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Abstract  

 

The Earth system, with the entering in the new Anthropocene Epoch, is facing increasing impacts 

from multi-sources. Among all the environments, coastal regions are the most vulnerable, dynamic 

and rapidly evolving systems on the planet. Moreover, for their position at the interface between sea 

and emerging lands, these ecosystems are characterised by substantial spatial and temporal variability 

and are exposed to the impacts of both terrestrial and marine origin. Threats from climate change and 

direct human disturbances can affect at a regional or global scale causing habitat loss and increases 

of the level of fragmentation. These disturbances can lead to severe transformations, and communities 

shift that can be linked to the reduction of the potential of natural ecosystems to recover from multiple 

stressors.  

Under the described scenarios valid and repeatable monitoring and mapping techniques are essential 

to identify and quantify anthropogenic or climatic stress and their effects on coastal environments. 

The use of remote sensing platforms can represent a valid solution to obtain synoptic spatiotemporal 

data of threatened environments. According to this necessity, the primal aims of this doctoral project 

have been to propose monitoring protocols for collecting and analysing remote sensing data in coastal 

regions around the world, integrating innovative platforms and processing techniques.  

 

This research provides new insights into remote data collection and elaboration on critical coastal 

environments through different spatial and temporal scales. Above and underwater sensing platforms 

like Satellite, Unmanned Aerial Vehicles (UAVs), underwater photogrammetry and multibeam 

echosounder (MBES) were used to collect data, and the retrieved information was processed applying 

recently developed algorithms such as Structure from Motion, Object Base Image Analysis and 

Machine Learning. The publications realised during the PhD project confirmed the high potential of 

the integration of different platforms and processing methodologies. The produced protocols describe 

innovative practices for collecting and analysing data in coastal regions in order to asses pressing 

anthropogenic and climatic impacts. Besides, the outputs generated from the analyses allow to 

highlight the occurrence of communities shift and tracking subsequent recovery or decline; they will 

be useful to monitor the response of the environments and address future protection strategies. 
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“But more wonderful than the lore of old men and the lore 

of books is the secret lore of ocean. Blue, green, grey, white, 

or black; smooth, ruffled, or mountainous; that ocean is not 

silent. All my days have I watched it and listened to it, and I 

know it well. At first it told to me only the plain little tales of 

calm beaches and near ports, but with the years it grew more 

friendly and spoke of other things; of things more strange and 

more distant in space and in time. Sometimes at twilight the grey 

vapours of the horizon have parted to grant me glimpses of the 

ways beyond; and sometimes at night the deep waters of the sea 

have grown clear and phosphorescent, to grant me glimpses of 

the ways beneath. And these glimpses have been as often of the 

ways that were and the ways that might be, as of the ways that 

are; for ocean is more ancient than the mountains, and 

freighted with the memories and the dreams of Time” 

 H.P. Lovecraft 
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General Introduction 

 

Anthropocene threats to the coastal environments  

The Earth system, with the entering in the new Anthropocene Epoch, is facing increasing and 

multi-sources impacts (Lewis & Maslin, 2015; Zalasiewicz at al., 2011). Climate change, 

driven by anthropogenic emission, is a certainty and the intensification of extreme phenomena 

is modifying the Earth and its environments (National Academies et al., 2001; Oreskes, 2004). 

According to the last IPCC report (IPCC, 2019), in 2017 the global average temperature 

reached warming of 1°C above pre-industrial levels, increasing at 0.2°C per decade. Under 

actual greenhouse gas emissions scenarios, global warming is expected to surpass 1.5°C above 

pre-industrial levels within 2030. This increase places significant risks for natural and human 

systems altering the incidence, spatial scale and strength of severe weather events, such as 

heatwaves, droughts floods and fires (AghaKouchak et al., 2018; Hughes et al., 2018). On all 

environments, coastal regions are among the most dynamic and rapidly evolving systems on 

the planet (Davidson-Arnott, 2009). Amongst the coastal habitats coral reefs, mangroves, 

seagrasses, kelps and brown seaweeds forest are unique ecosystems that play an essential role 

in coastal primary production (Worm et al., 2006), disturbance control, nutrient cycling and 

promote the creation of complex three-dimensional structures that facilitated plentiful 

organisms (Guannel et al., 2016; Jackson & Sala, 2001). Therefore these habitats can be 

considered as underwater “hotspots” for biodiversity, and they provide high-value ecosystems 

services for communities that lived in close relationship with them (Boström et al., 2011; Foley, 

2005; Hicks, 2017; Vassallo et al., 2013). 

For their position at the interface between sea and emerging lands, these environments are 

characterized by substantial spatial and temporal variability and are exposed to impacts of both 

terrestrial and marine origin (Armynot du Châtelet et al., 2016). The coasts are naturally 

affected and shaped by tides, currents, wave regime and sea-level fluctuations (Siddall et al., 

2003). Furthermore, during the last decades, worldwide coastal ecosystems are widely 

threatened by climate change and anthropic activities (Foley, 2005; Shalaby & Tateishi, 2007). 

Human disturbances such as the direct degradation and overexploitation of the resources, 

pollution and eutrophication, coastal land-use change and increase in sedimentation rates are 

direct triggers to habitat loss and increases of the level of fragmentation (Fahrig, 2003; Tanner, 

2005). Threats from global climate change such as intensifications in intensity and frequency 

of storms (typhoon and hurricane), Sea Surface Temperature (SST) anomalies, ocean 



2 
 

acidification and sea-level rise can affect habitats at a regional or global scale. These 

disturbances can lead to severe transformations, and communities shift that can be linked to 

the reduction of the potential of natural ecosystems to recover from multiple stressors (Baker 

et al., 2008; Dolan & Walker, 2006; Fine et al., 2019; Hughes et al., 2019a; Pergent et al., 

2014).  

In tropical regions, coral reefs have had significant effects on the atmosphere, ocean chemistry, 

diversity and biogeographic distribution of life, and they provide hundreds of billions of dollars 

in value per year in goods and services to tens of millions of humans (Moberg & Folke, 1999; 

Moberg & Rönnbäck, 2003). During the actual interglacial period, coral reefs have been 

exceptionally favourite for thousands of years (Birkeland, 2015) until the recent three decades, 

in which the living coral cover has abruptly declined all over the world (Normile, 2016; 

Bellwood et al., 2004). Anthropogenic stress and natural disturbance, ever more frequent due 

to climate change, are reducing the resilience of natural communities and have slowed down 

the recovery rates (Hughes et al., 2003; Hughes et al., 2007; Hughes et al., 2019a; Perry & 

Alvarez-Filip, 2019). Since the 1980s, mass bleaching events triggered by SST anomalies 

increase in frequency and intensity, reaching unsustainable levels for the recovery of coral 

environments (Hughes et al., 2018). Bleaching occurs when the density of zooxanthellae 

(Symbiodinium sp.), algal symbionts that live as host in the tissues of corals, drastically 

decreases as a result of environmental stresses (Brown, 1997). Bleached corals are 

compromised, and prolonged bleaching events can lead to mass coral mortality (Baird & 

Marshall, 2002; Spalding & Brown, 2015). The last two most extreme bleaching events in 1998 

and 2016 strongly altered the coral reefs around the world with mortality rates that in the Indian 

Ocean reach up to 90% (Hughes et al., 2019; Perry & Morgan, 2017; Pisapia et al., 2019; 

Pisapia et al., 2016). The direct consequences of these events are the transformation of the coral 

reef communities with a collapse in their three-dimensional structure, the loss of its growth 

potential and the reduction of ecosystem services provided by healthy environments (Alvarez-

Filip et al., 2013; Kennedy et al., 2013; Perry et al., 2013).  

