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Abstract

The actual gold standard to exclude the malignant nature of thyroid nodules in the clinical
routine is represented by thyroid Fine Needle Aspirations (FNAs) biopsies. Thyroid FNAs are
safe and cost-effective. Approximately the 20-30% of cases have an indeterminate for
malignancy final report. These patients undergo diagnostic (and not therapeutic)
thyroidectomy, but after surgery the 80% of these thyroid nodules are benign. This
overtreatment has of course important consequences in the quality of life of the patients and
high healthcare costs. The application of -omics techniques might have a potential role in the
research for new diagnostic markers able to discriminate benign from malignant nodules, thus
minimizing the challenging cases of indeterminate for malignancy.

Mass spectrometry is one of the most important analytical tools able to obtain information
regarding the molecular composition of a sample, the presence of biomolecules and their
abundance. Among the different proteomics approaches able to extract the molecular
alterations of the different type of specimen’s lesion, Matrix-Assisted Laser
Desorption/lonization (MALDI) Mass Spectrometry Imaging (MSI) was strongly emerging.
MALDI-MSI represents an ideal technology that enables to explore the spatial distribution of
biomolecules within tissue, integrating molecular and traditional morphological information
while preserving the integrity of the analysed tissue. Various studies applied MALDI-MSI
technology for prognostic purposes and for in real time diagnostic setting, showing the
usefulness, advantages and applicability of MALDI-MSI in different fields of pathology. Due to
the promising results recently obtained with MALDI-MSI in the identification of proteomic
signals able to differentiate between benign and malignant cases from the analysis of thyroid
tissue after surgery, the idea was to apply for the first time MALDI-MSI on real thyroid FNAs
biopsies.

Preliminary to the clinical study, the protocol for the proteomic MALDI-MSI analysis was
optimised to avoid degradation, alteration phenomena, contamination and artefacts formation.
The methodological improvement of the protocol in a complicated field as thyroid cytological
specimens played an important role in this study. Challenging technical aspects, such as i) the
interference of haemoglobin due to the high vascularization of the thyroid organ and ii) the
stability of the samples over time before the analysis from a morphological and proteomic point
of view, were overcome through two studies that were planned and analysed as part of the

thesis.



The clinical study for the detection of the potential cluster of signals with discriminant
capability was originally planned to involve a large sample of thyroid nodules, however, due to
the slow enrolment rate of malignant cases, the thesis contains only the results of a preliminary
analysis. Eighteen subjects contributed to the training set with 9 benign and 9 malignant
thyroid nodules. However, the statistical model was based on data of 81 specific regions of
interest, according to the morphological triage performed by the pathologist in order to
overcome false information deriving from non thyrocytes cells. The validation phase was
performed on 11 patients with different type of lesions (i.e. benign, indeterminate and
malignant). Results are very promising and highlight the possibility to introduce MALDI-MSI as
a complementary tool for the diagnostic characterization of thyroid lesions, but a further
analysis on a more consistent sample of patients is required to corroborate these findings.

A methodological aspect that emerged from the peculiarity of the proteomic analysis was also
investigated as part of this thesis. A review of the most used statistical indices for the
assessment of the similarity between mass spectra profiles was performed and a new measure
was proposed. A simulation study was implemented in order to identify the best similarity

measure to use in comparing proteomic profiles.



1 Introduction

The diagnosis of thyroid lesions is usually performed using a morphological approach on
image-guided fine needle aspiration biopsy (FNAB). Even if thyroid FNAs are safe, cost-effective
and represent the gold standard to exclude the malignant nature of thyroid nodules,
approximately 20-30% of FNABs are considered as “indeterminate for malignancy” and, in
these cases, surgery is commonly recommended. Nevertheless, post-operative histological
evaluation highlights that 80% of these uncertain diagnoses are benign lesions. These patients
undergo diagnostic and not therapeutic thyroidectomy and this overtreatment has important
consequences in their quality of life and high healthcare costs.

Omics techniques play an important role in the research for new diagnostic markers and the
use of molecular techniques for the characterization and identification of biomarkers persists
as an interesting topic in clinical applications. Different molecular test pointing to gene-
expression classifiers had been proposed to improve the pre-operative risk assessment of
malignancy on thyroid FNABs, but these methods showed disadvantages in terms of cost-
effectiveness that limit their use in clinical routine.

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a
powerful tool to explore the spatial distribution of biomolecules directly on cytological
specimens, by integrating molecular and morphological evidence. The identification of a
powerful tool for assisting cytopathologists in thyroid lesions diagnosis had clinical, ethical and
economical relevance. Preliminary studies showed how MALDI-MSI is able to distinguish
benign with respect to malignant cases in different cytological samples taken from surgical
thyroid nodule (ex-vivo cytological samples). Moving forwards from these first results, the aim
of the clinical project that motivated my thesis was to apply for the first time MALDI-MSI on
real thyroid FNABs (/n-vivo cytological samples) and to test its possible complementary role in
the diagnosis of thyroid nodules. In particular the main goal of the project was to verify the
capability of the MALDI-MSI approach in solving “indeterminate for malignancy” and
“suspicious for malignancy” cases.

In this 3-year project a consecutive series of more than 1000 patients were expected to be
enrolled based on the potentiality of recruitment at the San Gerardo Hospital (Monza, Italy).
Morphological cytological FNA diagnosis were obtained for all the patient according to 5-tiered
system (THY1: unsatisfactory material, THY2: benign, THY3a: low risk indeterminate for

malignancy, THY3b: high risk indeterminate for malignancy, THY4: suspicious for malignancy,



THY5: malignant). The design was planned to recruit 160 THY2 and 80 THY5 patients for
inclusion in the training set for the construction of the classifier based on proteomic data, while
additional 40 THY2, 150 THY3, 60 THY4 and 20 THY5 FNABs foreseen for the validation phase
of the study.

This thesis is organized as follows. The general clinical context that characterizes the diagnosis
of thyroid cancer and a summary of the study protocol is illustrated in Chapter 2, where the
proteomic analysis by MALDI-MSI is also briefly described from the sample collection of FNABs
to the pre-processing of mass spectrometry data. An overview of the main statistical
approaches to deal with high dimensional data is presented in Chapter 3 and the application of
these methods to the omics field, in particular the proteomic one, is discussed.

The practical implementation of the clinical project is described in Chapter 4. This chapter
contains the results of two important steps in the fine tuning of the protocol for the proteomic
MALDI-MS analysis that deal with the standardization of the sample preparation workflow of
ex-vivo and in-vivo thyroid FNABs in order to transfer the MALDI-MSI model to routine
cytological specimens. Chapter 4 contains also the results of the preliminary analysis of the
clinical study where proteomic data of a training set were used for the classification of thyroid
lesions in a validation sample.

One of the statistical challenges that originated from this project was the problem of the
assessment of the mass spectra similarity. A review of the main approaches existing in the
literature to assess this issue is presented in Chapter 5, together with a proposal developed
specifically for this purpose. Results of a simulation study that was set up to investigate the
performance and the reliability of different similarity measures are also reported in Chapter 5.

Some final remarks are given in Chapter 6.



2  The clinical and proteomic landscape

2.1 Clinical context

An increasing incidence of thyroid cancer had been reported in the last decades due to the
primary detection of small tumour nodules in the preclinical stage [1] [2]. The thyroid is a
bilobular endocrine gland that is located anteriorly in the lower neck [3]. The main purpose of
this organ is to produce, store and secrete the iodine-based hormones triiodothyronine (T3)
and thyroxine (T4); they act on fat, protein and carbohydrate metabolism, as well as on the
development of central nervous system and general growth. The thyroid hormones are strictly
regulated by the Hypothalamus-Pituitary-Thyroid axis (HPT) via the secretion of thyroid
regulating hormones (TRH, from hypothalamus) and thyroid stimulating hormone (TSH, from
pituitary gland) [4].

Palpable thyroid nodules are present up to the 10% of the adult population. Ultrasound could
detect up to 70% of palpable and not palpable nodules that were identified during the execution
of an imaging test for other indications [5]. Prevalence is higher in women, elderly and in iodine
insufficient areas and the frequency increases with age [6]. In Italy, thyroid nodules are the
second most frequent cause of cancer in women under 45 years [7]. Only 5-15% of patients are
actually affected by malignant thyroid lesion, so the first purpose is to exclude malignancy [5].
2.1.1 Diagnostic iter and follow-up

The main objective of the ultrasound evaluation of a thyroid nodule is to determine whether
the lesion should be evaluated via FNA or subjected to ultrasound follow-up [8]. Since
ultrasound is an operator-dependent technique and because of the complexity in the
interpretation of the ultrasound images, thyroid lesions had been stratified in different risk of
malignancy in order to standardise the diagnostic procedure and determine the
appropriateness of the execution of FNA [9].

The first diagnostic procedure identified by the guidelines of the American Thyroid Association
(ATA) and the American College of Radiology (ACR) involves the evaluation of multiple
ultrasound characteristics as: solid aspect, hypo echogenicity, micro calcifications, irregular
borders, absence of peripheral halo, intranodular blood flow and shape [5]. Therefore, the ATA
and ACR guidelines suggested to evaluate thyroid nodules based on combinations of ultrasound
characteristics, stratifying nodules in 5 groups with a different risk of malignancy [10]
(Figurel). Biopsies are not recommended for nodules with a diameter lower than 10 mm, since

a small nodule is usually not a cancer. In the presence of some echographic criteria of suspicion,
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small nodules with high growth rate during follow-up are eligible for FNA [9]. Currently,
ultrasound technique is able to detect nodules with a diameter under 5 mm without difficulty.
These nodules can potentially be biopsied with good results for safety and diagnostic
performance for the patients [11].

Although ultrasonography is a good diagnostic tool, the diagnosis of thyroid lesions is
performed by image-guided fine needle aspiration biopsy that currently represents the main
approach to exclude the malignant lesion of thyroid nodules in patients with echography
suspicious features [11]. An experienced pathologist or technician performs all aspirations.
Pathologist evaluates 1 to 3 slides prepared as smears for each FNAB needle pass for traditional
morphological diagnoses. Samples are then classified according to the 5-tiered Italian Society
for Anatomic Pathology and Cytology and the Italian Division of the International Academy of
Pathology (SIAPEC-IAP) system [12] (Figure 1). A sample is defined as not representative when
the number of cells is insufficient for diagnoses: it is required the presence of at least 6 groups
of 10 well preserved cells [13].

The World Health Organization (WHO) divided thyroid neoplasms into benign lesions as
follicular thyroid adenomas (FTA), hyperplastic lesions (HP) to differentiated carcinomas, such
as papillary thyroid carcinomas (PTC, nearly 90% of thyroid cancer), follicular thyroid
carcinomas (FTC), anaplastic thyroid carcinomas (ATC) and medullary thyroid carcinoma
(MTC, represents only the 5% of malignant lesions).

A classification of benign (THY 2) is assigned in 60-70% of thyroid FNAs. In the majority of the
cases, THY4 and THYS5 are diagnosed as classical PTC or as follicular variant of PTC (fvPTC)
whereas the THY3 category, defined as “indeterminate for malignancy”, may include FTA, non-
invasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP), Hurtle cells
carcinoma, PTC and lesion of uncertain malignant potential (UMP) [14]. A surgical approach for
the THY3 samples is recommended by the international guidelines [15]. After total
thyroidectomy, 80% of these cases result benign [12], with important implications in terms of
healthcare costs, operative risks and morbidity, and potential need for a lifelong hormone
replacement therapy.

Before the routine use of FNA, only the 14% of the resected thyroid resulted as malignant, after
FNA practice the percentage increased further than 50% [15]. The diagnostic accuracy of FNA
was nearly 90%, and the percentage of false positive and false negative was less than 3%, except

for FTA [13].



To improve the pre-operative risk assessment of malignancy on thyroid FNAs different
molecular tests, as genetic testing (BRAF, N-H-KRAS point mutations and RET/PTCI,
RET/PTC3, PAX8/PPAR rearrangements) or gene-expression classifiers (Veracyte, Thyroseq)
had been proposed. These methods show several disadvantages in terms of cost-effectiveness

that limit their use in routine diagnostics, and sometimes are inconclusive (i.e. 50% of
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Figure 1 ATA and ACR guidelines for thyroid nodules based on combinations of ultrasound and cytological
characteristics, stratifying nodules in groups with a different risk of malignancy

Repeat FNA

2.1.2 The clinical protocol

Patients population: consecutive subjects admitted to the Ultra Sound (US)-guided FNA
ambulatory of the ASST MONZA-BRIANZA (San Gerardo Hospital HSG-UNIMIB, Monza, Italy)
from 1 June 2017 to 1 June 20109.

FNA: a standard procedure of US-guideed FNA that includes a minimum of 2 passes for nodule.

Only “needle washing” from leftover material of every pass was collected and send to MALDI

examination.Cytologic diagnosis: a morphological cytological FNA diagnosis obtained from all
subjects according to the 5-tiered reporting system of the British guidelines.

Histology and follow-up: the cytological diagnosis had been differentially confirmed. In

particular, BENIGN-THY?2 cases were certified by performing a US examination 12-months after
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the first US-guided FNA and confirming: i) absence of new echographic malignant features ii)
absence of significant increasing nodule size iii) absence of nodes metastasis iv) no incidence
of new suspicious nodules. For malignant cases, histological diagnoses were progressively
collected after thyroidectomy to certify the nature of the nodules.

Potentiality of recruitment: around 700 subjects per year for a total of 1400 in a 24-months

recruitment period.

Sample size: Training-phase: a) 160 cases with a clear-cut benign diagnosis (THY2); b) 80 cases
with a clear-cut malignant diagnosis (THY5).

Validation-phase: a) 150 indeterminate (THY3), b) 50 suspicious (THY4), ¢) 40 benign (THY2)
and d) 20 malignant (THY5) Fine Needle Aspiration Biopsies (FNABs) with a subsequent clear-
cut diagnosis based either on follow-up or histology.

The sample size was estimated on the basis of the mean difference in peak intensities of protein
expression, assuming that the base 2 logarithm of peak intensities has a Gaussian distribution.
The MALDI analysis of a total of 240 patients in the training phase, according to a ratio 2:1
between THY2 and THYS5, have a 90% power to detect a 1.5-fold change in the mean intensities
of the two groups, with an a error of 0.001 and assuming one technical replicate, two-sided test
and the variance in the log-peak equal to 0.9 (data from previous experiences on thyroid
tissue). Even in presence of a higher level of variability, with a variance of 1, our study would
have a power of 80%, to show as statistically significant the same difference. This was an highly
powered study for the discovery of new markers based on proteomic profiling that properly
controls for the False Discovery Rate due to multiple testing, since around 150 peaks were
tested for differences in mean intensities at the biomarker discovery stage.

Data collection:for each recruited patient demographic and clinical information were collected,

including: age, sex, number of nodules, echographic parameters, presence of autoimmunity,
medical history, concomitant therapies, serological TSH levels, history of radioactive exposure.
Ethics: - the study was approved by the Ethical Committee of the ASST MONZA-BRIANZA;

-subjects provided signed informed consent.

2.2 Mass spectrometry

Despite FNA is considered the standard procedure for thyroid nodules diagnoses, due to the
fact that is an easy-to-perform technique, cost-effective and minimally invasive method [16],
collected samples usually contain few tumour cells. Limiting the usefulness of cytological

analyses could create ambiguity in the diagnoses. To address this problem, several groups had
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used proteomics approach to find potential markers for thyroid tumours from FNA samples
and other techniques, such as fresh-frozen thyroid tissue specimens obtained after
thyroidectomy and serum samples [17].

Proteomics represents a possible complementary analytical strategy that was just routinely
used in microbiology. In this regard, Matrix assisted laser desorption/ionization (MALDI) mass
spectrometry imaging (MSI) is a new proteomics technology that explored the composition of
biomolecules and their spatial distribution in-situ [18]. MALDI imaging had already been used
to build proteomic signatures of carcinoma in different organs such as oesophagus, breast,
colon, liver, kidney, stomach, and thyroid gland using histological tissues [19][20]. The
possibility to investigate material collected by FNAB, available before thyroidectomies (in-vivo
FNAB), for the preoperative diagnostic phase of thyroid tumours, could reduce the number of
unnecessary surgeries.

In the last years the interest in the application of molecular techniques for the diagnoses of
thyroid lesions has grown, and MALDI-MSI had been used to analyse the proteomic profile in
thyroid tissues and FNA samples [21][22]. Several groups have worked in this field, as shown
in the following examples. Because histological analyses on thyroid surgical samples was still
the most efficient one due to the high quality of the sample, several groups developed different
strategies and optimised protocol to allow a MALDI-MSI proteomic investigation on surgical
specimens, fresh frozen (FF) and Formalin-Fixed Paraffin-Embedded (FFPE) tissue specimens
based on tryptic peptide extraction after enzymatic digestion [23][24].

In 2017 Pietrowska et al. focused their studies on distinguishing different types of thyroid
cancer on thyroid tissue samples, and validated a proper classification of MTC and anaplastic
cancers [25]. In the same years, Galli et al. used MALDI-MSI to investigate Tissue Microarrays
(TMAs) on different type of thyroid nodules, such as HP, FTA, PTC and fvPTC [21]. A group of
proteins able to discriminate between HP and FA or HP and PTC was identified. Moreover,
MALDI-MSI showed the possibility to highlight the heterogeneity of those TMA samples that
contained both benign and malignant cells. Different groups worked also on rare forms of
thyroid cancer, as MTC, and their studies showed an high sensitivity and specificity to detect
MTC [25][26].

MALDI-MSI has been performed also on cytological specimens, but the approach on this type of
samples was different. Complementary results on FNA smear samples (liquid biopsy was
smeared on a glass microscope slide) were obtained in 2016 by Pagni et al.. The application of

MALDI-MSI on ex-vivo FNAB (FNAB after thyroidectomies) showed the possibility to correlate



morphological information with protein expression in the distinction between malignant (PTC)
and benign lesions [22]. MALDI-MSI demonstrated the ability to distinguish not only benign vs
malignant lesions, but to reveal significant differences between thyroid lesions with similar
pathological behaviour. Potential discriminative features were found in the malignant group,
where PTC and MTC lesions showed independent proteomic profiles.

A recent work published in 2019 on thyroid lesions, demonstrated the potential use of
metabolomic analysys (by Desorption Electrospray Ionization Mass Spectrometry DESI-MS
imaging) on FNA smears to reduce the number of unnecessary diagnostic thyroidectomies [27].
Molecular signatures of benign vs FTC and benign vs PTC were found.

These studies showed how MALDI-MSI, that was an emerging approach, allows to provide
specific molecular profiles of the thyroid lesions not only on surgical specimens, but also on
standard FNAB samples used for the clinical routinely diagnoses.

The imaging approach on in-vivo FNAB specimens to individuate putative discriminant
biomarkers is still relatively new. The addition of MALDI-MSI into the clinical routine, to
improve the diagnoses of thyroid nodules especially for indeterminate for malignant cases, is
promising. Potentially the number of not therapeutic surgery can be reduced, improving the
life (style) of patients and high healthcare costs.

A consistent part of this thesis has been dedicated to solve technical aspects on sample
preparation, such as morphological and protein profile stability, and haemoglobin interference
problem that suppressed any other protein signature in untreated samples. The technical
details reported in the following sections are the results of the studies whose results are
reported in Chapter 5.

2.2.1 Sample Preparation

The design of a robust and simple protocol, by focusing on the morphological and protein
stability of the sample and the repeatability of the workflow, was of great importance.
Samples were collected by performing 3 or 5 needle passes with a 25-Gauge needle and
immediately transferred into a falcon tube with preservative mediums, such as CytoLyt
solution. This solution allowed to preserve the morphology of the samples during
transportation and over time, to prevent protein precipitation and the lysis of red blood cells.
Cytological samples deposited into CytoLyt solution were centrifuged for 10 minutes at room
temperature (RT) to separate cells and aggregates from the cyst fluid, then the pellet was re-
suspended in CytoLyt solution again and the supernatant was discarded and the procedure

iterated [28][29][30][31]. Finally, samples were transferred onto indium tin oxide (ITO)
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conductive slides as small cytospin spot and measurement of total protein concentration was
performed by using a spectrophotometer.

The amount of material was usually scarce; a limiting number of needle passes can be
performed due to the aspiration being performed in living patients who do not undergo
anaesthesia. When the amount of cellular material was enough the specimen was equally
divided into multiple spot in order to obtain multiple replicates. A maximum of eight cytospin
spots can be positioned onto one ITO-conductive slide.

Finally, dry and washing steps were performed. Cytospin samples onto ITO-slides were dried
under vacuum two times, respectively for 30 and 15 minutes, interspersed by a consecutive
washing steps of 30 seconds each, with increased concentration of ethanol (70%, 90% and
95%) in order to remove salt and lipid contamination that could unfavourably affect the quality
of MALDI-MSI data [32][33]. Then ITO-slides were stored at -80°C until the day of the analyses
at the spectrophotometer.

Before MALDI-MSI analyses, cytospin spots were stabilised to room temperature, dried under
vacuum for 30 minute, and the MALDI-matrix sinapinic acid was uniformly deposited, using the
iMatrixSpray automated spraying system. Different types of matrix exist, depending on the
nature of the analyte to analyse and the mass range of the analyses.

The analysis reported in this study were performed with a MALDI- time of flight (MALDI-TOF)
mass spectrometer. This type of instrument is one of the most commonly used, since it allows
to analyse a wide variety of molecules such as proteins, peptides and lipids. After the solvent
evaporates, the matrix co-crystallises with the molecules of the sample. When the laser of the
MALDI instruments hits the sample, the matrix absorbs the energy and transfer it from the laser
to the analyte molecules, which are now ionised, causing their detachment from the ITO-slides.
lons extracted from the sample, enter and move in a drift space free from electromagnetic fields
under vacuum.

The mechanism of operation of a TOF analyser is very simple: it separates ions according to
their velocity and examines the time that an ion took to run across the flight tube and the
amount of ions hitting the detector concurrently. lons with different m/z will arrive separately
to the detector because the lighter ions of the same charge fly faster than the heavy ones and
arrive to the detector earlier. The detector records the impacts of the ions and transform them
into electric signals, obtaining mass spectra for each sample. Signal abundance is directly

proportional to the quantity of the same ions hitting the detector plate.
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Concluding, the molecules present in the sample are ionised in the source and separated in the
TOF analyser depending on their mass to charge (m/z) ratio and finally a mass spectrum is
generated, with the m/z ratio in the x-axis and the relative aboundance (intensity) on the y-
axis.

The TOF analyser can work in two different ways: linear and reflectron (Figure 2). In the first
one, the analytes are detected at the end of the flight tube. In the reflected mode, ion mirrors
reflect the ions and an electrical field is applied before the detector to increase the resolution
of the mass analyser, i.e. incrementing the ability of the analyser of separating two ions with
small difference in their mass to charge ratios (m/z), generating two different peaks in the
spectrum. In this work linear MALDI-MSI was used.

