
SCUOLA DI DOTTORATO

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

DIPARTIMENTO DI INFORMATICA, SISTEMISTICA E COMUNICAZIONE

PhD program in Computer Science – Cycle XXXII

Algorithms for analyzing genetic
variability from Next-Generation

Sequencing data

Luca Denti
(750058)

Supervisor: Prof. Paola Bonizzoni
Co-supervisors: Dott. Raffaella Rizzi, Dott. Marco Previtali

Tutor: Prof. Giuseppe Vizzari

PhD Coordinator: Prof. Leonardo Mariani

ACADEMIC YEAR 2018/2019

To my granddad

Acknowledgements

First of all, I want to thank my mum for her support: she is the one who kept

me going and helped me reaching the end of this journey.

I would like to thank my advisors, Paola, Raffaella, and Marco, for their

guidance and assistance. I am extremely grateful to Marco who taught me how

to approach research sharing with me a bit of its knowledge every day.

Special thanks go to my PhD colleagues and office mates Giulia, who always

encouraged me, especially during the second year of my PhD, and Simone, who

keeps me young by making me feel like a high school student.

My thanks go also to Gianluca, Stefano, Murray, Luca, and Mauricio for the

useful discussions I had with them.

A special thank to Alexander Schönhuth who guided my research activity

during my visit at the CWI.

Lastly, I would like to thank Stefano, Omar, and Laura: spending my spare

time with you always makes me feel better.

iii

Contents

1 Introduction 1

2 Preliminaries 7

2.1 Strings and graphs . 7

2.2 Bit vectors . 8

2.3 Bloom filters . 9

2.4 Pattern matching . 10

2.4.1 Suffix arrays . 12

2.4.2 Burrows-Wheeler Transform and FM-Index 14

2.4.3 Maximal Exact Matches 16

2.5 Biological concepts . 19

2.6 Bioinformatics . 24

2.6.1 Sequencing technologies 24

2.6.2 Processing of NGS data 27

2.6.3 Standard file formats . 29

3 Alternative Splicing Events Detection 32

3.1 Context and Motivations . 33

3.1.1 State of the Art . 36

3.2 Preliminaries . 39

3.3 Method . 49

3.4 Results . 57

3.4.1 Implementation details . 58

3.4.2 Experimental analysis on simulated data 58

3.4.3 Experimental analysis on real data 72

iv

3.5 Final remarks and future directions 77

4 Known Variants Genotyping 79

4.1 Context and Motivations . 80

4.1.1 State of the Art . 82

4.2 Preliminaries . 84

4.3 Method . 87

4.4 Results . 94

4.4.1 Implementation details . 95

4.4.2 Experimental analysis . 96

4.5 Final remarks and future directions 105

5 Conclusions 107

Bibliography 109

v

Chapter 1

Introduction

The foundation of life mainly consists in a microscopic molecule, known as De-

oxyribonucleic Acid (DNA). DNA contains the genetic information that is es-

sential for the correct development of any organism. The slightest variation in

its structure or in its functioning may lead to lethal diseases, such as tumors.

Being able to investigate DNA molecules is of utmost importance for analyzing

the reasons behind such disorders and improving the quality of life. Develop-

ment of DNA sequencing technologies has revolutionized the way this kind of

investigation is performed. Such technologies are fast and produce a lot of data

that allow to better understand and analyze how DNA works.

Due to the huge amount of sequencing data available, nowadays computer

science plays a key role in their analysis. Indeed, analyzing DNA from sequencing

data in an efficient and effective way requires the development and application

of computational approaches. This is one of the main goal of bioinformatics,

a research field that combines computer science and biology. Luckily, in many

applications, the biological information contained in a DNA molecule can be

described as a sequence of nucleotides and it can be represented as a string in

which each character represents a nucleotide. Strings are a well-known and well-

studied notion in computer science and therefore it is possible to exploit the huge

literature related to storing and processing strings for improving the analysis of

DNA.

Sequencing technologies are those technologies that allow to translate a DNA

molecule into a set of strings. Due to technical limitations, these technologies

1

Chapter 1 Introduction 2

are not able to produce a single string representing the entire DNA molecule,

but they produce fragments, known as reads, of its nucleotide sequence. When

the fragments come from a DNA molecule, they are called genomic reads, or

simply reads, whereas when they come from a RNA molecule, they are known

as RNA-Seq reads. The set of fragments produced by a sequencing technology

is known as sample.

Currently the most used sequencing technologies are the so-called Next-

Generation Sequencing (NGS) technologies. These technologies are cost-effective,

efficient, and produce a huge amount of data, ranging from several millions to

billions of short read fragments per sequencing experiment. Development of NGS

technologies paved the way to numerous bioinformatics analyses and nowadays

such technologies are routinely applied to clinical settings [147, 100] and a mas-

sive amount of sequencing data is produced every day [120]. Indeed, the analysis

of NGS data allows to understand genetic diversity among the individuals of a

population and to discover the causes behind diseases and tumors.

Within this context, this thesis focuses on two specific problems arising from

the analysis of NGS data: the study of transcript variability due to alternative

splicing and the investigation of genetic variability among different individuals

due to small variations such as Single Nucleotide Polymorphisms and indels. Re-

garding both these problems, we investigate two novel computational approaches

by devising original strategies and we prove their efficacy by comparing them

with the most used state-of-the-art approaches.

The first problem we tackle is the detection of alternative splicing events

from RNA-Seq data. Our contribution is an original algorithmic approach that

exploits the novel notion of alignment against a splicing graph [11, 34].

The second problem we tackle is the genotyping of a set of known Single Nu-

cleotide Polymorphisms and indels from NGS data. In this area, our contribution

is the first alignment-free approach that is able to genotype SNPs, indels, and

multi-allelic variants directly from the raw reads, i.e. without aligning them [33].

In both these areas, our focus is on the development of bioinformatics tools

that combine accurate algorithms with efficient data structures. Efficiency and

accuracy are crucial for bioinformatics tools but obtaining them requires to over-

come arduous computational challenges. Firstly NGS reads are small fragments

Chapter 1 Introduction 3

of a donor DNA and being able to extract meaningful knowledge from them

is complex since they do not offer a comprehensive view of the entire DNA se-

quence. Secondly raw NGS datasets may require hundreds of gigabyte of memory

to be stored and their analysis is computationally intensive.

In the first part of this thesis, we introduce a novel algorithmic approach for

the analysis of alternative splicing from RNA-Seq reads.

Alternative splicing is a regulatory process that increases the protein diversity

by allowing a single gene to synthesize multiple proteins, each one with a different

functionality. For example, in humans, almost 25,000 protein coding genes can

generate more than 90,000 proteins [170]. Alternative splicing alters how the

coding portions of a gene are combined together to produce the messenger RNA

molecule, known as transcript, that contains the information needed for the

synthesis of a protein. Alternative splicing plays an important role in many

different life aspects, from the correct evolution of an individual [170] to the

development of diseases [154]. Therefore, its analysis is of extreme importance

for better investigating diseases and their causes.

Current bioinformatics approaches for the analysis of alternative splicing rely

on the reconstruction of transcripts from NGS data or on the spliced alignment

of NGS reads against a reference genome. Transcript reconstruction consists in

identifying the structure and the nucleotide sequence of the transcripts expressed

in an RNA-Seq sample. Current approaches for transcript reconstruction can be

classified in reference-based [157, 56, 123] and de-novo [51, 143]. The former use

the alignments of the reads to the reference genome to identify the transcripts

whereas the latter build the transcripts directly from the reads, without aligning

them. On the other hand, spliced alignment consists in identifying the most

probable (possibly non-contiguous) coding regions along the reference genome

from which each RNA-Seq read originates. Examples of spliced aligners are

TopHat2 [77], STAR [38], BBMap [19], and HISAT [75].

Differently from current techniques we investigate an alternative approach

based on the alignments of NGS reads against a splicing graph [60], i.e. a graph

representation of the known transcripts of a gene. We were motivated by our

computer science interest in solving the open problem of designing an algorithmic

approach based on succinct data structures for the approximate matching of a

Chapter 1 Introduction 4

string against a labeled graph. Aligning strings to a graph is a fascinating

problem and, in the last years, it is drawing the attention of more and more

researchers [76, 46, 127, 65, 66].

With this goal in mind, we propose an algorithm based on the FM-index

data structure and we implemented it into ASGAL (Alternative Splicing Graph

ALigner). ASGAL is a bioinformatics tool that aligns an RNA-Seq sample against

the splicing graph of a gene and then detects the alternative splicing events

supported by the sample by comparing the alignments with the gene annotation.

Detecting alternative splicing events task is adequate for many transcriptome

analyses [163, 68, 146] and, differently from the more complex task of transcript

reconstruction, it is computationally feasible. Moreover, by introducing the for-

malization of spliced alignment to a splicing graph, ASGAL performs an alignment

step that is tailored to the identification of alternative splicing events. This al-

lows ASGAL to detect alternative splicing events that are novel with respect to a

gene annotation, i.e. events that cannot be described by two or more annotated

transcripts. ASGAL is the first tool that aligns reads against a splicing graph and

that is able to detect novel alternative splicing events even when only a single

isoform per gene is supported by the sample.

The results of our experimental evaluation show the usefulness of aligning

against a splicing graph and prove the ability of the proposed approach in de-

tecting alternative splicing events.

In the second part of this thesis, we introduce a novel algorithmic approach

for genotyping a set of known Single Nucleotide Polymorphisms (SNPs) and

indels from NGS data.

Although the DNA sequences of two unrelated individual of the same pop-

ulation are similar, they differ in many aspects. Among the various differences

that may occur, SNPs and indels are the most studied ones. A SNP is the sub-

stitution of a single nucleotide whereas an indel is the insertion or the deletion

of one or more nucleotides.

Discovery and characterization of these kind of genomic variations are the

main goals of genome-wide association studies (GWAS). Through an in-depth

analysis of the variations occurring among the DNA sequences of different in-

dividuals, GWAS aim to understand genetic risks factors for diseases that are

Chapter 1 Introduction 5

common in the population under analysis [18].

Moreover, SNPs and indels are closely related to alternative splicing. Indeed,

single nucleotide changes and indels affect gene splicing and can alter or inhibit

gene function [62]. For example, SNPs close to the boundary between the coding

and non-coding regions of a gene are one of the major cause behind alternative

splicing [7, 81, 72].

Therefore, being able to analyze SNPs and indels from the data available,

i.e. NGS data, is essential for a better understanding of genetic diversity and

for discovering the causes behind diseases and tumors.

Standard pipelines for variant discovery and genotyping [101, 86] include read

alignment, a computationally expensive procedure that is too time consuming

for typical clinical applications. When variant discovery is not desired, it is

possible to directly genotype a set of known variants completely avoiding the

alignment step. Genotyping variants that are already known is a crucial task in

clinical settings where it is necessary to know the genotype at specific loci that

are already established to be of medical relevance. Luckily, many GWAS have

been established in the last years [25, 26, 28, 45] and many datasets of known

variants are available nowadays.

In this context, we propose an alignment-free approach for genotyping a

set of known variants. We were motivated by the lack of accurate alignment-

free approaches for genotyping indels and multi-allelic variants, i.e. variants

for which more that two alleles have been observed in the studied population.

Indeed, all the alignment-free approaches available in the literature restrict to

the genotyping of single-allelic SNPs [118, 139, 152].

Therefore we devised a novel alignment-free algorithmic approach and we

implemented it in a bioinformatic tool, called MALVA. Our approach combines an

accurate way for characterizing the alleles of a variant with the use of an efficient

data structure, i.e. a Bloom filter. More precisely, MALVA characterizes each allele

of a variant with a set of k-mers, i.e. strings of length k, that are stored in a

Bloom filter. Then it exploits a fast k-mer counting step to associate to each

allele a weight. Finally, these weights are used for genotyping the variant. To do

so, we investigated how the classic probabilistic framework used for genotyping

single-allelic variants can be extended to multi-allelic variants. MALVA is the first

Chapter 1 Introduction 6

alignment-free approach that is able to genotype SNPs, indels, and multi-allelic

variants.

Thanks to its alignment-free strategy, MALVA requires one order of magnitude

less time than alignment-based pipelines to genotype a donor individual while

achieving similar accuracy. Remarkably, on indels, MALVA provides even better

results than the most widely adopted approaches.

Outline This thesis is organized as follows. In Chapter 2 we introduce the

basic concepts necessary to understand the contents of the thesis. We present

the computer science notions and the biological and bioinformatics concepts

used through the thesis. In Chapter 3 we present the first contribution of this

thesis, namely ASGAL, describing its algorithmic approach, its implementation,

and the experimental evaluation we performed to validate it. In Chapter 4 we

describe MALVA, the second contribution of this thesis. Similarly to the previous

chapter, we describe the algorithmic approach of MALVA and the experiments we

performed to evaluate it. Finally, in Chapter 5, we summarize the results and

describe future developments of this work.

Chapter 2

Preliminaries

In this chapter we will introduce the basic concepts necessary to understand

the main content of this thesis. This chapter is organized as follows. We first

introduce the definitions of the computer science concepts that will be used

through the rest of the thesis. Then we introduce several biological notions. We

devote the final part of this chapter to bioinformatics.

We note that we defer the definition of some concepts to the next chapters,

especially when they are closely related to the contribution there presented.

2.1 Strings and graphs

Strings are one of the most important and most used notion in computer science.

Let Σ be an alphabet, i.e. a finite ordered set of symbols, also called charac-

ters. A string of length n over alphabet Σ is a sequence of n symbols of Σ, i.e.

S = s0s1 . . . sn−1 with si ∈ Σ ∀0 ≤ i < n.

Given a string S, |S| denotes the length of the string, S[i] with 0 ≤ i < n

denotes the i-th symbol of S, S[i, j] with 0 ≤ i ≤ j ≤ n−1 denotes the substring

of S starting at position i included and ending at position j included, S[0, i]

denotes the prefix ending at position i, and S[i, n−1] denotes the suffix starting

at position i. If i > j, S[i, j] is the empty string, also denoted as ε.

A rotation (or cyclic shift) of a string S is the string obtained by concate-

nating a suffix of S with the remaining prefix. Formally, the i-th rotation of the

7

Chapter 2 Preliminaries 8

n-long string S is the string S ′ = S[i, n− 1] · S[0, i− 1], where · is the operator

of string concatenation.

For example, given Σ = {I, M, S} and S = MISSISSIPPI, |S| = 11, S[1] = I,

S[2, 5] = SSIS is a substring of S, S[0, 3] = MISS is a prefix, S[4, 10] = ISSIPPI

is a suffix, and S[4, 10] · S[0, 3] = ISSIPPIMISS is the 4-th rotation.

The edit distance is a metric to quantify the dissimilarity between two strings.

It is defined as the minimum number of operations needed to transform one string

into the other one. The allowed (edit) operations are: substitution of a character

in the first string with a character of the second string, insertion of a character

in the first string, and deletion of a character from the first string. Given two

string X and Y , we denote the edit distance between them as dE(X, Y).

Another fundamental notion in computer science is the notion of graph that

can be informally described as a structure that represents a set of elements and

how they relate to each other. A directed graph G is a pair (V,E) where V

is a finite set of vertices and E ⊆ V × V is a finite set of edges, i.e. ordered

pairs of vertices. A graph is said undirected when its edges are unordered pairs

of vertices. A vertex v is a source if it has no incoming edges whereas it is a

sink if it has no outgoing edges. A path of length k from a vertex s to a vertex

t is a sequence 〈v0, v1, . . . , vk〉 of k + 1 vertices such that v0 = s, vk = t, and

(vi−1, vi) ∈ E for 0 < i ≤ k. The length of the path is the number of edges in

the path. A subpath of a path is a contiguous subsequence of its vertices. A

path 〈v0, v1, . . . , vk〉 is said a cycle if v0 = vk and it contains at least one edge.

A graph with no cycles is said acyclic, cyclic otherwise. A tree is an undirected

acyclic graph (V,E) where |E| = |V | − 1.

Finally, we introduce the notion of hypertext. A hypertext is a directed graph

(V,E) where each vertex is labeled by a string, also called label of the vertex.

The label of vertex v ∈ V is denoted by seq(v). A hypertext is said acyclic

(cyclic) when the underlying graph is acyclic (cyclic).

2.2 Bit vectors

A bit vector B of length n is an array of n binary values, that is, ∀i 1 ≤ i ≤
n,B[i] ∈ {0, 1}. Alternatively, a bit vector of length n can be defined as a

Chapter 2 Preliminaries 9

0 0 0 0 0 0 01 1 1 11B 1 0

2 3 5 9 11 124 8 10 131 6 7

rank(6) = 3

select(5) = 9

0

Figure 2.1: Example of rank and select functions over a bit vector B.

mapping from values in the range {0, . . . , n− 1} to values in the set {0, 1}, i.e.

from the positions of the array to the values stored in each position. The basic

function is the access function that returns the element stored at a certain

position. Jacobson [64] noticed that bit vectors are fundamental to support

various data structures and he introduced two different functions, the rank and

the select functions. See Figure 2.1 for an example. We will now define the

two functions following the notation used in [165].

The rank function takes a position and returns the number of 1s up to that

position, excluded. More formally:

rankB(i) =
∑
0≤j<i

B[j] with 0 ≤ i < n

The select function, given an integer i, returns the position of the i-th 1 in

the bit vector. More formally:

selectB(i) = max{j < n|rankB(j) ≤ i} with 0 < i ≤ rankB(n)

The naive implementation of these functions consists in scanning the bit

vector but, in the worst case, this requires O(n) operations. The two functions

can be supported in O(1) using o(n) additional bits. For a review of the different

implementations proposed in the literature, we refer the reader to [52].

2.3 Bloom filters

A Bloom filter is a probabilistic space-efficient data structure that represents

a set of elements and allows approximate membership queries. Bloom filters

Chapter 2 Preliminaries 10

were first introduced as a more space efficient alternative to conventional hash-

ing techniques [14]. They are usually represented as the union of a bit vector

of length m and a set of h hash functions {H1, . . . , Hh}, each one mapping one

element of the universe to an integer in {0, . . . ,m− 1}. Using these data struc-

tures, the addition of an element e to the set is performed by setting to 1 the

bit vector’s cells in positions {H1(e), . . . , Hh(e)}, while testing if an element is in

the set boils down to checking whether the same positions are all set to 1. See

Figure 2.2 for an example.

Due to collisions of the hash functions, an element can be reported as present

in the set even though it is absent, resulting in a false positive. However, the

result of a query can never be a false negative.

The false positive rate of a Bloom filter of a set of n elements, with h hash

functions, and an array of m bits is (1 − (1 − 1/m)hn)h [111] and it can be

approximated as (1− ehn
m)h [160]. Therefore the more elements are added to the

Bloom filter, the higher the false positive rate is and by increasing the size of the

Bloom filter, it is possible to lower such rate. However as reported in [15, 22], this

analysis underestimates the real false positive rate of a Bloom filter, but it still

represents a good approximation, especially when considering large Bloom filters.

Due to their simplicity and efficiency, Bloom filters have been applied in multiple

areas of computer science, from cryptography [36, 79] to bioinformatics [102, 21].

2.4 Pattern matching

Let T and P be two strings, called text and pattern, respectively. The pattern

matching problem consists in finding and/or locating the occurrences of the

pattern P in the text T . “Finding the occurrences” means identifying if the

pattern occurs in the text whereas “locating the occurrences” means reporting

all the positions of T at which P occurs. For example, if T = MISSISSIPPI,

then the pattern P = IS occurs in T at positions 1 and 4.

The pattern matching problem is one of the fundamental problem in com-

puter science [55] and it finds application in many different areas [144], from

word processors to bioinformatics. Many algorithms were proposed to solve the

pattern matching problem. To name a few: the comparison-based Boyer-Moore

Chapter 2 Preliminaries 11

add(s1) add(s2)
H1

H2

H3
H3

H2H1

test(s3) = H1(s3) ∧H2(s3) ∧H3(s3)

B

H2 H3 H1

S = {s1, s2}

0 0 0 0 0 0 01 1 1 11 1 0

Figure 2.2: Example of Bloom filter using a bit vector B of size 14 and three

hash functions {H1, H2, H3}. The elements s1 and s2 of set S are added to the

Bloom filter, whereas an element s3 6∈ S is tested for membership.

algorithm [16], the bit-oriented Shift-And algorithm [8], and the randomized

Karp-Rabin algorithm [71]. In this thesis we will focus our attention on index-

based approaches.

These approaches rely on building an index of the input text and then search-

ing the pattern over it. Differently from the aforementioned approaches, indexes

allow to process the text only once and search for multiple patterns without

processing the text multiple times. This is especially advantageous when the

text is static, i.e. it does not change over time. For example, a reference genome

in bioinformatics is a static text and for this reason index-based algorithms find

many application in this research field.

In the first part of this thesis, we will tackle the problem of matching a

pattern against a hypertext, that is a generalization of the classical pattern

matching problem. Our contribution is an index-based approach that relies on

the FM-Index and the algorithm proposed in [117] for computing Maximal Exact

Matches (MEMs). For this reason, we will now describe two indices, namely the

suffix array [93] and the FM-Index [43], the notion of Maximal Exact Match,

and the approach proposed in [117] for computing the set of MEMs between two

strings via a FM-Index.

Chapter 2 Preliminaries 12

2.4.1 Suffix arrays

Suffix arrays are efficient and compact data structures for storing and querying

strings. They were introduced by Manber and Myers [93] to lower the space

complexity of suffix trees [173], a tree-shaped data structure that stores all the

suffixes of a string. For a detailed explanation of suffix trees, we refer the reader

to [55].

Let T be a n-long string obtained as the concatenation of a n− 1-long string

built over the alphabet Σ and a special character $ that does not belong to

Σ and that is lexicographically smaller than any character in Σ. The suffix

array of T , denoted by SAT , is the ordered list of the starting positions of all

its suffixes, lexicographically ordered. Formally, SAT is the permutation of the

interval [0, n− 1] such that SAT [i] = j if and only if T [j, n− 1] is the i-th smaller

suffix in the lexicographic order. Figure 2.3 shows an example of the suffix array

of string MISSISSIPPI$.

The suffix array requires O(n log n) bits of space and it allows to search for

a m-long pattern P in O(m log n) via binary search. All the occ occurrences of

P can then be reported in an additional O(occ) time. The result of the binary

search is an interval [i, j] in the suffix array, called P -interval, that contains the

starting positions of all the occ = j − i+ 1 occurrences of P in T . For example,

the ISSI-interval in the suffix array shown in Figure 2.3 is [3, 4] and it refers to

all the suffixes of P that have ISSIas prefix.

The time complexity for querying a suffix array can be lowered toO(m+log n)

by enhancing the suffix array with the so-called Longest Common Prefix (LCP)

array [55]. The LCP array of string T , denoted by LCPT , contains the length of

the longest common prefixes between any two suffixes of T that are consecutive

in the suffix array of T . Formally, given the n-long string T and its suffix

array SAT , LCPT is an array such that LCPT [0] = LCPT [n] = −1 and LCPT [i] =

|lcp(T [SAT [i− 1], n], T [SAT [i], n]) for 0 < i < n where lcp(·, ·) denotes the longest

common prefix between two strings. See Figure 2.3 for an example of LCP array.

In [1], Abouelhoda et al. show that any problem that can be solved with a

suffix tree can also be solved with a suffix array. To this aim, they introduced the

notion of lcp-interval, that is an interval in the LCP array that allows to simulate

Chapter 2 Preliminaries 13

i SAT LCPT BWMT BWTT

0 11 -1 $MISSISSIPPI I

1 10 0 I$MISSISSIPP P

2 7 1 IPPI$MISSISS S

3 4 1 ISSIPPI$MISS S

4 1 4 ISSISSIPPI$M M

5 0 0 MISSISSIPPI$ $

6 9 0 PI$MISSISSIP P

7 8 1 PPI$MISSISSI I

8 6 0 SIPPI$MISSIS S

9 3 2 SISSIPPI$MIS S

10 5 1 SSIPPI$MISSI I

11 2 3 SSISSIPPI$MI I

12 -1

Figure 2.3: Example of suffix array, LCP array, BWM, and BWT for string

T = MISSISSIPPI$.

any traversal of a suffix tree. Indeed, intuitively, any lcp-interval corresponds

to an internal node of the suffix tree. Given the LCP array LCPT of an n-long

string T and an integer l, the interval [i, j] with 0 ≤ i < j ≤ n of LCPT is called

an lcp-interval of lcp-value l, denoted by l-[i, j], if and only if: (i) LCPT [i] < l,

(ii) LCPT [k] ≥ l for i < k ≤ j, (iii) LCPT [k] = l for at least one k with i < k ≤ j,

and (iv) LCPT [j + 1] < l.

An lcp-interval l2-[i2, i2] is said to be embedded in an lcp-interval l1-[i1, j1]

if i1 ≤ i2 ≤ j2 ≤ j1 and l2 > l1. In other words, l2-[i2, i2] is embedded in

l1-[i1, j1] if the substring of T identified by the interval [i1, j1] is a prefix of

the one identified by [i2, j2]. If l1-[i1, i1] embeds l2-[i2, i2] and there is no other

lcp-interval embedded in l1-[i1, i1] that also embeds l2-[i2, i2], then l1-[i1, i1] is

called the parent interval of l2-[i2, i2]. We denote this relationship as the parent

relationship. For example, in Figure 2.3, the lcp-interval 1-[8, 11], related to

string S, is the parent of the lcp-interval 3-[10, 11] related to string SSI.

Chapter 2 Preliminaries 14

2.4.2 Burrows-Wheeler Transform and FM-Index

The Burrows-Wheeler Transform (BWT) of a string is a reversible permutation

of its characters. The BWT was first introduced by Burrows and Wheeler in

1994 [17] as a lossless data compression algorithm: it reorders the characters of

the input string and makes the new string “easier to compress”. Indeed such re-

organization of the string tends to gathers the occurrences of the same character

together allowing compression algorithms, such as bzip2 [138], to obtain better

compression ratio [96].

Let T be a $-terminated string of length n. The BWT of string T , denoted

by BWTT , is a string of length |T | defined as follows: BWTT [i] = T [SAT [i] − 1] for

all i such that SAT [i] 6= 1 and BWTT [i] = $ otherwise. Less formally, BWTT [i] is the

character that precedes the i-th lexicographically smaller suffix of T . The BWT

of string T can be obtained by building the so-called Burrows-Wheeler Matrix

(BWM), that is the matrix built by lexicographically sorting all the rotations

(cyclic shifts) of T . The last column of this matrix, read from top to bottom,

corresponds to BWTT . Figure 2.3 shows an example of BWT and BWM.

As stated previously, the BWT of a string is a reversible permutation. Indeed,

given BWTT , it is possible to reconstruct the original string T by means of the LF-

mapping function: the i-th occurrence of a character c in the last column of the

BWM (that is BWTT) corresponds to the i-th occurrence of the same character in

the first column. Moreover, since by construction the i-th character of the first

column follows, in the original string T , the i-th character of the last column, it

is possible to reconstruct the original string T starting from its last character,

i.e. $.

By exploiting the same technique, it is also possible to search for a pattern

in T using its BWT, similarly to suffix arrays. Indeed, suffix arrays and BWM

are strictly related: an interval on the suffix array corresponds to an interval on

the rows of the BWM. However this time, instead of using a binary search over

the suffix array , we can exploit the LF-mapping function. The algorithm that

exploits the LF-mapping property to search for a pattern is known as backward

search and it allows to find all the occurrences in time linear to the length of the

pattern. The algorithm consists in scanning the pattern P from its last character

Chapter 2 Preliminaries 15

modifying, at each iteration, a suffix array interval: the P [i − 1,m]-interval is

obtained extending the P [i,m]-interval with the P [i− 1] character by means of

the LF-mapping function.

The backward search can be efficiently performed by augmenting the BWT

with two additional functions, C : Σ ∪ {$} → [1, n] and Occ : Σ ∪ {$} × [1, n]→
[1, n], obtaining the so-called FM-Index [43]. The first function (C), given a char-

acter σ ∈ Σ, returns the number of occurrences of characters lexicographically

smaller than σ in T . This function is typically implemented as an array of in-

tegers of length |Σ|. The second function (Occ), given a character σ ∈ Σ and a

position i of BWTT , counts the occurrences of σ in the first i elements of BWTT .

In other words, this function performs a rank operation over string BWTT , that

is it counts the occurrences of a certain character in a prefix of the string. It is

typically represented by means of a Wavelet Tree [54]. A Wavelet Tree can be

informally described as a tree of bit vectors that compactly stores a string and

allows to efficiently perform rank queries over it. The interested reader can find

more details about Wavelet Trees in [115].

Algorithm 1 shows how functions C and Occ can be used to perform a back-

ward search step, i.e. how to compute the P [i− 1,m]-interval starting from the

P [i,m]-interval and P [i − 1]. For example, the SI-interval [8, 9] in Figure 2.3

can be computed from the I-interval [1, 4] and character S.

Due to its efficiency and simplicity, the FM-index has been extensively used

in the field of bioinformatics and it is the building block of many bioinformatics

tools, most notably the read aligners Bowtie2 [85] and BWA [88].