In temperate coastal seas, similar situations are found. Seagrass meadows and forests of brown 

algae that provide biogenic structure, food and shelter for many organisms (Bermejo et al., 

2018; Gianni, 2013; Jordà et al., 2012), are threatened by the immediate impacts of coastal 

development and growing human populations as well by climate change. Seagrass loss rates 

are comparable to those reported for coral reefs and indicate a severe deterioration of coastal 

environments around the world (’Waycott et al., 2009; Pergent et al., 2014). The canopy-

forming fucoid Cystoseira spp. are some of the most critical marine ecosystem-engineers, 
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forming extended canopies, similar to land forests (Gianni, 2013), from the subtidal fringe 

down to the lower limit of the euphotic zone (Blanfune et al., 2016). These environments that 

form a complex tridimensional structure essential for shelter and food for many juveniles fish 

(Cheminée et al., 2013) are facing severe regression if not local extinction in all the 

Mediterranean area (Bulleri et al., 2018). 

Alongside to the described threats, direct environmental contamination are pressing problem 

on coastal habitats, and Anthropogenic Marine-Debris (AMD) represents one of the most 

ubiquitous and long-lasting environmental change of our planet (Laist, 1987; Ryan, 2015). 

Once introduced into the marine environment from multiple sources (both sea- and land-based), 

buoyant plastic can be transported by surface currents and winds (Kako et al., 2010), recaptured 

by shorelines(Kako et al., 2014) or degraded into microplastic (Barnes et al., 2009; Cinner et 

al., 2018). Distribution and accumulation of plastic into the marine environment are indeed 

controlled by circulation patterns and prevailing winds, coastal and seafloor geomorphology 

(Barnes et al., 2009; Galgani et al., 2000; Savini et al., 2014) and anthropogenic activities 

(Ramirez-Llodra et  al., 2013). Well known hotspots of accumulation include the sea surface, 

where aggregations of a large amount of persistent and light plastic take place at ocean gyres, 

creating giant “garbage-patches” (Francois Galgani et al., 2014; Law et al., 2014, 2010) and 

the shores, particularly beaches (Corcoran et al., 2009). Plastic accumulation on beaches may 

represent the terminal phase of oceanic transport or a transient stage with a successive washed 

to the sea following storms or tides movements. Knowing the accumulation rate on beaches 

and associated spatiotemporal oscillations would be a crucial information to refine global 

estimation on the dispersal mechanisms of plastic in the marine environment and its amount in 

each compartment. 

 

Remote Sensing monitoring techniques and data processing  

Under the described scenarios valid and repeatable monitoring and mapping techniques are 

essential to identify and quantify anthropogenic or climatic stresses and their effects on coastal 

environments, highlighting the occurrence of community shift and tracking subsequent 

recovery or decline. In this regard, the use of remote sensing platforms can represent a valid 

solution to obtain synoptic spatiotemporal data of threatened environments (Green et al., 1996; 

Mishra & Gould, 2016; Mumby et al., 1999; Hossain et al., 2014; Traganos & Reinartz, 2017). 

The processing and comparison of these data can be advantageous to outline impacts and 

describe both small and large scale processes in a money, and time-saving approach compares 

to direct monitoring techniques (Mumby et al., 1999). 
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Since the ‘70s, satellite platforms have become a keystone technology for the assessment of 

spatial and temporal patterns of large Earths environments (Boyd & Danson, 2005; Green et 

al., 1996). Nowadays, Earth and Sea monitoring satellites that orbit around the globe are 

numerous and equipped with sensors that can collect multi and hyperspectral data with a broad 

range of spatial and temporal resolutions (Ban et al., 2015; Belward & Skøien, 2015; Roy et 

al., 2014). Government programs like USGS/NASA Landsat and Copernicus Sentinel (ESA) 

allowed accessing to a vast quantity of multispectral data with good sensing quality for free: 

Sentinel 2 sensor acquired images from 23 June 2015 with a 5-day temporal resolution and 

with 10m/pix in visible bands (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-

msi/overview). Therefore these satellites  are widely used for broad coastal environments 

monitoring programs as for seagrasses (Kovacs et al., 2018; Traganos et al., 2018; Traganos & 

Reinartz, 2017) and coral reef (Green et al., 1996; J. D. Hedley et al., 2018, 2016; Mumby et 

al., 1999). Anyway, despite the rapid increase in satellites temporal and spatial resolution, free 

data from governments program are not enough to detect and monitor rapid impacts or 

environmental process at a community scale. Data from the commercial satellites 

(DigitalGlobe, Ikonos, WorldView) can reach a higher resolution (<2 m/pix) but the cost of 

images acquisition with short revisit time can become an important limiting factor (Manfreda 

et al., 2018).  

Recently advantages in Unmanned Aerial Vehicles (UAVs) have created an affordable 

alternative sensing platform to collect spatial, spectral and temporal data across a range of 

applications (Nowak et al., 2019). With UAV, data can be collected directly by individual 

researchers that can define the time of the surveys and the spatial coverage. Flying at a lower 

altitude than traditional remote sensing methods allows capturing images below cloud cover at 

a finer spatial resolution (centimetric) and a precisely temporal scale (Murfitt et al., 2017). This 

flexibility and the level of detail achieved placed the monitoring activities of coastal 

environments with the UAVs on a scale that lies between a satellite and a snorkelling/diving 

survey (Casella et al., 2016; Ventura et al., 2018).  

Satellite and drone allowed to map and monitor shallow waters environments in optimal 

condition to a maximum of 30 meters (J. D. Hedley et al., 2018; Traganos et al., 2018) but to 

go deeper are necessary different sensing techniques that required submerged platforms 

(Micallef et al., 2017; Goodman et al., 2013). Recent advances in underwater photogrammetry 

enable 3D reconstructions from images of small habitat patches to entire seascapes (Ferrari et 

al., 2016). The models create during snorkelling or diving activities can effectively be used to 

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/overview
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/overview
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monitor environments over time without disturbing or manipulating them, and measuring their 

external structural changes with higher precision than direct methodologies (Ferrari et al., 

2017; Figueira et al., 2015). However, if the water is too deep or turbid for optical techniques, 

acoustic remote sensing are ideal tools for seafloor and habitat mapping. Instruments like 

Multibeam echosounder transformed our ability to resolve seabed geomorphology and locally 

define its substrate from a deep from 2 to 11000m (Gardner & Armstrong, 2011; Micallef et 

al., 2017). 

 

Thesis Objectives 

The overall objectives of this thesis are the implementations of new techniques and protocols 

to monitor coastal regions with a focus on shores and nearshore environments. The main goal 

of the project is the integration of a set of remote sensing data, collected at multiple spatial 

scales from different aerial and underwater platforms (Satellite, UAVs, Underwater Cameras), 

and applying recent processing algorithms and techniques for their analysis. Structure from 

Motion (SfM), Object-Based Image Analysis (OBIA) and Machine Learning are used to 

process remote sensing data in order to estimate the impacts better, monitoring the response of 

the environments and address future protection strategies. In particular, Unmanned Aerial 

Vehicles (UAVs) has been used to monitor, through time and at multi-resolution scale, selected 

key areas where climate and anthropogenic impacts are strongly affecting natural 

environments.  

The opportunity to investigate different environments for their geographic position, typologies 

and severity of the impacts, allowed proposing efficient, innovative and reliable protocols for 

collecting and analysing data in coastal regions all around the world. 
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Satellite imagery: the power to map at a large scale 
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Abstract 

The Maldives islands in recent decades have experienced dramatic land-use change. Uninhabited 

islands were turned into new resort islands; evergreen tropical forests were cut, to be replaced by fields 

and new built-up areas. All these changes happened without a proper monitoring and urban planning 

strategy from the Maldivian government due to the lack of national land-use and land-cover (LULC) 

data. This study aimed to realize the first land-use map of the entire Maldives archipelago and to detect 

land-use and land-cover change (LULCC) using high-resolution satellite images and socioeconomic 

data. Due to the peculiar geographic and environmental features of the archipelago, the land-use map 

was obtained by visual interpretation and manual digitization of land-use patches. The images used, 

dated 2011, were obtained from Digital Globe’s WorldView 1 and WorldView 2 satellites. Nine land-

use classes and eighteen subclasses were identified and mapped. During a field survey, ground control 

points were collected to test the geographic and thematic accuracy of the land-use map. The final 

product’s overall accuracy was 85%. Once the accuracy of the map had been checked, LULCC maps 

were created using images from the early 2000s derived from Google Earth historical imagery. Post-

classification comparison of the classified maps showed that growth of built-up and agricultural areas 

resulted in decreases in forest land and shrubland. The LULCC maps also revealed an increase in land 

reclamation inside lagoons near inhabited islands, resulting in environmental impacts on fragile reef 

habitat.  

https://doi.org/10.1007/s10661-017-6120-2
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The LULC map of the Republic of the Maldives produced in this study can be used by government 

authorities to make sustainable land-use planning decisions and to provide better management of land 

use and land cover. 

