretation is particularly interesting, be-
cause it describe a model that is also close (in an high level sense) to
how our brain might represent concepts (i.e., by patterns of neural
activity).

Local representations map the i-th word of the vocabulary V to the
vector w; in a vector space R™, where n is the cardinality of V and
the i-th element of w; is set to 1, while all the other elements are
set to zero. We generally refer to this kind of vectors as the one-
hot vectors. For example, given the list of words of the vocabulary
V = {the, cat,is, on, table}, the word “cat” of the vocabulary V can
be represented as a vectors of zeros with only one 1 in the position in-
dexed by its own index in the vocabulary w, = (0,1,0,0,0) (i.e., “cat”
is the second element and thus the 1 will be in the second component
of the vector).

Distributed representations encode the information over multiple com-
ponents of the vector. There are two ways of doing this, by using
components/dimensions that can be interpreted or not. Take for ex-
ample, the symbol “cat”. We can use an explicit encoding that consid-
ers vowels, consonants and numbers to represent it with the vector
w = (1,2,0) (1 vowel, 2 consonants and o numbers). Instead a possi-
ble implicit vector can be w = (0.5,1.9,2.9), where the components
are not directly interpretable. In literature this distinction is usually
referred to as explicit vs implicit vectors [79]. Implicit distributed rep-
resentations are commonly used and thus we will refer to them when
we talk about distributed representations.

Definition 4 (Distributed Representations) Distributed representations
are dense vectors; explicit distributed representations have vector compo-
nents that can be interpreted, while the components of implicit distributed
representation do not possess a direct meaning or interpretation.

Note that the similarities between local representations are always
the same because vectors are orthogonal.

Distributional Representations

What the above definitions do not provide is a way to effectively rep-
resent words in a way that can be used to do tasks. What is gen-
erally used to deal with words is the vector space model [127], in
which words can be, for example, represented as vectors. Models that
are based on distributional semantics aim to create representations
in which, for example, similar vectors should represent similar words
(i.e., words that occur in similar contexts). These algorithms take large
amounts of text in input to create these vector representations. Fig-
ure 4 shows an example of what a vector space model built under the
distributional hypothesis should create: “cats” and “dogs” are similar
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dogs
Cats are animals

Dogs are animals =30 cats

The president is tall

president

Figure 4: From sentences to the vector representation of words. We expect
words that appear in similar contexts to have similar vector repre-
sentations.

words and tend to occur in similar contexts (e.g., those shared by ani-
mals, those shared by house pets, etc...) and they tend to share fewer
contexts with words like “president”**.

There are different ways to generate these representations, we will
explore some of them in the related work chapter (Chapter 3) of this
thesis.

Definition 5 (Distributional Representations) Distributional represen-
tations are a subset of distributed representations for which the value of the
components of the vectors is based on the distributional hypothesis.

Word Embeddings

In this section we give some details about an algorithm to create dis-
tributional representations of words that earned much success dur-
ing the last years: word2vec. Wordzvec, introduced by Mikolov et
al. in 2013 [93] (more details about this algorithm are presented in
the next section), is a word embeddings model, based on neural net-
works, capable of learning vector representations of words. The main
advantage of word2vec over other methods is that it is efficient to
train. Word2vec is often trained on large amounts of text and in the
paper the authors also have presented negative sampling and hier-
archical softmax that are two methods to greatly increase the speed
of the algorithm. Word embeddings learned by wordzvec exhibited a
good capability at capturing syntactic and semantic regularities in a
language [93], but it has been shown that these representations also
capture bias in language [27].

This ability of capturing semantic regularities in language is what
makes these algorithms really interesting: for example, they can be

However, it is possible to have a sentence in which both “president” and “cat” co-
occur; this is why, as we see in the next chapters, the algorithms used are based on
large amounts of text.
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Figure 5: Examples of linguistic properties in word embeddings in two di-
mensions. The “relation” capital-country seems to be stable in the
space.

used to solve analogical tasks. Note that it was found that analogy-
making is one of the most important ways in which adults and children make
sense of their world [122], and analogies are very important for knowl-
edge acquisition [130]. A particular kind of analogy, is the so-called
propositional analogy: a : b = ¢ : d; the analogical reasoning task is to
infer an unknown term, for example c, that is related to d in the same
way that a is related to b [65]. Word embeddings exhibit this prop-
erty of solving analogies. For example, word embeddings generated
with word2vec can efficiently solve propositional analogies under the
form “Paris”:“France”::”Rome”:”?” using vector operations). See Fig-
ure 5 for an example on how word vectors can be positioned in the
vector space. The position in the vector space allows us to solve analo-
gies by using simple sums and differences over vectors. Analogies
like “Paris”:“France”::“Rome”:”?” are solved by computing the oper-
ation v(“France”) — v(“Paris”) + v(“Rome”) =~ v(“Italy”) where
~ means that the answer of the analogy has to be searched in the
neighborhood of the space where the operation points to.

Only recently the introduction of the aforementioned word2vec was
key to develop the field"®. Word2vec is a neural architecture that has
been proposed in two different variants: Continuous Bag-of-words
(CBOW) and Skip-gram (SG). Both architectures are simple feed-forward
neural networks with one hidden layer, and they are trained over a
large corpus of text. There are no non-linearities between the layers
(except for a softmax function to compute the output scores of the net-
work) and thus the projections are linear; this makes the algorithms
less prone to overfitting and also faster to train. The training exam-
ples for the models are extracted from text and are generally based
on the concept of target word and context words that appear inside
the corpus within a distance from the target word: for example, in a

12 Note that the idea we presented before of vector representation that reflect the prox-
imity of words has been widely adopted [12, 30].
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sentence like “the cat is on the table”, “cat” might be the target word
and “the”, “is”, “on”, “the”, “table” the context. CBOW gets the con-
text words as input and the task on which it is trained is to predict
the target words. Instead, SG is trained by considering the task in
the opposite way: given the target word the model should predict the
contexts. Once the models have been trained, the word embeddings
are extracted from the first weight matrix of the neural network.

In CBOW, the training objective for a single training sample is
to maximize the following conditional probability: given the context
words wy,, - -+, Wy, that appear around a target word wj, predict the
probability of observing that specific target word. CBOW computes
the conditional probability P(wjlwy,,---,wy,) where ¢ # j. On the
other hand, the Skip-gram training objective is the opposite of the
one we just presented for CBOW: in this case in fact we want to go
from the target word to the context word P(wy,,-- -, Wy, |wj) where
¢ # j, and thus the conditional probability is reversed.

Thus, following this training procedure, in word2vec each word
is represented by a vector that encodes information about the co-
occurrence of words. The window used to define the context of a
words is an hyperparameter of the model.

More details about the Continuous Bag-of-words Model

CBOW learns weights in two different matrices, the target embed-
dings (i.e., the one that projects the input word to the embedded
space) and the context embeddings (i.e., the one that projects from
the embedded space to a space of dimensionality V). In CBOW, con-
text embeddings c; are encoded in what we call the context weight
matrix C of the neural network, while target embeddings uy are en-
coded inside what we call the target weight matrix U. The importance
of this difference will become clearer in later chapters, were we use
this distinction between these two matrices to generate a novel algo-
rithm that is based on CBOW. Starting from a corpus D that contains
sequences of words wy, ..., wyn, CBOW predicts the target word w;
from the context window of M = 2L words around it, e.g. if we con-
sider a window L = 2 the context is (Wi_2, Wi_1, Wit1, Wit2) (we
hereby use the indexes to represent the position of the words in the
corpus). CBOW’s neural network architecture is described using a
sample architecture in Figure 6. The input of the neural network is
a set of words wy, - ,wr, embedded in as one-hot vectors xi, ..., X[ .
The matrix C is shared across all the input words. To compute the
final vector in the hidden layer of our architecture, CBOW first takes
the average of the context embeddings corresponding to the input
words (thus combining the information of all the context in one sin-
gle vector before re-projecting it to tue output).

Once an algorithm like CBOW has been trained, what we get is
vector representations for words as the one in Figure 4, although we
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Figure 6: A schematic representation of the CBOW model.

recall to the reader that these representations also show linguistic
regularities as in Figure 5.

Note that Mikolov et al. [93] have proposed an optimized way to
generate word2vec embeddings that also considers the use of nega-
tive samples that are randomly sampled from text (roughly speaking
it puts closer co-occurring vectors and puts far the target word and
the negative samples). The main idea behind the model is the same
since we are again dealing with target and context word, but the
architecture becomes a bit different. Without the prediction in V di-
mension the model is indeed simpler. More details about this aspect
of wordavec can be found in [106].

Distributional Semantics and Cognitive Sciences

Recent works analyze distributional semantics in psycholinguistic con-
texts. Distributional semantics has been found to provide representa-
tions that are correlated with associative learning [77]. As Lenci points
out distributional semantic representations have been widely used to
model different phenomena in psychology as similarity judgments,
semantic and associative priming, semantic deficits, semantic mem-
ory deterioration[77].

Note that there now exists a rich literature related to cognitive as-
pects of word embeddings, in particular in the contexts of bias, stereo-
type and perception analysis [15, 27, 49]. For example, Caliskan et al.
(2017) have found that word representation derived from distribu-
tional approaches capture strong components of stereotypical and bi-
ased language. Some of these biases are problematic, since they reflect
on race or gender. Generally these algorithms learn representations
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implicitly without being forced to learn the bias, and this becomes
an effect that scientists need to be aware of. Think for example of the
usage of word embeddings in the context of curriculum analysis for
hiring, we do not want algorithm to be biased towards gender and
race.

2.4 SUMMARY AND COMPARISON

In this chapter, we have introduced two different approaches to ac-
count for meaning: one related to KB and mainly based on artifi-
cial languages, while the second one has a closer relationship with
natural languages. The main difference between the two approaches
lies in the way they represent meaning: logical approaches describe
knowledge using a discrete set of symbols to form formulas and the
semantics of symbols is defined using an interpretation function that
maps formulas to a truth value; instead meaning in distributional ap-
proaches is in function of contextual information and it is represented
using vectors of continuous values. Logic-based approaches require
the definition of a set of symbols while distributional semantics de-
rives representations starting from natural language expressions. On
the other hand, logic allows symbol composition by definition, some-
thing that is a limiting factor in distributional representation for NLP.
In this thesis we will also see models that are inspired by distribu-
tional semantics for KGs; these approaches are often called knowledge
graph embeddings.

Methods based on distributional semantics allow us to create vector
spaces in which each word is represented by a vector and, in general,
similar vectors will be represented with similar components.

Note that in computer science, distributional representations are
often used to initialize deep learning algorithms [26, 100, 136, 149];
groups of cognitive scientists are in general more interested in deeper
aspects of these representations and in methods to identify bias and
compare representations [15, 27].

2.4.1 Notation

Table 1 summarizes the most important mathematical notation that
we use in this thesis. Other notation that is relevant to specific chap-
ters will be introduced when needed. Note that we will also use sub-
scripts and superscripts to generally identify elements of a sequence
(e.g., wy is the i-th word).

ADDITIONAL RESOURCES

¢ Ehrlinger and Wo6f8 provide an interesting discussion on the
many definitions for the term Knowledge Graph and analyze
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Notation Meaning
X Letters identify scalars
X Bold letters identify vectors
X Bold capital letters identify matrices
w The letter w will be used to identity words
A Bold w identifies the specific embedding w
E Set of the entities of a Knowledge Graph
e The letter e will be used to identity entities
e Bold e will identify the specific embedding e
R Set of the relationships of a Knowledge Graph
T The letter r will be used to identity relationships
r Bold r identifies the specific embedding r
<s,p,0> Knowledge Graph Triple

Table 1: Notation used in this thesis.

the differences between them. On formal semantics we suggest
reading the book by Kearns that introduces the most important
topics of the field [71]. Lenci has written a recent article that
gives both an overview and an introduction to distributional se-
mantics [78]; for a discussion that relates to the contributions
of distributional semantics to the linguistic field, see [21]. On
the recent discussion about the fact that distributional seman-
tics should not be adequate to model formal semantics see the
work by Westera and Boleda [137]. Ultimately, we suggest [54]
as a reference book on deep learning and neural networks.
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We now describe the general idea of which are the goals of a compa-
rable framework, while the formal definition of the framework will
be given in Chapter 4.

CORPUS-BASED COMPARABLE FRAMEWORK GOALS We start by
defining the goals of a corpus-based comparative distributional frame-
work. As explored in Chapter 2, distributional models define a usage-
based and context-based perspective on meaning [78] that generate
representations that are correlated with associative learning [77] and
that also have been found able to capture context-related bias [27].
If language is encoding important aspects of cognition and our as-
sociative knowledge, and language usage change across the contexts,
the comparison of language usage in different contexts may reveal
important associative knowledge patterns. Thus, if we want to reveal
these patterns, we need ways to compare distributional representa-
tions that are generated from different text corpora. For example, we
would like to model variation in temporal contexts [60, 73], and cap-
ture how words like “gay” and “amazon” move during time. At the
same time, we would like to analyze corpora from different sources
(e.g., different newspapers, different topics). Moreover, we would also
like to introduce a reasoning methodology that allows us to combine
distributional semantic with logical reasoning to further extend the
comparison on a logical level (this theme will be explored in Chap-
ters 6 and 7).

In the rest of this Chapter we analyze three state-of-the-art, and at
the end of each section we will provide a comparison that analyze
and provide justifications for some of our choices:

* We first explore related approaches for comparison analysis and
evaluate some of the limits of current approaches; our analy-
sis will be focused on temporal word embeddings approaches,
since these approaches have to align representations to make
comparisons and are the ones that we will use in the experi-
mental section of Chapter 4;

e Since in this thesis we focus on a distributional model we will
also explore other approaches of the state-of-the-art and discuss
why we focused on an algorithm like word2vec;

* Finally, since part of the objective of this thesis is the analy-
sis of unambiguous linguistic expressions (i.e.entity names), we
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discuss the state-of-the-art approaches for representations of KG.
Our aim here is to show that we need a particular type of knowl-
edge graph embedding model that relies on entity linking.

3.1 COMPARING DISTRIBUTIONAL REPRESENTATIONS

We do a short introduction on methods used to compare distribu-
tional representation, and we will then focus on the comparison of
temporal word embeddings and we will describe some methods for
cross-lingual alignment (another area in which alignment is impor-
tant). The method we cite generally possess the following character-
istics: they are unsupervised (no direct supervision in training), they
are corpus-based and they provide methods for distributional align-
ment).

3.1.1  Qverview on Semantic Comparison

The use of distributed word embeddings for word-level comparative
semantic analysis is based on the ability of these models to capture
and express semantic biases present in the original texts, as shown
by the works [23] and [27]. Both works were able to show that dis-
tributed representation contain human-like biases, either by using
crowd-sourced experiments or by replicating the results of the Im-
plicit Association Test developed in [56] that was run with humans.

From these results multiple works were published, generalizing the
study of biases to the analysis of "semantic differences" in corpora
over various dimensions such as geographically situated language
[52], diachronic corpora [49, 60, 73, 125, 145], and corpora of differ-
ent sources [52, 61]. The nature of the studied semantic differences
was also expanded, encompassing gender [49, 148], racial and ethnic
stereotypes [49, 52, 125] and sentiment analysis [61].

The various approaches for word-level semantic comparison be-
tween corpora can be grouped into two main categories: wordset as-
sociation and representation shift.

WORDSET ASSOCIATION  The original methodology introduced by [27]

to measure bias investigates the association for two sets of opposite
target words (e.g., scientific and artistic professions) against two sets
of polarising attribute words (e.g., male-like and female-like words).
Other works such as [49] use a generalization of the original method
where the wordsets are replaced by their respective average represen-
tation and the second target set is substituted with its complement to
background, meaning all words that do not exhibit some particular
connotation (e.g., immigrant-like terms and everything else), enabling
for single-target analyses. Another approach is the one used in [61],
where a label propagation algorithm is used to induce a sentiment
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score from a seed lexicon (wordset) to the graph of neighbors. All
these techniques do not require an alignment of the representations
since they use a computed score for indirect comparison instead.

REPRESENTATION SHIFT For aligned representation it is possible
to investigate the semantic change of a word by simply comparing its
representations (in the next section we add more details on this topic);
since the context of diachronic corpora is one of the most common
applications for aligned representation models and the evolution of
word usage is often the object of interest here the literature [60, 73] is
especially rich. While most methods use simple vector similarity, oth-
ers use first neighborhood search [145]. A hybrid approach is the one
of [52] where a wordset-based approach is used on aligned represen-
tation, allowing for comparative semantic analysis on both diachronic
and geographical dimensions.

3.1.2  Comparing Distributional Representations: an Alignment Problem

Due to the stochastic nature of neural networks, algorithms like word2vec

always generates vector spaces with different coordinate systems. Thus,
if one wants to compare word vector spaces generated from different
sources (i.e., text from different periods, text coming from different
newspapers) she cannot compare vectors directly. Figure 7 briefly il-
lustrates the problem: representations generated from different sources
cannot be directly compared.

A A
bush_2000 @)
president_2001
texas_2000 @) usa_2001
bush_2001
president_2000
O usa_2000 clinton_2001
clinton_2000
foundation_2001
Embedding of text from 2000 Embedding of text from 2001

Figure 7: The problem with multiple distributional representations. There
is no direct way of comparison between two slices. In 2000 and
2001 one Clinton and Bush were both presidents of the United
States, but their vectors are not in similar close positions. Thus the
representations of the two spaces are not comparable.
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3.1.3 Temporal Word Embeddings

This alignment problem has been deeply studied in the field of tem-
poral word embeddings, in which researcher wants to create vector
representations of words in different periods of time to analyze se-
mantic change [60, 73, 109] (see [21] for a brief overview over the
semantic change topic). In this section, we mainly focus on the align-
ment of temporal word embeddings, but at the end of the section, we
will cite other approaches for the alignment of word vector spaces,
for example, cross-lingual approaches.

A Temporal Word Embedding Model (TWEM) is a model that learns
temporal word embeddings, i.e., vectors that represent the meaning of
words during a specific temporal interval. For example, a TWEM is
expected to associate different vectors to the word gay at different
times: its vector in the representation of the year 1900 is expected
to be more similar to the vector of terms like joyful than its vector
in 2005. By building a sequence of temporal embeddings of a word
over consecutive time intervals, one can track the semantic shift in
meaning that occurs in the word usage.

The training process of a TWEM relies on diachronic text corpora,
which are obtained by partitioning text corpora into temporal “slices” [60,
145]. Because of the stochastic nature of the neural networks training
process, if we apply a Wordavec-like model on each slice, the out-
put vectors of each slice will be placed in a vector space that has a
different coordinate system (see again Figure 7). This will preclude
the comparison of vectors across different times [60]. A close analogy
would be to ask two cartographers to draw a map of Italy during
different periods, without giving either of them a compass: the maps
would be similar, although one will be rotated by an unknown angle
with respect to the other [115]. To be able to compare embeddings
across time, their vector spaces corresponding to different time peri-
ods have to be aligned. The analogy of the compass will return again
in Chapter 4 where we will actually use it to explain how our method
for comparable distributional representations works.

Most of the proposed TWEMs align multiple vector spaces by en-
forcing word embeddings in different time periods to be similar [73,
108]. This method is based on the assumption that the majority of the
words do not change their meaning over time. This approach is well-
motivated but may lead, for some words, to excessively smoothen dif-
ferences between meanings that have shifted along time. A remark-
able limitation of current TWEMs is related to the assumptions they
make on the size of the corpus needed for training: while some meth-
ods like [60, 120] require a huge amount of training data, which may
be difficult to acquire in several application domains, other methods
like [108, 145] may not scale well when trained with big datasets.
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Different researchers have investigated the use of word embed-
dings to analyze semantic changes of words over time [60, 73]. We
identify two main groups of approaches that are based on the strategy
applied to align temporal word embeddings associated with different
time periods: we refer to the one as pairwise alignment in which pairs
of vector spaces are aligned, while we refer to the second one as joint
alignment in which global constraints on the optimization process are
used to generate vector spaces that are aligned after training.

3.1.3.1 Pairwise Alignment

Pairwise Alignment-based approaches align pairs of vector spaces to
a unique coordinate system: [72] and [124] align consecutive tempo-
ral vectors through neural network initialization; other authors apply
various linear transformations after training that minimizes the dis-
tance between the pairs of vectors associated with each word in two
vector spaces [60, 73, 120, 147]. Essentially what we can learn is a
matrix M1 2 that maps words from the vector space s; to the vector
space s;.

3.1.3.2 Joint alignment

Joint alignment-based approaches train all the temporal vectors con-
currently, enforcing them inside a unique coordinate system: [6] ex-
tend Skip-gram Wordzavec tying all the temporal embeddings of a
word to a common global vector (they originally apply this method
to detect geographical language variations); other models impose con-
straints on consecutive vectors in the Positive Point-wise Mutual In-
formation (PPMI) matrix factorization process [145] or when training
probabilistic models to enforce the “smoothness” of the vectors’ tra-
jectory along time [5, 108]. This strategy leads to better embeddings
when smaller corpora are used for training but it is less efficient then
pairwise alignment.