Algorithm 1 Computation of the cQ-interval given a character c and a Q-

interval [i, j]

function backwardStep(c, [i, j])

i← C[c] + Occ(c, i− 1) + 1

j ← C[c] + Occ(c, j)

if i ≤ j then

return [i, j]

else

return ⊥

Chapter 2 Preliminaries 16

2.4.3 Maximal Exact Matches

A Maximal Exact Match (MEM) is a common substring between two strings that

cannot be extended in either directions without introducing a mismatch. Given

two strings T and P of length n and m respectively, a Maximal Exact Match is

a triple (t, p, `) with 0 ≤ t < n and 0 ≤ p < m such that: (i) T [t, t + ` − 1] =

P [p, p + ` − 1], (ii) p + ` − 1 = m or t + ` − 1 = n or T [t + `] 6= P [p + `], and

(iii) p = 0 or t = 0 or T [t− 1] 6= P [p− 1]. If only the first (last) two conditions

hold, the triple is called right (left) Maximal Exact Match. For example, given

S1 = MISSISSIPPI and S2 = MIPPISSI, the set of Maximal Exact Matches of

length at least 2 is {(0, 0, 2), (1, 4, 4), (4, 4, 4), (7, 1, 4)}, representing strings MI,

ISSI, ISSI, and IPPI.

Computing MEMs between two strings is a widely studied problem in the

literature [73, 117, 167, 42, 74, 91] and it finds many applications in bioinfor-

matics. For example, MEMs are used to align reads to a genome [87, 166], to

perform genome-to-genome alignment [97], and to correct sequencing errors in

long reads [103].

In [117], Ohlebusch et al. presented a method for computing the Maximal

Exact Matches between two strings by backward searching the second string

against the FM-Index of the first one. Given a n-long string T and a m-long

string P , the set of MEMs (t, p, `) longer than a threshold L can be computed in

O(m+ z + occ · t) where occ is the number of Maximal Exact Matches of length

≥ L, z is the number of right Maximal Exact Matches of length ≥ L, and t is

the access time to the compressed index of T [117].

Since the approach we will describe in the next chapter, namely ASGAL, ex-

ploits the algorithm proposed by Ohlebusch et al., we will now briefly present

it. However before describing it, we need to introduce the notion of matching

statistics. Matching statistics were introduced by Chang and Lawler in [20] as a

set of information to identify, for each position of a pattern, the longest substring

starting at that position that matches a substring of a text. Formally, the match-

ing statistics of P with respect to T is an array ms such that, for 0 ≤ i < m,

ms[i] is the pair (l, [a, b]) where: l is the length of the longest substring of P

starting at position i, i.e. P [i, i+ l− 1], that is a substring of T and [a, b] is the

Chapter 2 Preliminaries 17

P [i, i+ l − 1]-interval on the suffix array of T . The matching statistics between

an n-long text T and an m-long pattern P can be computed in O(m) time by

exploiting the FM-index of T [117].

We are now ready to describe the approach proposed by Ohlebusch et al.

in [117] based on the backward search algorithm (see algorithm 2). The algorithm

starts by scanning the pattern from its last character. For each position p2 of

P , the algorithm computes the substrings of P of length at least L ending at

position p2 and occurring in T . To do so, it computes the matching statistics

ms(p2) = (q, [lb, rb]) and stores the triple (q, [lb, rb], p2) in a list path if and only

if q is greater or equal than L (see lines 4-12).

If the backward search returns an empty interval or the first character of P is

reached, then the algorithm analyzes the list path (lines 13-20) and checks each

substring for maximality. Each element of the list path is a triple (q′, [lb′, rb′], p′2)

that represents a set of right Maximal Exact Matches of length q′ starting at

position p′2 on P and at positions [lb′, rb′] on T . Observe that right maximality

is guaranteed by backward search: [lb′, rb′] refers to P [p′2, p
′
2 + k − 1] that, by

definition of matching statistics, is the longest substring starting at position p′2

that occurs in string T . Each right Maximal Exact Match is tested for left

maximality (line 17) checking if the match can be extended on the left without

introducing an error, i.e. testing if the character at position t ∈ [lb′, rb′] on T

is different from the character at position p′2 on P . If the triple is left-maximal,

then it is a Maximal Exact Match (line 18).

Finally (lines 21-24), when all the elements of list path have been processed,

the algorithm reiterates the process. If the last analyzed interval [i, j] corre-

sponds to [1, n], the algorithm reiterates considering the remaining prefix of P

(line 22) since the interval cannot be extended by a backward search. Otherwise,

the algorithm considers the embedding interval of [i, j], i.e. the interval repre-

senting the longest common prefix of the substring identified by [i, j]. Observe

that if a substring cannot be extended by backward search, one of its prefixes

may be extended. We note that the algorithm ends its computation when it

reaches the beginning of the pattern.

Chapter 2 Preliminaries 18

Algorithm 2 Computing MEMs of length greater or equal than L between two

strings T and P of length n and m, respectively (Ohlebusch et al., 2010 [117])

1: p2 ← m

2: (q, [i, j])← (0, [1, n])

3: while p2 ≥ 1 do

4: path ← []

5: [lb, rb]← backwardStep(P [p2], [i, j])

6: while [lb, rb] 6= ⊥ and p2 ≥ 1 do

7: q ← q + 1

8: if q ≥ L then

9: add(path, (q, [lb, rb], p2))

10: [i, j]← [lb, rb]

11: p2 ← p2 − 1

12: [lb, rb]← backwardStep(P [p2], [i, j])

13: for each (q′, [lb′, rb′], p′2) in path do

14: [lb, rb]← ⊥
15: while q′ ≥ L do

16: for each k ∈ [lb′, rb′] \ [lb, rb] do

17: if p′2 = 1 or BWT [k] 6= P [p′2 − 1] then

18: output (q′, SA[k], p′2)

19: [lb, rb]← [lb′, rb′]

20: q′-[lb′, rb′]← parent([lb′, rb′])

21: if [i, j] = [1, n] then

22: p2 ← p2 − 1

23: else

24: q-[i, j]← parent([i, j])

Chapter 2 Preliminaries 19

2.5 Biological concepts

In this section we will give a high level description of the biological concepts that

are needed to understand the main content of this thesis.

DNA and RNA

DNA (Deoxyribonucleic Acid) is the nucleic acid that carries the genetic informa-

tion for the development, functioning, and reproduction of all living organisms.

From a chemical point of view, a DNA molecule consists of a long double-chain

of nucleotides. Each nucleotide is made up of a phosphate group, a sugar group

(the deoxyribose), and a nitrogenous base, that is one of Adenine (A), Cyto-

sine (C), Guanine (G), and Thymine (T). By convention, each chain, also called

strand, starts with a phosphate group and ends with a sugar group and this

orientation is known as 5’-to-3’ direction. The two strands of a DNA molecule,

known as forward strand and reverse strand, run in opposite direction and they

are held together by bonds between the bases. Following the Watson-Crick base

pairing model [172], adenine pairs up with thymine through two hydrogen bonds

and cytosine pairs up with guanine through three hydrogen bonds.

From a computational point of view, the primary nucleic acid sequence of a

strand of a DNA molecule is a string built over the alphabet {A, C, G, T}. When

a strand is known, the other one can be inferred through the so-called reverse-

and-complement operation: the sequence is reversed and each single base is

complemented (A is converted into T, T into A, C into G, and G into C).

RNA (Ribonucleic Acid) is a molecule similar to DNA that is involved in

many different tasks such as the regulation of gene expression. Differently from

a DNA molecule, an RNA molecule is a single poly-nucleotide chain where each

nucleotide is composed of a phosphate group, a sugar group (the ribose), and

a nitrogenous base, that is one of Adenine, Cytosine, Guanine, and Uracil (U).

Similarly to DNA, from a computational point of view, RNA can be represented

as a string built over the alphabet {A, C, G, U}.

Chapter 2 Preliminaries 20

Genome, chromosomes, genes, and proteins

The DNA found in the nucleus of each cell of an organism is known as genome

and it is organized into chromosomes. A gene is a particular region (or locus) of

a chromosome that contains the genetic information that is passed from parents

to offspring. Generally, a gene contains the information that is needed for the

encoding of a protein, i.e. a molecule with a specific function. For example, a

human genome is longer than 3 billion pairs of nucleotides (or base pairs, bps),

it is organized into 23 pairs of chromosomes, 23 inherited from the mother and

23 from the father, and it contains from 20,000 to 25,000 protein-coding genes.

The exact number of human genes is still unknown [133].

The mechanism by which the information contained in a gene is processed

to produce a protein is divided in three steps: transcription, splicing, and trans-

lation.

In the transcription step, the primary sequence of the gene is copied into

a pre-messenger RNA molecule. More precisely, one of the two strands of the

gene locus, the one containing a particular subsequence of nucleotides, called

promoter, is selected as the coding strand and an enzyme, the RNA polymerase,

starts to transcribe the primary sequence of the locus on such strand into a pre-

mRNA molecule by replacing each thymine nucleotide with an uracil nucleotide.

During the splicing step, the non-coding portions of the pre-mRNA, called

introns, are spliced out from the pre-mRNA molecule. The result of this step is

a messenger RNA (mRNA) molecule, also called transcript or isoform, that con-

tains only the coding portions of a gene, called exons. The boundaries between

exons and introns are known as splice sites. The first two bases of an intron are

known as 5′ (or donor) splice site whereas the last two bases are known as 3′ (or

acceptor) splice site. The most common introns in humans, for example, start

with GT and end with AG [23].

Finally, in the translation step, a substring of the mRNA molecule, called

coding sequence, is translated into a protein, i.e. a chain of amino acids. More

precisely, each triplet of the coding sequence, called codon, is translated into an

amino acid by means of the genetic code, see [137, Table 1.2]. The first codon of

the coding sequence, called start codon, is always AUG and it indicates where the

Chapter 2 Preliminaries 21

Promoter

Transcript

5′ UTR 3′ UTR

Exon Exon Exon

Gene locus

Intron Intron

CDS

Exon Exon Exon

5′ss 3′ss 5′ss 3′ss

Figure 2.4: Structure of a simple gene with three exons and two introns. For

ease of presentation, splice sites are indicated as ss.

translation starts. Translation ends when the last codon of the coding sequence,

called stop codon, is reached. The stop codon is one among UAA, UAG, and UGA

and it is not translated into an amino acid. The prefix and the suffix of the

mRNA molecule that are not translated into a protein are known as 5′ UTR and

3′ UTR, respectively.

The structure of a gene is summarized in Figure 2.4.

Alternative Splicing

Alternative Splicing is a regulatory process that increases the complexity of gene

expression by allowing a single gene to synthesize more than one protein. Due

to this process, the 20,000/25,000 human protein-coding genes can synthesize

more than 90,000 proteins [170]. It is estimated that more than 90% of human

genes undergo alternative splicing [169, 119].

Alternative splicing occurs during the synthesis of a protein and alters how

the introns are spliced out during the splicing step allowing different exons to be

joined together. In such a way, the same gene can produce multiple transcripts

that are translated into different proteins. The most common alternative splicing

patterns, also called alternative splicing events, are: exon skipping, alternative

acceptor site, alternative donor site, intron retention, and mutually exclusive

exons. Each event allows the same gene to produce two different transcripts.

An exon skipping event occurs when one or more consecutive exons are in-

cluded or skipped in the alternative isoform. This is the most common event

in human [30]. An alternative acceptor (donor) site occurs when a different ac-

Chapter 2 Preliminaries 22

Exon skipping

Alternative
acceptor site

Alternative
donor site

Intron retention

Mutually
exclusive exons

Exon/intron gene structure Transcripts

Figure 2.5: Alternative splicing events. Exons are shown as colored boxes

whereas introns are represented as straight lines. Bold lines (solid and dot-

ted) represent the splice sites that are supported by the two transcripts involved

in the event.

ceptor (donor) splice site between an intron and an exon is used changing the

starting (ending) position of an exon. Finally, an intron retention event occurs

when an intron is retained or spliced out producing a different transcript whereas

a mutually exclusive exons event takes place when two different exons are never

included together in the same transcript. A graphical representation of these

alternative splicing events is shown in Figure 2.5.

However alternative splicing is a completely unpredictable phenomenon and

this classification is not adequate to fully capture its real complexity. Occasion-

ally these “simple” alternative splicing events can occur simultaneously inside

the same gene originating more complex splicing events. In this thesis we will

focus our attention on the classic and more common alternative splicing events.

The reader can find more details about complex events in [134, 44, 162].

Chapter 2 Preliminaries 23

Mother

♀ Maternal haplotype

Paternal haplotype

Genotypes

SNP Indel

AA C CTG GA AT GT

SNP

T CAA CTG AT GT
Father

♂

Figure 2.6: Example of Single Nucleotide Polymorphism (SNP), indel, haplo-

type, and genotype. The first two genotypes are heterozygous whereas the third

one is homozygous.

Genomic variants

The differences occurring among the genomes of different individuals of a given

specie are known as genomic variants. Genomic variants can involve either large

or small regions of the genome. Genomic variants involving large portions of a

genome are known as structural variations. Examples of structural variations

are genomic duplications and genomic inversions.

In this thesis we will focus our attention on genomic variants that involve

small regions of a genome, that are Single Nucleotide Polymorphisms (SNPs)

and indels. SNPs are substitutions of a single base whereas indels are insertions

or deletions of one or more consecutive bases.

An allele is one of the possible versions of a variant. For example, each allele

of a SNP is a single nucleotide: at a specific position, the genomes of some

individuals may have the allele T whereas the genomes of other individuals may

have a different nucleotide. The set of alleles that are inherited from a parent

is known as haplotype. Since humans are diploid organisms, they inherit two

haplotypes, one from the mother and one from the father. The pair of alleles

of a variant that occur in the two haplotypes at a specific position is known as

genotype of the variant. The genotype is said homozygous when the two alleles

are identical, heterozygous if the two alleles differ. We note that, although in

the literature the term allele is used to describe the different forms of a gene

inherited from the parents, in this thesis we will use the term allele to describe

the different forms of a variant.

Chapter 2 Preliminaries 24

See Figure 2.6 for an example of genomic variants, haplotype, and genotype.

2.6 Bioinformatics

In this section we will describe the technologies used to sequence DNA and RNA

and then we will give a high level description of the three bioinformatics problems

tackled in this thesis that stem from the analysis of sequencing data. Finally we

will describe the standard file formats used in bioinformatics presenting how the

biological concepts introduced in this chapter can be stored as text files.

2.6.1 Sequencing technologies

DNA sequencing is the “laboratory technique used to determine the exact se-

quence of bases (A, C, G, and T) in a DNA molecule” [116]. Due to technical

limitations, it is not possible to obtain the primary sequence of a whole DNA

molecule but it is necessary to fragment the genome in small pieces and then

sequence each piece independently. For this reason, the output of a sequencing

experiment is not a single string representing the primary sequence of a DNA

molecule, but it is a set of small strings, known as reads, that represent substrings

of the primary sequence.

Similarly, RNA sequencing, also called Whole Transcriptome Shotgun Se-

quencing, is the technique used to determine the primary sequence of the tran-

scripts expressed in a biological sample, i.e. a set of cells. The output of an

RNA sequencing experiment is a set of RNA-Seq reads, that are portions of

transcripts.

We will now give an overview of three different sequencing technologies

proposed in the last 50 years: Sanger Sequencing, Next-Generation Sequenc-

ing, and Third-Generation Sequencing. For a more thorough and complete

discussion of sequencing technologies, we refer the reader to the following re-

views [84, 161, 59, 50, 145].

Chapter 2 Preliminaries 25

Sanger Sequencing

Sanger sequencing is the first sequencing technology proposed. It was developed

by Frederick Sanger in 1977 [135] and it has been the most widely used ap-

proach for approximately 30 years. Sanger Sequencing was the technology used

in the Human Genome Project [164], an international project with the goal of

determining, for the first time, the sequence of a human genome.

Over the years, Sanger Sequencing has been improved and it can now produce

reads of length up to 1000bps with a very low per-base error rate, ∼ 0.001 [141].

However, the process is slow and expensive: it produces a maximum of approxi-

mately 6 Megabases per day and it costs on the order of $500 per Megabase [78].

Due to its inefficiency and expensiveness, in the last decades, Sanger se-

quencing has been partly supplanted by Next-Generation Sequencing (NGS)

technologies.

Next-Generation Sequencing

Next-Generation Sequencing (NGS) [10] is a term used to describe a family of

DNA and RNA sequencing technologies developed to lower the time and the

cost required to perform a sequencing experiment and to increase the amount of

data produced by a single run. Thanks to their efficiency and the high amount of

data produced, NGS technologies are also known as High-Throughput Sequencing

(HTS) technologies.

The first NGS technology was developed by 454 in 2005 [98] and since then

many other NGS technologies have been proposed. The most widely-adopted

NGS technology is the Illumina Sequencing Technology [59]. Illumina supports

a variety of sequencing protocols, such as whole-genome sequencing and RNA

sequencing, and provides many different sequencing machines, each one with

its own capability and level of throughput. For example, the NextSeq machine

can produce 400 million 2x150bp-long reads in less than 30 hours. For a more

detailed description of the different available machines, we refer the reader to

the Illumina website 1.

The biggest disadvantages of Illumina Sequencing technology are the read

1https://www.illumina.com/systems/sequencing-platforms.html

https://www.illumina.com/systems/sequencing-platforms.html

Chapter 2 Preliminaries 26

length and the error rate. Indeed, Illumina Sequencing can produce reads of

length up to 300bps (against the 1000bps of Sanger Sequencing) with an error

rate of ∼ 0.1%, that is approximately 100 times the error rate of Sanger Sequenc-

ing. Due to the short length, reads produced by NGS technologies are known

also as short reads.

However, the advantages of Illumina technologies overcome their disadvan-

tages. Indeed, thanks to their efficiency and cost-effectiveness and to the high

quality of the data they produce, Illumina technologies (and in more general

terms NGS technologies) are nowadays routinely being applied in clinical set-

tings [147, 100] and they are supporting the spread of precision medicine [107,

106, 168].

Third-Generation Sequencing

Although their widespread availability and application, the main weakness of

NGS technologies, i.e. the read length, stands out when it is necessary to analyze

complex genomes, such as the human one. Indeed, many eukaryotic genomes

contain very long repetitive regions and most of these repetitions exceed the

length of the reads produced by NGS technologies. Therefore, data produced by

NGS technologies do not allow to disambiguate such long repetitions.

To overcome this limitation, in the last years, Third-Generation Sequencing

technologies have been introduced. These technologies produce very long reads,

with length of several kilobases, and allows to resolve the long repetitions that

generally occurs in eukaryotic genomes. The applications that may benefit of

very long reads are not restricted to the resolution of long repetitions. Indeed,

long reads may also facilitate the tasks of gene isoform identification and vari-

ant phasing [95]. Currently, the two dominant Third-Generation Sequencing

technologies are Pacific Biosciences and Oxford Nanopore Technology.

As the previous sequencing technologies, also Third-Generation Sequencing

technologies have both advantages and disadvantages. As previously stated,

Third-Generation Sequencing technologies are able to produce very long reads.

Read length mainly depends on the chosen technology and the library prepa-

ration and varies from 1kbps to several thousand kilobases [67]. In December

2017, the first read longer than 1 Megabase pairs was produced using Oxford

Chapter 2 Preliminaries 27

Nanopore sequencing technology [113].

The disadvantages of Third-Generation Sequencing technologies are their cost

and the error rate. Indeed, Third-Generation Sequencing is more expensive and

has a lower throughput than Next-Generation Sequencing and its average error

rate varies from 11% to 14% [125]. Such a high error rate makes the analysis

of this kind of data very challenging. To overcome this limitation, in the last

years, many approaches have been proposed to correct the long reads using the

highly-accurate reads produced by NGS technologies [80, 132, 103].

Although their disadvantages, Third-Generation Sequencing technologies are

currently under active development and they have the potential to facilitate the

next major advancements in medical genetics [95].

2.6.2 Processing of NGS data

We now give a high level description of the three bioinformatics problems tackled

in the following chapters. These problems stem from the analysis of NGS data:

they takes as input a read sample produced by an NGS technologies and they

aim to extract some knowledge from it.

For an in-depth analysis of the approaches proposed in the literature to solve

these problems, we refer the reader to the next chapters.

Read alignment

Read alignment is one of the fundamental and most studied problem in bioinfor-

matics and it is the first step of many bioinformatics pipelines. Read alignment

consists in identifying the most probable location along a reference genome from

which each read of an input sample originated, i.e. was sequenced from.

Although this problem could look simple, there are many challenges that

must be overcome. First of all, the reference genome is much longer than the

reads. Secondly, reads are not perfect due to sequencing errors. Finally, reads

may span genomic variations.

We can identify two types of read alignment: genomic read alignment and

RNA-Seq read spliced alignment.

The problem of aligning genomic reads to a reference genome usually boils

Chapter 2 Preliminaries 28

down to mapping each read to a contiguous region of the genome. Examples of

read aligners are BWA [88] and Bowtie2 [85].

On the other hand, aligning RNA-Seq reads against a reference genome is

a harder problem. RNA-Seq reads are sequenced from gene transcripts and,

for this reason, they may span multiple exons of a gene. Therefore, spliced

aligners must be able to align an RNA-Seq read to non contiguous regions of the

reference genome, i.e. two or more coding regions separated by long non coding

regions. Examples of spliced aligners are STAR [38], TopHat2 [77], BBmap [19],

and Hisat [75].

For a detailed description of spliced alignment and the STAR tool, we refer

the reader to Chapter 3.

Prediction of alternative splicing events

The advent of Whole Transcriptome Shotgun Sequencing technologies aided bi-

ologists and geneticists in better understanding the relationship between alter-

native splicing and diseases [159]. One of the bioinformatics problems that can

help to shed more light on this critical topic is the analysis of alternative splicing

events from RNA-Seq samples.

In this thesis we will use the term differential analysis of alternative splicing

(events) to indicate the task of analyzing multiple RNA-Seq samples describing

different conditions to quantify alternative splicing events and their variability

among the tested conditions. On the other hand, we will use the term alternative

splicing events detection to indicate the task of identifying and quantifying the

alternative splicing events that are supported by a single RNA-Seq sample. Both

these tasks include a step of quantification, that consists in estimating how well

each event is supported by the input RNA-Seq data.

For a more thorough description of the various tools proposed in the literature

for analyzing alternative splicing events, we refer the reader to Chapter 3.

Variant Calling

Variant calling (or variant genotyping) is the task of computing the genotype of

all the variants supported by an input NGS sample. Along with read alignment,

Chapter 2 Preliminaries 29

variant calling is the second main task performed in many genome-wide associ-

ation studies, i.e. studies that analyze the genomes of multiple individuals of

a population to identify genomic variants and their association with phenotypic

traits, such as diseases.

When a dataset of variants produced by this studies is available, it is possible

to limit the computation to genotype those variants only. We will refer to this

task as genotyping (or calling) of known variants. On the other hand, when the

set of variants is not known a priori, the variants must be first discovered and

then genotyped. We will refer to this task as variant discovery.

For an in-depth analysis of the various approaches proposed for variant call-

ing, we refer the reader to Chapter 4.

2.6.3 Standard file formats

All the biological notions introduced in this chapter have a computer science

representation and they can be easily stored as text files. We will now briefly

describe the standard file formats used in bioinformatics and mentioned in the

next chapters.

FASTA/Q format As previously stated, from a computational point of view,

a genome is a string built over the alphabet {A, C, G, T}, where each character

represents a nucleotide. By using the same formalism, it is also possible to

represent the reads produced by any sequencing technology.

Typically, the reference genome of a given specie, i.e. the best assembled

genome available for that specie, is stored as a FASTA file [174]. FASTA is a text-

based format for representing nucleotides sequences. An entry in a FASTA file is

divided in two parts: (i) a header, starting with the “>” character and containing

a unique identifier and additional information and (ii) the string representing the

sequence.

A read sample instead is typically stored as a FASTQ file [24], an extension of

the FASTA format. In a FASTQ file, each read sequence is described by 4 lines:

a header starting with the “@” character; the string representing the sequence; a

separator line, usually a “+”; and a string representing the numeric quality score

associated with each nucleotide of the sequence. The quality scores are Phred

Chapter 2 Preliminaries 30

quality scores and are encoded using ASCII characters. For more information

about FASTQ file format, we refer the reader to [24].

GTF format From a computational point of view, the structure of a gene

can be described as a set of features that occur at a specific location along the

reference genome.

Typically, gene structures are stored using the GTF file format [47]. In a GTF

file, each feature of a gene is represented as a tab-delimited list of 9 fields: the

name of the chromosome where the feature is located; an identifier of the source

of the feature; the feature type (e.g. gene, transcript, exon, intron, UTR. . .);

the starting and the ending positions of the feature on the specified chromosome;

a score representing the confidence of the source; the strand of the feature; the

frame, indicating which base of the feature is the first base of a codon; and an

optional set of additional information. The information stored in a GTF file is

usually called gene annotation.

VCF format From a computational point of view, a genomic variant, such as

a SNP or an indel, can be described as a set of alleles that may occur at a given

position along a reference genome. Additionally, the description of a variant

can be extended with information about its genotype with respect to a certain

individual.

Typically, a set of variants identified in an individual or in a population of in-

dividuals is stored using the variant call format (VCF) [31]. A VCF file consists

of a header section and a data section. The header section contains information

about the set of variants stored in the file and describes semantically and syn-

tactically the fields used in the data section. The data section describes each

variant using one line composed of 8 mandatory fields and several optional fields.

The mandatory fields are: the name of the chromosome on which the variant

occurs; the position of the variant on the given chromosome; the variant identi-

fier; the reference allele of the variant; the set of its alternate alleles observed in

the considered population; a quality score; information about which filters the

variant has passed; and a list of additional attributes. The optional fields are

used to indicate the genotype of the variant (and additional information such as

Chapter 2 Preliminaries 31

the genotype quality) for each considered sample, i.e. individual of the analyzed

population.

SAM format The Sequence Alignment/Map (SAM) format [89] is the de-facto

standard format for storing the alignments of a set of reads against a reference

genome. A SAM file is divided in two parts: a header section containing general

information about the file, such as the format version used and the set of reference

sequences, and an alignment section. Each alignment is described by a single

tab-separated line composed of 11 mandatory fields and several optional fields

containing additional information. The mandatory fields are: the identifier of

the read; a binary flag describing the alignment; the reference sequence to which

the read aligns; the position on the reference sequence at which the read has

been aligned; the mapping quality; an extended CIGAR string describing how

the read aligns; three information about the read mate; the read sequence; and

the alignment quality.

Chapter 3

Alternative Splicing Events

Detection

In this chapter we will discuss the first contribution of this thesis, that is an

approach for detecting alternative splicing events by aligning RNA-Seq reads

to a splicing graph (ASGAL, Alternative Splicing Graph ALigner). The problem

tackled can be formulated as follows:

Input: RNA-Seq sample and gene annotation

Output: alternative splicing events supported by the sample that are novel

with respect to the annotation

Highlights

– ASGAL is the first tool that aligns RNA-Seq reads against a splicing graph

– ASGAL is able to detect alternative splicing events even when only a single

isoform involved in the event is supported by the input sample

– aligning reads to a splicing graph is a valid alternative to aligning reads to

a reference genome

Outline This chapter is organized as follows. In Section 3.1 we introduce

the context and the motivations behind our work. In Section 3.2 we present

32

Chapter 3 Alternative Splicing Events Detection 33

some preliminary definitions and the first contribution of this chapter, that is

the formal definition of spliced graph-alignment. In Section 3.3 we thoroughly

detail the proposed approach, that is the second contribution of the chapter. In

Section 3.4 we describe the experimental evaluation we performed to asses the

performance of our tool, comparing it with state-of-the-art approaches. Finally,

in Section 3.5 we draw conclusions and sketch possible future directions of this

work.

3.1 Context and Motivations

Typical new sequencing technologies experiments produce millions, or even bil-

lions, of reads [61]. Although the amount of transcriptomic sequencing data is

smaller compared to the genomic one, the problem of aligning RNA-Seq reads

to a reference genome is much more complicated than that of mapping genomic

reads to the same reference. Indeed, RNA-Seq reads may reflect the biological

process of alternative splicing and each read may span two or more coding re-

gions (exons) that are separated by very large non-coding regions (introns). The

analysis of RNA-Seq data can help to shed light on the diversity of transcripts

that results from alternative splicing.

Computational approaches for transcriptome analysis from RNA-Seq data

can be classified according to two primary goals: detection of alternative splicing

events and reconstruction of full-length transcripts [51, 143, 157, 56, 123, 156].

While reconstructing full-length isoforms from RNA-Seq data is a computation-

ally intensive task, detecting alternative splicing events from RNA-Seq data is

more straightforward and computationally feasible.

Various tools have been proposed in the literature for solving this latter task.

Most of these approaches focus their attention on the differential analysis of

alternative splicing from RNA-Seq data, i.e. they identify alternative splicing

events that are differentially expressed among different RNA-Seq samples (repli-

cates). Some approaches, such as SplAdder [69] and rMATS [140], base their

prediction on the analysis of the spliced alignments of the input RNA-Seq reads

whereas others, such as SUPPA2 [158], use the transcript abundances estimated

from RNA-Seq data. The quality of the transcript quantification or the read

Chapter 3 Alternative Splicing Events Detection 34

spliced alignment is essential for obtaining good results and it may significantly

affect the efficacy of such tools.

