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Abstract.

Human activity recognition (HAR) is a very active field of research and many
techniques have been developed in recent years. Deep learning techniques applied
to 3D and 4D signals such as images and videos have proven to be effective, achiev-
ing significant classification accuracy. Recently, these techniques are also being
used for 1D signals and are exploited to recognize human Activities of Daily Living
(ADLs). They process inertial signals such as those obtained from accelerometers
and gyroscopes. However, to compute accurate and reliable deep learning models,
a lot of sample data is required. Moreover, the creation of a dataset to be used
with deep learning techniques is an onerous process that requires the involvement
of a significant number of possibly heterogeneous subjects. The publicly avail-
able datasets are few and, with rare exceptions, contain few subjects. Furthermore,
datasets are heterogeneous and therefore not directly usable all together. The goal
of our work is the definition of a platform to support long-term data collection to
be used in training HAR algorithms. The platform, termed Continuous Learning
Platform (CLP), aims to integrate datasets of inertial signals in order to make avail-
able to the scientific community a large dataset of homogeneous signals and, when
possible, enrich it with context information (e.g., characteristics of the subject, de-
vice position, and so on). Moreover, the platform has been designed to provide ad-
ditional services such as the deployment of activity recognition models and online
signal labelling services. The architecture has been defined and some of the main
components have been developed in order to verify the soundness of the approach.

Keywords. dataset, deep learning, inertial data, integration platform, ADL, activity,

machine learning

1. Introduction

Human Activity Recognition (HAR) is an active research field aimed at experimenting
with new methods and techniques for the automatic recognition of Activities of Daily
Living (ADLs) and, in some cases, also of falls [27,23,21]. Most of the proposed methods
and techniques exploit sensors embedded in smartphones, smartwatches, fitness trackers,
and ad-hoc wearable devices. The classification of sensor data with respect to the actions
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performed by humans represents the main challenge of HAR. Indeed, in an ideal world,
different activities present different signals so that the space of the signals is perfectly
separated and easy to classify. In real world such a condition is not respected and signals
often overlap each other.

The separation of data is a difficult task due to different aspects of the classification
procedure, from the data acquisition to the definition of the activity. For instance, the
position of the device influences the results of the performance [9]. Other aspects are
related to the intraclass variability and the interclass similarity [8]. The former means
that different people perform the same activity in different ways so a bijective association
between signal and activity performed does not exist; the latter means that classes that
are fundamentally different show very similar characteristics in the sensor data.

Preliminary applications of HAR exploited supervised machine learning techniques.
These techniques present several challenges [18,8]. Firstly, the performances achieved
in laboratory are difficult to be transferred to a real context without losing quality in the
classification [3]. Secondly, it was noticed a strong dependency between the selection of
the features and the performance of the classification, which corresponds to an inability
of the algorithms to extract and organize discriminative information from the data [6].
Moreover, issues above mentioned, such as position, intraclass variability, and interclass
similarity still strongly influence the classification performance [21,17,16].

In recent years, deep learning has been successfully applied in image analysis, natu-
ral language processing, sound recognition, and more recently it has been exploited also
for 1D signals [19,28].

The widespread use of deep learning techniques is justified by their capability to
overcome most of the presented issues, thanks to their properties of local dependency
and scale invariance [36]. Furthermore, deep learning methodologies permit automated
discovery of abstraction which overcomes the features extraction issue [6].

While deep learning techniques are powerful and achieve high performance, they
rely on very complex models that strictly depend on the estimation of a large number of
parameters, which requires a considerable amount of available data [7].

In recent years, some researchers have published their own dataset related to HAR.
However, these datasets are heterogeneous and their standardization in a single unified
dataset requires considerable effort. For example, signals are expressed in different units
of measure, they may include gravity or not, and signals have different acquisition fre-
quencies. Furthermore, labels are not aligned with a common dictionary and sometimes
have different meanings among different datasets (’sitting’ may refer to the state of being
seated in a chair or the transition from standing to sitting). Thus, datasets are heteroge-
neous and cannot be used together without a significant effort to harmonize them.

The availability of a dataset containing a large number of samples, also obtained
thanks to the integration of existing datasets, is a well known issue both in the field
of ADLs recognition from inertial sensors and in other domains, such as that related
to image processing [25]. Indeed, merging labels from different databases that resulted
equals at semantic or syntactic level, may likely result in an inconsistent set of data, that
does not improve the training of a classifier [12].