After the MALDI analyses, the matrix was removed with 70% concentration of ethanol and the
ITO-slides were stained and digitally scanned in order to directly correlate the molecular

information to the morphological data.
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Figure 2 MALDI mass analyser can work in two different ways: in linear mode (A) or in reflectron mode (B) which
add an electrical field and a mirror to reflect the flight of the ions incrementing the ability to separate
them.
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2.2.2 Data acquisition

MSI technique maps the biological molecules as proteins, peptides, lipids and metabolites
visualizing their distribution in the biological sample [34]. To generate MSI data with a MALDI
instrument, the sample was divided into multiple pixels depending on the laser characteristic.
The distance between two consecutive shots (raster) depends on the laser size, a reduction of
the raster increases the spatial resolution leading to the visualisation of single cells [35].

Mass spectra (MS) were acquired for each single point (pixel) in which the laser beams hit the
surface of the sample. Once we arranged the mass spectra data by their pixel positions, we
obtained a set of MSI data structured as a data cube. The acquisition of one single spectrum for
each pixel led to the possibility to reconstruct the spatial distribution of a given analyte (at a
specific m/z value) on the sample. This made up an intensity image, which maps the
distribution of the specific molecules on the specimens, colouring image pixels according to the
abundance in each spectra of the m/z chosen (Figure 3). The advantage of MSI instead of MS

data is that MSI also incorporate spatial information in MSI proteomic data.
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Figure 3 Experimental plan: from thyroid biopsies to MALDI-MSI analysis, spectra generation and imaging

For each sample, an overall average spectrum of the entire specimen, single spectra from each
pixel of the sample or average spectra of regions of interest (ROIs) could be obtained. ROIs
contain pathological areas of interest, annotated by the pathologist, to reduce the bias made by

the not informative pixels, only the part of cancer and non-cancer cell were selected.
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The average spectrum was obtained calculating the mean value of intensity of each m/z The
average evens the spatial molecular information, specific signals (peaks) of a defined area
might not be represented in the average spectrum. It would have been suitable if the samples
were homogeneous and all single spectrum had similar peak intensities.

2.2.3 Pre-processing:

Before statistical analyses, data have to be visualised and pre-processed in order to smooth the
intra and inter-sample variability in intensities and m/zlocalisation due to technical variations
as sample preparation and mass spectrometric instrumentation [36][37].

The elaboration phase was divided in five steps: baseline, smoothing, normalisation, alignment
and peak picking.

Baseline:

The baseline is a line that connects all the lowest value of the spectrum, usually with an
exponential shape; it is related to electrical noise and chemical impurities in the sample. The
baseline noise is estimated and subtracted from the original spectrum, bringing all the
intensities to start from zero. A high baseline leads to false intensity values. Several algorithms
could be performed. The SNIP method replaces for each data point the minimum between the
data itself and the mean of the extreme of a define window, centred in the data point observed.
Small window can lead to a strength erosion of peaks intensity, so the width of the window has
to be greater than the base of shape of the peak considered; large window leads to a loss of
small peaks and intensity of small m/z values, cutting the base of peaks. The Top-Hat method
applies a two erosion filter, a moving minimum erosion filter and subsequently a moving
maximum dilation filter. As the SNIP method, it depends on a moving window, whose size could
lead to artefacts or loss of information. The Convex Hull method connects the extremities of the
spectrum with a convex curve. It does not take into account the local variations of the spectrum,
losing informative portions of the mass spectrum. The Median filter substitutes each data point
with the median of the define window of which is the central point. Width window has to be
larger than the base of the peak shape. Iterative Convolution algorithm uses a Gaussian filter to
estimate the normal shape of each peak and estimates the baseline as an interpolation of all the
minimum of this Gaussian curve.

Smoothing:

Smoothing process removed false positive peaks corresponding to artefacts, smooth out
fluctuations and highlight the shape of the spectrum. Common approaches are the Savitzky-

Golay filter, the Moving Average, the Gaussian and the wavelet transform. Savitzky-Golay filter
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interpolates data point with low-degree polynomial function, returning a polynomial curve. It
preserves the shape of the spectrum, the intensity value of peaks and their position along m/z
axis. The Moving Average filter moves a define window along the spectrum, calculates the
average of extremes data and replaces these values to the original ones. Large windows could
lead to a loss of intensity value of the peaks, while small windows are computationally
expensive. Gaussian filter smooths the spectra using a Gaussian kernel, assuming that each peak
follows a Gaussian distribution.

Normalization:

Another task in the pre-processing stage was the normalization. Normalization divides all the
intensities of a spectrum for a fix scaling factor. It is indispensable to bring all the spectra to the
same intensity range in order to compare spectra not only within the same analyses but also
among different ones. One of the most frequently used approaches is the Total lon Current (TIC)
approach. It divides each intensity by the sum of all the intensities in the mass spectrum. It is
the most suitable method for MSI data pre-processing, but it is not robust in the presence of an
high intense peak. The TIC corresponds entirely to that signal suppressing all the other
intensities. To overcome this problem, TIC could be performed with the exclusion of that peak,
or the Median method could be used; it divides each intensity by the median intensities of the
entire spectrum, being robust in the presence of high intense peaks. However, it is sensitive to
the noise variability and a not symmetrical noise profile could lead this method to generate
significant artefacts. Other alternative to TIC normalization is the Root Mean Square (RMS),
which scales intensity by the sum of the squares of the intensities. It is appropriate in presence
of small variations in peak intensities but, as for the TIC, it is not robust in presence of
prominent peaks. Other studies perform a normalisation step respect to the largest peak or
performing a linear scaling with the smallest and the largest peak intensities.

Alignment:

Consequently, spectra must be aligned; slightly differences in m/zvalues had to be recognised
as the same and aligned with the same m/znames, so peaks in different spectra that represent
the same protein species were matched. Peak alighment was performed firstly by extracting
the most suitable peaks from a reference spectrum and then matching peak maxima of all the
spectra to the reference ones. Other less frequently used methods regarding peak alignment
have been proposed by Kim and Zhang that took advantage from mass spectral similarity
measure, such as correlation functions, to affect the performance of peak matching-based

alignment, increasing the alignment accuracy [38]. Another one is the complete linkage
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hierarchical clustering performed on the m/zaxis: the same peaks that are shifted each other’s
in different spectra were grouped under the same tight cluster [39].

Peak picking:

Finally, peaks detection identified peaks in the mass spectrum. Peak picking extracts the
information regarding the only true informative peaks. In some Peak Picking algorithm
spectrum noise is estimated, and only peaks with a Signal-to-Noise ratio (S/N) higher than an
arbitrary threshold are retained for statistical analyses. Other processes, as the Orthogonal
Matching Pursuit, estimate how much a peak looks like a Gaussian curve and detect as peak the
my/zvalue that corresponds to the global maximum of each Gaussian shape [40][37].

Only the information regarding the intensity and m/z value of the informative peaks were

retained for the statistical analyses.
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3 Overview of Statistical Methods

Various statistical methods can be applied in the omics field, but two are the main approaches
usually considered in the workflow of a omics’ analysis. Firstly, unsupervised methods can be
applied in order to explore the data structure. Data quality, such as outliers identification, is
evaluated and potential clusterings and mutual relations are investigated. Then, supervised
methods are used to construct either diagnostic, prognostic, or predictive models, based on the
specific clinical question. The main aspect differentiating unsupervised from supervised
methods is that the first can only be used for exploratory analysis because no prior information
regarding the label of the data is available. Sometimes, when the unsupervised analysis fails, no
further investigation with supervised analysis might be useful. In other situations in which the
specific contexts of unsupervised and supervised analyses are so different and there is no
relationship between the two, both the approaches are performed.

This chapter is divided into four sections. The first two present an overview of the different
approaches used to handle high dimensional problems either with unsupervised and
supervised analysis. Advantages and weaknesses of the different algorithms are discussed.
None of these algorithms works best for every problem, because there are different factors,
such as the size and structure of data, which play an important role on the choice of the
approach to used. One of the most popular classifier in the omics field, the regularized
regression model, is reviewed in the third section. It allows to create a linear regression model
selecting the most informative features without losing information about individual features.
In the last part of this chapter the typical process for the identification and evaluation of

proteomics biomarkers is presented.

3.1 Unsupervised analysis

Unsupervised statistical analyses are useful to perform an initial exploration of the collected
data, and can be divided into two major groups: dimensionality reduction (e.g. Variance
thresholds, Correlation threshold, Principal Component Analyses, Neural networks) and
clustering methods (e.g. Hierarchical Clustering Analyses and Partitioning methods). Class
discovery uses structure inside the data to suggest interesting group’s membership. If samples
do not separate clearly, maybe also the classifier would not yield good results.

3.1.1 Dimensionality reduction
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When dealing with hundreds to thousands number of features, it is useful to reduce the
dimensionality of the space while preserving the information present in the entire dataset. Two
main approaches are available for dimensionality reduction: feature selection and feature
extraction.

3.1.1.1 Feature selection

Feature selection is used for filtering out irrelevant or redundant variables from the high
dimensional dataset. The key difference with respect to feature extraction is that this last one
creates new variables from the original ones as a combination of them, while feature selection
keeps a subset of the original features.

Feature selection can be both supervised (e.g. Genetic Algorithms, Stepwise Selection,
Univariate Analysis, Significance Analysis of Microarray) and unsupervised (e.g. Variance
thresholds, Correlation threshold).

Furthermore, some supervised algorithms build a feature selection inside the model, i.e.
Regularized Regression and Random Forest that are exhaustively explained later.

Variance thresholds:

Variance threshold is a feature selector that removes all low-variance features. The idea is
really simple, feature that have not higher change between the observation do not add much
information. It is recommended to use a lower threshold not to lose possible informative
variables. As all the univariate analysis do not take into account any correlation between the
features, the variance of individual features is evaluated. Because variance is dependent on
scale, it is always recommended to normalize the features before applying variance thresholds.
As an extreme use of this technique, if a threshold of zero is applied, only features with non-
zero variance are kept, while all the features that have same value in all the samples are
removed. Because the focus of this thesis is on proteomics analysis, a choice on this feature
selector had to be done. In proteomics field it is not easy to have features with low variance due
to the analytical variability of the sample (i.e. cytospin sample preparation, MALDI-MSI sample
preparation, instrumental analysis).

Correlation threshold:

The same idea could be applied on correlation task. All the features that are highly correlated
with the others can provide redundant information. All pairwise correlation between all the
features had to be evaluated. Then, between two highly correlated features, those that have the
largest mean absolute correlation with other features are discarded. Applying a lower

threshold, informative variables could be lost. In the omics filed as well as in genetics, even if
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two features are highly correlated, they may have to be retained because are involved in the
same genetic process and can not be separated for clinical interpretability .

3.1.1.2 Feature extraction

Aim of feature extraction is to retain all the information, reducing the number of variables by
creating a new set of latent variables that are a combination of the original ones. As with feature
selection, some algorithms already perform feature extraction inside the model. One of the most
popular algorithms of this class are neural networks. As feature selection, feature extraction
can be unsupervised (e.g. Principal Component Analysis, Neural networks) and supervised (e.g.
Linear Discriminant Analysis and its variants, Support vector machine, K-nearest neighbour,
Random forest).

Principal Component Analysis:

Principal Component Analysis (PCA) is one of the most popular techniques used in high
dimensional data [1].

Dimensionality reduction in PCA is feasible by finding a new set of orthogonal latent variables
(principal components) that are a linear combination of the originals and explain as much as
possible variance of the independent variables. The first principal component (PC1) shows the
direction of the highest variance, PC2 is orthogonal to the first and represent the direction of
the maximum variance remained. The projection of the data into the new space PC1xPC2 yields
maximum separation between data. The fraction of variance explained by a principal
componentis the ratio between the variance of thatprincipal componentand the
total variance, which is the sum of variance of all the Principal Components. PCA is an
unsupervised learning method; it works without taking into account the dependent variable.
Before performing PCA, data have to be scaled and centered, because it is sensitive to the
different scale of features, otherwise features that have the largest scale would dominate in the
new latent variables, explaining the major amount of variance. A supervised version of the
principal component analysis exists that works by estimating a sequence of Principal
components that have maximal dependence on the response variable.

Neural networks:

Artificial Neural Networks (ANN) are machine learning models inspired by real biological
neural networks which compose animal brains. They are characterized by a set of artificial
neurons connected to one another in several ways, depending on the type of function that has

to be learned by the network.
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A Self-Organizing Map (SOM) is a type of ANN which applies the concept of competitive learning
in order to train the neural network, instead of the error minimization approach used by other
neural networks. Competitive learning enables the network to learn in an unsupervised way,
since the input vectors are evaluated iteratively only against network neurons using an
arbitrary distance function in order to find the so-called Best Matching Unit (BMU) neuron.
Then its weights are updated allowing the network to learn a pattern based on the given
training set [2]. SOMs are used for dimensionality reduction because they are essentially a map
from a N-dimensional vector space to a 2-D topological space in which artificial neurons and
their corresponding connections are arranged together.

Autoencoders are network models composed by two connected Feedforward Neural Network
(atype of ANN), named encoder and decoder, respectively. The encoder reduces an input vector
of dimension n to a vector of lower dimension m, and the decoder tries to map the reduced
feature space to the original input of dimension n, but instead of minimizing the error between
labels, it tries to minimize the error between the real input and the input reconstructed by the
decoder. This approach is an unsupervised learning method because labels are not necessary
to train the network, since input vectors are compared against a reconstructed version of
themselves. Hence, the output of the encoder network is the representation of the original
feature space encoded into a lower and user-defined dimension, and so identifying a
dimensionality reduction approach using neural networks [3].

3.1.2 Clustering

Clustering is an unsupervised learning algorithm that searches for natural groupings of
observations, called clusters. Methods are divided into two main approaches: partitioning and
hierarchical techniques. Partitioning methods differ from hierarchical ones due to the fact of
having to previously decide the number of clusters in which observations have to be divided.
3.1.2 .1 Hierarchical Clustering Analysis

HCA is used to group analogues observations into the same cluster according to the similarity
among each other [4]. Divisive HCA uses a top-bottom approach, starting from a unique group,
which is consecutively divided into different subgroups estimating the pairwise distance
among data observations and generating a dendrogram, e.g. tree. Conversely, agglomerative
HCA uses a bottom-up approach; single observations are grouped together according to their
similarity into clusters. HCA can be performed after PCA to highlight the presence of different
similar clusters that can be correlated with the outcome, using the selected principal

components. In the clustering algorithms the use of different cluster techniques could highlight
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different behaviour of the sample. For example, in the hierarchical cluster trees, complete
linkage is adequate to detect separation in groups of the samples, while single linkage was
rather appropriate to identify outliers.

3.1.2 .2 Partitioning analysis

Partitioning methods can be divided into parametric and non-parametric models. Model based
techniques are a broad family of algorithms designed for modelling an unknown distribution
as a mixture of simpler ones, where each sub-groups of similar data follows a classical
distribution [5]. They are more flexible with respect the non-parametric form because each
cluster could have a different variance. Different algorithm based on non parametric models
were proposed and the most widely used are described below.

K-mean:

Conversely, Heuristic partitioning methods are not based on formal models; an example was
the k-means clustering method [6]. In k-means, data observations are partitioned into k
different clusters, minimizing the distance intra cluster and maximizing the distance inter
groups. The number of clusters, k, must be chosen a priori, as the metric to be used to calculate
distance. Another disadvantage involves the structure beyond data. In K-means clusters are
grouped around centroids, resulting in globular, perfectly separated, clusters with similar sizes.
If the underlying structure in data are not globular, the algorithm could produce poor clusters.
Partitioning around medoids:

Partitioning around medoids (PAM) or k-medoids is a clustering algorithm that works similarly
to the k-means, attempting to minimize the distance between data [7]. In contrast to k-means,
in which center of a cluster is calculated as the average between the points in the cluster, PAM
choses centers among input data points. As k-means the number of clusters into which the
observations have to be partitioned, has to be chosen a priori. Compared to k-means it is more
robust to noise and outliers, because k-means minimizes the sum of the squared Euclidean
distance while k-medoids minimizes the sum of all the pairwise dissimilarities.

Affinity propagation:

Affinity propagation [8] is a relatively new clustering algorithm that unlike clustering
algorithms such as k-means or k-medoids, does not require the number of clusters to be
determined or estimated before running the algorithm. Affinity propagation takes as input a
measure of similarity between each pair of data. Similarities between data are calculated and

preference to group membership are voted.
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3.2 Supervised analysis

By contrast, the class prediction is most closely associated with classification problems. Starting
from samples with a priori knowledge of their class membership, the supervised method tries
to allocate new observations to these classes. Several statistical tools had been developed that
measure the strength of the (univariate) association between the individual features and the
response variable and differ each other for the way to assess the weights given to the features.
In the omics field (i.e. genomic, lipidomics, proteomics, metabolomics) two main problems
could be encountered: data dimensionality higher than the observations and possible
multicollinearity (high correlation levels among the variables).

When a large number of features needs to be included in a model, univariate and multivariable
regression analyses are not recommended, because, although simpler and useful in ranking
features according to their ability in prediction, they are prone to big mistakes. Univariate
analysis is used to select variables that show good performance at separating samples in classes
of interest, with the strong assumption of no interaction effects between features also in
absence of information from individual variables. Furthermore, albeit an adjustment for
multiple comparisons (type I error control) must be applied, the level of significance can
become so little that it is impossible to find significant variables.

To overcome this problem, different statistical methods had been developed with the primary
aim of reducing the number of features, filtering out irrelevant and redundant information. The
strategy is to identify, in a large number of variables, those features that were differentially
expressed in a pre-specified population so that they could be included in a class prediction. In
such a way it is possible to reduce the number of variables (e.g. genes, proteins) needed in the
future to classify the individual patient, according to the observed value of the biomarkers. For
example, Tibshirani et al. developed the Significance Analysis of Microarray (SAM) [9] that uses
repeated permutations of the data to determine if the expression of any features are
significantly related to the response controlling for the False Discovery Rate.

In omics data, the number of detected variables usually exceeds the number of samples, even
in a relatively large study with many biological samples, so overfitting is another potential
pitfall. This reduction could be done in two different ways, selecting the most relevant features
or by summarizing the multiple original variables constructing new latent variables.

3.2.1. Feature selection

Genetic algorithm:
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Genetic algorithm (GA) is a search operation that reflects the process of natural selection. GA
has two main use, find the best weights for a neural network or performed a supervised feature
selection. In the second case GA seeks to find a collection of markers (called chromosome in
GA) that separate cases and control, each chromosome is evaluated by a fitness function
following these simple steps. Intensity variables had to be previously scaled to lie between 0
and 1, then sample is clustered according to the Euclidean distance.

GA is similar to the K-means, with the main difference that the second algorithm is an
unsupervised method.

Few studies applied GA to mass spectrometry analysis, because of its computational complexity
without an increment in classification accuracy when it is comparable to other popular
approaches as classification tree, boosting and PAM algorithm [10].

Stepwise algorithm:

Stepwise algorithm is a supervised feature selection method based on a sequential process of
selection [11]. Two different formulations of these methods exist: forward and backward. In
forward stepwise search features were add one at a time at the model, if the new variable
increased the accuracy of the classifier then the features are retained, otherwise, it is discarded.
it is suggested to be used when a large set of predictor variables are to be managed. Backward
stepwise is the same process but reversed, starting from a full model then one at a time each
feature were discarded until performance reaches the optimal results in sensitivity and
specificity. This method is used when a modest number of predictor variables are available and
the focus is to eliminate a few of them. Stepwise regression is able to manage with a large
number of potential biomarkers even if a high amount of potential predictor variable means a
high quantity of different models to be tested in order to select the relevant variables. One of
the main advantages of these methods is the possibility to look at the order in which variables
were removed or added giving information about the different levels of importance of the
predictor variables. In addition, it is not able to deal with correlated variables, in fact, if two
predictor variables in the model are highly correlated, only one may be retained into the model.
This is not a problem in the major clinical setting, conversely, in the omics field, it can be a
problem if correlated variables involved in the same genetic process had both to be retained.
3.2.2. Feature extraction

The number of latent variables determines the complexity of the model, a high number of latent
variables might lead to an overestimation of the effects of the variables, leading to perfect

classification, while a low set of these new variables could lead to under-fitting data, due to the
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fact that the new variables do not retain enough information from the independent original
variables. The most used latent variable approach for classification models in omics field are
PLS-DA [12], Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA),
diagonal linear discriminant analysis (DLDA), PCA followed by LDA [13]; in other works non-
parametric classification approach was used, such as support vector machines (SVM), the
nearest neighbour classification (KNN) and random forest classifiers. The aim is the
development of a classification model able to discriminate between outcomes, following
decision rules. In the supervised classification, the discrimination rule is built using a training
sample, a set of patients with prior information about their group membership. Statistical
methods are used to divide the feature space into regions that better separate samples in
categories. These regions are divided by smooth curves that define decision boundaries. Non-
parametric methods, such as SVM, are able to divided data points with non linear hyperplanes,
while other parametric models as LDA separated samples linearly, which is not usually possible
in high dimensional data, but are useful if the data distribution is known prior.

Support Vector Machines:

The SVM approach was developed by Vapnik [14], it maps validation data points into a high
dimensional space where a maximal separating hyperplane is constructed to better maximize
the minimal difference between observations belonging to different classes. SVM with linear
kernel is similar to logistic regression, however, its strength is due to the fact that can be used
with non-linear kernels to model non-linear decision boundaries. It is fairly robust respect
overfitting.

K Nearest Neighbor:

The KNN method is first introduced by Fix and Hodges [13] to perform discriminant analysis
when probability densities are unknown or difficult to determine. Each new observation is
assigned to the class most common among its k nearest neighbors. Usually, Euclidean distance
is used to identify the k neighbors. Larger k reduced the misclassification error but made
boundaries rule between different class membership less distinct and more complex
decreasing.

Classification tree:

Classification tree (CART model) [15] uses decision tree algorithm for classification or
regression models. Each node represents a decision rule on input independent variable. Leaf
nodes of the tree contain the independent variable, which determines prediction. Following

rules through the decision tree, new observations are classified. Classification tree is robust to
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outliers, is scalable and could model non-linear decision boundaries thanks to its hierarchical
structure.

Random Forest:

Random Forest combines predictions from different individual decision trees, in which
thresholds of feature values determine whether the observation belongs to a class or to another
[16].

Neural Network:

A Feedforward Neural Network (FNN) [17], which exploits backpropagation algorithm, is a
type of ANN trained using a set of labelled input vectors, adjusting connections weights based
on the distance between real labels and network predicted labels, thus this kind of model
resides inside the category of supervised machine learning.

All these methods are the so called black-box: features were combined together in order to
minimize the classification error without taking into account how there were groups and their
real importance in the classification problem. Moreover, when another observation had to
classify the model had to be run again.