3.1.4 Cross-lingual Approaches

There are many different works that try to generate aligned represen-
tations by first defining anchors point that should not move in the
space: a set of reference coordinate to which align everything, this
is common in the cross-lingual or multi-lingual alighment commu-
nity, in which the objective is to generate aligned representations of
different languages. Multi-lingual lexicons are used to stabilize the
position of some words in the vector space [42, 115, 142]: defining a
set of anchors or a mapping dictionary requires domain knowledge
and might make be a strong assumption in some contexts since it
requires apriori domain knowledge. Thus, Facebook proposed an ap-
proach to align multi-lingual corpora without lexicon, this approach,

37



38

RELATED WORK AND CONTRIBUTIONS

named MUSE [31], leverages on adversarial training, to align differ-
ent multi-lingual corpora.

coMPARISON Despite the differences between the pairwise and
the joint alignment strategies, both strategies try to enforce the vector
similarity among different temporal embeddings associated with the
same word. While this alignment principle is well-motivated from a
theoretical and practical point of view, enforcing the vector similarity
of one word across time may lead to excessively smooth the differ-
ences between its representations in different time periods. Finding a
good trade-off between dynamism and staticness seems an important
feature of a TWEM (this property will be evaluated in detail in Chap-
ter 4 were we compare our approach with state-of-the-art models). Fi-
nally, note that very few models proposed in the literature do not cur-
rently require explicit pairwise or joint alignment of the vectors, and
these models all rely on co-occurrence matrix or high-dimensional
vectors [9, 57]. Consider that these strategies assume temporal con-
tinuity, something that we cannot ensure in our comparative frame-
work. Note that wordset approaches are not unsupervised and gener-
ally require to define specific lexicons, thus making it impossible to
have an implicit comparative framework.

3.2 WORD EMBEDDINGS

We have already introduced word embeddings and distributional se-
mantics in Chapter 2. Hereby we want to briefly mention other ap-
proaches that have been introduced in the state of the art to deal with
word representations. We will skip the discussion on word2vec since
it was already presented.

In the field of word embeddings, there is a distinction between
methods that are based on counting [29, 35, 117]: for example, cre-
ating word-document matrix, word-word matrix for which each cell
contains the co-occurrence of two words. To some of these matrices,
dimensionality reduction techniques are often applied to generate
low-dimensional representations [35]. We do not analyze these meth-
ods deeply since we focus on those methods that are now more popu-
lar that are based on neural-networks. We refer the reader to the work
of Turney and Pantel [1277] as a summary of word representations that
precedes the advent of deep learning.

3.2.1 Predictive Models

Predictive models are usually based on neural-networks and are the
most recent kind of models to create embeddings of words. They
do not directly consider word counts and word-word co-occurrence
matrix as older approaches, but instead, they are trained to predict
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the contexts in which the words usually appear inside a text corpus.
Training these embeddings is a matter of initializing vectors and then
using the information in the corpus (i.e., the word sequence) to pre-
dict a word from another. This is usually done using a sliding window
that passes through all the text by generating training samples. These
algorithms are trained using supervised methods, but are often re-
ferred as unsupervised, since we rely on this “trick” of using textual
data that is available create the training samples. The spike in the in-
terest for these methods has also been given by the fact that in the last
years there is more availability of good computational power and that
it is now easier to train neural network using modest hardware. We
however remakr that wile there is some evidence that predictive mod-
els perform better on several tasks than count-based models [7] there
are on the other hand, other authors that point out that under certain
conditions, predictive and count-based models are similar [78].

Neural Network Language Model (NNLM) by Bengio et al. was one
of the first models to be introduced to generate embeddings. A sim-
ple feed-forward neural network is used to learn word embeddings
and a statistical language model jointly. The language model predicts
the probability distribution of the occurrence of a word, given some
previous words that appear in a text corpus. In this way, word em-
beddings are learned by scanning the text and predicting words.

While after NNLM different models were introduced, in 2013 it was
the paper by Mikolov et al. that brought big interest and also a great
advancement in the community of word representations. Mikolov et
al. presented two new word embedding models, Continuous Bag-of-
Words Model (CBOW) and Skip-gram Model. Generally called under
the name word2vec, these two architecutres have greately influenced
the field fo computational linguistics and of machine learning[28].
In fact, word2vec can be applied to any task in which language is in-
volved such as question answering or document classification. Details
on word2vec were given in Chapter 2.

3.2.2  Beyond Word2Vec

After Word2Vec many predictive models have been proposed, in this
section we briefly describe there more recent models that are having a
big impact in the community GloVe [100], ELMo [101] and BERT [36].

GloVe is a word embedding method that proposes an approach
that combines the strengths of matrix factorization techniques with
those of predictive models. GloVe base itself on the ratio of the co-
occurrence between words, thus building probabilities. The training
process is more efficient compared to the factorization methods thanks
to an iterative optimization method that is based on weighted least
squares that is meant to give less weight to rare co-occurring word.
ELMo is a deep learning architecture that it is used to create a lan-
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guage model. The algorithm is trained over a large corpus and uses
Bidirectional Language Model (BiLM) to solve a prediction task by
considering the left context and the right context of any given word.
A BiLM is composed of two Recurrent Networks [54] that combine
the information of the left context and the information of the right
context of a given word. It is clear that this fact makes ELMo an algo-
rithm that is more advanced then word2vec: remember that word2vec
does not consider the order of the words in text (and in fact one of
its limit is how to deal with compositionality); EIMo is able to in-
clude information of the context by considering the sequence of the
words. Also in ELMo, the network is trained to predict the context
word based on the left or the right context. After the training proce-
dure is completed, ELMo creates different vector representations for
each word. We used ELMo in a recent research paper where we map
words to their ontological concepts [129].

BERT is based on an ELMo-like architecture which introduces the
random masking of words. This approach increases the generaliza-
tion capacity of the model. Both BERT and ELMo consider char-based
representations and are very difficult to train. ELMo creates a vector
for each occurrence of each word and this make it difficult to train.

coMPARISON In Chapter 4 we will implement our corpus-based
comparative framework by extending wordzvec. This is due to the
following reasons: (i) wordzavec is efficient and effective and has been
studied a lot in the literature; (ii) ELMo and BERT are also char-based,
something that is not useful when we consider entity names; (iii) the
most recent deep learning embedding algorithms are expensive to
train both under a point of view of infrastructure (e.g., GPUs to buy)
and of time (several hours or days), see the recent work by Strubell,
Ganesh, and McCallum [118] on this aspect. Word2vec is simple and
can be easily run on a large corpora even with modest hardware; (iv)
while GloVe can be considered an alternative, in Chapter 4 we will use
a key aspect of wordavec to implement our alignment methodology
that is not directly applicable in GloVe.

3.2.3 Evaluating Word Embeddings

There are different possible ways to evaluate word embeddings [68].
In their work, [93] considered analogical reasoning tasks. Mikolov et
al propose a method to automatically resolve analogy questions using
the trained word embeddings, reaching state-of-the-art results. For ex-
ample, the male/female relationship between words seems to be auto-
matically learned by the model, which successfully resolves the anal-
ogy king : man = queen : woman. This kind of test is used to verify the
quality of the alignment of the embedded representations. We recall
that word embeddings are able to represent linguistic regularities by



3.3 KNOWLEDGE GRAPH EMBEDDINGS

using vector operations like v(bigger) —v(big) +v(small); operations
result in a point in the space in which the nearest point should be the
correct answer (i.e., v(smaller)). Word embeddings can be used to
evaluate word similarity; there do exist different gold standards con-
taining human-annotated pairs of words [68]; word embeddings are
also frequently used to initialize deep learning algorithms on differ-
ent tasks: instead of learning to solve a natural language processing
task from a training set (e.g., question answering) pre-trained word
embeddings can be used to start deep learning training approaches
from an already generated representation of words. inference [26, 100,

136, 149]
3.3 KNOWLEDGE GRAPH EMBEDDINGS

We now explore related approaches in the field of knowledge graph
embeddings. We categorize knowledge graph embeddings in those
that use mainly the structure of the knowledge graph and those that
use distributional information. Note that Knowledge Graphs can also
be viewed as 3-dimensional tensors for which the dimensions are de-
scribed by the subject, the predicate and the object. Tensor representa-
tion is high-dimensional and tends to suffer from the same limits that
count-based model for word embeddings had. Nevertheless, models
that use Tensor representation and Tensor decomposition for knowl-
edge graph embeddings exist, as for example [98].

In the following, we will divide the knowledge graph embedding
field in two main categories: structure-based embeddings and text-
enhanced embeddings. However, note that there are different ways of
categorizing knowledge graph embeddings [132].

3.3.1  Components

While different methods to create embeddings have been introduced
in the literature, there is an underlying common base on which most
of the methods can be connected to. This common base structures the
definition of a knowledge graph embedding approach by considering
three elements:

* Representation. The first step in a knowledge graph embed-
dings algorithm is the definition of the desired representation
for the elements of the KG: for example, relationships can be
defined as vectors [25] or as matrices [98].

¢ Scoring function. The next step requires the definition of a func-
tion that aggregates the information of the triples in such a way
that it expresses the confidence about a given triple.
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¢ Loss function. Finally, the loss function, a common component
in machine learning models, is introduced to learn the represen-
tations.

Differently for what has been done in the previous section, we
now give some details of an example of knowledge graph embed-
ding model (TransE [25]) that will help the reader in understanding
how the above components are combined.

3.3.2  Knowledge Graph Embeddings with TransE

We start this section with an example of an embedding model for
knowledge graphs, namely TransE [25] a model for knowledge graph
embeddings. TransE was introduced by Bordes et al [25] and, together
with RESCAL [98], was one of the first approaches to start the entire
knowledge graph embedding field. Fundamental idea of TransE is to
embed entities in a space in which for each triple (s, p, 0), the follow-
ing formula holds for the respective vectors: s + p ~ o. This means
that given a triple < Rome, country, Italy > we expect the model to
learn that for the respective vector Rome + country ~ Italy holds (see
Figure 8).

(Rome, country, Italy)
stp=o0

Rome+country = Italy

Co\,\n“y

(/]

§ \’@\*
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&

\/

Figure 8: Schematic example of the idea behind TransE

Corrupted Training

Machine learning algorithms require positive and negative examples
to learn and since knowledge graphs contain facts of the real world,
they mainly contain positive elements. The technique to solve this
problem, often used to train knowledge graph embedding models, is
to generated corrupted/false triples starting from true triples: for ex-
ample, given < Barack Obama, president, USA > one might gener-
ate the triple < Barack Obama, president, Italy >. Thus a training



3.3 KNOWLEDGE GRAPH EMBEDDINGS

triplet has either the head or tail replaced by another entity (but this
does not happen for both at the same time) [25].

Learning Representations

If we consider the list of elements defined above, we can say that
the way entities and relationships are represented is by using vectors.
As for the score function, the model aggregates the information by
computing the Ly or the L, (d) norm between the pairs (h + p,o0).
Eventually, the model defines the following loss function to learn the
representation for both entities and relationships; this loss function
combines the score function and uses the methods of the corrupted
triples to generate the representations.

L= > > Iy+ds+po)—d(s'+po)y
s,p,0€S s’,p,o’ES;p,0

where [x] is the positive part of x and 7y is a margin hyper-parameter.
And S¢ , , is the set of corrupted triples. TransE only uses the knowl-
edge that is contained inside the knowledge graph: the representa-
tions that are generated come from the structure of the knowledge
graph. We use the term structure-based embeddings to identify em-
beddings that are based on the same assumption.

To summarize and compare TransE with the bullet point list that
above, we can explain TransE as follows:

* Representation. s,p, and o are vectors in R™

* Score Function. L1 or L2 distance, s(s + p, 0)

* Loss Function. } , ,es Zs/,p,o/esgp ly + d(s+p,0) —d(s’ +

p.o’)]+ ’
3.3.3 Structure-based Embeddings

Related to TransE, a plethora of approaches has now been introduced
in the knowledge graph embeddings fields [25, 41, 81, 98, 126, 133,
134, 138, 140, 141]. A central hypothesis of these works is that rela-
tional information contained in the KG is structured. Originally, the
seminal work of this technique is found in the paper of Bordes et
al. [24] in which each relation is represented by a pair of linear trans-
formations on the vector entities that the relation links. Following
this approach, several works use relation representation in similar
forms as translations [25], quadratic forms [69], hyperplane projec-
tions [134], or entity clustering [81]. A different point of view has
been given by the conceptual spaces community [67]. In this model,
entities sharing types are mapped to be closer in the vector space
using space constraints.
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As explained above, these embeddings are usually obtained by min-
imizing the global function (often referred to as score function), which
encourages the proximity of related pairs of entities in the knowledge
graph. More recently, methods like CompleEx [126] that use a com-
plex space to represent entities and relationships have been effectively
used in the link prediction task. Other approaches combine structural
knowledge with logical rules to generate better representations [58].

Hyperbolic Embeddings

Generally, the models we just described require an high number of
dimensions to generate good embeddings. This limits comes from
the fact that euclidean geometry might not be the best geometry to
fit these graph based representations. Given this limit, researchers
have used hyperbolic geometry to account for better representation
of graph structures. Non euclidean geometries are based on the re-
jection of Euclid’s postulate about parallel lines: given a plane, a line
and a point that is not on the line, at most one line that is parallel to the
given line can be drawn through the point. On the other hand, in hy-
perbolic geometry, there are always at least two parallel lines given a
line and a point not on it. These approaches have been now widely
used to represent tree-like structures [87, 97, 111, 119] and are hav-
ing valuable recognition also in Natural Language Processing [74,
123]. Hyperbolic embeddings are in fact really useful when we need
to learn embeddings of tree/ontological structures. Differently from
these approaches, in our framework we learn embeddings of types
under distributional conditions (see Chapter 5). In a recent work, we
show that these two ways of generating the embedding of an ontol-
ogy are different and can be effectively combined to account for two
different types of information [129].

3.3.4 Distributional Knowledge Graph Embeddings

Models that use co-occurrence from documents that contain links are
now commonly used in literature [10, 138]. For example, Wikizavec [138]
uses word2vec over Wikipedia text and generate the representation
for both entities (by looking at links co-occurrence) and words. We
can refer to approaches that base themselves only on the co-occurrence
of entities in text as Directly Distributional Knowledge Graph Embeddings.
We call this model directly distributional because they only rely on the
distributional hypothesis to generate the representations.

Another prominent model in this category is RDF2Vec [104]: it uses
an approach that combines techniques from the word embeddings
community with knowledge graphs in RDF. In fact, it generates em-
beddings of RDF entities and relationships by first generating a vir-
tual document that contains lexicalized walks over the graph and
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then use word embeddings algorithm on the virtual document to
create the representation. The representation is thus based on entity-
relationship-entity co-occurrence in the walk. We can refer to this ap-
proach as semi-distributional since it is based on the distributional hy-
pothesis, but it does not start from natural language sentences.

There instead exists a variety of models that make use of textual
information [41, 67, 133, 135, 138, 140, 141] to enhance the perfor-
mance of knowledge graph embeddings techniques, we refer to these
models as Mixed Knowledge Graph Embeddings [132].

For example, mixed KG embedding (TEKE) [135] focuses on Wikipedia
inner links and replaces them with Freebase entities and then use
wordzvec on the generated corpus. No specific use of online anno-
tators is run’. Pre-trained representations can be used to initialize
knowledge graph embeddings and to generate representations that
can, in some cases, outperform other methods [144].

Jointly [133] is an embedding method in which textual knowledge
is used to enrich the representation of entities and relationships. In
this work, both entities and words are mapped to a common vector
space and vectors associated with words and entities which represent
a common concept are forced to be closer in the vector space. Jointly
is used on an analogical reasoning task: in which the analogies are
solved using words, and their results do not considerably improve
those of a standard the skip-gram baseline. Semantic Space Projec-
tion (SSP) [140] is a method that learns the representation of triples by
also considering the description of the entities. Description-Embodied
Knowledge Representation Learning (DKRL) [141] includes the de-
scription of the entities in the representation. DKRL uses a convo-
lutional layer to encode the description of the s entity into a vector
representation and use this representation in the loss function. Words
vectors coming from the entity description can be initialized with the
use of wordavec embeddings. Thus, this method represents each en-
tity by considering the composition of the words in its description
and not by considering the general co-occurrence of an entity with
others. One key advantage of DKRL [141] is that it offers the possibil-
ity of doing zero-shot learning of entities by using the description of
the entities themselves.

Directly distributional embeddings models tend to capture the se-
mantics of language within the text. This is different from the struc-
tural embeddings approach. Similarity from textual embeddings has
been compared with the similarity coming from entity embeddings [84],
showing limitations of structured knowledge graph embeddings in
retrieval tasks. Thus, Directly distributional embeddings are able to
capture information that structural knowledge graph embeddings do
not capture.

1 Nevertheless, the authors mention that the use an annotator is a possibility.
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Table 2: Some approaches and the task they have been tested on

Method Analogical Reasoning Link Prediction Triple Classification
TransE [25] X

TransH [132] X X

TransR [82] X X

ComplEx [126] X

NTN [116] X

Jointly [133] X X

TEKE [135] X X

KALE [58] X X

In this work, we want to propose a method that generates entity
representations that can be compared. We need a model that can gen-
erate embeddings from different text sources.

3.3.5 Evaluating Knowledge Graph Embeddings

Knowledge Graph Embeddings are generally evaluated on link pre-
diction tasks. This means that given a triple (s, p,?) the model has to
find the correct o. Usually, the model produce a ranking list contain-
ing all the estimated 6 entities. From this list, corrupted triples used
in training and other correct triples (i.e.,, < Italy, hasCity,? > has
multiple answers) are removed [25]. Another task often tested in the
context of knowledge graph embeddings is triple classification [116]
(i.e., detecting if a triple is true or false). Generally, analogical reason-
ing is a task that is not always tested in the context of knowledge
graph embeddings and only Jointly [133] has been used to gener-
ate better word representation that could solve analogical reasoning
tasks. In Table 2 we show some approaches with the respective task
they have been tested on.

Limits of the recent results that come from KG embeddings have
been outlined in a recent experimental paper [70], where the authors
suggest that the variability in performance by the models might be
more related to careful parameter tuning than to the novelty and
the complexity of new architectures. For example, SSP [140], one of
the mixed approaches, had lower performance than structured well-
tuned approaches like ComplEx [126].

CcOoMPARISON In Table 3 we summarize where our approach lo-
cates itself in the literature by citing other approaches with respect
to our task of corpus-based comparative analysis. Structure-based ap-
proaches cannot be used because they do not consider text and they
just embed the graph. Semi-distributional methods like RDF2Vec [104]
do not consider natural language expressions. Mixed methods are
generally meant to be used in other tasks as link prediction. Directly
distributional methods can be applied only on already on text that
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contains hyperlinks and thus have limited applicability. In the context
of this comparison, it is important to cite an approach by lacobacci,
Pilehvar, and Navigli[66] that annotates text using the linker Babelfy>
and then generate embedding using word2avec. This approach is in-
deed much similar to what we want to do. The two main differences
are that while their approach is focused on a model that embeds word
senses we are more interested in embedding entities and types of a
knowledge graph. Moreover, we will focus our experiments on the
use of an open-source entity linker, which is DBpedia Spotlight [88]
that is free to use3. Anyway, while our method does not deeply ex-
tend the others, it has the advantage of relying on entity linking tech-
niques for knowledge graphs. This is useful because we want to be
able to use it on different text sources with the aim of generating rep-
resentations that are supported by associative learning [78] and that
can contain contextual bias [27]. Moreover, we will show in Chapter 5
that this model can be used for both entity and type representations.

Method Dependency Applicability
Structure-based (e.g., [25, 98]) KG No
Directly Distributional (e.g., [10, 138])  Text and hyperlinks ~ Only to hyperlinked text
Semi-distributional (e.g., [104]) KG Not directly
Mixed (e.g., [140, 141]) KG and text Not directly
Our approach (TEE [17]) Text and entity linking Yes

Table 3: Comparison between approaches to generate entity representation
for corpus-based comparable embeddings in relation to the applica-
bility to our task.

3.4 CONTRIBUTIONS OF THIS THESIS
3.4.1  Corpus-based Comparable Distributional Framework

In this thesis we introduce a framework to compare representations
that are generated under the distributional hypothesis. To do this, we
need a method that allows us to align distributional representation
in a way that is closely related to what other researchers have done
in the context of temporal word embeddings [60]. Our approach is
effective and efficient and in Chapter 4 we will show that its perfor-
mance are better than other state-of-the-art approaches; moreover we
will show that this model is not constrained by temporal assumptions
and thus it can be used to align also text that comes from different
sources, thus being a suitable model for a comparative framework.

http://babelfy.org/
Note that in Chapter 7 we will show some results that are based on the use of another
annotator, that is SpazioDati’s Dandelion.
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3.4.2 Distributional Embeddings with Entity Linking

To represent and compare entities in text we need a method that al-
lows us to generate entity representations. In this thesis we use a
distributional knowledge graph embedding model for entities and
types that relies on entity linking techniques. While this method is
not far from models already defined in the state-of-the-art, the fact
that is entirely based on entity linking allow us to use it on any text.

3.4.3 Reasoning with Distributional Embeddings

We provide a method to reason over distributional representations.
This method is based on LTNs a prominent model in the neuro-symbolic
field that allows us to do reasoning over vector space, allowing us to
make logical comparisons between different representations. In Chap-
ter 6 we will describe the method we use and also do a short sum-
mary of related work of the field that we did not cite here to focus on
distributional approaches.