With the goal of detecting alternative splicing events supported by an RNA-

Seq sample that may be used to enrich a gene annotation, we investigate an

alternative approach that directly aligns the RNA-Seq reads against a splicing

graph. Intuitively, a splicing graph [60] is a compact way to represent a gene

annotation: it is a directed acyclic graph where each exon of a gene is represented

as a vertex and each transcript, i.e. a sequence of exons, as a path.

The motivation of our proposal is that, by using the splicing graph, we are

able to focus the alignment step on enriching the gene annotation with alternative

splicing events that produce novel isoforms with respect to the already annotated

ones. Indeed, using a non-flat representation of a gene structure can help in

revealing details on how a read covers the known isoforms and the known splice

sites of the gene.

For this purpose, we implemented ASGAL (Alternative Splicing Graph ALigner),

a tool for detecting alternative splicing events through an accurate splice-aware

alignment of RNA-Seq reads against the splicing graph of a gene of interest.

Currently, there are several tools for the alignment of RNA-Seq reads against

a reference genome [19, 38, 77] or a collection of transcripts [148] but, to the

best of our knowledge, ASGAL is the first tool specifically designed for aligning

RNA-Seq data directly to a splicing graph.

By mapping the input sample against the splicing graph of a gene of inter-

est, ASGAL is able to detect the alternative splicing events that are novel with

respect to the input gene annotation. More precisely, ASGAL extracts the in-

trons supported by the read alignments computed against the splicing graph

and compares them against the input annotation to detect whether novel events

may be predicted from the input reads. From this perspective, differently from

tools for event detection based on differential analysis, ASGAL is able to detect

a novel event even when this event is supported by reads coming from a single

unannotated isoform.

The most similar tool to ASGAL is SpliceGrapher [130]. Indeed, the goal

of SpliceGrapher is to generate and visualize splicing graphs starting from a

gene annotation, the spliced alignments of RNA-Seq data, and (optionally) the

Chapter 3 Alternative Splicing Events Detection 35

alignments of EST data. Exploiting such information, SpliceGrapher is able to

visualize a splicing graph enriched with alternative splicing events supported by

the input samples. However SpliceGrapher computes only alternative splicing

statistics and, for what concern the analysis of alternative splicing events, it is not

easy to retrieve from its output the list of alternative splicing events supported

by the input samples.

To model the problem of aligning an RNA-Seq reads against the splicing

graph of a gene, we introduce the computational problem of matching a pattern

against a hypertext in an approximate way and allowing gaps. This problem

consists in matching an input pattern to a path (or subpath) of the hypertext

allowing errors that model sequencing errors and gaps that model the presence

of alternative splicing events.

The pattern matching to a hypertext problem was originally introduced by

Manber and Wu [94] and then attacked by many researchers [2, 121, 6, 114].

In [155], the first algorithm that employs succinct data structures was proposed

to solve the exact pattern matching in a hypertext problem. However no solution

using succinct data structures was proposed to solve the approximated version

of the problem.

Following this line of research, we introduce a novel problem formulation,

i.e. the approximate pattern matching to a hypertext with gaps that we call

gap graph-alignment, and we propose a novel approach that uses succinct data

structure to solve it. We implemented our approach in the ASGAL tool and we

performed an experimental evaluation on simulated and real data to assess its

efficacy in aligning RNA-Seq reads and in detecting alternative splicing events.

In the first part of our experimental analysis, we compare the alignment step

of ASGAL with STAR [38], one of the best-known and most used spliced aligner.

The results show a good accuracy of ASGAL in producing correct alignments by

directly aligning the RNA-Seq reads against the splicing graph of a gene.

Although ASGAL works under different assumptions than other existing tools

for the differential quantification of alternative splicing events, we decided to

compare ASGAL with SplAdder, rMATS, and SUPPA2. However we must note

that, differently from the considered tools, the current implementation of ASGAL

is not able to detect the insertion of novel exons inside an intron and intron

Chapter 3 Alternative Splicing Events Detection 36

retention events caused by the union of two exons.

For this purpose we performed two distinct experimental analysis on simu-

lated data to assess the efficacy of ASGAL in detecting alternative splicing events.

In the first one, we evaluate the accuracy of the tools in predicting novel al-

ternative splicing events, i.e. events that are not already described by some

transcripts in the annotation. In the second analysis, we assess the accuracy

of the considered tools in detecting alternative splicing events that are already

present in the input annotation and are supported by the RNA-Seq sample.

We also ran an experimental analysis on real data with the goal of evaluating

the ability of ASGAL in identifying RT-PCR validated alternative splicing events.

The results obtained in the simulated scenario show that ASGAL is the most

accurate tool for predicting alternative splicing events that are supported by

an RNA-Seq sample and that are novel with respect to the input annotation.

The results on real data instead show the ability of ASGAL in detecting RT-PCR

validated alternative splicing events even when they are simulated as novel events

with respect to input gene annotation.

3.1.1 State of the Art

We will now review more in detail the tools we used in our experimental evalua-

tion. We first review a spliced aligner and then we describe different approaches

proposed in the literature for quantifying alternative splicing events.

As described in Chapter 2, RNA-Seq reads are sequenced from the transcripts

of a gene and therefore, most of the times, they cannot be aligned on contiguous

portion of a reference genome: there are long regions, i.e. the introns of the

genes, that must be skipped. For this reason, to align RNA-Seq reads to a

reference genome, it is necessary to perform a spliced alignment, that consists in

aligning the read to non-contiguous portion of the reference, i.e. the exons of

the genes. This problem is much more complicated than normal read alignment.

Indeed, in addition to manage the presence of sequencing errors or genomic

variations, a spliced aligner must be able to find splice sites and detect where

a read must be split. To better perform this latter task, spliced alignment is

usually guided by a gene annotation.

Chapter 3 Alternative Splicing Events Detection 37

One of the most used and best known spliced aligner is STAR, Spliced Tran-

scripts Alignment to a Reference [38]. STAR uses uncompressed suffix arrays and

exploits the seed-and-extend paradigm to align RNA-Seq reads to a reference

genome: it computes Maximal Mappable Prefixes between the reference and the

read and then it stitches together near Maximal Mappable Prefixes to build the

alignment. A Maximal Mappable Prefix is similar to a Maximal Exact Match

and represents a substring of the read starting at a given position that matches

exactly one or more substrings of the reference genome. STAR computes Maximal

Mappable Prefixes via searches in the uncompressed suffix array of the reference

genome. Maximal Mappable Prefixes represent exact matches between the ref-

erence genome and the read and they are successively clustered based on their

proximity and stitched using a local alignment scoring scheme. Thanks to this

second step, i.e. the stitching of Maximal Mappable Prefixes, STAR is able to

align the read taking into account the possible presence of errors or splice sites.

Spliced alignment is typically the first step of procedures for analyzing gene

expression and detecting alternative splicing events from RNA-Seq data.

For example, SplAdder [69] identifies and quantifies alternative splicing events

starting from a given gene annotation and the spliced alignments of one or more

RNA-Seq samples. SplAdder uses the gene annotation to builds a splicing graph

and enriches it with novel vertices and novel edges by exploiting the splicing in-

formation contained in the input spliced alignments. Then, it analyzes this

enriched graph and it uses the novel elements previously added to the graph

to detect and quantify the alternative splicing events supported by the input

samples. Optionally, it allows to perform differential analysis between different

samples. Moreover, to simplify the analysis of its output, SplAdder also provides

a set of functions to visualize splicing graphs and read coverages.

rMATS [140] is another popular tool for the analysis of alternative splicing from

the spliced alignment of RNA-Seq reads. rMATS implements a statistical method

that is specifically designed for the detection of differential alternative splicing

events from replicate RNA-Seq data. It also allows to perform a statistical test to

assess whether a difference in the isoform ratio of a gene between two conditions

is significant with respect to a given threshold.

Differently from the previous approaches, SUPPA2 [158] starts its analysis from

Chapter 3 Alternative Splicing Events Detection 38

transcript quantification and not from spliced alignments. Similar to rMATS, it

infers differential alternative splicing events across multiple conditions. SUPPA2

generates from the input annotation the alternative splicing events and then it

uses the pre-computed abundances of each transcript, expressed in transcript

per million units, to quantify these events in terms of proportion spliced in (psi)

for each sample. The differential splicing is given in terms of the differences of

these relative abundances for each condition. However since SUPPA2 quantifies

only the alternative splicing events generated from the input annotation, it is

not able to quantify novel events that may be supported by the samples.

Most recent tools, MAJIQ [162] and LeafCutter [90], are not limited to de-

tecting “classic” alternative splicing events. They analyze RNA-Seq spliced

alignments to quantify the more complex alternative splicing events that can

be intuitively described as the combination of classic alternative splicing events.

MAJIQ analyzes RNA-Seq data and a set of (annotated) transcripts to quan-

tify the relative abundances of a set of Local Splicing Variations, that are a

generalization of classic alternative splicing events: for example, Local Splicing

Variation allows to model the combination of an alternative acceptor site event

and an alternative donor site event in different exons. More precisely, for each

considered gene, MAJIQ builds its splicing graph from the input annotation and

augments it with novel edges and splice sites supported by the input spliced

reads. Then, from this augmented splicing graph, MAJIQ lists and quantifies

the Local Splicing Variations that are well supported by the input alignments.

Finally, an additional package (Voila) can be used to interactively visualize

the output of MAJIQ, i.e. splicing graphs, Local Splicing Variations, and their

quantification.

Similarly, LeafCutter analyzes RNA-Seq data and quantifies differential in-

tron usage across samples, allowing the detection of novel introns which model

complex alternative splicing events. Starting from the spliced alignments of

RNA-Seq samples, LeafCutter retrieves all the reads spanning an intron and

detects the set of introns supported by the samples. Then, it clusters introns

that overlaps each other and builds a graph for each cluster where each vertex

represents an intron and each edge links two introns that share a splice site. Fi-

nally, by analyzing the connected components of this graph that represent two or

Chapter 3 Alternative Splicing Events Detection 39

more introns involved in the same alternative splicing events, LeafCutter is able

to identify both classic alternative splicing events and Local Splicing Variations.

Differently from the previous approaches that base their analysis on RNA-Seq

read alignment or transcript quantification, KisSplice [131] relies on local tran-

script assembly and it can be used even when a reference genome or a reference

transcriptome is not available. Indeed KisSplice builds a de Bruijn graph [32],

i.e. a graph where each vertex is a string of length k called k-mer, from the input

reads and then analyze it to detect alternative splicing events. It relies on the

idea that alternative splicing events are local variations between two transcripts

that may be recognized as bubbles inside the de Bruijn graph, i.e. two distinct

paths that share the starting and ending vertices. In such a way, without re-

constructing the entire transcripts expressed by a sample, KisSplice is able to

detect only the variable regions of the transcripts and it can use them to infer

alternative splicing events.

However not all the tools for the analysis of alternative splicing events use

RNA-Seq data. AStalavista [44] is a popular tool for the exhaustive extraction

and visualization of alternative splicing events from gene annotations. This tool

does not require RNA-Seq data as input but only a gene annotation and it

lists all the alternative splicing events occurring between each pair of annotated

transcripts. Similarly to MAJIQ and LeafCutter, AStalavista does not focus

only on classic alternative splicing events but rather it uses a flexible coding of

alternative splicing events [134] that can be used to model any kind of variation

in the splicing structure of a gene, such as Local Splicing Variations.

3.2 Preliminaries

From a computational point of view, a genome is a string drawn from an alphabet

of size 4 ({A, C, G, T}). A gene is a locus of the genome, that is, a gene is a

substring of the genome. Exons and introns of a gene are uniquely identified by

their starting and ending positions on the genome. A transcript T of gene G is a

sequence 〈[a1, b1], [a2, b2], . . . , [an, bn]〉 of exons, where ai and bi are respectively

the start and the end positions of the i-th exon of the transcript. Observe

that a1 and bn are the starting and ending positions of transcript T , and each

Chapter 3 Alternative Splicing Events Detection 40

{
{
{
{

G

T

S?
G

Z

ACG GA TCTAG GGATGT.....AG GT...AG GT...AG... ...

a1 b1 a2 b2 a3 b3 b4a4

[a1, b1] [a2, b2] [a3, b3] [a4, b4]

φACGφGAφTCTAGφGGATφ

Figure 3.1: Example of splicing graph. A simple gene G with 4 exons is shown

along with its annotation (transcripts) TG, the corresponding splicing graph S?
G,

and the linearization Z. In S?
G, dashed arrows represent the novel edges whereas

full arrows represent the edges contained in SG.

[bi + 1, ai+1 − 1] is an intron represented as a pair of positions on the genome.

In the following, we denote by EG the set of all the exons of the transcripts of

gene G, that is EG = ∪T∈TGE(T), where E(T) is the set of exons of transcript

T and TG is the set of transcripts of G, called the annotation of G. Given two

exons ei = [ai, bi] and ej = [aj, bj] of EG, we say that ei and ej are distinct if

ai 6= aj ∨ bi 6= bj and we say that ei precedes ej if bi < aj. We denote this

by ei ≺ ej. Moreover, we say that ei and ej are consecutive if there exists a

transcript T ∈ T and an index k such that ek = ei and ek+1 = ej, and ei, ej are

in E(T).

The splicing graph of a gene G is the directed acyclic graph SG = (EG, E)

where the vertex set is the set of exons of G and the edge set E is the set of

pairs (vi, vj) such that vi and vj are consecutive in at least one transcript. We

note that a splicing graph is a hypertext. Indeed, each vertex v is associated

to a string, i.e. the genomic sequence of the exon associated to it. We denote

this string by seq(v). Finally, we say that S?
G is the graph obtained by adding

to SG all the edges (vi, vj) /∈ E such that vi ≺ vj. We call these edges novel

edges. Note that the novel edges represent putative novel junctions between two

existing exons that are not consecutive in any transcript of G. Figure 3.1 shows

an example of gene, exon, annotation, and splicing graph.

Chapter 3 Alternative Splicing Events Detection 41

In the following, we will use the notion of Maximal Exact Match (MEM) to

perform the spliced graph-alignment of an RNA-Seq read to SG. Given two

strings R and Z, a MEM is a triple m = (iZ , iR, `) representing the common

substring of length ` between the two strings that starts at position iZ on Z,

at position iR on R, and that cannot be extended in either direction without

introducing a mismatch. For a more detailed definition of Maximal Exact Match,

we refer the reader to Chapter 2. Computing the MEMs between a string R and a

splicing graph SG can be done by concatenating the labels of all the vertices and

placing the special symbol φ before each label and after the last one, obtaining

a string Z = φseq(v1)φseq(v2)φ . . . φseq(v|EG|)φ that we call linearization of the

splicing graph. See Figure 3.1 for an example.

It is immediate to see that, given a vertex v of SG, the label seq(v) is a

particular substring of the linearization Z. However, it is not so immediate to

understand how to retrieve its sequence or how to extract its starting and ending

position on Z. Indeed, to this aim, we pair the string Z with a bit vector of

the same length, denoted as BZ , such that BZ [i] = 1 if and only if Z[i] = φ,

otherwise BZ [i] = 0. Thanks to BZ and the select operation, given an index

i, we can compute the starting position s of the i-th label of the linearization,

i.e. s = selectBZ
(i) + 1, its ending position e = selectBZ

(i + 1) − 1, and its

sequence, i.e. Z[s, e].

By employing the algorithm by Ohlebusch et al. [117], all the MEMs longer

than a constant L between R and Z, thus between R and SG, can be computed

in linear time with respect to the length of the reads and the number of MEMs.

See Chapter 2 for more details. Thanks to the special character φ which occurs

in Z and not in R, each MEM occurs inside a single vertex label and cannot span

two different labels. Indeed, we recall that a MEM is a common substring between

the two input strings.

In the following, given a read R and the linearization Z of SG, we say that

the MEM m = (iZ , iR, `) belongs to the i-th vertex of the linearization with i =

rankBZ
(iZ), i.e. m represents a substring of the label of the i-th vertex. We

say that a MEM m = (iZ , iR, `) precedes another MEM m′ = (i′Z , i
′
R, `

′) in R if

iR < i′R and iR + ` < i′R + `′, and we denote this by m ≺R m
′. Similarly, we can

define an analogous property with respect to Z. If m and m′ belong to the same

Chapter 3 Alternative Splicing Events Detection 42

vertex, i.e. rankBZ
(iZ) = rankBZ

(i′Z), then m precedes m′ in Z if iZ < i′Z and

iZ + ` < i′Z + `′. Otherwise, if the two MEMs belong to two different vertices v

and v′, we say that m precedes m′ if and only if the exon associated to vertex v

precedes the exon associated to vertex v′. We denote this relation of precedence

on Z by m ≺Z m
′.

When m precedes m′ in R, we say that lgapR = i′R − (iR + `) is the length

of the gap between the two MEMs on R. Similarly, when m ≺Z m′ and the two

MEMs are on the same vertex, we say that lgapZ = i′Z − (iZ + `) is the length of

the gap between the two MEMs on Z. If lgapR or lgapZ (or both) are positive, we

refer to the gap strings as sgapR and sgapZ , whereas when they are negative,

we say that m and m′ overlap either in R or Z (or both).

Finally, given MEM m = (iZ , iR, `) belonging to the i-th vertex v of the lin-

earization (we recall that i = rankBZ
(iZ)), we denote as PREFZ(m) and SUFFZ(m)

the prefix and the suffix of seq(v) upstream and downstream from the start and

the end of m, respectively. More formally, PREFZ(m) = Z[selectBZ
(i)+1, iZ−1]

and SUFFZ(m) = Z[iZ+`, selectBZ
(i+1)−1]. Similarly, we denote as PREFR(m)

and SUFFR(m) the prefix and the suffix of R upstream and downstream from

the start and the end of m, i.e. PREFR(m) = R[0, iR − 1] and PREFR(m) =

R[iR + `, |R| − 1].

Figure 3.2 summarizes the definitions of precedence between MEMs, gap, over-

lap, PREF, and SUFF.

Spliced graph-alignment

We are now able to define the central concepts that will be used in our method.

In particular, we first define a general notion of gap graph-alignment and then

we introduce specific constraints on the use of gaps to formalize a spliced graph-

alignment that is fundamental for the detection of alternative splicing events.

The key observation is that an RNA-Seq read may align to the sequence that

derives from the concatenation of the exon sequences along a path of S?
G and

this type of alignment is able to give an evidence of the (possibly unannotated)

splice sites supported by the read with respect to the original splicing graph SG.

A gap graph-alignment ofR to graph SG is a pair (A, π) where π = 〈v1, . . . , vk〉

Chapter 3 Alternative Splicing Events Detection 43

Z

R

· · ·φACGTGGTGTACCGTCGTCAAφ · · ·

AAGGTGTCGTAAC

iZ iZ + l − 1 i′Z i′Z + l′ − 1

iR iR + l − 1

i′R i′R + l′ − 1

lgapZ

lgapR

PREFZ(m) SUFFZ(m
′)

sgapZ

m

m′

PREFR(m) SUFFR(m
′)

Figure 3.2: Precedence relation between MEMs. Two MEMs, m = (iZ , iR, `) and

m′ = (i′Z , i
′
R, `

′), are shown in the figure. For ease of presentation we represent

in blue the former and in red the latter. Since iZ < i′Z and iZ + ` < i′Z + `′, m

precedes m′ on Z; analogously m precedes m′ on R since iR < i′R and iR + ` <

i′R + `′. The length lgapZ of the gap between the two MEMs on Z is positive and

we refer to the string between iZ + ` and i′Z − 1 as sgapZ (highlighted in yellow

on Z). Conversely, the length of the gap between the two MEMs on R is negative

and we say that they overlap on R. Finally, we refer to the string between the

start of the vertex label and iZ − 1 as PREFZ(m) (highlighted in light green on

Z), and to the string between i′Z + ` and the end of the vertex label as SUFFZ(m
′)

(highlighted in orange on Z). Moreover, we refer to the string between the start

of the read and iR − 1 as PREFR(m) (highlighted in light green on R), and to

the string between i′Z + ` and the end of the read as SUFFR(m
′) (highlighted in

orange on R). For ease of presentation, we did not report SUFFZ(m), PREFZ(m′),

SUFFR(m), and PREFR(m′).

Chapter 3 Alternative Splicing Events Detection 44

is a path of the graph S?
G and

A = 〈(p1, r1), (p′1, r′1), . . . , (p′n−1, r′n−1), (pn, rn)〉

is a sequence of pairs of strings, with n ≥ k, such that seq(v1) = x · p1 and

seq(vk) = pn·y, for x, y possibly empty strings and P = p1·p′1·p2·p′2·p3·. . .·p′n−1·pn
is the string labeling the path π and R = r1 · r′1 · r2 · . . . · r′n−1 · rn. We recall that

· operator is the string concatenation operator.

The pair (pi, ri), called a factor of the alignment, consists of a non-empty

substring ri of R and a non-empty substring pi of the label of a vertex in π.

On the other hand, the pair (p′i, r
′
i) is called a gap-factor of the alignment if at

least one of p′i and r′i is an empty substring ε. Moreover, either p′i is empty or

|p′i| > α, and either r′i is empty or |r′i| > α, for a fixed value α which represents

the maximum alignment indel size allowed. When an insertion (or a deletion) is

smaller than α, we consider it an alignment indel and we incorporate it into a

factor; otherwise, we consider it as a clue of the possible presence of an alternative

splicing event and we represent it as a gap-factor. Intuitively, in a gap graph-

alignment, factors correspond to portions of exons covered (possibly with errors)

by portions of the read, whereas gap-factors correspond to introns, which can be

already annotated or novel, and which can be used to infer the possible presence

of alternative splicing events.

We associate to each factor (pi, ri) the cost δ(pi, ri), and to each gap-factor

(p′i, r
′
i) the cost δ(p′i, r

′
i), by using a function δ(·, ·) with positive values. The cost

of the alignment (A, π) is computed as:

cost(A, π) =
n∑

i=1

δ(pi, ri) +
n−1∑
i=1

δ(p′i, r
′
i).

Moreover, we define the error of a gap graph-alignment as the sum of the edit

distance of each factor but not of gap-factors. Indeed, factors are true portions

of the alignment and must be evaluated when computing the overall error. Gap-

factors instead represent gaps in the alignment and are used to infer alternative

splicing events. Therefore, they should not be considered in the computation of

the alignment error. Formally, the error of the alignment (A, π) is:

Err(A, π) =
n∑

i=1

dE(pi, ri),

Chapter 3 Alternative Splicing Events Detection 45

where dE(·, ·) denotes the edit distance between two strings.

To define a splice-aware alignment, that we call spliced graph-alignment, we

need to classify each gap-factor and to assign it a cost. Our primary goal is to

compute a gap graph-alignment of the read to the splicing graph that possibly

reconciles to the gene annotation; if this is not possible, then we want to minimize

the number of novel alternative splicing events, i.e. the number of gap-factors.

For this reason we distinguish three types of gap-factors: annotated, novel, and

uninformative. Intuitively, an annotated gap-factor models an annotated intron,

a novel gap-factor represents a novel intron, whereas an uninformative gap-factor

does not represent any intron.

Formally, we classify a gap-factor (p′i, r
′
i) as annotated if and only if p′i = r′i =

ε and the two strings pi, pi+1 are on two different vertices that are linked by an

edge in SG. We classify a gap-factor (p′i, r
′
i) as novel in the following cases:

1. r′i = ε and p′i = ε occurs between the strings pi and pi+1 which belong to

two distinct vertices linked by an edge in S?
G and not in SG. This gap-factor

represents an exon skipping event (see Figure 3.3, case a).

2. r′i = ε and p′i 6= ε occurs between the strings pi and pi+1 which belong

to the same vertex of S?
G. This gap-factor represents an intron retention

event (see Figure 3.3, case b).

3. r′i = ε and p′i 6= ε occurs between the strings pi and pi+1 which belong to

two distinct vertices linked by an edge in S?
G. This gap-factor represents

an alternative splice site event shortening an exon (see Figure 3.3, case c).

4. r′i 6= ε and p′i = ε occurs between the strings pi and pi+1 which belong

to two distinct vertices linked by an edge in S?
G. This gap-factor repre-

sents an alternative splice site extending an exon or a new exon event (see

Figure 3.3, case d-e).

Note that case 1 allows to detect a novel intron whose splice sites are both

annotated (see Figure 3.3, case a). Case 2 supports the presence of an intron

retention (see Figure 3.3, case b) and our approach is able to locate the two

novel splice sites inside the annotated exon. Case 3 gives an evidence of a novel

Chapter 3 Alternative Splicing Events Detection 46

alternative splice event shortening an annotated exon (see Figure 3.3, case c)

and our approach finds the novel splice site supported by this case. Finally,

in case 4, we are able to detect a novel alternative splice site (extending an

annotated exon) or a novel exon (see Figure 3.3, case d), but only in the first

case (alternative splice site) our approach is able to find the novel splice site

induced by the gap-factor.

For ease of presentation, Figure 3.3 shows only “classic” alternative splicing

event and not their combination as those modeled with the notion of Local

Splicing Variations [162]. We note here that our formalization takes into account

the combination of alternative splicing events as those given by an exon skipping

combined with an alternative splice site (see definition of gap-factor in cases 3

and 4). However, the actual version of the tool is designed only to detect the

alternative splicing events shown in Figure 3.3.

Finally, we classify a gap-factor (p′i, r
′
i) as uninformative in the two remaining

cases, which are (i) r′i = ε and p′i = ε occurs between strings pi and pi+1 which

belong to the same vertex, and (ii) r′i 6= ε and p′i = ε occurs between strings

pi and pi+1 which belong to the same vertex. We note that both these cases

can never occur. Indeed, in the former case, factors (pi, ri) and (pi+1, ri+1) are

joined into a unique factor. In the latter, the gap-factor represents an unrealistic

situation that does not represent any alternative splicing event: there is a gap

in the read and not in the exon.

Let GF be the set of novel gap-factors of a gap graph-alignment A. Then

a spliced graph-alignment (A, π) of R to SG is a gap graph-alignment in which

uninformative gap-factors are not allowed, whose cost is defined as the number

of novel gap-factors (therefore δ function assigns a cost 1 to each novel gap-

factor and a cost 0 to all other factors and annotated gap-factors), and whose

error is at most β, for a given constant β. Thus, in a spliced graph-alignment,

cost(A, π) = |GF | and Err(A, π) ≤ β. We focus on a bi-criteria version of

the computational problem of computing the optimal spliced graph-alignment

(A, π) of R to a graph SG, where first we minimize the cost, then we minimize

the error. The intuition is that we want a spliced graph-alignment of a read

that introduces the fewest novel alternative splicing events. Moreover, among

all such alignments we look for the alignment that introduces the lowest number

Chapter 3 Alternative Splicing Events Detection 47

a) Exon Skipping b) Intron Retention

R

S?
G

ri ri+1

pi pi+1p′iS?
G

R ri ri+1

pi pi+1

d) Alternative Splice Site (external) e) New Exon

R

S?
G

pi pi+1

ri ri+1r′i

S?
G

R

S?
G

Rri ri+1r′i ri ri+1r′i

pi pi+1pi pi+1

c) Alternative Splice Site (internal)

S?
G S?

G
pi pi+1p′i

R ri ri+1R ri ri+1

pi pi+1p′i

Figure 3.3: The relationship among novel gap-factors, introns, and alternative

splicing events is shown. Each subfigure depicts an example of novel gap-factor

(p′i, r
′
i) (gray boxes) in relation to a simple graph S?

G, where dashed arrows repre-

sent novel edges (i.e. edges not present in the splicing graph SG) and a read R.

The two consecutive factors (pi, ri) and (pi+1, ri+1) of a spliced graph-alignment

are represented by blue boxes, and the red lines represent the novel introns

supported by the gap-factors. In terms of novel alternative splicing events, gap-

factor (ε, ε) supports an exon skipping event (case (a)), gap-factor (p′i, ε) supports

an intron retention event (case (b)) or an alternative splice site event shortening

an exon (case (c)). Finally, gap-factor (ε, r′i) supports an alternative splice site

event extending an exon (case (d)) or a new exon (case (e)).

Chapter 3 Alternative Splicing Events Detection 48

S?
G

R

P AAGCGCAGTT ATTTAGTTAGGAAT ATTCCGAT

p1 p′
1

p2 p3 p4p′
2

p′
3

CGCATCTAGAATATT-CG

r1 r2 r3 r4r′
1

r′
2

r′
3

AAGCGCAGTT ATTTAGTTAGGAAT AGAAGGTAA ATTCCGAT

Exon A Exon B Exon C Exon D

Figure 3.4: Example of a spliced graph-alignment of a read R to a

splicing graph S?
G (the dashed arrows represent novel edges). The read

R is factorized in four strings r1, r2, r3, and r4 matching to strings

p1, p2, p3, and p4 of P , which is the concatenation of exon labels

of path π = 〈A,B,D〉. This yields to the spliced graph-alignment

(〈(p1, r1), (p′1, r′1), (p2, r2), (p′2, r′2), (p3, r3), (p′3, r′3), (p4, r4)〉, π). We observe that

p′3, r
′
1, r

′
2, and r′3 are equal to ε. Moreover we note that (p′1, r

′
1), (p′2, r

′
2) are two

novel gap-factors, r2 matches p2 with an error of substitution, and r4 matches

p4 with an error of insertion: both the error and the cost of this spliced-graph

alignment are equal to 2. The alignment of R to the splicing graph of G supports

the evidence of two novel alternative splicing events: an alternative donor site

of exon A and an intron retention on exon B.

of errors, i.e. the alignment with the smallest edit distance (which is likely due to

sequencing errors and polymorphisms) in the non-empty regions that are aligned

(i.e. the factors). Figure 3.4 shows an example of spliced graph-alignment of

error value 2, and cost 2.