 

Keywords: Republic of the Maldives - Land Use and Land Cover (LULC) - Remote sensing - Change 

detection - Coral reefs 
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Introduction 

 

Worldwide, many regions are undergoing rapid, wide-ranging changes in land use and land 

cover (LULC) (Mas, 1999). Rural to urban land conversion through development is occurring 

at a rate unprecedented in recent history and is having a dramatic effect on natural ecosystem 

functioning (Dewan & Yamaguchi, 2009; Lambin et al., 2001). Land-use/land-cover change 

(LULCC) is significant to a range of themes and issues central to the study of global change 

(Turner, 1994), representing a crucial challenge that nature ecosystems have to deal with in 

this century (Brook, 2008).  LULCC deeply influences indeed biotic diversity through habitat 

fragmentation and biodiversity loss, having an important and extensive effect on climate by 

altering the distribution of ecosystems and their associated energy fluxes (Dale, 1997). In 

tropical coastal regions, fragile marine coral reef ecosystems, already threatened by increasing 

carbon dioxide (Hoegh-Guldberg et al., 2007), are exposed to an increased load of terrestrial 

sediment, nutrients, and other pollutants (Game, Lipsett-Moore, Saxon, Peterson, & Sheppard, 

2011; Klein et al., 2012; Rau, McLeod, & Hoegh-Guldberg, 2012) that compromise the 

resistance of corals to thermal stress and their potential to recover from bleaching events 

(Maina et al., 2013; Wiedenmann et al., 2012; Wooldridge, 2009). 

LULCC due to human activities is proceeding more quickly in less-developed countries 

(Dewan & Yamaguchi, 2009), where lack of data and monitoring programs obstacle a global 

vision of LULC spatial and temporal patterns. Maldives is one of the Small Island Developing 

States (Ghina, 2003) with a unique geographic configuration: an archipelago composed of more 

than 1100 islands surrounded by coral reefs, grouped into a chain of atolls in the middle of the 

Indian Ocean. Healthy coral reefs are essential for the survival of the Maldivian islands because 

of their capability to significantly reduce wave energy and protect the island from massive 

erosion (Ferrario et al., 2014). The one-meter elevation of most of the islands makes the 

Maldives one of the countries at greatest risk for the effects of climate change (Gerrard & 

Wannier, 2013). Therefore monitoring and management of LULC and LULCC is extremely 

important to control sedimentation and reduce other stress factors on coral reefs (Maina et al., 

2013), which may make the islands more susceptible to future sea-level and climate change. 

The Republic of the Maldives has experienced an extraordinary growth of tourism in recent 

decades. Tourism was first introduced to the Maldives in 1972 with the opening of the first two 

resorts near Malé, the capital of the archipelago. The number of visitor arrivals has increased 

constantly from 1067 in 1972 to 1,200,000 in 2013 (Ministry of Tourism, 2014), which is 
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almost four times the indigenous population (338,400 in 2012) (World Bank, 2011). Tourism 

is the major source of foreign exchange and government revenue, with a contribution to Gross 

Domestic Product (GDP) of greater than 30% (Ministry of Tourism, 2013). This has led to an 

increase in anthropogenic pressure on the environment beyond the carrying capacity of the 

islands (Zubair, Bowen, & Elwin, 2011).The LULC of the islands has changed without a 

national monitoring program, and there are currently no national LULC maps or LULCC data.  

The paucity of LULC data leaves remote sensing as the only practical means of providing 

complete, accurate, quantitative, and cost-effective time-series data for systematic mapping 

and monitoring of spatial and temporal LULC dynamics using image processing and 

geographic information systems (GIS) (Were, Dick, & Singh, 2013). Because historic archives 

of remotely sensed data offer the opportunity to analyze historical LULC changes, the 

geographic pattern of these changes in relation to human factors can be evaluated (Dewan & 

Yamaguchi, 2009). 

Classification (i.e.: the process that assigns meaningful categories to the pixels in an image) of 

LULC data can be done through automatic extraction or by visual interpretation of remote-

sensing data (Meinel, Neubert, Sensing, & City, 2000). There are two broad type of automatic 

classification: supervised and unsupervised. Both these approaches are based on a pixel-based 

method that has played an important role in classifying low-resolution images (Das, 2009). 

LANDSAT remote-sensing data are widely used for automatic LULC classification. The 

spatial resolution of 30 m is sufficient to classify accurately a large variety of landscapes, and 

the open accessibility of the historical archives makes it possible to reconstruct LULCC over 

decades. Visual interpretation can be tedious and slow compared to automatic classification 

methods, and still remain a subjective process. Nevertheless determining the validity and 

accuracy of the results from automatic processing can be difficult and in some case automatic 

classification methods fail to precisely recognize differences in the “use” of a given land 

surface area; whereas the “human input” is somewhat instrumental in taking the ultimate 

decision on this kind of information. In addition, countries with a particular geographic 

situation such as the Maldives require visual interpretation of sub-metric and metric optical 

satellite images such as those provided by Ikonos, Geoeye, or Quickbird. These very high-

resolution optical data deliver greater thematic accuracy than those provided by LANDSAT, 

which is useful in a country composed of islands of limited dimensions. Unfortunately, their 

use for regional mapping remains too expensive (Nascimento, Souza-Filho, Proisy, Lucas, & 

Rosenqvist, 2013). To overcome this limitation, it is possible to access free basemap services 

using ArcGIS Desktop 10. The World Imagery (ESRI) basemap provides one meter or better 
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satellite and aerial imagery for many parts of the world (ESRI). The service is metadata-

enabled, and the resolution, collection date, and source of the imagery are available. Using the 

World Imagery basemap, it is thus possible to analyze and detect LULC on high-resolution 

images of countries with a paucity of remote-sensing data. 

Post-classification comparison (PCC) is the main technique used to detect LULCC over time. 

PCC detects land-cover changes by comparing independently produced classifications of 

images from different dates (Lyon, Yuan, Lunetta, & Elvidge, 1998; Singh, 1989). 

The aims of this study are as follows: (a) to create the first LULC map of the entire Maldivian 

archipelago through visual interpretation of free high-resolution remote-sensing data; to 

identify LULCC taking place on representative islands in the last 10 years and (c) analyzing 

the driving forces of the LULCC, with particular attention to tourism.  
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Study Area 

 

The Maldives are an archipelago composed of coral reefs and reef islands, grouped in a double 

chain structure, in the middle of the Indian Ocean (Fig. 1). The islands stretch for 860 km from 

latitude 7°6’35”N to 0°42’24”S and lie between longitude 72°33’19”E to 73°46’13”E. The 

Republic of the Maldives covers an area of about 859,000 km2, of which only a little more 

than 1% is land, generally with a mean elevation of less than 1 m above sea level (Ministry of 

Planning and National Development, 2008). 

The focus of this study is on the 1192 islands of the archipelago, which are grouped into 20 

administrative atolls (26 geographic regions). They are mid-Holocene in age (Kench, McLean, 

& Nichol, 2005) and composed of carbonate sands and gravels derived from the surrounding 

reefs. The islands are typically small, varying in size from 0.1 km2 to 5 km2, and are situated 

on the periphery of atolls. The islands can be divided into three categories: uninhabited, 

inhabited, and resort islands. 

The uninhabited islands are almost 900 in number and are characterized by the absence of 

urban settlements and covered by lush tropical vegetation. 