SUMMARY OF CONTRIBUTIONS Contributions of this research work
are spread among three different levels:

* a methodology for efficient and effective alignment of distribu-
tional representations that allows us to compare representations
that are generated from different corpora (Chapter 4);

¢ the definition of a purely distributional model for knowledge
graph’s entities and types (Chapter 5) that can be used with the
previous contribution to account for the comparison of entity
names;

* a method to perform logical reasoning over distributional rep-
resentations (Chapter 6) that is based on the representations of
the entities of the previous contribution and that will allow to
do comparative reasoning with the use of axioms.
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CORPUS-BASED COMPARATIVE DISTRIBUTIONAL
EMBEDDINGS

In this Chapter, we introduce Compass-Aligned Distributional Em-
beddings (CADE) the main component of our comparative framework,
that is, a model to effectively align and compare distributional repre-
sentations that are generated from a collection of text corpora [37]. We
experiment this model with state-of-the-art approaches in the tempo-
ral domain (a domain in which is important to align distributional
representations), and we also show that Compass-Aligned Distribu-
tional Embeddings (CADE) is not constrained by temporal assump-
tions (as many of the baselines that we are going to consider) and can
thus be applied on corpora with other characteristics.
The alignment approach for distributional representation introduced

in this chapter has been published as:

e Di Carlo, V., Bianchi, F. and Palmonari, M. (2019). Training Tem-
poral Word Embeddings with a Compass. In AAAIL

While this work was focused on temporal data, in this Chapter we for-
malize the distributional framework and we give novel details about
the alignment model showing that it is general enough to handle text
that comes from different sources.

4.1 CORPUS-BASED COMPARATIVE FRAMEWORK

If language is encoding important aspects of cognition and language
usage changes across the contexts, the comparison of language usage
in those contexts may reveal important knowledge patterns. A corpus-
based comparison framework should provide methods to explore the
difference in meaning across different contexts. For example, consider
a corpus that contains texts written in British English and a corpus
that contains texts written in American English. We might ask our-
selves if the word “flat” has the same meaning in British and Amer-
ican English. Frequently, in British English, the word “flat” is used
to describe a place where people live, while in American English it
is more often used to indicate flat surfaces. In fact, the equivalent of
“flat” in American English can be considered the word “apartment”.
While under a lexical point of view the words are the same, their se-
mantic meaning changes. An intuitive way to view this is under an
analogical point of view: “flat” is to British English as “apartment” is
to American English.

A comparative framework should help us in computing and ex-
ploring the semantic differences in meaning that words assume in
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Corpus One (D1) DiInput Corpus Two (D2) D2 Output

us apartment UK flat

us labeled UK labelled

usS gasoline UK petrol
1987 reagan 1997 clinton
1987 walkman 2007 ipod

Table 4: Some example of comparisons we would like a comparative model
to be able to find find. These examples can also be viewed as analo-
gies between different corpora.

different corpora. Table 4 shows some examples of possible compar-
isons that we would like to make between different corpora in dif-
ferent domains. We show two possible pairs of domains in the Table,
one that considers the differences in semantic meaning of words be-
tween American and British English and another one that considers
the differences in semantic meaning of words during different years.
We might want to compare tokens that come from corpora of differ-
ent time periods [60, 145] or of different topics (e.g., games, business,
politics, ...) [6].

We already saw that word meaning can be represented with the use
of dense vectors (i.e., embeddings) and that generating embeddings
of domain-specific corpora results in representations that encode im-
plicit biases of the text [27]. It is necessary then, to find models to
compare different representations created from different sources, but
this is not possible with standard word embeddings due to an align-
ment problem.

4.1.1  Recap: The Alignment Problem

When we generate word embeddings from different corpora it is not
possible to directly compare a word vector of the first corpus with a
word vector of the second corpus. This limitation is due to the intrin-
sic stochasticity of neural networks that eventually generate vector
spaces with different coordinate systems. It is thus important to find
a way to align these representations, otherwise, the comparisons are
not possible. Figure 9 summarizes the problem we encounter when
we use, for example, the standard word2vec algorithm on two differ-
ent corpora (in the Figure we consider text that was written in two
different periods). It is not possible to compare the vector of the two
slices: the vector of the word “president” occupies to completely dif-
ferent positions in the vector spaces.

Essentially, what we would like our model to do is to allow us to
map words” meanings used in two different corpora using a function
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Corpus with text from 2005 Corpus with text from 2010
Embedding using Embedding using
word2vec (ho word2vec (no
alignment) alignment)

A A
\/ \
texas_2005
president_2010
president_2005 usa_2010
obama_2010
usa_2005
bush_2005 texas_2010
Embedding of text from 2005 Embedding of text from 2010

Figure 9: Word embeddings generated from two different corpora are not
directly comparable. The word “president”, for example, occupies
to completely different positions in the vector spaces.

¢. The idea is depicted in Figure 10, where we show a temporal-based
comparison and a language-based comparison.

4.1.2 High-level Description of the Framework

As inputs to our comparative framework, we have a collection of texts
that can be sliced according to different context-based criteria. There
are several possible different slicing that we could consider: text can
be divided by considering the period of time in which it was written
or by considering categories (e.g., business, sports, etc...).

As an output, we want our model to provide aligned representa-
tions, one for each corpus in input, that can be used to compare dif-
ferent words.

4.1.3  Definition of a Comparative Framework

In the following definitions, we use the more general term token to
refer to words and entities names using a single term. We in fact
remind that as explained in Chapter1, we want to apply our frame-
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texas_2005 texas_2010

CI>2005¢2010
_________ L predident_2010

usa_2005 2010
bush_2005 usa—
obama_2010

\
\

Embedding of text from 2005 Embedding of text from 2010

A A
smooth_UK flat_US
(0]
roof_UK JUUTTTTON UK-’US
U creeee| L roof_US
bed UK
flat_UK edroom._ apartment_US bedroom_US
Embedding of text form an UK Embedding of text form an US
newspaper newspaper

Figure 10: A comparative framework should allow us to compare words
from different corpora.

work to distributional models of words and elements in a knowledge
graph (a distributional model for representing entities and types of a
KG will be introduced in the Chapter 7).

The wordzavec algorithm that we use in this thesis is based on tok-
enization (e.g., separate tokens considering the space character) and
thus it will not make differences between words or entities when they
are tokens.

The goal of a comparative framework is to support the comparative
analysis of the semantic meaning of words in different corpora. Thus,
a comparative framework should allow us to find correspondences
between different corpora.

In our comparative framework we have access to a collection D that
consists of various corpora {D',...,D%,...,D™}. When considered as
part of a collection, we refer to each corpus D' as to the slice i of the
collection. V is the vocabulary of the collection D, that is, the set of
tokens that occurs in the collection D. With wy we instead denote as
the k-ith token in the vocabulary.
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Vi represents the vocabulary restricted to the slice Dt i.e, the sub-
set of V that contains only tokens that occur also in D*. While C! is
the vector space associated with the slide DY, i.e., the set of vectors
associated to V' (the vocabulary restricted to the slice i).

Ci('k) is instead the the vector associated to the k-ith token in the C*
vector space, i.e., the vector space associated to the slice i. We refer to
this vector also as to the i-th slice-specific vector (or, equivalently, i-th
corpus-specific vector) of the token wy, and we refer to C* as to i-th
slice-specific vector space (o1, equivalently, i-th corpus-specific vector
space).

Observe that while we can define a bijection between Vito Ci, ie.,
each token that occurs in a slice i is associated with a slice-specific vec-
tor, the mapping between V and a vector space C' is partial, because
a word w € V may not occur in V' and thus not have a slice-specific
vector in C".

When we do not need to refer to a specific word and the context
will make the notation clear, we will also use the simplified notation
¢! to refer to the vector of a word w in the C' vector space and we will
use the lower index to identify the element of a sequence of words.

Given the different distributional representations C' we need to
find corresponding items in pairs of slices. We thus need a corre-
spondence function that allows us to map a token in one slice to the
element it corresponds to in another slice (see, for reference, Table 4).

Definition 6 (Correspondence Function) Given two slices D' and D)
with vocabularies V' and VI, we define the correspondence function ¢pi_, p;
as a function that for every token wy € V' associates a token wy, € VI if
and only if ci(h) is the most similar vector to the vector ci(k).

Observe that given two different vector spaces C' and C’ we can
always compute a vector-based similarity function between their vec-
tors. However, if the vector spaces are not aligned, i.e., if the vectors
are generated using different coordinate systems, the vector-based
similarity cannot be considered a proper semantic similarity measure.
The alignment problem consists therefore in ensuring that two vector
spaces C' and C’ are aligned so that geometric similarity measures
computed between vectors of the two spaces are semantically mean-
ingful (see Section 4.1.1 for the discussion on the alignment problem).

Note that there are two possible outcomes from the correspondence
function in case of aligned embeddings: given two slices D' and D/,
the ¢pi_,pj function can associate to a token wy a (i) different token
wy, (i.e., cj(h) is the most similar vector to C%k)) or (ii) the same token

wy (ie., c’(k) is the most similar vector to ci(k)). We expect tokens that
have the same semantic meaning in different slices to have highly
similar vectors. Instead, tokens for which the meaning changes in
two different slices, should have different vector representations. This
effect is generally referred to as semantic shift.
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Examples of shifted tokens can be the word “gay”, that has changed
meaning over time [73] or the word “lift” in British English and Amer-
ican English or the entity name “dbr:Google” that has moved from a
search-engine only company to a broader-range company during the
years. This effect is often referred to as meaning shift in the context of
temporal word embeddings. At the same time, we expect a word like
“president” to have a more stable meaning in two slices that contains
general newspaper data.

Definition 7 (Shifted Token) A token w occurring in a corpus D' and
in a corpus D) is shifted if and only if pi_,pi(Wk) =wn and h £k, ie.,
if and only if its correspondence function returns a different word.

Finally, we give the definition of a comparative distributional frame-
work.

Definition 8 (Comparative Distributional Framework) A comparative
distributional framework is a quadruple § = (D,C,V,®), where D =
(D',...,D"} is the collection of slices of text, C = {C!,...,C"} is the
set of corpus-specific distributional models generated from the slices, such
that each C; is generated from the slice D*. V = {V',...,V"} is the set of
vocabularies restricted to each slice and ® is a set of correspondence func-
tions bpi_,p;, defined for all i and j, i.e., between every slice pair D' and
DJ in the collection.

This is the description of the atomic units of a comparative frame-
work. In the rest of the Chapter, we will make mainly reference to
words, but has introduced above, since we rely on tokenization, the
model we describe is general enough to handle also other types of
tokens as entity names, as we will see in Chapter 7. In fact, in Chap-
ter 5 we will introduce a general method to handle entity names of a
knowledge graph.

4.2 COMPASS-ALIGNED DISTRIBUTIONAL EMBEDDINGS (CADE)

As outlined in the previous section, an effective comparison between
different slices has to pass from an effective alignment procedure of
the vector spaces. In this section, we introduce Compass-Aligned Dis-
tributional Embeddings (CADE), a model to align and make compa-
rable different distributional representations obtained from different
slices of text. Our model is based on a generalization of the CBOW
model introduced in 2013 by Mikolov et al.

Main Idea: looking it from a more general perspective, our model is
based on a simple but effective idea. We first train a CBOW model
on a general text and then we use the trained second matrix of the
CBOW network to initialize the second matrix of a novel CBOW
model that we are going to use on the text of each slice. We freeze
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this second matrix of each CBOW model; this in fact constraints the
CBOW models in such a way that after training all the embeddings
that we extract from them are aligned.

We hereby restate the inputs and the outputs of our comparative
framework: starting from a collection D that consists of multiple
slices of text {D',...,D%,..., D™} we want to generate n aligned rep-
resentations C' that can be compared. We first describe the two as-
sumptions that drive our method and then we will show in detail
how these two assumptions can be implemented.

4.2.1  The Compass Heuristic

Our approach is inspired by an assumption made in previous work by
[73]: the majority of words does not change meaning over time: while
some words have shifted their meaning over time (e.g., “amazon”,
“apple”, “gay”), most of the words tend to have a stable meaning.
Nevertheless, we believe that this assumption is also true for other
corpora divided by topic: two sources that use the same language
might use the same word in a different way (i.e., think of the differ-
ences between British and American English), but most of the words
used for communication have a strong shared meaning (otherwise it
would be impossible for a British English speaker to understand an
American English speaker).

From this assumption, we derive a second one: we assume that a
shifted word, i.e., a word whose meaning has shifted, appears in the
contexts of words whose meaning changes slightly. However, differ-
ently from the latter assumption, we believe that our assumption is
particularly true for shifted words. For example, the word clinton ap-
pears during some temporal periods in the contexts of words that are
related to his position as president of the USA (e.g., president, presi-
dential, administration); on the contrary, the meanings of these words
have not changed much (i.e., they still have the same meaning). In a
sense, the words in the context of the shifted word are generally more stable.

Generalizing this assumption, we can say that we have the same
effect with the word “petrol” when its meaning shifts from British
English to American English (i.e., the American English equivalent is
“gas/gasoline”). This word will appear in contexts related to “cars”
and “economy”, that are words that have a more stable meaning.

4.2.2  Extending CBOW

We adapt this heuristic to the CBOW model. We recall that this model
is based on two matrices, a target matrix, and a context matrix (see
section 2.3.2 for more details), this distinction is important since it is
one of the main points of our algorithm. In general in CBOW, after
training, we extract the word embeddings from the context matrix.
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Considering again the two assumptions we outlined in the previ-
ous section, we can consider the target embeddings as static, i.e., to
freeze them during training, while allowing the context embeddings
to change based on co-occurrence frequencies that are specific to a
given slice. Thus, our training method returns the context embed-
dings as word embeddings.

Before freezing the static embedding, we need to initialize them.
We use a first training of the CBOW model on the concatenation of the
slices of the collection D, thus building a general embedding that will
be used to identify a coordinate system for all the other embeddings.
This embedding is the compass embedding.

The process is thus twofold: (i) we first generate a general represen-
tation of the embeddings, computed on all the data we have, and then
(ii) we use this representation to initialize the specific CBOW model
by also freezing the target matrix with the pre-trained embeddings
from step (i).

The frozen embeddings act as a compass and makes sure that the
temporal embeddings are already generated during the training in-
side a shared coordinate system. In reference to the map drawing
analogy [115] (Section 3.1.3 introduced this analogy), CADE draws
maps according to a compass, i.e., the reference coordinate system
defined by the compass embeddings.

4.2.3 The CADE Model

In this section we formally introduce CADE, that is our extension of
CBOW that can be applied to sliced corpora to generate a set of
aligned word embeddings. Note that CADE can be implemented on
top of the two Wordavec models, Skip-gram and CBOW. Here we
present the details of our model using CBOW, since we empirically
found that it produces models that show better performance than
Skip-gram when doing experimental evaluations on small datasets.

Training

The training process of CADE is divided into two phases, which are
schematically depicted in Figure 11.

1) Train the

D' D2 D3 D' D" compass from the U

concatenation

3) training 3) training 3) training 3) training 3) training

2) Initialize and freeze
each CBOW target matrix
with the same U matrix

Figure 11: The CADE model.
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(i) First, we construct two compass matrices C and U by applying
the original CBOW model on the concatenation of the document in
the collection D; C and U represent the set of compass context embed-
dings and compass target embeddings, respectively. (ii) Second, for each
specific slice D!, we construct the context embedding matrix C' as
follows. We initialize the output weight matrix of the neural network
with the previously trained target embeddings from the matrix U.
We run the CBOW algorithm using the specific slice D'. During this
training process, the target embeddings of the output matrix U are
not modified (i.e., we freeze the layer), while we update the context
embeddings in the input matrix C'. After applying this process on
all the slices D', each matrix C' will represent our word embeddings
for the slice i. Here below, we further explain the key phases in our
model, that is, the update of the matrix for each slice, and the inter-
pretation of the update function in our model.

Given a slice DY, the second phase of the training process can be
formalized for a single training sample (wy,y(wy)) € D! as the fol-
lowing optimization problem:

maxlog P(wly(wi)) = olux i) (1)
where y(wy) = (wj,,--- ,wj,,) represents the M words in the context
of wy which appear in D* % is the size of the context window),
uy € U is the target embedding of the word wy (the one that is fixed
and that we are not going to update), and

) = RS+ )" @
is the mean of the context embeddings cjim of the contextual words
wj .. The softmax function o is calculated using Negative Sampling
[93]. Please note that C! is the only weight matrix to be optimized in
this phase (U is the compass embedding that we do not update dur-
ing training), which is the main difference from the original CBOW
model. The training process maximizes the probability that given the
context of a word wy in a specific slice 1, we can predict that word
using the target matrix U. Intuitively, it moves the context embedding
c]-im closer to the target embeddings uy of the words that usually have
the word wj, in their contexts in corpus i. We extract and use the
embeddings of the now trained context matrix: they will be already
aligned, thanks to the shared target embeddings used as a compass
during the independent training. Since the embeddings are aligned
we should have slices that look like the ones depicted in Figure 10.

Properties

The method we propose can also be viewed as a method that is
based on the same intuition given in [57] using neural networks and
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wordzavec. It can also be viewed as a simplification of the models
defined by [6, 108]. Despite the simplification and the fact that we
propose a method that generalizes the CBOW model, in the experi-
mental section we show that CADE outperforms or equals state-of-the-
art algorithms that are more sophisticated on different experimental
settings.

Note that our model is also efficient: it has the same complexity of
running CBOW one time over the entire corpus D, plus the task of
computing n times the CBOW algorithm over all the slices. Note that
we also can take advantage of the fact that the training of the slices
are independent to parallelize this last part of the process.

We believe that one key property of this model is that the simplicity
of the training method can foster the application of these comparative
embeddings in studies conducted in related research fields to study
biases in language models [27].

We observe that, differently from those approaches that enforce
similarity between consecutive word embeddings (for example, in
the temporal domain [108]), CADE does not apply any time-specific
assumption. In the next sections, we show that this feature does not
affect the quality of the temporal word embeddings generated using
CADE and that since this model is not constrained by a temporal as-
sumption, it can be used with corpora that are sliced using different
criteria (the last section of this Chapter reports the experiments that
are related to the generalization of this method).

One last thing that is left to define in our comparative framework
with CADE is how to make comparisons between different embed-
dings C'. Since our spaces are aligned, we can just move one word
vector of a slice to another slice to find the corresponding element in
by looking at the neighborhood in the space (by considering cosine
similarity).

Definition 9 (Correspondence as Transposition) Given two slices D'
and D, the b function of a word wy of D' retrieves the 1-nearest neighbor
of the vector of the word w amongst all the vectors of C.

This definition can be easily generalized to the Top-K neighbors. As
already stated above, this function can be interpreted as an analogy
between spaces. Indeed, we will experiment on a temporal analogical
reasoning task in the next section.

Note that in the next Chapters, we will use the operation D! - D2
of a word to express the correspondence as transposition. For ex-
ample, when considering text from different newspapers, e.g., the
Guardian and the New York Times, we will use the operation GUA —
NYT of the vector of the word “flat” and show the neighborhood of
the vector of the word “flat GUA” in the NYT space. A good compar-
ative model should find the word “apartment” in the first positions
of the neighborhood of the NYT space (as suggested by Figure 10).
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In the next sections, we provide experiments to answer our research
questions. Our deeper experimental evaluation is based on temporal
word embeddings; we mainly focus on this category for two reasons:
(i) temporal word embeddings are a field that is getting much inter-
est lately [60, 73, 108, 145] and thus, the experimental evaluation and
datasets are now standardized; moreover (ii), we believe that tempo-
ral data is a good prototype to model language differences: close-in-
time slices tend to be more similar than far-in-time slices and thus,
dealing with temporal data offers the possibility of evaluating more
general characteristics of language change.

The rest of the chapter is divided into three parts, in the first we
evaluate the performance of the model against temporal word em-
bedding baselines, in the second we show some details related to the
robustness of the model and in the third part we show an experiment
on the generalization of CADE that shows that the model can treat
cases that are more general than those based on temporal data.

4.3 PERFORMANCE OF CADE

We compare CADE with the state-of-the-art models that have shown
better performance according to the literature. We use the two main
methodologies proposed to evaluate temporal embeddings so far:
temporal analogical reasoning [145] and held-out tests [108]. In the
temporal word embedding field, a temporal word analogy is an anal-
ogy of the type “obama” : 2010 :: “bush” : 2005. Note that in CADE
we can solve this analogy using the correspondence function defined
above.

We recall that the results that we describe in this section have been
previously published in [37]. In this section we will treat CADE has
a member of the family of the Temporal Word Embedding Model
(TWEM). However, we remark that while we can use CADE on temporal
data, we will show that the model is more general.

Experiments on Temporal Analogies

To evaluate both Q1 and Q2 of this chapter, we focus on two differ-
ent datasets and testset of the state of the art. We focused on two
datasets, one that contains a large amount of text and the other one
that contains a lower amount of text. This is useful to test the effects
of different quantity of input text on the models’ performances.

Datasets and Methodology

The small dataset [145] is freely accessible online’. We will refer to this
dataset as NAC-S. The big dataset is the New York Times Annotated

1 https://sites.google.com/site/zijunyaorutgers/publications
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Data | Words Span Corpus
NAC-S | 50M 1990-2016 | 27

NAC-L | 668M 1987-2007 | 21

MLPC | 6.5M 2007-2015 | 9

Test Analogies | Span Categories
T1 11,028 1990-2016 | 25

T2 4,200 1987-2007 | 10

Table 5: Details of NAC-S, NAC-L, MLPC, T1 and Ta.

Corpus® [112] employed by Szymanski, Zhang et al. to test their mod-
els. We will refer to this dataset as NAC-L. Both datasets contain a
collection of corpora that is divided by year, the text in each year is a
slice.