Linear discriminant analysis and further extension:

Conversely, different parametric classifiers had been successful in handling high dimension
dataset for classification problems. Different classifier derived by Linear Discriminant Analysis
(LDA) specifically designed in multivariate analysis with a latent variable approach and
depends on the assumption of data distribution. LDA assumes that data follow multivariate
normal distributions with mean and covariance matrix estimated from the training sample.

Standard LDA procedure, similar to the regression analysis, attempted at expressing an
outcome as a linear combination of other features or measurements, is closely similar to PCA
and factor analysis because of look for linear combinations of features that better explained the
data. In LDA covariance matrix is assumed to be the same for all classes. Then, the main
objective of LDA is to find a projection matrix that maximizes the ratio of the determinant of
the between-class covariance matrix respect to the determinant of the within-class covariance
matrix (Fisher’s criterion). In order to use LDA, we need to compute the inverse of the
covariance matrix and so not only the estimation of k different means but also the estimation
of k(k+1)/2 different variance, supposing to have k different variables. If the number of
estimation is a fraction of the total number of samples, the models could be unstable due to the
covariance matrix becomes singular. To solve this problem, Yu and Yang [18] have developed

the Diagonal LDA algorithm (DLDA). Instead of using the entire covariance matrix, the DLDA
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used the main diagonal, diagonalized the two covariance matrix. Another extension is the QDA,
in which the covariance matrix is not assumed to be equal in all the groups, so the decision
boundary could be curved.

Finally, Partial least squares discriminant analysis (PLS-DA) became popular in omics field,
where many predictor variables (frequently correlated) and relatively few samples are usual
PLS-DA is a variant of Partial least squares regression PLS-R that could be used when the
response variable Y is categorical. Under certain circumstances, PLS-DA provides the same
results that of linear discriminant analysis (LDA) but is especially suited to deal with

multicollinearity [12].

3.3 Penalized Regression Models

The main problem in dimensionality reduction through the construction of latent variables, as
a combination of the original ones, is the loss of information about individual features. If the
interest is to identify specific features, such as proteins to subsequently carry out a clinical
investigation like genetic studies or identify biomarkers research in the serum samples, instead
of only correctly classified new indeterminate samples, supervised regression models had to be
performed. In the high dimensional setting we deal with a huge number of biological features
and we are interested in identifying a subset of biomarkers which characterizes patients
according to their label. From a statistical point of view, this consists in fitting a selected
regression model. In regression models, the selection and elimination of irrelevant variables
for the classification problem could be included in the workflow of the model itself, e.g.
penalized regression models (LASSO).

The Ridge regression and the Least Absolute Shrinkage and Selection Operator (LASSO) are
two mainly used penalized regression methods [19]. Both consist in fitting a model that
includes all the predictors and the estimated coefficients are shrunken toward zero relative to
the least square estimates. The shrinkage (or regularization) has the effect of reducing variance
and, only for LASSO, can perform variable selection.

Given an omics dataset, we denote X the predictors matrix of dimension n x p, where n is the
total number of dependent variables (observations/response) and pthe number of
independent variables (features). The estimation of B parameters is performed by maximizing

the penalized log likelihood defined as:
{)pen(ﬁ; A X) = {)(ﬂ;X) - pl(ﬂ)

Of note, when we maximize this function we are not only maximizing the log-likelihood:
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max Lpen(B, A X) = mﬁax{i’(b’; X) —pa(B)}
The penalizing parameter, introduced in the models, induces bias but reduces the mean
squared error; the penalty term is a factor that permits to balance the bias-variance trade-off,
the balance between under- and over-fit. The higher the weight of the penalty term is, the closer
to the origin are the f coefficients, due to the fact that the penalty term is non decreasing in the

coefficients:

V(B.B") : IBl < 1Bl pa(B) <pa(B”)
Ridge regression:
The Ridge regression penalizes the size of regression coefficients using the squared L2 norm

penalty factor, i.e adding the squared magnitude of the coefficient as penalty factor, thus
reducing variability and improving the accuracy of linear regression models.
, T
pa(B) =2B"B =23F_, B} with |Bl = (B, |By])
Ridge regression however does not perform variable selection.

Lasso regression:
Conversely, the standard LASSO method is a shrinkage and selection method that performs

feature selection using an L1 norm penalty factor, i.e. adding the absolute value of magnitude
of the coefficient as penalty factor, while constructing the predictive model (it is considered an

embedded method).
pA(B) = 217181 = A37_|B;|  with 18] = (1B, B])"

Elastic net regression.

The elastic net [20] is a regularized regression method that linearly combines the L1 and

L2 penalties of the lasso and ridge methods.

pa(B) = L 17T|BI + 2,87 B 1,4, 20

=A[a1T|B|+1_Ta[)’T[)’] a €[0,1]

When the coefficient ¢ = 0, the Elastic net reduces to the Ridge regression, while ¢ = 1 yields
to the Lasso regression. Balancing the two penalty terms, Elastic net can perform variable
selection while holding accuracy in the prediction. Elastic net tends to retain or discard together
groups of features that are highly correlated.
3.3.1 The choice of the shrinkage parameter through cross-validation
The results of a penalized regression can vary dramatically, depending on the value of the
penalty factor: the higher it is, the more the partial likelihood is penalized.
Cross-validation is used to select the optimal penalty parameter. The idea is to find the value
of A that provides the best estimates of 8, which minimize the mean prediction error and

maximise the cross validated penalized likelihood. Given a number of candidate values for A4,
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for each of them observations are randomly split in K different folds, and penalized likelihood
is calculated in all the data without the kt"fold:

2 (B)=2(B) —Liy(B) = c — 7k — Xk B)®
where c is a constant value over the K folds due to the fact that the log-likelihood is calculated
over all subjects.

The cross-validated log-likelihood is defined as
s A 2
cvly = z fk(BfL_k)) =kx*xc— Z[}’k - Xlﬁ?_k)]
K K

where k * ¢ is the constant value summed across the K folds and ﬁé_k) is obtained by

maximizing the penalized log-likelihood with penalty A when fold k is left out. Finally, the A final
value is A.,; = argmax, cvl; [21].

3.3.2 Robustness of cross-validation

Given that the choice of the shrinkage parameter has an high effect on model results, the
robustness of cross validation in lasso has been investigated during the years. Furthermore, the
penalty factor could vary considerably due to the randomly assignment of observations to the
k folds. The main approaches to evaluated the robustness of cross validation follows:

Percentile Lasso:
In the percentile-lasso [22] and Stability Selection [23] the penalized cross-validated process

is iterated Mdifferent times, in each of which subjects are randomly assigned to the K folds. For

each iteration the selected A[CZLI] are retained and the empirical distribution is computed over all

iterations: {Awl }
m=1

Finally, the high-rank percentile of the empirical distribution is selected as the optimal value.

Stability Selection:
In the stability selection method the shrinkage parameter 4

[m]

wvi 1S estimated for each of the

Miterations, but the empirical distribution of the selection probability of each of the f
coefficients is computed and informative biomarkers are selected as the ones that have an
empirical selection probability that is higher than a pre-specified threshold.

3.3.3 More complex penalties models

More complex penalized models exist based on the specific aims of the feature selection and
available information regarding the data.

Adaptive Lasso:

The adaptive lasso [24] differs from the standard lasso as the penalty factor 4 is not equal for

all the S coefficientsbut each regression coefficient is differently weighted. This situation can
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occur when prior information is available for some features and one does not want to give
heavy weights to non-informative covariates but aims to retain the most important ones. This

is achieved by variable-specific penalties 4; = Aw;:

p
Prw(B) == 20718 =2 ;5|
j=1

]

Usually, if no prior knowledge is available, weights are defined as the inverse of the regression
coefficients w; = 1/|f;| estimated on the same data in different ways, such as using a
previously fitted full model or applying one of the penalized regression methods described
above [25]. The problem of these methods is that the weight calculation process is performed
on the same data successively used in the adaptive lasso, so we are bringing the solution in the
direction we choosed, leading to overoptimistic results. On the other hand, we tend to find
significant biomarkers even if there are not as we will never get a null model. For this reason it
is perhaps better to perform an initial global test, testing the null hypothesis in which all the
regression coefficients are equal to zero against the alternative hypothesis that al least one
coefficient is different from zero. If the null hypothesis is rejected then one of the previous cited
model can be used to calculate the weights of the adaptive lasso. Performing an initial ridge
model, estimated regression coefficients are distorted towards zero without collapsing in zero
as in the lasso model, and coefficients that are closest to zero will be weighted more. Conversely,
using a lasso model, the solution of the adaptive lasso will be a subset of the simple lasso.
Group Lasso:

In the group lasso, the idea similar to the previous extended model, but with penalty factors
applied differently for subgroups of covariates [26]. This model can be useful when different

variables play a common role, i.e a group of proteins or genes in the same pathway.

G G
pl(ﬂ) = Az \/p—g”ﬂgllz = AZ ,/prgTBg
g=1 g=1

With B, the vector of the coefficients in the group g.
The term ||B, || represents the Euclidean distance of the sequence of group of coefficients from

the origin. If a subgroup of covariates has an higher cardinality with respect to another group,
the first group of biomarkers will be more penalized.

Sparse Group Lasso:

An extended version of the group lasso is the sparse group lasso [27]. Sometimes we are not

necessarily interested in keeping all the biomarkers belonging to the same group in the final
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model. In addition to the group lasso, a simple lasso component could be added. In this way the

penalization of the single markers increases.

G
pa(B) = adllBll+ (1 -2 Y oI,
g=1

Fused Lasso:

In the fused lasso [28] the spatial component in the variable matrix is taken into account, so
that two far away biomarkers are more penalized. This can be useful in genes sequences of mass
spectra, in which the proximity of markers has to be considered, since two nearest genes

possibly be involved in the same process have to be both retained in the model.

14
paB) = M2 1B1 + 22 ) |8 = By
j=2

3.4 Model building

A typical sequence of data analyses in proteomics biomarker research started checking for
separability of the data by unsupervised cluster methods. Dealing with high dimensional
setting, variable selection is another useful step. It could improve the performance of the
classification model, dealing to an easy interpretation of the model by a biological point of view.
Variable selection leads to over-optimistic and not generalizable results when it is performed
using the same groups of samples that had been used to create the classification model. To avoid
this, different approaches are available. It is usually preferred to have either an external set of
data to use for a prior variable selection or to have prior information given by previous research
(pilot study) or by known knowledge (additional information e.g. clinical knowledge). Another
possibility is to use not supervised analysis on the same set of data on which the model had to
be performed. Unsupervised analysis gives us information on features involved in the
separation of observations without the use of prior information on these data, such as the class
to which they belonged. Then this information could be used as prior information and then on
the same training set classification models could be constructed. Last, as previously mentioned,
supervised regression models that performed variable selection inside the model could be used
an alternative when no external or prior knowledge are available.

Since it is always possible to find classifiers that accurately classify the data on which they were
developed even if there is no relationship between expression of any of the genes and outcome,

it is mandatory that the whole process underwent a rigorous validation procedure.
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To validate the resulting models, a number of samples must be left out as a validation set. Using
the constructed multivariate models, the class labels of the test set are predicted, so if the data
to be predicted were used to train the classifier, then results look better than they should
(problem known as “overfitting”).

Thus, validation is a central and not-negligible step of classifier development to provide the
transportability of the classifier to another population. What had been developed on the
training cohort should be validated in a new cohort blinded to the previous results.

As previously described, cross-validation consists in partitioning the data in Akequal fold
subsets. One of this subset is omitted from the development of the classifier and will be used as
a test set. The remaining dataset is used to completely develop the classifier by fitting a
penalized regression or other models. Then, patients of the test set will be classified. The
procedure is repeated by including patients, previously classified as test patients, in the training
set and switching patients of the training set to internal validation set. In this way all partitions
work as training and test set in a &-loops cross-validation. In this way, optimal tuning parameter
is selected, informative features are selected, their correspondence regression coefficients are
estimated and the internal accuracy of the model is evaluated.

After cross validation, the prediction model has to be validates on a second independent
dataset.

In this way, the performance of the classifier measured by this system truly reflects its accuracy
in classifying patients who are not included in the development phase but are selected from an
identical population.

The discrepancy between the predicted class and the actual class is evaluated with performance
parameters of the model, such as sensitivity (True Positive Rate, TPR), specificity (True
Negative Rate, TNR), Positive Predictive Value (PPV) and Negative Predictive Value (NPV).
Another step has to be performed to correctly identify a variable as a true biomarker and
quantify its weight in the classification performance. Due to the fact that estimation of the
regression coefficients are biased because of the shrinkage parameter, a standard regression
with only the selected variables of a previous penalized regression had to be performed on
external validation dataset to estimate the real weight of the variables.

Finally, the classifier had to be evaluated on an external validation cohort to assess performance
and reliability of the model, in a different population from the one used to construct the

classification model.
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The schematic presentation of the typical procedure of data analysis is reported in the following

figure.

Step 1- Piscovery phase
@ Used unsupervised methods to check the separability of the data

@ Screening of the potential biomarkers through multiple testing procedure

/Step 2 - Model building and evaluation of the penalized model \

@ Estimation of the tuning parameters and evaluation of the classifier by cross validation

Scheme of the k-fold-cross-validation:
*+  Dataare divided into kdifferent subsetofequally size
*  Kruns, wherein each of them the k*subsetacts as a test set and all the others subsetas training set

[y ey | |
S S S

training set test set training set

@ Assess the accuracy of the constructed classifier model by internal validation, data not included in the model building

- /

Step 3 - Estimation of unbiased regression coefficient for the biomarkers selected in the previous step ‘

‘ Step 4 - Classifier evaluation on an external validation set, dataindependent ‘
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4 Proteomic and Clinical studies

Preliminary to the clinical study, that was the main focus of the thesis, the protocol for the
proteomic MALDI-MSI analysis was optimized to avoid degradation, alteration phenomena,
contamination and artefacts formation. The methodological set-up of the proteomic protocol in
a complicated field like that of the thyroid cytological specimens was a fundamental
requirement for the conduction of the clinical study. Challenging technical aspects, such as i)
the interference of haemoglobin due to the high vascularization of the thyroid organ and ii) the
stability of the samples over time before the analysis from a morphological and proteomic point
of view, were overcome through two studies whose design and results are reported in the first
two sections of this chapter.

The clinical study for the detection of the potential cluster of proteomic signals with
discriminant capability was originally planned to involve a large sample of thyroid nodules,
however, due to the slow enrolment rate of malignant cases, section 3 contains only the results
of a preliminary analysis. This interim evaluation involved data from 18 subjects with benign
and malignant thyroid nodules and, an additional sample of 11 patients with different type of
lesions (i.e. benign, indeterminate and malignant) was used for validation. Results are very
promising and highlight the possibility to introduce MALDI-MSI as a complementary tool for
the diagnostic characterization of thyroid lesions, but the final analysis is required to

corroborate these findings.

4.1 The management of haemoglobin interference for the MALDI-MSI proteomics

analysis of thyroid fine needle aspiration biopsies

4.1.1 Introduction

Although most thyroid nodules are diagnosed using a morphological approach, a significant
challenge is related with the 20-30% of fine needle aspiration biopsy (FNAB) cases that are
deemed to be indeterminate for malignancy (THY3 and THY4 according to the British system
for reporting thyroid cytopathology) [7]. So far, patients with a THY3 diagnosis undergo
diagnostic (and not therapeutic) total thyroidectomy, which has a significant impact on the
lifestyle of the patient (in terms of potential related morbidity and the needing of lifelong
hormone therapy) and places a hefty financial burden on the health care system. Moreover, the
postoperative histological diagnosis of THY3 cases highlight that approximately 70% of the

nodules were benign and the thyroidectomies unnecessary. Therefore, it is of paramount
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importance to assist pathologists in the diagnosis of the indeterminate lesions of thyroid
FNABs. Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI)
is a powerful tool in clinical proteomics allowing the investigation of the spatial distribution of
biomarkers directly on tissues and cytological specimens, and the integration of molecular and
morphological evidence [1-3]. Nowadays, only few studies have been published on MALDI-MSI
for the identification of new possible proteins to support thyroid cancer diagnosis [4-6], all
whilst using ex-vivo thyroid cytological samples. Nevertheless, significant blood contamination,
generated by the abundant vasculature of thyroid lesions and by the cutaneous vasculature of
the neck, is a frequent feature in thyroid FNABs [2]. In fact, the abundant presence of
haemoglobin in FNABs is a cause of unsatisfactory rate in traditional cytology. Erythrocytes,
present in large amounts in the suspension of cells, are also challenging for mass spectrometric
analysis, as haemoglobin suppresses the ionisation of other protein signals. Amann et al.
developed a sample preparation method for MALDI-MS analysis in order to reduce
haemoglobin interference from simulated and clinical lung FNAB, suggesting the use of an
erythrocyte lysis buffer [8]. They were able to obtain high quality MALDI-MS spectra of clinical
FNABs, however the haemoglobin signal was still significantly observed, even after the
erythrocyte lysis step [8]. Accordingly, we investigated the possibility to efficiently reduce the
presence of haemoglobin and, consequently, increase the rate of analysable specimens in order
to pave the way for future studies focusing on biomarkers discovery with MALDI-MSI.
Moreover, this protocol may also be applicable to other specimens where significant
contamination of haemoglobin is observed. For this purpose, we compare three protocols (the
air-dried, the ethanol-fixed conventional smears and the liquid based preparation (LBP)) that
are routinely used in clinical practice for the cytological diagnosis of thyroid FNABs in the
context of MALDI-MSI proteomics analysis [9-11] (Supplementary Figure 1 in appendix A).
4.1.2 Material and Methods

4.1.2.1 Sample collection and preparation

The study was approved by the Ethical Committee of the San Gerardo Hospital (cod. AIRC
MFAG- 18/11/2016). Ex-vivo cytological samples of 9 patients who underwent thyroidectomy
at the Department of Surgery of San Gerardo Hospital, Monza, Italy, were collected within 30
minutes following the surgical procedure. Sampling was performed using a 25-Gauge needle.
Three independent samples were collected from each surgical specimen and treated with
different sample preparation methods: Protocol A) conventional air-dried smear (n=9),

Protocol B) EtOH immediately fixed smear (n=7) and Protocol C) ThinPrep LBP (n=9). In
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protocol A, specimens were transferred and smeared from the syringe directly onto indium tin
oxide (ITO) conductive slides (Bruker Daltonics, Bremen, Germany), then air-dried for
approximately 30 minutes at room temperature and finally washed with 70%, 90% and 95%
EtOH solutions for 30 seconds each. In fact, it is common practice for protein MSI analysis to
perform washing steps, in order to remove salt and lipid contamination that can unfavourably
affect the quality of MALDI-MSI data [12,13]. In protocol B, the air-drying step was excluded
whilst in protocol C, the cytological samples were immediately transferred into a falcon tube
filled with the ThinPrep® CytoLyt (Hologic, Marlbourough, MA, USA) methanol-based buffered
solution, prepared following the manufacturer instruction of the ThinPrep® 2000 System
(Hologic, Marlbourough, MA, USA) and transferred as a monolayer of cells onto ITO glass slides.
Then, all slides were dried under vacuum for 15 minutes and stored at -80°C until the day of
the analysis. A second group of samples (real in-vivo FNAB), taken from 19 patients who
underwent FNAB, were prepared using protocol A (n=7) and protocol C (n=12). Before
MALDI-MSI analysis, cytological specimens were equilibrated to room temperature, dried
under vacuum for 30 minutes and the MALDI-matrix sinapinic acid (10 mg/ml in 60:40
acetonitrile:water w/0.2% trifluoroacetic acid) was uniformly deposited, with an optimised
method, using the iMatrixSpray (Tardo Gmbh, Subingen, Switzerland) automated spraying
system.

4.1.2.2 MALDI-MSI analysis and staining procedure

MALDI-TOF-MSI was performed using an ultrafleXtreme MALDI-TOF/TOF (Bruker Daltonik
GmbH) in positive-ion linear mode, using 300 laser shots per spot, with a laser focus setting of
3 medium (diameter of 50 pum). Protein Calibration Standard I (Bruker Daltonics), that contains
a mixture of standard proteins within the mass range of 5730 to 16950 Da, was used for
external calibration (Mass accuracy +30ppm). Spectra were recorded within the m/z 3000-
20000 range. Data acquisition and visualisation was performed using the Bruker software
packages (flexControl 3.4, flexImaging 4.1). After the analysis, the MALDI-matrix was removed
with 70% EtOH and the slides were stained with haematoxylin and eosin (H&E), digitally
scanned using an a ScanScope CS digital scanner (Aperio, Park Center Dr., Vista, CA, USA) and
images were co-registered to the MSI-datasets in flexImaging.

4.1.2.3 Data analysis

Data pre-processing (MALDIquant package) and statistical analysis were performed using the
open-source R software v.3.4.3. [14]. The individual average spectra were processed by

performing baseline subtraction (SNIP method, iteration 100), smoothing algorithm (Moving
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Average method, half window width 2), normalisation (Total lon Current, TIC), alignment and
peak picking (S/N = 6). Peaks that appeared in at least 5% of all individual average spectra
were used for the statistical analysis. The open-source software mMass v.5.5
(http://www.mmass.org) was used to confirm mass spectra alignment. The non parametric
Kruskall-Wallis test (two-sided, a=0.05) was used to compare the different protocols in terms
of 3 specific signal intensities (a and 3 Haemoglobin and Histone H4) and a post-hoc Dunn test,
with Benjamini & Hochberg adjustment, was applied for pairwise comparisons.

4.1.3 Results and Discussion

The average spectra, obtained after TIC normalisation, of ex-vivo cytological samples
collected from the same patient and treated with the three protocols A, B and C were
compared, for descriptive purposes, in Figure 1a. The normalised intensities [A.U.] of the a
and 3 Haemoglobin chains were clearly decreased in Protocol C, with respect to protocols

A and B, with a concomitant increase of other signals in the m/z range 3000-15000, for
example such as that corresponding with Histone H4 at m/z 11306 [8, 15], which was
selected as an exemplary signal due to its presence in all samples (a panel of other
statistically significant signals is provided in Supplementary Figure 2 in appendix A). The
overall comparison of the signal intensities among the three protocols was statistically
significant for aHaemoglobin (p=0.005), BHaemoglobin (p=0.02), and Histone H4
(p=0.00008), with paired post-hoc comparisons underlying significant differences
between protocol A and B vs C for cHaemoglobin, and Histone H4, and between protocols

B vs C for fHaemoglobin (Figure 1b, 1cand 1d). Mass error calculated on the average mass
was aHaemoglobin -188 ppm; BHaemoglobin, -64 ppm; Histone H4, -89 ppm). One of the
most remarkable features of MALDI-MSI is the possibility to co-register the in situ
proteomic information with the histological image and to focus the data analysis solely on
specific regions of interest (e.g. malignant or benign thyrocytes), excluding areas which
could confound the results, in order to obtain their specific proteomic fingerprint [6].For
this purpose, aregion of interest (ROI) of 25 pixels was carefully selected by the pathologist
containing mostly thyrocytes. Inter-patient variability of their specific spectra profiles was
investigated analysing specimens from two malignant and two benign thyroid lesions

(randomly chosen among all the samples).
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Figure 1: Comparison of the three independent sample preparation protocols using thyroid ex-vivo
cytological samples from the same patients: a) spectra overlap of protocol A (red), protocol B (blue) and
protocol C (green) from a single patient, zoomed in the regions m/z 15000-16000 and m/z 11000-
11650; b) boxplots and individual values of the normalized intensity [A.U.] of aHaemoglobin, c)
BHaemoglobin and d) Histone H4. The box contains data that fall between the first and third quartiles,
the horizontal line indicates the median, and the brackets delineate 1.5 times the interquartile range
(with data outside this range defining outliers).