In this chapter we propose an algorithm that, given a read R, a splicing

graph SG, and three constants, which are L (the minimum length of a MEM), α

(the maximum alignment indel size), and β (the maximum number of allowed

errors), computes an optimal spliced graph-alignment – that is, among all spliced

graph-alignments with minimum cost, the alignment with minimum error. The

next section details the approach we propose to detect alternative splicing events

by computing the optimal spliced graph-alignments of a RNA-Seq sample.

Chapter 3 Alternative Splicing Events Detection 49

3.3 Method

In this section we describe ASGAL (Alternative Splicing Graph ALigner), that is

the approach we propose to identify the alternative splicing events supported by

an RNA-Seq sample by computing the optimal spliced graph-alignments of the

reads.

More precisely, ASGAL takes as input the annotation of a gene together with

the related reference sequence, and an RNA-Seq sample. Then, by exploiting

the notion of spliced graph-alignments, it computes and outputs the spliced

alignments of each input read and the alternative splicing events supported by

the sample which are novel with respect to the input annotation. We point

out that ASGAL uses the input reference sequence only for building the splicing

graph as well as for refining the alignments computed against it, with the specific

goal of improving the accuracy of the alternative splicing event detection. Each

identified event is described by its type (i.e. exon skipping, intron retention,

alternative acceptor splice site, and alternative donor splice site), its genomic

location, and a measure of its quantification, i.e. the number of alignments that

support the identified event.

For the sake of clarity, we will describe our method considering as input the

splicing graph of a single gene: it can be easily generalized to manage more than

a gene at a time.

ASGAL consists of the following steps: (1) construction of the splicing graph

of the gene, (2) computation of the spliced graph-alignments of the RNA-Seq

reads, (3) remapping of the alignments from the splicing graph to the genome,

and (4) detection of the novel alternative splicing events. Figure 3.5 depicts the

ASGAL pipeline.

Splicing graph construction In the first step, ASGAL builds the splicing

graph SG of the input gene using the reference genome and the gene annotation,

and adds the novel edges to obtain the graph S?
G. To do so, we iterate over the

gene annotation and we create a vertex for each distinct exon, we associate to

each vertex its genomic sequence, extracted from the input reference genome,

and we link with an edge each pair of exons that are consecutive in at least one

Chapter 3 Alternative Splicing Events Detection 50

Gene Annotation
(GTF)

RNA-Seq Sample
(FASTA/Q)

Genome
(FASTA)

Alternative Splicing Events
(CSV)

Spliced Alignments
(SAM)

Spliced Alignment
Computation

Splicing Graph
Construction

Alignment to the
Splicing Graph

Alternative Splicing Events
Identification

Figure 3.5: ASGAL pipeline. The steps of the pipeline implemented by ASGAL are

shown together with their input and output: the splicing graph is built from the

reference genome (FASTA file) and the gene annotation (GTF file), the RNA-

Seq sample (FASTA or FASTQ file) is aligned to the splicing graph, and finally

the alignments to the splicing graph are used to compute the spliced alignments

to the reference genome (SAM file) and to detect the alternative splicing events

supported by the sample (CSV file).

Chapter 3 Alternative Splicing Events Detection 51

transcript. Then, we add an edge between each pair of exons (vertices) (ei, ej)

such that ei precedes ej.

Alignment to the splicing graph The second step of ASGAL computes the

spliced graph-alignments of each read R in the input RNA-Seq sample by com-

bining MEMs into factors and gap-factors. We build the FM-Index of the string Z,

the linearization of the splicing graph SG, and we use the approach proposed by

Ohlebusch et al. [117] to compute, for each input read R, the set of MEMs between

Z and R with minimum length L, a user-defined parameter. We recall that the

string Z is obtained by concatenating the labels of the vertices of the splicing

graph and interposing between them the φ character. This separator prevents

MEMs from covering multiple exons by spanning the junction between two vertex

labels. We point out that the splicing graph linearization is performed only once

before aligning the input reads to the splicing graph.

Once the set M of MEMs between R and Z is computed, we build a graph

GM = (M,EM) with weighted edges by employing the two precedence relations

between MEMs, ≺R and ≺Z , respectively, defined in Section 3.2. Then we use

such graph to extract the spliced graph-alignment.

Intuitively, each vertex of this graph represents a perfect match between a

portion of the input read and a portion of an annotated exon whereas each edge

models an alignment error, a gap-factor of the spliced graph-alignment, or both.

More precisely, there exists an edge from m to m′, with m,m′ ∈M , if and only

if m ≺R m
′ (m precedes m′ on the read) and one of the following six conditions,

also depicted in Figure 3.6), holds:

1. m and m′ belong to the same vertex, m ≺Z m′, and either (i) lgapR > 0

and lgapZ > 0, or (ii) lgapR = 0 and 0 < lgapZ ≤ α. The weight of the

edge (m,m′) is set to the edit distance between sgapR and sgapZ .

2. m and m′ belong to the same vertex, m ≺Z m
′, lgapR ≤ 0, and lgapZ ≤ 0.

The weight of the edge (m,m′) is set to |lgapR − lgapZ |.

3. m and m′ belong to the same vertex, m ≺Z m
′, lgapR ≤ 0 and lgapZ > α.

The weight of the edge (m,m′) is set to 0.

Chapter 3 Alternative Splicing Events Detection 52

4. m and m′ belong to two different vertices v1 and v2 with v1 ≺ v2, and

lgapR ≤ 0. The weight of the edge (m,m′) is set to 0.

5. m and m′ belong to two different vertices v1 and v2 with v1 ≺ v2, lgapR > 0,

and SUFFZ(m) = PREFZ(m′) = ε. The weight of the edge (m,m′) is set to

0 if lgapR > α, and to lgapR otherwise.

6. m and m′ belong to two different vertices v1 and v2 with v1 ≺ v2, lgapR > 0,

and at least one between SUFFZ(m) and PREFZ(m′) is not ε. The weight

of the edge (m,m′) is set to the edit distance between sgapR and the

concatenation of SUFFZ(m) and PREFZ(m′).

Note that the aforementioned conditions do not cover all of the possible situa-

tions that can occur between two MEMs, but they represent those that are relevant

for computing the spliced graph-alignments of the considered read.

Intuitively, m andm′ contribute to the same factor (pi, ri) in cases 1 and 2 and

the non-zero weight of the edge (m,m′) concurs to the spliced graph-alignment

error. In cases 3-6, the edge (m,m′) models the presence of a novel gap-factor.

More precisely, m contributes to the end of a factor (pi, ri) and m′ contributes to

the start of the consecutive factor (pi+1, ri+1). The novel gap-factor in between

these two factors models an intron retention on an annotated exon (case 3), an

alternative splice site shortening an annotated exon or, if the edge linking the

two vertices is a novel edge, an exon skipping event (case 4), and an alternative

splice site extending an annotated exon or a novel exon (case 5). Finally in case

6, the gap-factor can identify either a novel exon skipping event or an already

annotated intron, depending on the type of the edge linking the two vertices.

In both these cases, the non-zero weight of the edge contributes to the spliced

graph-alignment error.

Once we have processed all the MEMs and we have built the graph GM , we add

to the graph a global source vertex vb and a global sink vertex ve and we link these

vertices to the rest of the graph as follows. For each source MEM m = (iZ , iR, `) of

the graph, we add an edge (vb,m) and we weight it as dE(PREFR(m), PREFZ [iZ −
1− |PREFR(m)|, iZ − 1])), i.e. the edit distance between the read prefix and the

exon prefix upstream MEM m. If the prefix of the read is longer than the prefix

of the vertex label to which m belongs, we just iterate over all the parents of

Chapter 3 Alternative Splicing Events Detection 53

pi

m m'SG

sgapZ

m m'R
sgapR

ri
(1) (2)

(3)

m m'R
ri ri+1

pi

m m'SG

sgapZ

m m'R
ri

sgapR

pi

m m'SG
pi+1

sgapZ

m m'SG
pi pi+1p'i

PREFZ(m')

(4)

m m'R
ri ri+1

m m'SG
pi pi+1

(5) (6)

m m'SG
pi pi+1

SUFFZ(m) PREFZ(m')

m m'R
ri ri+1

sgapR

m m'R
ri ri+1r'i

sgapR

p'i

Figure 3.6: The six conditions used to connect two different MEMs and to build

the factors and gap-factors of a spliced graph-alignment are shown. In all the

conditions, the first MEM must precede the second one on the read. In condition

(1) and (2), the two MEMs belong to the same vertex label and leave a gap

(condition (1)) or overlap (condition (2)) on the read or on the vertex label. In

these conditions, the two MEMs are joined in the same factor of the alignment.

In condition (3), the two MEMs belong to the same vertex label but they leave a

long gap only on the vertex label and not on the read. In this case the two MEMs

are part of two different factors linked by a gap-factor. In the other conditions,

the two MEMs belong to two different vertices of the splicing graph, linked by a

(possible novel) edge. For this reason, in any of these cases, the two MEMs are

part of two different factors of the alignment. In condition (4), the two MEMs

leave a gap only on the path, in condition (5) they leave a gap only on the read,

and in condition (6), they leave a gap on both the path and the read.

Chapter 3 Alternative Splicing Events Detection 54

this vertex and we select the parent whose suffix better align to the prefix of the

read, i.e. we compute the edit distance between the suffix of the parent and the

prefix of the read and we increment the weight of the edge. Similarly, we link

each sink MEM of the graph to the global sink vertex, possibly considering all the

sons of the vertex the MEM belongs to. In this way, by using a local alignment

step, we are able to align also the prefix or the suffix of a read that may have

been left unmapped due to sequencing errors near its ends.

Finally the spliced graph-alignment of read R is computed by a visit of the

graph GM . Indeed, each path πM of this graph starting from the global source

vertex and ending at the global sink vertex represents a spliced graph-alignment

and the weight of the path is the number of differences between the read R and

a path of the splicing graph covered by πM . For this reason, we use Dijkstra’s

algorithm to select the lightest path in GM , with weight less than β (the given

error threshold) which also contains the minimum number of novel gap-factors,

i.e. we select an optimal spliced graph-alignment.

Spliced alignment computation The third step of ASGAL computes the

spliced alignments of each input read with respect to the reference genome start-

ing from the spliced graph-alignments computed in the previous step. Exploiting

the gene annotation, we convert the coordinates of factors and gap-factors in the

spliced graph-alignment to positions on the reference genome. Indeed, observe

that factors map to coding regions of the genome whereas gap-factors identify

the skipped regions of the reference, i.e. the introns induced by the alignment,

modeling the possible presence of alternative splicing events (see Figure 3.3 for

details).

As showed previously, a factor can be informally described as a set of MEMs

that are consecutive both on the read and on one vertex of the splicing graph

Most commonly, a factor is simply a MEM. To compute the starting and ending

positions of a factor on the reference genome, we have to map its first and its

last MEM from the linearization Z to the reference genome.

Let m = (iZ , iR, `) be a MEM. The starting position of m on the linearization is

iZ . To map this position to the reference genome, we identify the vertex label to

which m belongs, we retrieve from the input annotation the starting position on

Chapter 3 Alternative Splicing Events Detection 55

the reference of the exon associated to such vertex, and we add to this position

the length of the prefix of the vertex label upstream m, i.e. PREFZ(m). Similarly,

we can map the ending position of m. In this way we are able to map a factor

from the linearization to the reference genome.

However this holds in any possible situation except when factors pi and pi+1

are on two different vertices and only p′i is ε (case d-e of Figure 3.3). In this

case the portion r′i must be aligned to the intron between the two exons whose

labels contains pi and pi+1 as a suffix and prefix, respectively. If r′i aligns to a

prefix or a suffix of this intron, then the left or right coordinate of the examined

intron is modified according to the length of r′i (Figure 3.3(d)). In the other case

(Figure 3.3(e)), the portion r′i is not aligned to the intron and it is represented as

an insertion in the alignment. Such an insertion is a hint of the possible presence

of a novel exon.

However, the third step of our approach is not limited to a simply conversion

of coordinates from the linearization to the reference genome but it also performs

a further refinement of the computed splice sites. Indeed, whenever it identifies

a novel splice site, it searches for the splice sites (in a maximum range of 3 bases

with respect to the detected ones) determining the best intron pattern (firstly

GT-AG, secondly GC-AG if GT-AG has not been found).

Alternative splicing events identification In the fourth step, ASGAL uses

the set I of introns supported by the spliced alignments computed in the previous

step, i.e. the set of introns associated to each gap-factor, to detect the novel

alternative splicing events supported by the input RNA-Seq sample with respect

to the input annotation.

Let In ⊆ I be the set of introns which are not present in the annotation,

that is the set of novel introns. For each novel intron [ps, pe] ∈ In which is

supported by at least ω alignments with ω a user-defined parameter representing

a confidence threshold, ASGAL identifies one of the following events:

– Exon skipping, if there exists an annotated transcript containing two non-

consecutive exons [ai, bi] and [aj, bj], such that bi = ps− 1 and aj = pe + 1.

– Intron retention, if there exists an annotated transcript containing an exon

Chapter 3 Alternative Splicing Events Detection 56

S?
G

R

T

Figure 3.7: Example of false intron retention. The figure depicts a splicing graph

S?
G, a transcript T , and the alignments of a sample of reads. In this case the

transcript T supported by the alignments shows a complex alternative splicing

event consisting of two new exons. ASGAL detects the new intron supported

by the red alignments, but the analysis of the neighboring introns shows that

no simple alternative splicing event can explain the alignments: this situation

is recognized by ASGAL that refuses to make any prediction of a novel (surely

incorrect) intron retention event.

[ai, bi] such that (i) ai < ps < pe < bi, (ii) there exists an intron in I ending

at ai − 1 or ai is the start of the transcript and (iii) there exists another

intron in I starting at bi + 1 or bi is the end of the transcript.

– Alternative acceptor site, if there exists an annotated transcript containing

two consecutive exons [ai, ps − 1] and [aj, bj] such that pe < bj, and there

exists an intron in I starting at bj + 1 or bj is the end of the transcript.

– Alternative donor site, if there exists an annotated transcript containing

two consecutive exons [ai, bi] and [pe + 1, bj] such that ps > ai, and there

exists an intron in I ending at ai − 1 or ai is the start of the transcript.

These definitions are accurately designed to minimize the chances of mistaking

a complex alternative splicing event as those modeled with the notion of Local

Splicing Variations for an alternative splicing event. For example, if we remove

conditions (ii) and (iii) from the definition of intron retention, i.e. we analyze

each intron locally without considering the neighboring introns, we could confuse

the situation shown in Figure 3.7 with an intron retention event.

Chapter 3 Alternative Splicing Events Detection 57

Genome-wide analysis

ASGAL is specifically designed to perform the prediction of alternative splicing

events based on a splice-aware alignment of a RNA-Seq sample against the splic-

ing graph of a specific gene. The current version of tool is time efficient when

a limited set of genes are analyzed. For genome-wide analysis, i.e. when all the

known genes of an organism are of interest, it is unrealistic to align the input

sample against the splicing graph of each gene. For this reason, we have im-

plemented a pre-processing step that aims to speed up the process of filtering

reads that map to the genes under investigation. Given a set of genes and an

RNA-Seq sample, this filtering procedure consists of three steps: (i) the quasi-

mapping algorithm of Salmon [122] is first used to quantify the transcripts of

the genes and to quickly assign each read to the transcripts, (ii) a set of smaller

RNA-Seq samples, one for each gene, is then produced by analyzing the output

of Salmon, and finally (iii) if the input sample is a paired-end sample, then the

mate of the mapped reads that were not mapped by Salmon are added to these

smaller samples. Once we split the input RNA-Seq experiment in smaller sam-

ples, it is possible to use ASGAL on the different genes without having to align

the entire sample of reads against each of them. We note that we decided to

use Salmon as pre-processing step since it is very fast and it allows to split the

input sample faster than any other spliced aligner. Anyway, in aligning reads to

a reference transcriptome, some reads which cover unannotated exons are not

aligned, excluding them from any downstream analysis: for this reason, future

works will focus on improving this step.

3.4 Results

We implemented ASGAL in C++ and Python and we performed an experimen-

tal analysis on simulated and real data to assess ASGAL’s ability to align reads

to a splicing graph and to detect alternative splicing events. ASGAL is freely

available at https://github.com/AlgoLab/galig. Information and instruc-

tion on how to replicate the performed experiments are available at https:

//asgal.algolab.eu.

https://github.com/AlgoLab/galig
https://asgal.algolab.eu
https://asgal.algolab.eu

Chapter 3 Alternative Splicing Events Detection 58

We ran ASGAL using its default parameters in all the experiments. The default

values, chosen after a preliminary analysis performed on an RNA-Seq sample

simulated from three human chromosomes, allows to achieve a good trade-off

between accuracy and efficiency. More precisely, the minimum length of the MEMs

(L) is 15, α and β are 3% of the length of the input reads, and the minimum

support for reporting an alternative splicing events (ω) is 3 (alignments). The

analyses were performed on a 64 bit Linux (Kernel 4.4.0) system equipped with

Four 8-core Intel R© Xeon 2.30GHz processors and 256GB of RAM.

3.4.1 Implementation details

The FM-Index, the bit vector and the rank/select data structures were imple-

mented using the sdsl-lite library [48]. To compute MEMs, we reimplemented

the approach proposed by Ohlebusch et al. [117] available at https://www.uni-

ulm.de/in/theo/research/seqana/ porting it to sdsl-lite (v2.0). The MEMs

graph built and visited to compute the spliced graph-alignments was imple-

mented using the lemon library [37].

3.4.2 Experimental analysis on simulated data

In the first phase of our experimental analysis, we evaluated our approach using

simulated data. The goal of this analysis was twofold: (i) to assess the accuracy

and the efficiency of our method in aligning an RNA-Seq sample against a splic-

ing graph, and (ii) to assess how well the method detects the alternative splicing

events supported by a sample with respect to a given annotation.

To avoid any bias in the experiments, we decided to reuse the same ref-

erence genome, gene annotations, and RNA-Seq samples simulated with Flux

Simulator [53] used in [69]1. We considered two different RNA-Seq datasets of

this corpus. More precisely, the sample composed of 5 million reads and the one

composed of 10 million reads. From now on, we will refer to these datasets as

5M and 10M, respectively. Each dataset covers 1000 randomly selected genes of

the human GENCODE annotation (v19) [57]. We used AStalavista (version

4.0) to extract the alternative splicing events included in the annotation of each

1Data available at http://public.bmi.inf.ethz.ch/projects/2015/spladder/

https://www.uni-ulm.de/in/theo/research/seqana/
https://www.uni-ulm.de/in/theo/research/seqana/
http://public.bmi.inf.ethz.ch/projects/2015/spladder/

Chapter 3 Alternative Splicing Events Detection 59

gene, then we selected the genes whose annotation includes at least one alter-

native splicing event. After these filtering steps, the set of genes under analysis

included 656 elements. Finally, we divided each read sample into 24 samples

(by using the information included in the header of each entry of the simulated

sample), one for each chromosome, and we used cutadapt [99] (version 1.14) to

remove poly-A tails.

Validation of the alignment step

In the first part of our experimental analysis, we compared the alignment step of

ASGAL with STAR (version 2.5.4b), one of the best-known spliced aligner. Let us

recall that ASGAL performs a splice-aware alignment and its current implemen-

tation is specifically designed to confirm or detect novel splice sites by aligning

reads to a splicing graph. Since our tool works at the gene level, that is, it

considers the splicing graph of each gene independently, we ran ASGAL on each

gene independently whereas we ran STAR in two-pass mode on each chromosome,

providing the annotation of the considered genes. We then selected all primary

alignments reported by the two tools and we compared them using different

metrics, as in [41].

Table 3.1 reports the total number of mapped reads (91% for ASGAL, and

97% for STAR), as well as the number of alignments per read reported by the two

tools. As expected, since we considered only primary alignments and since STAR

aligns the input sample to the input reference, STAR yields a single alignment

per read. Conversely, ASGAL considers each gene independently, thus it might

align the same read to different genes and report multiple primary alignments

for it (at most one for each gene). However, this behaviour is extremely rare.

Indeed, less than 0.2% of the considered reads are aligned to multiple genes.

We also assessed the basewise accuracy of ASGAL and STAR. As shown in

Table 3.2, ∼ 98% of the primary alignments produced by both the tools place

the read to the correct location, i.e. all the bases of the read are placed in

the position from where they were extracted. ASGAL produces fewer “Partially

Mapped” alignments, i.e. the alignments which place some but not all the read

bases in the correct positions, but more “Differently Mapped” alignments, i.e.

the alignments which place all the read bases in positions different from those

Chapter 3 Alternative Splicing Events Detection 60

Sample Tool
Total

Unmapped
Alignments per read Mapped

reads 1 2 3 4 5 reads

5M
ASGAL

3,226,895
281,767 2,938,383 6,734 2 9 0 2,945,128

STAR 75,947 3,150,948 0 0 0 0 3,150,948

10M
ASGAL

6,522,455
571,202 5,942,220 9,009 13 10 1 5,951,253

STAR 166,593 6,355,862 0 0 0 0 6,355,862

Table 3.1: Number of alignments on the simulated datasets. For each considered

sample (5M and 10M) and for each considered tool (ASGAL and STAR), the number

of reads simulated from the 656 considered genes is shown along with the number

of Unmapped reads, the number of reads mapped only once, the number of reads

mapped multiple times, and the total number of mapped reads.

from which the read was simulated.

Observe that the fewer “Partially Mapped” alignments is a consequence of

the advantage of aligning directly to the splicing graph. Indeed, by investigating

the “Partially Mapped” alignments of STAR, we found that the vast majority

of these alignments (more than the 75%) place some read bases on an intron:

this situation mainly occurs when the first (last) bases of an intron (exon) are

equal to the first (last) bases of an exon (intron). By using the splicing graph,

it is possible to avoid these situations since it forces the alignments to be placed

(when possible) on the known exons of a gene.

On the other hand, the higher number of alignments to positions different

from the one of extraction is a consequence of the fact that ASGAL works at the

gene level and can produce multiple primary alignments, of which only one can

be the correct one.

To perform a more thorough comparison, we also analyzed the number of

incomplete alignments due to read truncation reported and each tool’s tolerance

for mismatches. Figure 3.8 and Figure 3.9 show the results of this analysis.

As previously stated, ASGAL aligned 91% of the input reads whereas STAR

aligned 97% of the reads. Such difference in alignment performance is due to two

reasons. First of all, with default parameters, the number of allowed errors in an

Chapter 3 Alternative Splicing Events Detection 61

Sample Tool Alignments
Perfectly Partially Differently

mapped mapped mapped

5M
ASGAL 2,951,893 2,907,881 (98.51%) 34,047 (1.15%) 9,965 (0.34%)

STAR 3,150,948 3,072,183 (97.50%) 76,599 (2.43%) 2,166 (0.07%)

10M
ASGAL 5,960,322 5,879,604 (98.65%) 66,463 (1.11%) 14,255 (0.24%)

STAR 6,355,862 6,201,270 (97.56%) 150,373 (2.37%) 4,219 (0.07%)

Table 3.2: Read placement accuracy on the simulated datasets. For each con-

sidered sample (5M and 10M) and for each considered tool (ASGAL and STAR), the

number of alignments produced by each tool is shown along with the number

of perfectly mapped alignments, i.e. the alignments which place all the read

bases in the correct position, the number of partially mapped alignments, i.e.

the alignments which place some (but not all) read bases in the correct position,

and the number of differently mapped alignments, i.e. the alignments which

place all the read bases in a position different from the one from which the read

has been simulated.

Figure 3.8: Mismatch frequencies. The figure shows for each considered sample

(5M and 10M) and for each considered tool (ASGAL and STAR), the percentage of

reads aligned divided by number of mismatches. The different colors indicates

the number of mismatches.

Chapter 3 Alternative Splicing Events Detection 62

Figure 3.9: Reads truncation frequencies. The figure shows for each considered

sample (5M and 10M) and for each considered tool (ASGAL and STAR), the per-

centage of incomplete alignments due to reads truncation. The different colors

indicates the number of truncated bases.

alignment is smaller for ASGAL than for STAR. Indeed, as shown in Figure 3.8),

STAR reported alignments with more than 3 errors whereas, by setting the β

parameter of ASGAL to 3% of the read length (that is 100bp), we forced our tool

to output only alignments with less than 3 errors. Secondly, differently from

STAR that is able to align reads to intronic regions, ASGAL only aligns reads to

exonic regions and it cannot correctly align reads covering intronic regions or

long novel exons.

Figure 3.9 reports the number of truncated alignments. We can observe that

ASGAL outputs more incomplete alignments than STAR and this is mainly due to

the choice of parameter L. Indeed, ASGAL builds each alignment starting from

anchors of at least L bases. If a prefix or a suffix of some read is not covered

by any anchors, for example due to a sequencing error or a junction near one of

the read end, ASGAL may output a truncated alignment since it cannot correctly

align that portion of the read. Although such behavior might remove parts of the

alignments which are useful for the detection of alternative splicing events, we

will show that these truncations do not affect significantly the step of alternative

splicing event identification. However, at the cost of increasing the running time,

it is possible to decrease the number of truncated alignments by setting a smaller

value of L.

Finally, we analyzed the computational resources required by the two tools.

Chapter 3 Alternative Splicing Events Detection 63

Sample Tool Time (min) Memory Peak (MB)

5M
ASGAL 475 249

STAR 179 7,921

10M
ASGAL 945 247

STAR 197 7,921

Table 3.3: Computational resources required by ASGAL and STAR to align the

simulated datasets (5M and 10M). These results are shown in terms of time (min-

utes) and memory peak (MegaBytes). These results take into account both the

index and the alignment steps performed by the tools.

We ran both the tools using a single thread and we reported in Table 3.3 their

total running time and their memory usage, computed using the /usr/bin/time

system tool. As expected, since ASGAL works at the gene level, it required more

time and less memory than STAR. Indeed, we ran STAR on each chromosome

whereas we ran ASGAL on each gene and thus we needed to repeat its execution

for the total number of processed genes. However we note that the slowest run

of ASGAL on the 5M dataset took only 99 seconds whereas the slowest run on

the 10M dataset took only 184 seconds. Since each run of ASGAL is independent

from the others, by spreading a many-gene computation over multiple cores, we

can reduce its total running time, proportionally to the number of cores. For

instance, assuming to use 16 cores, ASGAL would require less than 67 minutes to

align the 5M datasets to the 656 considered genes and less than 125 minutes to

align the 10M datasets. We finally note that also STAR can be run using multiple

threads. Nevertheless, we did not compare the time performance of ASGAL and

STAR when ran in parallel. Indeed, the focus of this analysis was evaluating the

considered tools in terms of accuracy and quality of the alignments and not in

terms of efficiency.

Validation of the event identification step

In the second part of our experimental analysis on simulated data, we compared

the alternative splicing event identification step of ASGAL with three other well-

Chapter 3 Alternative Splicing Events Detection 64

known tools for the detection of alternative splicing events from RNA-Seq data:

SplAdder (version 1.0.0), rMATS (version 4.0.2 turbo), and SUPPA2 (version 2.3).

Although these tools work under different assumptions than ASGAL, we decided

to include them in our comparison anyway.

Indeed, SplAdder can identify an alternative splicing event only if all the

isoforms involved in the event are supported by input samples. According to

SplAdder’s supplementary material, the default behaviour of SplAdder can be

modified by adapting different parameters that guide the confirmation process

of each alternative splicing event detected. However it is not an easy task to

modify these parameters since they are hard-coded and it is not even clear how

to choose the best values without the risk of introducing undesired behaviors.

On the other hand, rMATS is able to detect only alternative splicing events

that use already annotated splice sites whereas SUPPA2 can quantify only al-

ternative splicing events extracted from the input annotation, i.e. non novel

events.

Differently from such tools, ASGAL is specifically designed to detect alternative

splicing events that are novel with respect to an input annotation and it can also

identify alternative splicing events even if only a single isoform inducing the event

is expressed in the input sample. Indeed, ASGAL uses the input annotation as a

reference for the identification of the novel alternative splicing events. This case

is especially important, since usually there is a single transcript expressed per

gene, when considering only a sample [129].

We did not include MAJIQ in the experimental comparison since the tool

focuses on Local Splicing Variations (LSVs). Although LSVs capture previously

defined types of alternative splicing as well as more complex transcript variations,

MAJIQ does not provide a direct way to map one kind of event into the other

one. Moreover, we did not include LeafCutter in our experiments since the tool

focuses on introns which model complex alternative splicing events and there is

no easy way to extract from them the simpler (and classic) alternative splicing

events.

The goal of our experimental analysis on simulated data was to evaluate

the ability of our tool in detecting alternative splicing events that are novel

with respect to the input annotation, i.e. alternative splicing events that are

Chapter 3 Alternative Splicing Events Detection 65

not already contained in the input annotation. In other words, we focused

our analysis on events not already described by some transcripts of the input

annotation but that are supported by the input RNA-Seq sample.