The inhabited islands are 193 and accommodate villages for the local people. Only the biggest 

islands (e.g.: Goidhoo, Hithadhoo, Kalaidhoo) have also infrastructure for industrial and 

agricultural activities. The population of the Maldives is approximately 340,000, with a growth 

rate of 1.8%, which has remained constant over the last decade 

(http://data.worldbank.org/indicator/SP.POP.GROW). One-third of the population lives in the 

capital, Malé, an island with a surface of 2 km2 and a population density of more than 60,000 

per km2, which is among the highest in the world.  

The island resort appeared as a new category in the mid-1970s, with the establishment of mass 

tourism. Resorts are built only on uninhabited islands, since an island resort is completely 

dedicated to tourist accommodation; this rule was specified in the Quality Tourism Strategy 

(1978) to separate local people from tourists to protect the human environment and avoid 

“cultural pollution” (Scheyvens, 2011). An island resort is easily distinguishable in satellite 

images by the presence of peculiar accommodation structures: a staff area in the middle of the 

island, beach villas on the edge, and often water villas in the lagoon. Since the opening of the 

first two island resorts in 1972, the number has grown to 111 in 2015, with a total capacity of 

23.917 beds (Tourism Yearbook, 2015).  
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The Maldivian reefs occupy an area of 4,513 km2 (Naseer & Hatcher, 2004). They are an 

outstanding reserve of marine biodiversity, with almost 250 species of scleractinian corals 

(Pichon & Benzoni, 2007) and more than 1200 reef fish species (Rajasuriya, Zahir, 

Venkataraman, Islam, & Tamelander, 2004). The reef systems are extremely vulnerable to 

anthropogenic stresses and global climate change. Their health is fundamental for the 

maintenance of land (erosion), provision of alimentary resources (fisheries and aggregates), 

and economic earnings (tourism) (Kench, 2011).  
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Materials and methods  

 

World Imagery Basemap 

The World Imagery (WI) basemap was used to detect LULC on the Maldivian islands. The 

free basemap service is provided by ESRI and is fully accessible using ArcGIS 10 (ESRI) or a 

higher version. The service coverage for the Maldivian archipelago is over 85% with high-

resolution satellite images acquired between late 2010 and early 2011. The images, obtained 

from DigitalGlobe satellites WorldView-1 and WorldView-2, are panchromatic with a ground 

resolution of 1/0,5 m (see Figs. 2 and 3). This resolution makes it possible to recognize LULC 

categories on all the islands, including the smallest. The WI basemap uses the WGS 84 Web 

Mercator auxiliary spherical coordinate system. 

The spatial accuracy of the basemap was checked using 50 ground control points previously 

acquired in Faafu atoll in October 2011. These points were overlaid on the basemap images, 

showing an extremely high correspondence with the ground elements (spatial error < 1 m). 

 

Image Classification 

To describe LULC classes on the Maldivian islands the Anderson land-use and land-cover 

classification scheme (Anderson, Hardy, Roach, Witmer, & Peck, 1976) has been used and 

adapted. The adopted classification is hierarchical with two levels of detail: Level I and Level 

II. These two levels describe all the LULC classes detectable in the remote-sensing data used 

for this study (Table 1). The nine classes of Level I describe all the main LULC types on the 

islands. Class 9, clouds, indicates the part of the satellite images covered by clouds that 

prevented identification of the underlying LULC classes. Level II is made up of 17 subclasses 

that provide more detail on the Level I types.  

 

Visual interpretation and manual digitization 

The ArcGIS Desktop 10.1 software (ESRI) was used to analyze the satellite images 

(DigitalGlobe satellites WorldView-1 and WorldView-2) and to create the LULC map, based 

on visual analysis (Shalaby & Tateishi, 2007), which proved to be efficient when the analysts 

are familiar with the area being classified (Singh, 1989) and when they are working on a 

basemap such as WI.  

The database structure was created before starting visual interpretation of the images to enable 

storage of data associated with each LULC class. For the Maldivian archipelago, the 

interpretation proceeded island by island, digitizing LULC polygons and loading relative 



20 
 

information into the attribute table (i.e. LULC classes (Level I and Level II), the name of the 

island, the type (inhabited, uninhabited, resort), and the area for each LULC polygon). Using 

this procedure, LULC maps were created for each island and then grouped into atoll LULC 

maps. 

 

Field data collection and accuracy assessment 

Once completed, the LULC maps were checked to verify positional and thematic accuracy. 

The fieldwork took place in November 2013 in Faafu atoll with the help of MaRHE, the Marine 

Research and Higher Educational Center of the University of Milano-Bicocca, which was the 

base camp of this activity. Ground control points (GCPs) were acquired using the Garmin 

GPSMAP 62sc. GCPs for thematic accuracy were collected near the boundary between 

different LULC classes, whereas GCPs for position accuracy (or GPS) were taken on easily 

recognizable elements in the satellite images such as harbor corners, jetty edges, and football 

field corners. 168 GCPs were collected on the islands of the atoll: 88 GCPs were used to 

validate the thematic accuracy of the LULC classes (building an error matrix), and 80 points 

were used to check the positional accuracy of the map. 

 

LULC change detection  

The paucity of remote-sensing data for the Republic of the Maldives has made it difficult to 

find historical images suitable for detection of LULC changes. LANDSAT 7 (ETM+) imagery, 

with a spatial resolution of 30 m, was useful for detecting LULC changes only on a few of the 

larger islands. On the other hand, Google Earth offers free satellite images and allows access 

to historical images that can be used to detect changes over time. For the Maldivian islands, 

the historical database provides high-resolution images starting from 2001. Images of the 

islands were acquired from Google Earth historical imagery and geo-referenced in ArcGIS 

10.1. Then these images were visually interpreted to detect LULC classes.  

Finally, post-classification change detection was applied to the maps created. Land Change 

Modeler, which is integrated into the IDRISI 10.2 software (Clark Labs), provides tools for the 

assessment and trending of LULC changes. It was used to compare and analyze LULC maps 

of different ages representing the Maldivian islands. By comparing two LULC maps of an 

island created on two different dates, it was possible to quantify the gains, losses, and 

persistence of LULC classes both in a geographically distributed and a graphic format. 
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Results  

 

LULC map, accuracy assessment, and data analysis  

The accuracy of the LULC map was validated by means of fieldwork. According to (Foody, 

2002), an error matrix was generated using the 88 GCPs collected on the islands in the Southern 

part of Faafu Atoll. The error matrix (Table 2) showed an overall accuracy of 85%. Only the 

Forest land and Shrubland classes showed higher errors, which were caused by the absence of 

an abrupt margin between the two classes.  

The 80 GCPs collected for positional accuracy verification showed a high level of agreement 

with the same features on the map. The calculated positional error was less than one meter, 

which is an unexpected result for a map realized using only remote-sensing data from a 

basemap. 

Table 3 reports the total extent in hectares of all the LULC classes of the Republic of the 

Maldives for the period between the end of 2010 and the first months of 2011. Detailed results 

on LULC of two representative atolls are reported in details in Figures 3 and 4. Figure 3 shows 

the LULC map of Laamu atoll, one of the largest in the southern part of the archipelago, 

composed of 64 islands, 11 of which are inhabited, with a total population of 13,395 (Ministry 

of Finance and Treasury, Department of National Planning, 2011). Tourism in this atoll is not 

massive due to the considerable distance from the international airport in Kaafu atoll. In fact, 

there are only two resorts, the LULC class Agricultural Land is well represented over in all the 

islands and covers one-third of the total land area of the atoll, occupying 612 ha out of 2162 ha 

(Figure 4 and Table 4). 