In the context of ADLs recognition from inertial signals, Bartlett et al. propose
labels aggregation at semantic level [5]. Recently, Siirtola e al. propose a Matlab tool
called Open HAR [31] that aggregates labels at a syntactic level but does not consider
the semantics of the original signals. Obinikpo et al. propose a system for big data-d-
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health integration [24]. They split the integration in different layers, data acquisition, data
processing, data analytics, and application. Nevertheless, the proposal is too general with
respect to how homogeneize different sources of data, since its major concern is related
to how handling missing values while integrating databases.

Since acquiring labeled time series is a costly procedure in terms of resource, time,
and people involved, we think that the integration of existing datasets is the right direction
despite the strong heterogeneity of the data.

In this article we propose a platform that semi-automatically integrates heteroge-
neous data and provides them in a homogenous form. The main contribution of this arti-
cle is the definition of a new platform that:

e harmonizes heterogeneous data from inertial sensors, being them already existing
datasets or coming from online acquisitions;

e distributes sets of labeled signals according to specific requests, such as, data re-
lated to a specific activity, data from subjects with specific physical characteris-
tics, or, more generally, data from subjects that performed a set of specified activ-
ities;

e distributes activity recognition models;

e provides an online service by associating labels to series of signals in real-time.

The article is organized as follows: Section 2 provides an overview of our platform;
Section 3 specifies how heterogeneous datasets can be acquired in order to be integrated
in a unified dataset; Section 4 describes how the heterogeneous datasets can be unified
so that they are organized in a uniform format; Section 5 provides insights about how the
Unified Dataset can be exploited; finally, Section 6 sketches future directions.

2. Continuous Learning Platform

Human Activity Recognition (HAR) is a very active research field. Many techniques
have been proposed, most of them based on the analysis of inertial signals from sensors
embedded in smartphones, smartwatches, fitness trackers, and many others ad-hoc wear-
able devices. See the paper by Cornacchia et al. for a survey on activity detection using
wearable devices [10].

The main aim of the Continuous Learning Platform (CLP in the sequel) is to make
available (i) a large amount of labeled inertial signals related of ADLs and falls; (ii) a
catalogue of downloadable activity recognition models, and (iii) a service that, given a
set of raw data, identifies the corresponding ADL.

Labeled inertial signals can be used by researches to both validate new ADLs recog-
nition techniques. Activity recognition models can be integrated into existing domain de-
pendent applications that require ADLs recognition in order to provide application func-
tionalities (e.g., estimation of energy expenditure [30,15], monitoring the development
of the Parkinson’s disease [29], and early detection of dementia [33]). Finally, if an ap-
plication that requires to identify the ADLs performed by the user does not include an
activity recognition model, it can rely on the service the platform provides each time a
new series of data is acquired.

To fulfil the aim, CLP collects inertial signals from existing datasets or applica-
tions, manages the collected inertial signals, and distributes uniformed labeled inertial
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signals, trained activity recognition models, and labels assigned to series of inertial sig-
nals. Those functionalities are respectively reified by the Data Collection, Data Manage-
ment, and Data Distribution components. Figure 1 sketches the overall architecture and
its interaction with the external actors.
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Figure 1. Overview of the platform.

The following sections provide detailed information about how the components have
been architecturally defined and about our preliminary development results.

3. Data Collection

The Data Collection is the component that acquires existing inertial signals and uniforms
their organization to populate the repository of labeled inertial signals called Unified
Dataset. This is achieved by integrating i) existing datasets (e.g., UniMiB SHAR [22]);
ii) labeled inertial signals coming from ad-hoc applications that have been designed to
acquire new labeled inertial signals from volunteers (e.g., UniMiB AAL [13]); and iii)
signals from volunteers performing ADLs that the platform enriches by assigning them a
proper label and then integrates in the repository (e.g., Sensor Data Logger [1]). Figure 2
sketches the modules we identified for the Data Collection component.

One of the main issues in handling multiple datasets and exploiting them to train a
single classifier, is the lack of consistency in terms of how the data is stored in the file
system and what are the information provided. For example, in the UCI HAR dataset [2]
data are stored in two separated directories (train and test) which contain .txt data files. In
contrast, in MobiAct [35] data are subdivided in 20 directories, each of them representing
an activity or a scenario. Each directory includes .csv files each belonging to a specific
subject and to a specific trail. Thus, the different structures used influence how data is
stored and the general organization of the information.