A high degree of heterogeneity was evident when protocols A and B were used (Figure 2) due
to the presence, or absence, of haemoglobin and its suppressing effect on any other protein
signals. On the contrary, two comparable profiles, in which the haemoglobin interference was
no longer a limiting factor, were obtained with protocol C (Figure 2). The number of total
signals observed for each protocols in the samples a, b, c and d, as well as the number of
common signals (peaks with a S/N>6 present in both spectra) between THY5 samples (a vs. b)
and THY2 samples (c vs. d) are shown in Supplementary Table 1 in appendix A. It is evident
that when using protocols A and B the number of common signals is very low, in a range from
0 to 5 common signals, whereas with protocol C the number of common peaks increases
noticeably. Moreover, Histone H4 and Haemoglobin signal intensities, taken from the ROIs,
among the three protocols (Supplementary Figure 3 in appendix A) show the same trends
observed in the average spectra, endorsing that protocol C clearly reduce ion suppression. The
prospect to correlate molecular and cytological images and to select specific regions of interest,
such as thyrocytes clusters, makes the MALDI-MSI proteomic approach highly valuable and
suitable to enter the diagnostic routine in order to support the pathologist in the diagnosis of
cytological samples.
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Figure 2. Histograms obtained from thyrocyte regions of interest taken from ex-vivo cytological samples of
two THY5 patients (a, b) and two THY2 patients (c, d) prepared with protocols A, B and C. A total number
of 167 peaks were detected in at least 5% of all the samples with S/N>6. In the histogram of each single
patient, the bars half coloured in green represent the peaks with S/N>6 whereas the blue bars represent
the peaks with S/N<6. The y-axes are the normalised intensity [A.U.] of the signals. The red arrows
indicate the bars who correspond to aHb and fHb

The presence of haemoglobin signals per se is not the only challenging aspect; in fact, improper
sample handling and collection could cause red blood cell haemolysis even in areas of sample
where they are not present. During sample preparation with protocols A and B, the cytological
sample is smeared onto the slide and this approach could lead to the rupture of erythrocyte
cells membranes, thus the haemoglobin is released all over the sample. With protocol C, red
blood cells haemolysis was markedly reduced, due to the minimal amount of red blood cells
that remain in the sample following the treatment. In fact, the mechanical filtration step
simplifies the complexity of the cytological sample by minimising not only the amount of red
blood cells but also of debris and inflammatory cell [16]. As it stands, LBP in thyroid FNAB is an
acceptable alternative to traditional smears [17,18]. Pathologists have now learnt to recognise

specific diagnostic criteria related with thyroid LBP, such as nuclear modifications (the size is
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smaller, the nuclear-to-cytoplasmic ratio is bigger, nucleoli are prominent, grooves more
obvious and pseudoinclusions are less evident). The cytoplasms are also less abundant in LBP.
These changes are most probably due to a lack of the smearing effect that can be a potential
cause of dry or degenerative artefacts in conventional smears [19]. Moreover, with protocol C,
cells are distributed in a monolayer and it was much easier to select a ROI of only one type of
cellular component. On the contrary, when conventional smears were used, the overlap of
several cellular aggregates containing different cell types was commonly observed. The
protocol C, that was able to reduce Hb contamination, was then evaluated with real in-vivo
FNABs specimens, in comparison to protocol A, used in previous thyroid ex vivo studies [4-6].
The same trend, observed for protocol A and C of thyroid ex-vivo cytological samples, was also
observed for thyroid FNABs (Supplementary Figure 4c in appendix A). Haemoglobin was
detected in 7 out of the 7 conventional air-dried smears (protocol A), whereas Histone H4 was
not detected in any of the samples. On the contrary, FNABs specimens treated with protocol C
showed low amount of haemoglobin and an enhancement of any other proteins signals in the
m/z 3000-16000 range. We also noticed that, when thyroid FNABs specimens were treated
with protocol A, the rate of unusable samples was higher than that for ex-vivo cytological
samples, since the vasculature of the neck skin is an additional source of haemoglobin
contamination. The co-registration of the H&E stained image of the ThinPrep monolayer
sample with the molecular image enabled us to underline the localisation of the signals present
in our spectra with specific compartments (Supplementary Figure 4d in appendix A). As shown
in Figure S4d, the signal at m/z 5063 was localised in the stroma and the one at m/z 11306 in
the thyrocytes.

4.1.4 Conclusions

In conclusion, we highlight the possible role of LBP for the MALDI-MSI analysis of thyroid
cytological samples. In particular, the LBP workflow based upon Protocol C allowed us to
manage the haemoglobin interference, obtaining high-quality spectra to be used for a more
reliable in situ profile comparison. The application of this protocol to in-vivo cytological
samples should enable the discovery of protein biomarkers that can potentially assist
cytopathologists in the diagnosis of thyroid nodules by integrating morphological information

with proteomics data.
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4.2 Feasibility study for the MALDI-MSI analysis of thyroid fine needle aspiration

biopsies: evaluating the morphological and proteomic stability over time

4.2.1 Introduction

In clinical application and molecular pathology, matrix-assisted laser desorption/ionization
mass spectrometry imaging (MALDI-MSI) is an emerging technology which enables the spatial
distribution of biomolecules within tissue to be combined with the traditional morphological
information [1]. Hence, for diagnostic, or prognostic purposes, along with predicting response
to therapeutic treatment, biological specimens, such as tissues and biopsies, must be properly
collected and handled in order to assure the preservation of the morphological structure and
the proteomic profile, avoiding degradation or alteration phenomena, contamination and
artefacts formation [2,3]. So far, several attempts have been aimed at preventing sample
degradation [4]. Two of the most commonly used approaches for sample preservation and
stabilization in pathology and proteomics are chemical fixation (e.g. formalin followed by
paraffin wax embedding) [5,6] and snap-freezing [7]. Another approach developed to preserve
proteins from degradation is the use of an additive-free procedure based on heat-fixation of the
tissue [8]. The integrity of the complexity of cellular morphology is usually maintained, but
changes in the fine structure has been observed [9]. In recent years, MALDI-MSI has been used
in combination with conventional air-dried cytological smears with the ability to generate
specific protein profiles for malignant, benign and different subtypes of thyroid lesions using
fine needle aspiration biopsies (FNABs) specimens [10-12]. Centralized MSI analysis, typically
carried out in multicenter studies, are challenging because the cytological smears have to be
carefully shipped, avoiding sample degradation. Nowadays, the liquid based preparation (LBP)
[13] is the gold standard for cervical preparation, which is usually performed by alcohol fixation
of the conventional smear [14]. Moreover, the LBP is also more widely used among
cytopathologists for evaluating thyroid FNABs specimens [15]. Regarding cytological samples,
the use of methanol-based, buffered preservative mediums, such as CytoLyt and PreservCyt
solutions during transportation became increasingly diffuse in the cytopathological practice
[16]. These solutions avoid protein precipitation, lyse red blood cells, reduce the amount of
mucus and preserve the morphology of the cytological samples during transportation and slide
preparation [16,17]. Based on manufacturer’s instructions, the morphological stability of the
cytological sample is guaranteed until six weeks when the sample is stored between 30 °C and
4 °C in the PreservCyt solution, whereas in CytoLyt up to 8 days at room temperature.

Numerous studies [18-21] have investigated the stability of human genomic and human
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papilloma virus (HPV) DNA and RNA from cervical cytological samples in PreservCyt medium,
underlining their stability for extended periods. Cuschieri et al. proved that HPV RNA within
clinical cervical samples were stable in PreservCyt up to 14 days at room temperature [19].
Moreover, Tarkowski et al. have demonstrated that RNA was suitable for successful molecular
assays, such as RT-PCR, even after one year of storage [20]. However, there are no studies
evaluating how thyroid FNABs sample preparation in CytoLyt and PreservCyt solutions
influence their stability over the time of storage for proteomic studies. Accordingly, assessing
the stability of cytological specimens is of paramount importance for the collection of samples
based on a robust and simple protocol to be implemented in clinical pathology units. In the
present study, we investigated the morphological and proteomic stability over time, evaluating
the intra-day and inter-day variability of the data generated by MALDI-MS]I, analysing thyroid
FNABs prepared with the proposed protocol. In addition, we explored the morphological and
proteomic stability of the thyroid FNABs after 7 days, 14 days and 2 months of storage at 4 °C
in the preservative solutions.

4.2.2 Material and Methods

4.2.2.1 Chemicals and Reagents

ThinPrep® CytoLyt and ThinPrep® PreservCyt solutions (methanol-based buffered
preservative solutions) were purchased from Hologic (Marlbourough, MA, USA). Sinapinic acid
matrix was purchased from Bruker Daltonics (Bremen, Germany). All the other chemicals were
purchased from Sigma-Aldrich (Milan, Italy).

4.2.2.2 Sample collection and preparation

Fine needle aspirations were taken from (n=19) patients who underwent ultrasound-guided
procedures at the Department of Radiology, San Gerardo Hospital, Monza, Italy. Cytological
samples were diagnosed as THYlc/not diagnostic-cystic (n=3), THYZ/benign (n=9),
THY3/indeterminate (n=2), THY4/suspicious for malignancy (n=1) and THY5/malignant
(n=4) according to the British system for reporting thyroid cytopathology. THY4 and THY5
samples were confirmed to be malignant by post-operative histopathology. Supplementary
Table 1 in appendix B summarizes the demographic and clinical characteristics of the enrolled
subjects. Samples were collected with a 25-Gauge (G) needle and immediately transferred into
a falcon tube filled with CytoLyt solution. The Ethics Committee of the hospital San Gerardo
Hospital, Monza, Italy, approved the study (AIRC MFAG - 2016). Cytological samples deposited
into CytoLyt solution were centrifuged at 800 g for 10 minutes at room temperature, using a

Centrifuge 5804 R equipped with an S-4-72 rotor (Eppendorf, Hamburg, Germany), the
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supernatant was discarded, the pellet was re-suspended in 200 pL of PreservCyt solution and
transferred in an eppendorf tube. Subsequently, samples were centrifuged at 800 g for 10
minutes at room temperature using a Centrifuge 5424 R equipped with a FA-45-24-11 rotor
(Eppendorf, Hamburg, Germany); the supernatant was discarded and the pellet resuspended
in a final volume of 100 pL of PreservCyt solution. When the amount of cellular material was
adequate, the sample was equally divided in order to obtain multiple replicates. Finally,
samples were transferred onto indium tin oxide (ITO) conductive slides (Bruker Daltonics,
Bremen, Germany) by centrifugation (800 g for 15 minutes, at room temperature) using a
Hettich® ROTOFIX 32A centrifuge equipped with a Swing-Out rotor 1624, carriers 1660 and
slide carriers for two chambers 1670 (Hettich Lab Technology, Tuttlingen, Germany). The
cytospin preparations were prepared using cyto chambers with a diameter of 6.2 mm in order
to obtain a monolayer of cells. A maximum of eight cytospin spots were positioned onto one
ITO-conductive slide. ITO-slides with cytospin samples were dried under vacuum for 30
minutes. Finally, consecutive washing steps of 30 seconds each, with increased concentration
of ethanol (70%, 90% and 95%), were performed in order to remove salt contamination. The
slides were then dried under vacuum for 15 minutes and stored at -80°C until the day of the
analysis.

4.2.2.3 MALDI-MSI Sample preparation

Cytospin cytological specimens were brought to room temperature and dried under vacuum
for 30 minutes. MALDI matrix (10 mg/ml sinapinic acid in 60:40 acetonitrile:water w/0.2%
trifluoroacetic acid) was uniformly deposited, with an optimized method, using the
iMatrixSpray (Tardo Gmbh, Subingen, Switzerland) automated spraying system.

4.2.2.4 Experimental design

FNABs specimens were split into several samples for the intra-day (n=7 patients) and inter-
day repeatability (n=5 patients) evaluations. In addition, the sample stability in PreservCyt
solution after 7 days (n=6 patients), 14 days (n=6 patients) and 2 months (n=2 patients), and
the sample stability in CytoLyt solution after 7 days (n=2 patients) were studied. The malignant
samples (n=>5) were prepared at t0 in PreservCyt solution. The general workflow of the study
is represented in Figure 1 and the experimental design is summarized in Supplementary Table
2 in appendix B. Samples were stored in PreservCyt and CytoLyt solutions at 4 °C until the day
of the cytospin deposition onto the ITO-slides.
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Figure 4. General Workflow: i) Cytological sample preparation, ii) MALDI-MSI sample preparation and
analysis, iii) spectral pre-processing and iv) statistical analysis

Spectral pre-processing

4.2.2.5 MALDI-MSI analysis

MALDI time of flight (TOF) MSI was performed using an ultrafleXtreme MALDI-TOF/TOF
(Bruker Daltonik GmbH) in positive-ion linear mode, using 300 laser shots per spot, with a laser
focus setting of 3 medium (diameter of 50 um) and a raster width of 50 x 50 um. A mixture of
standard proteins within the m/z range of 5,730 to 16,950 (Protein Calibration Standard I,
Bruker Daltonics) was used for external calibration. Spectra were recorded in the m/zrange
3,000-20,000. Data acquisition and visualization were performed using the flex software
package by Bruker Daltonics (flexControl 3.4, flexImaging 4.1). After MALDI-MSI analysis, the
MALDI-matrix was removed by increasing concentration of EtOH (70% and 95%) and the
cytological specimens were stained with hematoxylin and eosin (H&E). High resolution
cytological images were recorded using a ScanScope CS digital scanner (Aperio, Park Center
Dr., Vista, CA, USA).

4.2.2.6 Data analysis

Overall average mass spectra from the MALDI-TOF-MSI datasets were exported in CSV format
and loaded in the open-source R software v.3.4.3 to perform the pre-processing operations that
were carried out using the MALDIquant R package [22]. Baseline subtraction with SNIP method
and iteration 100; moving average smoothing used half window size of 2; total ion current (TIC)
normalization, divided spectrum intensities by the sum of all the intensities values of the

spectrum itself; spectra alignment and peak picking with a S/N of 6, were performed. Spectra
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alignment was verified using the open-source software mMass v5.5 (http://www.mmass.org)
[23,24].
The similarity of the mass spectra was evaluated by using two score systems, accounting for
the frequency of common peaks and the matching of signal intensity.
(X) and the query spectra (Y), where Ny and Ny are the cardinality of the m/zvalues. The first
score system (S3) ranges from 0-3 and is the sum of three components (i.e. fit, retrofit and
spearman’s correlation) which contributes 1 at most [25]. The fit is defined as the ratio of the
common peaks in the two spectra and the Ny peaks detected in the query spectrum:
FIT = X%
ny !
while, the retrofit is defined as the ratio of common peaks in the two spectra and the Ny peaks
in the reference spectra:
RFIT = "X0Y
ny !
where nyny is the number of shared mass peaks. The Spearman's Correlation is a measure of

association between the ranks of the intensities of the common peaks nyny:
nxny = S
P ik [(; —7) * (5 = 3)]
o =
2 2
JEr =7 (5 - )

where 7; and s; are the ranks of x; and y; (j = 1, ..., nxny), while 7 and § are their mean values.

The second score system (S4) ranges from 0-4 and extends Ss3 to include a fourth feature that
measures the overlap (OV), which takes into account the whole shape of the two spectra. This
latter index measures the overlapping area between the empirical distributions of two

sequences of intensities on ranked m/z

—_ X LY
oV = FnXUY n FnXUY
where £ and £},  are the empirical distribution function, and nyy the m/zvalues either in

the X or the Y spectra [26]. For calculations, we used the overlapping R package.

Mimicking an equivalence trial, in order to establish whether no meaningful difference exists
between the proteomic profiles in time (i.e. to vs. t7days and to vs. ti4days), the 95% confidence
intervals (CI) of the observed mean similarity indices should be inside a pre-specified interval
of equivalence [27]. Since no recognized reference exist, we have conservatively used the CI
calculated on the inter-day comparison.

To further assess spectra similarity in time, Principal Component Analysis (PCA) and

hierarchical clustering analysis were also performed. PCA was carried out with the prcomp
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function in the stats R package. Data were scaled and centered before the analysis due to PCA
being sensitive to different scales of features. Hierarchical clustering analysis was performed
with the function hclust in the stats R package, using complete linkage method to show similar
clusters on the selected principal components that explained as much as possible variance of
the original independent variables.

4.2.3 Results and Discussion

Tissue specimens need to be properly handled to ensure not only the integrity of the
morphological structure but also to avoid protein degradation [2]. Several protocols have been
developed for this purpose, such as chemical fixation followed by paraffin wax embedding and
snap-freezing [4]. Heat-fixation of the tissue is also used, but changes in the fine structures of
the cells has been observed [9]. The stabilization of cytological samples, based on CytoLyt and
PreservCyt solutions, is employed in the clinical laboratory to preserve cervical cytological
samples for the analysis of RNA and DNA after long-term storage [14,20].

Here, we propose a sample preparation protocol for the analysis of thyroid FNA by MALDI-MSI
that combines stabilization in preservative solutions followed by cytospin deposition. In
particular, we investigate the experimental repeatability of the proteomics analysis of
cytological samples and their stability in time in both preservative solutions, focusing on mass
spectra similarities.

4.2.3.1 Cytospin sample preparation: morphology evaluation

The washing steps in preservative solutions followed by cyto-deposition were able to
guarantee high cellular adequacy (Supplementary Figure 1 in appendix B). Cell morphology
was generally satisfactory in different specimens from the same patient, independently from
the time of storage in the preservative media (Supplementary Figure 1 in appendix B). With
regard to the conventional smear [11], our protocol has the advantage of being more efficient,
reducing the sample-to-sample variability and enabling up to 8 spots to be placed onto a single
ITO-slide. Moreover, the cytospin spot size is approximately 6 mm in diameter, while the
conventional smear size is extremely variable and in the order of centimetres (approximately
2-3 cm). Therefore, the time of MALDI-MSI analysis of one cytospin-spot is drastically reduced

compared to the conventional smear.
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Figure 2. Normalized intensities [AU] of the peaks (M/Z) detected in seven replicates of patient
P316 (t0 day1.1, t0 day2.1, t0 day2.2, t0 dayZ2.3, t 7days, t 14days.......t 2Zmonths). A) The
heatmap shows the signal intensities of each of the peaks that were rescaled to have a mean
of 0 and SD of 1; B) the histogram shows the mean intensities of each of the peaks detected
at different times (error bars represent the 95% confidence interval).

4.2.3.2 Mass spectra similarity: qualitative comparison

The variability of the signal intensities among replicates prepared at different times in one
patient is reported in Figure 2 and, similarly, a comparison of spectra obtained from all the
replicates is shown in Supplementary Figure 2A (ID: P316) as well as spectra comparison of
multiple sample prepared at to (Supplementary Figure 2B in appendix B). The heatmap in
Figure 2A shows how the normalized signal intensities of the peaks in ranked m/z change
among the replicates whose mean intensity values (and 95% CI) are represented in the
distribution in Figure 2B. Furthermore, the dendrogram in the upper part of Figure 2A shows
that the to intra-day replicates are highly similar even if a slight separation is seen in samples
evaluated in to_day1 versus to_day2, most probably reflecting an additional source of analytical
variability. The distance between t7days/t14days and to is higher than the one observed between
to_day1 and to_day2, since these samples were stored in the PreservCyt solution for 7 days and 14
days before deposition onto the ITO-slides. Nevertheless, the two spectra, t7days and ti4days, were
clustered together, also reflecting the same sources of analytical variability (i.e. cytospin sample
preparation, MALDI-MSI sample preparation, instrumental analysis) given that they were

similar to the spectra at to (Supplementary Figure 2A in appendix B). The spectrum of the
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replicate at tzmonths is very marginal, suggesting that longer storage time in the PreservCytdoes
not preserve the specimens (Figure 2A) and, looking at the spectra in Supplementary Figure
24, it is evident how peak intensities and the spectra as a whole change with respect to the
other replicates. On the contrary, the variability of the peak intensities among replicates of the
same patient until 14 days seems to not depend on the increased storage time in the PreservCyt
solution, but more likely reflects the analytical variability due to the cytospin-deposition onto
the ITO-slides in different days. These results are in good agreement with those previously
reported for cervical cytological samples that were stable until 14 days [19]. Similar results are
seen in the short (to_day1 and to_day2) and in the long term (from to to tzmonths) in Supplementary
Figure 3 (P262) and Supplementary Figure 4 (P319) in appendix B, respectively.