For this reason, we created a set of reduced annotations by removing some

transcripts from the annotations of the considered genes. In such a way, by

providing the tools with these reduced annotations and an RNA-Seq sample

containing reads simulated from the original annotation, we assessed their capa-

bility to detect novel alternative splicing events. Observe that ASGAL is specifi-

cally designed to enrich a gene annotation with novel alternative splicing events

supported by a RNA-Seq sample and thus this analysis better reflects its real

effectiveness.

We obtained the reduced annotations in the following way. First of all, we

used AStalavista to extract all the alternative splicing events contained in the

annotations of the 656 considered genes. This resulted in a total of 2568 al-

ternative splicing events: 1574 exon skippings, 416 alternative acceptor sites,

290 alternative donor sites, and 288 intron retentions. Then, for each gene and

for each event identified by AStalavista, we created a new reduced annota-

tion containing all the transcripts except those responsible for such event. We

focused our attention on exon skippings, alternative splice sites (both acceptor

and donor), and intron retentions caused by the insertion of a new intron in-

side an annotated exon. Since the alternative splice site can consist of both

shortening or extending an annotated exon, we added both these cases to the

events considered in the experimental evaluation. On the other hand, we did not

consider the possible insertion of a new exon inside an intron and the intron re-

tention caused by the union of two annotated exons, since detecting such events

is impossible using a splicing graph as unique source of information. Moreover,

when different events on the same gene produced the same reduced annotation,

we considered the annotation only once. We obtained a total of 3274 alternative

splicing events and 2792 reduced annotations.

Differently from [69], where the reduced annotation provided as input to the

tools contained only the first transcript of each gene, we generated the gene

annotations by keeping all the transcripts except the ones including the intron

supporting the considered alternative splicing event. In these terms, ASGAL is

Chapter 3 Alternative Splicing Events Detection 66

less general than the other tools in detecting novel exons that appear in intronic

regions and that can only be detected by aligning reads to large intronic region.

Indeed, the exons involved in the considered novel events must be present in the

reduced annotation to allow ASGAL to detect them. However, observe that ASGAL

uses the genomic regions close to exon splice sites to detect novel exons that are

variants of existing ones.

For each gene and for each reduced annotation, we ran the tools on the two

considered datasets of reads, namely 5M and 10M. We recall here that these RNA-

Seq samples were simulated with Flux Simulator, cover 1000 randomly selected

human genes, and were used in the experimental analysis performed in [69].

For each type of alternative splicing event we analyzed the predictions over

the set of the 656 considered genes, computing the corresponding values of pre-

cision, recall, and F-measure. More precisely, given a gene and its reduced

annotation, we consider as ground truth the set of events found by AStalavista

in the original annotation of the considered genes.

To compute the values of precision, recall, and F-measure, we considered the

number of events that are in the original annotation but not in the reduced one

and are found by the tools as true positives, the number of events that are in the

original annotation but not in the reduced one and are not found by the tool

as false negatives, and the number of events found by the tools and not in the

annotation as false positives.

We reported in Table 3.4 the quality results, for the different alternative

splicing events, obtained by ASGAL, SplAdder and rMATS, for which we used

STAR to compute the alignments, and SUPPA2, for which we used Salmon (version

0.9.1) to obtain the transcript quantification.

The results show that ASGAL achieved the best values of precision, recall, and

F-measure in almost all the alternative splicing events with the only exception

of the recall of alternative splice sites. We investigated those cases and we found

that our method applies strict criteria in detecting the alternative splice site

events that extend an annotated exon. As previously described, to detect this

kind of event, ASGAL requires that the prefix of each read aligns near the end

of an exon, the suffix near the start of another exon, and a central substring

does not align to any exon, i.e. there is a gap on the read that represents the

Chapter 3 Alternative Splicing Events Detection 67

extension of one of the two used exons. Therefore, ASGAL requires the presence

of sufficiently long anchors on two different exons, typically 15bps, related to the

length L. As a consequence, our method detects an alternative splice site event

extending an exon when the length of the extension does not exceed the length of

the read minus twice the length of L (the two anchors). By these requirements,

our method may not be able to detect alternative splice site extending an exon

of several bases, as observed in the cases analyzed in our experimental analysis:

for this reason ASGAL shows a lower recall on alternative splice site events.

However, our method achieved the best values of F-Measure in all the al-

ternative splicing event types hinting that our criteria are well balanced and

highlighting the ability of ASGAL in detecting novel alternative splicing events.

To better analyze our results, we also decided to manually examine the exon

skipping events found by ASGAL but not by the other tools. In this analysis, we

considered only SplAdder and rMATS since SUPPA2 did not find any novel exon

skipping event. We found that most of the events not detected by SplAdder are

due to the fact that only one of the two isoforms involved in the event is supported

by the input alignments. As said previously, to confirm an alternative splicing

event, SplAdder requires that all the isoforms involved in the event are supported

by the sample. Regarding rMATS, instead, we found that it does not output most

of the events involving the skip of multiple exons. Moreover, by increasing the

number of reads in the input set, all methods almost always achieve better recall

with a slightly worse precision, since a higher coverage allows to detect a higher

number of supported introns that are used to detect alternative splicing events.

As it is possible to notice from Table 3.4, results of both rMATS and SUPPA2

are incomplete: this was expected since these two methods are not designed

to detect novel events. More precisely, rMATS is not able to detect alternative

splicing events involving novel splice sites and, for this reason, it is able to

detect only exon skipping events. SUPPA2 only detects and quantifies alternative

splicing events that are already present in the input annotation.

To have a thorough comparison with these tools, we set up a second analy-

sis in which we used each tool to detect already annotated alternative splicing

events. For this purpose, we provided the tools with the original annotations

of each considered gene and the same RNA-Seq samples used in the previous

Chapter 3 Alternative Splicing Events Detection 68

Tool Measure
5M 10M

ES A3 A5 IR ES A3 A5 IR

ASGAL

Prec 0.997 0.955 0.905 0.862 0.995 0.938 0.895 0852

Rec 0.917 0.741 0.737 0.674 0.963 0.789 0.781 0.681

F-M 0.955 0.835 0.812 0.756 0.979 0.857 0.834 0.757

SplAdder

Prec 0.885 0.612 0.475 0.299 0.874 0.642 0.495 0.272

Rec 0.802 0.884 0.821 0.531 0.848 0.925 0.891 0.521

F-M 0.841 0.723 0.602 0.383 0.860 0.758 0.637 0.357

rMATS

Prec 0.996 - - - 0.997 - - -

Rec 0.860 - - - 0.863 - - -

F-M 0.923 - - - 0.925 - - -

SUPPA2

Prec - - - - - - - -

Rec - - - - - - - -

FM - - - - - - - -

Table 3.4: Quality measures in detecting novel alternative splicing events on

the simulated datasets with 5M and 10M reads. Results obtained by ASGAL,

SplAdder and rMATS (for which we used STAR to compute the alignments), and

SUPPA2 (for which we used Salmon to obtain the transcript quantification) are

reported. Precision (Prec), Recall (Rec), and F-Measure (F-M) achieved on the

simulated datasets in detecting novel alternative splicing events: exon skipping

(ES), alternative acceptor site (A3), alternative donor site (A5), and intron

retention (IR). A dash “-” means that the considered tool is not designed to

detect that type of novel alternative splicing events.

Chapter 3 Alternative Splicing Events Detection 69

analysis. Table 3.5 reports the results obtained in this setting. Results of the

tools are similar, with ASGAL performing slightly better on exon skipping events,

whereas SUPPA2 outputs better predictions of alternative donor and acceptor

sites, and both SUPPA2 and rMATS have better results on intron retention events.

We then carefully inspected the results obtained by ASGAL and we observed

that more than 85% of the false positives alternative splice site events in Ta-

ble 3.5 and more than 98% of false positives intron retention events are due to

the following reason. As said above, ASGAL is designed to detect events that

are novel with respect to the input gene annotation. For this reason, even in

the annotated case, ASGAL looks for potential novel alternative splicing events

by extracting from the alignments to the splicing graph those introns that may

support the presence in the experiment of an isoform related to an event that

is alternative with respect to an already annotated isoform. Moreover, by using

only the computed set of introns to detect alternative splicing events, ASGAL’s

events prediction show a higher number of false positives, as illustrated in Fig-

ure 3.10: even though the computed alignments are correct, some introns can

be misclassified as alternative splice site or intron retention. In more detail,

this misclassification occurs when the considered intron is the first (or the last)

intron of a transcript: in these cases, by using only the information provided by

the introns, it is not possible to fully understand if the considered intron sup-

ports a real alternative splicing event. Consequently, a lower precision cannot

be imputed to the quality of the alignment performed by ASGAL. Indeed, the

false positive cases described above could be eliminated by using more conser-

vative rules. In any case, we believed that the actual rules used by ASGAL are

well-balanced: they produce higher precision in detecting novel event as shown

in Table 3.4 as well as good results in detecting RT-PCR validated alternative

splicing events, as discussed in the next section.

Finally, we discuss the efficiency of the tested methods. To this purpose,

we retrieved the running time and the maximum memory used by each tool in

the detection of annotated events on the 10M dataset using the /usr/bin/time

system tool We decided to analyze the performance during the detection of

annotated events to have a fair comparison, since rMATS and SUPPA2 are meant

to detect only annotated events and do not provide any useful information when

Chapter 3 Alternative Splicing Events Detection 70

Tool Measure
5M 10M

ES A3 A5 IR ES A3 A5 IR

ASGAL

Prec 0.999 0.850 0.702 0.657 0.999 0.846 0.703 0.642

Rec 0.924 0.788 0.774 0.719 0.966 0.814 0.799 0.722

F-M 0.960 0.818 0.736 0.687 0.982 0.830 0.748 0.680

SplAdder

Prec 0.963 0.844 0.734 0.513 0.957 0.857 0.733 0.450

Rec 0.822 0.927 0.899 0.552 0.855 0.947 0.936 0.531

F-M 0.887 0.884 0.808 0.532 0.903 0.900 0.822 0.487

rMATS

Prec 0.995 1 1 0.976 0.996 1 1 0.976

Rec 0.905 0.685 0.755 0.830 0.905 0.685 0.755 0.830

F-M 0.948 0.813 0.860 0.897 0.949 0.813 0.860 0.897

SUPPA2

Prec 1 0.880 0.754 0.976 1 0.880 0.754 0.976

Rec 0.894 1 1 0.830 0.894 1 1 0.830

F-M 0.944 0.936 0.860 0.897 0.944 0.936 0.860 0.897

Table 3.5: Quality measures in detecting annotated alternative splicing events

on the simulated datasets with 5M and 10M reads. Results obtained by ASGAL,

SplAdder and rMATS (for which we used STAR to compute the alignments), and

SUPPA2 (for which we used Salmon to obtain the transcript quantification) are

reported. Precision (Prec), Recall (Rec), and F-Measure (F-M) achieved on

the simulated datasets in detecting annotated alternative splicing events: exon

skipping (ES), alternative acceptor site (A3), alternative donor site (A5), and

intron retention (IR).

Chapter 3 Alternative Splicing Events Detection 71

(a) (c)(b)

S?
G

R

S?
G

R

S?
G

R

T1

T2

T1

T2

T1

T2

Figure 3.10: Examples of splicing event misclassification. The figure depicts

three situations in which ASGAL may detect a false positive event: an alternative

donor site in (a), an alternative acceptor site in (b), and an intron retention in

(c). The black arrows represent an annotated intron (in the first two cases),

whereas the red dotted lines represent the novel intron supported by the input

sample with respect to the annotation, represented by S?
G. In cases (a) and (b),

the novel event induces an alternative acceptor and an alternative donor splice

site (respectively) with respect to the intron in the annotation, and in case (c)

the novel intron is inside an already annotated exon. On the assumption that

the reads come from a hypothetical novel transcript T1, ASGAL outputs a true

positive event. Indeed, all the events refer to an annotated exon, thus one (in

cases (a) and (b)) or two splice sites (in case (c)) involved in the predicted event

are already annotated in S?
G. On the other hand, if the aligned reads come

from a hypothetical novel transcript T2, ASGAL produces a false positive event:

it outputs the events with respect to the annotated exon but the true events

refer to a novel exon having both splice sites not annotated in S?
G.

Chapter 3 Alternative Splicing Events Detection 72

detecting novel events.

As described before, ASGAL is composed of two steps: the alignment of the

reads and the detection of the events. These two steps required 945 and 60

minutes, respectively, and the memory usage was 760MB.

For SplAdder we considered the time required by STAR to align the reads

to the chromosomes and by the tool itself to detect the events. The first step

required 45 minutes whereas the second step required 36 minutes. The memory

usage was 5.8GB and was due to the alignment step.

Similarly to SplAdder, rMATS aligns the reads using STAR. Therefore the first

step of rMATS requires the same time as SplAdder (45 minutes). Detecting the

events using rMATS, on the other hand, requires 268 minutes. The main memory

usage of this tool is, again, due to the alignment step of STAR and is equal to

5.8GB.

Finally, SUPPA2 is composed of three steps: quantifying the transcripts using

Salmon, generating events from the annotation using SUPPA2 generate, and

computing the psi-value, i.e. the relative abundance value per sample, of the

events, using SUPPA2 psi. These steps require 130 minutes, 19 minutes, and 19

minutes respectively. The main memory usage is due to the quantification step

of Salmon and is equal to 192MB.

Note that in the previous analysis we do not consider the time required by

STAR and Salmon to index the genome and the transcriptome, respectively. In

fact, such indexes could already be available from previous runs of the tools.

Nevertheless, we report the times for these steps for sake of completeness. STAR

required 152 minutes and 7.9GB to index the chromosomes of the human genome

whereas Salmon required 2 minutes and 14MB to index its transcriptome.

3.4.3 Experimental analysis on real data

To better assess the efficacy of our approach, we also performed an experimental

analysis on a real dataset of RNA-Seq reads. Inspired by the experimental anal-

ysis performed in the SUPPA2 paper [158], we considered a set of 83 RT-PCR

validated alternative splicing events [12]. More precisely, the experiment per-

Chapter 3 Alternative Splicing Events Detection 73

formed in [12] consists of 3 samples2 in which there is a double knockdown of the

TRA2A and TRA2B splicing regulatory proteins and 3 control datasets3. The goal

of the experimental analysis of SUPPA2 in [158] was to identify the 83 RT-PCR

validated alternative splicing events in these knockdown versus control datasets.

Since in 2 of these 83 events the positions of the intron(s) involved in the event

were missing, we could not use such events to compare the predictions of the

tools. For this reason, we decided to remove such events from the set, resulting

in a set of 81 events on which we tested ASGAL, rMATS, SUPPA2, and SplAdder,

with the specific goal of identifying the RT-PCR validated alternative splicing

events. More precisely, we ran the tools on the 3 replicate datasets with the

knockdown of the two splicing regulatory proteins (SRR1513332, SRR1513333,

and SRR1513334).

We ran ASGAL in genome-wide mode on each dataset. Moreover, we provided

the alignments obtained with STAR to SplAdder and rMATS and the quantifica-

tions obtained with Salmon to SUPPA2. We compared the results obtained on

each dataset with the tested methods and, in particular, we considered all the

events output by such tools that were in the list of events under analysis.

In Figure 3.11 we show a comparison of the results obtained by the tools

on the 3 knockdown datasets. As it is possible to observe, rMATS was the tool

that was able to detect more events (78 on SRR1513332, 78 on SRR1513333,

and 77 on SRR1513334). Similarly, SUPPA2 identified 65 events in each of the

3 datasets, whereas ASGAL predicted 63, 59, and 61 events on the SRR1513332,

SRR1513333, and SRR1513334 dataset, respectively. Finally, SplAdder was able

to identify only 13, 13, and 12 RT-PCR validated alternative splicing events on

the SRR1513332, SRR1513333, and SRR1513334 dataset, respectively. We note

that the events not identified by ASGAL show an extremely low support.

To better validate the results obtained by ASGAL, we extracted from the align-

ments computed with STAR the spliced alignments supporting each considered

event. More in detail, since each RT-PCR validated event is an exon skipping

event, we counted the number of spliced alignments supporting the intron that

confirms the skipping of one or more exons. We report the result of this analysis

2SRA accession numbers SRR1513332, SRR1513333, and SRR1513334.
3SRA accession numbers SRR1513329, SRR1513330, and SRR1513331.

Chapter 3 Alternative Splicing Events Detection 74

SRR1513332 SRR1513333

SRR1513334

Figure 3.11: Results on RT-PCR validated events. Venn diagram showing the

overlaps in results obtained by ASGAL, SUPPA2, rMATS, and SplAdder, on the

3 knockdown dataset. The results are expressed as the number of RT-PCR

validated events detected by the various tools.

Chapter 3 Alternative Splicing Events Detection 75

0 1 2 3 4 5-9 10-19 20-49 50+
Coverage (number of reads)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Nu
m

be
r o

f R
T-

PC
R

va
lid

at
ed

 e
ve

nt
s

Number of reads supporting the minor isoform
of each RT-PCR validated event

SRR1513332
SRR1513333
SRR1513334

Figure 3.12: Coverage of RT-PCR validated events. Bar chart showing the

coverage of the minor isoform of each RT-PCR validated events. The coverage is

expressed as the number of spliced alignments supporting the intron that skips

the exon(s).

Chapter 3 Alternative Splicing Events Detection 76

in Figure 3.12, where the coverage of the 81 considered RT-PCR validated events

is shown.

These results highlight the ability of ASGAL in predicting alternative splicing

events from real datasets of RNA-Seq reads, especially if compared to SplAdder

which is the most similar tool. We note one more time that, to detect an al-

ternative splicing event, SplAdder needs that all the isoforms involved in the

event are supported by the reads in the sample. Thus, we analyzed how many

of the RT-PCR validated events are supported by a single isoform. The ob-

tained results show that, in the three considered datasets, 59, 54, and 65 events,

respectively, are not supported by both the isoforms involved in the event.

Moreover, the performances achieved by ASGAL on the tested datasets are

similar, in terms of number of detected alternative splicing events, to those of

SUPPA2, which still lacks in detecting novel events. The only tool that slightly

outperformed ASGAL in this experimental analysis is rMATS. Anyway, we note one

more time that this latter method is not able to detect alternative splicing events

involving novel splice sites that are not already in the considered annotation.

Moreover, ASGAL and all the considered tools identified more alternative splic-

ing events than the RT-PCR validated ones. To better analyze such behaviour,

we considered the genes involved in the 81 RT-PCR validated alternative splic-

ing events and we checked if the events additionally reported by ASGAL were

also detected by the other considered tools. Table 3.6 summarizes the results of

this analysis: except for intron retention events, the majority of the alternative

splicing events identified by ASGAL were also reported by rMATS and SUPPA2.

Finally, we ran our tool providing a reduced annotation. As done in our

experiments on simulated data, we removed all the transcripts which include

the intron supporting the considered event and we used this annotation as input

for our tool. In this way, by keeping the evidence of these events only in the

RNA-Seq data, we could test the ability of our tool in detecting novel alternative

splicing events from real data. In this setup ASGAL predicted the same events

predicted using the full annotation, i.e. 63, 59, and 61 events on the SRR1513332,

SRR1513333, and SRR1513334 dataset, respectively.

Chapter 3 Alternative Splicing Events Detection 77

SRR1513332 SRR1513333 SRR1513334

ES A3 A5 IR ES A3 A5 IR ES A3 A5 IR

ASGAL 343 168 141 56 356 170 138 50 323 149 140 51

SplAdder 33 18 3 2 35 17 2 1 28 18 2 1

rMATS 314 65 48 18 328 65 54 16 302 63 46 18

SUPPA2 193 83 78 17 191 82 78 16 189 83 76 17

Table 3.6: For each considered knockdown datasets and for each considered event

type, we report the number of alternative splicing events identified by ASGAL with

respect to the considered genes, i.e. the genes involved in the 81 considered RT-

PCR validated alternative splicing events, and how many of these events were

also identified by the other tools considered in our analysis.

3.5 Final remarks and future directions

In this chapter we presented ASGAL, a tool for predicting alternative splicing

events via an accurate splice-aware alignment of RNA-Seq data against a splic-

ing graph. Differently from other approaches proposed in the literature, ASGAL

detects the alternative splicing events supported by the input RNA-Seq sample

that are novel with respect to the input gene annotation. Indeed, ASGAL detects

alternative splicing events by analyzing differences at the intron level between

the known annotation and the introns supported by the alignments computed

against the splicing graph.

While the spliced alignment to a reference is a well understood notion, how

to align a sample directly against a splicing graph is not a so obvious notion. For

this reason, we investigated the problem of optimally aligning reads to a splicing

graph by formalizing the notion of spliced graph-alignment and by proposing an

algorithmic approach to compute optimal spliced graph-alignments.

Note that our notion of spliced graph-alignment is tailored to the detection

of alternative splicing events that are either classic or a combination of two dif-

ferent simple events. However, such a notion deserves to be further investigated

to detect more complex combinations of alternative splicing events, such those

Chapter 3 Alternative Splicing Events Detection 78

modeled with the notion of Local Splicing Variations. This will be the goal of a

future development of the tool.

Future works will also focus on allowing ASGAL to be used natively in a

genome-wide analysis by improving its pre-processing step or by directly im-

proving its code.

To the best of our knowledge, ASGAL is the first tool for computing splice-

aware alignments of RNA-Seq data to a splicing graph. Compared with current

tools for the spliced alignment to a reference genome, ASGAL produces high qual-

ity alignments that can be used to accurately detect alternative splicing events.

However there is still room for further improvements in the direction of using

ASGAL for confirming alternative splicing events already contained in the input

annotation, for predicting novel alternative splicing events that involve long in-

tronic regions of the reference genome, and for performing differential analysis

between multiple samples.

The experimental analysis we performed shows the advantages of ASGAL in

using a splice-aware aligner of RNA-Seq data to detect alternative splicing events

that are novel with respect to a gene annotation, i.e. the events which involve

novel splice sites.

In this sense ASGAL can be used to enrich a given annotation with novel

alternative splicing events in order to allow a downstream tool for differential

alternative splicing analysis such as SUPPA2 to also quantify these new events.

Indeed, compared to other approaches, ASGAL can work in presence of a poor

gene annotation with the main goal of enriching its structure with novel events.

A natural extension of the ASGAL approach (not yet investigated) is the de-

tection of alternative splicing events in a de-novo framework, where only the

reference transcriptome is known. In this context a draft splicing graph may be

built from the mRNA sequences related to the reference transcriptome and then

it can be used to infer alternative splicing events by using the ASGAL procedure.

Chapter 4

Known Variants Genotyping

In this chapter we will discuss the second contribution of this thesis, that is an

alignment-free approach for genotyping a set of known variants (MALVA, geno-

typing by Mapping-free ALternate-allele detection of known VAriants). The

problem tackled can be formulated as follows:

Input: NGS sample and dataset of known variants (SNPs and indels)

Output: genotype of each known variant

Highlights

– MALVA is the first alignment-free approach for genotyping indels and multi-

allelic variants

– MALVA calls correctly more indels than the most widely adopted genotyping

pipelines

– MALVA proved to be a valid and faster alternative to alignment-based ap-

proaches

Outline This chapter is organized as follows. In Section 4.1 we introduce

the context and the motivations behind our work. In Section 4.2 we present

some definitions that are needed in Section 4.3, where we thoroughly detail the

proposed approach. In Section 4.4 we describe our implementation and the

79

Chapter 4 Known Variants Genotyping 80

experimental analysis we performed to asses its performance, comparing it with

state-of-the-art tools. Finally, in Section 4.5 we draw conclusions and sketch

possible future directions of this work.

4.1 Context and Motivations

The discovery and characterization of Single Nucleotide Polymorphisms (SNPs)

and indels in human populations is crucial in genetic studies [153]. A main chal-

lenge consists in efficiently characterizing the variations of a freshly-sequenced

individual with respect to a reference genome and the available genetic varia-

tions data. Typically, variant calling (or genotyping) requires the detection of

the variants (SNPs or indels) and the identification of its genotype i.e. the alleles

expressed on each haplotype of the organism under investigation. For example,

in diploid organisms, a genotype is a pair of alleles.

Standard pipelines for variant calling include aligning the sequenced reads

with softwares like BWA [88] and Bowtie2 [85] and then calling the genotypes

with tools like GATK [101] and BCFtools [86]. Due to the high computational

complexity of read alignment, such approaches can be highly time consuming,

thus impractical for clinical applications, where time is often an issue.

Assembly-based methods such as Cortex [63] and discoSnp++ [124] form

another line of research. These approaches avoid the read alignment step by

directly assembling the input set of reads in a de Bruijn graph that is successively

analyzed to detect and call the variants. Such approaches show lower accuracy

than alignment-based approaches [128] and are still highly time consuming, due

to the computationally expensive task of read assembly.

Recent tools for variant calling like Graphtyper [40] and vg [46] are based

on a graph representation of a set of genomes, called variation graphs. Such

approaches consider a set of genomes to avoid biases introduced by considering

only one genome as a reference [27]. However, they are heavy in both compu-

tational space and time. Indeed, the size of variation graph indexes may be

subjected to an exponential growth in the number of variants, and indexes are

typically static, requiring a great deal of computational resources to be updated

with newly discovered variants.

Chapter 4 Known Variants Genotyping 81

When the task is to call the genotype in positions where variants have been

previously annotated, alignment-free methods come to the aid. This is a typical

case in a medical setting, where the discovery of new variants is not desired,

but, rather, what is important is to know the genotype at certain loci that are

already established to be of medical relevance. Recent alignment-free tools, such

as FastGT [118], LAVA [139], and VarGeno [152], are able to genotype a set of

known SNPs up to an order of magnitude faster than the usual alignment-based

methods. A major shortcoming of these tools is the large memory requirement,

that can easily exceed hundreds of GB of RAM. Indeed, their strategy is to

model each known SNP as a k-mer, i.e. a string of length k, and to store this

mapping in a sort-of dictionary. A set of additional information, such as the

k-mers frequency in the input sample, is associated to each k-mer and it is used

to genotype the variants. Thanks to this strategy, these approaches are able

to call a set of known bi-allelic SNPs in a very efficient way but, on the other

hand, cannot genotype multi-allelic SNPs and indels, i.e. short insertions and

deletions of nucleotides.

However, genotyping indels is of utmost importance in genetic studies [9].

Indeed, indels are believed to represent around 16% to 25% of human genetic

polymorphism [104]. Moreover, the presence of indels is associated with a num-

ber of human diseases [110, 58, 83]. For instance, cystic fibrosis [110], lung

cancer [136], Mendelian disorders [92], and Bloom syndrome [70] are all known

to be closely correlated to indels.

Nevertheless, indels are particularly challenging to call: reads covering an

indel are more difficult to align to the correct location and, most of the time,

even though the read is mapped correctly, the indel is wrongly placed [105]. To

improve their accuracy, alignment-based approaches apply different technique

such as local realignment around indels [35], haplotype assembly [126, 128] or a

combination of both [108]. But this step increases the time requirements of such

approaches.

Due to the high complexity of genotyping indels, many specialized approaches

have been proposed in the literature for genotyping specifically only this kind of

variations [176, 3, 13].

In this chapter we describe MALVA, a rapid alignment-free method to genotype

Chapter 4 Known Variants Genotyping 82

a set of known (i.e. previously characterized) variants from a sample of reads.

Similarly to previous alignment-free approaches, MALVA is a word-based method:

each allele of each known variant is assigned a signature in the form of a set of k-

mers, which allows to efficiently model indels and close variants. The genotypes

of such variants are then called according to the frequency of such signatures in

the input read sample.

Based on the well-known Bayes’ formula, we also design a new rule to geno-

type multi-allelic variants (i.e. variants with more than one known alternate

allele): even if such variants are trickier to genotype than bi-allelic ones, MALVA

is still able to achieve high precision and recall, as revealed in the real-data

experiments we conducted.

MALVA directly analyzes a sample leveraging on the information of the variants

included in a VCF file, that is the standard format for representing and storing

a collection of variants, also adopted by the 1000 Genomes Project [150]. To the

best of our knowledge, MALVA is the first alignment-free tool able to call multi-

allelic variants and indels. Moreover, it proved to be the only alignment-free tool

capable of handling the huge number of variants included in the latest version

of the VCF released by the 1000 Genomes Project.

4.1.1 State of the Art

We will now review some of the computational approaches proposed in the liter-

ature for solving the problem of variant calling. We will focus our attention on

alignment-based, assembly-based, and alignment-free approaches.

All the approaches that require to align the input sample against the reference

genome fall in the first category, i.e. alignment-based. Indeed, these approaches

call variants by analyzing the alignments of the input reads. Notable examples of

alignment-based approaches are BCFtools [86] and GATK’s HaplotypeCaller [126].

Approaches such as BCFtools are known as “pileup” callers. They analyze

each position along the reference genome and, whenever they encounter a mis-

match between the reference and the alignments, they evaluate the probability

that that position presents a variant.

Differently, GATK’s HaplotypeCaller focuses its computation on the so-called

Chapter 4 Known Variants Genotyping 83

ActiveRegions, that are regions of the genome characterized by a great dissimi-

larity between reference sequence and alignments. HaplotypeCaller analyzes the

read alignments to identify such regions and then it assemblies all the reads cov-

ering an ActiveRegion in a de Bruijn graph [32], i.e. a graph where each vertex

is a string of length k, called k-mer, and each edge links two k-mers that are

consecutive in the input. Finally, it analyzes the locally-assembled haplotypes

to call the genotypes by means of a probability model. In contrast to pileup

callers, callers based on local haplotype-assembly show greater accuracy when

calling indels and variants, even in regions with a high rate of polymorphisms.