To these two datasets, two test set come associated: T: introduced
by Yao et al. and T2 introduced by Szymanski. They are both com-
posed of temporal word analogies based on publicly recorded knowl-
edge, partitioned in categories (e.g., President of the USA, Super Bowl
Champions). The main characteristics of datasets and test sets are sum-
marized in Table 5.

To replicate the experimental settings of Yao et al. and Szyman-
ski we follow the following procedure: To test the models trained on
NAC-S we used the T1, while to test the models trained on NAC-L we
used the T2. We quantitative evaluate the performance of a model in
the task of solving temporal word analogies (TWAs) [120]: a temporal
word analogies is given in the form wy : t; = x : t; and the task is to
find the word w; that is the most semantically similar word in t; to
the input word wy in t;, where t; and t, are temporal intervals. Be-
cause semantically similar words result in distributional similar ones,
it follows that two words involved in a TWA will occupy a similar
position in the vector space at different points in time. Then, solving
the TWA wy : t; = x: t2 consists in finding the nearest vector at time
t; to the input vector of the word wy at time t;. For example, we ex-
pect that the vector representation of the word clinton in 1997 will be
similar to the vector representation of the word reagan in 1987. This
operation is equivalent to the correspondence function we have intro-
duced above and we will show that we can use the same operation in
the experiment in which we generalize CADE.

We also report a more detailed analysis on the analogies tested in
this context by considering how the models perform with respect to
the span over time that an analogy covers (i.e., from 1987 to 1997 as in
the example above): given an analogy w1 : t; = x : t;, we define time
depth &¢ as the distance between the temporal intervals involved in
the analogy: 8¢ = [t1 — t3[. In theory, the bigger ¢ is the more difficult

2 https://catalog.ldc.upenn.edu/1dc2008t19
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the analogy is since it has to compare slices that are more distant one
with the other.

Moreover, analogies can be divided into two subsets that will be
useful for an in-depth analysis of the models: the set Static of static
analogies, which involve an analogy pair of the same words (e.g.,
obama : 2009 = obama : 2010), and the set Dynamic of dynamic analo-
gies, that are not static. We will refer to the complete set of analogies
as All. Given a model and a set of TWAs, the evaluation on the given
answers is done with the use of two standard metrics, the Mean Re-
ciprocal Rank (MRR) and the Mean Precision at K (MP@K), we will
show the results for all the subsets, namely Static Dynamic and AlL.
Metrics computed on All give the general value of the performance
of each model.

Baselines

We tested different models to compare the results of CADE with the
ones provided by the state-of-the-art. We generally use the following
configuration for CADE: CBOW and Negative Sampling using an ex-
tended version of the gensim library; in the section related to held-out
experiments we will use a slightly different setting.

We compare CADE with the following models that are part of the
pairwise and joint alignment families:

e LinearTrans-Wordzvec (TW2V) [120].
e OrthoTrans-Word2vec (OW2V) [60].

* Dynamic-Word2vec (DW2V) [145]. The original model was not
available for replication at the time of the experiments. How-
ever, they provide the dataset and the test set of their evaluation
settings (the same employed in our experiments) and published
their results using the same metrics. Thus, the model can be
compared to our using the same parameters.

* Geo-Wordzvec (GW2V) [6]. We use the implementation provided
by the authors.

e Static-Wordzvec (SW2V): a baseline adopted by Yao et al. and
Szymanski. The embeddings are learned over all the collection,
ignoring the temporal slicing. Note that this model solves all the
analogies as if they were static, that is, the model always replies
to an analogies using the same word given in input. This model
will have an accuracy of 1 on static analogies.

Note that in this task we also tested the model introduced by Rudolph
and Blei and we obtained results close to the baseline SW2V, that is a
almost static model; these results have been confirmed by Barranco,
Santos, and Hossain in the literature; we thus do not report the results
for this model on the analogy task.
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Experiments on NAC-S

The first setting involves all the models, trained on NAC-S and tested
over the analogies in T1. The hyper-parameters reflect those of Yao et
al.: small embeddings of dimension 50, a window of length 5, 5 neg-
ative samples and a small vocabulary of 21k words with at least 200
occurrences over the entire corpus. Table 6 summarizes the results.
We can see that CADE outperforms the other state-of-the-art models
with respect to all the metrics used for the evaluation. In particular,
it performs better than DW2V model, giving 7% more correct an-
swers in the analogical task. We can also confirm the superiority of
DW2V with respect to the pairwise alignment methods, as the author
suggested in his work Yao et al. Unfortunately, due to the lack of
the answers set and the embedding used by DW2V, we cannot know
how well it performs over static and dynamic analogies separately.
TW2V and OW2V scored below the static baseline (as also reported
by Yao et al.), particularly on analogies with small time depth (Figure
12). In this setting, the pairwise alignment approach leads to huge
disadvantages due to data sparsity: the partitioning of the corpus
produces tiny slices (around 3.5k news articles for each slice) that are
not sufficient to train a neural network properly; the poor quality of
the embeddings affects the subsequent pairwise alignments. As ex-
pected, SW2V’s accuracy on analogies drops sharply as time depth
increases since the farther in time we go, the less static analogies ex-
ist (Figure 12). On the contrary, CADE, TW2V and OW2V maintain
almost steady performances over different time depths. GW2V does
not answer correctly almost any dynamic analogy. We conclude that
GW?2V alignment is not capable of capturing the semantic dynamism
of words across time for the temporal analogy task. For this reason,
we do not employ it in our second setting. In general, our results on
this dataset prove that CADE provides good representations, it is also
interesting that our experiment confirmed some of the results previ-
ously provided by Yao et al. Our comparative model can effectively
solve the temporal analogies with better results than other models.
We show some properties related to the temporal analogies, giving
hints on which are the most difficult tasks for a comparative model.
The comparison of the models” performances across the 25 categories
of analogies contained in T: reveals new details about the models:
TW2V and OW2V’s correct answers cover mainly 4 categories, like
President of the USA; CADE scores better over all the categories. Some
categories are more difficult than others: even CADE scores nearly 0%
in many categories, like Oscar Best Actor and Actress and Prime Min-
ister of India. This discrepancy may be due to various reasons. First
of all, some categories of words are more frequent than others in
the corpus, so their embeddings are better trained. For example, thw
word obama occurs 20,088 times in NAC-S, whereas dicaprio only 260.
As noted by Yao et al., in the case of some categories of words, like
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Model | Set MRR | MP1 | MP3 | MP5 | MP1o
SWaV Static 1 1 1 1 1
Dynamic | 0.148 | 0.000 | 0.263 | 0.351 | 0.437
All 0.375 | 0.266 | 0.459 | 0.524 | 0.587
TWaV Static 0.245 | 0.193 | 0.280 | 0.313 | 0.366
Dynamic | 0.106 | 0.062 | 0.123 | 0.156 | 0.205
All 0.143 | 0.102 | 0.165 | 0.198 | 0.248
OW2V Static 0.265 | 0.202 | 0.299 | 0.348 | 0.415
Dynamic | 0.087 | 0.058 | 0.099 | 0.124 | 0.160
All 0.135 | 0.096 | 0.153 | 0.183 | 0.228
DWaV Static — — — — —
Dynamic | — — — — —
All 0.422 | 0.331 | 0.485 | 0.549 | 0.619
CWaV Static 0.857 | 0.819 | 0.888 | 0.909 | 0.931
Dynamic | 0.071 | 0.005 | 0.092 | 0.159 | 0.225
All 0.280 | 0.222 | 0.305 | 0.359 | 0.435
Static 0.720 | 0.668 | 0.763 | 0.787 | 0.813
CADE
Dynamic | 0.394 | 0.308 | 0.451 | 0.508 | 0.571
All 0.481 | 0.404 | 0.534 | 0.582 | 0.636

Table 6: MRR and MP for the subsets of static and dynamic analogies of T.
We use MPK in place of MP@K. DW2V results are taken from the
original paper [145].

presidents and mayors, we are heavily assisted by the fact that they
commonly appear in the context of a title (e.g. President Obama, Mayor
de Blasio). For example in CADE, obama during its presidency is always
the nearest context embedding to the word president. Lastly, as noted
by Szymanski, some roles involved in the analogies only influence
a small part of an entity’s overall news coverage. We show that this
is reflected in the vector space: as we can see in Figure 14, presi-
dents” embeddings extracted from CADE almost cross each other dur-
ing their presidency, because they share a lot of contexts; on the other
hand, football teams” embeddings remain distant. One other interest-
ing aspect is that word frequency seems to have a valuable impact
on the ability of the comparative framework of finding shifted words
(we will give more hints about this in 7, but Figure 15 already shows
that there is a positive correlation between the ability of solving an
analogy and the frequency of occurrence of words that compose that
analogy).

Experiments on NAC-L

This setting involves three baseline models, SW2V, TW2V, OW2V, and
CADE. The models are trained on NAC-L and tested over T2. The set-
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Figure 12: Accuracy (MP@1) as function of time depth 8¢ in Ti. Given an
analogy wy : wy = t7 : t,, the time depth is plotted as o; =
Ity —tal.

tings” parameters are similar to those of Szymanski that introduced
the task. Embeddings of size 100, a window size of 5, 5 negative sam-
ples and a very large vocabulary of almost 200k words with at least
5 occurrences over the entire corpus. We show the results of the tem-
poral analogical reasoning task on this dataset in Table 7.

Model | Set MRR | MP1 | MP3 | MP5 | MP10
SWaV Static 1 1 1 1 1
Dynamic | 0.102 | 0.000 | 0.149 | 0.259 | 0.326
All 0.283 | 0.201 | 0.321 | 0.408 | 0.462
TWaV Static 0.842 | 0.805 | 0.862 | 0.890 | 0.915
Dynamic | 0.343 | 0.287 | 0.377 | 0.414 | 0.467
All 0.444 | 0.391 | 0.476 | 0.510 | 0.558
OWaV Static 0.857 | 0.824 | 0.876 | 0.903 | 0.926
Dynamic | 0.346 | o.290 | 0.379 | 0.420 | 0.462
All 0.449 | 0.398 | 0.480 | 0.518 | 0.556
Static 0.948 | 0.936 | 0.952 | 0.961 | 0.967
CADE
Dynamic | 0.367 | 0.287 | 0.423 | 0.471 | 0.526
All 0.484 | 0.418 | 0.531 | 0.570 | 0.615

Table 7: MRR and MP for the subsets of static and dynamic analogies of T2.
We use MPK in place of MP@K.

CADE still outperforms all the other models with respect to all the
metrics, but its advantage seems to be less than in the previous setting.
We can say that CADE assigns lower ranks to correct answer words
comparing to TW2V and OW2V; however, it gives first-position re-
sults as frequently as the competing models. Table 7 shows that the
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Figure 13: Accuracy (MP@1) as function of time depth 8¢ in T2. Given an
analogy wy : wy = t7 : t,, the time depth is plotted as &; =
Ity —ta.

advantage of CADE is limited to the static analogies. TW2V and OW2V
score much better results than in the previous setting. This is due to
the increased size of the input dataset which allows the training pro-
cess to work well on individual slices of the collection.

In Figure 13 we can see how the three temporal models behave
similarly with respect to the time depth of the analogies.

The comparison of the models” performances across the 10 cate-
gories of analogies contained in T2 reveals more differences between
them. The results in terms of MP@1 are summarized in Table 8. TW2V
and OW2V significantly outperform CADE in two categories: President
of the USA and Super Bowl Champions. In both cases, this is due to
the major accuracy on dynamic analogies; most of the time, CADE is
wrong because it gives static answers to dynamic analogies. CADE sig-
nificantly outperforms the other models in two categories: WTA Top-
ranked Player and Prime Minister of UK. However in this case, CADE
outperforms them both on dynamic and static analogies. Note that
there is also a strong relationship between the frequency of occur-
rence of the elements of the analogies in text and the actual accuracy
of CADE. In Figure 15 we show a scatter plot where we compare the
mean (log) frequency of appearance of the words of a certain analog-
ical category in T2 and CADE accuracy.

Experiments on Held-Out Data

In this section, we show the performance of CADE on a held-out test
task, in which we try to predict the slice form which a held-out text
comes from. We perform this test in two different ways. We tried to
replicate the likelihood based experiments in Rudolph and Blei and
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Category SW2V | TW2V | OW2V | CADE

President of the USA | 0.4000 | 0.9905 | 0.9905 | 0.8833
Secret. of State (USA) | 0.1190 | 0.3000 | 0.3619 | 0.3405
Mayor of NYC 0.2476 | 0.9643 | 0.9524 | 0.9405
Gover. of New York 0.4476 | 0.9333 | 0.9381 | 0.9786
Super Bowl Champ. | 0.0571 | 0.2024 | 0.2524 | 0.1452
NFL MVP 0.0190 | 0.0143 | 0.0143 | 0.0190
Oscar Best Actress 0.0095 | 0.0119 | 0.0071 | 0.0119
WTA Top Player 0.1619 | 0.2071 | 0.1548 | 0.2857
Goldman Sachs CEO | 0.1762 | 0.0143 | 0.0238 | 0.1190
UK Prime Minister 0.3762 | 0.2762 | 0.2857 | 0.4595

Table 8: Accuracy (MP@1) for the subsets of the analogy categories in T2.
The best scores are highlighted.
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Figure 14: 2-dimensional PCA projection of the temporal embeddings of
pairs of words from clinton, bush and 49ers, patriots. The dot points
highlight the temporal embeddings during their presidency or
their winning years.

to further give confirmation about the performance of our model we
also test the posterior probabilities using the framework described
in Taddy. Given a model, Rudolph and Blei assign a Bernoulli prob-
ability to the observed words in each held-out position: this metric
is straightforward because it corresponds to the probability that ap-
pears in Equation 1. However, at the implementation level, this met-
ric is highly affected by the magnitude of the vectors because it is
based on the dot product of the vectors uy and ¢, (y, ). In particu-
lar, Rudolph and Blei applied L2 regularization on the embeddings,
which prioritize vectors with small magnitude.

This makes the comparison between models trained with different
methods more difficult: regularization over the dot product can bias
the comparison of the results. Furthermore, we claim that held-out
likelihood is not enough to evaluate the quality of a Temporal Word
Embedding Model (TWEM): a good temporal model should be able to
extract features from each temporal slice that are discriminative and
to improve the likelihood based on those features. To quantify this
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Figure 15: Relation between mean frequency of occurrence of the words of
specific analogical categories and CADE accuracy in solving those
analogies.

specific quality, we propose to adapt the task of document classifi-
cation for the evaluation of TWEM. We take advantage of the simple
theoretical background and the easy implementation of the work of
Taddy. We show that luckily this new metric is not affected by the
different magnitude of the compared vectors.
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Figure 16: £}, and P%, for each test slice T* and model V. Blue bars represent
the number of words in each slice.

Dataset We use two datasets to evaluate the models on this task,
details of these datasets are summarized in Table 5. The Machine
Learning Papers Corpus (MLPC) contains the full text from all the
machine learning papers published on the ArXiv between 9 years,
from April 2007 to June 2015. The size of each slice is very small (less



70

CORPUS-BASED COMPARATIVE DISTRIBUTIONAL EMBEDDINGS

than 130,000 words after pre-processing) and it increases over the
years. Rudolph and Blei made MLPC available online [108]: the text
we obtain is already pre-processed, sub-sampled ([V| = 5,000) and
already split into training, validation and testing (80%, 10%, 10%) to
ease replication of the experiments. The data is shared in a computer-
readable format without sentence boundaries: we convert it to plain
text and we arbitrarily split it into 20-word sentences that are suited to
cover our training procedure. To make another comparison we also
used the NAC-s dataset, which was described in previous sections
and used to solve temporal word analogies. Consider that, compared
to MLPC, NAC-S has x3 more slices and it has approximately 60,000
words per slice, with a small exception due to the slice of the year
2006. To prepare this dataset for evaluation we use the same pre-
processing script provided by Rudolph and Blei and divided the data
training and testing (|V| = 21, 000).

We introduce a new notation that will be helpful to understand this
experiment, we will refer to V = {Vicy..7} = {(C€1 T, U1 T} as
to the TWEM taken in consideration and we will use Tt to identify a
temporal slice.

Methodology A We measure the held-out likelihood following a method-

ology similar to the one proposed by Rudolph and Blei. For this exper-
imental evaluation we introduce the symbol V to identify a specific
temporal word embedding model. Given a TWEM V = {Vic1..7} =
{(ctelT UteT T} we calculate the log-likelihood for the temporal
testing slice 7' = (wq, -+ ,wy) as:

N
log Py, (T') = ) log Py, (wnly(wn)) (3)

n=1

where the probability log Py, (wn|y(wn)) is calculated based on Equa-
tion 1 using Negative Sampling and the vectors of C' and U'. As
Rudolph and Blei, we equally balance the contribution of the positive
and negative samples. For each model V, we report the value of the
normalized log likelihood £*:

1
Ly = Nlog Py(TY) (4)

and its arithmetic mean £y over all the slices.

Methodology B We adapt the methodology of Taddy to the evalu-
ation of TWEM. We calculate the posterior probability of assessing a
temporal testing slice T* to the correct temporal class label t. In our
setting, this corresponds to the probability that a model V predicts
the year of the t-th slice given a held-out text that come from the
same slice. We apply Bayes rules to calculate this probability:

Py, (THP(t)
S i1 Py, (THP(K)

Py, (tT") = (5)
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A good temporal model V = {Vi¢1...7} will assign a high likelihood
to the slice Tt using the vectors of V¢ and a relatively low likelihood
using the vectors of V... We assume that the prior probability on the
class label t is the same for each class, P(t) = 1/T. For implementation
reason, we redefine the posterior likelihood as:

1 S

t t Pvt(ZE)P(t)
PL = Py, (TH) = <
v = e =g ; S Py (ZP(K)

(6)

where z; is the s-th sentence in T* and Py, (zs) is calculated based on
Equation 3. Please note that this metric is not affected by the magni-
tude of the vectors because is based on a ratio of probabilities. For
each model V, we report the value of the posterior log probability P,
and its arithmetic mean Py over all the slices.

Algorithms We test five temporal embedding models for this setting:

* Our comparative framework CADE

TW2V (a baseline used in previous experiments)

SW2V (a baseline used in previous experiments)

Dynamic Bernoulli Embeddings (DBE) [108]

Static Bernoulli Embeddings (SBE) [109].

Note that TW2V is equivalent to OW2V in this setting because we
do not need to align vectors from different slices. DBE is the tem-
poral extension of SBE, a probabilistic framework based on CBOW:
it enforces similarity between consecutive word embeddings using a
prior in the loss function, and specularly to CADE, it uses a unique
representation of context embeddings for each word. We trained all
the models on the temporal training slices D' using the CBOW ar-
chitecture, a shared vocabulary and the same parameters, which are
similar to Rudolph and Blei: learning rate n = 0.0025, window of size
1, embeddings of size 50 and 10 iterations (5 static and 5 dynamic
for CADE, 1 static and 9 dynamic for DBE as suggested by Rudolph
and Blei). Following Rudolph and Blei, before the second phase of
the training process of CADE, we initialize the temporal models with
both the weight matrices C and U of the compass model: we exper-
imentally noted that this operation improves held-out performances
but it negatively affects the analogy tests. We limit our study to small
datasets and small embeddings due to the computational cost: DBE
takes almost 6 hours to train on NAC-S on a 16-core CPU setting. DBE
and SBE are implemented by the authors using tensorflow, while all
the other models are implemented in gensim: to evaluate them, we
convert them to gensim models, extracting the matrices U* and C.
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Results

Table 9 shows the mean results for each model by considering the two
metrics. In both settings, CADE obtains a likelihood almost equal to
SW2V but a much better posterior probability. This is remarkable con-
sidering that CADE optimizes the scoring function only on one weight
matrix C*, keeping the matrix U* frozen. With respect to TW2V, CADE
has a better likelihood and its posterior probability is more stable
across slices (Figure 16). The likelihood scores of DBE and SBE are
highly influenced by the different magnitude of their vectors: we can
quantify the contribution of the applied L2 regularization comparing
the two static baseline SBE and SW2V. Differently from CADE, DBE
slightly improves the likelihood with respect to its baseline. However,
regarding the posterior probability, CADE outperforms DBE. Our ex-
periments seem to suggest the existence of an inverse correlation be-
tween the capability of generalization and the capability of extracting
discriminative features from small diachronic datasets. Finally, exper-
imental results show that CADE captures discriminative features from
temporal slices without losing generalization power.

Dataset | M | SW2V | SBE | cADE | DBE | TW2V
Ly | -2.67 -2.02 | -2.68 | -1.86 | -2.88
Py | -2.20 -2.20 | -1.75 | -2.18 | -2.83
Ly | -2.66 -1.77 | -2.69 | -1.70 | -2.96
Py | -3.30 -3.30 | -2.80 | -3.16 | -3.24

MLPC

NAC-S

Table 9: The arithmetic mean of the log likelihood £+ and of the posterior
log probability Py for each model V. Based on the standard error
on the validation set, all the reported results are significant.

4.4 ROBUSTNESS OF CADE

In this section, we explore some of the assumptions that stand be-
hind the model and its validity. In general, we found out that CADE
cannot be used in contexts in which there is a low shared vocabu-
lary between the slices. For example, using two different languages
as slices bring to vector spaces in which specific correspondences are
not really informative. We hereby perform different experiments with
different objectives:

e Aligning the same corpus twice: we experimentally evaluated
what is the robustness of CADE by first testing what happens if
we try to align two identical slices:

e Staticness: we introduce the concept of staticness with respect
to analogy solving, which shows quantitative results on how
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CADE can model semantic change in the slices (i.e., it evaluates
how much a model replies with the same answers);

¢ Text Scrambling: we take a corpus and build a collection that
contains a slice and a clone of that slice. With a varying prob-
ability p we replace words in the clone corpus with a random
word. We compute how the similarity between the same words
in each slice is affected by this scrambling.