The unsupervised learning method PCA was employed to further investigate and visualize mass
spectra similarity among all those obtained from all the patient replicates (Supplementary
Figure 5A in appendix B). From the PCA score chart, it is evident that replicate samples from
the same patient are grouped together and that the similarity of spectra were preserved
independently from the time of storage in PreservCyt solution. Moreover, the hierarchical
clustering analysis (Supplementary Figure 5A in appendix B) highlights how malignant samples
are clustered together and separated from benign samples. When further replicates have been
prepared at to (intra-day and inter-day), one sample (for each patient) was randomly chosen
as reference among all the intra/inter-day replicates. To evaluate the intra/inter-day variability
at to, two query spectra were randomly chosen from the remaining intra-day and inter-day
spectra, respectively. Finally, the spectrum of each replicate prepared at different time of
storage in PreservCytsolution were compared with the reference spectrum. Figure 3 illustrates
all the paired comparisons between replicates in one patient (ID: P316), using the reference
spectrum to_day22. The graphs in A and B are obtained considering only the common peaks
between spectra. In graphs A, the normalized intensities of the peaks in the reference spectra
(x-axis) are plotted against the normalized intensity of the peaks of the query spectra (y~axis).
When the intra-day and inter-day replicates are compared with the reference spectrum,
common peaks have very similar intensities, since the points lie mainly near the bisector. In
graphs B, the common peaks are ranked with respect to their increasing intensities in the
reference spectra (x-axis) and plotted versus the normalized intensities (y-axis). The way in
which the intensity of the common peaks increased are very similar in the query and reference
spectra, when the intra/inter-day comparisons are considered. Dissimilarities in the highest

signals intensities, in the comparisons with t7days, t14days and t2months, were observed. However,
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as previously stated, these differences are not entirely surprising. The analytical variation of
the peak intensities is a well-known problem in MALDI protein analysis. It was reported that
the mean CV in the peak intensities for protein profiling varies among studies from 4% to 26%
[28,29]. This variability is strictly related to the MALDI-sample preparation, which involved
matrix deposition (crystals heterogeneity), and the desorption/ionization processes [30].
However, it also depends on the heterogeneity of the tissues consecutive sections or, like in our
experiments, on the intra-sample heterogeneity of cytological replicates. For this reason, the
graphs presented in C provide a better representation since they considered the whole spectra
and take into account overlap of the complete spectra (see section 2.6). The percentage of the
overlap of the comparisons varies from 98-93% for the intra/inter-day, to 51% for the one at
tzmonths. The shape of the spectra density is conserved for the comparisons until ti4days, where
the overlap is 80%. Noticeably, the minimum OV index is 74% when all patients are considered.
4.2.3.3 Mass spectra similarity: quantitative scores for stability evaluation

To better investigate the stability of the samples over time, we quantified the degree of mass
spectra similarity with a score (S3) that we derived from a previous study [25] We also
considered a new score (S4) that equally weight the number of signals and peak intensities,
differently from S3, that placed more emphasis on the number of signals. In order to evaluate
intra-day and inter-day repeatability, both S3 and S4 were calculated for all the possible
comparisons in each patient (e.g. for P316, intra-day: t0_day2.1 vs. t0_day2.2, t0_day2.1 vs.
t0_dayZ2.3, t0_day2.2 vs. t0_dayZ2.3; inter-day: t0_dayZ2.1 vs. t0_day1.1, t0_day2.2 vs. t0_day1.1,
t0_day2.3 vs. t0_day1.1). The distributions of intra/inter-day of S3 and S4 values in the box
plots of Supplementary Figure 6 (in appendix B) overlap, showing slight heterogeneity. This is
also underlined by the CV values reported in Supplementary Table 3 in appendix B, which
ranged from 7.37 to 12.43. Moreover, the CVs calculated in all the replicates of each subject
reached values below 12.31% (Supplementary Table 5 in appendix B). When one query
spectrum at t0_intra-day, tO_inter-day, t7days and t14 days was compared with one reference
spectrum randomly selected among the t0 replicates, no remarkable differences among the
scores of all paired combinations were observed (Figure 4). The 95% CI of each paired
comparison, using both S3 and S4 scores, are reported in Table 1, and show that the one
calculated for the comparison of t0 vs. t7days is almost completely contained in the 95% CI of
the inter-day comparison. This suggests that the two evaluations can be considered equivalent,

but the same conclusion does not hold for the to vs. tisdays comparison. However, the inter-day
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CV was surprisingly low, compared to both literature and our experience using MALDI-MSI

[28,29], with values of 12.03% and 10.54% for Ss and S4, respectively.
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Figure 3. P316 comparisons between the reference spectrum to day22 and the query spectra t day2.3, to day1.1,
t7days, t14days, tzmonths prepared at different times of storage, are shown. A) Graphs show the normalized
intensity [AU] of the peaks of the reference spectrum (x-axis) plotted against the normalized intensity
[AU] of the peaks of the query spectra (y-axis). Only common peaks are considered. The black line is
the bisector. B) Graphs show the common peaks ranked respect to their increasing intensities in the
reference spectrum (x-axis) and plotted versus the normalized intensities [AU] (y-axis). The peaks
intensities of the reference spectrum are represented by black dots, whereas the peaks intensities of
the query spectra are represented by red dots. C) Graphs show the overlapping area of the shape of the
spectra density of the reference (pink area) and the query (blue area).
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Figure 4. Heatmap (A) and 3-D histograms (B) of the Ss score obtained from all the spectra comparison
between a randomized reference spectrum toand the query spectra to_intra-day, to_inter-day, t7days, t14days

Based on this consideration, we recalculated the 95% CI under the assumption of a 20% CV
value, which is more representative of the routinely MALDI-TOF variability, and of 30%, in case
of the worst acceptable hypothetical analytical session (Supplementary Table 4 in appendix B).
When a CV of 20% and 30% were used to calculate the 95% CI of the comparison to Vs tinter-day,
a high intersection and a complete overlap where also observed for the to vs. ti4days 95% CI.
These results suggest no substantial deviations from to when the cytological samples are stored
in PreservCyt until 14 days. Both S3 and S4 scores were split in their components (fit and
retrofit, spearman’s correlation and overlap) to investigate their relative contribution
(Supplementary Figure 7 in appendix B). Results showed that spearman’s correlation was the
one that most unfavorably affected the evaluation of mass spectra similarities (Supplementary
Table 5 in appendix B), and this might depend on variations among peak intensities observed
in MALDI-MSI experiments. Finally, to further ascertain the sample stability until 14 days, all
spectra referred to a different storage time for three patients (P316, P319, P390) were
compared to the to spectrum of all patients (example: P262 to versus to_day1, to_day2, t7days, t14days
of P316) in order to assess whether differences between patients remain unchanged
independently from the sample storage. Regardless of which spectra was used as a reference
(to_day1, to_day2, t7days OT ti4days), the relation between spectra of two patients was not influenced
by the time of storage. Indeed, in all paired combinations, the S4 had an average CV of 10.72%
(range 2.73% - 28.66%), which is comparable to the value observed in inter-day variability (CV
= 10.43%, Supplementary Table 3 in appendix B). We also have investigated the stability after
7 days of storage in the CytoLytsolution (P384, P386). The mass spectra similarity scores (S4)
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between spectra at to and t7days were 3.04 and 2.98, respectively, and were beyond the 74.5%
of the total score Sa. Although these results refer solely to two patients, they are in line with
what we previously observed for the sample stability in the PreserveCyt solution and suggest
that the samples also remain stable in the CytoLytsolution for at least one week.

4.2.4 Conclusions

In this work, we have assessed the morphological and proteomic stability of thyroid FNABs in
PreservCyt (until 14 days of storage) and CytoLyt (until 7 days of storage) solutions, with
MALDI-MSI analysis. In addition, we introduced a new feature in the similarity score to equally
take into account the number of signals (fit and retrofit) and their intensities (spearman’s
correlation and spectra overlap). The major limitation of this study was the low cellularity of
thyroid FNABs which cannot always be split in multiple replicates in order to increase the
sample size. However, this study represents a step forward towards the implementation of
MALDI-MSI, combined with a trustworthy and robust sample preparation methodology, into
the cytopathology routine, integrating the morphology with the proteomics data to improve the
diagnosis of thyroid FNABs and pave the way for a further study aimed at the classification of
benign, malignant and indeterminate FNABs. Towards this second aim, we are now enrolling
more than 500 patients of THY2-THY3 and THY4/5.

Likewise, the findings of this study could be useful and straightforwardly extended to other

biological liquid based specimens.
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4.3 MALDI-MSI as a Complementary Diagnostic Tool in Cytopathology: A Pilot
Study for the Characterization of Thyroid Nodules

4.3.1 Introduction

The application of innovative technologies, such as Matrix-Assisted Laser
Desorption/lonization (MALDI) Mass Spectrometry Imaging (MSI), on cytological thyroid
specimens is feasible and robust protocols are now available, enabling the molecular signature
of different lesions to be characterized [1-3]. After the pioneering phase, challenging technical
aspects of this approach, such as the interference of haemoglobin and the stability of the
samples, were overcome [4,5]. Furthermore, recent technical improvements related to the
increased lateral resolution that can be achieved by MALDI-TOF-MS instrumentation enable the
detection of small cell subpopulations based on their different protein profiles (i.e. profiles of
single cell-types), even within regions that are indistinguishable at the microscopic level,
highlighting how molecular imaging can be combined with traditional pathology to generate
protein signatures and build classification models [7-9]. Moreover, we have reported that
MALDI-MSI is able to distinguish benign and malignant cases in different cytological thyroid
specimens [1-3]. Moving forwards from the first results obtained using ex-vivo cytological
smears taken from surgical procedures, the present study applies MALDI-MSI on rea/ Fine
Needle Aspirates (FNAs). Even if thyroid FNAs are safe, cost effective and efficient diagnostic
tools, a significant rate of 20-30% of cases is still indeterminate for malignancy [10]. Ancillary
tests like immunohistochemistry and genetics may improve the diagnostic performances but,
theoretically, MALDI-MSI could represent an alternative option too [1-3]. To the state of the art,
MALDI-MSI was restricted to translational research and the reproducibility across multiple
centres was the largest remaining obstacle in moving it towards clinical routine. However,
promising results came from microbiology, where MALDI-MSI based classifiers applied the
technology in real time in the diagnostic setting. Recently published studies showed the
usefulness, advantages, and applicability of MALDI MSI in different fields of pathology
(diagnosis, prognosis and treatment response) [10]. The preliminary findings of our trial are
encouraging especially for the methodological improvement of the protocol and the feasibility
of the technique in a particularly complicated field like thyroid cytological specimens. A
statistical model, able to manage the big data that were generated by this high-throughput

proteomics approach, was applied for the characterization of thyroid lesions. Our results
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suggest an association between pathological thyroid features and proteomic information from
the FNAs, representing the basis for proteomic signatures that are predictive of disease status.
4.3.2 Material and Methods

The study was carried out in accordance with the relevant guidelines and regulations; the
protocol was approved by the ASST Monza Ethical Board (Associazione Italiana Ricerca sul
Cancro Associazione Italiana Ricerca sul Cancro-AIRC-MFAG 2016 1d. 18445, HSG Ethical Board
Committee approval October 2016, 27102016). Appropriate informed consent was obtained
from all patients included in the study. The present study considers a subset of the consecutive
series of subjects who underwent ultrasound (US)-guided FNAs in Monza and were
prospectively enrolled in an AIRC-granted clinical study that was powered to discover new
markers for the diagnosis of thyroid nodules.

4.3.2.1 Pathology

US-guided FNAs were performed using a 25-gauge needle at the Department of Radiology, San
Gerardo Hospital. One or two passes per nodule were executed and needle washing from every
pass was sent for proteomics MALDI-MSI analysis [6]. In blind, pathologists evaluated the
corresponding Pap-stained smears for traditional morphological diagnosis and were classified
according to the 5-tiered Italian SIAPEC system for reporting thyroid cytopathology [11]. We
certified benign-Thy2 cases by performing a US examination of patients 12-months after the
first US-guided FNA confirming absence of new echographic malignant features, absence of
significant increasing of nodule size, absence of nodes metastasis, and no incidence of new
suspicious nodules. For malignant cases, histological diagnoses were progressively collected
after thyroidectomy to certify the nature of the nodules. The training set included 9 subjects
with a confirmed benign diagnosis at the pathologist’'s morphological examination
(hyperplastic nodules/Thy2) and 9 patients that were classified as malignant papillary thyroid
carcinoma (PTCs/Thy5). An additional 11 patients were involved in the validation set and their
cytological classes included: Thy2 (n=4), Thy3 (n=1), Thy4 (n=1), Thy5 (n=4) and 1 PTC-
metastatic lymph node. Table 1 summarizes the relevant clinical-pathological characteristics

for all the cases in the study.

63



TRAINING SET

Study lesion code Age (years) Sex Nodule size (mm) FNA Classification at follow-up or histology
_ 81 F 30 THY2  Hyperplastic
_ 81 F 10 THY?2 Hyperplastic
_ 63 F 15 THY2 Hyperplastic
_ 32 F 10 THY2 Hyperplastic
_ 71 F 20 THY2 Hyperplastic
_ 39 F 25 THY2 Hyperplastic
_ 69 M 22 THY?2 Hyperplastic
_ 56 F 18 THY2  Hyperplastic
_ 76 F 11 THY2 Hyperplastic
_ 48 F 15 THY5S  PTC
_ 87 F 20 THYS  PTC
_ 69 M 14 THY5S  PTC
_ 45 F 23 THY5  PTC-FV
_ 40 F 15 THY5  PTC
_ 46 F 13 THY5S  PTC-FV
_ 61 F 50 THY5S  PTC-FV
_ 69 M 18 THY5S  PTC-FV
_ 38 F 14 THY5  PTC
VALIDATION SET
_ 79 F 35 THY2  Hyperplastic
_ 49 F 15 THY2  Hyperplastic
_ 36 F 36 THY2  Hyperplastic
_ 53 F 11 THY2  Hyperplastic
_ 30 F 15 THY5  PTC
_ 60 M 11 THY5  PTC-FV
_ 54 M 20 THY5  PTC
_ 24 F 25 THY5  PTC
_ 49 F 35 THY3 Hyperplastic
_ 36 M 20 THY4  PTC-FV
Metastas
- 24 F 25 s Lymph node

Legend: M=male, F=female, PTC=Papillary Thyroid Carcinoma, FV=Follicular Variant
*The two lesions are from the same patient

Table 1. Clinical information of the lesions and the patients included in the study. Green corresponds to Thy2
hyperplastic nodules; blue corresponds to nodules with an indeterminate for malignancy or suspicious

cytological diagnosis; in red malignant Thy5 cases are listed.



4.3.2.2 In situ proteomics: MALDI-MSI

Needle washing from thyroid FNAs were collected into a CytoLyt solution (20% buffered
methanol-based solution, ThinPrep™ 2000 system, CYTYC Corporation, Hologic), samples were
prepared as previously described and finally transferred as a cytospin spot onto ITO glass slides
[4,5; 12-14]. Then, all slides were washed with increased concentration of ethanol (70%, 90%
and 95%) for 30 s each, dried under vacuum for 15 min and stored at — 80 °C until the day of
the analysis (mean 24-48 hours after the time of biopsy). Before MALDI-MSI analysis,
cytological specimens were equilibrated to room temperature, dried under vacuum for 30 min
and the MALDI-matrix sinapinic acid (10 mg/ml in 60:40 acetonitrile:water w/0.2%
trifluoroacetic acid) was uniformly deposited, with an optimised method, using the
iMatrixSpray (Tardo GmbH, Subingen, Switzerland) automated spraying system. MALDI-TOF-
MSI was performed using an ultrafleXtreme MALDI-TOF/TOF (Bruker Daltonik GmbH) in
positive-ion linear mode, using 300 laser shots per spot, with a laser focus setting of 3 medium
(diameter of 50 um) and a pixel size of 50 x 50 um. Protein Calibration Standard I (Bruker
Daltonics), that contains a mixture of standard proteins within the mass range of 5730 to
16,950 Da, was used for external calibration (mass accuracy + 30 ppm). Spectra were recorded
within the m/z3000-20,000 range. Data acquisition and visualisation were performed using
the Bruker software packages (flexControl 3.4, flexImaging 5.0). After the analysis, the MALDI
matrix was removed with 70% EtOH and the slides were stained with haematoxylin and eosin
(H&E), digitally scanned using a ScanScope CS digital scanner (Aperio, Park Center Dr., Vista,
CA, USA) and images were co-registered to the MSI datasets in flexImaging for the integration
of proteomic and morphological data. Regions of interest (ROIs) containing pathological areas
will be comprehensively annotated. Satisfactory specimens should include at least 6 groups of
10 thyrocytes, as SIAPEC guidelines [15].

4.3.2.3 Statistical analysis

Quartiles, ranges, mean and standard deviation (sd) were calculated for descriptive purposes.
The analysis on proteomic data in the training set was performed on ROIs that included only
epithelial cells, while for each patient in the validation set, three different approaches were
tested: the average spectra generated from the MALDI-MSI analysis, the spectra from each ROIs
selected by the pathologist and all the single spectra of the imzML MALDI-MSI analysis (pixel
by pixel ). The spectra were processed by performing baseline subtraction (median method),
smoothing (moving average method, half window width 2.5), normalization (total ion current,

TIC), peak alignment, and peak picking (S/N=6). Pre-processing was performed separately
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between training and validation set, in order to not influence the data of the validation. The
open-source software mMass v.5.5 (http://www.mmass.org) was used to confirm mass spectra
alignment. Only peaks with an absolute intensity of more or equal than 0.0003, after TIC
normalization, were retained. Intra- and inter-patient filters were applied on the detected
features in the training set: i) only the features (1m/2) detected in at least 25% of the ROIs within
the same patient were considered and ii) the features (111/2) that were common to at least 25%
of the Thy2 and to 25% of the Thy5 were included in the model and considered to be those most
representative of benign and malignant lesions, respectively. For the two groups in the training
set (benign vs malignant lesions), a logistic regression with a Lasso regularization method was
performed [16-18]. To select the Lasso penalising parameter, and to assess the predictive
accuracy within the training set, cross-validation was performed. The validation was done in
blind from the patient’s histological diagnosis and considering only the features selected by the
Lasso model to quantify the probability of malignancy. Data pre-processing (MALDIquant
package) and statistical analyses (glmnet package) were performed using the open-source R
software v.3.5.0.

4.3.3 Results

The cohort of 28 patients included in this study had an average age of 54 years old (sd=17) and
23 (79%) were females. The average nodule diameter was 20 mm (sd=9). In the group of
patients used in the training phase, the selected ROIs varied in terms of the number of clusters
and cells that composed the placards. In the Thy2 cases, an average number of 10 ROIs
(range=>5-22, median=9) was recorded by the pathologist, while, in the Thy5 cases, a mean of
8 ROIs (range=4-19, median=6) was selected. To compensate for this variability, equivalent
groups of ROIs were generated for each patient: 5 groups of ROIs for Thy2 cases and 4 ROIs for
Thy5 cases, each comprising from 1 to 7 ROIs. These were then used to calculate the average
spectra for the statistical analysis. ROIs from Thy?2 lesions had an average number of 9 pixels
(range=3-39, median=7) while in the Thy5 had an average of 31 (range=3-162, median=13).
Therefore, 45 mean spectra were generated for the benign and 36 for the malignant lesions and
used for the statistical analysis of the training data. After pre-processing and the two intra- and
inter-patient filters, 69 features were found to be the most representative of Thy2 and Thy5
lesions, 20 of these were selected from the statistical model as the most discriminant to
correctly distinguish samples and quantify their probability of being malignant lesions
(Supplementary Table 1 in appendix C). Then, the capability of the features included in the

model to discriminate benign from malignant lesions was also tested on each single pixel
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present in the analysed specimens. This was performed using the same groups of patients
included in the training phase (Supplementary Figure 2a, 2b in appendix C). A complete overlap
of the cytological diagnosis and MALDI-MSI results was observed. In particular, specimens of
the benign group were observed to be very homogeneous (uniformly distributed green colour,
Figure 1a), indicating that all the protein profiles were similar. In the validation phase on 11
additional lesions (10 patients), three different approaches were applied based on: i) average
of spectra of the ROIs, ii) overall average spectra of the entire FNA, irrespective of the
morphological selection of the ROIs, and iii) pixel by pixel analysis (Supplementary Figure 1 in

appendix C).
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Figure 1. Examples of pixel by pixel images and distributions of the probabilities of being malign in the
training and validation set of benign Thy2 nodules. a) imzML MALDI-MSI data of the Thy2 P_308
in the training sample; b) Haematoxylin and Eosin (H&E) staining of P_308; c) Validation of Thy2
samples using imzML MALDI-MSI data.
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Figure 2. Examples of pixel
by pixel images and
distributions of the
probabilities of being
malign in the training
and validation set of
malignant Thy5 nodules.
a) imzML MALDI-MSI
data of the Thy5 P_250
in the training sample;
b) H&E staining image of
P_250; Validation of c)
in-vivo Thy5 samples
and d) ex-vivo Thy5
samples using imzML
MALDI-MSI data; e) low
cellularity in the H&E
staining image of the
P_1126 in-vivo sample;
f) high cellularity in the
H&E staining image of
P_1126 ex-vivo sample
and g) a zoom-in of
thyrocyte clusters; h)
H&E staining image of
high quality cluster of
thyrocytes  cells  of
P_1149 in-vivo.of Thy2
samples using imzML
MALDI-MSI data.

Pixel by Pixel images & Histograms of Frequency

P_1084
(THYS5 - Histological
diagnosis: PTC)

a)  TRAINING SAMPLE

P_250
(THYS)

P_1126
(THYS - Histological
diagnosis: PTC)

Number of Pixels
1000

20 w0 60 80 100

Probability of being malignant %

P_1149
(THYS - Histological
diagnosis: PTC)

P_1187
(THYS5 - Histological
diagnosis: PTC)

[ S eee—— ]

0 20 40 60 80 100
Probability of being malignant %

Number of Pixels Number of Pixels

Number of Pixels

Number of Pixels

15000

10000

5000

g

2000

1500

1000

15000 20000

10000

£
y 1
° ) w© &

c) IN-VIVO

[ » © )

Probability of being malignant %

o 100

Probability of being malignant %

? |
0 ) “ ©

Probability of being malignant %

&

° n w© 0 ® 100

© 100

Probability of being malignant %

VALIDATION SAMPLES
d) EX-VIVO

H
m s
2 s

Probability of being malignant % LN
2,
£
23

Number of Pixels

o » w© “ ® 100

Probability of being malignant %

68



Pixel by Pixel images & Histograms of Frequency
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Figure 3. Validation set of indeterminate for malignancy (Thy3), suspicious (Thy4) cases and
metastatic lymph node. Pixel by pixel images and distribution of the probabilities of being
malignant for each pixel in the MALDI-MSI analysis.



The average number of ROIs for the specimens used in the validation phase was 12 (2-25,
median 11), with a mean number of pixel for each ROI of 15 (1-208, median 5). The model
correctly classified all the benign cases (four Thy2, as shown in Figure 1c, and one
morphological Thy3, as shown in Figure 3). In the malignant scenario, three Thy5 cases were
particularly challenging due to the paucity of cells (Figure 2e: P_1126) or to a heterogeneous
background of benign/malignant cells (Figure 2c: P_1084, cytological image not shown) or
colloid-rich, cystic variant PTC (Figure 2c: P_1187, cytological image not shown). As a
consequence, the proteomic analysis did not identify diagnostic signals of alert at the first
screening classifying these samples as benign (Figure 2c). Patients Thy5 P_1149 and Thy4
P_1202, both adequate specimens, were correctly classified based on the distribution of the
probabilities to be malignant using both ROIs and pixel by pixel data (Figure 2c, 2h and 3;
Supplementary Table 2b, 2c and 3c in appendix C)). Then, an additional experiment was
planned to support the hypothesis to justify the incorrect classification using ex-vivo
specimens. Samples from the same nodules (taken ex-vivo after thyroidectomy, as previously
described [19]) were now correctly classified as malignant by the model, due to a greater
amount of neoplastic clusters that did not limit the analysis (Figure 2d, 2f, 2g). Analysis of an
in-vivo specimen of a metastatic lymph node (P_1188) resulted in a correct classification as
malignant based on ROIs but as benign in the pixel by pixel classification (P_1188). Specimen
collected ex-vivo from this lymph node was correctly classified both based on ROIs and pixel by
pixel model (Figure 3). Finally, the comparison of the three methodological approaches
employed for the validation set highlights improved discriminant power in both the pixel by
pixel and ROI-analysis with respect to when the average spectra of the whole sample was
employed (Supplementary Table 2 and 3 in appendix C)). This result underlines the particular
strengths of MALDI-MSI that could be exploited to support, as complementary tool, the
fundamental diagnostic role of the pathologist.