Similarly to GATK’s HaplotypeCaller, assembly-based approaches assemble the

input sample in a de Bruijn graph and then analyze the bubbles of this graph, i.e.

two distinct paths that share the starting and ending vertices, to identify and call

variants. However, differently from the previous approaches, such approaches do

not require the alignments of the input sample. Such approaches show lower

accuracy than alignment-based approaches [128] and suffer from the presence

of genomic repetitions. However, assembly-based approaches show their real

efficacy and usefulness when non-model organisms have to be analyzed, i.e. or-

ganisms for which a (high-quality) reference sequence is not available. Examples

of assembly-based approaches are Cortex [63] and discoSnp++ [124].

Most notably, Cortex uses colored de Bruijn graphs, a de Bruijn graphs

where each vertex and each edge is associate to a list of colors representing the

samples of origin of that element. Colored de Bruijn graphs are a generalization

of classical de Bruijn graphs that is currently drawing the attention of more and

more researchers [109, 5, 112, 4, 175].

Finally, alignment-free approaches call variants directly from the input sam-

ple without aligning or assembling it. To do so, these approaches rely on datasets

of known variants and, for this reason, differently from the previously described

approaches, they cannot be used for variant discovery. Such approaches model

each known variant as a k-mer and use the k-mers frequency in the input

sample to genotype the variants. Examples of alignment-free approaches are

FastGT [118], LAVA [139], and VarGeno [152].

FastGT strongly relies on a pre-compiled dataset of bi-allelic SNPs and corre-

sponding k-mers, obtained by subjecting the k-mers overlapping known SNPs to

Chapter 4 Known Variants Genotyping 84

several filtering steps. Such filters consist in removing from the dataset the SNPs

for which unique k-mers (i.e. not occurring elsewhere in the reference genome)

are not observed, those that are closely located (i.e. that are less than k bases

apart), and others: after the filtering steps, only ∼ 30,000,000 bi-allelic SNPs

(less than the ∼ 40% of the number of bi-allelic SNPs contained in the Phase 3

release of the 1000 Genomes Project) survive and can therefore be genotyped.

Differently from FastGT, LAVA and VarGeno do not rely on any pre-compiled

custom-format dataset but they can be used with any dataset of SNPs, such

those provided by dbsnp [142] or the 1000 Genomes Project [25]. LAVA starts

by storing the k-mers covering the alleles of the known variants in a set of hash

tables alongside with additional information such as the positions at which the

k-mer occurs. Then, by analyzing the read sample, it uses approximate k-mer

matching to assign to each k-mer stored in the index its frequency in the input

sample. Finally, a probabilistic framework is used to call the genotypes.

VarGeno builds directly upon LAVA to improve its efficiency and accuracy.

Differently from LAVA, VarGeno stores the k-mers and their satellite information

by means of a Bloom filter (instead of hash tables) speeding up its computation

and exploits quality values associated to each base of the input reads to achieve

higher accuracy.

4.2 Preliminaries

Let Σ be an ordered and finite alphabet of size σ and let t = c1c2 . . . ck, where

cj ∈ Σ for j = 1, . . . , k, be a string of k characters drawn from Σ, we say that t

is a k-mer. When a k-mer originates from a double stranded DNA, it is common

to consider it and its reverse-complemented sequence as the same k-mer, and to

say that the one that is lexicographically smaller among the two is the canonical

one. In the following, we will abide by this definition and whenever we refer to a

k-mer we implicitly refer to its canonical form. Moreover, to avoid k-mers being

equal to their reverse-complement, we will only consider odd values of k.

The difference between the genetic sequence of two unrelated individual of

the same species is estimated to be smaller than 0.1% [164]; therefore, it is

common to represent the DNA sequence of an individual as a set of differences

Chapter 4 Known Variants Genotyping 85

from a reference genome. Indeed, thorough studies [25, 26, 28] of the variations

across different individuals encode such information as a VCF (Variant Calling

Format) file [31].

We will call variant the information encoded by a data line of a VCF file.

Besides the genotype data, we are interested in the information carried by the

second, fourth, fifth, and eighth field of a VCF line, namely: (i) field POS that

is the position of the variant on the reference, (ii) field REF that is the reference

allele starting in position POS, (iii) field ALT that is a list of alternate alleles that

in some sample replace the reference allele, and (iv) field INFO that is a list of

additional information describing the variant. From the latter list we will get

the frequencies of reference and alternate alleles, which are needed to call the

genotype of a given individual. We denote with POS(v), REF(v), ALT(v), FREQ(v),

and GTD(v) the reference position, reference allele, list of alternate alleles, list of

allele frequencies, and genotype data of a variant v, respectively.

The variants we take into account are SNPs, i.e. both REF and all the ele-

ments of ALT are single base nucleotides) and indels, i.e. REF and at least one

element of ALT are not of the same length. Given an allele a (either reference or

alternate) of some variant v, we refer to its sequence of nucleotides as SEQ(a),

i.e. SEQ(a) is the string that represents a.

Let R be a reference genome and let V be a VCF file that describes all the

known variants of R. Since the genotype data provides information on the alleles

expressed in each genome, another way of thinking of a VCF file is as an encoding

of a set of genomes G. Each haplotype of the genomes in G can be reconstructed

by modifying R according to the genotype information associated to each variant.

For ease of presentation, in the following we use the term genome and haplotype

interchangeably, although each genome of a polyploid organism is composed of

multiple haplotypes.

Let G be the set of genomes encoded by a VCF file and let a be an allele

of some variant v, we denote by Ga ⊆ G the subset of genomes that include a.

We say that a variant v is k-isolated if there is no other known variant within

a radius of bk/2c from the center of any of its alleles, as formally stated in the

following definition.

Definition 1 (k-isolated variant). A variant v is k-isolated if, for all a ∈

Chapter 4 Known Variants Genotyping 86

ALLELES(v) and g ∈ Ga, there is no variant v′ 6= v with an allele a′ ∈ ALLELES(v′)

such that g ∈ Ga′ and either |BEGINg(a′)−CENTERg(a)| ≤ bk/2c or |CENTERg(a)−
ENDg(a

′)| ≤ bk/2c, where ALLELES(v) = REF(v) ∪ ALT(v), BEGINg(a) is the po-

sition of the first base of a in g, ENDg(a) the position of the last base, and

CENTERg(a) the position of the d |a|
2
e-th base of a in g.

The procedure we will present in the next section is heavily based on the

concept of signature of an allele. Intuitively, a signature of the allele a of a variant

v is the k-mer centered in a in some genome g in Ga. Note that, depending on the

genomes encoded by the VCF file, specifically if a variant is non k-isolated, its

allele might have multiple signatures. Moreover if SEQ(a) is longer than k bases,

the previous definition is not well formed, since there is no k-mer that can be

centered in a. In this case we define the signature of a as the set of its substrings

of length k. The following definition formalizes the notion of signature of an

allele.

Definition 2 (Signature of an allele). Let G be the set of all the genomes encoded

by a VCF file V and let k be an odd positive value. Let v be a variant in V, let a

be one of the alleles of v, and let Ga ⊆ G be the set of the genomes that include

a. If SEQ(a) is longer than k bases, we say that the signature of a is the set of

all the substrings of length k of SEQ(a). If SEQ(a) is shorter than k bases, we

say that {xSEQ(a)y} is the signature of a in a genome g in Ga if: (i) xSEQ(a)y

is a k-mer, (ii) |x| = bk−|SEQ(a)|
2
c, (iii) |y| = dk−|SEQ(a)|

2
e, (iv) x is a suffix of the

sequence that precedes a in g, and (v) y is a prefix of the sequence that follows a

in g.

We will refer to the set of all the possible signatures of an allele a as SIGN(a)

and we say that k is the length of the signature. An example of signatures of

an allele is shown in Figure 4.1. Notice that the same k-mer may appear in the

signature of more than one allele.

In the following we will leverage on the definition of signature of an allele to

detect its presence in an individual without mapping the reads to the reference

genome. More precisely, we will analyze whether the k-mers of a given signature

are present in the reads and use such information as a hint of the presence of

the allele. Unlike other approaches [118], Definition 2 admits the presence of the

Chapter 4 Known Variants Genotyping 87

Pos Ref Alts Donors
5 C AAA 0|1 0|0 1|1
7 T G 0|1 0|1 0|1
10 G A,C 0|0 1|2 2|0

v1
v2
v3

A G A T C C T G C G A A G

1 2 3 4 5 6 7 8 9 10 11 12 13

R

a0 = T

a1 = G

Allele Signatures

{ {TCCTGCG}, {TCCTGCA}, {AACTGCC} }
{ {AACGGCG}, {TCCGGCC} }

v2

Variant

Figure 4.1: Signatures of the alleles of a variant. R is the reference sequence

and the table on the right is a VCF information associated to it, representing 3

variants: an indel (v1), a bi-allelic SNP (v2), and a multi-allelic SNP (v3). The

last columns of the VCF file carry the genotype information of 3 individuals.

The table at the bottom reports the signatures of each allele of variant v2. Note

that there are only 5 signatures although 6 haplotypes are encoded by the VCF

file since the second haplotype of the first and third individual are the same. We

highlighted in red the genotype information associated to the second haplotype

of the second genome and the corresponding signature.

alleles of multiple variants in a single signature, allowing MALVA to manage vari-

ants that are not k-isolated. Indeed, the set of signatures of an allele represents

all the genomic regions where the allele appears in the genomes encoded by the

VCF file.

4.3 Method

In this section we will describe MALVA, the method we designed to genotype a

set of known variants directly from a read sample. The general idea of MALVA

is to use the frequencies of the signatures of a variant in the sample to call

its genotype. The method works under the assumption that given a sample of

reads from a genome with standard coverage depth, if an allele is included in the

genome then at least one of its signatures must exist as substrings in multiple

reads (depending on the coverage depth and the length of the signature). We

leverage on this concept to genotype known variants directly from the input

reads.

Chapter 4 Known Variants Genotyping 88

MALVA takes as input a reference genome, a VCF file representing all its known

variants, and a read sample; it outputs a VCF file containing the most probable

genotype for each variant. Our method is composed of four steps.

In the first step, MALVA computes the set of signatures of length ks of all the

alternate alleles of all the variants in VCF and stores them in the set ALTSIG. In

the same step, the signatures of the reference alleles are computed and stored in

a second set named REFSIG. For each ks-mer t of a signature s two weights, one

representing the number of occurrences of t in an alternate allele signature and

one representing the number of occurrences of t in a reference allele signature,

are stored. We will refer to these two values as wA
t and wR

t , respectively.

We note that for small values of ks the probability that the ks-mers that

constitute a signature appear in other regions of the genome is high. Since

in the following steps MALVA exploits the signatures’ sets of the alleles of each

variant to call the genotypes, the presence of conserved regions of the reference

genome identical to some signature could lead the tool to erroneously genotype

some variants.

To get rid of a large amount of wrong calls, in the second step MALVA makes use

of the context around the allele to distinguish its signatures from such regions.

More precisely, if a ks-mer of a signature of an alternate allele appears somewhere

in the reference genome, MALVA extracts the context of length kc (with kc > ks)

covering the reference genome region and collects such kc-mers in a third set

(REPCTX).

In the third step, MALVA extracts all the kc-mers from the sample along with

the number of its occurrences. For each kc-mer tc that occurs w times in the

sample, the ks-mer ts that constitutes the center of tc is extracted. If ts is found

in REFSIG, wR
ts is increased by w. Moreover, if tc is not found in REPCTX and

if ts is in ALTSIG, wA
ts is increased by w. Otherwise, if tc is in REPCTX, wA

ts is

not updated since, although its central ks-mer is identical to some ks-mer of

a signature of an alternate allele of some variant, it is indistinguishable from

another region of the genome not covering the variant.

We note that when wA
ts is not updated, our method might miss a variant in

the donor and report a false negative, although for large values of kc this would

rarely occur. The rationale behind this choice is to avoid biases due to kc-mers in

Chapter 4 Known Variants Genotyping 89

conserved regions of the reference genome, preferring not to include an alternate

allele in the output whenever ambiguities arise.

Finally, in the fourth step, MALVA uses the weights computed in the previous

step to call the genotypes.

In the rest of this section we will detail each one of the four steps of MALVA.

Signature computation The first step of MALVA consists in building the sig-

natures of the alleles of all the variants and adding them either to ALTSIG, if they

are the signatures of an alternate allele, or to REFSIG, if they are the signature of

the reference allele. If a variant v is ks-isolated, we build 1 + |ALT(v)| signatures,

one for each allele of v. Otherwise, there are some genomes in G in which there is

at least another allele of a variant that lays within a radius of bks/2c nucleotides

from the center of the allele of v. In practice, this means that we have to look

at the genotype data of the variants within such radius: for each allele a of v we

reconstruct the ks bases long portions of the genomes in Ga that constitute the

signatures of a.

As pointed out in Definition 2, if |SEQ(a)| ≥ ks, the signature of a is the set

of ks-mers that appear in SEQ(a). In this case we extract all such ks-mers and

add them either to REFSIG or ALTSIG. Otherwise, if |a| < ks, we build the ks

bases long substrings of each genome in Ga centered in a by scanning the VCF

file and reconstructing the sequences according to the genotype information it

includes.

More precisely, let a be an allele of a variant v and let V = {v1, . . . , vn} be

the set of variants such that, for all 1 ≤ i ≤ n: (i) vi 6= v, (ii) there exists an

allele aj in ALLELES(vi) such that a and aj are both included in some genome

g, and (iii) either (END(aj) < BEGIN(a) and CENTER(a) − bks/2c ≤ END(aj)) or

(END(a) < BEGIN(aj) and CENTER(a) + bks/2c ≥ BEGIN(aj)) in g.

Given allele a, we use the genotype information stored in the VCF file to

retrieve the haplotypes in which it is included, i.e. a subset of the haplotypes

in Ga, and build the set V . Using V we gather all the alleles that precede and

succeed a in the selected haplotypes and we use them, together with the reference

sequence, to reconstruct on the fly the ks-mer that covers a, by interposing

reference substrings and allele sequences. Doing so, we don’t need to reconstruct

Chapter 4 Known Variants Genotyping 90

the whole haplotypes but we only analyze and reconstruct the required ks-mers

when needed.

Once all the ks-mers have been constructed, they are added to REFSIG if a is

the reference allele, to ALTSIG if it is an alternate allele.

Detection of repeated signatures This step is aimed to detect and store

in set REPCTX all the kc-mers of the reference sequence whose central ks-mer is

included in some signature of some alternate allele, kc > ks. REPCTX will be used

in a further step to discard alternate alleles that might be erroneously reported as

expressed by MALVA only because they cannot be told apart from other identical

regions of the reference sequence.

To compute REPCTX, we extract all the kc-mers of the reference sequence

and test whether their central ks-mer is in ALTSIG. If so, we add the kc-mer to

REPCTX to report that the ks-mer is indistinguishable from some ks-mer that is

included in the signature of an alternate allele.

We will now exemplify the first two steps of our approach. Figure 4.2 shows

an example composed of three variants and two reads. In this example the values

of ks and kc are set to 7 and 11, respectively. Subfigure (a) shows the 26-bases

long reference sequence. Subfigure (b) reports on the left two bi-allelic variants

(v1 and v2) and one multi-allelic variant (v3), and on the right the signatures of

each allele of v2. Subfigure (c) shows the elements of ALTSIG and REFSIG related

to v2. We note that the second signature in ALTSIG is composed of a single ks-

mer (ts, equal to TCCGGCG) that appears in the reference genome, starting from

position 17. Thus, the kc-mer starting in position 15 and ending in position 25

(tc, equal to GATCCGGCGAA) is added to REPCTX. Subfigure (d) shows two 11-bases

long reads including ts, extracted from position 3 and 15 of the donor. Clearly,

only r1 should contribute to the detection of the alternate allele of v2 in the

donor, since r2 was sequenced from another position of the genome (i.e. wA
ts

should be equal to 1 in this case). To this aim, REPCTX comes to an aid; indeed,

when analyzing r1 the kc-mer covering ts is extracted (i.e. the whole read) and

its inclusion in REPCTX is tested. Since TATCCGGCGTA is not in REPCTX and ts is

in ALTSIG, wA
ts is increased by one. On the other hand, since GATCCGGCGAA is

in REPCTX, the occurrence of ts in r2 is not considered in wA
ts , thus avoiding to

Chapter 4 Known Variants Genotyping 91

Pos Ref Alts Donors
5 C AAA 0|1 0|0 1|1
7 T G 0|1 0|1 0|1
10 G A,C 0|0 1|0 2|0

v1
v2
v3

A T A T C C T G C G T A G

1 2 3 4 5 6 7 8 9 10 11 12 13

R

a0 = T

a1 = G

Allele Signatures

{ {TCCTGCG}, {TCCTGCA} , {AACTGCC} }
{ {AACGGCG}, {TCCGGCG}}

v2

Variant

14 15 16 17 18 19 20 21 22 23 24 25 26

ALTSIG
{AACGGCG}

{TCCGGCG}

REFSIG
{TCCTGCG}
{TCCTGCA}
{AACTGCC}

A G A T C C G G C G A A G

REPCTX
GATCCGGCGAA

r1 T A T C C G G C G T A

1 2 3 4 5 6 7 8 9 10 11

G A T C C G G C G A Ar2

(a)

(b)

(c)

(d)

Figure 4.2: Example with 3 variants and two reads. Subfigure (a) shows a

reference genome of 26 bases, Subfigure (b) reports 3 variants and the signatures

of each allele of variant v2, Subfigure (c) reports the subsets of ALTSIG, REFSIG,

and REPCTX including the elements related to v2, and Subfigure (d) presents two

reads of length 11.

erroneously overestimate the frequency of allele a1 of v2.

We note that on one hand this approach allows us to avoid overestimating

the frequencies of some alternate allele but, on the other hand, it produces two

major side effects. The first one is that some allele might be underestimated

by MALVA; indeed, if the kc-mer covering an alternate allele in a donor is equal

to a kc-mer in the genome it will not be detected. The second side effect is

that MALVA might overestimate the frequency of some allele due to identical

signature. Indeed, suppose that the signature of some alternate allele ai of

another variant vj 6= v2 is equal to the signature of alternate allele a1 of variant

v2. It is obvious that the weights of the ks-mers of the two signatures will be

identical and that the occurrences of both the alleles will concur towards their

final value, overestimating it.

Although the two side effects pose some limit to our method, they arise

Chapter 4 Known Variants Genotyping 92

rarely and we think they are a fair price to pay to avoid biases introduced by

the reference genome.

Alleles’ signatures weights computation In the third step, MALVA com-

putes how many times the ks-mers of each signature appear in the dataset.

First, MALVA extracts all the kc-mers of the read sample and tests their existence

in REPCTX to check whether their central ks-mer cannot be told apart from some

repetition in the reference genome. Then, given a kc-mer tc that occurs w times

in the read sample, the ks-mer ts that constitutes its center is extracted. If ts is

found in REFSIG, i.e. ts is the signature of the reference allele of some variant,

the weight wR
ts is increased by w. Moreover, if tc is not found in REPCTX and ts

is in ALTSIG, i.e. ks-mer ts is uniquely associated to an alternate allele of some

variant, the weight wA
ts is increased by w. Conversely, if tc is in REPCTX, wA

ts is

not updated. The last scenario happens when ts is identical to the signature of

an alternate allele of some variant (indeed, ts is in ALTSIG), but even the en-

larged context tc (and consequently ts) appears somewhere else in the reference

genome.

Genotype calling In the last step, MALVA uses the allele frequencies stored

in the INFO field of the VCF file and the weights of the signatures computed in

the previous step to call the genotype of each variant. To this aim, we extend

the approaches proposed in the literature for bi-allelic variants (specifically, the

one introduced in LAVA [139]) to multi-allelic variants. While the approaches

designed for genotyping bi-allelic variants only need to compute the likelihood

of three genotypes, our technique must consider a larger number of possible

genotypes.

Let v be a variant with n−1 alternate alleles. The number of possible distinct

genotypes is
(
n
2

)
+ n = n(n+1)

2
, that is: one homozygous reference genotype,

(
n
2

)
heterozygous genotypes, and n−1 homozygous alternate genotypes. We will refer

to the homozygous reference genotype as G0,0, to the heterozygous genotypes as

Gi,j with 0 ≤ i < j ≤ n − 1, and to the homozygous alternate genotypes as

Gi,i with 1 ≤ i ≤ n− 1. Following well-established techniques [139, 101, 86], we

compute the likelihood of each genotype Gi,j by means of the Bayes’ theorem.

Chapter 4 Known Variants Genotyping 93

Given the observed coverage C, we compute the posterior probability of each

genotype as:

P (Gi,j|C) =
P (Gi,j)P (C|Gi,j)

P (C)

that, by the law of total probability, can be expressed as:

P (Gi,j|C) =
P (Gi,j)P (C|Gi,j)∑n−1

p=0

∑n−1
q=p P (Gp,q)P (C|Gp,q)

To calculate this probability, we compute the a priori probabilities of each geno-

type Gi,j (P (Gi,j)) and the conditional probability of the observed coverage given

the considered genotype (P (C|Gi,j)).

The Hardy-Weinberg equilibrium equation ensures that for each variant v,

(
∑n−1

i=0 fi)
2 = 1, where fi = FREQ(v)[i], i.e. the frequency of the i-th allele of v.

We recall that FREQ(v) is stored in the INFO field of the VCF file. The a priori

probability of each genotype Gi,j is therefore computed as follows:

P (Gi,j) =

f 2
i if i = j

2fifj otherwise

To compute the conditional probability P (C|Gi,j), it is first necessary to

compute the coverages of the alleles of the variant. Without loss of generality,

let a0 be the first allele of the variant, i.e. a0 is the reference allele with index

0. We recall that SIGN(a0) is the set of signatures of allele a0 and that each

signature is a set of one or more k-mers. We also recall that, in the previous

step, for each k-mer t that belongs to some signature we computed two weights,

namely wR
t and wA

t .

Given a signature s ∈ SIGN(a0), we define its weight as the mean of the

weights associated to the k-mers it contains, i.e.
∑

t∈s w
R
t

|s| where |s| denotes the

number of k-mers contained in signature s. Since the same allele may exhibit

more signatures, we define the coverage c0 of allele a0 as the maximum value

among the weights of its signatures, i.e. max{
∑

t∈s w
R
t

|s| : s ∈ SIGN(a0)}. This

formula can be easily modified to compute the coverage of an alternate allele (ci

for i ≥ 1) by switching wR
t with wA

t . The coverage ci of an allele ai of a variant

Chapter 4 Known Variants Genotyping 94

is thus computed as follows:

ci =

max{
∑

t∈s w
R
t

|s| : s ∈ SIGN(a0)} if i = 0

max{
∑

t∈s w
A
t

|s| : s ∈ SIGN(ai)} otherwise

By extending the approach adopted in [139], we consider each P (C|Gi,j) to

be multinomially distributed. Given a homozygous genotype Gi,i, we assume to

observe the i-th allele, which is the correct one, with probability 1− ε (where ε

is the expected error rate) whereas the other n − 1 alleles (the erroneous ones)

with probability ε
n−1 each. Hence, we compute the conditional probability of a

homozygous genotype as:

P (C|Gi,i) =

(
ci + CE

ci

)
(1− ε)ci

(
ε

n− 1

)CE

where CE is the total sum of the coverages of the erroneous alleles, i.e. CE =∑
j∈{0,...,n−1}\{i} cj.

For what concerns heterozygous genotypes, we assume to observe the correct

alleles, i.e. the i-th and the j-th allele, with equal probability 1−ε
2

whereas

the other n − 2 erroneous alleles with probability ε
n−2 each. We compute the

conditional probability of a heterozygous genotype as follows:

P (C|Gi,j) =

(
ci + cj + CE

ci + cj

)(
ci + cj
ci

)(
1− ε

2

)ci (1− ε
2

)cj (ε

n− 2

)CE

where, again, CE is the sum of the coverages of the erroneous alleles, i.e. CE =∑
p∈{0,...,n−1}\{i,j} cp.

Finally, after computing the posterior probability of each genotype, MALVA

outputs the genotype with the highest likelihood.

4.4 Results

We implemented MALVA in C++ and we performed an experimental analysis

on real data to evaluate the real feasibility of our method, comparing it with

other approaches available in the literature. MALVA is freely available at https:

//github.com/AlgoLab/malva. Information and instruction on how to repli-

cate the performed experiments are available at https://github.com/AlgoLab/

malva_experiments.

https://github.com/AlgoLab/malva
https://github.com/AlgoLab/malva
https://github.com/AlgoLab/malva_experiments
https://github.com/AlgoLab/malva_experiments

Chapter 4 Known Variants Genotyping 95

This section is organized as follows. We will first describe the implementation

details of MALVA and then we will provide a thorough description of the performed

experiments and the obtained results. All the analyses were performed on a 64

bit Linux (Kernel 4.4.0) system equipped with four 8-core Intel R© Xeon 2.30GHz

processors and 256GB of RAM.

4.4.1 Implementation details

Bloom filters were implemented as the union of a bit vector and a single hash

function H. Although it is not conventional, in most cases to use a single

hash function has similar results as using multiple ones, as noticed by other

authors [151, 152]. To check this claim, while developing the tool we tested

whether using multiple hash functions would improve the results by extending

the Bloom filters to count-min sketches [29]. As expected, the deterioration of

the performance far outweighed the gain in precision and recall (that was less

than 0.1%).

Moreover, to use a single hash function allows us to store wR
t and wA

t ef-

ficiently for each k-mer t. Indeed, note that once all the signatures of all the

alternate alleles have been added to ALTSIG, the latter is only used to check

whether some ks-mer is part of a signature, i.e. it becomes static. By represent-

ing ALTSIG as a Bloom filter BALTSIG we can create an integer array CNTS of size

rank1(|BALTSIG|+ 1, BALTSIG) to store the weights of each k-mer compactly and, if

a k-mer t of a signature s is in ALTSIG (i.e. if BALTSIG[H(s)] = 1) we can access

its weight by accessing CNTS[rank1(H(s), BALTSIG)].

In a nutshell, after adding all the alternate alleles to BALTSIG, we freeze it,

build a rank data structure over it, compute the number of ones, and create the

CNTS array of the correct size. We pose an upper limit of 255 to the value of each

cell of the CNTS array, so as to store each counter using only 8 bits. Similarly,

we implemented REPCTX as a Bloom filter BREPCTX using a single hash function.

Conversely, REFSIG was implemented as a simple hash table, because the

number of elements it stores is usually smaller than the number of elements

stored in ALTSIG.

Finally, instead of scanning all the kc-mers in the read sample, we used

Chapter 4 Known Variants Genotyping 96

KMC3 [39] to efficiently extract them and counting their occurrences. Therefore,

in step 3 MALVA parses the output of KMC3 and updates the counts for each ks-mer

accordingly.

For completeness, we note that the bit vectors, the rank data structure, and

the CNTS array were implemented using the sdsl-lite library [48].

4.4.2 Experimental analysis

We performed an experimental analysis on real data to evaluate the real fea-

sibility of our method and we compared MALVA to one alignment-free method,

to one assembly-based approach, and to two different alignment-based pipelines.

Among the alignment-free methods proposed in literature we chose VarGeno, as it

is an improved version of LAVA that provides better efficiency and accuracy [152].

For completeness, we included in our evaluation discoSnp++ (assembly-based)

and the two most widely used alignment-based pipelines, denoted by BCFtools

and GATK, respectively. The pipeline denoted by BCFtools consists of an align-

ment step performed with BWA-MEM followed by a variant discovering step per-

formed using BCFtools. The latter consists of an alignment step performed with

BWA-MEM and a variant discovering step performed with GATK, as recommended

by the GATK Best Practices [35].

MALVA was run setting ks equal to 47, kc equal to 53, ε equal to 0.1%, Bloom

filters size equal to 8GB, and considering the genotype data and the a priori fre-

quencies of the alleles of the EUR population, since the individual under analysis

is part of it.

We tested the tools using the Illumina WGS dataset of the well-studied

NA12878 individual provided by the Genome In A Bottle (GIAB) consortium [177].

We chose this individual because the variant calls provided are highly reliable

and can be effectively used to assess the precision and the recall of the con-

sidered methods. We downloaded the alignments of its 30x downsampled ver-

sion and used SAMtools [89] to extract the corresponding FASTQ file, obtaining

696,168,435 150bp-long reads. As reference genome and set of known variants,

we used the GRCh37 primary assembly and the VCF files provided by Phase 3

of the 1000 Genomes Project [150]. These VCF files contain a total of 84,739,838

Chapter 4 Known Variants Genotyping 97

variants, the phased genotype information of 2504 individuals, and the a priori

frequency of each allele of each variant of 5 populations. As stated above, from

this VCF, in our evaluation MALVA extracted and considered only the individuals

from the EUR population, for a total of 502 individuals. We note that we also

removed the NA12878 individual from the input to better analyze MALVA and its

capability in genotyping an unknown individual.