Figure 4 represents the southern part of Kaafu atoll. Kaafu is an administrative atoll divided 

into two geographic atolls: North Kaafu and South Kaafu. In the northern part of the atoll, the 

capital of the archipelago and the international airport are located. For this reason, the first 

resorts were built in this atoll, and nowadays it has the highest bed capacity in the entire 

archipelago (Ministry of Tourism, 2013). Compared to Laamu, Kaafu is smaller, with a total 

land area of 1897 ha. One of the big differences between the two atolls is the high number of 

resort islands in Kaafu, 42 out of 90 islands in total, of which only 10 are inhabited. With regard 

to LULC classes, Urban or Built-up Land is the most representative class, with 738 ha, which 

is almost one-third of the total land area (Table 4). This value demonstrates the high 

anthropogenic impact for touristic purposes on the islands of this atoll. 
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LULC change detection 

The LULC maps obtained from visual interpretation of the Google Earth historical images of 

2001, 2002, 2005 and 2006 were analyzed and compared with those realized from the WI 

basemap using Land Change Modeler (IDRISI Selva Edition, Clarks Lab).  

This study of LULC change has involved representative island typologies (inhabited, 

uninhabited and resort), which make it possible to detect spatial patterns of change in the 

archipelago. Fig. 6, 7 and 8 shows a synthesis of the main results obtained from the analysis 

and clearly show that the most evident changes in LULC occurred on resort islands, 

documenting a conversion from uninhabited island to resort islands and associated LULCC for 

inhabited island. It is also evident that the increased number of resort island is well correlated 

to the distance from the international airport: more is the distance less is the number of new 

resort island per atoll (Fig. 5).  

Some example of LULCC detected at some representative islands are shown in Fig. 6, 7 and 

8. Figure 6 represents Medhafushi, an island in the southern part of Noonu Atoll, as an example 

of the inhabited island category. The LULC map for 2002 (Google Earth imagery) shows an 

island covered entirely by Forest land (11 ha) and Shrubland (6 ha), both in the middle and 

along the shore. Anthropogenic impact was completely absent during this period. The LULC 

map for 2011 (WI basemap) highlights a drastic change in land use on the island: Medhafushi 

became Iru Fushi Resort & Spa, a resort island easily recognizable from the water villa jetty in 

the lagoon. The new LULC class of Urban and Built-up land developed over more than 8 ha at 

the expense of the natural environment, Shrubland (-6 ha) and lagoon (-3 ha). The Forest land 

class did not lose area. Actually, the coconut trees were simply transplanted along the shore, 

replacing Shrubland, to shade the beach villas, a necessity for the resort property to maintain 

the image of a luxuriant tropical island.  

Figure 8 illustrates the LULC changes on Maamin’gili, an inhabited island in Alifu Dhaalu 

atoll. The LULC map for 2001 was created using the first historical satellite image available 

(Google Earth imagery). In this map, the Urban or Built-up land class occupies the eastern part 

of the island (28 ha) with an adjacent portion of Agricultural land (7 ha). The remaining area 

consists of Forest land (21 ha), Shrubland (11 ha), and Barren land (10 ha). Five year later, in 

2006 (Google Earth imagery), the island appears unrecognizable. A huge part of the lagoon 

(100 ha) had been reclaimed from the sea, increasing the surface of the island from 77 ha to 

180 ha. The most representative class had become Barren land (96 ha), followed by Urban or 

Built-up land (37 ha). Forest land lost 15 ha in favor of Urban and Agricultural land (10 ha). 

On the east side, a harbor was built. In 2011, the latest image analyzed (WI basemap) showed 
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a further increase in the island area, from 180 ha to 193 ha. This increment was due to land 

reclamation on the edge of the island. On Maamin’gili, the Barren land area to the south become 

the airfield (79 ha Infrastructure) for the new airport of the Alifu Atoll. On the other side of the 

island, Forest land and Shrubland lost further surface area to expansion of the Urban or Built-

Up land (41 ha) and Agricultural land (16 ha) classes. 

The last example shown (Fig. 7) is a resort island, Olhuveli Beach and Spa Resort, in Kaafu 

atoll. For this small island, the LULC change analysis was carried out using two satellite images 

dated 2005 and 2011. In 2005, the island was occupied by a resort with a capacity of 250 beds 

(Ministry of Tourism, 2006). In the LULC map (2005, Google Earth Imagery), the total area 

of the island was 8 ha: 3 ha of Urban and Built-Up land (guest villas, jetties, and staff area), 3 

ha of Forest land, and 2 ha of Barren land (beaches). In 2011 (WI basemap), the island appeared 

different. The bed capacity of the resort was more than doubled, from 250 to 570 (Ministry of 

Tourism, 2011). Comparison of the two maps shows that this increment was provided by some 

land reclamation projects that increased the island surface and by building a new water villa 

jetty in the southern part of the lagoon. In addition, a new artificial island was built in the north-

western part of the lagoon. The surface of the resort is now 19 ha, including the new island (3 

ha). 11 ha of lagoon were occupied for accommodation purposes. The major increase was in 

Barren land, from 2 ha to 7 ha, and the appearance of the Shrubland class (3 ha). These elements 

are correlated with land reclamation: Barren land is the first LULC class that appears after 

reclamation, and Shrubland is the first vegetation type that starts to colonize the new land area. 
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Discussion 

 

The LULC Map 

The visual interpretation of satellite images using the WI basemap has proved to be a good 

method for LULC detection on the Maldivian islands. The high-resolution images of the 

basemap made it possible to detect LULC on the smallest islands of the archipelago. The LULC 

map created for the Republic of the Maldives showed very good accuracy considering the 

exclusive use of free remote-sensing data to generate it. The adopted classification scheme 

(Anderson et al., 1976) represents a comprehensive description of the LULC classes present 

on the islands. The only difficulties found during the classification process were detection of 

the border between the Shrubland and Forest land classes and the classification of Urban or 

Built-up land on resort islands. In the first situation, the problem was created by the progressive 

transition of Shrubland into Forest land: it is easy to digitize mistakenly a strip of Forest land 

that on the ground turns out to be Shrubland. Besides, on resort islands, the presence of built 

structures such as beach villas, bars, and restaurants with roofs made of coconut leaves may 

lead to errors. In fact, these structures are surrounded by bushy vegetation, and in some cases, 

especially when using WorldView 1 black and white RS data, it was difficult to classify them 

correctly as Urban or Built-up land. In these situations, to reduce the probability of 

interpretation errors, the LULC on the islands was analyzed at higher scale to increase the 

accuracy.  

The LULC map created in this study made it possible for the first time to evaluate the surface 

area of LULC classes on the Maldivian islands. These quantitative data refer to the first months 

of 2011 and describe LULC status on 80% of the land surface of the archipelago: 22,389 ha 

out of almost 30,000 ha total land area (Official Atlas of the Maldives, 2008). The data in Table 

3 show that most of the land area, 11,000 ha, was covered by natural vegetation, Forest Land, 

and Shrubland. Urban and Built-up land covered 4476 ha, distributed on inhabited and resort 

islands, and Agricultural land covered only 1442 ha. 

The analysis highlighted that differences in LULC classes within the atolls are related to 

proximity to Ibrahim Nassir International Airport. Atolls that are closer, like Kaafu, Alifu 

(North and South), Baa, and Lhaviyani have been developed for tourist accommodation since 

the early 1980s. On these atolls, many inhabited islands were converted into resorts, and the 

main LULC class became Urban or Built-Up land.  On the other atolls, distance from the 

international airport has slowed down the colonization of the tourist infrastructure, and as 
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shown for Laamu atoll (Table 4), Forest land appeared to be the main LULC class (667 ha). 

Agricultural land was also well represented, especially in atolls with large islands (612 ha, 

Laamu). 

 

LULCC 

Analysis of LULC changes over time revealed important variations on the surface of the 

islands, which were detectable in all categories: uninhabited, inhabited, and resort (Fig. 6, 7, 

8). From the examples reported in this study, an increase in anthropogenic areas is evident at 

the expense of natural areas such as tropical forest and lagoon habitats. In particular, land 

reclamation processes were implemented to create new land reclaimed from the ocean to meet 

the needs of human activities. The PCC detection procedure has produced LULC change maps 

which describe the spatial patterns of change from 2001 to 2011. A spatial change trend 

observed in the entire archipelago was clearly visible in the three islands mentioned in this 

study. All the LULCC that has occurred on the islands in recent decades, caused by population 

growth and the exponential increase in tourism, has inevitably amplified the anthropogenic 

impact on the surrounding reefs. 