4.3.4 Discussion

4.3.4.1 Proteomics for the diagnosis of thyroid carcinoma

The development of new diagnostic tools to support cytopathologists in the diagnostic triage of
indeterminate for malignancy thyroid nodules can be approached from the alternative
perspective offered by proteomics [20,21]. Previous reports enlightened the possibility to apply
imaging methods such as MALDI-MSI to cytological specimens to combine the analytical power
of traditional morphology and molecular signatures [22]. Preliminary experiments were done

using ex-vivo specimens taken from surgical samples [19], while in the present study true
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needle washing specimens were used. The feasibility of the MALDI-MSI approach to spatially
localize proteins in a cancer cells area is enlighten in Supplementary Figure 3 in appendix C.
This represents an intriguing and important methodological step, leading to the recovery of
left-over material from the FNAs that can be recovered by washing the needle and stabilizing
the cells for 2 weeks [5]. This procedure allows specimens to be collected from centers that
don’t have a diagnostic unit with proteomics facilities and then shipped to the referee lab within
the following ten days. In the near future, the more systematic enrollment of patients from
multiple centres could ensure the generation of diagnostic libraries containing molecular
signatures, which include different malignant and rare histotypes for research purposes.
4.3.4.2 Big data and biostatistics: a requirement for the introduction of proteomics in clinics
Indeed, the application of proteomics as a routine option for the characterization of challenging
cases also requires the development of an enlarged network given that the validation of
protocols, biostatistic models and putative analytical features is related with the inter-
laboratory reproducibility, standardization of workflows and diagnostic strengthening of the
methods. In particular, with the advent of molecular techniques like next generation
sequencing (NGS) and proteomics approaches (MALDI-MSI), biostatistics models and
bioinformatics that can manage big data are necessary for improving the confidence of
pathologists [23,24]. Statistical models of cancer at the genomic, proteomic and transcriptomic
levels have proven effective in developing diagnostic and prognostic molecular signatures, as
well as in identifying pathogenetic pathways [25]. High-throughput experimental tools allow
for the simultaneous measurement of thousands of biomolecules, integrating heterogeneous
data into quantitative predictive models to significantly improve cytological diagnoses.
Molecular diagnostic workflows can be divided into those that employ unbiased statistical
inference and those that also incorporate a priori constraints of specific biological interactions
from data [26]. In the present study, a diagnostic model was trained using clear-cut benign or
malignant cases to identify specific discriminant features to be tested in the validation phase.
Three different approaches were used: the analysis of groups of ROIs that the pathologists
selected using morphological criteria, a pixel by pixel approach, and examination of the average
spectrum of the whole sample.

4.3.4.3 Training phase: features selection for benign and malignant thyroid FNAs discrimination
The histograms in Figure 1 and 2 show how the probability of being malignant could be
associated can be effectively represented with curves and the samples from FNAs should not

pass the diagnostic proteomic triage whenever a signal of alert was pointed out. After the
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application of filters, biostatisticians designed a combination of features that was able to
correctly distinguish all the training cases, in blind, when they were re-tested. The highest
probability to be malignant of 7% (overall mean of the 3rd quartiles = 2.89%, sd = 2.03%) for
the Thy2 and the minimum of 28% (overall mean of the 3rd quartiles = 81.81%, sd = 22.66%)
for Thy5 was observed in the training phase (Supplementary Table 3a, 3b in appendix C).
4.3.4.4 Validation phase of the selected features and pixel-by-pixel classification of thyroid FNAs
Results obtained in the pixel by pixel validation phase showed that all benign lesions, including
the Thy3 (later confirmed as benign after surgical resection), have a 3rd quartile value of the
probability of being malign below 7%. The malignant lesions had a 3rd quartile above 28% with
the exception of specimens with scarce cellularity or a heterogeneous background. These
specimens stressed the model due to particularly challenging nodules that were representative
of the diagnostic situation characterizing routine thyroid pathology. Samples with issues in
terms of quantitative adequacy, haemorrhagic slides, colloid-rich or very heterogeneous FNAs
with interspersed macrophages and lymphocytes are all good examples of challenging
specimens. In benign lesions, a minimum amount of cells was sufficient to confirm the nature
of the hyperplastic goiter and no signal of alert was recorded. In the malignant group, three
FNAs from histologically proven PTC (Thy5) were not correctly assigned (Figure 2c) due to the
quality of the samples taken from the patient. Two different situations were highlighted:
samples with paucity of malignant thyrocytes or with high inflammatory or colloidal
background. In fact, when the analyses were repeated with samples taken ex-vivo from the
thyroid of same patients after surgical removal, they were easily diagnosed as malignant by our
diagnostic tool due to the increased quality of the specimens with a greater amount of
neoplastic clusters (Figure 2d). An in-vivo specimen of a metastatic lymph node was also
misclassified as benign only in the pixel by pixel classification (P_1188). A possible explanation
for this failure could be due to the low number of thyrocytes present in the sample. As a
consequence, the correct classification was obtained when using the ROIs, where the
background was less impacted by the quality of the spectra, but this confounded the model in
the pixel by pixel classification. However, the specimen that was collected ex-vivo was correctly
classified using either the ROIs or the pixel by pixel model (P_1188: Figure 3 and
Supplementary Table 2c1 in appendix C). This suggests that, once the pathologist certified the
presence of a satisfying quantity of neoplastic cells in the washing material, the model also
correctly triaged malignant PTC cells in a sample taken from a metastatic lymph node.

4.3.5 Conclusions
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Notwithstanding the consideration that the diagnostic validity of the model needs to be verified
in the large cohort of patients that is currently under enrollment, the present study introduces
an original methodological approach to build a proteomic diagnostic tool in thyroid
cytopathology by taking advantage of MALDI-MSI technology. The next step will be to
systematically test the workflow and to putatively identify the most significant features
employed by the classification model. The direct consequences of successful results could be
the use of MALDI-MSI proteomics as a complementary approach for the characterization of
indeterminate for malignancy thyroid nodules. Despite the technical challenges of this study,
the application of proteomics and imaging may help to elucidate key biomolecular events and
pathways in oncogenic processes [27,28]. Collectively, this represents an important paradigm
for both the fundamental characterization of cancer systems and the discovery of molecular

targets for diagnostic application.
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5 Aninsightinto the indices of similarity between mass spectra

The quantitative evaluation of mass spectra similarity has been often employed to investigate
reproducibility and repeatability of analytical methods. Moreover, these mass spectra
similarity approaches have been occasionally used for classification purposes comparing query
samples to reference spectral libraries. Several mass spectra similarity indexes had been
developed, but the statistical evaluation of their reliability for mass spectra comparison was
never assessed.

Different similarity measures present in literature are reviewed and compared in this chapter,
and a new score system based on overlap is also proposed. The statistical performances of these
measures have been compared through simulated mass spectra that mimic those from real
proteomic data observed in thyroid cancer. Simulation protocols and results are reported and

the limits and benefits of the different approaches are also discussed.

5.1 Introduction

In the clinical application of mass spectrometry, similarity scores have been often employed to
evaluate not only the agreement of an unknown sample with respect to a reference compound
in spectral libraries [1], but also to evaluate analytical methods reproducibility [2] and
repeatability [3]. Different mass spectra similarity scores have been used for different purposes
over the years. Several papers evaluated the performances of one or two scores per time using
real mass spectrometry data. Only few studies investigated mass spectra similarity scores using
mass spectra generated from replicates of real reference library spectra [4] or limited
simulated mass spectra [5].

Two scores were initially proposed for the comparison of mass spectrometry profiles: the
Probabilitity-Based Matching (PBM) of McLafferty et al. [1] and the similarity measure of Hertz
et al. [6]. Subsequently, Stein and Scott reviewed and compared the performances of five
different algorithms, namely: PBM, dot-product (cosine correlation), Hertz similarity measure,
Euclidean and absolute value distance. These five algorithms were used to compare a test
spectrum against reference spectra using a mass spectra database. Results indicated that the
PBM and the Hertz similarity measure, the two algorithms constructed specifically for mass
spectra comparisons, performed worst, while the dot-product function had good performances.
Finally, they described a new optimal composite algorithm (i.e. the Stein and Scott measure),

which achieved the best performances. This index was obtained from the cosine correlation
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score by weighting spectra for intensity and m/zvalue, and by adding a term based on ratio of
peak pair intensity. Moreover, Wan et al. highlighted that the cosine index is able to differentiate
between very similar mass spectra, where the Similarity Index (SI) fails [5].

Koo et al. investigated for the first time the compound identification accuracy of different mass
spectra similarity measure through simulations, generating spectra from existing reference
library. These simulations showed that Partial and Semipartial correlation indices had the best
performance in accuracy, but the worst in computation time, compared to cosine correlation,
Stein and Scott measure, and Discrete Fourier Transform (DFT) composite measure [7].
Additional similarity scores that have been used to investigate mass spectra similarity are: fold
difference, intensity match, Spearman’s correlation, Person’s correlation, Euclidean distance,
Manhattan distance, fit, retrofit [1]. Most of these similarity scores were applied in electrospray
ionization mass spectrometry analysis and no studies investigated their performances. We
proposed a new score never used in the evaluation of the similarity of protein spectra, called
overlap [3]. All the measures we reviewed were included in the simulation study that we made.
The purpose was to investigate for the first time the performances of different mass spectral
similarity scores applied to linear matrix assisted laser desorption ionization -time of flight-

mass spectrometry (MALDI-TOF-MS) data.

5.2 Review of the existing measures

In the description of the different similarity scores, the PBM, the Hertz, the Partial and
Semipartial correlation indices were not taken into account. The first two were excluded due to
their low performance, which is widely documented in the literature, while Partial and
Semipartial correlation indices were not considered due to their field of application that is
different from our context.

Consider two given spectra X = (x;);=1, v, and Y = (¥;);=1,.n,, Where the generic it" peak
represents a mass-to-charge value (m/z), while Ny and Ny are the total number of m/z values

in X and Y spectra.

1)Cosine correlation:

The dot-product term [5], also known as the cosine correlation index, is used to obtain the
cosine angle between the direction in space of the query and reference sequences of intensity

signals. It is defined as follows:
XoY

S =—
“ X1yl
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where Xo Y =3YN xy;,11X] = /Z’i"zl x? and N was the total number of m/z values used in

the comparison. Note that S, ranges between —1 and 1, and it is always non-negative if X and
Y are non-negative intensities.

The dot-product index varies between 0 when the spectra are completely different and even
when do not contain common ions and 1 when spectra are identical. Even if spectra are pre-
processed, in particular normalized to the sum of peak intensities, the cosine similarity index,
as well as others measures (e.g. fold difference) that will be introduced later, is independent

from normalization.

2)Stein and Scott index:

An improved optimized dot-product cosine correlation system, called Stein and Scott
Composite similarity [1], weights spectra for intensity and m,/zvalue and adds a term based on
the ratio of peak pair intensity.

Firstly, the ratio of peak pair Sy is as follows:

Xny

1 Vi xi—1)"
X, Y) = .
S, 1) NXOYZ(yi—l X

i

wheren = —1 or 1 if the term in parentheses was less than or greater than unity, respectively.
The value Nypy is the number of non-zero peaks in both the reference and the query spectra, i.e
the number of shared mass peaks.

The Stein and Scott Composite similarity is calculated by:
Ny - S¢(X,Y) 4+ Nynay - Sr(X,Y)

Sss(X,Y) = N, + Ny
n

where Ny is the number of non-zero peak intensities existing in the query spectra. In the
literature this similarity score is constructed only for weighted intensities, so its original
formulation is:

Ny + Swc(X,Y) + Nxny - Swr(X,Y)

Sss(X,Y) = N, + Ny
n

where Sy, is the weighted cosine correlation formula in which X and Y are considered as

N
WxoWy Zi=1Wx,i'Wy,i

weighted spectra Wy and Wy, Syc(X,Y) =S:(Wy, Wy) = =
W o 2. [ w2

)

n

1 Wyi Wy

and Sy r(X,Y) = Sg(Wy, Wy) = — 3 ¥ (¢ . Ll) , where W,,; and W, ; are non-zero
Nxny Wyi-1 Wy ' ’

weighted intensities having common m/z value defined as W = [Peak Intensity]|*[Mass]? , a
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and b are the weight factors for peak intensity and m/z values, respectively. For our purpose,

these formulae are considered without weighted intensity as previously reported.

3)Similarity Index:

Similarity Index (SI) method [8], is defined as:

2
N M= Yi
i=1{xi Ty~ 100}

N

Sg1 =

4)Discrete Fourier composite index:

The Discrete Fourier transform (DFT) index converts an original spectral signal Z = (z;,..., z,)

into a new signal ZF = (z;F, ..., z,F) as follows [9]:

n

F 2mi
Zk =szexp(—7kd),k=1,...,n
d=1

where the notation i in this case is the imaginary unit and not the i*"peak, called k. By using

the Euler's formula that defines exp(i¢) = cos¢ + i sing, the original equation becomes:

. 2 . 2
i i
zF =szcos<—7kd) + iszsin<—7kd>,k= 1,...,n

d=1 d=1

We have a new transformed signal, whose real part ZFR = (z,FR, ..., z,FR) is defined as follow:

n

2
7, 'R = Re(z,F) = ZZ - coS (—%kd)

d=1
where the function Re(+) is the real part of the imaginary number.
The DFT with real composite similarity is defined as follow:
Ny - Sc(X,Y) + Nyny - Sc(X™R, YTR)
Nx + Nxny

Sprr (X , Y) =

5)Pearson’s correlation:

The correlation between two sequences of intensities is defined in standard terms as the
covariance of the two sequences divided by the product of the standard deviations:
Cov(X,Y)
\/ Var(X )\/ Var(Y)

where Cov(X,Y) was the covariance between X and Y and Var(X) was the variance of X.

Sp =Corr(X,Y) =

6)Fold difference:

It is the ratio of protein amount between two spectra, and it is used to detect differences of
various proteins concentration in complex mixtures [10]. It is defined as
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7)Spearman’s correlation:

Spearman’s correlation is the non-parametric version of the Pearson’s correlation
coefficient Sp = Corr(X,Y). It is defined as a measure of association between the ranks of the

intensities of the common peaks nyny:
o= 27 —7) (5 — 3)]
s =
JEP =) e 2 (s - 5

where 7; and s; were the ranks of x; and y; (j = 1,...,nxny), while 7 and § were their median

values.

8-9)Fijt and retrofit:

These two measures are only based on the cardinality of the m/zvalues in the two spectra, and
the number of shared mass peaks [11]. The fit is defined as the ratio of the common peaks in

the two spectra and the ny, peaks detected in the query spectrum:

Nxny
ny

FIT =

while the retrofit is defined as the ratio of common peaks in the two spectra and the ny peaks

in the reference spectra:

Nxny
ny

RFIT =

10)0Overlap:

The overlap (OV) takes into account the whole shape of two spectra [12]. This latter index
measured the overlapping area between the empirical distributions of two sequences of

intensities on ranked m/z:

— X LY
oV = FnXUY n FnXUY
where £ and FY,  were the empirical distribution function, and nyy were the m/z values

either in the X or the Y spectra.

11)Intensity match:

Intensity match is an improvement of the correlation system, in which the perfect
correspondence of peaks abundance between spectra is investigated. This score focus on the

agreement between two sequences of signals within a 30% range on intensity variability.

12)Lin’s concordance correlation:
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The Lin’s concordance correlation coefficient measures the agreement between two sequences

of variables [13][14]. The Lin’s CCC is defined as:
6 = 2rSsySy
& =12+ (507 + (sn)?

This index is equivalent to 1 minus the ratio of expected orthogonal squared distance from the

line Y= X and the expected orthogonal squared distance from the line ¥ = X assuming
independence. Like a correlation coefficient -1 < S;;y< 1: values near +1 indicate strong
concordance between Xand ¥, values near -1 indicate strong discordance and values near zero

indicate no concordance.

13)Kendall’s correlation:

[t is used to measure the ordinal association between two measured quantities.

B (number of concordant pairs) — (number of discordant pairs)
K= n(n—1)
2

14-15)Euclidean and Manhattan distances:

They calculated the distance between the intensity of two sequences of data.

disteyciidgean = \/Zév=1(xi - ¥i)? and distmanhattan = \/Zév=1|(xi -yl

A summary of the properties and characteristics of the reviewed similarity measures are

reported below.

ID Score Domain  Value of Characteristics
perfect

agreement
1  Cosine correlation [0;1] 1 Angle between direction of intensities
2 Stein and Scott index [1;400] 1 Ratio of intensities
3 Similarity index [0;100] 0 Difference of intensities
4 Discrete Fourier Transformation [0;1] 1 Composition of waves sinusoid
5  Person’s correlation [-1;1] 1 Linear relation of intensities
6  Fold difference [1;400] 1 Ratio of intensities
7  Spearman’s correlation [-1;1] 1 Ranks of the intensities
8 Fit [0;1] 1 Number of signals
9  Retrofit [0;1] 1 Number of signals
10 Overlap [0;1] 1 Density function
11 Intensity match [0;1] 1 Linear relation of intensities
12 LIN’s concordance correlation [-1;1] 1 Concordance of intensities
13 Kendall’s correlation [-1;1] 1 Ranks of the intensities
14 Euclidean distance [0;400] 0 Difference of intensities
15 Manhattan distance [0;4+00] 0 Difference of intensities
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5.3 Simulation study

In order to evaluate the performances of the reviewed indices a comprehensive simulation
study was carried out mimicking the proteomic profiles observed in thyroid cancer. Two main
simulation protocols were set-up to consider two completely different shapes of the spectra,
contrasting a situation of picks uniformly distributed vs picks not uniformly distributed. In each
protocol, various scenarios of mass profiles, with masses ranging from 3,000 to 15,000 m/z,
were investigated, with different numbers of truly relevant peaks, percentage of shared
common peaks, different variability on peaks intensity and localization along the m/zaxis.

All the simulated spectra were pre-processed following the same strategy: baseline subtraction
(median method), smoothing (moving average method, half window width 2.5), normalization
(total ion current, TIC), peak alignment, and peak picking (signal-to-noise ratio, S/N = 6). Only
peaks with S/N > 6 and an abundance greater or equal to 0.0003 were considered as relevant
peaks. The choice of the cut-off was justified by the magnitude of the intensities that we
identified as relevant in our experience in thyroid cancer.

Spectral comparisons were made between couples of simulated mass profiles for intra- and
inter-group comparisons.

5.3.1 Simulation protocol 1

The first simulation protocol have explored a uniform distribution of the peaks along the m/z
axis. The spectra generation followed this strategy:

1. Two reference spectra, one for each group, were generated with the same pre-defined
number of informative peaks, but with different percentages of common m/zvalues. The
remaining m/z values (allowing to reach the pre-defined number of true peaks) were
randomly generated by a uniform distribution along the m/z axis.

2. Given the localization of m/zvalues along the axis, the corresponding peaks abundance
was simulated from a uniform distribution with an absolute intensity ranging from 3.5
to 200. The abundance of m/zcommon peaks were forced to overlap, with small random
variations from a normal distribution. Non-common peaks were free to have different
intensity values. An exponential distribution was used in generating the baseline
spectra, while the background random noise followed a gaussian distribution with mean
equal to the baseline value at each m/zpoint and standard deviation 10" (-5).

3. For each reference spectrum, 99 replications were generated by small random changes
in peak intensities with respect to the reference ones to obtain 100 replicates for each

of the two groups.
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4. Each configuration was replicated 20 times changing the m/zlocalisation along the axis.

Overall, we investigated 30 scenarios obtained by combining 3 different values for the number
of informative peaks, 5 values for the percentage of common peaks and 2 values for intensity

variability of common signals, as reported in the table below:

n° of relevant peaks: 40, 25,10
% of common signals: 90, 75, 50, 25, 10
% of intensity variability: 30,5

Examples of the raw spectra (without pre-processing) generated with 15 (A), 25 (B) and 40

(C) relevant peaks between a mass range of 3000-15000 m/z are reported in the graph below.
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5.3.2 Simulation protocol 2

The second simulation protocol have explored a non uniform distribution of the peaks along

the m/zaxis. Specifically, the m/zaxis was divided into three regions (3000-7000; 7000-11000;

11000-15000) and the spectra generation followed this strategy:

1.

The first reference spectrum was generated in order to have in the first region twice or
five times the percentage of peaks compared to each of the other two regions.

The second reference spectrum was generated symmetrically with respect to the first
one, with the same percentage of peaks that fell into the third region, while the
remaining percentage of signals were equally distributed in the first two regions.

No common peaks was generated between the two different reference spectra. In order
to overcome this problem, peaks generated in the second region were the same between
the two reference spectra and with the same number of m/z Moreover, the percentage
of signals in the third region of the first reference spectrum was chosen among the
percentage of signals in the third region of the second reference spectrum, due to its
highest amount of signals in that region. Similarly, we have done the same for the first
region of the second reference spectrum, which were chosen among the m/z value
generated for the first reference spectrum in the first region. In the same way, the
informative peaks in the first region of the second spectrum were chosen among the
informative peaks generated for the first spectrum in the first region.

For each reference spectrum, 99 replicates that differ from the reference spectra only
for peak intensities were generated.

Each configuration was replicated 20 times changing the m/zlocalisation along the axis.

Overall, we investigated 4 scenarios obtained by combining 2 different values of the number

of informative peaks, 2 values for the percentage of relevant peaks in each of the three

regions and 1 values for intensity variability of common signals, as reported in the table

below:

n° of relevant peaks 40, 25
% of relevant peaks in each region:
- first group (70,15, 15) - (50, 25,25)
- second group (15,15, 70) - (25, 25,50)
% of intensity variability 5
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Examples of the raw spectra (without pre-processing) generated with 25 (A) and 40 (B)
relevant peaks between a mass range of 3000-15000 m/z and with a density of 50% of the

relevant peaks in the richest regions, are reported in the graph below.
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5.3.3 Details on the analyses

The 200 spectra generated for each scenario led to a 5000 paired spectra comparisons in each
of the two groups evaluating similarity between replicates, while 5050 inter-group
comparisons were performed. Each configuration was replicated 20 times changing the m/z
localisation along the axis, for a total of 5000x20x2 intra-group comparisons and 5050x20
inter-group comparisons.

A total of 15 scores were considered and each score was evaluated at three different level of
detected signals:

1. Firstlevel: only common peaks with an absolute intensity greater or equal than the cut-
off of 0.0003 (after TIC normalization) were retained for paired comparisons.

2. Second level: all the m/zvalues with an absolute intensity greater or equal than the cut-
off either in the first or the second spectrum are taken into consideration for the
comparison.

