
GUI Testing in Production: Challenges and Opportunities
Giovanni Denaro, Luca Guglielmo, Leonardo Mariani, Oliviero Riganelli

University of Milano-Bicocca
[Giovanni.Denaro|Luca.Guglielmo|Leonardo.Mariani|Oliviero.Riganelli]@UniMiB.It

ABSTRACT
Automatic system testing of commercial software applications is
extremely challenging and requires facing many issues, including
the integration of test generators with the software process of the
organization that is in charge of verification and validation activities.
In this paper, we discuss the challenges that we faced in the early
stages of a technology transfer project aimed to introduce a test
generator in a software house that develops Web-based Enterprise
Resource Planning (ERP) solutions, and the insights that we gained.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

ACM Reference format:
Giovanni Denaro, Luca Guglielmo, Leonardo Mariani, Oliviero Riganelli.
2019. GUI Testing in Production: Challenges and Opportunities. In Proceed-
ings of Companion of the 3rd International Conference on Art, Science, and
Engineering of Programming, Genova, Italy, April 1–4, 2019 (Programming
’19), 3 pages.
https://doi.org/10.1145/3328433.3328452

1 INTRODUCTION
System test case generation techniques can automatically gen-
erate test cases that stimulate an application under test using
its GUI. Existing approaches address a range of platforms and
GUI technologies, including desktop [3, 6, 11, 15, 17, 18, 23, 25],
Web [4, 13, 16, 19, 20] and mobile applications [1, 2, 12, 24], and
exploit different strategies to generate test suites that satisfy criteria
such as covering sequences of events [18], sequences of interacting
events [23], data-flow relations among event handlers [3], and code
coverage [11]. However, these techniques have been mostly experi-
enced with open source software, and there is limited knowledge
about both their effectiveness with commercial systems and the
issues that can arise when integrating them with the development
process of a software company.

In this paper, we report our early experience with the automatic
system testing technique ABT [14, 15], applied to a Web-based ERP
solution developed by a mid-size Italian software house. ABT is a
state-of-the-art model-based technique that exploits Q-Learning to
automatically generate system test cases. The reported experience

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Programming ’19, April 1–4, 2019, Genova, Italy
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6257-3/19/04. . . $15.00
https://doi.org/10.1145/3328433.3328452

let us discuss some ideas that can be exploited to improve bothABT
and automatic model-based test generation techniques in general.

The specific Web-based ERP solution considered in this project
is an application that handles the commercial process of a multi-
national company, managing data entities like orders, invoices,
shipping activities, and maintenance requests. The development
was conducted by a team of six software engineers. The testing ac-
tivities are carried out by a team of three professionals who develop
and maintain the test plan and manually perform system testing.

The major challenges that we faced in our experience concerned
three main aspects: scalability, lack of oracles and test reporting.
We discuss these challenges in Section 2. Interestingly, we found
that the domain-specific nature of these challenges allows for the
definition of domain-specific solutions that may improve the effec-
tiveness of current model-based testing techniques, including ABT,
up to the level necessary to address commercial ERP applications.
These solutions concern with GUI partitioning, ad-hoc operations,
business rules, and test-plan coverage techniques. We discuss them
in Section 3. We summarize our final remarks in Section 4.

2 THE CHALLENGES OF TESTING BUSINESS
ORIENTED APPLICATIONS

This section discusses the three main challenges that we identified
based on our experience with a commercialWeb-based ERP solution
developed and maintained by a partner company: scalability, lack
of oracles, and text reporting.

Scalability. The execution space of all interaction sequences
induced by the GUI of business oriented applications is indeed both
large and strictly structured.

The size of the execution space is large due to the many choices
that are available to the user at each step of the execution. In the
commercial application that we are considering, at every step of
the execution the user can interact with 95 menu and button items
available on the top menu bar, in addition to the widgets displayed
in the center of the window. Since the top menu bar is continuously
available for interaction, the space of all the possible interactions
grows exponentially with the length of the interaction sequence,
making a thorough exploration of the execution space impossible
in practice. With 95 executable actions at every step, even limiting
the test space to simple test sequences of five steps will result in
more than 7 billion test cases, and this number further increases of
several orders of magnitude if we consider the additional actions
that become available after selecting the menu items. Covering such
an execution space is infeasible, and any test generation strategy
must be properly guided to produce relevant test cases.