We note that VarGeno requires a different formatting of the fields describing

the a priori frequencies of the alleles than the ones in the VCF file provided

by the 1000 Genomes Project. Thus, we formatted the input files as required

before running VarGeno. However, VarGeno could not complete the analysis of

this dataset, from now on denoted as FullGenome, on our server. To test whether

VarGeno crashed due to excessive memory usage, we tried to run it on the same

instance on a cluster with 1TB of RAM, but nevertheless it could not complete

the analysis, crashing after 20 minutes.

In order to include VarGeno in our evaluation, we chose 12 chromosomes to

create a smaller dataset, denoted by HalfGenome, that thus contains some half

of the variants and the reads of the FullGenome dataset.

Each tool was evaluated in terms of variant calling accuracy and efficiency

(wall time and memory usage). We note that some steps of the previously cited

tools can use multiple threads to improve the time performance (namely, KMC3 for

MALVA, discoSnp++, BWA-MEM for BCFtools and GATK, and the variant discovery

steps of GATK). Whenever we had this choice, we provided 4 threads to each tool.

We used hap.py [82], the tool developed for the evaluation of variant callers

in the recent PrecisionFDA Truth Challenge1, and the /usr/bin/time system

tool to gather the required data.

Table 4.1 shows the results obtained by the considered tools on both the

FullGenome and the HalfGenome datasets. We point out that hap.py computes

precision and recall considering only non-reference VCF records (i.e. non 0/0

calls). A qualitative representation of these results is available in Figure 4.3.

As expected, MALVA, VarGeno, and discoSnp++ are faster than the tested

alignment-based approaches, i.e. BCFtools and GATK. Indeed, MALVA, VarGeno,

and discoSnp++ required 4.5, 2.5, and 7.5 hours to analyze the HalfGenome

1https://precision.fda.gov/challenges/truth

https://precision.fda.gov/challenges/truth

Chapter 4 Known Variants Genotyping 98

SNP INDEL0.00

0.25

0.50

0.75

1.00
MALV

A
VarG

en
o

dis
coS

np
++

BCFto
ols

GATK
MALV

A
VarG

en
o

dis
coS

np
++

BCFto
ols

GATK

Indel (precision)
Indel (recall)

SNP (precision)
SNP (recall)

(a) FullGenome dataset

SNP INDEL0.00

0.25

0.50

0.75

1.00
MALV

A
VarG

en
o

dis
coS

np
++

BCFto
ols

GATK
MALV

A
VarG

en
o

dis
coS

np
++

BCFto
ols

GATK

Indel (precision)
Indel (recall)

SNP (precision)
SNP (recall)

(b) HalfGenome dataset

Figure 4.3: Qualitative representation of the accuracy results. Each violin plot

represents the precision and the recall (computed with hap.py) achieved by the

considered tools on both SNPs and indels. This is a qualitative representation

of the information presented in Table 4.1.

Chapter 4 Known Variants Genotyping 99

Dataset Tool
Prec

(SNPs)

Rec

(SNPs)

Prec

(Indels)

Rec

(Indels)

Time

(hh:mm)

RAM

(GB)

HalfGenome MALVA 93.8% 91.1% 86.0% 81.4% 04:33 30

VarGeno 97.5% 88.1% 39.5% 0.1% 02:31 52

discoSnp++ 89.5% 39.3% 80.8% 24.2% 07:45 7

BCFtools 91.2% 94.8% 44.9% 55.4% 24:35 6

GATK 91.7% 95.1% 53.2% 79.9% 34:43 32

FullGenome MALVA 92.5% 90.0% 85.0% 80.6% 09:18 39

VarGeno - - - - - -

discoSnp++ 86.9% 37.7% 80.0% 22.6% 14:19 9

BCFtools 91.6% 94.4% 44.7% 54.6% 54:23 9

GATK 92.1% 94.7% 53.2% 79.2% 73:36 33

Table 4.1: Accuracy and efficiency results on the HalfGenome and FullGenome

datasets. For each dataset, we reported the values of Precision (Prec) and Recall

(Rec) obtained by the considered tools on both SNPs and indels. The efficiency

results are shown in terms of wall clock time and peak memory usage. VarGeno

could not complete the analysis of the FullGenome dataset, thus we did not

report its results on this dataset.

dataset, respectively, while BCFtools and GATK required 24.5 and 34.5 hours. We

note that half of the time required by BCFtools and one third of the time required

by GATK was spent running BWA-MEM, that completed its task in 12.5 hours (using

4 threads). The same trend applies to the analysis of the FullGenome dataset,

on which each tool required roughly twice the time required on the HalfGenome

dataset. A qualitative representation of the running time and the memory usage

of each tool is shown in Figure 4.4.

For what concerns the memory usage, BCFtools proved to be the least mem-

ory intensive approach, requiring less than 10GB of RAM on both datasets to

map the reads and less than 1GB of RAM to call the variants. MALVA and GATK

showed similar memory requirements, with GATK showing almost no difference

between the two analyses and MALVA increasing the memory consumption by

Chapter 4 Known Variants Genotyping 100

MALVA VarGeno discoSnp++ BCFtools GATK

0

20

40

60

80

Ti
m

e
(h

ou
rs

)

Genotyping (FG)
k-mer counting (FG)
Alignment (FG)
RAM (FG)

0

20

40

60

RAM
 (GB)

Genotyping (HG)
k-mer counting (HG)
Alignment (HG)
RAM (HG)

Figure 4.4: Time and RAM required by each tool to analyze both datasets.

The running times are partitioned by steps performed whereas the RAM usage

represents the peak memory of the entire process. For ease of presentation, we

denoted the FullGenome dataset as FG whereas the HalfGenome dataset as HG.

Note that we did not include VarGeno running time and RAM usage on the

FullGenome dataset since it crashed after 20 minutes.

Chapter 4 Known Variants Genotyping 101

only 23% for the bigger dataset. VarGeno required slightly less than twice the

amount of memory required by MALVA on the HalfGenome dataset.

Precision and recall of all the tools varied little over the two datasets, proving

that the number of variants and reads only slightly affects their accuracy.

As expected, BCFtools and GATK achieved the best recall for non-homozygous

reference SNPs due to the mapping step, that provides a more precise coverage of

the alleles and allows to better discern repeated regions of the reference genome.

discoSnp++ achieved the lowest recall whereas VarGeno obtained 3% less

recall than MALVA, that in turn called correctly 91.1% of the SNPs. On the other

hand, MALVA, discoSnp++, BCFtools, and GATK achieved comparable precision

on SNPs, whereas VarGeno obtained the highest one.

Overall, on non-homozygous reference SNPs, VarGeno seems to be the most

conservative tool among those tested, as it prefers not to call SNPs when there

is any uncertainty. On the contrary, MALVA deliberately prefers to detect any

potential alternate allele in the donor, at the cost of a slight loss in precision.

Remarkably, on indels MALVA obtained significantly better recall than BCFtools

and discoSnp++ and better precision than any other tool. As expected, since the

method of VarGeno is not designed to manage indels, it was only able to geno-

type a negligible percentage of them. On the other hand, discoSnp++ achieved

a high precision but it was only able to call less than a quarter of the total in-

dels. Finally, BCFtools showed a very low precision and recall on indels, whereas

GATK achieved a recall similar to MALVA but a low precision. The low precision

achieved by the alignment-based tools is mainly due to the difficulties in aligning

reads that overlap with indels.

We also performed a more detailed analysis on the influence of indel size

on the recall obtained by the tools on the FullGenome dataset. As shown in

Figure 4.5, MALVA proved to be the only tool able to call long indels (more than

∼ 40/50 bases) whereas the other tools are limited to short indels (that are also

the most common ones). In any case, MALVA outperformed the other tools even

on these shorter indels. We did not include VarGeno in this analysis since its

recall on indels was lower than 1% even on the HalfGenome dataset.

Finally, we also performed a more in-depth comparison of MALVA and VarGeno,

the two alignment-free approaches considered in our evaluation, to assess whether

Chapter 4 Known Variants Genotyping 102

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

MALVA GATK BCFtools discoSnp++

100 50 0 50 100 150 200
Indel length (#bp)

0

2

4

6

8

10

12

#i
nd

el
s (

lo
g

sc
al

e)

Figure 4.5: Influence of indel size on the recall achieved by the four considered

tools on the FullGenome dataset. The histogram shows the frequency distribu-

tion (on logarithmic scale) of the indels with respect to their length. The scatter

plot shows the recall of the tools with respect to the indel size.

Chapter 4 Known Variants Genotyping 103

HomoRef HetRef HomoAlt HetAlt Uncalled
Given GT

H
o
m

o
R

e
f

H
e
tR

e
f

H
o
m

o
A

lt
H

e
tA

lt
R

e
a
l
G

T

37809325 68037 1657 17 0

97699 1056136 15588 132 0

25405 24898 696563 117 0

54 98 165 987 0

MALVA

HomoRef HetRef HomoAlt HetAlt Uncalled
Given GT

H
o
m

o
R

e
f

H
e
tR

e
f

H
o
m

o
A

lt
H

e
tA

lt
R

e
a
l
G

T

36087283 20507 947 0 1770299

78451 950511 12049 0 128544

2238 7811 632822 0 104112

0 0 0 0 1304

VarGeno

Figure 4.6: Comparison between real genotype (provided by the 1000

Genomes Project) and genotype called by MALVA and VarGeno. HomoRef

stands for Homozygous Reference, HetRef stands for Heterozygous Reference,

HomoAlt stands for Homozygous Alternate, HetAlt stands for Heterozygous

Alternate, and Uncalled means that the given variant was not called by the tool.

they produce some systematic error. With this aim, we considered the HalfGenome

dataset and we analyzed the SNPs genotyped by the two tools.

For each tool, Figure 4.6 reports the number of correct genotypes output,

grouping them in homozygous reference (i.e. 0|0), heterozygous reference (i.e.

0|1, 0|2, and so on), homozygous alternate (i.e. 1|1, 2|2, and so on), and het-

erozygous alternate (i.e. 1|2, 1|3, 2|3, and so on). Figure 4.7 shows the same

data row-normalized.

We recall that the precision and recall output by hap.py do not consider

homozygous reference genotypes, thus this analysis allows us to better under-

stand the behavior of the tools. Since VarGeno is not able to manage indels, we

decided to not include them in this analysis.

Consistently with the precision and recall computed by hap.py, MALVA detects

between 5% and 10% more correct variants than VarGeno in all classes, at the

cost of producing more erroneous calls. We note that overall VarGeno filters out

2,004,259 of the 39,796,878 SNPs in the truth.

Both tool show similar pattern in erroneous calls. More precisely erroneously

Chapter 4 Known Variants Genotyping 104

HomoRef HetRef HomoAlt HetAlt Uncalled
Given GT

H
o
m

o
R

e
f

H
e
tR

e
f

H
o
m

o
A

lt
H

e
tA

lt
R

e
a
l
G

T

0.998 0.002 0.000 0.000 0.000

0.084 0.903 0.013 0.000 0.000

0.034 0.033 0.933 0.000 0.000

0.041 0.075 0.127 0.757 0.000

MALVA

0.0

0.2

0.4

0.6

0.8

1.0

HomoRef HetRef HomoAlt HetAlt Uncalled
Given GT

H
o
m

o
R

e
f

H
e
tR

e
f

H
o
m

o
A

lt
H

e
tA

lt
R

e
a
l
G

T

0.953 0.001 0.000 0.000 0.047

0.067 0.813 0.010 0.000 0.110

0.003 0.010 0.847 0.000 0.139

0.000 0.000 0.000 0.000 1.000

VarGeno

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.7: Comparison between real genotype (provided by the 1000

Genomes Project) and genotype called by MALVA and VarGeno, nor-

malized by rows. HomoRef stands for Homozygous Reference, HetRef stands

for Heterozygous Reference, HomoAlt stands for Homozygous Alternate, HetAlt

stands for Heterozygous Alternate, and Uncalled means that the given variant

was not called by the tool.

Chapter 4 Known Variants Genotyping 105

genotyped homozygous reference variants were mostly genotyped as heterozy-

gous reference and, vice-versa, erroneously genotyped heterozygous reference

variants were mostly genotyped as homozygous reference. On the other hand,

erroneous homozygous alternate variants in the donor were mostly genotyped as

heterozygous reference by VarGeno whereas MALVA evenly distributed the errors

between homozygous reference and heterozygous reference calls. Finally, erro-

neous heterozygous alternate variants in the donor were mostly genotyped as

homozygous alternate variants by MALVA, meaning that the method proposed in

this paper was able to detect the fact that one of the alleles was not the reference

allele.

Overall, the errors produced by both tools were “partial” errors in the sense

that they rarely mis-call both alleles of the donor.

4.5 Final remarks and future directions

In this chapter we presented MALVA, the first efficient alignment-free genotyping

tool that is able to handle multi-allelic variants and indels. We compared MALVA

with VarGeno, the state-of-the-art alignment-free genotyping tool, showing that

our method is less memory intensive, achieves better recall, handles dozens of

millions of variants effectively, and is also able to genotype indels and multi-

allelic variants. These fundamental features allow our method to exploit the

whole information in input, without filtering out any data that might be crucial

in downstream analyses. Most notably, MALVA’s ability to genotype indels allows

to apply alignment-free techniques to many clinical contexts, including screens

for genetic predispositions for disease linked to the presence of indels [128, 171].

We also compared our tool with two variant discovery pipelines, namely

GATK and BCFtools, showing that MALVA is an order of magnitude faster while

achieving better accuracy on indels and similar accuracy on SNPs.

Overall, MALVA proved to be an accurate and efficient alternative to alignment-

based pipelines for variant calling and the experimental evaluation we performed

showed the usefulness of the formalization of signature of an allele. However,

although using the concept of signature proved to be effective in this context,

in some edge cases two alleles might share the same signature and our method

Chapter 4 Known Variants Genotyping 106

will not be able to discern between the two. A simple solution to reduce the oc-

currences of different alleles sharing the same signature is to increase the value

of k. Unfortunately, increasing k beyond 40–50 has two main drawbacks: (i)

it is computationally expensive and (ii) due to errors, the probability that such

k-mers appear in the input reads decreases. To face this limitation, future works

should investigate the effect of using multiple k-mers spanning each allele and

exploit the k-mers flanking the potential occurrence of an allele in the read.

Future steps will be also devoted to improving the efficiency of MALVA by

exploiting the parallel architecture of modern machines, and to extending the

method to discovery and genotype de novo variants, i.e. variants that exist in a

child but do not exist in both its parents, as done by tools like COBASI [49] and

kevlar [149].

Finally, another possible future direction consists in designing an alignment-

free method for genotyping known variants using long reads such those produced

by the latest PacBio and Oxford Nanopore technologies. Indeed, MALVA is specif-

ically designed for dealing with Illumina short-read data and cannot be directly

applied to long-read data due to their higher error rate.

Chapter 5

Conclusions

The analysis of NGS data allows to improve the quality of our lives by enhancing

our understanding of genetic diversity and genetic diseases. In this thesis we

presented two novel algorithmic approaches for the analysis of NGS data. Our

goal was to propose good alternatives to current state-of-the-art approaches and,

in the meantime, solve open computational problems.

The first approach we presented is ASGAL, a tool that identifies the alternative

splicing events supported by an RNA-Seq sample by performing an accurate

alignment to a splicing graph. Differently from current approaches that rely

on transcript reconstruction or spliced alignment against a reference genome, we

devised a novel algorithmic technique solving the open problem of approximately

matching a string against a labeled graph via the use of succinct data structures.

As proved by our experimental evaluation, aligning reads to a splicing graph is

a valid alternative to spliced alignment to a reference genome and it allows to

accurately detect alternative splicing events supported by an RNA-Seq sample.

Indeed, by tailoring the alignment step to the identification of alternative splicing

events, ASGAL is able to detect events that are novel with respect to a gene

annotation even when a single transcript per gene is supported by the RNA-Seq

sample.

The second approach we presented is MALVA, a tool for genotyping known

Single Nucleotide Polymorphisms and indels from a NGS sample. The most

used approaches for variant genotyping rely on read alignment. Conversely, we

proposed an alignment-free approach that is able to genotype a set of known

107

Chapter 5 Conclusions 108

variant directly from the raw reads contained in a NGS sample. The open prob-

lem we aimed to solve was the design of an alignment-free algorithmic technique

able to genotype indels and multi-allelic variants. Indeed all the alignment-free

approaches proposed in the literature can manage only single-allelic Single Nu-

cleotide Polymorphisms. Thanks to its alignment-free approach, MALVA is really

fast, requiring one order of magnitude less time than alignment-based pipelines,

while achieving similar accuracy. Remarkably, MALVA achieves the best accuracy

in genotyping indels.

An in-depth analysis of alternative splicing events and small genomic varia-

tions that may occur between different individuals is essential for a better un-

derstanding of genetic diversity and for discovering the causes behind diseases

and tumors. For this reason, future developments will focus on the enhancement

of the two tools presented in this thesis.

Moreover, since the two topics tackled in this thesis, i.e. alternative splicing

and small genomic variants, are closely related, further steps will also focus on

investigating if the proposed algorithmic approaches, or part of them, can be

combined in a single tool. The main goal would be the development of a tool

for the detection of alternative splicing events that is also able to impute them

to one or more genomic variants in order to facilitate any downstream analysis.

Finally, future work will be also devoted to investigating the problem of

detecting structural variations from NGS data in an alignment-free fashion. We

are motivated by our interest in developing knowledge in this context and we

believe that the alignment-free approach we presented may be a good starting

point for tackling such a problem.

Bibliography

[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing

suffix trees with enhanced suffix arrays. Journal of discrete algorithms, 2(1):53–

86, 2004.

[2] Tatsuya Akutsu. A linear time pattern matching algorithm between a string

and a tree. In Combinatorial Pattern Matching, pages 1–10. Springer, 1993.

[3] Cornelis A Albers, Gerton Lunter, Daniel G MacArthur, Gilean McVean,

Willem H Ouwehand, and Richard Durbin. Dindel: accurate indel calls from

short-read data. Genome research, 21(6):961–973, 2011.

[4] Fatemeh Almodaresi, Prashant Pandey, Michael Ferdman, Rob Johnson, and

Rob Patro. An efficient, scalable and exact representation of high-dimensional

color information enabled via de Bruijn graph search. In International Con-

ference on Research in Computational Molecular Biology, pages 1–18. Springer,

2019.

[5] Fatemeh Almodaresi, Prashant Pandey, and Rob Patro. Rainbowfish: a succinct

colored de Bruijn graph representation. In 17th International Workshop on

Algorithms in Bioinformatics (WABI 2017). Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2017.

[6] Amihood Amir, Moshe Lewenstein, and Noa Lewenstein. Pattern matching in

hypertext. Journal of Algorithms, 35(1):82–99, 2000.

[7] Debora Angeloni, Fuh-Mei Duh, Michele Moody, Michael Dean, Eugene R

Zabarovsky, Vera Sentchenko, Eleonora Braga, and Michael I Lerman. C to

a single nucleotide polymorphism in intron 18 of the human mst1r (ron) gene

that maps at 3p21. 3. Molecular and cellular probes, 17(2-3):55–57, 2003.

109

[8] Ricardo A Baeza-Yates and Gaston H Gonnet. A new approach to text searching.

In ACM SIGIR Forum, volume 23, pages 168–175. ACM, 1989.

[9] Edward V Ball, Peter D Stenson, Shaun S Abeysinghe, Michael Krawczak,

David N Cooper, and Nadia A Chuzhanova. Microdeletions and microinser-

tions causing human genetic disease: common mechanisms of mutagenesis and

the role of local dna sequence complexity. Human mutation, 26(3):205–213, 2005.

[10] Sam Behjati and Patrick S Tarpey. What is next generation sequencing?

Archives of Disease in Childhood-Education and Practice, 98(6):236–238, 2013.

[11] Stefano Beretta, Paola Bonizzoni, Luca Denti, Marco Previtali, and Raffaella

Rizzi. Mapping RNA-seq data to a transcript graph via approximate pattern

matching to a hypertext. In International Conference on Algorithms for Com-

putational Biology, pages 49–61. Springer, 2017.

[12] Andrew Best, Katherine James, Caroline Dalgliesh, Elaine Hong, Mahsa

Kheirolahi-Kouhestani, Tomaz Curk, Yaobo Xu, Marina Danilenko, Rafiq Hus-

sain, Bernard Keavney, et al. Human tra2 proteins jointly control a chek1 splic-

ing switch among alternative and constitutive target exons. Nature Communi-

cations, 5:4760, 2014.

[13] Md Shariful Islam Bhuyan, Itsik Pe’er, and M Sohel Rahman. Sicario: Short

indel call filtering with boosting. bioRxiv, page 601450, 2019.

[14] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13(7):422–426, 1970.

[15] Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin,

Jason Morrison, Michiel Smid, and Yihui Tang. On the false-positive rate of

Bloom filters. Information Processing Letters, 108(4):210–213, 2008.

[16] Robert S Boyer and J Strother Moore. A fast string searching algorithm. Com-

munications of the ACM, 20(10):762–772, 1977.

[17] Michael Burrows and David J Wheeler. A block-sorting lossless data compression

algorithm. Research Report, 124, 1994.

[18] William S Bush and Jason H Moore. Genome-wide association studies. PLoS

computational biology, 8(12), 2012.

110

[19] Brian Bushnell. Bbmap: a fast, accurate, splice-aware aligner. Technical report,

Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2014.

[20] William I. Chang and Eugene L. Lawler. Sublinear approximate string matching

and biological applications. Algorithmica, 12(4-5):327–344, 1994.

[21] Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de Bruijn graph

representation based on a Bloom filter. Algorithms for Molecular Biology, 8:22,

2013.

[22] Ken Christensen, Allen Roginsky, and Miguel Jimeno. A new analysis of the false

positive rate of a bloom filter. Information Processing Letters, 110(21):944–949,

2010.

[23] Suzanne Clancy. Rna splicing: introns, exons and spliceosome. Nature Educa-

tion, 1(31), 2008.

[24] Peter JA Cock, Christopher J Fields, Naohisa Goto, Michael L Heuer, and

Peter M Rice. The sanger FASTQ file format for sequences with quality scores,

and the solexa/illumina FASTQ variants. Nucleic acids research, 38(6):1767–

1771, 2009.

[25] 1000 Genomes Project Consortium et al. A global reference for human genetic

variation. Nature, 526(7571):68, 2015.

[26] International HapMap Consortium et al. The international hapmap project.

Nature, 426(6968):789, 2003.

[27] The Computational Pan-Genomics Consortium. Computational pan-genomics:

status, promises and challenges. Briefings in Bioinformatics, 19(1):118–135, 10

2016.

[28] UK10K consortium et al. The uk10k project identifies rare variants in health

and disease. Nature, 526(7571):82, 2015.

[29] Graham Cormode and S. Muthukrishnan. An improved data stream summary:

the count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

[30] Ying Cui, Meng Cai, and H Eugene Stanley. Comparative analysis and classifi-

cation of cassette exons and constitutive exons. BioMed research international,

2017, 2017.

111

[31] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric

Banks, Mark A. DePristo, Robert E. Handsaker, Gerton Lunter, Gabor T.

Marth, Stephen T. Sherry, Gilean McVean, Richard Durbin, and 1000 Genomes

Project Analysis Group. The variant call format and VCFtools. Bioinformatics,

27(15):2156–2158, 06 2011.

[32] Nicolaas G de Bruijn and Paul Erdös. On a combinatorial problem. Proceed-

ings of the Section of Sciences of the Koninklijke Nederlandse Akademie van

Wetenschappen te Amsterdam, 51(10):1277–1279, 1948.

[33] Luca Denti, Marco Previtali, Giulia Bernardini, Alexander Schönhuth, and Paola

Bonizzoni. MALVA: genotyping by Mapping-free ALlele detection of known

VAriants. iScience, 18:20–27, 2019.

[34] Luca Denti, Raffaella Rizzi, Stefano Beretta, Gianluca Della Vedova, Marco Pre-

vitali, and Paola Bonizzoni. ASGAL: aligning RNA-Seq data to a splicing graph

to detect novel alternative splicing events. BMC Bioinformatics, 19(1):444, 2018.

[35] Mark A DePristo, Eric Banks, Ryan Poplin, Kiran V Garimella, Jared R

Maguire, Christopher Hartl, Anthony A Philippakis, Guillermo Del Angel,

Manuel A Rivas, Matt Hanna, et al. A framework for variation discovery

and genotyping using next-generation dna sequencing data. Nature Genetics,

43(5):491–498, 2011.

[36] David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks. Bloom fil-

ter encryption and applications to efficient forward-secret 0-RTT key exchange.

In Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, pages 425–455. Springer, 2018.

[37] Balázs Dezső, Alpár Jüttner, and Péter Kovács. LEMON–an open source

C++ graph template library. Electronic Notes in Theoretical Computer Sci-

ence, 264(5):23–45, 2011.

[38] Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Za-

leski, Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R. Gingeras.

STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1):15–21, 2013.

[39] Maciej D lugosz, Marek Kokot, and Sebastian Deorowicz. KMC 3: counting and

manipulating k-mer statistics. Bioinformatics, 33(17):2759–2761, 05 2017.

112

[40] Hannes P Eggertsson, Hakon Jonsson, Snaedis Kristmundsdottir, Eirikur Hjar-

tarson, Birte Kehr, Gisli Masson, Florian Zink, Kristjan E Hjorleifsson, Aslaug

Jonasdottir, Adalbjorg Jonasdottir, et al. Graphtyper enables population-scale

genotyping using pangenome graphs. Nature Genetics, 49(11):1654–1660, 2017.

[41] Pär G Engström, Tamara Steijger, Botond Sipos, Gregory R Grant, André

Kahles, Tyler Alioto, Jonas Behr, Paul Bertone, Regina Bohnert, Davide Cam-

pagna, et al. Systematic evaluation of spliced alignment programs for RNA-seq

data. Nature Methods, 10(12):1185, 2013.

[42] Francisco Fernandes and Ana T Freitas. slaMEM: efficient retrieval of maximal

exact matches using a sampled LCP array. Bioinformatics, 30(4):464–471, 2013.

[43] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with ap-

plications. In Proceedings 41st Annual Symposium on Foundations of Computer

Science, pages 390–398. IEEE, 2000.

[44] Sylvain Foissac and Michael Sammeth. Astalavista: dynamic and flexible analy-

sis of alternative splicing events in custom gene datasets. Nucleic acids research,

35(suppl 2):W297–W299, 2007.

[45] Laurent C Francioli, Androniki Menelaou, Sara L Pulit, Freerk Van Dijk,

Pier Francesco Palamara, Clara C Elbers, Pieter BT Neerincx, Kai Ye, Vic-

tor Guryev, Wigard P Kloosterman, et al. Whole-genome sequence variation,

population structure and demographic history of the dutch population. Nature

Genetics, 46(8):818, 2014.

[46] Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga,

Eric T Dawson, William Jones, Shilpa Garg, Charles Markello, Michael F Lin,

et al. Variation graph toolkit improves read mapping by representing genetic

variation in the reference. Nature Biotechnology, 2018.

[47] GFF/GTF File Format - Definition and supported options. https://www.

ensembl.org/info/website/upload/gff.html [Online, accessed: 25 October,

2019].

[48] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to

practice: Plug and play with succinct data structures. In 13th International

Symposium on Experimental Algorithms, (SEA 2014), pages 326–337, 2014.

113

https://www.ensembl.org/info/website/upload/gff.html
https://www.ensembl.org/info/website/upload/gff.html

[49] Laura Gómez-Romero, Kim Palacios-Flores, José Reyes, Delfino Garćıa, Mar-

gareta Boege, Guillermo Dávila, Margarita Flores, Michael C Schatz, and Rafael

Palacios. Precise detection of de novo single nucleotide variants in human

genomes. Proceedings of the National Academy of Sciences, 115(21):5516–5521,

2018.

[50] Sara Goodwin, John D McPherson, and W Richard McCombie. Coming of age:

ten years of next-generation sequencing technologies. Nature Reviews Genetics,

17(6):333, 2016.

[51] Manfred Grabherr, Brian Haas, Moran Yassour, Joshua Levin, Dawn Thomp-

son, Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong Zeng,

Zehua Chen, Evan Mauceli, Nir Hacohen, Andreas Gnirke, Nicholas Rhind, Fed-

erica di Palma, Bruce Birren, Chad Nusbaum, Kerstin Lindblad-Toh, Nir Fried-

man, and Aviv Regev. Full-length transcriptome assembly from RNA-seq data

without a reference genome. Nature Biotechnology, 29:644–652, 2011.

[52] Szymon Grabowski and Marcin Raniszewski. Rank and select: Another lesson

learned. Information Systems, 73:25–34, 2018.

[53] Thasso Griebel, Benedikt Zacher, Paolo Ribeca, Emanuele Raineri, Vincent

Lacroix, Roderic Guigó, and Michael Sammeth. Modelling and simulating

generic RNA-Seq experiments with the flux simulator. Nucleic acids research,

40(20):10073–10083, 2012.

[54] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-

compressed text indexes. In Proceedings of the fourteenth annual ACM-SIAM

symposium on Discrete algorithms, pages 841–850. Society for Industrial and

Applied Mathematics, 2003.

[55] Dan Gusfield. Algorithms on strings, trees, and sequences: computer science

and computational biology. Cambridge university press, 1997.