In Continuous Learning Platform we enforce a single storage technology for all data
and a single structure for the data. In order to standardize the format of the information,
CLP offers a well-defined format of the data: from the signals to the supporting infor-
mation that enriches the data. Thus, in order to be integrated, a new dataset must also
be coupled with a software component (called driver) that is able to interpret the data
of the source dataset and convert it into the format defined in CLP. The development of
the driver is responsibility of the researcher who whishes to load his/her dataset into the
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Figure 2. The Data Collection component.

Unified Dataset. Given the uniqueness of each datasets, it is unlikely that two datasets
could share the same driver, thus each one will likely require an ad-hoc implementation.
To ease the burden of writing such drivers, we provide a template interface for develop-
ing new drivers, which allows users to easily build new drivers that are compatible with
CLP.

The Data Collection component includes the following modules: the Driver Loader,
the Dataset Loader, and the Importer which respectively allow to load custom drivers de-
veloped to support specific datasets, to load datasets to be integrated in Unified Dataset,
and to ask for the integration of the new datasets into the Unified Dataset. Separating the
Dataset Loader from the Driver Loader, allows the dynamic on-boarding of the driver,
which may require a reboot of the Dataset Loader service in order to be visible and
exploitable from the service itself.

From an implementation point of view, all the modules are web services exposing
the loadDriver, the loadDataset, and the integrateDataset functions.

3.1. Preliminary Validation of the Data Collection Component

In order to start validating the Data Collection component, we developed the drivers
for the following datasets: Motion Sense [20], MobiAct [35], Real Word HAR [32],
UmakFall [9], and UniMiB SHAR [22]. We selected these datasets for the following rea-
sons. First, we were focused on datasets recorded by smartphone and smartwatch, be-
cause those kind of acquiring devices are not invasive devices and are widespread among
the population. Second, we considered only datasets that have been acquired for HAR
purposes. Indeed, such datasets may share the set of activities recorded. Third, we con-
sidered only datasets that are enriched with additional information related to the sub-
jects’ characteristics, such as sex, age, height, weight. This allows the Data Distribution
component to provide sets of signals related to subjects with specified characteristics or
to make available trained classifiers only with subsets of signals acquired from subjects
with characteristics similar to the those required. The application of personalization, in
fact, seems to provide better results in terms of accuracy [17,11]. Fourth, we selected
data sets collected from 2016 until today for having comparable technology accuracy.
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We have also developed a driver to import the datasets acquired by means of the
UniMiB AAL suite [13]. UniMiB AAL includes two Andorid apps that ease both the
acquisition of signals from sensors in a controlled environment and the labeling tasks
required when building a dataset.

All the drivers have been implemented in the Python language, while the web service
has been developed relying on Laravel® and exposing the services through RESTFul
APIs.

4. Data Management

Once the signals have been standardized in terms of structure, they can be included in
the Unified Dataset to be distributed. For this reason, the responsibility of the Data Man-
agement component is twofold: it integrates the new labelled signals into the Unified
Dataset (Data Storage) and makes available sets of labelled signals to those who need
them (Data Access).

Before being inserted into the Unified Dataset, signals require another elaboration
to make them homogeneous both in terms of representation and label.

Sensors record data at a given sampling frequency, with a given range of intensity
values, and so on. Each manufacturer design their own sensor with operating specifica-
tions that may be different from the typical ones. For instance, we may deal with ac-
celerometer sensors that work at very different sampling frequency ranging from few to
hundreds of Hertz. Machine learning methods require input data in a given format (e.g.,
number of samples per second and intensity range) that is consistent over time [4]. For
this reason, raw data acquired by sensors need to be pre-processed before being pro-
cessed by machine learning methods. Inevitably this produces an overhead of data to be
handled and stored. Storage space management is carried out using cloud storage tech-
niques that reduce space consumption by using capacity optimization, data deduplication
and data compression tools [14].

Signals from different datasets may have assigned different (but semantical equal)
labels for the same ADL (e.g., "walk’ vs *walking’), same label for different ADL (e.g.,
’sitting’ may refer to the state of being seated in a chair or the transition from standing to
sitting), and different labels for the same activity (e.g., ‘running’ vs ’jogging’).

Thus, the aim of the Data Management component is to harmonize signals and to
make them available for exploitation. The organization of the component is sketched in
Figure 3.

The Data Aligner module is in charge of pre-processing the data from the Data
Collection component in order to make them usable by any machine learning method.
For example, an activity that is in charge of the Data Aligner module is the conversion
to a same measurement unit.