The strictly structured organization of the GUI exacerbates the
problem of generating relevant test cases. In fact, the way applica-
tions are used in practice follows strict patterns that depend on the
goal of the user. For instance, if a user wants to modify an order,
she/he will click on the order menu, will select an order, and finally

1

https://doi.org/10.1145/3328433.3328452
https://doi.org/10.1145/3328433.3328452

Programming ’19, April 1–4, 2019, Genova, Italy Giovanni Denaro, Luca Guglielmo, Leonardo Mariani, Oliviero Riganelli

will edit it. On the other hand, users are less likely to move from
one area of the application to another one without finalizing any
operation, such as opening the list of the orders, selecting an order,
then moving to invoices without making changes on the orders, and
then again moving to customers without changes on the invoices.
This means that the execution space contains many meaningless
interaction sequences, and that test case generation techniques can
hardly distinguish them from the useful interaction patterns.

To give a concrete feeling of the impact of the above considera-
tions, our experience with an industrial business oriented applica-
tion indicates that the length of the minimal interaction sequence
of the operations that lead to data modifications can range between
8 and 38 steps. When the probability of picking up a specific action
is close to 1 over 100, it is evident how most of these interaction
sequences are similar to singularities in the execution space, and
it is almost impossible to exercise them with randomized GUI ex-
ploration strategies. For instance, by executing ABT in overnight
test generation sessions (about 10 hours), we easily succeeded to
exercise the functional behaviors that depend on short interaction
sequences, but generally missed important portions of the func-
tional logic of the application under test. For example, ABT easily
explored the selection of the graphical menus in several different
orders, but never tested interaction sequences that lead to the mod-
ification of relevant domain objects.

Lack of Oracles. In most industrial domains, there exist many
relevant classes of failures that cannot be captured as explicit run-
time exceptions and hangs, and testing tools that ignore these
classes of problems are relatively useful. For instance, the large
majority of the test requirements in the test plan of the considered
business oriented application, written by professional test engi-
neers, include steps that check the correctness of the execution
by inspecting the GUI state, the database state, or both. Common
examples include: ensuring that graphical menus, buttons and text
fields appear with correct labels and can or cannot be modified
in given screens and application states; ensuring that data change
operations result in correct updates of given database tables; and
verifying that, based on the user inputs, given screens visualize the
correct subsets of data items among those existing in the database.
Failures in satisfying these or similar types of test requirements
would not cause any runtime exception or hang, and would thus
be missed by most automatic testing techniques, including ABT.
Improving the effectiveness of the oracle is a necessary condition
to address an industrial context.

Test Reporting. To be effective, a test generator must demon-
strate the ability to alleviate the testing effort for validating and
assessing the applications under test. Many techniques [5, 7–10,
21, 22], including ABT, provide their results as (i) executable test
scripts to replay the generated test cases, (ii) test reports on the ex-
ecution contexts of uncaught exceptions and hangs detected while
generating the tests, (e.g., a string representation of an exception
and its stack trace), and (iii) code coverage indicators that quan-
tify the achieved test adequacy. However, based on the feedback
that we collected from our industrial partners, these results are not
sufficient to produce a significant reduction of the testing effort.

A fundamental requirement of industrial testers is to explicitly
identify the functional behaviors exercised with the generated test

cases. In our project this was indicated as the key piece of infor-
mation to optimize the test effort. The test scripts and coverage
reports that are typically produced are useful, but they convey little
information about the functional behaviors that were and were not
tested. Mapping the generated test cases to corresponding func-
tional behaviors requires testers to manually replay step-by-step
each single test script, which almost nullifies the benefits of us-
ing a test generator. Similarly, deducing the uncovered functional
behaviors by looking for the inputs that lead to uncovered code
is known to be very demanding. As a matter of facts, testers can
hardly use the current ABT reports to effectively plan the additional
testing effort to improve the functional adequacy of their tests with
respect to functional behaviors that were missed or only partially
tested by ABT. Augmenting ABT with reports that include detailed
information about the tested and the untested functional behaviors is
a key necessity to integrate ABT in an industrial testing process.

3 OPPORTUNITIES FOR IMPROVEMENT
Arguably the above discussed challenges generalize to many in-
dustrial applications beyond the application domain considered in
this paper. Though general solutions seldom exist, industrial busi-
ness oriented applications can be addressed with domain specific
solutions that stem from the recurring patterns that relate the GUI
structure to the business logic, and thus to the test requirements
of these applications. In the following we discuss GUI partitioning
and ad-hoc operations, to address the scalability challenge; busi-
ness rules, to address the lack of oracles challenge; and test-plan
coverage, to address the test reporting challenge.