In the following, we will give all the details of our experimental
settings, in such a way that the reader can easily replicate this experi-
ment by using the code provided online.

Aligning the same corpus twice

To evaluate the compass intuition, we tried to use CADE to align two
slices that are composed of the same text. We use a document D'
and create an exact copy of it and use these two inside CADE. The
collection D thus contains the same slice twice. We end up with two
vector spaces for which the same words in the respective model have
an average cosine similarity of 0.998 (computed on a sample of 1000
words). Words that occur less frequently tend to have a lower similar-
ity due to a still existing intrinsic noise in the network. Nevertheless,
in general, the alignment brings the slices to be almost identical with
respect to the cosine similarity.

To perform this experiment, we run the model 1000 times with a
corpus of 5000 articles that was cloned to create the second corpus
and averaged the results. We used 20-dimensional embeddings with
a window of 5.

Note that the similarity between the vectors is generally stable if
we use cosine similarity, but that the same is not true if we change
the distance measure to one that also considers the length (i.e., the
norm) of the vector. To regulate the effect on the euclidean distance
between vectors, it is important to consider the number of training
epochs. In general, more training epochs generate “longer” vectors.

Staticness

TWEMs are designed to represent the dynamics of word embeddings
over time, as opposed to static models like SW2V. Here we want
to evaluate how much the word embedding changes over time. If
a model generates temporal embeddings that change slightly, it will
be almost static and similar to SW2V. We would like the compara-
tive framework defined by CADE to be general enough to find a good
threshold between accuracy over static and dynamic analogies. This
corresponds to be able to find tokens that have and that have not
shifted between two slices.
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The current literature does not offer a standardized metric to quan-
tify how “static” the temporal word embeddings generated by a model
are. We introduce a new metric that allows us to measure the ten-
dency of a model to give the same answers as SW2V. Given a test
set of analogies and the answers given by a model, the STAT is mea-
sured as STAT = % Z!I\J:] isstatic(i), where the function isstatic(1i)
is equal to 1 if the answer given to the i-th analogy is static, 0 oth-
erwise. It follows that a perfect model (we will refer to it as Target)
would have a STAT = 1.0 over static analogies and a STAT = 0.0
over dynamic ones; its staticness will be the ratio between the num-
ber of static analogies and the size of the test set: we call it the target
staticness.

The staticness of a model may affect its performances: if a model
gives too many static answers, it will poorly perform over dynamic
analogies and vice versa for dynamic answers. To verify this intuition,
we apply the metric in the two previous settings with the answers
given by the models CADE, TW2V and SW2V. We can apply STAT over
subsets of the full test set, like static and dynamic analogies (note that
over static analogies, the staticness is equal to the accuracy).

Model | Subset MP@1 | STAT
SW2aV | All 0.2664 | 1.0000
All 0.1019 | 0.0784
TW2V | Static 0.1933 | 0.1933
Dynamic | 0.0687 | 0.0367
All 0.4041 | 0.3024
CADE | Static 0.6676 | 0.6676
Dynamic | 0.3082 | 0.1697

Table 10: STAT and Accuracy (MP@T1) for the subsets of the analogies in T1.

Model | Subset MP@1 | STAT
SWaV | All 0.2014 | 1.0000
All 0.3914 | 0.3057
TW2V | Static 0.8052 | 0.8052
Dynamic | 0.2867 | 0.1794
All 0.4183 | 0.4814
CADE | Static 0.9362 | 0.9362
Dynamic | 0.2873 | 0.3663

Table 11: STAT and Accuracy (MP@T1) for the subsets of the analogies in T2.

Table 10 compares the results obtained by the two models with
NAC-S and Ti. CADE goes slightly over the target value of STAT =



4.4 ROBUSTNESS OF CADE

0.2664; in fact, it gives static answers to 17% of the dynamic analo-
gies (i.e., it replies with the same input word, for example “obama”
: 2014 :: ? : 2005, and replies with “obama” instead of the correct an-
swer “bush”) and it gives dynamic answers to over the 30% of the
static analogies of T:. We can see it also in Figure 17, where it gives
too many dynamic answers to analogies with a small time depth,
and too many static answers to analogies with greater time depth
(0x > 5). TW2V performs badly in this test set and gives dynamic an-
swers more than 90% of the times. The poor performance of TW2V on
dynamic analogies suggests that the temporal embeddings are highly
dynamic due to their low quality and the insufficient training process.
Our comparative model, that is not based on temporal assumptions,
seems to be effective in dealing with static and dynamic analogies.

100 T T T T

Target
T2y ——
CADE ——

STAT

Time depth

Figure 17: STAT as function of time depth 8¢ in T:. Given an analogy wy :
wy =7 : 12, the time depth is plotted as &y = [t; —t2|—1.

Table 11 reports the results relative to the big dataset settings, ob-
tained with NAC-L and T2. TW2V returns 30% of the time the same
answers as SW2V, CADE almost half of the times, while the test set
contains of static analogies equal to the 20%. As a result, CADE scores
better than TW2V on static analogies, but it scores the same as TW2V
on dynamic analogies. This means that CADE gives less dynamic an-
swers to dynamic analogies than TW2V but these dynamic answers
are relatively more accurate. Moreover, CADE consistently gives more
static answers then TW2V, independently from the time depth value
(Figure 17). CADE generally represents the words too statically, i.e. the
temporal embeddings of the same word are placed too close together.
This leads to an advantage for CADE on static analogies but a disad-
vantage on dynamic ones. Moreover, we may expect that the static
answer may sometimes “hide” the dynamic correct one. Indeed, in-
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Figure 18: STAT as function of time depth 8¢ in T2. Given an analogy wy :
wy = 17 : 12, the time depth is plotted as &y = [t; —t2|—1.

correct static answers to dynamic analogies represent half the errors
of CADE (x2 more times than TW2V); in 17% of these cases, the correct
dynamic answer is just behind the incorrect static one (rank(i) = 2):
it corresponds to a 5% drop in MP@]1 on dynamic analogies. TW2V
may have the opposite problem: their representation of words is too
dynamic; as a consequence, they give less dynamic answers to static
analogies than they should do, but this may be an advantage when
dealing with dynamic analogies.

The reason behind this discrepancy of staticness between TW2V
and CADE may lie in the alignment strategy: the compass based ap-
proach may move the temporal embeddings of a word closer together
because they share many words in their context. For example, all the
temporal embeddings of the word bush are close to the context em-
bedding of the word george, because the two words appear nearby in
all the time slices.

Text Scrambling

In this experiment we want to test which is the effect of random
noise in the alignment. Starting from the input corpus (clean slice)
we generate a second corpus (noisy slice) in which each word has
a probability p of being replaced with a different word randomly
sampled from the vocabulary. When the probability equals to 1 the
two slices are completely different one with the other. We use CADE
to align the two slices. At the end of the process, we sampled 1000
words from the vocabulary and we evaluate the average similarity
between the two representations of each word, one in the clean and
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Figure 19: Similarity between same words in CADE in the clean corpus and
the noisy corpus while we vary the percentage of noise

one in the noisy slice. We tested this methodology on embeddings of
three different sizes: 10, 20 and 50. In Figure 19 we show the effect of
this noising procedure on the words.

From the results, it seems that the model is able to sustain a noise
value around 20% without loosing too much information. After 20%
of noise, the similarities start to drop quickly.

4.5 GENERALIZATION OF CADE

In this section, we try to answer the research question Q3 of this chap-
ter that is to evaluate the generalization capabilities of our corpus-
based comparative framework. To show how CADE is able to gen-
eralize the alignment between word vector spaces generated from
different corpora we use a novel dataset that contains text from news-

papers.
Newspapers Data

In this section, we show a comparison between embeddings gener-
ated from an American newspaper, The New York Times (NYT), and
from a British newspaper, The Guardian (GUA). We want to show
that CADE is able to capture intrinsic language differences in the same
language.

Data and Algorithms

Using the EventRegistry platform3, we daily extracted articles from
the New York Times and from The Guardian online platforms from
the gth of July 2019 to the 20th of September 2019. At the end of

3 https://eventregistry.org/
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the process, we collected 14.480 articles from the New York Times,
and 17.976 articles form The Guardian. We remove stop words from
both the slices and bring the text to lowercase. Thus, in the context of
our comparative framework, our collection D contains two slices, one
with the text from the New York Times and one with the text from
The Guardian.

To provide quantitative evidence for this comparison we use a list
of pairs of words that show minor spelling differences in British
and American English#: for example, British people tend to use the
form “labelling” while Americans use “labeling”. From these pairs of
words that we extracted online, we removed words that appear with a
frequency lower than 20 and 50 times and those words that were not
present in our corpora. We end up with two sets of 279 (BAW1) and
131 (BAW?2) pairs of words. In a certain sense, these pairs of words
can be interpreted as analogies between the British English space and
the American English space.

As a baseline algorithm, we use MUSE [31], a multi-lingual align-
ment tool proposed by Facebook at ICLR 2018. This tool can align
word embeddings from multiple languages without parallel corpora
to support the alignment. In our case, we will use it to try to align to
different versions of the same language. To perform a fair comparison,
we used the configuration of the algorithm suggested by the authors,
and we trained the embeddings using the same procedure defined in
the paper.

RESULTS We compare CADE and MUSE on the same task: given a
word in the English language and moving its vector representation,
we want to find its equivalent in the American language (by look-
ing at the neighborhood). We look at the top-5 and top-10 neighbors,
and we thus evaluate the HITS@5 and HITS@10 on both BAW1 and
BAW1. Results are visible in Tables 12 and Tables 13 and show that
CADE performs better than the competitor in this task. In general,
while the alignment provided by MUSE is also good, it lacks the abil-
ity to use general contextual information that is what makes CADE
more effective (i.e., this is the effect of the compass). Another point
is that when filtering words with a lower frequency of occurrence,
both models become better with the mappings; these results confirm
what was introduced in the experiment with temporal analogies: the
number of occurrences is a key element to generate a good represen-
tation. Nevertheless, we underline that CADE is currently not able to
align multi-language corpora that is the main area in which MUSE
was proposed.

4 http://www.tysto.com/uk-us-spelling-list.html
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Model HITS@5 HITS@10 Model HITS@5 HITS@10
CADE 0.60 0.64 CADE 0.81 0.86
MUSE 0.40 0.56 MUSE 0.51 0.60
Table 12: British-American spelling Table 13: British-American spelling
test with words with fre- test with words with fre-
quency higher than 20 in quency higher than 50 in
the corpus (BAW1) the corpus (BAW2)

46 SUMMARY OF THIS CHAPTER

We hereby give a short summary of this chapter, by answering the
research questions we asked ourselves in the introduction.

* Q4.1 which are the performance of an unsupervised method for
the implicit alignment of distributional models on a paradig-
matic case?

* Q4.2 can this method be used even in the context when some
sources provided less data than others?

* Q4.3 to which extent can this method be used in different con-
texts?

In this Chapter, we have introduced CADE a model to align distribu-
tional representation by using a heuristic that allows us to efficiently
training and aligning embeddings. We tested our model in a though
evaluation against the temporal word embeddings method, a paradig-
matic case, showing that our model is stable and provides an effective
and useful alignment (Q4.1). What makes our algorithm different is
the ability to be more stable and of not overweighting the shift of the
words (that occurs for rare words and not for all the words). We run
experiments on datasets of different sizes, giving evidence that this
method, thanks to the use of the compass can generate good represen-
tations even in contexts in which there are fewer data available (Q4.2).
Eventually, we have shown that the model is not constricted by any
assumption as other models in the temporal domains, and we proved
its generalization capabilities on a task in which we mapped British
English and American English (Q4.3).
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In this Chapter, we focus on the description of a method to gener-
ate distributional representations of entities and types of a KG from
various sources. As outlined in Chapter 2 we want a model that can
be applied to generic textual documents. Thus, we introduce Typed
Entity Embeddings (TEE) a distributional knowledge graph embed-
ding method for entity and types that relies on an entity linking sys-
tem. We show that an interesting property of this model is that is
able to solve analogical reasoning tasks with a good accuracy. Finally,
we show some properties of novel distributional type representations
that we described in [19].

The distributional knowledge graph embedding approach that we
describe in this chapter was introduced in this published paper:

¢ Bianchi, F., Palmonari, M., and Nozza, D. (2018, October). To-
wards Encoding Time in Text-Based Entity Embeddings. In
ISWC.

This work describes our distributional method integrated into an
approach to computing the similarity of entities by considering time
as a factor. In this chapter we explain the model in detail and show
how to use it to solve analogies. One big limit of our approach that it
will be easy to notice in the next sections is that it lacks the ability of
representing KG’s relationships.

5.1 DISTRIBUTIONAL SEMANTICS FOR ENTITIES AND TYPES

Distributional semantics has been applied with success to corpora
that contains words [93]; in this chapter, we want to study a method
to generate distributional representations of entities and types of a
knowledge graph.

As outlined in the related work chapter, there are some works in
literature that explore embeddings of entities from text; these works
often start from already annotated/linked corpora (e.g, Wikipedia).

We show that combining entity linking and embedding algorithms
it is easy to generate entity representations even from non annotated
corpora.
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5.2 DEFINITION

Consider the following sentence Si1: “Paris was built close to the
Seine". If we replace words with entities in the set E of the DBpedia
KG (see Definition 1), this sentence becomes “dbr:Paris was built close
to the dbr:Seine” (S1.); Note that we get the two following important
properties when we switch to entities [16]:

¢ DEi. Entities are non ambiguous;
* DE-z. Entities are logical constants of a language.

DE1 brings a shift from the standard word-based approach. A word
has different meaning and its representation in the embedding con-
tains all the information about all the occurrences in text. While the
word “Paris” represents the meaning generated from the co-occurring
of both the city in France and the one in Texas (and many other
“Paris”) the entity “dbr:Paris” represents only the city in France. DE2
implies that we can use these entities in reasoning tasks [20]. A sim-
ple definition of distributional semantics of entities is the following.
These two facts regarding entities will be useful in the next chapter
(Chapter 6) where we will implement a reasoning system over the
entities.

Definition 10 (Entity Distributional Semantics) The similarity between
two entities is a function of the contexts in which these two entities appear.

Note that the definition is simple and is close to the standard distri-
butional semantics for words [40, 46, 62], but the key differences are
defined by DE1 and DE-z.

Entities are not the only thing that can be embedded: we can also
generate embeddings of types, if we consider most specific types of
the entities and we replace them in S1. we get “dbo:City was built
close to the dbo:NaturalPlace”. Note, that it makes sense (under a
point of view of meaning) to replace the types in S1e with types in
higher part of the hierarchy as in “the dbo:Animal was sleeping by
the Place” (S1Q). The similarity of ontological types would in this
case take in consideration the fact that it exists a hierarchy behind the
ontology. The definition of a type-based distributional semantics is as
follows:

Definition 11 (Type Distributional Semantics) The similarity between
two types is a function of the contexts in which these two types appear.

Distributional semantics of entities and types should inherit the
properties that have been found by cognitive scientists in representa-
tions generated with word-based distributional semantics methods [27].
This is a key aspect that distinguish our methods from structured-
based knowledge graph embeddings and that will allow us to do
comparison between entities in Chapter 7.



5.3 TYPED ENTITY EMBEDDINGS (TEE)

In the following section we will see how to build representations
of entities and types starting from text.

5.3 TyrED ENTITY EMBEDDINGS (TEE)

In this work we propose a novel type of embeddings from text that
we call Typed Entity Embeddings (TEE). We will first give an intuitive
description of the process we follow to generate these representations,
and we will give the details of the main component es in the next
sections

These embedded representations of entities are typed because we
include type information in the vector representation. We generate
a vector representation for the entities, a vector representation for
KG’s types and then we concatenate the vector of each entity with
the vector of its own most specific type.

The general process to generate Typed Entity Embeddings is de-
picted in Figure 20. The two main components of this process are a
KG and an annotator that links words in text to a KG.

Type Embedding EEE

Annotation Generation
Concatenate
Type and
Entity
Textual Entity Embedding EEE
Documents Annotation Generation

Figure 20: High level workflow to generate TEEs: we generate a vector rep-
resentation for the entities, a vector representation for KG’s types
and then we concatenate the vector of each entity with the vector
of its own most specific type.

The idea that drives Type Entity Embeddings is the following: we
want to generate a representation of entities that also includes the in-
formation that come from on the ontology. This information should
affect the similarity of the entities by giving more weight to the typ-
ing part: in the novel space we cities should be closer one with each
other 21.

5.3.1 Entity Embeddings from Text

Despite the intrinsic limitations in the accuracy of Named Entity Link-
ing techniques, we show that it is possible to rely on these techniques
to first annotate text and then generate entity embeddings, instead of
using the scarcer manually edited links that present in the text. Note
that links are not always present in text and thus using an annotators
allow us to consider text that comes from different sources. Named
Entity Linking (NEL) and Named Entity Recognition (NER) are tech-
niques that are now often offered as off-the-shelf services and have
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Entity Embeddings Typed Entity Embeddings
Rome1‘3‘6‘31‘1‘ Rome1‘3‘6‘3‘1‘1‘13‘6‘3‘1‘City
Paris 5‘2‘2‘2‘4‘3‘ Paris 5‘2‘2‘3‘4‘3‘1‘3‘6‘3‘1‘City
vy |1 fafo] o] v afs]alo]i]i]s]s]1]s]1|coumy

sim(Rome, Paris) = 0.65 sim(City_Rome, City_Paris) = 0.79

sim(Rome, ltaly) = 0.79 sim(City_Rome, Country_ltaly) = 0.71

Figure 21: Effect of the type component on the similarity. Cities become
more similar in the entity-type space because they share the type
City

seen a widespread adoption both in the industry'?, e.g., in the finan-
cial domain [1], and in research, e.g., to analyze biomedical data [76,
80, 146] and historical documents [89, 107].

Thus, starting from a document D that contains a sequences of
sentences S; that are composed of a sequence of words wi,..., wn
we generate an annotated version of each sentence. Note that an-
notation can be used to replace words with entities, but since not
all the words are entities we are left with to possibilities: (i) we ob-
tain a mixed annotated sentence with both words and entities (e.g.,
“dbr:Barack Obama is the president of the dbr:United States”) or (ii)
we remove the words and obtain a entity only sentences “dbr:Barack
Obama dbr:United States”. The big difference between these two pos-
sibility is that the latter one favors the relatedness between entities
(i.e., entities are closer and there is an higher change that they are
one in the context of the other). Note that the if the latter one is used,
words are lost in the process. This should be taken in account with
respect on the task one wants to tackle. In the following, we will use
wordz2vec to generate the entity and type representations.

5.3.2 Type Embeddings from Text

Once we have linked words to the entities of a knowledge base S1. we
can use the knowledge base to retrieve the types of the entities. For
example, the DBpedia KG offers data dumps in which each entity is
associated to a type3.

Note that our model is general enough to be applied to any corpus
where NEL or NER algorithms are able to extract entities and asso-
ciate them with a type (e.g., BBC is found as an instance of Organization).
Our model can be therefore used in synergy with these services to
compute similarity, relatedness and to explore soft reasoning tasks
like analogical reasoning.

1 https://www.expertsystem.com/products/cogito-cognitive-technology/
2 https://dandelion.eu/
3 https://wiki.dbpedia.org/downloads-2016-10
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Assuming the existence of a single and unique most specific type
for each entity in the KG, we can replace each entity with its own
most specific type in the text. Over this type-only virtual document,
we can run a word embedding algorithm as we did for the entity
embeddings, thus generating embedded representations for the types
of a KG. We refer to this representation as the type embeddings (TE).

The assumption of the existence of a single minimal type for each
entity is a strong one and it is important to deal with it carefully. In
our experiments, we will consider DBpedia and in case of existence of
multiple types for an entity, we can randomly select one without pref-
erence. There can exist entities that have multiple most specific types,
but we experimentally computed that randomly choosing one of the
most specific types does not impact the final quality of the represen-
tation; this is because the word embedding algorithm encodes all the
information and removes much of the noise that is encountered dur-
ing training. Note that for bigger or essentially different ontologies,
this assumption might require revision.

5.3.3 Generating Typed Entity Embeddings

The generation of Typed Entity Embeddings (TEE) comes from the
fusion of the two process we have just illustrated. We essentially join
the processes described in the two previous sections and we concate-
nate the vector of each entity with the vector of its own type. See
Figure 22 for a more detailed representation of the workflow.