On the inhabited islands, urban expansion, with increases in Urban or Built-up land and 

Agricultural land on the borders of villages, was noticeable. These changes have brought about 

an evident decline in the forest environment: loss of Forest land area and deterioration of this 

class to Shrubland. On islands with no more free surface for urban expansion, frequent use of 

land reclamation has been observed. The new reclaimed lands were used not only for expansion 

of urban settlements, but also to build new infrastructures like harbors and airports. On 

Maamin’gili (Fig. 8), all these changes were observed. In 2001, it was an island with a small 

village in the middle surrounded by Forest and Shrubland. Five years later, in 2006, huge land 

reclamation had been carried out in the lagoon all around the southern part of the island, a 

harbor had been built on the eastern side, and the Forest land class had almost disappeared. In 

2011, on the Barren land class obtained from the land reclamation, the airfield of the Villa 

Domestic Airport had been built and was inaugurated in March 2013. 

On the resort islands, the main LULC changes were connected to expansion of bed capacity 

related to tourism growth. To do this, the resort properties expanded guest accommodations by 

building new water villas or reclaiming land from the lagoon area. On Olhuveli Beach and Spa 

Resort, the resort island shown in Fig. 7, both solutions were adopted. From 2005 to 2011, a 

new large water villa jetty was built in the southern part of the lagoon, and in the western part, 

land reclamation was done to enlarge the island for future construction of beach villas. This 
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reorganization enabled the proprietor to more than double the bed capacity of the resort from 

250 to 570 (Tourism Yearbook, 2013).   

On uninhabited islands, which represent the majority of the archipelago (900 out of 1192 

islands), LULC changes were related especially to expansion of Agricultural land or 

construction of new resorts. In the first case, islands were converted to farm islands, still 

uninhabited, but with plantations that have replaced Forest land area. Otherwise, when an 

uninhabited island was converted into a new resort island, its natural structure was completely 

altered. As on Medhafushi (Fig. 6), a pristine island in 2001, Urban or Built-Up land (for tourist 

purposes) had become the main LULC class in 2011; the Forest land area remained well 

represented, but in a completely anthropogenic environment designed for tourists’ pleasure. 

The construction of three jetties, two for the water villas and one for the diving center, has also 

disturbed the lagoon environment.  

The study revealed that LULC changes on the islands were relatively fast and radical, with a 

negative environmental impact not only on terrestrial, but also on near-shore ecosystems. These 

LULC changes were governed by socioeconomic factors, and tourist development has proved 

to be the primary cause. Census data show that from the beginning of the nineties, the 

population growth rate decreased from 3.0% in 1990 to 1.9% in 2013, stabilizing at an average 

of 1.7% during the last 10 years (http://data.worldbank.org/indicator/SP.POP.GROW). On the 

other hand, the presence of tourists in the archipelago has grown steadily from 195,000 per 

year in 1990 to 1,125,000 in 2013, a rate of increase of 470%. Figure 9 correlates the two 

growth lines and shows clearly the strong increase in tourists in the last 23 years. The only 

negative peak was registered between 2005 and 2006 due to the effect of the Asian tsunami 

that struck the archipelago. From 2009, growth started again because of the entrance of new 

emerging countries like China, Russia, and India into the tourism market. In 2010, the number 

of Chinese tourists surpassed that of European tourists, until then the most represented group 

in the Maldives (Ministry of Tourism, 2011). To support this growth, it was necessary to 

increase the number of resort islands and the global bed capacity. The number of resorts rose 

from 64 in 1990 to 86 in 2000 and to 109 in 2013, with an increase in bed capacity from 7,621 

to 23,469; 45 pristine inhabited islands were converted to dedicated tourist islands, completely 

transforming their LULC. As for the 2007–2011 Tourism Master Plan, these resorts started to 

be built, not only on the islands in the atolls closer to the international airport, but in all atolls, 

which signaled the entrance of the Maldives into a new phase of tourist development 

(Sheyvens, 2011; Ministry of Tourism, 2007b). On the existing resort islands, expansion 

projects were necessary to satisfy the growth of tourist demand. This growth created a 
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migration flow inside the archipelago. Many citizens moved from the peripheral islands to the 

capital, Malé, looking for a job in the tourist industry. This led to a population increase of 

58,000 from 2002 to 2012, representing a growth in population from 74,000 to 132,000 

(http://data.un.org/Data.aspx?d=POP&f=tableCode%3A240). 

  

http://data.un.org/Data.aspx?d=POP&f=tableCode%3A240


28 
 

Conclusions 

 

The World Imagery basemap (ESRI) has proved to be an appropriate data source for LULC 

detection in a nation such as the Republic of the Maldives with its peculiar geographic 

configuration. It represents the first LULC map of the archipelago. Overall, the determined 

mapping accuracy of 85% indicates the effectiveness and the replicability of this method.  The 

LULC map contributed to properly visualize the distribution and extent of various LULC 

classes throughout the atolls.  

The study revealed that vegetated area, forest, and shrubland were still the most represented 

classes in 2011, followed by Urban or Built-Up areas. A clear difference was revealed in the 

extent of Urban or Built-Up areas for tourism purposes between atolls closer to the international 

airport and others. Data from the Ministry of Tourism related to the construction of new resorts 

have highlighted a concentric development from the central atolls to the peripheral ones, with 

an increase in the number of resorts from 89 in 2006 to 111 in 2014.  

The LULCC analysis together with socioeconomic data has shown a common spatial dynamic 

for all the atolls. Urban or Built-Up areas have increased over the last decade in all the islands 

studied, followed by Agricultural lands and Infrastructure. This has caused a degradation of 

the natural environment, with the loss of vegetated surfaces or their deterioration into 

anthropogenic semi-natural areas. The analysis also revealed an increase in land reclamation 

both on inhabited and resort islands. This practice enlarged the exploitable surface of the 

islands, but with a negative impact on coral reef habitat, which is essential for the existence 

(economic and physical) of the Republic of the Maldives. Comparison of socioeconomic data 

has revealed that these changes have been driven by the growth of tourism, which has continued 

to increase from the seventies until today.  

The land use and land cover map produced in this study together with change analysis can help 

to understand the impact of LULCC on coral reefs and the increase in erosion. It can also 

contribute to the development of sustainable land-use policies for forecasting the effects of 

climate change on the islands of the archipelago. 
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Tables and Figures  

 

 

Fig.1 Geographical location ofthe study area. Republic ofthe Maldives is highlighted in the rectangle 

and in the zoomed area on the right are the represented subdivisions of the archipelago in geographic 

and administrative atolls 
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Fig. 2 Panchromatic satellite images of the basemap World Imagery. a An inhabited island captured by 

the satellite WorldView 1 (DigitalGlobe). b An uninhabited island is shown in a WorldView 2 

(DigitalGlobe) image. In both the high-resolution images can be easily identified the LULC classes 
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Table 1 Hierarchical LULC classification scheme adopted for the Maldivian islands 
 

Land Use-Cover Class 

Level I Level II 

1  URBAN OR BUILD UP LAND  

 11 Low density residential 

 12 High density residential 

 13 Resort 

2  AGRICULTURAL LAND  

 21 Cropland 

 22 Nursery (Greenhouse) 

 23 Non natural-woody 

3  HERBACEUS UP-LAND  

 31 Grassland 

4  SHRBLAND  

 41 Shrubland 

5  FOREST LAND  

 51 Evergreen tropical forest 

 52 Tropical forest patch 

6  BARREN LAND  

 61 Beach 

 62 Transitional 

 63 Land reclamation 

7  WETLAND  

 71 Water 

8  INFRASTRUCTURE  

 81 Airport 

 82 Harbour 

9  CLOUD  

 91 Cloud 
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Table 2 Error matrix and overall accuracy for the classified map 

 