3. Third level: the whole spectra were retained and all the detected signals with S/N > 6,

were taken into account.
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An example of a spectrum (after pre-processing) generated with 25 relevant peaks in a mass
range of 3000-15000 is reported in the graph below. Colored points show the detected signal
involved in the three levels evaluation: (A) only signals greater than the threshold and in
common with another hypothetical spectrum (25% of common peaks) (green points) were
retained for the analysis; (B) all the signals greater than the threshold (blue points) were
retained for the analysis; (C) all the signals of the spectrum (orange points) were retained for
the analysis.
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Replicates of the same sample were required to evaluate the reliability of the different
similarity measures, since no recognized standard of reference exists. The 95% confidence
interval (CI) of the median of the scores obtained for each paired comparison between two

different replicates represented the gold standard. In order to assess the performance of
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different scores in evaluating spectra similarity, the CIs of the median of each paired inter-

group comparisons were calculated and compared to the intra-sample Cls [6].

5. 4 Results

5.4.1 Protocol 1
First level (Figure 1,2.3,10,11,12 in appendix D):

At the first level, only common peaks with intensity greater than the threshold were considered
in the pairwise comparison. Since we looked at common peaks with the same intensity values,
a similar behavior among the different scenarios is expected. In each score an increment in
variability of the distribution of the estimated values was observed when the percentage of
common peaks in the inter-sample analysis decreased. When comparing the same score, this
behavior is attenuated when the number of informative peaks increased (15, 25, 40).

Pearson, Spearman, Kendall and LIN correlation reached negative estimated values and had
high heterogeneity. These scores work on intensity agreement: the less the number of signals
to be correlated (i.e. for the scenario of 15 relevant generated m/zand 10% of common signals,
correlation is calculated on only 2 intensity values), the higher was the bias in the results even
though little variability in intensity (5%). The Stein and Scott index, Euclidean and Manhattan
distance showed a tendency to underestimate similarity when the percentage of common peaks
decreased. The degree of underestimation cannot be evaluated because these measure had not
a bounded domain, therefore only the comparison with the intra-sample analysis can be
discussed. In Euclidean and Manhattan distances the differences in the estimated median
values were of low magnitude: the 95% Cls for each scenario in the inter-sample analysis was
completely contained in the 95% CI of the intra-sample comparison. Conversely, Stein and Scott
index showed a decreasing trend of the inter-samples analyses with respect to intra-sample
analysis.

With an increment in peaks intensity variability (30%) these results were more marked, except
for Cosine, DFT and Overlap that showed expected estimate values.

Second level (Figure 4,5,6,13,14,15 in appendix D):

At the second level analysis all the m/z values greater than the threshold of 0.0003 were
retained in the analysis. If a peak was greater than the threshold in only one spectrum (non-
common peaks), the intensity value at the same m/z was retained for the second spectrum,
irrespectively from its value. The focus of the analysis was to highlight the ability of different

scores to detect dissimilarities between spectra at different percentage of common peaks.
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Pearson, Spearman and Kendall correlation indices showed median estimated values around
0.5 in the inter-sample comparison in the presence of 75% of common peaks and when 15
peaks were generated. When the number of relevant peaks increased (i.e. 25, 40), the estimated
median value was around 0.5 in the scenario with the 90% of common peaks, even if it was
expected to be (asymptotically) near 1. When the intensity variability increases at 30% also the
estimated median value related to 90% of common peaks scenario decreased to a value lower
than 0.5, irrespective to the number of relevant peaks. This suggested that non-common peaks
heavily affected Pearson, Spearman and Kendall correlation, although, boxplots decreased
according to the decrease of the percentage of common peaks. Intensity match and SI gave more
reliable results. Indeed, the first score worked with a greater tolerance when comparing signal
intensities, while the second took into account the percentage of dissimilarity in peaks
intensities. An increment of intensity variability (30%) lead to underestimation in similarity
for Intensity match (e.g. intra-sample analysis showed an estimated median value around 0.45),
while SIlead to the same results showed in the scenarios with 5% variability. Conversely, scores
that considered the whole shape of the spectra, like the overlap, lead to an overestimation of
mass spectra similarity when the percentage of common peaks decreased. On the other hand,
with the increment in intensity variability the estimated median value slightly decreased. This
phenomenon derives from the fact that there is always an overlap between two density
functions due to the uniform distribution of m/z value along the entire mass range. The
overestimation of mass spectra similarity decreased when the number of relevant signals
decreased.

Results showed that Fold difference and Stein and Scott index are sensible to intensity value of
non-common signals. Since all the m/zvalues of the two spectra were taken into account, the
ratio between the intensity value of the background noise and informative peaks was
calculated, leading to infinite value. A possible solution to this problem, as suggested in the
literature, was to substitute noise values with the threshold value. In the Fold difference score
this brought to reasonable results, the trend on boxplots of “fold difference” and “fold difference
literature” was the same. On the other hand, Stein and Scott index using the same solution was
not able to take difference between the different scenarios, leading to the same result for all the
different percentage of common peaks.

Third level (Figure 7,8,9.16,17,.18 in appendix D).

No relevant differences were found between the results at second and third level of retained

peaks in Cosine correlation, DFT, Overlap, Fold difference and Euclidean and Manhattan
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distance. Pearson and LIN correlations led to better performances. Conversely, Spearman and
Kendall correlations failed both in the intra and in the inter-sample analysis for all the three
sets of generated signals (i.e. 15, 25, 40), showing similarity measures lower than zero.
Intensity match had estimated median values lower than 0.08 when 15 relevant signals were
generated, and 0.20 when 15 relevant signals were generated. Similarity index underestimated
both in the intra and in the inter-sample analyses. Indeed, in all the scenarios the estimated
median values were higher than 90. Stein and Scott index showed no trend with the decrease
of the percentage of common peaks, with all the boxplots lying on the same range of values.
5.4.2 Protocol 2

First level (Figure 19,20,25,26 in appendix D):

The four different types of correlations (i.e. Pearson, Spearman, Kendall and LIN correlation)
underestimated the median expected value for the inter-sample analysis, with median values
around 0.6-0.7 for a total number of 40 informative peaks generated. This effect increased with
the decrease of the generated peaks (25), with estimated similarity values around 0.5-0.6. The
worst performance was reached by the Intensity match that showed results in the inter-sample
analysis lower than 0.2. The Cosine, DFT, Fold difference and overlap indices reached the best
results, with similarity responses in the inter-sample analysis superimposable to the ones of
the intra-sample analysis: median values greater than 0.8 for the overlap score, around 0.9 for
the cosine score, and 0.94 for the DFT. A completely overlap in the 95% CIs of the intra and
inter-analysis for the Fold difference score was observed. The Euclidean and Manhattan
distance, Similarity index and Stein and Scott index, showed discrepancies in their estimated
median values between intra and inter-sample analysis, leading to completely non overlapping
boxplots.

Second level (Figure 21,22,27,28 in appendix D):

When a percentage of 50% of generated peaks fell in the first or third regions and the remaining
50% was equally distributed in the other two regions, an overlap of 70% was expected. Cosine
correlation, DFT, Overlap reached this response in the inter-sample analysis, with better results
obtained for the DFT and overlap, and an minimal underestimation for the cosine (median
results around 0.6) and overestimation for the DFT (median results around 0.8). With the
increment of the number of generated peaks (40), these estimated median values decreased.

When the 70% of the peaks fell in the first or third region and the remaining 30% was equally
distributed in the other two regions, the expected overlap was of 35%. In the case of 25

generated peaks, DFT had a median value greater than 0.6, Cosine around 0.4 and Overlap score
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around 0.35. When the number of generated peaks increased to 40, DFT showed results slightly
lower than 0.6 and were around 0.35 for the cosine. The Overlap index showed the same
behavior as before. Pearson, Spearman, Kendall, LIN correlation and Intensity match showed
median estimated values around 0.2 in the inter-sample analysis, and the first four measures
reached negative values increasing the number of peaks in the richest region.

The Euclidean and Manhattan distance showed an increment in the differences between the
median estimated values of the intra and inter analysis with the decrease of the number of
relevant peaks. This is reasonable, because the lower the number of signals, the greater should
be the influence of the difference between peak intensities. In the same way, the greater the
number of peaks within the richest regions on the m/z axis that resulted in fewer common
peaks between the two spectra, the greater the spectra dissimilarity.

Third level (Figure 23,24,29,.30 in appendix D):

The results in analysis at the third level were mainly comparable to those obtained at the

second level.

5.5 Discussion

5.5.1 Protocol 1

The relevant factors to discuss about the results of the simulations from Protocol 1 are: the
number of relevant signals, the percentage of common peaks, the localization of m/Z signals
and their intensity variability.

Localization of m/z signals:

Looking at the intra- and the inter-sample comparison between spectra with the 90% of
common signals, an overall increase of variability was reached according to the decrease of the
number of informative peaks generated. A small number of peaks migth bring different
localization scenarios of m/z values, leading to similar or completely different shape of the
spectra (Figure in paragraph 5.3.1).

Number of informative signals:

Another problem was the effect of the background noise. The average number of relevant
generated signals among spectra was pre-defined, with small variability given by the presence
of noise that might get out from the spectrum other signals. Scores were more sensitive to noise
when the number of relevant peaks decreased. In this case, an increase in the number of
informative peaks reduced the effect of this problem, because the non-real signals were

mediated by the effect of the increasing number of relevant signal.
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Intensity variability:

A serious problem in mass spectra similarity measures is the variability in signal intensities
caused by analytical variability (i.e. sample preparation, instrumental analysis, spectra
misalignment). As suggested in the literature various method to align and scaling spectra to
compensate for spectra differences (pre-processing workflow) had to be performed to discard
anomalous peaks. The problem could not be totally eliminated, but only controlled. The less are
the detected signals, the greater the influence of this problem. A little variability in peak
intensities could cause a loss in the reliability of the match, when the score is only based on
peaks intensities. These evidences suggested that the correlation measures should be used only
when the comparison is at the first level because at the second level they might lead to non-
informative results. The percentage of common peaks to use had to be consistent, since the risk
is to obtain biased results. Other measures that take into account intensity variability, such as
the Intensity match, might have better performance than the correlation indices at either levels.
SI, which works similarly to the Intensity match, could be a valid similarity measure, with
opposite interpretation with respect to the Intensity match. When comparing two spectra, the
differences between the spectra had to be greater than the SI that was calculated in a
repeatability study (intra-sample). Euclidean and Manhattan distances, Stein and Scott index,
and fold difference always need a reference value to be compared, that is obtained in the
repeatability study that is not always feasible in the clinical practice. As previously reported in
the result section, Fold difference and Stein and Scott index are sensible to the intensity value
of non-common signals. A possible solution, suggested in the literature by Wan et al. was to
substitute noise value with the threshold value. In this way, false signals are introduced, leading
to false results and a higher risk of changing the data.

In conclusion, overlap and DFT led to good results also when intensity variability increases, but
showed a flat estimation when the percentage of common peaks decreased. The Overlap score
is preferable due to the higher computational time of DFT score, and to the fact that DFT
depends on parameters that had to be set and that could lead to different results (no
investigation were done on this aspect). Overlap and DFT failed when the Cosine score was able
to differentiate between very similar spectra. The Cosine correlation showed to have the best
performance in all the scenarios.

Lastly, some of the proposed measure are constructed to work on the whole mass spectrum
(e.g. overlap, cosine correlation), rather than on the restricted spectrum obtained considering

only the only most abundant peaks detected (e.g. Correlation scores). In the first case the whole
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shape of the spectra was considered and low abundance peaks that could provide information
were retained. While, in the second case the spatial distribution of the ions along mass-to-
charge (m/z) axis was lost, but certainly the background noise was discarded.

5.5.2 Protocol 2

The second protocol of simulations led to slightly different conclusions. Correlation’s scores
showed the best performances, but always with an underestimation of the expected results.
Again, this suggests that the correlation scores are heavily affected by intensity values, since
they looked for completely correspondence in intensities. Moreover, in proteomics analysis, the
background noise that perturbs the intensity values brings to non reliable results mostly for
the correlation scores that work on ranked data (i.e. Spearman and Kendall correlation). This
negative effect increased when the analyses were performed at the third level for all the types
of scenarios taken into consideration in this work. Overlap showed the best results as compared
to DFT and Cosine, differently to the results found in Protocol 1.

In conclusion:

e A perfect score usable in all the situations does not exist.

e Euclidean distance, Manhattan distance, Fold difference, Similarity index and Stein and
Scott index can only be considered when an intra-sample analysis is available as gold
standard to make the interpretation of inter-sample comparisons possible. Only the
ratio between the estimated median values of the scores in the inter-sample analysis
compared to the ones obtained in the intra-sample analysis can be evaluated. Moreover,
we suggest to use Fold difference and Stein and Scott index only for the comparison of
common peaks.

e Pearson’s correlation, Spearman’s correlation, Kendall’s correlation and LIN’s
concordance correlation led to the worst results since they search for a complete
correspondence in peaks intensities between two spectra. The suggestion is to use them
only in the comparison of common peaks, to highlight if common peaks had also
common intensities. Intensity match can be a useful substitute of Correlation due to the
fact that it takes into account a greater intensity variability that is common in mass
spectrometry analysis.

e The best performers are the Cosine and DFT when the m/z values are uniformly
distributed along the m/zaxis (simulation protocol 1), and Overlap when the scores are

not uniformly distributed along the m/z axis (simulation protocol 2).
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The global results of these simulations provide the rationale for the construction of
composite scores able to take into account different aspects. Fit and Retrofit, which
compared two spectra based only on the number of common peaks, without bias
generated by looking at peaks intensity, had to be retained. Cosine correlation and
overlap could be two additional scores to include in the composite score system since
they efficiently consider signal intensities. Furthermore, the Overlap index include

information also on the whole shape of the spectra.
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6 Discussion

MALDI-MSI represents an ideal tool to explore the spatial distribution of proteins directly in-
situ, integrating molecular and cytomorphological information and enabling the discovery of
potential diagnostic markers in thyroid cytopathology. Given the amount of data generated
from MALDI-MSI analysis, it is of paramount importance to use proper statistical methods in
order to find discriminant features for thyroid nodules classification. However, many technical
challenges had to be solved in order to reach this goal. The first one was the interference of
haemoglobin. In fact, red blood cells present in the fine needle aspiration biopsy (FNAB)
specimens caused ion suppression of other proteins during the MALDI-MSI analysis due to
large amounts of haemoglobin. We planned a study comparing three protocols that used ex-
vivo cytological samples collected from fresh thyroid nodules of 9 patients who underwent total
thyroidectomy: (A) conventional air-dried smears; (B) cytological smears immediately fixed in
ethanol; (C) ThinPrep liquid base preparation (LBP). Protocol C and A were also evaluated
using real FNABs. The study highlighted the possibility to manage the haemoglobin interference
when LBP was used as sample preparation protocol, obtaining high-quality MALDI-MS spectra
that could be used for a more reliable comparison of in situ protein profiles.

The sample preparation protocol was then further improved and the second technical challenge
regarded the morphological and proteomic stability of the samples in the preservative
solutions. Mass spectra similarity was investigated on intra-day, inter-day replicates and on
samples stored at 4°C and prepared at different time points. Results showed no degradation of
the cellular morphology and good stability of the protein profiles when the specimen was
placed for up to 14 days in PreservCyt solution.

Assessing the similarity of mass spectra is a major topic in mass spectrometry data comparison.
A review of the most used scores for the evaluation of mass spectra proteomic profiles
similarity was performed and a new index of Overlap was proposed here. A simulation study
was implemented, investigating different scenarios, in order to identify the best similarity
measures to compare proteomic profiles. In particular, it was observed that the best similarity
measure could be reached by combining the scores with the best performances into a unique
composite score: fit, retrofit, overlap and cosine correlation.

The optimization of the proteomic protocol paved the way for the clinical question of this thesis:
the classification of benign vs malignant for the qualification of the indeterminate TYR 3 FNABs.
Unfortunately, this was done only on a subset of the target sample size due to a low rate of

enrolment of patients with malignant lesions. However, the statistical model was based on the
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analysis of a considerable number of Region of Interests (ROIs), according to the morphological
triage performed by the pathologist. For the two groups in the training set (benign vs malignant
lesions), a logistic regression with a Lasso regularization method was performed and twenty
features were selected from the statistical model as the most discriminant to correctly
distinguish samples and quantify their probability of being malignant lesions. Finally, the model
was validated on a different group of patients using the overall average spectra of all the
analysis, the spectra from each ROI and a pixel by pixel approach using all the single spectra of
the MALDI-MSI analysis. Successful results were obtained, with the correct classification of
different types of thyroid lesions being achieved. Notwithstanding the consideration that the
diagnostic validity of the model needs to be verified in the large cohort of patients that is
currently under enrolment.

The plan for the future is to perform the final analysis of the MALDI spectra on a training set
that involves 80 clear-cut diagnosis of THY2 and 25 THY5, numbers quite far from the ones
originally planned (i.e. 160 vs 80). This is due to the convergence of two conditions: i) the
current rate of THY5 has declined compared to the past and ii) some samples have been
discarded since the challenging needle washing material from FNABs is sometimes too scarce
to make possible the MALDI analysis. However, it should be noted that the final analysis will be
performed on data derived from the ROIs, so that each subject will contribute with multiple
spots of information.

Furthermore, since for certain types of thyroid lesions, as the follicular lesions and Noninvasive
Follicular Thyroid Neoplasm With Papillary-Like Nuclear Features (NIFTP), the distinction
between benign and malignant nodules is possible only after histology, because the cytological
report is almost always THY3. We will introduce into the training set some THY3 cytological
specimens with these diagnoses in order to train the model to recognize also these uncertain
cases for which the traditional morphological diagnosis is not possible.

Moreover, since multiple sources of information are available for the same subject, we will
consider a second analysis that integrates different omics data. Proteomics, genetics and
clinical /pathological data will be combined using the Integrative Lasso with Penalty Factors,
method (IPF-LASSO). This method is based on the regression model with L1 LASSO
penalization in which each omics group will be differently penalized assigning one penalty
factor to each modality determined by cross-validation. Finally, we foresee also a
methodological development that extends the aforementioned Lasso models to handle the

classification of the heterogeneous group of benign and malignant thyroid lesions.
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In conclusion, the direct consequences of these successful results reported in this thesis could
be the use of MALDI-MSI proteomics as a complementary approach for the characterization of
indeterminate for malignancy thyroid nodules also in particularly challenging situations, as in
case of “needle washing” material from FNABs. Despite the technical challenges of this study,
the application of proper proteomics, imaging and statistical approaches may help to elucidate
key bio molecular events and pathways in oncogenic processes. Collectively, this represents an
important paradigm for both the fundamental characterization of cancer systems and the

discovery of molecular targets for diagnostic application.
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APPENDIX A

Supplementary materials of:

The management of haemoglobin interference for the MALDI-MSI proteomics

analysis of thyroid fine needle aspiration biopsies
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Supplementary Figure 1. General Workflow for the sample preparation of ex-vivo and in-vivo FNAB by
MALDL
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Supplementary Figure 2. Comparison of the three independent sample preparation protocols using thyroid
ex-vivo cytological samples from the same patients and boxplots and individual values of the
normalized intensity [A.U.] of six signals (a,b,c,d,e,f). The box contains data that fall between the first
and third quartiles, the horizontal line indicates the median, and the brackets delineate 1.5 times the
interquartile range (with data outside this range defining outliers).

1) N° of peaks
Sample ProtocolA  ProtocolB  Protocol C
a 26 4 16
b 11 13 18
C 22 22 20
d 35 33 22
2) N° of common peaks
Samples comparision Protocol A  ProtocolB  Protocol C
avs.b 1 2 11
cvs.d 2 5 14

Supplementary Table 1. Summary of the peak histogram presented in Figure 2: 1) total number of peaks in
samples a, b, ¢, d with Protocols A, B and C, respectively; 2) number of common peaks when comparing
a with b and c with d using the three protocols
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Supplementary Figure 3. Comparison of the three independent sample preparation protocols using ROIs of
thyroid ex-vivo cytological samples from the same patients: boxplots and individual values of the
normalized intensity [A.U.] of a) aHaemoglobin, b) fHaemoglobin and c) Histone H4. The box contains
data that fall between the first and third quartiles, the horizontal line indicates the median, and the
brackets delineate 1.5 times the interquartile range (with data outside this range defining outliers).

a) aHaemoglobin (m/z 15125) b) BHaemoglobin (m/z 15867) c) Histone H4 (m/z 11306)
! p=0.0003| °* . "p =01 00020 - " p =003
0.016 %804 »

— —_ T 00016
D b J ’ /
s. 0.010 - s - i‘

E . E oo | E 0.0010
| E P :: 0.0005 :

I e B , I - ]

PROTOCOL A PROTOCOL C PROTOCOL A PROTOCOL C PROTOCOL A PROTOCOL C
9 i o

/' 100% 0%

B ]
-~ m/z 11306 + 4 Da
& 100% 0%

L TE—

5 2
=
W m/z 5063 + 4 Da
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samples. d) H&E staining image and MALDI molecular image and localization of the signal at m/z 5063
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APPENDIX B

Supplementary materials of:

Feasibility study for the MALDI-MSI analysis of thyroid fine needle aspiration
biopsies. evaluating the morphological and proteomic stability over time

Thyrocytes

Supplementary Figure 1. H&E staining of the cytospin-based sample preparation of P308 prepared at to and

after 14 days of storage in PreservCytsolution. An 8X zoom on a cluster of thyrocytes is shown for both
cytospin samples.
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Supplementary Figure 2. (A) Spectra comparison of all replicates of P316; (B) Spectra comparison of the

replicates at to in PreservCytof P262, P319, P292, P308.
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Supplementary Figure 3. Normalized intensities [A.U.] of the peaks (im/2) detected in seven replicates of
patient P262 (to_day1.1, to_day12, to.day13, to_day2.1, to_day22, today23,). (A) The heatmap shows the signal
intensities of each peaks that were rescaled to have mean 0 and standard deviation 1; (B) the
histogram shows the mean intensities of each peaks detected at different times (error bars represent

the 95% confidence interval).

P308
P292
P319
P262



30 —
0.0
-3.0
o o © @ o - g i ’ " '
€ & = 8 = > 0000 0002 0.004  0.006 0.008
< [ ~ ] ©
g = 'D] - 'DI ‘UI
- +2 g < Intensity [A.U.]

Supplementary Figure 4. Normalized intensities [A.U.] of the peaks (m1,/2) detected in seven replicates of
patient P319 (to.day21, to.day22, to.day23, t7days, ti4days, t2months). (A) The heatmap shows the signal
intensities of each peaks that were rescaled to have mean 0 and standard deviation 1; (B) the
histogram shows the mean intensities of each peaks detected at different times (error bars represent
the 95% confidence interval).
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Patient ID cl(:ajgts(ﬂc?gfiiln Sex (yf;g:s)
P213 THYS F 47
P250 THYS F 87
P262 THY2 F 80
P284 THY?2 M 67
P292 THY1 F 78
P295 THY4 F 34
P296 THY3 M 75
P299 THY1 F 54
P302 THY?2 F 63
P308 THY?2 F 32
P316 THY?2 F 70
P319 THY?2 F 50
P329 THY?2 F 46
P332 THY3 F 43
P384 THY?2 F 71
P386 THY?2 F 76
P390 THY1 F 51
P442 THYS F 39
P453 THYS F 66

Supplementary Table 1. Clinical and demographic characteristics of the patients included in the study.