QQ [1]s]e[3]1]1]Rome
dbr:Rome dbriLazio

© dbr:Htal 5|2|2|2]|4]3|Lazio
*\\(\*\Y\ ritaly embedding
< [ [sTaTe 1 ]tay concatonate

Rome is a city of Lazio. A

[1z]e]3]1]1
regton oty [s[2]2]5]4]s
[1TsaTe 1T

Input corpus

p¥ OEEEme
dboaqminsratve_Region ] 7[5 [ 5 [ 2] 1] Administrative Region
dbo:ltaly
5[5]1]3]1] Country

Figure 22: The process that is used to generate Typed Entity Embeddings

5.4 EXPERIMENTS
5.4.1 Experiments on Typed Entity Embeddings
Distributional Entities and Types Representations

We hereby include some insights related to the effect of the concatena-
tion of types and entity. We multiply the type component with values
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in a range [0, 1] to show the gradual effect of adding the compo-
nent over the similarity. Once types are added, the similarity between
dbr:Paris and dbr:France decreases (Figure 23a), this is because City
and Country have different type representations. The increase of sim-
ilarity is clear when we consider two entities that have the same type,
like dbr:Berlin and dbr:Rome (Figure 23c). In the resulting joint space,
similarity brings to different results by giving more results to the type
aspect of the vector space. On the other hand, the similarity between
dbr:Berlin and dbr:Paris also increases (Figure 23b) even if its respec-
tive types are different: City and Settlement. We can explain this be-
havior by the fact that vector representation of types is the result of
an embedding model that according to the distributional hypothesis,
consider similar types that appear in similar contexts.

Paris - France Paris - Berlin

- Berlin

(@) (b)

Berlin - Rome

= Berlin-Rome

(©

Figure 23: Similarity between the entities Paris-France (a), Paris-Berlin (b)
and Berlin-Rome (c) when gradually adding the type component.

5.4.2 Analogical Reasoning with TEEs

One task we would like to experiment is analogical reasoning with
the entities. We show some example of analogies solved by TEE in
Table 14. The interesting pattern here seems to be the ability of the
model of retrieving entities of type that is consistent with the input
type (i.e., singer-country-singer-country). The type component is the
one that makes the analogy give answers that share types with the
input. Keep in mind that these analogies return a ranking of answers,
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Table 14: Examples of analogical reasoning tasks solved with TEE and with
possible explanations

Analogical Operation Result Explanation

v(dbr:Oliver_Twist) - v(dbr:Charles_Dickens) + v(dbr:George_Orwell)  v(dbr:Nineteen_Eighty-Four) Works from different authors
v(Divine_Comedy) - v(Dante_Alighieri) + v(Giovanni_Boccaccio) v(The_Decameron) Works from different authors
v(dbr:New_York) - v(dbr:Hudson_River) + v(dbr:Tiber) v(dbr:Rome) Rivers from different cities
v(dbr:Demi_Lovato) - v(dbr:United_States) + v(dbr:Romania) v(dbr:Alexandra_Stan) Singers from different countries
v(dbr:Barack_Obama) - v(dbr:United_States) + v(dbr:United_Kingdom) v(dbr:David_Cameron) Politicians from different countries
v(dbr:Pizza) - v(dbr:Italy) + v(dbr:France) v(dbr:Galette) Dishes from different countries
v(dbr:New_York) - v(dbr:Hudson_River) + v(dbr:Tiber) v(dbr:Rome) Rivers from different cities

that are the closet elements to the point to which the analogical oper-
ation brings us in the space (i.e., we do a neighborhood search).

Experimental set-up

Dataset.

¢ Countries-Currencies (CI-E and CU-E) To test our models, we
used a modified version of the dataset originally proposed by
Mikolov et al [93], that contains analogies between cities and
countries like Rome:Italy:?:France and between countries and thier
respective courrencies. We modifed this dataset by manually re-
placing words with their entity identifier (for example, Georgia,
was replaced with dbr:Georgia_(Country)), the DBpedia identi-
tier for Georgia.

¢ People (P) contains 102 analogies with entities identifier de-
rived from prime_minister-country relation and CEO-company re-
lations. For example, Barack Obama:United States::David Cameron:United
Kingdom or Mark Zuckerberg:Facebook::Elon Musk:SpaceX. This dataset
is generated by considering people positions held by those peo-
ple in 2016.

Evaluation Measures. On the datasets CU-E and CI-E we used accu-
racy as in [93]. On the People dataset, we used HITS@K as we will
show that the task is more difficult. HITS@K of a given analogy is 1
if the answer to that analogy is found in the top-k list of elements
returned by the analogy.

Comparison. We show the comparison our models with different
models proposed in the state of the art. The following results have
been taken from [67]:

e EECS* model [67];
e TransE*, TransH*, TransR* [25, 81, 134].

In particular we compare with two baseline model with three base-
lines which precise objectives:

¢ SkipGram-Clean (skip-gram [93] on preprocessed text). Objec-
tive: evaluate the performance of a word based model on word
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analogies vs TEE on entity analogies. We want to understand
if analogies are easier to solve in an entity distributional space.
We will use the word analogies provided by [93] and we will
refer to them as CI-W and CU-W for cities and currencies).

* Wiki2Vec 4, a model based on entities generated from user made
links in Wikipedia. Objective: study the difference in perfor-
mance between a model that is based on human annotation
and our model that uses an automatic annotator. This model
contains both words and entities, but we remove words in this
setting to make the comparison fair. This model has been used
as a baseline approach of several works (see for example, [17,

143, 150]).

Note that the comparison between SkipGram-Clean and TEE is not
fair: one deals with words and one deals with entities. This experi-
ment should suggest the difference between the two approaches but
at the same time we want to remark that the experimental settings of
the two differs heavily. This is also why we will underline the differ-
ence in the Table that contains the results.

The SkipGram-Clean model will be trained on the DBpedia’s ab-
stracts. For the P dataset, we test only TEE and EE.

Parameters. Since word embeddings algorithms require window and
feature size parameters we tested different configurations of the al-
gorithms. All the embeddings were generated using the SkipGram
model of wordzavec [93]. For our EE model w, and s, will represent
window and size while TEE will also consider the size of the type
embeddings w and s¢. The mapping function was run with o« = 0.75
to favor the similarity between the first two elements of the analogy.
After different experiment we report the best model for each algo-
rithm: TEE: window entities = 3 entity dimension = 100, window
types = 3 type dimension = 200; EE window = 3 and dimension =
100; SkipGram-cleaned window = 5 and dimension = 400.

Corpus and Preprocessing. Our embeddings are generated 2016 DB-
pedia’s abstract®. In this dataset there are 4M description of entities,
we consider each abstract as a sentence to we pass to the wordavec
algorithm. To make the comparison fairer, the corpus that was fed
to the SkipGram-Clean algorithm has been pre-processed using stan-
dard techniques for text analysis (this motivates the Clean in the
name). We removed stopwords using the English list found in the
NLTK® package and we remove punctuation characters from the text,
citations and numbers.

For the algorithms that are based on the entities no pre-processing
has been done to the corpus, since all the work is left to the entity

4 https://github.com/idio/wiki2vec
5 http://wiki.dbpedia.org/downloads-2016-04
6 http://www.nltk.org/
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Table 15: Results on the analogical tasks for knowledge graph embeddings
from the paper in which the EECS model was introduced [67]. KG
embeddings that start from structured representations are less ef-
fective on the analogical reasoning task.

Embedding Total

TransE* 0.382
TransH* 0.382
TransR* 0.378

EECS* 0.595

linking system that has to annotate the entities. We use DBpedia-
Spotlight” as NEL system because it is a well-known open source
NEL algorithm that can be used without limitations, thus making our
experiments easy to replicate. We empirically found that other NEL
systems perform better than DBpedia-Spotlight (Wikifier, TextRazor,
Dandelion) but they are subject to more restricted usage policies.

corrUs s1ZE  The entity embeddings are trained over a corpus that
contains 45M tokens while the word corpus contains 228M tokens.
Thus, word embeddings have much more information to learn from.
The number of distinct tokens for the entity corpus is 1.8M while the
number of distinct tokens for the word corpus after pre-processing is
5.5M. As often done in word embeddings for both corpora we remove
those words that appear less then 5 times in the corpus. The result of
this last operation is that we have 770K unique entities and gooK
unique words.

Structured Knowledge Graph Embeddings on Analogical Reasoning

We show results of the paper in which the EECS model was intro-
duced [67] in Table 15. In which the 8363 analogies that contain en-
tities were tested®. These results show that for these embeddings is
difficult to solve analogical reasoning tasks; we believe that this hap-
pens because these models ignore the information that is present in
the text that is valuable for this task. Nevertheless, it is important to
remark that all these models encode relationships that are missing
from our model.

Results on CI-E and CU-E

Figure 16 shows the results for the selected models. The first impor-
tant result is that entity analogies are solved with higher precision

7 http://demo.dbpedia-spotlight.org/
8 They used 25% of the analogies for tuning the model and 75% for the actual testing.

89


http://demo.dbpedia-spotlight.org/

90

DISTRIBUTIONAL KNOWLEDGE GRAPH EMBEDDINGS WITH ENTITY LINKING

Table 16: Results on the analogical tasks with respect to the entity-based
dataset and the word-based dataset.

CI-E CU-E Total

TEE 0.94 0.70 0.92
EE 0.87 0.10 0.77
Wiki2Vec 0.79 0.45 0.75

CI-W CU-W Total

SkipGram-Clean 0.8y 0.19 0.80

in TEE, and this is true for both CI-E and CU-E. The performance
on CU-E significantly outperforms the other algorithms. The test on
this last dataset is really important because it shows that it is a more
difficult task to solve (currency and country also appear with a dif-
ferent frequency than city and country). Thus, one first significant
result of this work is that using TEE helps in solving entity analogies,
obtaining an accuracy on the complete dataset equal to 0.92.

The EE model seems to be less efficient than the Wiki2Vec baseline
on the CU-E dataset. This might be because currencies are a difficult
entity to disambiguate and their representation in the EE model is not
perfect. However, adding the type to the TEE model greatly increase
the performance, showing that the added information can be of great
help in this task.

SkipGram-Clean reaches an high accuracy on the task with words.
This is also due to two factors: (i) the text is heavily preprocessed,
without preprocessing the accuracy is around 60%, that is a result
close to what has been reported in the literature?, (ii) the annotation
phase might not be perfect and EE might suffer from noisy values (we
will evaluate the effect of the annotation in the next section). Never-
theless, TEE reaches the best accuracy on the task with the entities.

Results on People

This task is more difficult than the first two and thus we show the
HITS@K for K in [1, 5, 10, 15, 30] in Figure 24, in the legend we
show the models” names with a compacted representation that also
shows hyperparameters. With HITS@K the answer to the analogical
reasoning task is correct if the answer is in the top-K list returned by
the models after the operations. TEE outperforms EE. This is due to
the fact that the type in the analogies are consistent: v(dbo:Person)
- v(dbo:0rganization) + v(dbo:0rganization) brings in a space near
other entity of type similar to dbo:Person. HITS@1 shows that only
the 35% of the analogy are correctly solved. This is due to ambigu-

9 https://aclweb.org/aclwiki/Google_analogy_test_set_(State_of_the_art)
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ity in the analogies: when asking for the respective person of Mark
Zuckerberg in Apple Inc., our models often replies with John Scul-
ley (CEO in the nineties) and Steve Jobs. Tim Cook, the current CEO,
appears later in the resulting list.

0.75

0.25

0.00

5 10 15 20 25 30

@ EE(We=5, Se=100) @ EE(We=5, Se=200) TEE(We=5, Se=100, Wt=5, St=300)
@ TEE(We=5, Se=200, Wt=3, St=50)

Figure 24: HITS@K on People dataset

5.4.3 Robustness of Entity Linking for TEE

Note that, on the other hand, it is important to have a valid entity
linker. DBpedia Spotlight offers a confidence parameter that can be
adjusted to find entities with a certain degree of correctness. This
threshold is between o and 1 and is usually initialized with o.5.

In this section we evaluate the effect of the DBpedia Spotlight con-
fidence on the annotation. The quality of the annotation is a funda-
mental aspect of the process because it affects the generation of the
embedding. We focus on DBpedia Spotlight and we annotate DBpe-
dia 2016 Abstracts.

Spotlight comes with a confidence threshold parameter (range be-
tween o and 1) that can be used to cut out those annotations for which
the linker is less confident on annotating. As a side effect, an higher
confidence means few but good annotation (precision) with the risk
of not having some annotations in the text and losing tracks of some
entities, a lower confidence instead might bring to noisy results (re-
call).

Experimental Setup We annotate the abstracts using ranging confi-
dence from o to 1 (with steps of size 0.1).

As a first result, Table 17 shows a comparison between the number
of both multiple and distinct tokens found in text with respect to the
confidence parameter given by spotlight.

As expected, as the confidence threshold gets lower, the number
of retrieved entities increases, on the other hand this might have an
impact on the quality of the embedding.
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Co Co.2 Cos Cos Cos Gy

Token 128M  125M 54M 38M 20M 6M
Distinct 1,881K 1,875K 1,823K 1,654K 1,397K 746K

Table 17: Tokens and distinct tokens found by DBpedia Spotlight over the
Abstracts

Co Cor Coz Cosz Coa Cos Cos Co7 Cos Coo G

Accuracy CI-E 083 084 084 084 089 087 084 o076 o072 06 o
Missing CI-E o o o o o o o o o 117 7,465

Accuracy CU-E  o0.15 0.8 o0.17 0.16 0.11 0.10 0.07 0.05 0.03 0.02 o

Missing CU-E o o o 0 o o o o 29 58 824

Table 18: Results of embeddings that have been annotated with different
confidence scores of DBpedia Spolight.

To evaluate the quality of each annotated corpus C; we embed it
in a 100 dimensional vector space with the skip-gram algorithm (win-
dow = 5) and we use the CI-E and the CU-E datasets to evaluate the
accuracy of the models. Actually, we want to check two things: 1) how
well are analogy solved and 2) how many analogy we cannot solve
because of missing entities (that might be removed by the linker if it is
not too sure about the annotation). See results in Table 18. Results on
this simple dataset seem to show that the effect of the annotation does
not impact too much on the final outcome: low confidence still brings
to a good amount of solved analogies. This means that word2vec can
handle a bit of noise. On the other hand, having a confidence of 1
makes it impossible to solve analogies since for each analogy at least
one element is missing from the generated representation.

5.4.4 Properties of Type Embeddings

In this section, we investigate some properties of the distributional
type representations. We first presented these properties in a work-
shop paper [19]. To the best of our knowledge we were the first
to define an approach that embeds types following a distributional
framework. These experiments are meant to prove the properties of
types in the vector space. We show some qualitative results related to
these representations and we also report another possible application
of the type embedding in the context of a class matching task in on-
tology in which we try to give some intuition about how to use TE
to map two ontologies in the same space. While these experiments
are not entirely related to the corpus-based comparative model, they
give some indications on how this newly introduced model for type
embeddings behaves.
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Data We use 200-dimensional embeddings for the first experiments
(window = 5). While we used Wikidata 2016-04 (another knowledge
graph that uses a different set of URI to maps resources on the web)
dumps'® to project two different categorization systems.

Qualitative Analysis

We compare the similarity computed in TE using cosine similarity
with the wpath measure [151] a measure recently introduced to com-
pute the ontological similarity of concepts in a hierarchy that does
not consider distributional information over types. Table 19 shows
the comparison between a few types. It is clear that the similarity cap-
tured by TE is closer to a relatedness (SoccerPlayer and SoccerClub)
but that also shows a strong characteristic of structural similarity:
Vein and Artery are very similar in TE, this is because they tend
to appear in similar context in text. In our paper [19] we experimen-
tally show that the similarity in TE is lowly correlated with other
ontological similarity measures that are based on the structure of the
ontology [19].

Table 19: Comparison of similarities between the wpath measure and the
similarity computed in TE

Type 1 Type 2 wpath sim  TE sim
dbo:SoccerPlayer dbo:SoccerClub 0.17 0.72
dbo:SoccerPlayer dbo:Wrestler 0.47 0.24
dbo:RailwaylLine dbo:Station 0.44 0.81

dbo:Vein dbo:Artery 0.70 0.84
dbo:RailwayLine dbo:PublicTransitSystem 0.11 0.79
dbo:Company dbo:Airline 0.72 0.30

User Study on Type Similarity

We studied the effect of the similarity between types by considering
a simple categorization task in which we involved 5 users that had
already some experience with the semantic web.

Methodology We selected 31 nodes from the DBpedia Ontology and
for each one we retrieved its most similar sibling and its least sim-
ilar sibling (which correspond, respectively, to the nearest and to
the farthest siblings in the space). For example, the most similar sib-
ling of the ontological type dbo:President is the ontological type
dbo:PrimeMinister, while the least similar is the ontological type
dbo:Mayor. Users were given the first node (dbo:President) and were
asked to decide which of the two siblings they considered more simi-

10 https://tools.wmflabs.org/wikidata-exports/rdf/exports/20160425/
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lar. Users were forced to give an answer even in contexts in which it
was not immediately clear which element was the most similar (e.g.,
is dbo:Skyscraper more similar to dbo:Hospital or dbo:Museum?). A
strong bias in this experiment is that the two available options were
chosen by considering their position in the vector space.

Results Resulting categorizations provided by user were quite similar,
the 5 users agreed on many questions. Since the agreement between
the user was high we used Gwet AC1 [59] to compute the level of
agreement between users, obtaining a level of agreement equal to
0.9, not distant from 1 (that represents unanimity). If we consider
the majority vote on the collected answers, we see that the answer is
always the most similar sibling. This is an interesting result because
it shows that this corpus-based similarity on concepts can capture
human-like behavior even if this is a really simple experiment. This
result is similar to other results obtained in the word embeddings
literature [77].

Comparing Different Classification Systems

In this section we explore a simple applications of our distributional
vectors of types to ontology matching, i.e., the task of matching types
of two different ontologies. We generate the embeddings of two dif-
ferent ontologies in the same space and then we compare different
types.

The process we follow is similar to the one described in Section 5.3.2
with a slight modification. Given the virtual document that contains
the sequences of entity mentions we randomly replace each entity
with one of two most specific types coming from two different on-
tologies: we select with probability o.5 the type coming from the re-
spective Wikidata entity'" or the type of the entity itself in DBpedia.
We thus generate a document that contains sequences of mixed types
coming from two ontologies. Our intuition suggests that our embed-
ded representations should show equivalent types near to each other
because those types are used in the same contexts. In this setting, we
generate 100-dimensional representations using the Skip-gram algo-
rithm.

In Table 20 we show the pairs of wikidata-dbpedia (note the wiki-
data ids are formed with a Q followed by a series of numbers) types
that are most similar one with the other in the embedded representa-
tion. The pairs that are not marked are the ones for which an equiva-
lent class relation exists in DBpedia'. Consider that since we are just
using word2vec we are not considering any syntactic or topological
information to find this mappings.

We do this by first mapping DBpedia’s URIs to Wikipedia’s URIs, and then to Wiki-
data’s URIs, where we can get the type of the entity.
DBpedia already contains some mapped concept from its ontology to wikidata.
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Table 20: Top similar Wikidata entity and DBpedia class pairs
Wikidata (label) DBpedia Sim
Q4498974 (ice hokey team) HockeyTeam 0.99
Q5107 (continent) Continent 0.99
Q17374546* (Australian rules football club)  AustralianFootballTeam 0.99
Q3001412* (horse race) HorseRace 0.98
Q4022 (river) River 0.98
Q46970 (airline) Airline 0.98
Q18127 (record label) RecordLabel 0.98
Q13027888* (baseball team) BaseballTeam 0.98
Q11424 (film) Film 0.98
Q1075* (color) Colour 0.98
An interesting property is that equivalent classes not defined in
the DBpedia KG are also found has highly similar. Some examples of
these types are reported in Table 21.
Table 21: Examples of similar types that do not have an equivalent class
relation. Some elements have been shortened.
Nearest Point Label Sim
dbo:AmericFootTeam Q17156793 American football team 0.95
dbo:Earthquake Q7944 earthquake 0.91
dbo:Diocese Q3146899 diocese of the Catholic Church 0.93

5.5 SUMMARY OF THIS CHAPTER

We hereby give a short summary of this chapter, by answering the

research questions we asked ourselves in the introduction.

* Q5.1 can we create purely distributional models of KG elements

(i.e., entity and types) that can be applied on any text?

* Q5.2 is the notion of similarity computed within this space
good enough to support similarity-based approaches to reason-

ing like analogical reasoning?

* Q5.3 which is the effect of the entity linking phase on the em-

beddings?

* Q5.4 which are the properties of a distributional representation

of types?
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In this Chapter, we have introduced TEE a distributional knowledge
graph embedding model that is purely based on entity linking (Qs5.1).
This fact favors the applicability of the model to any kind of text,
and in fact we will see the combination between TEE and CADE in
Chapter 7. We saw that this model provides good result over the ana-
logical reasoning task and this is mainly due to the combination of
entities and types (Qs5.2). We tested the effect on the entity linking
experimenting on DBpedia Spotlight realizing that in general the im-
pact of the final representation does not seem too affected by small
variations in the confidence threshold of the annotator, but extreme
values of that threshold can ruin the quality of the embeddings (Qs5.3).
Eventually, we have shown some properties of the type embeddings,
the most important finding is that the similarity computed with TE is
different from other measures from the state-of-the-art (Qs5.4).



REASONING WITH DISTRIBUTIONAL
EMBEDDINGS

In this Chapter, we show how the representation defined in Chapter 5
can be combined with reasoning system. Key aspect of this chapter is
to show how we can include logical consequences inside a distribu-
tional representation. We will show results that have been previously
described in our paper [20]. Note that this experiment is limited to a
small test knowledge base, but we believe that the results can be gen-
eralized; in Chapter 7 we will show some examples related to how
this system can be used in a comparative setting.

Note, we will use a tool defined logic tensor networks [114], in this
paper the term grounding is used to describe the vector representa-
tions of the constants, but in logic has a specific definition. To keep
consistent with the paper we will use the term grounding to refer
to the vector representations of the constants, and we will refer to
axioms like mammal(tiger) as instantiated axioms.