Contingency Table 

  Satellite Map Class   

Ground 

Reference 

 
Urban Shrubland  Forest 

Land  
Barren 
Land  

Infrastructure 
(Harbour) TOT Producers 

Accuracy 
Urban 11 0 0 0 0 11 100% 

Shrubland 0 12 3 0 0 15 80% 

Forest Land  2 8 21 1 0 32 66% 

Barren Land  0 0 0 20 0 20 100% 

Infrastructure 

(Harbour) 0 0 0 0 10 10 100% 

TOTAL 13 20 24 21 10 88   

       
Overall 

Accuracy 

Users Accuracy 85% 60% 87,50% 96% 100%   85% 

 

Table 3 

Extension in hectares of the different land use and la cover classes on the entire study area 
 

LULC Classes  
2011 

Area (ha) 

1  URBAN OR BUILD UP LAND  4476 

2  AGRICULTURAL LAND 1442 

3 HERBACEUS UP-LAND 648 

4  SHRBLAND 4632 

5  FOREST LAND 6436 

6  BARREN LAND 3161 

7 WETLAND 240 

8  INFRASTRUCTURE 769 

9  CLOUD 585 

  
Total area (ha) 22389 
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Fig. 3 Land use land cover classified m ap of Laamu Atoll. In the zoomed area, a group of islands in detail 

 

 



36 
 

 

 

Fig. 4 Land use land cover classified map of the southern part of Kaafu Atoll. In the zoomed area, a group of islands in detail 
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Table 4 Land use and land cover classification for Kaafu Atoll, in the central part of the archipelago, 

and Laamu Atoll on the southern part 

 

LULC Classes Kaafu Atoll 
2011     

LULC Classes Laamu Atoll 
2011 

Area (ha)     Area (ha) 

1  URBAN OR BUILD UP LAND  738  
 

1  URBAN OR BUILD UP LAND  264 

3  HERBACEUS UP-LAND 6  
 2  AGRICULTURAL LAND 612 

4  SHRBLAND 159  
 4  SHRBLAND 364 

5  FOREST LAND 164  
 5  FOREST LAND 667 

6  BARREN LAND 262  
 6  BARREN LAND 168 

7  WETLAND 2  
 8  INFRASTRUCTURE 67 

8  INFRASTRUCTURE 236  
 9  CLOUD 20 

9  CLOUD 285  
   

    
   

Total area (ha) 1897     Total area (ha) 2162 

 

 

 

Fig. 5 Comparison of numbers of resorts per atoll and the average distance from the centre of each atolls 

to Ibrahim Nassir International Airpor  
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Fig. 6 Classified land-use and land-cover maps of Medhufushi (Noonu Atoll) in 2002 (a) and 2011 (b); bar graph representing gains and losses (d) and LULC 

chance map (c) 
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Fig. 7 Classified land-use and land-cover maps ofOlhuveli (Kaafu Atoll) in 2006 (a) and 2011 (b); bar graphs representing gains and losses (d) and LULC 

chance map (c)  
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Fig. 8 Classified land-use and land-cover maps of Maamin’gili (Alifu Dhalu Atoll) in 2001 (a), 2006 (b), and 2011 (c); bar graphs representing gains and losses 

(e, f) and LULC chance map (d) between 2001 and 2011
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Fig. 9 Comparison between the growths in tourist arrivals, population, and number of resorts built from 

1990 to 2013   
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Chapter 2 

Unmanned Aerial Vehicles (UAVs) coupled with innovative 

processing algorithms and machine learning: new frontiers in 

high-resolution monitoring of coastal environments 
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glance at the catastrophe: Unmanned Aerial Vehicle imagery and Object Base 

Image Analysis to map habitat shifts on shallow-water coral reefs in a post-

bleaching period. (Under Submission)  

 

A glance at the catastrophe: Unmanned Aerial Vehicle imagery and Object 

Base Image Analysis to map habitat shifts on shallow-water coral reefs in a 

post-bleaching period 

 

Luca Fallati a,b, Luca Saponari a,b, Fabio Marchese a, Cesare Corselli a, Paolo Galli a,b Alessandra Savini a,b  

 

a Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy  
b MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives 

 

Abstract 

 

Coral reefs are worldwide undergoing a decline due to the effects of multiple natural and 

anthropogenic stressors such as increasing water temperature, ocean acidification, overfishing 

and land reclamation. Among those, temperature-induced bleaching has been reported to cause 

major coral mortality. According to their severity, these impacts may lead to an evident 

structural collapse of the reef and to benthic communities shifts. Under this scenario, 

reasonable monitoring techniques and reproducible protocols are essential to improve data 

collection in order to enhance our knowledge of spatial and temporal patterns of coral reefs 

after a major bleaching impact. Our study determined for the first time the potential of 

consumer-grade Unmanned Aerial Vehicles, coupled with Structure from Motion and Object 

Base Image Analysis, as a tool to monitor over time shallow-water coral reefs communities. 

The spatial resolution achieved from the orthomosaics allowed us to classify benthic 

community types with good accuracy and the comparison of the maps through time (February 

2017, November 2018) has shown clearly the deterioration of the fore reef environments after 

2016 mass bleaching event. Moreover, the methodology described in this study can be used to 

generate maps for long term monitoring programs to check the dynamics of shallow water coral 

assemblages.  
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Introduction 

 

Coral reefs are worldwide undergoing a decline due to the effects of multiple natural and 

anthropogenic stressors such as increasing water temperature, ocean acidification, overfishing 

and land reclamation (Fallati et al., 2017; Hughes et al., 2019; Fine et al., 2019). Among those, 

temperature-induced bleaching has been reported to cause major coral mortality in the Indo-

Pacific Ocean with two main destructive events in 1998 and 2016 (Ateweberhan & 

McClanahan, 2010; Cowburn et al., 2019; Harrison et al., 2018; Weiler et al., 2019; Pisapia et 

al., 2019). Coral loss after a bleaching event has important consequences on ecological 

functionality of the ecosystem. Live coral decline is related to the loss of structural complexity 

provided by the different coral colony shapes. Complex structures support high diversity and 

abundance of coral related organisms such as fish, molluscs, echinoderms, and other 

invertebrates(Alvarez-Filip et al., 2015; Graham & Nash, 2013; Wilson et al., 2006). Further, 

coral reef structural complexity absorbs wave energy reducing shoreline erosion (Sheppard et 

al., 2002). Thus, coral mortality reduces the diversity of reef marine organisms and increase 

erosion of coastline. Structural complexity loss has been reported both after 1998 and 2016 

coral bleaching events (Graham et al., 2006; Magel et al., 2019). However, most of the studies 

on structural complexity are qualitative (Graham et al., 2009; Graham et al., 2006; Sheppard et 

al., 2002) the majority of the quantitative measurements are made using the chain-and-type 

method (Risk, 1972) which is time-intensive and suffer of high variation (Friedman et al., 

2012). Recently, new technologies, specifically, Structure from Motion (SfM) 

photogrammetry, have been used to simplify the structural measurements to widen the spatial 

scale of the survey and to increase the resolution of the data (Burns et al., 2015; Ferrari et al., 

2016; Leon et al., 2015; Magel et al., 2019; Storlazzi et al., 2016). However, underwater SfM 

is limited to a small spatial scale reducing our understanding of a wide process even if at very 

high-resolution scale (Burns et al., 2016; Couch et al., 2017; Ferrari et al., 2017). Thus, we 

aimed at use a novel technique to widen the spatial scale of the monitoring process for the 

effect of the coral bleaching event on structural complexity of a reef in the Maldives. We used 

an Unmanned Aerial Vehicle (UAV) to collect high-resolution shallow-reef pictures and the 

SfM and Object Base Image Analysis to process the data and obtain a time-efficient, high-

resolution and at reef-spatial scale monitoring of the change in reef structural complexity. 
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Materials and Methods  

 

Study Area 

The Republic of Maldives is an archipelago composed of coral reef islands, grouped in a double 

chain structure, in the middle of the Indian Ocean (Fig. 1, a.). The 1192 islands of the 

archipelagos are extended along 860 km from latitude 7° 6′ 35″ N to 0°42′ 24″ S. The Maldives 

cover an area of about 859,000 km2, but only 227.45 km2 are the land areas (Godfrey, 2018; 

Naseer & Hatcher, 2004). The majority of the territorial area consists of sea and coral reefs. 