GUI Partitioning. A first observation is that, in most business
oriented applications, since each graphical menu gathers the opera-
tions to manipulate a given type of data entity among the ones that
are handled by the underlying information system, the graphical
menus partition the functional logic of the application in sub-areas.
For example, in the industrial application that we studied, the func-
tionalities that manipulate invoices can be exercised (only) with
interaction sequences that start with the selection of the graph-
ical menu Invoices. This particular type of GUI structure, which
is designed to improve usability, can be exploited to mitigate the
combinatorial explosion of the interaction sequences that the test
generator may produce. The test generator can be guided to focus
on interaction sequences that both start from distinct graphical
menus and do not include actions that jump across different graph-
ical menus without completing any operation. In this way, the
test generator may achieve a dramatic reduction of both the size
and the complexity of the execution spaces that must be sampled,
improving the significance of the generated tests as well.

Ad-hoc Operations. Operations that depend on long interac-
tion sequences, such as the operations to create and modify data
entities, represent a very challenging class of operations. Long
interaction sequences are often caused by the presence of forms
with many input widgets that have to be filled-in. Input forms with
twenty, thirty or more input fields are common cases in industrial
business oriented applications. The bottom line is that a test gener-
ator may gain a lot in effectiveness if input forms are handled in an
ad-hoc fashion, for instance with smart operations that extensively
fill-in forms before submitting them, instead of relying on random

2

GUI Testing in Production: Challenges and Opportunities Programming ’19, April 1–4, 2019, Genova, Italy

choices that may partially fill-in forms, with little chance of suc-
cessfully submitting a request that satisfies the many constraints
on the validity of the input data.

Business Rules. Our interaction with engineers revealed that
there usually exists a well identified and relatively small set of out-
put data that capture the most relevant classes of semantic failures.
In our project, many test requirements were concerned with check-
ing the correctness of either attributes of widgets that frequently
appear in the GUI (e.g., graphical menus, buttons, text fields and
data grids) or database changes produced as a result of an operation.
For example in the considered application, the engineers designed
a rule that requires to crosscheck that, after selecting the menu
Invoices, the GUI shows a panel titled Invoices with all the required
buttons, and that, after entering an invoice form with valid data, the
database table INVOICES contains a new record with the same data.
Properly codified rules like this one can allow us to augment the
test case generation process with a non-trivial failure detection abil-
ity. We thus envision the possibility of defining a domain-specific
language that allows engineers to specify business rules that can
be exploited by the test case generation techniques.

Test-PlanCoverage.Although code-level metrics can be useful,
engineers need to have a proper understanding of the requirements
that have been tested, especially for system-level testing activities.
This information is typically encoded in test plans. For example,
the test plans of our partner are spreadsheets organized in sections,
where each section is a sheet that indicates the set of test objectives
thatmust be satisfied for a specific entity. For instance, a sectionmay
indicate the set of behaviors that should be tested when validating
the functionalities about the handling of invoices, and a single test
objective is a statement such as “when the new invoice button is
pressed, a form with five tabs and only empty fields must be shown
to the user”. Each test objective is a row in a sheet that reports
the set of operations to be performed (e.g., “press the new invoice
button") and the checking activities that must be performed on
the application to determine the correctness of the response of the
system (e.g., “check that a form with five tabs and all empty fields
is shown") in different columns.

The output of test case generation tools can be much more appre-
ciated if the result of their activity can be expressed as the coverage
of items in the test plan. When the test plans are stored in a semi-
structured format, like the one we described, there is indeed the
opportunity to achieve this goal. Test engineers could exploit a cov-
erage report based on the test plan to quickly identify the scenarios
that have been already validated automatically, and the ones that
require manual intervention. Finally, any reported failure could be
easily interpreted in terms of the test scenario that was executed.

4 CONCLUSIONS
Automatically testing commercial applications raises several chal-
lenges that require sophisticated and dedicated solutions to be
addressed. In this paper, we discussed multiple opportunities that
can be exploited to effectively address these challenges and make
automatic system testing better suited for commercial applications.

We are currently actively working on extending ABT based on
the ideas described in this paper.

Acknowledgements. This work has been partially supported by the H2020
ERC CoG project Learn (n. 646867), the ERC PoC project AST (n. 824939)
and the PRIN research project GAUSS (Contract 2015KWREMX).

REFERENCES
[1] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M. Memon.

Using gui ripping for automated testing of android applications. In Proceedings
of the International Conference on Automated Software Engineering, ASE ’12, 2012.

[2] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon. Mo-
biGUITAR ï£¡ a tool for automated model-based testing of mobile apps. IEEE
Software, 32(5):53–59, 2014.