Patient ID to t7days t14days t2months

3x to day1
P262 - -- - -
3x tO_dayZ
P284 1 1 -- -
P292 1 1 -- -
P296 1 1 -- -
P299 1 - 1 -
P302 1 - 1 -
P308 1 - 1 -
P316 1x tO_dayl 1 1 1
3x tO_dayZ
P319 3X to_day1 1 1 1
2X to_day1
P329 3X to_day2
2X to_1day
P332 3X to_2day
P384 1 1* -- -
P386 3X to_day1 1* -- --
P390 2x to_day1 1 1 B
1X to_day2
P213 1 - -- -
P250 1 - -- -
P295 1 - -- -
P442 1 - -- -
P453 1 - -- -

Supplementary Table 2. Experimental design. The number of replicates for each patient at different time of
preparation (to, t7days, ti4days, tzmonths) are reported in each column. The asterisk is referred to the
replicates of P384 and P386 stored in CytoLytsolution for 7 days.



Index

Evaluation N Min Max Median Mean SD CV%

Intra day 24 2.09 2.87 2.57 2.51 0.27 8.64
S3

Inter day 26 1.88 2.76 2.50 2.37 0.30 12.43

Intra day 24 2.95 3.83 3.45 3.41 0.25 7.37
Sa

Inter day 26 2.71 3.72 3.37 3.26 0.34 10.43

Supplementary Table 3. S3 and Ss scores of the intra-day and inter-day paired comparisons. The total
number of observations (N), minimum (Min), maximum (Max), mean, median, standard deviation (SD)

and the coefficient of variation (CV) are calculated.

Index Comparison
to vS. to_inter-day to VS. to_inter-day to vS. to_inter-day to vS. t7 days to vs. t14 days
S3 (CV 12.03%) (CVu 20%) (CVu 30%)
2.15-2.65 1.98-2.82 1.77-3.03 1.96-2.40 1.75-2.09
S4 (CV 10.54%) (CVu 20%) (CVu 30%)
2.97-3.58 2.70-3.85 2.42-4.14 2.80-3.33 2.53-2.92

Supplementary Table 4. In the first column are reported the 95% confidence intervals (Cls) for the inter-
day comparison. The 95% CI of to vs. t7days and to vs. tisdays are compared to the 95% Cls of to vs. to_inter-
day calculated with an hypothetical coefficient of variation (CVnx) of 20% and 30%.
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-day. The mean, standard deviation (SD) and the coefficient of variation (CV) are calculated.
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APPENDIX C

Supplementary materials of:

MALDI-MSI as a Complementary Diagnostic Tool in Cytopathology: A Pilot Study
for the Characterization of Thyroid Nodules
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Supplemetary figure 1. Example of single spectra from 4 benign (green) and 4 malignant (red)
patients of the training set.
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Supplementary Figure 2a. Pixel by pixel images and distribution of the probabilities of

being malignant for each pixel in the training set of Thy2 nodules.
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Supplementary Figure 2b. Pixel by pixel images and distribution of the probabilities of
being malignant for each pixel in the training set of Thy5 nodules.
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Supplementary Figure 3. MALDI-MSI molecular images of an area of an area of a malignant
specimen and spatial localization of two m/z features in the (A) cancer cell clusters (feature

A); and (B) stromal area (feature B); (C) Haematoxylin and eosin stained image and (D) Total
ion count normalized average spectrum.



Patient

Percentage of features per ROI per sample

ID 10 11 12 13 16 17 20
213 0%  100% 25% 0% = 75% 0%  100% 100% 0%  100% 0% 0% 0% 0% 0%  100% 0%  100% 25% = 100%
250 0%  100% 0% 0%  100% 0%  100% 75% 50% 100% 100% 0%  50% = 100% 25% = 100% 0%  100% 25%  100%
436 0%  100% 100% 0%  100% 50% = 100% 0%  100% 100% 75% 50% 50% 0%  25%  100% 0%  100% 75% 100%
440 0%  100% 25% 50% = 100% 25% = 100% 100% 100% 100% 0% 75% 50% 0% 0% 0%  25% 0% 0% | 100%
442 | 100% 0% 0% 0% 0%  25% 0% 0% 0% 0% 0% 0% 0%  100% 0% 0% 0% 0% 0%  25%
992 | 100% 0% 0% 0%  100% 50% 25% 25% = 75% 0% = 75% 25% = 75% 50% 0%  25% 0% 0%  50% = 100%
995 | 75% @ 25% 0%  25%  50%  25% | 75% 100% 50%  25% = 100% 0% 0% 0% 0%  50%  100% 100% 0%  100%
1012 | 0% 0% 0% 0%  100% 0%  100% 50% 0%  100% 0%  100% 25% 0% 0% | 100% 0% 0% 0% | 100%

1076

Overall

30,60% 58,30% 25,00%

8,30%

19,40%

sd 0,46 0,82

1

1,77

2,36

2,76

3,38

100%

4

41,70%

100%

0%

0%

0%

38,90% 27,80% 27,80% 27,80%

5,60%

75%

100%

25,00% 44,40% 27,80%

4,43

4,81

5,35

5,91

6,5

6,68

7,07

8

8,5

8,97

9,5

9,94

Patient

Percentage of features per ROl per sample

ID 3 4 5 10 11 14 20
262 | 0% | 100% 100% 20% 20% = 100% 60% 0%  20% = 60% 100% 0% 0%  100% 80% 0% 0% 0% 0%  40%
268 | 0%  100% 100% 40% 0%  60% 0% 0% 0%  60% 0% 0% 0%  100% 80% 0% 0% 0% 0% 0%
275 | 0% 0% | 100% 100% 80% 0%  20% 0%  20% 0% 0% = 60% 0% 0% | 100% 0% 0%  20% 0% 0%
302 | 0%  100% 100% 0% 0%  100% 0% 0% 0%  100% 20% 0% 0%  100% 60% 0% 0% 0% 0% | 100%
308 | 0%  100% 100% 100% 100% 20% = 60% 0%  20% = 80% 20% = 60% 20% 60% 20% 20% 0% 0% 0% | 60%
384 | 0%  100% 100% 60% 40% = 80% 0% | 60% 0%  20% 20% 0% 0% 0% = 80% 0%  20% 0% 0% 0%
565 | 0%  100% 100% 20% 20% = 80% 60% 0% 0% = 60% 80% 0% 0%  100% 20% 0% 0% 0% 0%  100%
1046 | 0%  100% 100% 40%  40%  100% 0% 0%  20% 40% 100% 0%  40% 100% 40% 20% 0% 0% 0%  20%

1122

sd 0 0,33

0%

0,33

100%

53,30% 33,30%

0%

22,20%

6,70%

13,30% 46,70% 37,80% 13,30%

0%

0%

6,70%

100%

53,30%

4,40%

2,20%

2,20%

0,00%

35,60%

0,39

0,36

0,36

0,29

0,2

0,14

0,35

0,43

0,26

0,14

0,44

0,35

0,09

0,07

0,07

0

0,42

Supplementary Table 1. Percentage of features per ROl in each Thy2 and Thy5 sample of the training set.



A) Cytological | oot | oBIECTS | Probability | Histological Cytological | o ient | oBiECTS | Probability | Histological Cytological | o ont | oBIECTS | Probability | Histological
Diagnosis Diagnosis Diagnosis Diagnosis Diagnosis Diagnosis
Average | oo Average | (oo Average | (0o
Cytological | oot | OBIECTS | Probability | HStOIo8e Spectrum Spectrum Spectrum
Diagnosis Diagnosis ROIOL | 0,00% ROIOL | 001% ROIOL | 002%
Average | oo ROI0Z | 087% ROIO2 | 2,01% ROIO2 | 0,02%
Spectrum ROI03 | 0,00% ROI03 | 561% ROI03 | 007%
ROIOL | 096% ROI04 | 0,00% ROIO4 | 36,48% ROIO4 | 0,00%
ROI02 | 012% ROI0S | 0,00% ROIOS | 1,29% ROIOS | 057%
ROI03 | 021% ROI06 | 0,00% ROIO6 | 17,73% ROIO6 | 0,01%
ROIO4 | 071% ROIO7 | 0,00% p_1123 [ ROIO7 | 342% ROIO7 | 001%
THY2 ‘i’;:'i)f: ROIO5 | 003% ROI08 | 0,02% ™2 invive [ Roros | _o009% ROIOS | 0,16%
ROIO6 | 001% ROI09 | 0,06% ROI09 | 168% ROI09 | 0,00%
ROI07 | 014% ROI10 | 0,00% ROI10 | 022% ya | Ptse [ROIO | oeex
ROI0S | 038% ROILL | 0,00% ROILL | 027% invivo [ ROITL | 007%
ROI09 | 160% THY2 'i’;:?f: ROI1Z | 0,00% | Hyperplasia ROI1Z | 024% ROI1Z | 003%
ROIL0 | 174% ROI13 | 0,00% ROIL3 | 002% ROIL3 | 010%
ROILL | 001% ROI14 | 0,00% ROI14 | 001% ROI14 | 3,94%
ROI 15 0,01% ROI 15 0,05% ROI 15 8,20%
ROIT6 | 0,00% ROI16 | 0,00% ROIL6 | 058%
ROI17 0,00% ROI17 0,25%
ROI18 | 0,00% ROI18 | 002%
ROITO | 0,03% ROIL9 | 001%
ROI20 | 0,01% ROI20 | 0,06%
ROI21 | 112% ROI2L | 0,00%
ROI22 | 0,08% ROI22 | 313%
ROI23 | 0,03%
ROI24_ | 0,00%
ROI25 | 0,04%
B) Cytological | e | oBsecTs | probability | Mistological Cytological | vt | OBIECTS | Probability | Histological Cytological | oot | OBIECTS | Probability | Histological
Diagnosis Diagnosis Diagnosis Diagnosis Diagnosis Diagnosis
Average 000% Average 0.00% Average 0.00%
Cytological | o iont | oBiEcTs | probability | Histolosical Spectrum Spectrum Spectrum
Diagnosis Diagnosis ROIOL | 0,00% ROIOL | 023% ROIOL | 0,00%
Average | oo ROI02 | 0,00% ROID2 | 066% ROIO2 | 0,00%
Spectrum ROI03 | 0,00% ROI03 | 27,93% ROI03_| 0,00%
ROIOL | 8517% ROI04 | 0,00% ROID4 | 193% ys | P-1187 [CROT0s | o00% erc
ROI 02 98,32% ROI 05 0,00% ROI 05 0,08% in-vivo ROI 05 0,00%
ROI03 | 89,47% ROI06 | 0,01% ROIO6 | 142% ROIO6 | 0,00%
ROI04 20,91% THYS 'l)r:-l\l‘l)\?: ROI07 0,00% PTC THYS ";’_1‘::: ROI07 1,33% PTC ROI 07 0,00%
s | P11ee [Rolos | 110w orc ROIO8 | 0,03% ROIOS | 24,61% ROIOS | 0,02%
invivo [ _ROIOs | 1003% ROI09 | 0,01% ROI0S | 3111% ROI09 | 0,00%
ROIO7 | 0,15% ROI10 | 0,02% ROI10 | 12,63% ROI10 | 0,00%
ROI 08 0,09% ROI11 0,01% ROI11 2,27%
ROI09 | 0,94% ROI1Z | 0,04% ROIL2 | 12,51%
ROI 10 72,44% ROI'13 0,00% ROI 13 31,16%
ROI'11 76,47% ROI 14 0,01% ROI 14 11,63%
ROI 12 27,48% ROI 15 0,00% ROI 15 1,50%
B 1) Cytological | ot | OBIECTS | Probabiliy | Histological Cytological | e | oBIECTS | Probability | Histological
Diagnosis Diagnosis Diagnosis Diagnosis
- - - Average | ) 00% Average | oq ogy;
Cytological | e | oBseCTs | probability | Histolosical Spectrum Spectrum
Diagnosis Diagnosis ROI01 100,00% ROI01 100,00%
Average | ROI0Z | 99,93% ROI02_| 100,00%
Spectrum 3 ROI03 100,00% P_1187 ROI 03 74,22%
p_1084 s | P PTC
s | =0 [TRoror | svaen PTC o 1126 | ROI08 | 99.08% exvivo [ ROI04 | 100,00%
ROI0Z | 96,84% mys | e [Roros | 10000% PTC ROI05 | 100,00%
ROI03 93,18% ROI 06 100,00% ROI 06 64,23%
ROI07_| 100,00% ROI07 | 9893%
ROI 08 100,00% ROI 08 100,00%
ROI09 | 100,00%
ROI 10 100,00%
ROI11 | 100,00%
C) c;:;:i::‘ Patient | OBJECTS | Probability ";:‘:::::'
average | o oo
Cytological | o ient | oBiECTs | Probability | Histolosical Spectrum
Diagnosis Diagnosis ROIOI | ©9,99%
Average 1,21% ROI 02 98,67%
Spectrum THY4 | P_1202 | ROI03 | 99,83% PTC
THY3 P_1082
ROI01 1,81% ROI 04 93,21%
ROI02 | 0,62% ROI0S | 99,96%
ROI 06 99,99%
ROI07 | ©9,99%
C 1) Cytological | pient | oBJECTS | Probability | MistoloBical
Diagnosis Diagnosis
Average 99,84%
Cytological | o ient | oBiecTs | Probability cal Spectrum
Diagnosis Diagnosis ROIOL | 90,15%
Average ROI 02 58,92%
spectrom | 1% ROI03 | 2,92%
ROI01 48,75% ROI 04 20,86%
ROI02 | 58,62% ROI0S | 97,56%
ROI03 41,86% ROI 06 86,03%
THYs | p_118s | ROIO4 | 95.83% ROIO7 | 98.27%
LYMPH il:-ViVﬂ ROI 05 51,06% prc THYS P 1188 ROI 08 99,44%
ROI06 | 16,70% e | xvivg | _ROT0S | 97.02% PTC
ROIO7 | 54,56% ROI10 | 53,85%
ROI 08 70,71% ROI11 99,67%
ROI09 | 56,18% ROI12 | 83,40%
ROI 10 70,97% ROI'13 100,00%
ROI14 | 67,52%
ROITS | 9653%
ROI16_ | 100,00%
ROI17 | 96,56%
ROI18 | 34,18%
ROI19 | 59.42%

Supplementary Table 2. Probability of being malignant for each patient of the validation set (ROIs and
average spectrum). A) Thy2 patients, B) Thy5 patients, B1) ex-vivo samples of Thy5 patients, C) Thy3
and Thy4 patient, C1) lymphnode sample (P_1188), in-vivo and ex-vivo.




A) THY2 Training

Study lesion code Minimum 1st Quartile Median Mean 3rd Qurtile Maximum
P_262 0,00 0,00 0,00 2,02 2,00 69,00
P_268 0,00 0,00 0,00 1,12 1,00 56,00
P_302 0,00 1,00 2,00 3,11 5,00 24,00
P_308 0,00 1,00 2,00 3,03 4,00 64,00
P_384 0,00 0,00 0,00 2,36 2,00 88,00
P_a75 0,00 1,00 2,00 6,74 7,00 97,00
P_565 0,00 0,00 1,00 1,54 2,00 72,00
P_1046 0,00 0,00 0,00 2,42 2,00 77,00
P_1122 0,00 0,00 0,00 0,46 1,00 13,00
i

mean 0,00 0,33 0,78 2,53 2,89 62,22
sd 0,00 0,50 0,97 1,80 2,03 27,75

B) THY5 Training

Study lesion code Minimum 1st Quartile Median Mean 3rd Qurtile Maximum
P_213 1,00 16,00 36,00 44,91 72,25 100,00
P_250 0,00 28,00 59,00 57,09 88,00 100,00
P_436 0,00 12,00 84,00 61,98 98,00 100,00
P_440 0,00 13,00 39,00 44,40 72,00 100,00
P_442 0,00 8,00 14,00 20,02 28,00 98,00
P_992 1,00 58,00 89,00 75,42 98,00 100,00
P_995 2,00 73,00 93,00 81,69 98,00 100,00
P_1012 1,00 29,00 64,00 61,11 95,00 100,00
P_1076 0,00 30,00 61,00 57,89 87,00 100,00
i

mean 0,56 29,67 59,89 56,06 81,81 99,78
sd 0,73 22,16 26,59 18,22 22,66 0,67

Supplementary Table 3. Distribution of the probabilities to be malignant in the pixel by pixel analysis for
Thy2 (a) and Thy5 (b) training set.



C) validation

Study lesion Cytologic
Minimum  1st Quartile Median Mean 3rd Quartile  Maximum

code Diagnosis
P_1081 THY2 0,00 0,00 0,00 0,98 1,00 15,00
P_1082 THY3 0,00 1,00 2,00 2,93 4,00 57,00
P_1083 THY2 0,00 0,00 0,00 1,84 1,00 85,00
P_1084 in vivo THY5 0,00 0,00 0,00 0,06 0,00 17,00
P_1084 ex vivo THY5 1,00 28,00 63,00 58,88 90,00 100,00
P_1123 THY2 0,00 0,00 2,00 3,63 5,00 59,00
P_1126in vivo THY5 0,00 1,00 4,00 8,88 11,00 98,00
P_1126 ex vivo THY5 3,00 81,00 97,00 85,98 100,00 100,00
P_1149 THY5 0,00 7,00 20,00 31,95 53,00 100,00
P_1156 THY2 0,00 0,00 1,00 3,02 3,00 93,00
P_1187 in vivo THY5 0,00 0,00 0,00 0,40 0,00 66,00
P_1187 ex vivo THY5 0,00 30,00 57,00 57,51 86,00 100,00
P_1188 in vivo THY5 0,00 0,00 0,00 1,39 2,00 15,00
P_1188 ex vivo THY5 1,00 13,00 27,00 37,00 56,00 100,00
P_1202 THY4 0,00 15,00 40,00 45,11 75,00 100,00

Supplementary Table 3c. Distribution of the probabilities to be malignant in the pixel by pixel analysis for

the validation set.



APPENDIX D

First level analysis
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Figure 1: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
15 informative peaks and a 5% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 2: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
25 informative peaks and a 5% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 3: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
40 informative peaks and a 5% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 4: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
15 informative peaks and a 5% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 5: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
25 informative peaks and a 5% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 6: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
40 informative peaks and a 5% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 7: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
15 informative peaks and a 5% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 8: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
25 informative peaks and a 5% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 9: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
40 informative peaks and a 5% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 10: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
15 informative peaks and 30% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 11: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
25 informative peaks and 30% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 12: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
40 informative peaks and 30% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 13: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
15 informative peaks and 30% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.



Second level analysis 25 generated signals

Pearson's correlation Kendall's correlation Spearman's correlation
10 - T o N | —L 10 - T
= =+ T i

05

M8l | 1=l 117,

o T%E:s w 145?

B L e

05 - -‘— : 05 T

LIN's concordance correlation Intensity Match Cosine correlation
1w 8 w]

E* r i

+

g
= | 4

”‘“EJ_
TE

; L
17935+, 18l 1 TTat,
T+ f

04 -

H ; EJ— l L : H

Bs Tr=1, - TEE

. T L ! T == =

=N e e - S

W w1 % o» W W w om % s w0 wn . B % » w0
Stein and Scott Index Overlap Similarity Index

1 =
- pHodgtre, | 4 L=T

b 1B 1
" | = 1T THS .
87 4 T]f

= R LI .
i T 1 |

—f
{1t
{1}
-+
+{H

256017 : ' 004

== N *E? o (e

1.5e417 | T E % —i— é | _!_
= = T o ;E +
wai | B9 1 wi B3 1 ,,,; Tk
s ! M
ntra %0 ™ 50 k) 110 h:tl %0 EL) 50 25 10 It'n %0 % .':0 % 10
Discrete Fourier Transformation Stein and Scott Index Fold
10 é * * N . H l i
JT85T . | . a I
| Lo 1 \ ==

R b R

T T T
i 90 75 50 2 10 intra % 75 50 % 0 o %0 s 50 2% 10

02+ -+ i 24 o

Figure 14: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
25 informative peaks and 30% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 15: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
40 informative peaks and 30% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 16: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
15 informative peaks and 30% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 17: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
25 informative peaks and 30% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 18: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
40 informative peaks and 30% intensity variability. On the x-axis the first reported measure is referred to the
intra-sample analysis, while the others are the percentage of common peaks used in the inter-sample analysis.
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Figure 19: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
25 informative peaks. The 50% of peaks fall into the richest region. On the x-axis the first reported measure is
referred to the intra-sample analysis, while the second is the inter-sample analysis.
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Figure 20: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
40 informative peaks. The 50% of peaks fall into the richest region. On the x-axis the first reported measure is
referred to the intra-sample analysis, while the second is the inter-sample analysis.
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Figure 21: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
25 informative peaks. The 50% of peaks fall into the richest region. On the x-axis the first reported measure is
referred to the intra-sample analysis, while the second is the inter-sample analysis.
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Figure 22: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
40 informative peaks. The 50% of peaks fall into the richest region. On the x-axis the first reported measure is
referred to the intra-sample analysis, while the second is the inter-sample analysis.
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Figure 23: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
25 informative peaks. The 50% of peaks fall into the richest region. On the x-axis the first reported measure is
referred to the intra-sample analysis, while the second is the inter-sample analysis.
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Figure 24: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
40 informative peaks. The 50% of peaks fall into the richest region. On the x-axis the first reported measure is
referred to the intra-sample analysis, while the second is the inter-sample analysis.
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Figure 25: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
25 informative peaks. The 70% of peaks fall into the richest region. On the x-axis the first reported measure is
referred to the intra-sample analysis, while the second is the inter-sample analysis.
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Figure 26: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
40 informative peaks. The 70% of peaks fall into the richest region. On the x-axis the first reported measure is
referred to the intra-sample analysis, while the second is the inter-sample analysis.
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Figure 27: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
25 informative peaks. The 70% of peaks fall into the richest region. On the x-axis the first reported measure is
referred to the intra-sample analysis, while the second is the inter-sample analysis.
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Figure 28: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
40 informative peaks. The 70% of peaks fall into the richest region. On the x-axis the first reported measure is
referred to the intra-sample analysis, while the second is the inter-sample analysis.
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Figure 29: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
25 informative peaks. The 70% of peaks fall into the richest region. On the x-axis the first reported measure is
referred to the intra-sample analysis, while the second is the inter-sample analysis.
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Figure 30: Boxplots of the different scores evalueted in pairwise comparison between spectra generated with
40 informative peaks. The 70% of peaks fall into the richest region. On the x-axis the first reported measure is
referred to the intra-sample analysis, while the second is the inter-sample analysis.



