
Automatic Software Repair: A Survey

Extended Abstract

Luca Gazzola
Università degli Studi di

Milano-Bicocca

luca.gazzola@disco.unimib.it

Daniela Micucci
Università degli Studi di

Milano-Bicocca

micucci@disco.unimib.it

Leonardo Mariani
Università degli Studi di

Milano-Bicocca

mariani@disco.unimib.it

ACM Reference Format:

Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2018. Automatic

Software Repair: A Survey: Extended Abstract. In ICSE ’18: 40th Interna-

tional Conference on Software Engineering , May 27-June 3, 2018, Gothenburg,

Sweden. ACM, New York, NY, USA, 1 page. https://doi.org/10.1145/3180155.

3182526

Debugging software failures is still a painful, time consuming, and

expensive process. For instance, recent studies showed that de-

bugging activities often account for about 50% of the overall de-

velopment cost of software products [3]. There are many factors

contributing to the cost of debugging, but the most impacting one

is the extensive manual effort that is still required to identify and

remove faults. So far, the automation of debugging activities es-

sentially resulted in the development of techniques that provide

useful insights about the possible locations of faults, the inputs

and states of the application responsible for the failures, as well

as the anomalous operations executed during failures. However,

developers must still put a relevant effort on the analysis of the

failed executions to exactly identify the faults that must be fixed.

In addition, these techniques do not help the developers with the

synthesis of an appropriate fix.

Recently, researchers focused on a new class of approaches,

namely program repair techniques [1, 4], whose key idea is to try

to automatically repair software systems by producing an actual fix

that can be validated by the testers before it is finally accepted, or

that can be adapted to properly fit the system. The benefit of using

these techniques is that the fix both explains the reason of the fail-

ure and provides a possible solution to the problem, thus alleviating

the effort necessary to identify and correct faults. Since program

repair techniques have the potential to dramatically reduce the

debugging effort, they attracted the interest of many researchers

who produced several approaches for repairing different classes

of faults under different conditions and hypotheses. The proposed

algorithms, techniques, and heuristics have been integrated, exper-

imented, and studied, producing a heterogeneous and articulated

research framework where automatic repair techniques are prolifer-

ating. Important results have been already achieved, but at the same

time these results revealed the existence of relevant challenges that

should be faced.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5638-1/18/05.
https://doi.org/10.1145/3180155.3182526

!

"

#

$

%

&!

&"

&#

&$

&%

"!

""

&''$ (((&''' (((((("!!) "!!$ "!!* "!!% "!!' "!&! "!&& "!&" "!&+ "!&# "!&) "!&$

,
-
.
/0
12
3
425

-
/6
78
9:
73
,
;

<091

Figure 1: Publications per year from 1996 to 2016.

Interest in program repair techniques greatly increased in the

last few years, as shown in Figure 1, our TSE paper [2] contributes

to the research on such techniques by surveying a body of 108

papers about automatic software repair techniques, illustrating the

algorithms and the approaches, comparing them on representative

examples, critically analyzing their capabilities in repairing faulty

programs, surveying the results achieved so far and summarizing

them into a set of key facts that show the trade-offs and factors

influencing the effectiveness of these approaches, and identifying

the key open challenges that we believe are the most important

and that can influence the future research in the area.

Keywords: Automatic Program Repair, Generate and Validate,

Search-Based, Semantics-driven repair, Correct by Construction,

Program Synthesis, Self-Repairing.

ACKNOWLEDGMENTS

This work has been partially supported by the EU H2020 "Learn" project,

which has been funded under the ERC Consolidator Grant 2014 program

(ERC Grant Agreement n. 646867) and the "GAUSS" national research

project, which has been funded by the MIUR under the PRIN 2015 pro-

gram (Contract 2015KWREMX).

REFERENCES
[1] A. Arcuri. 2008. On the automation of fixing software bugs. In Companion of the

30th International Conference on Software Engineering.
[2] L. Gazzola, D. Micucci, and L. Mariani. to appear. Automatic software repair: A

survey. IEEE Transactions on Software Engineering (to appear).
[3] T. Britton L., Jeng, G. Carver, and P. Cheak. 2013. Reversible Debugging Software

- quantify the time and cost saved using reversible debuggers. (2013).
[4] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. 2009. Automatically find-

ing patches using genetic programming. In Proceedings of the 31st International
Conference on Software Engineering.

1219

2018 ACM/IEEE 40th International Conference on Software Engineering