6.1 NEURO-SYMBOLIC LEARNING AND REASONING

Neuro-symbolic integration models [47, 48] aim at combining proper-
ties of symbolic reasoning and neural networks, to account both for
data-driven learning and high-level reasoning, two tightly related as-
pects of human cognition. Additional advantages of this combination
can be found in a higher explainability of learned knowledge and in
the capability of softening some aspects of crisp logic-based reason-
ing approaches. This integration is also connected to the combination
of sub-symbolic perception with high-level reasoning, a critical task
in artificial intelligence [85].

LTNs [38, 114] are an example of a neuro-symbolic model that em-
beds first-order fuzzy logic in a vector space. In LTNs logic constants
are represented as vectors and n-ary predicates are n-ary functions
whose values are real numbers in the range [0, 1]. A neural network
for each predicate learns both the representation of logic constants
and the weights that characterize the n-ary function. Learning is based
on a set of axioms.

As we have introduced in Chapter 2 computational linguistics has
developed distributional models of language that have been found
cognitively plausible at a large extent by psychologists [77]. We be-
lieve that these models, once adapted to be easily integrated with ex-
isting logical frameworks that combine learning and reasoning, can
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provide an account for both distributional knowledge and structured
inferences that go beyond crisp reasoning approaches.

In this Chapter, we combine entity embeddings with axiomatic
knowledge has the one found in knowledge bases that accounts for
structured inference. Imagine an agent that has access to the follow-
ing set of axioms {species(cat), mammal(tiger), bird(penguin), V
x : (mammal(x) — animal(x))}, we refer to the first three as instan-
tiated atoms and to the latter one as universally quantified formula;
with axiomatic knowledge in input the agent cannot infer instanti-
ated atoms as mammal(cat). However, if the agent knows that cats
and tigers are similar to each other and both are dissimilar to pen-
guins, she might be able to infer that cats are mammals too (i.e.,
mammal(cat)). Once the latter axiom has been inferred, the agent
can make use of the universally quantified axioms Vx(mammal(x) —
animal(x)) to infer that cats are also animals, bridging the gap with
more complex inferences, see Figure 25 for a schematic representation
of this idea. We believe that combining these two worlds would bring
great benefits in reasoning approaches since one requires the help of

the other.

Agent axiomatic knowledge Agent distributional knowledge:
“cats and tigers are more similar than cats and
penguins.”

Possible inferences with the

species(cat) rences
mammal(tiger) Ls(tri]zsv?étdo;(.dustnbutuonal
bird(penguin) ge:

V x (mammal(x) = animal(x)) mammal(cat)

logically inferring something r | ‘ But also:
about cat is not possible N
&, animal(cat)

Figure 25: Idea that drives the combination between distributional knowl-
edge and LTNs.

We present an approach that feeds Entity Embedding (EEs) gener-
ated using distributional semantics introduced in Chapter 5. We can
describe this work in one paragraph: we show that combining knowl-
edge under the form of text-based entity embeddings with LTNs is not
only simple, but it is also promising because it can cover aspect not
covered by standard logical approaches. Our experiments explore a
limited part of a knowledge base but results show that the model is
flexible and can be useful under different settings and use-cases.

1 In the experiment we will use EEs in place of TEEs
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Related Work

While related work has been explored in Chapter 3 we want to sum-
marize related work of the statistical relational learning and the neuro-
symbolic fields in this section. We refer to recent surveys for discus-
sions of different neuro-symbolic approaches proposed in the litera-
ture [47, 48], but note there are several work in this field. For example
DeepProbLog [85] is a “deep” extension of ProbLog language [34]
and the Neural Theorem Prover (NTP) was introduced as an exten-
sion of the Prolog language that supports soft unification rules with
the use of similarity between embedded representations [105]. Dif-
ferent symbolic/statistical relational learning approaches have been
introduced in literature to treat inference; For example, Probabilistic
Soft Logic (PSL) [4] are an example of a statistical relational learn-
ing model that comes from the family of Markov Logic Networks
(MLNs) [91]. Note that the combination between distributional seman-
tics and logic has also been studied in what is now called formal dis-
tributional semantics [22].

We decided to focus on LTNs over other methods because it is com-
pletely based on vector space grounding, that is where our entities
are located.

6.2 LOGICAL REASONING WITH ENTITY EMBEDDINGS

We propose a method to combine logical reasoning in the vector space
with entity embeddings. We decided to focus on LTNs because the
integration of embedded knowledge is straightforward: LTNs gives
us the advantage representing first-order logic inside a vectors space
and at the same time we can use entity embeddings as the starting
vector space on which LTNs learn to do reasoning.

Logical Reasoning with Logic Tensor Networks

LTNs [38, 114] use first-order fuzzy logic and represent terms, func-
tions, and predicates in a vector space. Connectives are binary oper-
ations over real numbers in [0, 1]. T-norms are used in place of the
conjunction from classical logic (e.g., the t-norm can be interpreted
as the min between two truth values). In LTNs we call grounding the
action of representing elements of the logic language in the vector
space. The operation §() will identify the grounding.

In LTNs, constants are grounded to vectors in IR™ while predicates
are grounded to neural networks that generate output values in [0, 1].
The neural network learns to predict the truth value of an atom

P(c1,...,cn) as a function of the grounding of the terms ¢, ..., cn [114].

For a predicate of arity m and for which vy,..., v, € R™ are the
groundings of m terms, the grounding of the predicate is defined as
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G(P)(v) = (r(ug(tanh(VTW][,1 :k]V+va+Bp))) wherev = (vy,..., V)
represents the concatenation between the vectors v;, o is the sigmoid
function, W, V, B and u are parameters to be learned by the network
while k is layer size of the tensor. It is easy to see that predicates
are neural networks that can take in input constants and provide an
output value in [0, 1].

In LTNs training is interpreted as a maximum satisfiabilty problem:
the task is to find groundings for terms and predicates that maxi-
mize the satisfiability of the formulas in the knowledge base. For
example, for a grounded formula like mammal(cat), the network
updates the representation of the predicate mammal (ie., the pa-
rameters of the network) and the representation of cat (i.e., its vec-
tor) in such a way that the degree of truth of an instantiated atom
is closer to 1. Optimization also works with quantified formulas as
the following one Vx(mammal(x) — animal(x); In fact, the univer-
sally quantified formulas are computed by using an aggregator de-
fined over a subset of the domain space R™ [114]. LTNs can be be
used to do after-training reasoning over combinations of axioms on
which it was not trained on (e.g., ask the truth value of queries like
Vx(—mammal(x) — species(x)); LTNs offer a method that is entirely
compositional and its prediction capabilities will will come useful in
Chapter 7 where we will do comparative reasoning over aligned dis-
tributional spaces.

Combining Entity Embeddings and Logical Reasoning

In our distributional space, logical constants are represented by a vec-
tor and thus we can use them inside LTNs to learn the representations
of predicates. We use entity embeddings ey, ..., en of the set of enti-
ties E as vectors to feed to LTNs. The truth value computed by LTNs
is function not only of the parameters of the networks but also of
the distributional embeddings. LTNs learn the representation of the
constants from scratch, but in this setting we start from an already
pre-trained representation that we keep fixed (i.e., frozen) and that
we do not update over time?.

Figure 26 shows a summary of the components of our model. We
generate distributional embeddings from text and then we use ax-
iomatic knowledge to learn the representations of predicates. After
training we can use the model to reason over new axioms. An intu-
itive way of understanding how LTNs work is to consider the learned
predicate as an area for which vectors have a truth value of 1 in cer-

Updating vectors will move them in the space, if at test time we want to test dis-
tributional embeddings unseen in the network, we will obtain unexpected results
because that distributional vector will no longer be aligned with the other constants
that have been updated
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Distributional Entity Embeddings Axiomatic Knowledge

e Text annotated with entity linking (dbr:cat)
— e Entities dbr:cat and dbr:tiger appear (dbr:tiger)
f— in similar contexts. (dbr:penguin) vx( (x) > ()

— e Entity Embeddings:

— e v(dbr:cat) = v(dbr:tiger)

Instantiated atoms Universally quantified formulas

learning predicates with

Jembedding E:Otﬁizzss and axiomatic

dbr:cat After Training Inferences:
(dbr:cat) ?

dbritiger Vx( (x) > () ?

dbr:penguin

()

Distributional Entity Embeddings Distributional Entity Embeddings with learned predicates

Figure 26: We learn embeddings from text and we use LTNs to learn how to
represent predicates with the network.

tain locations that decreases to values close to 0 when vectors are
distant from those locations.

6.3 EXPERIMENTS

In this experimental section we report the experiment that we run in
the paper in which we introduced this combination of the two meth-
ods [20], this experiment should show the interesting effects of the
combination between LTNs and entity embeddings. We use 100 di-
mensional DBpedia entity embeddings (window = 5) that have been
described in Chapter 5. Note that in this experiment we do not con-
sider the type component of the embeddings.

6.3.1 Reference Knowledge Base

We create three small knowledge completion tasks for our experi-
ments that are based on a common reference knowledge base intro-
duced in this paper to prove the capabilities of the combination of
distributional representations with LTNs.

Our main knowledge base is a subset of DBpedia and contains: a
set of predicates P (e.g., mammal); a set of constants C (e.g., dbr:cat3);
a set I of instantiated atoms, i.e., facts such as (e.g., mammal(dbr:cat));
a set Q of universally quantified formulas that represent the sub-type
dependencies DBpedia ontology (e.g., Vx mammal(x) — animal(x));
the set IQ of formulas closed under the application of standard FOL
inference to the previous set I (e.g., animal(dbr:cat) ant others); a
set of negated I instantiated atoms that are derived as follows: all
the instantiated atoms built with predicates in P that are not in 19

We are aware that in some cases there is a subtle difference between what can be
considered an instance and what is instead a type; cat can be for example the type of
all the instances of cats. This generally depends on the granularity of the knowledge
base and we think that this does not affect the scope of this experiment.

101



102

REASONING WITH DISTRIBUTIONAL EMBEDDINGS

and I (e.g.,, ~fungus(dbr:cat)). The reference knowledge base D is
TUIRUIN,

We extract entities (C) from DBpedia considering instance of the fol-
lowing classes*: Mammal (0.38%), Fungus (0.17%), Bacteria (0.03%),
Plant (0.42%). We add the universally quantified formulas Q to de-
rive inferences for predicates Animal, Eukaryote and Species for each
atom, and apply these axioms to generate the set of instantiated ax-
ioms I9. Finally, we also generate all the negative instantiated atoms
in IN (e.g., ~fungus(dbr:cat)). If we consider positive and negative
axioms this reference knowledge base contains 35,133 instantiated ax-
ioms. We split the D knowledge base in three different subset that
are meant to describe three different tasks with both training and test
data:

1. D1. Objective: evaluate the performance of the algorithms in a
task in which only positive atoms are given, not all the atoms
can be inferred with logical rules (as in Figure 25). We train
with 1,400 positive atoms and we ask the models to find the
truth value of the other 7,077 atoms related to the entities found
in the 1,400 atoms.

2. D2. Objective: evaluate the performance of the algorithms in a
task in which both positive and negative atoms are given; each
entity in the training set appears also in the test set. We train
with 7,026 atoms (both positive and negatives) and as in D1 we
ask the models to infer the truth value of 20,890 atoms (positive
and negative).

3. D3. Objective: evaluate the performance of the algorithms in a
task in which both positive and negative atoms are given, but
the test set will also contain atoms of entities not present in the
training set: The models will need to rely on the entity embed-
dings to make the prediction. We train with 1,756 atoms and the
models are now asked to infer the truth value of 33,377 atoms
(positive and negative).

6.3.1.1  Domain Theory

We here list the universally quantified axioms that are used by the
relational learning models. In total we use 22 axioms, but note that
this set is different from the set Q: the models will not have the possi-
bility of using axioms like Vx : animal(x) — species(x). We ask LTNs
to learn something more than simple axioms when combined with
distributional embeddings.

e Vx(plant(x) — eukaryote(x))

4 Note that some classes are much less represented than others
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e Vx(mammal(x) — animal(x))
e Vx(plant(x) — —mammal(x))

e Vx(fungus(x) — —animal(x))

We refer to the model that combines LTN and EE as LTNgg. Base-
line.

* A simple LTNs model that does not use EE. This model will be
useful to evalaute the capability of the model trained without
embeddings.

* Probabilistic Soft Logic> [4] that will be trained on both atoms
and universally quantified formulas. We use that standard con-
tiguration provided by the authors in the tool.

* Deep Neural Network (DNN) initialized with EEs trained to as-
sign 0 or 1 to instantiated atoms (since this is a simple DNN
we cannot use universally quantified formulas here). The DNN
embeds the pre-trained representations of entities and a one-
hot representation of predicates in 20 dimensions, concatenate
both those representations together and apply another transfor-
mation to generate a 1 dimensional representation. We apply a
sigmoid function as non-linearity and train with a binary cross
entropy loss. Validation is done on 20% of the input data. Note
that DNN cannot make use of the axioms of the domain theory.

6.3.2 Results

Table 22 shows the results of the models over by computing F1 scores
on the datasets we defined above.

Experiments on D1 In this setting we compare LTNgg with LTN and
PSL. We exluce DNN from this setting because we do not have nega-
tive data on which to train the network on. We also add that a simple
rule-based model that uses the inferential FOL rules to complete the
knowledge base would be able to infer only 45% of the axioms (with
a 100% precision), all the other axioms are similar to those presented
in Figure 25. The LTNgg approach is the best performing one.
Experiments on D2 In this experiment each entity for which we re-
quire to find other instantiated atoms appear at least one time in
the training set. PSL performance is more or less similar to the one
shown for the D1 dataset, instead the performance between LTNgg
and DNN is comparable.

Experiments on D3 From this experiment it is clear that LTNgg gen-
eralizes slightly better than DNN, one possible reason is that we are

5 https://psl.lings.org/
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using a domain theory to train LTNgg. While the F1 scores are com-
parable, the ones of the classes Fungus and Bacteria got a lower score
than in the previous experiment. However, note that this might be
due to the fact that the representation of elements of the class Fungus
are similar to those of the class Plant while the Bacteria class as only
a few instances in this experiment.

We stress the fact that LTNgg can be used to do after-training logi-
cal inferences. This is a very important aspect to include in our com-
parative framework (in Chapter 7 we will show how this can be used
to do logically compare representations).

Table 22: F1 score per tested class.

D1 Ap Fm Mmoo Pp Bp Epr Sk

LTNgg o0.81 074 0.84 066 o052 0.97 1.00
LTN o040 o0.14 0.12 0.10 0.03 0.93 1.00

PSL o054 0.19 0.5 0.14 007 0.93 1.00
Dz Ap Fm Mmoo Pm Bp Ep Sk

LTNgg o091 086 0.91 0.86 0.63 0.99 1.00
DNN o093 082 093 087 0.54 0.99 1.00
PSL 056 o0.20 020 o0.17 o0.10 0.88 0.98

D3 Apm Fm Mg P B Em Sm

LTNgg 0.88 o080 0.89 0.82 0.60 0.99 1.00
DNN 087 064 085 o0.77 o047 098 1.00

Some examples

After training we can evaluate the truthfulness of axioms for which
it was not specifically trained on. Table 23 reports some examples
(see Chapter 7 for more examples). Note that LTNs still have some
limits due to training problems, we have highlighted some of this in
a recent work [16]. In general, it seems that the use of quantifiers has
a big impact on the training time of LTNs and thus they should be
used carefully.

Table 23: The truth values of novel axioms.

Axiom Truth

Vx(species(x) — animal(x)) o}
Vx(eukaryote(x) — —bacteria(x)) 0.73
Ix(eukaryote(x) A —plant(x)) 1
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64 SUMMARY OF THIS CHAPTER

We hereby give a short summary of this chapter, by answering the
research question we asked ourselves in the introduction.

* Q6.1 can we provide a method to do logical inference over dis-
tributional representations?

In this Chapter, we have introduced a combined model for reason-
ing over distributional representations. With a simplified but intuitive
experiment we have shown that this method is able to combine no-
tions of first order logic with distributional elements, thus providing
an account for both distributional knowledge and structured infer-
ences (Q6.1). The main outcome of this chapter is that we now have
a method that can be used to do logical reasoning over distributional
representations, and that can be used to enhance our comparative
framework.

ADDITIONAL RESOURCES

* [48] offers a recent analysis of novel framework for neural-symbolic

learning and reasoning. [22] describes combinations of distribu-
tional semantics and logical systems. For combinations between
neuro-symbolic systems and the semantic web we suggest the
following related paper [64].
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APPLICATIONS

In this chapter, we show some application of the comparative frame-
work introduced in the previous chapters. We show how CADE can
be used to do knowledge exploration with both words and TEE. Note
that while in Chapter 5 we used the Skip-gram model to learn TEE in
this Chapter we used the CADE model that is based on CBOW. This
is because we generally rely on small amounts of text and in our ex-
periments, CBOW seems to obtain good results in these settings; we
will use CBOW to embed also the TEE representations. To use TEE on
CADE we annotated text using the commercial entity linker Dande-
lion". This entity linker is more accurate than DBpedia Spotlight, but
since it is a commercial tool only a limited number of API calls to
annotate text can be executed for free.

We recall that to find the corresponding token, we use the function
¢p,—p; and that we will use the simplified version D1 — D; in this
Chapter. We will generally look at 5-top elements in the neighbor-
hood of the D, space. To show that this model is actually learning
something that is not trivial, we will also show the neighborhood of
the original space using the notation D1 — D: if the closest word to
“flat” in NYT was “apartment” there would not be much to learn.

7.1 COMPARATIVE KNOWLEDGE EXPLORATION
7.1.1  Comparative Transposition

Another task we would like our model to solve is the mapping be-
tween words that have the same meaning, but completely different
spellings in the two languages (e.g., biscuit/cookie, flat/apartment).
It is difficult to define a dataset that contains pairs of these words be-
cause there are many implicit biases that we would have to make to
generate a dataset like this one, for example, “which is the equivalent
of the word jumper in American?” that might have multiple answers.

Newspaper Data

We thus decided to collect some words of this kind and show which
are their respective embeddings in the other space; while this is not
a quantitative experiment, it should give the reader the idea that the
model is stable enough to be general and to map words that have
the same meaning in the same space. As stated above, for each word

1 https://dandelion.eu/
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we show as an example we also show the neighborhood of that word
in the mapped space; we do this last step to show that the matching
words are not found in the neighborhood (i.e., “flat” is not close to
“apartment” in the NYT space).

Mapping Word Top-5
GUA — NYT flat ‘apartment’, ‘walkup’, ‘flat’, “upstairs’, ‘oneroom’
NYT — NYT flat ‘sliding’, ‘padding’, ‘rough’, ‘seams’, ‘oneroom’
GUA — NYT petrol ‘gasoline’, ‘idling’, ‘trucks’, ‘diesel’, ‘suv’
NYT — NYT  petrol  ‘lactic’, ‘ricocheting’, ‘nanoparticles’, ‘quill’, ‘squish’
GUA — NYT garbage ‘bins’, ‘garbage’, ‘litter’, ‘rubbish’, ‘bags’
NYT — NYT  garbage ‘trash’, ‘cans’, ‘bins’, ‘piles’, ‘bags’
NYT - GUA  candy ‘sweets’, ‘chocolate’, 'sip’, ‘crisps’, ‘jelly”’
GUA — GUA  candy ‘spears’, ‘heavenly’, ‘bud’, ‘manger’, ‘jasmine’
NYT — GUA  gasoline ‘petrol’, “diesel’, "fumes’, ‘batteries’, “plugin’

GUA — GUA gasoline ‘pellets’, ‘dispose’, ‘tubes’, ‘microfibres’, landfilled”

GUA — NYT Dbiscuits  ‘cookies’, ‘chocolate’, ‘pancakes’, ‘bread’, ‘noodles’

NYT — NYT  biscuits ‘honey’, ‘vanilla’, ‘spinach’, ‘cinnamon’, ‘coconut’

Table 24: Qualitative examples of mapping between NYT and GUA.

The interesting result here is that we seem to be able to map well
words from American English to British English and vice-versa (a
more structured experiment that proved this was run in Chapter 4).
It is interesting to see how the word “flat” in the NYT space has
a general meaning of “something related to flat surfaces” and that
when we take the word “flat” from the guardian embedding, we get
as first neighbor the word “apartment”.

Reddit Corpus

Reddit is an online forum divided in boards, main topics in which
users can post related information. For example, the “TwoXChromo-
somes” describes itself as “a subreddit for both serious and silly con-
tent, and intended for women’s perspectives.”. Instead, the “sports”
board is mainly used to share information about sports.

We use Reddit data® that was also used in a recent paper to drive
domain-specific sentiment lexicons for different boards [61]. This cor-
pus was generated by extracting data using APIs contains 1.65 billion
comments (of which 350,000 are not available as reported in the on-
line page). The comments inside this dataset were produced from
October of 2007 until May of 2015.

2 https://archive.org/details/2015_reddit_comments_corpus
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7.1 COMPARATIVE KNOWLEDGE EXPLORATION

We select some interesting boards and we compare mappings be-
tween some words.

Boards: TwoXChromosomes - Sports

In this subsection, we show some examples related to the TwoXChro-
mosomes board (TWX) and the Sports (SPO) board. These two boards
use the word “period” in different contexts: in TWX this word is fre-
quently used to indicate the female monthly cycle. While in the SPO
board this word is generally used to refer to a period of time during
sports matches. We train CADE over these two slices and their con-
catenation as a compass and we show results in Table 25; as expected
CADE can map the respective meaning in the correct positions.