[3] S. Arlt, A. Podelski, C. Bertolini, M. Schaf, I. Banerjee, and A. M. Memon. Light-
weight static analysis for gui testing. In Proceedings of the International Symposium
on Software Reliability Engineering, ISSRE ’12. IEEE Computer Society, 2012.

[4] S. Artzi, J. Dolby, S. Jensen, A. Moller, and F. Tip. A framework for automated test-
ing of javascript web applications. In proceedings of the International Conference
on Software Engineering, 2011.

[5] M. Baluda, G. Denaro, and M. Pezzè. Bidirectional symbolic analysis for effective
branch testing. IEEE Transactions on Software Engineering, 42(5):403–426, 2015.

[6] G. Becce, L. Mariani, O. Riganelli, and M. Santoro. Extracting widget descrip-
tions from guis. In Proceedings of the International Conference on Fundamental
Approaches to Software Engineering (FASE), LNCS. Springer, 2012.

[7] P. Braione, G. Denaro, A. Mattavelli, andM. Pezzè. Combining symbolic execution
and search-based testing for programs with complex heap inputs. In Proceedings
of the 26th International Symposium on Software Testing and Analysis, ISSTA ’17.

[8] P. Braione, G. Denaro, A. Mattavelli, M. Vivanti, and A. Muhammad. Software
testing with code-based test generators: Data and lessons learned from a case
study with an industrial software component. Software Quality Journal, 22, 2014.

[9] P. Braione, G. Denaro, and M. Pezzè. JBSE: A symbolic executor for java programs
with complex heap inputs. In Proceedings of the European Software Engineer-
ing Conference held jointly with the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE ’16, pages 1018–1022, 2016.

[10] G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions on
Software Engineering, 39(2):276–291, 2013.

[11] F. Gross, G. Fraser, and A. Zeller. Search-based system testing: high coverage, no
false alarms. In Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA), 2012.

[12] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation system
for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering (FSE), 2013.

[13] A.Marchetto, P. Tonella, and F. Ricca. State-based testing of Ajaxweb applications.
In proceedings of the International Conference on Software Testing, Verification,
and Validation. IEEE, 2008.

[14] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro. Autoblacktest: a tool for
automatic black-box testing. In ICSE ’11: Proceedings of the 33rd International
Conference on Software Engineering, pages 1013–1015, 2011.

[15] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro. Automatic testing of gui-based
applications. Software Testing, Verification and Reliability, 24(5):341–366, 2014.

[16] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro. Link: Exploiting the web of
data to generate test inputs. In Proceedings of the International Symposium on
Software Testing and Analysis, ISSTA ’14, pages 373–384. ACM, 2014.

[17] L. Mariani, M. Pezzè, and D. Zuddas. Augusto: Exploiting popular functionalities
for the generation of semantic gui tests with oracles. In Proceedings of the
International Conference on Software Engineering (ICSE), 2018.

[18] A. M. Memon and Q. Xie. Studying the fault-detection effectiveness of gui test
cases for rapidly evolving software. IEEE Transactions on Software Engineering,
31(10):884–896, 2005.

[19] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling ajax-based web applica-
tions through dynamic analysis of user interface state changes. ACM Transactions
on the Web (TWEB), 6(1):3:1–3:30, 2012.

[20] A. Mesbah, A. van Deursen, and D. Roest. Invariant-based automatic testing
of modern web applications. IEEE Transactions on Software Engineering (TSE),
38(1):35–53, Jan. 2012.

[21] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random test
generation. In Proceedings of the International Conference on Software Engineering,
ICSE ’07, pages 75–84. ACM, 2007.

[22] N. Tillmann and J. de Halleux. Pex: White box test generation for .NET. In
Proceedings of the International Conference on Tests and Proofs, TAP ’08, 2008.

[23] Y. Xun, M. Cohen, and M. A.M. Gui interaction testing: Incorporating event
context. IEEE Transactions on Software Engineering, 37(4):559–574, 2011.

[24] W. Yang, M. R. Prasad, and T. Xie. A grey-box approach for automated gui-model
generation of mobile applications. In Proceedings of the International Conference
on Fundamental Approaches to Software Engineering (FASE), 2013.

[25] X. Yuan and A. M. Memon. Generating event sequence-based test cases using
GUI run-time state feedback. IEEE Transactions on Software Engineering (TSE),
36(1):81–95, January/February 2010.

3

	Abstract
	1 Introduction
	2 The Challenges of Testing Business Oriented Applications
	3 Opportunities for Improvement
	4 Conclusions
	References