[56] Mitchell Guttman, Manuel Garber, Joshua Levin, Julie Donaghey, James Robin-

son, Xian Adiconis, Lin Fan, Magdalena Koziol, Andreas Gnirke, Chad Nus-

baum, John Rinn, Eric Lander, and Aviv Regev. Ab initio reconstruction of

transcriptomes of pluripotent and lineage committed cells reveals gene struc-

tures of thousands of lincrnas. Nature Biotechnology, 28(5):503–510, 2010.

114

[57] Jennifer Harrow, Adam Frankish, Jose M Gonzalez, Electra Tapanari, Mark

Diekhans, Felix Kokocinski, Bronwen L Aken, Daniel Barrell, Amonida Zadissa,

Stephen Searle, et al. Gencode: the reference human genome annotation for the

encode project. Genome research, 22(9):1760–1774, 2012.

[58] Mohammad Shabbir Hasan, Xiaowei Wu, and Liqing Zhang. Performance evalu-

ation of indel calling tools using real short-read data. Human Genomics, 9(1):20,

2015.

[59] James M Heather and Benjamin Chain. The sequence of sequencers: The history

of sequencing dna. Genomics, 107(1):1–8, 2016.

[60] Steffen Heber, Max Alekseyev, Sing-Hoi Sze, Haixu Tang, and Pavel A Pevzner.

Splicing graphs and EST assembly problem. Bioinformatics, 18(suppl 1):S181–

S188, 2002.

[61] David Stephen Horner, Giulio Pavesi, Tiziana Castrignanò, Paolo D’Onorio De

Meo, Sabino Liuni, Michael Sammeth, Ernesto Picardi, and Graziano Pesole.

Bioinformatics approaches for genomics and post genomics applications of next-

generation sequencing. Briefings in Bioinformatics, 11(2):181–197, 2010.

[62] Jeremy Hull, Susana Campino, Kate Rowlands, Man-Suen Chan, Richard R

Copley, Martin S Taylor, Kirk Rockett, Gareth Elvidge, Brendan Keating, Ju-

lian Knight, et al. Identification of common genetic variation that modulates

alternative splicing. PLoS genetics, 3(6), 2007.

[63] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De

novo assembly and genotyping of variants using colored de Bruijn graphs. Nature

Genetics, 44(2):226–232, 2012.

[64] Guy Jacobson. Space-efficient static trees and graphs. In 30th Annual Sympo-

sium on Foundations of Computer Science, pages 549–554. IEEE, 1989.

[65] Chirag Jain, Sanchit Misra, Haowen Zhang, Alexander Dilthey, and Srinivas

Aluru. Accelerating sequence alignment to graphs. In 2019 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pages 451–461. IEEE,

2019.

[66] Chirag Jain, Haowen Zhang, Yu Gao, and Srinivas Aluru. On the complexity

of sequence to graph alignment. In International Conference on Research in

Computational Molecular Biology, pages 85–100. Springer, 2019.

115

[67] Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand,

Thomas A Sasani, John R Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T

Fiddes, et al. Nanopore sequencing and assembly of a human genome with

ultra-long reads. Nature Biotechnology, 36(4):338, 2018.

[68] André Kahles, Kjong-Van Lehmann, Nora C Toussaint, Matthias Hüser, Ste-

fan G Stark, Timo Sachsenberg, Oliver Stegle, Oliver Kohlbacher, Chris Sander,

Samantha J Caesar-Johnson, et al. Comprehensive analysis of alternative splic-

ing across tumors from 8,705 patients. Cancer cell, 34(2):211–224, 2018.

[69] André Kahles, Cheng Soon Ong, Yi Zhong, and Gunnar Rätsch. SplAdder :

identification, quantification and testing of alternative splicing events from RNA-

Seq data. Bioinformatics, 32(12):1840–1847, 2016.

[70] Takao Kaneo, Shoichi Tahara, and Mitsuyoshi Matsuo. Non-linear accumulation

of 8-hydroxy-2’-deoxyguanosine, a marker of oxidized dna damage, during aging.

Mutation Research/DNAging, 316(5-6):277–285, 1996.

[71] Richard M Karp and Michael O Rabin. Efficient randomized pattern-matching

algorithms. IBM journal of research and development, 31(2):249–260, 1987.

[72] Takakazu Kawase, Yoshiki Akatsuka, Hiroki Torikai, Satoko Morishima, Akira

Oka, Akane Tsujimura, Mikinori Miyazaki, Kunio Tsujimura, Koichi Miyamura,

Seishi Ogawa, et al. Alternative splicing due to an intronic snp in hmsd generates

a novel minor histocompatibility antigen. Blood, 110(3):1055–1063, 2007.

[73] Zia Khan, Joshua S Bloom, Leonid Kruglyak, and Mona Singh. A practical

algorithm for finding maximal exact matches in large sequence datasets using

sparse suffix arrays. Bioinformatics, 25(13):1609–1616, 2009.

[74] Nilesh Khiste and Lucian Ilie. E-MEM: efficient computation of maximal exact

matches for very large genomes. Bioinformatics, 31(4):509–514, 2014.

[75] Daehwan Kim, Ben Langmead, and Steven L Salzberg. Hisat: a fast spliced

aligner with low memory requirements. Nature Methods, 12(4):357, 2015.

[76] Daehwan Kim, Joseph M Paggi, Chanhee Park, Christopher Bennett, and

Steven L Salzberg. Graph-based genome alignment and genotyping with hisat2

and hisat-genotype. Nature Biotechnology, 37(8):907–915, 2019.

116

[77] Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley, and

Steven L Salzberg. Tophat2: accurate alignment of transcriptomes in the pres-

ence of insertions, deletions and gene fusions. Genome biology, 14(4):R36, 2013.

[78] Martin Kircher and Janet Kelso. High-throughput dna sequencing–concepts and

limitations. Bioessays, 32(6):524–536, 2010.

[79] Karlo Knezevic, Stjepan Picek, Luca Mariot, Domagoj Jakobovic, and Alberto

Leporati. The design of (almost) disjunct matrices by evolutionary algorithms. In

International Conference on Theory and Practice of Natural Computing, pages

152–163. Springer, 2018.

[80] Sergey Koren, Michael C Schatz, Brian P Walenz, Jeffrey Martin, Jason T

Howard, Ganeshkumar Ganapathy, Zhong Wang, David A Rasko, W Richard

McCombie, Erich D Jarvis, et al. Hybrid error correction and de novo assembly

of single-molecule sequencing reads. Nature Biotechnology, 30(7):693, 2012.

[81] Jana Královičová, Sophie Houngninou-Molango, Angela Krämer, and Igor

Vořechovskỳ. Branch site haplotypes that control alternative splicing. Human

molecular genetics, 13(24):3189–3202, 2004.

[82] Peter Krusche, Len Trigg, Paul C Boutros, Christopher E Mason, M Francisco,

Benjamin L Moore, Mar Gonzalez-Porta, Michael A Eberle, Zivana Tezak, Samir

Lababidi, et al. Best practices for benchmarking germline small-variant calls in

human genomes. Nature Biotechnology, 37:555–560, 2019.

[83] Chee Seng Ku, En Yun Loy, Agus Salim, Yudi Pawitan, and Kee Seng Chia. The

discovery of human genetic variations and their use as disease markers: past,

present and future. Journal of Human Genetics, 55(7):403–415, 2010.

[84] Hugo YK Lam, Michael J Clark, Rui Chen, Rong Chen, Georges Natsoulis,

Maeve O’huallachain, Frederick E Dewey, Lukas Habegger, Euan A Ashley,

Mark B Gerstein, et al. Performance comparison of whole-genome sequencing

platforms. Nature Biotechnology, 30(1):78, 2012.

[85] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie

2. Nature Methods, 9(4):357, 2012.

[86] Heng Li. A statistical framework for SNP calling, mutation discovery, association

mapping and population genetical parameter estimation from sequencing data.

Bioinformatics, 27(21):2987–2993, 2011.

117

[87] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with

bwa-mem. arXiv preprint arXiv:1303.3997, 2013.

[88] Heng Li and Richard Durbin. Fast and accurate short read alignment with

burrows–wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[89] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,

Gabor Marth, Goncalo Abecasis, and Richard Durbin. The sequence align-

ment/map format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[90] Yang I Li, David A Knowles, Jack Humphrey, Alvaro N Barbeira, Scott P Dick-

inson, Hae Kyung Im, and Jonathan K Pritchard. Annotation-free quantification

of rna splicing using leafcutter. Nature Genetics, 50(1):151, 2018.

[91] Yuansheng Liu, Leo Yu Zhang, and Jinyan Li. Fast detection of maximal exact

matches via fixed sampling of query k-mers and Bloom filtering of index k-mers.

Bioinformatics, 2019.

[92] Daniel G MacArthur and Chris Tyler-Smith. Loss-of-function variants in the

genomes of healthy humans. Human Molecular Genetics, 19(R2):R125–R130,

2010.

[93] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string

searches. siam Journal on Computing, 22(5):935–948, 1993.

[94] Udi Manber and Sun Wu. Approximate string matching with arbitrary costs for

text and hypertext. In Proc. of the IAPR International Workshop on Structural

and Syntactic Pattern Recognition, pages 22–33, 1993.

[95] Tuomo Mantere, Simone Kersten, and Alexander Hoischen. Long-read sequenc-

ing emerging in medical genetics. Frontiers in genetics, 10:426, 2019.

[96] Giovanni Manzini. An analysis of the burrows—wheeler transform. Journal of

the ACM (JACM), 48(3):407–430, 2001.

[97] Guillaume Marçais, Arthur L Delcher, Adam M Phillippy, Rachel Coston,

Steven L Salzberg, and Aleksey Zimin. MUMmer4: a fast and versatile genome

alignment system. PLoS computational biology, 14(1), 2018.

[98] Marcel Margulies, Michael Egholm, William E Altman, Said Attiya, Joel S

Bader, Lisa A Bemben, Jan Berka, Michael S Braverman, Yi-Ju Chen, Zhoutao

118

Chen, et al. Genome sequencing in microfabricated high-density picolitre reac-

tors. Nature, 437(7057):376, 2005.

[99] Marcel Martin. Cutadapt removes adapter sequences from high-throughput se-

quencing reads. EMBnet. journal, 17(1):pp–10, 2011.

[100] W Richard McCombie, John D McPherson, and Elaine R Mardis. Next-

generation sequencing technologies. Cold Spring Harbor perspectives in medicine,

2018.

[101] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian

Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel,

Mark Daly, et al. The genome analysis toolkit: a mapreduce framework for

analyzing next-generation dna sequencing data. Genome Research, 20(9):1297–

1303, 2010.

[102] Páll Melsted and Jonathan K. Pritchard. Efficient counting of k-mers in DNA

sequences using a Bloom filter. BMC Bioinformatics, 12:333, 2011.

[103] Giles Miclotte, Mahdi Heydari, Piet Demeester, Stephane Rombauts, Yves

Van de Peer, Pieter Audenaert, and Jan Fostier. Jabba: hybrid error correction

for long sequencing reads. Algorithms for Molecular Biology, 11(1):10, 2016.

[104] Ryan E Mills, Christopher T Luttig, Christine E Larkins, Adam Beauchamp,

Circe Tsui, W Stephen Pittard, and Scott E Devine. An initial map of inser-

tion and deletion (indel) variation in the human genome. Genome Research,

16(9):1182–1190, 2006.

[105] Stephen B Montgomery, David L Goode, Erika Kvikstad, Cornelis A Albers,

Zhengdong D Zhang, Xinmeng Jasmine Mu, Guruprasad Ananda, Bryan Howie,

Konrad J Karczewski, Kevin S Smith, et al. The origin, evolution, and functional

impact of short insertion–deletion variants identified in 179 human genomes.

Genome Research, 23(5):749–761, 2013.

[106] Margaret Morash, Hannah Mitchell, Himisha Beltran, Olivier Elemento, and Jy-

otishman Pathak. The role of next-generation sequencing in precision medicine:

a review of outcomes in oncology. Journal of personalized medicine, 8(3):30,

2018.

119

[107] Elena Morini, Federica Sangiuolo, Daniela Caporossi, Giuseppe Novelli, and

Francesca Amati. Application of next generation sequencing for personalized

medicine for sudden cardiac death. Frontiers in genetics, 6:55, 2015.

[108] Lisle E Mose, Matthew D Wilkerson, D Neil Hayes, Charles M Perou, and Joel S

Parker. Abra: improved coding indel detection via assembly-based realignment.

Bioinformatics, 30(19):2813–2815, 2014.

[109] Martin D Muggli, Alexander Bowe, Noelle R Noyes, Paul S Morley, Keith E

Belk, Robert Raymond, Travis Gagie, Simon J Puglisi, and Christina Boucher.

Succinct colored de Bruijn graphs. Bioinformatics, 33(20):3181–3187, 2017.

[110] Julienne M Mullaney, Ryan E Mills, W Stephen Pittard, and Scott E Devine.

Small insertions and deletions (indels) in human genomes. Human Molecular

Genetics, 19(R2):R131–R136, 2010.

[111] James K Mullin. A second look at Bloom filters. Communications of the ACM,

26(8):570–571, 1983.

[112] Harun Mustafa, Ingo Schilken, Mikhail Karasikov, Carsten Eickhoff, Gunnar

Rätsch, and André Kahles. Dynamic compression schemes for graph coloring.

Bioinformatics, 35(3):407–414, 2018.

[113] Oxford Nanopore. World first: continuous dna sequence of more than a million

bases achieved with nanopore sequencing. https://nanoporetech.com/about-

us/news/world-first-continuous-dna-sequence-more-million-bases-

achieved-nanopore-sequencing [Online, accessed: 25 October, 2019].

[114] Gonzalo Navarro. Improved approximate pattern matching on hypertext. The-

oretical Computer Science, 237(1):455–463, 2000.

[115] Gonzalo Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20,

2014.

[116] National Human Genome Research Institute (NHGRI). Talking glossary of ge-

netic terms. https://www.genome.gov/genetics-glossary [Online, accessed:

25 October, 2019].

[117] Enno Ohlebusch, Simon Gog, and Adrian Kügel. Computing matching statis-

tics and maximal exact matches on compressed full-text indexes. In Interna-

120

https://nanoporetech.com/about-us/news/world-first-continuous-dna-sequence-more-million-bases-achieved-nanopore-sequencing
https://nanoporetech.com/about-us/news/world-first-continuous-dna-sequence-more-million-bases-achieved-nanopore-sequencing
https://nanoporetech.com/about-us/news/world-first-continuous-dna-sequence-more-million-bases-achieved-nanopore-sequencing
https://www.genome.gov/genetics-glossary

tional Symposium on String Processing and Information Retrieval, pages 347–

358. Springer, 2010.

[118] Fanny-Dhelia Pajuste, Lauris Kaplinski, Märt Möls, Tarmo Puurand, Maarja

Lepamets, and Maido Remm. FastGT: an alignment-free method for calling

common SNVs directly from raw sequencing reads. Scientific Reports, 7(1):2537,

2017.

[119] Qun Pan, Ofer Shai, Leo J Lee, Brendan J Frey, and Benjamin J Blencowe.

Deep surveying of alternative splicing complexity in the human transcriptome

by high-throughput sequencing. Nature Genetics, 40(12):1413, 2008.

[120] Louis Papageorgiou, Picasi Eleni, Sofia Raftopoulou, Meropi Mantaiou, Vasileios

Megalooikonomou, and Dimitrios Vlachakis. Genomic big data hitting the stor-

age bottleneck. EMBnet. journal, 24, 2018.

[121] Kunsoo Park and Dong Kyue Kim. String matching in hypertext. In Annual

Symposium on Combinatorial Pattern Matching, pages 318–329. Springer, 1995.

[122] Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kingsford.

Salmon provides fast and bias-aware quantification of transcript expression. Na-

ture Methods, 14(4):417, 2017.

[123] Mihaela Pertea, Geo M Pertea, Corina M Antonescu, Tsung-Cheng Chang,

Joshua T Mendell, and Steven L Salzberg. StringTie enables improved re-

construction of a transcriptome from RNA-seq reads. Nature Biotechnology,

33(3):290, 2015.

[124] Pierre Peterlongo, Chloe Riou, Erwan Drezen, and Claire Lemaitre. Dis-

coSnp++: de novo detection of small variants from raw unassembled read set(s).

BioRxiv, 2017.

[125] Martin O Pollard, Deepti Gurdasani, Alexander J Mentzer, Tarryn Porter, and

Manjinder S Sandhu. Long reads: their purpose and place. Human molecular

genetics, 27(R2):R234–R241, 2018.

[126] Ryan Poplin, Valentin Ruano-Rubio, Mark A DePristo, Tim J Fennell, Mauri-

cio O Carneiro, Geraldine A Van der Auwera, David E Kling, Laura D Gauthier,

Ami Levy-Moonshine, David Roazen, et al. Scaling accurate genetic variant dis-

covery to tens of thousands of samples. BioRxiv, page 201178, 2018.

121

[127] Mikko Rautiainen, Veli Mäkinen, and Tobias Marschall. Bit-parallel sequence-

to-graph alignment. Bioinformatics, 35(19):3599–3607, 2019.

[128] Andy Rimmer, Hang Phan, Iain Mathieson, Zamin Iqbal, Stephen RF Twigg,

Andrew OM Wilkie, Gil McVean, Gerton Lunter, WGS500 Consortium, et al.

Integrating mapping-, assembly-and haplotype-based approaches for calling vari-

ants in clinical sequencing applications. Nature Genetics, 46(8):912, 2014.

[129] Adam Roberts, Harold Pimentel, Cole Trapnell, and Lior Pachter. Identifica-

tion of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics,

27(17):2325–2329, 2011.

[130] Mark Rogers, Julie Thomas, Anireddy Reddy, and Asa Ben-Hur. Splicegrapher:

detecting patterns of alternative splicing from RNA-Seq data in the context of

gene models and EST data. Genome Biology, 13(1):R4, 2012.

[131] Gustavo AT Sacomoto, Janice Kielbassa, Rayan Chikhi, Raluca Uricaru, Pavlos

Antoniou, Marie-France Sagot, Pierre Peterlongo, and Vincent Lacroix. Kis

Splice: de-novo calling alternative splicing events from RNA-seq data. In BMC

Bioinformatics, volume 13, page S5. BioMed Central, 2012.

[132] Leena Salmela and Eric Rivals. Lordec: accurate and efficient long read error

correction. Bioinformatics, 30(24):3506–3514, 2014.

[133] Steven L Salzberg. Open questions: How many genes do we have? BMC Biology,

16(1):94, 2018.

[134] Michael Sammeth, Sylvain Foissac, and Roderic Guigó. A general definition and

nomenclature for alternative splicing events. PLoS computational biology, 4(8),

2008.

[135] Frederick Sanger, Steven Nicklen, and Alan R Coulson. Dna sequencing with

chain-terminating inhibitors. Proceedings of the national academy of sciences,

74(12):5463–5467, 1977.

[136] Lecia V Sequist, Renato G Martins, David Spigel, Steven M Grunberg, Alexan-

der Spira, Pasi A Janne, Victoria A Joshi, David McCollum, Tracey L Evans,

Alona Muzikansky, et al. First-line gefitinib in patients with advanced non-small-

cell lung cancer harboring somatic egfr mutations. Journal of Clinical Oncology,

26(15):2442–2449, 2008.

122

[137] Joao Carlos Setubal and Joao Meidanis. Introduction to computational molecular

biology. PWS Pub. Boston, 1997.

[138] Julian Seward. bzip2 and libbzip2. http://www.bzip.org [Online, accessed: 25

October, 2019], 1996.

[139] Ariya Shajii, Deniz Yorukoglu, Yun William Yu, and Bonnie Berger. Fast geno-

typing of known SNPs through approximate k-mer matching. Bioinformatics,

32(17):i538–i544, 2016.

[140] Shihao Shen, Juw Won Park, Zhi xiang Lu, Lan Lin, Michael D. Henry,

Ying Nian Wu, Qing Zhou, and Yi Xing. rMATS: robust and flexible detec-

tion of differential alternative splicing from replicate RNA-Seq data. Proc Natl

Acad Sci, 111(51):E5593–E5601, 2014.

[141] Jay Shendure and Hanlee Ji. Next-generation dna sequencing. Nature Biotech-

nology, 26(10):1135, 2008.

[142] Stephen T Sherry, M-H Ward, M Kholodov, J Baker, Lon Phan, Elizabeth M

Smigielski, and Karl Sirotkin. dbsnp: the ncbi database of genetic variation.

Nucleic acids research, 29(1):308–311, 2001.

[143] Jared Simpson, Kim Wong, Shaun Jackman, Jacqueline Schein, Steven Jones,

and İnanç Birol. ABySS: A parallel assembler for short read sequence data.

Genome Research, 19(6):1117–1123, 2009.

[144] Nimisha Singla and Deepak Garg. String matching algorithms and their appli-

cability in various applications. International Journal of Soft Computing and

Engineering (IJSCE), 1(6):2231–2307, 2012.

[145] Barton E Slatko, Andrew F Gardner, and Frederick M Ausubel. Overview of

next-generation sequencing technologies. Current protocols in molecular biology,

122(1):e59, 2018.

[146] Christof C Smith, Sara R Selitsky, Shengjie Chai, Paul M Armistead, Ben-

jamin G Vincent, and Jonathan S Serody. Alternative tumour-specific antigens.

Nature Reviews Cancer, page 1, 2019.

[147] Wendy Weijia Soon, Manoj Hariharan, and Michael P Snyder. High-throughput

sequencing for biology and medicine. Molecular systems biology, 9(1), 2013.

123

http://www.bzip.org

[148] Avi Srivastava, Hirak Sarkar, Nitish Gupta, and Rob Patro. RapMap: a rapid,

sensitive and accurate tool for mapping RNA-seq reads to transcriptomes. Bioin-

formatics, 32(12):i192–i200, 2016.

[149] Daniel S. Standage, C. Titus Brown, and Fereydoun Hormozdiari. Kevlar: A

mapping-free framework for accurate discovery of de novo variants. iScience,

18:28 – 36, 2019. Special Issue: RECOMB-Seq 2019.

[150] Peter H Sudmant, Tobias Rausch, Eugene J Gardner, Robert E Handsaker,

Alexej Abyzov, John Huddleston, Yan Zhang, Kai Ye, Goo Jun, Markus Hsi-

Yang Fritz, et al. An integrated map of structural variation in 2,504 human

genomes. Nature, 526(7571):75–81, 2015.

[151] Chen Sun, Robert S. Harris, Rayan Chikhi, and Paul Medvedev. AllSome se-

quence Bloom trees. In Research in Computational Molecular Biology - 21st

Annual International Conference, RECOMB 2017, pages 272–286, 2017.

[152] Chen Sun and Paul Medvedev. Toward fast and accurate SNP genotyping

from whole genome sequencing data for bedside diagnostics. Bioinformatics,

35(3):415–420, 2018.

[153] Vivian Tam, Nikunj Patel, Michelle Turcotte, Yohan Bossé, Guillaume Paré,

and David Meyre. Benefits and limitations of genome-wide association studies.

Nature Reviews Genetics, page 1, 2019.

[154] Jamal Tazi, Nadia Bakkour, and Stefan Stamm. Alternative splicing and disease.

Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1792(1):14–

26, 2009.

[155] Chris Thachuk. Indexing hypertext. J. Discrete Algorithms, 18:113–122, 2013.

[156] Alexandru I Tomescu, Anna Kuosmanen, Romeo Rizzi, and Veli Mäkinen. A

novel min-cost flow method for estimating transcript expression with RNA-Seq.

BMC Bioinformatics, 14(5):S15, 2013.

[157] Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan,

Marijke J Van Baren, Steven L Salzberg, Barbara J Wold, and Lior Pachter.

Transcript assembly and quantification by RNA-Seq reveals unannotated tran-

scripts and isoform switching during cell differentiation. Nature Biotechnology,

28(5):511–515, 2010.

124

[158] Juan L Trincado, Juan C Entizne, Gerald Hysenaj, Babita Singh, Miha Skalic,

David J Elliott, and Eduardo Eyras. Suppa2: fast, accurate, and uncertainty-

aware differential splicing analysis across multiple conditions. Genome biology,

19(1):40, 2018.

[159] Natalie A Twine, Karolina Janitz, Marc R Wilkins, and Michal Janitz. Whole

transcriptome sequencing reveals gene expression and splicing differences in

brain regions affected by alzheimer’s disease. PloS one, 6(1), 2011.

[160] Eli Upfal and Michael Mitzenmacher. Probability and computing: randomized

algorithms and probabilistic analysis, pages 109–111. Cambridge university press,

2005.

[161] Erwin L Van Dijk, Hélène Auger, Yan Jaszczyszyn, and Claude Thermes. Ten

years of next-generation sequencing technology. Trends in genetics, 30(9):418–

426, 2014.

[162] Jorge Vaquero-Garcia, Alejandro Barrera, Matthew R Gazzara, Juan Gonzalez-

Vallinas, Nicholas F Lahens, John B Hogenesch, Kristen W Lynch, and Yoseph

Barash. A new view of transcriptome complexity and regulation through the

lens of local splicing variations. elife, 5, 2016.

[163] Charline Vauchy, Clementine Gamonet, Christophe Ferrand, Etienne Daguin-

dau, Jeanne Galaine, Laurent Beziaud, Adrien Chauchet, Carole J

Henry Dunand, Marina Deschamps, Pierre Simon Rohrlich, et al. Cd20 alterna-

tive splicing isoform generates immunogenic cd 4 helper t epitopes. International

journal of cancer, 137(1):116–126, 2015.

[164] J Craig Venter, Mark D Adams, Eugene W Myers, Peter W Li, Richard J Mural,

Granger G Sutton, Hamilton O Smith, Mark Yandell, Cheryl A Evans, Robert A

Holt, et al. The sequence of the human genome. Science, 291(5507):1304–1351,

2001.

[165] Sebastiano Vigna. Broadword implementation of rank/select queries. In Inter-

national Workshop on Experimental and Efficient Algorithms, pages 154–168.

Springer, 2008.

[166] Michaël Vyverman, Bernard De Baets, Veerle Fack, and Peter Dawyndt. A long

fragment aligner called ALFALFA. BMC Bioinformatics, 16(1):159, May 2015.

125

[167] Michaël Vyverman, Bernard De Baets, Veerle Fack, and Peter Dawyndt. es-

saMEM: finding maximal exact matches using enhanced sparse suffix arrays.

Bioinformatics, 29(6):802–804, 2013.

[168] Toshifumi Wakai, Pankaj Prasoon, Yuki Hirose, Yoshifumi Shimada, Hiroshi

Ichikawa, and Masayuki Nagahashi. Next-generation sequencing-based clinical

sequencing: toward precision medicine in solid tumors. International journal of

clinical oncology, 24(2):115–122, 2019.

[169] Eric T Wang, Rickard Sandberg, Shujun Luo, Irina Khrebtukova, Lu Zhang,

Christine Mayr, Stephen F Kingsmore, Gary P Schroth, and Christopher B

Burge. Alternative isoform regulation in human tissue transcriptomes. Nature,

456(7221):470, 2008.

[170] Yan Wang, Jing Liu, BO Huang, Yan-Mei Xu, Jing Li, Lin-Feng Huang, Jin Lin,

Jing Zhang, Qing-Hua Min, Wei-Ming Yang, et al. Mechanism of alternative

splicing and its regulation. Biomedical reports, 3(2):152–158, 2015.

[171] Stephen T Warren, Fuping Zhang, Greg R Licameli, and Jeanne F Peters. The

fragile x site in somatic cell hybrids: an approach for molecular cloning of fragile

sites. Science, 237(4813):420–423, 1987.

[172] James D Watson, Francis HC Crick, et al. Molecular structure of nucleic acids.

Nature, 171(4356):737–738, 1953.

[173] Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium

on Switching and Automata Theory (swat 1973), pages 1–11. IEEE, 1973.

[174] What is FASTA format? https://zhanglab.ccmb.med.umich.edu/FASTA/

[Online, accessed: 25 October, 2019].

[175] Roland Wittler. Alignment-and reference-free phylogenomics with colored de-

Bruijn graphs. arXiv preprint arXiv:1905.04165, 2019.

[176] Kai Ye, Marcel H Schulz, Quan Long, Rolf Apweiler, and Zemin Ning. Pindel:

a pattern growth approach to detect break points of large deletions and medium

sized insertions from paired-end short reads. Bioinformatics, 25(21):2865–2871,

2009.

[177] Justin M Zook, Brad Chapman, Jason Wang, David Mittelman, Oliver Hofmann,

Winston Hide, and Marc Salit. Integrating human sequence data sets provides

126

https://zhanglab.ccmb.med.umich.edu/FASTA/

a resource of benchmark SNP and indel genotype calls. Nature Biotechnology,

32(3):246–251, 2014.

127

	Introduction
	Preliminaries
	Strings and graphs
	Bit vectors
	Bloom filters
	Pattern matching
	Suffix arrays
	Burrows-Wheeler Transform and FM-Index
	Maximal Exact Matches

	Biological concepts
	Bioinformatics
	Sequencing technologies
	Processing of NGS data
	Standard file formats

	Alternative Splicing Events Detection
	Context and Motivations
	State of the Art

	Preliminaries
	Method
	Results
	Implementation details
	Experimental analysis on simulated data
	Experimental analysis on real data

	Final remarks and future directions

	Known Variants Genotyping
	Context and Motivations
	State of the Art

	Preliminaries
	Method
	Results
	Implementation details
	Experimental analysis

	Final remarks and future directions

	Conclusions
	Bibliography