Mapping Word Top-5

TWX — TWX  period "periods’, ‘spotting’, ‘cycle’, ‘bleeding’, ‘flow’
SPO — SPO  period ‘periods’, ‘duration’, ‘stoppage’, "half’, "longest’

TWX — SPO  period ‘samples’, ‘blood’, ‘sprain’, ‘stitches’, ‘bruising’

SPO — TWX period ‘lifetime’, ‘span’, ‘time’, ‘continuation’, ‘remainder’

Table 25: Qualitative examples of mapping between TWX and SPO.

Boards: Science - Pokemon

Another example we run was on the Science (SCI) board and the
Pokemon (POK) board. Pokemon have their own “mythology” and
several meanings have a strong and different connotation from stan-
dard English. We used CADE to map the two spaces, results are visible
in Table 26. The word “move” is generally used to refer to a Pokemon
attack (also referred to as technical move (tm)). The word “ash” in the
Pokemon world is heavily influenced by the fact that the protagonist
of the Pokemon tv-series is named “Ash”. From the SCI space, we
can import the representation of the meaning of the word “ash” that
is more related to a natural effect.

Another interesting example is shown in the Table: “arceus” is a
Pokemon and in the POK space is close to other Pokemons. As soon
as we move its vector to the SCI space we get in the vicinity of terms
like “gods” and “creator”. This happens because in Pokemon mythol-
ogy the Pokemon Arceus is generally referred to as the creator of the
Pokemon. CADE can map these semantic differences in language of-
fering an interesting view on how to explain terms.

Our framework shows two qualities here: it can inject words from
one corpus to another even when meanings are skewed (as in exam-
ple of “ash”) and it can also provide a method to give explanations
of word embeddings as in the case of “arceus”: the use of the trans-
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Mapping Word Top-5

SCI - POK  move 'walk’, 'go’, "hop’, ‘sit’, ‘rotate’

7

POK — POK move ‘tm’, ‘moves’, ‘moven’, ‘superpower’, “attacks

POK — SCI  arceus ‘gods’, "sakes’, ‘'worship’, ‘creator’, ‘god’

POK — POK arceus ‘mew’, ‘deoxys’, ‘giratina’, ‘celebi’, 'regigigas’

SCI — POK ash ‘lava’, ‘moisture’, ‘air’, ‘ocean’, ‘clouds’

POK — POK  ash ‘brock’, ‘misty’, ‘serena’, ‘giovanni’, ‘gary’

Table 26: Qualitative examples of mapping between the SCI and POK.

position to the SCI space allowed us to explain the meaning of the
word “arceus” with the neighbors. Something that is not possible by
looking at the neighbors of the word “arceus” in POK.

7.1.2  Comparative Temporal Transposition

We can also use TEE to explore temporal corpora. We use CADE on
the collection of temporal corpus introduced by [145]. We annotated
it with the use of the entity linker Dandelion. We annotated New
York Times articles from the 2000, 2005 and 2010. We will refer to
this corpora as NYT-E-2000, NYT-E-2005 and NYT-E-2010. We first
generate the aligned embeddings using CADE and then create Typed
Entity Embeddings adding 2016 types to the entities (note that this
brings a strong bias in the model, but we ignore this to show possi-
ble applications of the tool. In general, types do not change as fast
as relationships (e.g., past politicians are still politicians)). We thus
use Typed Entity Embeddings to represent the entities and we only
consider the similarity between entities.

Mapping entity Top-1

NYT-E-2010 — NYT-E-2005 dbr:Barack_Obama dbr:George_W._Bush
NYT-E-2010 — NYT-E-2000 dbr:Barack_Obama dbr:Bill_Clinton

NYT-E-2010 — NYT-E-2005 dbr:IPhone dbr:IPod
NYT-E-2000 — NYT-E-2010 dbr:Yugoslavia dbr:Iraq
NYT-E-2000 — NYT-E-2010 dbr:Yahoo! dbr:Google

Table 27: Qualitative examples of mapping between the NYT-E-2000,2005
and 2010

An interesting property of the combination of TEE and CADE is that
it offers the possibility of exploring space neighborhoods by taking
into consideration the types of the entities. The first example in 27
shows that moving in the space allows us to directly find president
George Bush from Barack Obama. The key added value here is given
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by disambiguation: in Chapter 4 we experimented with temporal
analogies and those analogies contain the word “bush” that is am-
biguous because it can refer to two different US Presidents and also
to the plant. Moreover, the example that associates Yugoslavia with
Iraq is particularly interesting because it puts together two countries
that in the respective years were into a civil war (note that Yugoslavia
ceased to exist after that civil war). As highlighted in Chapter 5 the
use of the types allows us to explore the space by considering type
constraints and finding really similar entities.

Change in Similarity
Another example in which distributional representations are useful is

the comparison between different vectors over time. We show some
example of similarity comparison in Figure 27.

= 2005 =2010

0.75
0.5
0.25
0
dbr:Apple dbr:Yahoo dbr:Microsoft dbr:Ebay
dbr:Google dbr:Google dbr:Google dbr:Amazon.com

Figure 27: Similarities of different entities over different years.

See how the similarity between the entity dbr:Google and entity
dbr:Apple increased over time, while the similarities between dbr:Yahoo!
and dbr:Google decreased (because Google became a wider company,
not only related to the search engine). It is also interesting to compare
this with the results in Table 27 in which we were able to detect that
the dbr:Yahoo! of the 2010 is dbr:Google.

7.2 COMPARATIVE REASONING ON CADE

A last example we want to show in this chapter is related to the
combination of multiple vector spaces with reasoning systems. As
described in the Preliminaries (Chapter 2), distributional represen-
tations do not support compositionality and do not have reasoning
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Table 28: Learn to reason on one space, test on another space.

Axiom Guardian Truth Value Times Truth Value
president(dbr : Donald_Trump, dbr : Italy) o o
president(dbr : Donald_Trump, dbr : United_States) 0.97 0.95

capabilities; while they allow us to evaluate the similarity between
linguistic items. One key task for artificial intelligence is to find ways
to effectively combining sub-symbolic perception with high-level rea-
soning [85]. This is what the neuro-symbolic [47, 48] learning and rea-
soning field aims to do: combining properties of symbolic reasoning
and neural networks, to account both for data-driven learning and
high-level reasoning, two tightly related aspects of human cognition.

7.2.1  Transfer Reasoning and Comparative Reasoning

Since with CADE we generate distributional aligned vector spaces,
we can learn to reason on one vector space using LTNs and then used
the learned neural network to reason over the other vector space. We
annotated both the GUA and NYT text obtaining TEEs, we refer to
this corpus as GUA-EE and NYT-EE.

TRANSFER REASONING For example, we can learn two predicates
on the GUA-EE representation and see the truth value of the same
predicates on the NYT-EE representation. In Table 28 we show an ex-
ample where we learned the axioms president(dbr: Donald_Trump, dbr:
[taly) and president(dbr : Donald_Trump, dbr : United_States)
on GUA-EE and see the truth value on NYT-EE.

The strong assumption behind this approach at modeling compar-
ative reasoning is that the vectors of the entities in the two mod-
els are similar. Obviously, if the vectors in the two representations
are identical the truth values will be the same. We evaluated this
approach by considering the 100 entity names that have the most
similar vectors in GUA-EE and NYT-EE by euclidean distance3. We
then generate random predicates as in [16] and ask the model to
learn, for example the predicate predicate;(dbr : Donald_Trump)
and predicate;(dbr : Donald_Trump) over the GUA-EE embed-
dings and then we see if the same predicates get the same result on
the NYT-EE vector space. All the predicates, once trained and trans-
ferred to the other space, give as output the same truth value once
rounded to the nearest integer (o or 1) (as in Table 28). This is again a
result that comes from the fact that for similar vectors the prediction
of LTNs will be the same.

3 Cosine similarity ignores the norm of the vectors that are important when the values
are passed to the neural networks.
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Note that this approach can be applied in the context of temporal
data: we can train LTNs over multiple aligned spaces and then ask
the trained model question about other aliened spaces. We consider
again the aligned corpus NYT-E-2000, NYT-E-2005 and NYT-E-2010.
To make an example, we trained LTNs with a predicate politician that
puts a relation between a person, that is a politician and it’s respective
country.

e politician(dbr: Barack_Obama_2010, dbr : USA_2010)

e —politician(dbr: Barack_Obama_2010, dbr : Mexico_2010)
* politician(dbr: George_W._Bush_2005, dbr : USA_2005)

e —politician(dbr: George_W._Bush_2005, dbr : Mexico_2005)
¢ politician(dbr : Dick_Cheney_2005, dbr : USA_2005)

e —politician(dbr: Dick_Cheney_2005, dbr : Mexico_2005)

e politician(dbr: Joe_Biden_2010, dbr : USA_2010)

e —politician(dbr: Joe_Biden,_2010, dbr : Mexico_2010)

Once we learn an LTNs over this predicates we made logical queries
as politician(dbr : Bill_Clinton,_2000,dbr : Mexico_2000) and
politician(dbr : Al_Gore, _2000, dbr : USA_2000), obtaining the ex-
pected values.

Note a really important aspect: we can learn with LTNs on one sin-
gle space or on multiple spaces thanks to the fact that the spaces in
our comparative framework are aligned. This gives us great flexibility
when we handle reasoning over the vector space. Even if these results
are preliminary and are based on a small set of data (on which it is
easy to overfit on), they are also promising.

TRUTH-VALUE DECREASE OVER TIME A last example we conducted
shows the comparative analysis of the truth value of the predicates
along time. We expect some predicates to become false over time. As
above we consider an example with US politicians: we define a unary
predicate in_charge that we use to identify people governing the US
during the years 2000, 2005, 2010. As before, our knowledge base con-
tains some predicates as charge(dbr : Barack_Obama_2010), charge(dbr :
Joe_Biden,_2010), charge(dbr : Joe_Biden,_2005). When tested on
the unseen (during LTNs training) entities dbr : Bill_Clinton and
dbr : Al_Gore, the value of the charge predicates (computed with
the embedding of the entities over the years 2000, 2005 and 2010) de-
creases over time as shown in Figure 28.

This result is probably due to the fact that the typed entities Bill_Clinton
and dbr : Al_Gore appear more rarely in contexts in which entities
related to the fact of running the government are present.
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== dbr:Bill_Clinton == dbr:Al_Gore

0.75

0.5

0.25

2000 2005 2010

Figure 28: Example of decreasing in the truth value of the predicate
in_charge over the years.

Again, these experiments, while surely preliminary, show that the
combinations between LTNs, CADE and TEE allow us to analyze and
compare distributional spaces with a high level of explainability given
by the opportunity of using the axiom.

7.3 SUMMARY OF THIS CHAPTER

In this Chapter, we have shown how to combine all the different
elements that have been introduced in this thesis, giving hints on
how and when this comparison can be useful. We want to under-
line that there are two levels of comparison: the first one is given by
the comparative framework of which CADE and TEE are the princi-
pal components while the second one inclueds logical reasoning over
distributional data. With these two components, it is possible to do
a comparative analysis between different corpora and evaluating the
change in the similarity of different entities. On the other hand, intro-
ducing LTNs on top of this framework allowed us to provide a more
structured inference over different corpora.



CONCLUSIONS

Natural language is one of the most important media of communi-
cation and researchers over the years have introduced models to ac-
count for the meaning of natural language expressions. These meth-
ods consider a context-based perspective on language, generating dis-
tributional representations that and have been found to be correlated
with cognitive aspects of knowledge [77]. This perspective brought
researchers to realize that different contexts would give us different
representations (as in the temporal word embeddings domain intro-
duced in Chapter 3), and thus it becomes important to define a gen-
eral framework for comparison of these representations.

In this thesis, we have proposed a model to perform corpus-based
comparison of distributional models of language and knowledge graphs.
We started this research work by describing two different paradigms
that accounted for the definition of meaning, logic, and distributional
semantics. We discussed the main characteristics and limits of the
two and we focused on the properties of distributional semantics.
Distributional semantic is able to capture intrinsic characteristics of
language and it has also been widely supported by researchers in the
cognitive science field.

Since distributional semantics captures properties of text, we devel-
oped a method, CADE, that allows us to generate comparable repre-
sentations of text that come from different sources. This allows us to
study how language evolves over time and to analyze which are the
words that shift in meaning when different contexts are considered.

We also treated the comparison of entity names introducing a distri-
butional method for knowledge graph embeddings, TEE. This model
is based on a purely distributional assumption and thus automati-
cally inherits properties found by cognitive scientists in these presen-
tations [27, 77]. These representations can be used with the CADE,
allowing us to manage ambiguous natural language expressions in
an effective way without losing the main linguistics and cognitive
assumptions that drove the study of distributional semantics.

Finally, thanks to the introduction of entity names in the represen-
tations, we were able to combine those with a neuro-symbolic system,
namely LTNs, that allows us to do more structured comparisons based
on logical axioms.
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In Chapter 7, we have shown some interesting applications that de-
rive from the use of this framework. Our framework allows different
levels of comparison that range from simple similarity computation
of words in different slices (as in the example in which we computed
the change in similarity between the entity dbr:Google with respect
to other entities) to finding a semantic similar token in a specific slice
given another token from another slice (as in the example about the
word “flat”). Since we also provide a method for distributional repre-
sentation, we can do operations on both entities and words. Finally,
we have also shown that we can actually do comparative analysis
using logical axioms by combining TEE with LTNs.

FUTURE RESEARCH DIRECTIONS This research opens up differ-
ent research directions. First of all, the comparative framework that
allows us to align representations can be exploited in several different
ways, some of which have been exposed in Chapter 7. Possible future
directions are:

* The framework is able to inject representations of words into
novel contexts where they are missing. This might be interesting
to treat tasks like few-shot and zero-shot learning;

¢ Other interesting applications of the framework are related to
cognitive sciences: the framework we have introduced might
help researchers study the biases that are present in different
representations;

e As other work in state of the art, our method can be used to
evaluate how language mutates over time and which are the
reflections of this evolution in the language that people use. We
can accomplish this goal with our framework by considering an
analysis at an entity level and also at a logic level;

¢ The addition of the logical layer over the comparable represen-
tation might allow us to compare different reasoning systems
in the future. This would be of great impact to the community
because it will give us the ability to interpret the distributional
representation under the point of view of a more structured
framework built upon logic.



NEURAL NETWORKS

Neural Networks are one of the most popular learning methods em-
ployed in Artificial Intelligence and Machine Learning. Warren Mc-
Culloch and Walter Pitts introduce them in 1943 [86], inspired by the
biological nervous system: the “network” consist of a set of artificial
neurons connected by weighted links, in the same way, biological
neurons are connected by synapses. Research in the field stagnated
at the beginning, mainly because of the lack of computer processing
power capable of handling large neural networks. In the '80s, interest
in the field started to grow back again: The work of Geoff Hinton,
David Rumelhart, and Ronald Williams presented a way to train neu-
ral networks with many hidden layers [110] and it was proved that
neural networks are capable of learning different forms of mathemat-
ical functions [33]. The core concepts defined during this period are
behind the today widely used set of machine learning techniques
known as deep learning [54, 75]. We hereby give a short introduction
to the main neural network and machine learning concepts. For a
more in depth introduction we refer to the deep learning book [54].
Note that we will generally make reference to a specific kind of ma-
chine learning area that is supervised learning, in which models learn
to predict outputs from inputs. Other areas of machine learning are
described in textbooks [54].

A.1 MACHINE LEARNING CONCEPTS

A general setting for a machine learning problem comprehends a set
of training samples from which an algorithm has to learn. To intro-
duce machine learning we describe an high-level general problem
that is related to supervised learning.

The training examples consists of n pairs of inputs and target out-
puts (x1,yY1), (x2,Y2), -+, (Xxn,Yyn)*. An example could be a set of
images (that could be represented with vectors x; and a value in {0, 1}
that specify if the image contains a cat or not.

These examples are generated from a function f and this function
is often unknown; this is why the goal of the network is to learn a
function fg where 0 are the parameters that best approximates f.

Key Insight. Starting from a series of inputs-outputs examples a ma-
chine learning model has to learn a function that maps inputs to
outputs.

1 Note that in general inputs and outputs can be both scalar or vectors
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A.1.1  Machine Learning Tasks

The learning method can be either supervised or unsupervised*. A model
learns using supervision if the desired output is provided for some
given inputs. The two major challenges of this approach are: the dif-
ficulty of retrieving enough quantity of training data and the risk of
overfitting, i.e. learning a function biased toward a particular training
set.

Differently from the method specified above, machine learning mod-
els can also learn in an unsupervised way in which no target outputs
are provided. Clustering algorithms are an example of an unsuper-
vised model.

A.1.2 Loss Function

We define loss functions to compute the distance between the predi-
cated value estimated by the neural networks and the target values.
Different loss functions £ can be defined?, an example of loss function
can be the mean squared error.

The learning problem of can be written in this general form:

1« .2
argmine > Lfe(xi)yi) (7)

Xi,Yi

To learn the best possible mapping between the input data and the
output data we want to minimize the loss function. That is, we want
to find the best configuration of the parameters , that minimize the
loss function £.

Key Insight. A machine learning problem is defined with respect to
a loss function. The objective is to minimize this loss function in such
a way that the models predictions are as near as possible to the one
provided by the function f.

A.2 NEURAL NETWORKS
A.2.1  Deep Neural Networks

Deep neural networks are generally explained considering neurons
and weighted connections between them that makes them assume
the form of actual networks (that is why we generally refer to this
model as neural network).

Consider that there is also another field in machine learning called reinforcement
learning, but that is subtly different from the two mentioned here
Note that for learning reasons these functions must be differentiable.
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—  h=oWx h,=o(W,h) h,=o(W,h,) 0=0Wh) —>

x input

h,  hidden layers

W, transformation matrices
o output

o non linear function

Figure 29: Example of neural network chaining

Nevertheless, the most direct way to view neural networks is as
a model that does function composition through a series of matrix
transformation from an input space to an output space. In fact, each
layer in the neural network can be viewed as a matrix multiplication
that transforms the input. A general layer assumes the form of an op-
eration h = o(Wx). Where o denotes an activation function function,
x denotes the input of the layer; the W matrix components are often
referred to as weights; these weights are part of the parameters ,, that
the network has to adjust to minimize the loss function.

In Figure 29 we show how the neural network computes the output.
Starting from an input x a first matrix multiplication is applied to the
input W1x, and then a non-linearity function is applied4, generating
the values of what is generally called the first hidden layer and that
will be the input for the next layer. This procedure is repeated until
the last layer, where the network generates the final output. The final
output is thus the result of fo(xi) that will be used to compute the
value of the loss function.

Adding more layers (i.e., matrix multiplications) makes the net-
work deeper, hence the name deep learning that has been given to
the field.

Key Insight. Neural networks generate predictions through a series
of matrix multiplications that are followed by non-linear function ap-
plications.

A.2.2  Activation functions

Non-linearities are also called activation functions. This definition
comes from the earliest architecture of artificial neural networks, com-
posed of a single computational neuron, where the activation func-
tions was used to decide decide which connection of the neuron
should be active and which should not be active. As outlined above,
this functions are also useful between layers to make neural networks

4 Non-linearities are added because the composition of linear functions is a linear
function and hence a network with many layers would be reduced to a network
with only one hidden layer.
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able to learn non-linear functions. We hereby show some of the acti-
vation functions present in literature.

range [0, 1]

SIGMOID  0(x) = 7=,

Z_ ,—X
HYPERBOLIC TANGENT tanh(x) = &rc, range [-1,1]

RECTIFIED LINEAR UNIT ReLU(x) = max(0,x), range [0, o]

X

SOFTMAX 0O(x)j = %, range [0, 1]
i Tk

Each activation function as specific uses, for example the sigmoid
can be used in context of binary classification. The softmax function
is a generalization of the sigmoid function to the multi-dimensional
case: it takes in input a vector and transform it in a vector of pseudo-
probabilities: each value is normalized in the interval [0,1] and the
sum of the values is 1.

A.2.3  Backpropagation and Optimization

The loss function can be defined with respect to all the errors gener-
ated over the entire training set or with respect to a batch of training
examples. Optimization is done by computing the gradient of the
loss function and updating the parameters to minimize the loss func-
tion [54].

The method to learn from a loss function in deep learning is the
backpropagation [54]. The loss function can be seen as a function of
weights, the backpropagation computes the gradient of the loss and
updates the values of the weights favoring the minimizaion of the
function. This process is repeated for each input example, a common
technique to speed up the computation and perform more general
backpropagation is to apply the backpropagation as the mean of gradi-
ents computed on a batch of examples with size r. This prevents that
outliers examples will affect the generalization process. Note also that
there are different ways to actually updates the weights of a neural
network, these are often called optimizers.

A.2.4 Qverfitting

A very important problem that has to be faced during a neural net-
work training (and even using other machine learning models) is the
problem overfitting [54]. This is a phenomenon which causes bad per-
formances of the model even if, during the training, performances
seems to be good. The overfitting appears when the model memorizes
the training distribution instead of generalizing, so is not able to rec-
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ognize any new input which shows a similar distribution. There are
different methods to tackle and to reduce the effects of overfitting in
neural networks: for example, regularization techniques help in con-
straining the value the weights of the network assume. On the other
hand, techniques like the dropout (i.e., randomly deactivating some
weights in the network at each iteration) have been found effective in
neural networks [54].
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