The Label Consolidator module is in charge of uniforming the labels of the dataset
to include to a common unified set. For example, if a dataset uses the label ’sitting’ to
label signals related to the transition (from standing to sitting down) and in the Unified
Dataset is used "sit down’ to label signals related to the transition (from standing to sitting
down), then the label will be changed to be consistent with the Unified Dataset. In view

2https://laravel.com/



A. Ferrari et al. / A Framework for Long-Term Data Collection 373

|
|
& CLP Formatted I
§ Dataset | | |
CLP Formatted -
Dataset with y | | Pull =
Harmonized signals \
CLP Formatted Label | |
@ Dataset with - - —_— . -
== Harmonized signals S = Dat Consolidator 11
and Labels Push &= = ata : Dataset Pull
Control and Aligner I Composer
Data Flow Data 11
- = .
> Usage Classifier
1 Module

Data Storage
Figure 3. The Data Management component.

of the delicate nature of this procedure, this module is intended to be semi-automatic:
it provides suggestions on the assignment of labels, but ultimately it is down to the end
user to decide whether or not to accept the suggestions.

The Data Classifier module is in charge of assigning labels to inertial signals that
have not been labeled. These types of signals may result from applications that acquire
signals only without providing any classification. This module can exploit an activity
recognition model already trained.

In terms of data distribution, the Data Composer module simply intercepts requests
for labeled signals, processes them, and returns the set of corresponding labeled signals.
For example, a request can be: “all signals labeled running”.

From an implementation point of view, the Data Management component is a web
service exposing the storeDataset, and the getDataset functions.

4.1. Preliminary Validation of the Data Management Component

To start validating the Data Management component, we implemented the Data Aligner,
the Label Consolidator, and the Data Composer modules. All the modules have been
developed in Matlab. The modules manage acceleration signals only.

Our implementation of the Data Aligner module unifies the measurement units to
g, removes gravity form the signals, and resamples to 50 Hz the frequencies (since this
is the frequency usually used for ADLs recognition [26]). Removing the gravitational
acceleration is not an exact process, however it is common practice and considered in
literature [34].

The implementation of the Label Consolidator includes an automatic syntactic anal-
ysis of the labels based on the Levenshtein distance. Then the module relies on a k-
Nearest Neighbor classifier in order to compute a confusion matrix that helps the user
in deciding which activities are similar and then can be merged. This confusion matrix
and, when necessary, some visual plots of activities, are exploited by the user in order to
determine the concrete associations of the various activities and labels.

Finally the Data Composer module allows to request specific sets of labeled signals.
The requests are parametrized. For example, the request getDataset (’activities’,
[1 2 3], ’gender’, [’F’, ’age’, 24) returns all the labeled signals for activities
1, 2, and 3 performed by females 24 years old.
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5. Data Distribution

The Data Distribution component role is to provide i) sets of labeled signals according
to specific needs; ii) trained classifiers; and iii) labels corresponding to the activities
performed given frames of signals.

The availability of sets of labeled signals helps researchers that need to validate their
techniques with a wide and public data set. The huge amount of data also allows to work
with deep learning techniques, and publicly available datasets allows to generalize the
results and to compare techniques.

Figure 4 sketches the Data Distribution component architectural organization.
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Figure 4. The Data Distribution component.

The Classifier Builder module is in charge of distributing activity recognition mod-
els that can be integrated in domain dependant applications. The module also relies on
the Classifier Deployer to store the new trained activity recognition model to be used
for online classification. Finally, the Online Classifier module provides online services
related to classification: given a set of inertial signals, it provides information regarding
the activity the subject is performing. Finally, a user asks for datasets by performing a
HTTP request.

From an implementation point of view, the Data Distribution component is a web
service exposing the getDataset, getModule, and getLabel functions.

5.1. Preliminary Validation of the Data Distribution Component
The component has been designed, but its implementation has been postponed in favour

of the other components that are more challenging. Till now we have implemented the
request for sets of signals as a RestFul endpoint.

6. Conclusions

Human activity recognition is a very challenging and active research field and has seen
a rapid growth in the past few years.
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The lack of large datasets penalizes the possibility of exploiting deep learning tech-

niques that require a lot of data but providing a very good accuracy.

The goal of this work is to propose a platform which firstly integrates data from

heterogenous sources and secondly provides several types of access to the data.

The framework has been partially implemented. We have prioritized the develop-

ment of the most challenging modules: Data Collection and Data Management compo-
nents. Till now, five datasets have been integrated.

Future directions include the development of the remaining modules and an intensive

test of the overall platform. Once the tests are completed, we will make available the tool
and the specifications for the design of the module for importing new datasets.
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