The islands, generally with a mean elevation of less than 2 m above sea level, can be divided 

into three groups: inhabited, resort islands and uninhabited (Fallati et al., 2017). Therefore, 

coral reef ecosystems are vital for the Maldives in terms of economic income and shoreline 

protection from the erosion. Fisheries and tourism industries are both depending on the health 

status of the coral reefs and are numerous the ecosystem services/benefits provide by the coral 

reefs to the local population (Agardy et al., 2017). However, in the last two decades, 

anthropogenic and natural impacts and global climate change had increased the threats on the 

Maldivian reefs. Sea Surface Temperature (SST) anomalies and the resulting bleaching events 

are among the main stress factor for the integrity of the coral reefs of the archipelagos (Pisapia 

et al., 2016). In the middle of 2016 (April-June) was registered as the largest bleaching event 

since 1998, which had led to pronounced changes in coral communities in the following months 

(Pisapia et al., 2019). Further, predation by corallivores, such as the seastars Acanthaster planci 

(Saponari et al., 2018) and Culcita spp. (Montalbetti et al., 2019) and the snail Drupella spp. 

(Bruckner et al., 2017), had enhanced the effect of the bleaching event increasing coral 

mortality and delaying coral recovery. 

Fieldwork and data collection was carried out on the Southern part of Faafu Atoll (Fig. 1, b.), 

on the shallow reef environments around Magoodhoo islands (Fig. 1, c.). These environments, 

with a depth of maximum 2 m and highly transparent water, offer optimal condition for UAV 

data collection (Casella et al., 2016; Levy et al., 2018; Doukari et al., 2019). Besides, on this 

island, since 2009, operates MaRHE Center (http://marhe.unimib.it), a Research and High 

Educational Centre of the University of Milan-Bicocca. Therefore, thanks to the numerous 

research activities carried out from different researchers through time, the ecology and biology 

of the surrounded coral reef are well known (Montalbetti et al., 2019; Montano et al., 2012; 

Montano et al., 2017; Saliu et al., 2019; Seveso et al., 2014) 
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As a case study, we monitored four reef portions (Fig. 1, C) a few months after the bleaching 

event (February and March 2017) and at the end of 2018 (October/November), more than two 

years later. Area 1 and Area 2 are both parts of the same reef flat on the South of the island. 

These environments are exposed to the waves and the currents from the oceanic channel 

between Faafu and Dhaalu atolls. Instead, Area 3 and Area 4 are two internal reefs of Faafu 

Atoll lagoons. Area 3 is a small semicircular patch reef in a small and sheltered lagunar system 

on the East side of the island. Area 4 consists in a reef system, elongated in North-West 

direction, on the central lagoon of the atoll.  

 

UAV Data Collection and Field Survey 

DJI Phantom4 drone was chosen for data acquisition. This consumer-grade UAV is a 

quadcopter with high sensing characteristics. It is equipped with a 1/2.3″ CMOS camera sensor 

(12.4 MP) that can collect RGB images with a resolution of 4000 × 3000 pixels and an 

integrated GPS/GLONASS system. DJI Phantom 4 is lightweight, easy to carry, and can 

efficiently fly at low altitude to obtain good quality ground-resolution images. Additionally, 

easy take-off and landing procedures make this drone a remarkable solution for low height and 

short-range surveys. Metadata of the acquired images are recorded in an EXIF (Exchangeable 

Image File Format) file, which incorporates information such as shutter speed, apertures, ISO 

and GPS coordinates.  

In addition to the UAV surveys were performed visual snorkelling transect across the four 

monitored areas (Fig 1, c.) in order to validate the remote sensing data and identify the 

composition of the benthic community  

 

Flights Planning  

The surveys were designed using DJI GS PRO (www.dji.com/it/ground-station-pro) a flight 

planner for iPad device distributed by DJI. This application allows planning in detail all the 

aspects of the drone mission: generate flight paths, set camera parameters and directly check 

data acquisition on the iPad display. For all the surveys, we set a fix flight and images 

acquisition parameters (Tab. 1). 

Besides, all the UAV reefs assessments were planned to minimise the differences in 

environmental conditions between 2017 and 2018 surveys. We always flew during low tide, to 

reduce water column effect, and with low sun position to the horizon to avoid the glint effect 

on images (Casella et al., 2016). Moreover, we chose days with no or little wind (less than 

5m/s) and consequently a calm sea state: waves strongly influenced the possibility to recognise 
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and map benthic communities (Doukari et al., 2019). These precautions allow us to reduce 

errors during the post-processing and the comparison of the output data. 

 

SfM processing and geo-referencing 

Agisoft PhotoScan (www.agisoft.com), a commercial Structure from Motion (SfM) software, 

was used to process UAV images of each area. The software was chosen for the affordable 

price of the licence and its spontaneous workflow, user-friendly interface and the excellent 

quality of the outputs (Benassi et al., 2017). These features have made it widely used by the 

scientific community (Burns and Delparte, 2017; Cook, 2017; Bonali et al., 2019). The images 

were processed following four main steps: alignment of the photos using high accuracy setting 

and creation of sparse point cloud; then, generation of a dense point cloud and creation of a 

Digital Terrain Model (DTM) from the dense could. As final outputs, high-resolution 

orthomosaic were obtained from the DTM. Processing parameters and outputs are provided in 

Table 1. For additional information on the SfM procedure, see Verhoeven (2011) and Brunier 

et al. (2016). 

In order to accurately georeferenced the orthomosaics resulting from SfM processing, we 

collected Ground Control Points (GCPs) in all the monitored areas. At least 8 GCPs per area 

were deployed over structures easily visible and identifiable in the UAV imagery (Fig. 3). 

GNSS coordinates were recorded with Emlid Reach RS© (https://emlid.com/reachrs/), a low-

cost single-frequency RTK GNSS receivers, with centimetre-level accuracy. This GNSS can 

operate in Long Range Radio (LoRa 868/915 MHz) mode with one receiver working as a base 

station that is set up on a fix position (on a distance up to 8 km) and sends real-time correction 

to the second receiver acting as a rover (Hill et al., 2019). The LoRa mode is useful for RTK 

GCPs collecting in a country like the Maldives, with no network of International GNSS Service 

(IGS) or Continuously Operating Reference Stations (CORS). Moreover, the receivers are 

waterproof (IP67) and for this reason, perfect for GCPs collection in coastal environments. The 

orthomosaics were then georeferenced in ArcGis 10.6 (Esri). 

 

OBIA Segmentation and Classification  

The analysis and classification of the orthomosaics were performed trough Trimble eCognition 

Developer 9.4 (http://www.ecognition.com/suite/ecognition-developer). The use of this 

software allowed to carry out a robust image analysis in order to create comparable benthic 

communities maps. Application of Object-Based Image Analysis (OBIA) algorithms followed 

https://emlid.com/reachrs/
http://www.ecognition.com/suite/ecognition-developer


48 
 

the methods described in previous studies by Roelfsema et al. (2018) on satellites images and 

Ventura et al. (2018a) on UAV data.  

On the high-resolution orthomosaics were applied a multiresolution segmentation algorithm 

based on homogeneity criteria. Classification takes advantage of the features calculated for 

each segment such as spectral value but also size, shape, texture and proximity (Liu & Xia, 

2010). Using the thresholds between these parameters we define a ruleset for the classification 

algorithms that allowed us to classify and to label the three benthic cover types present in the 

area: Hard Coral, Sand, and Coral Rubble. The class composition was established by visual 

transects collected by snorkelers. Sand class was classified based on the spectral difference 

(mainly in brightness level and band ratio) between Coral Rubbles and Hard Coral. Instead, 

Hard Coral and Coral Rubbles were classified considering both the difference in brightness, 

band ratio, standard deviation, saturation and the form and texture of the segments. 

Unfortunately, it was not possible to discriminate only from the RGB channels between dead 

and alive colonies for the inaccuracy of the analysis based only on the visible colours.  

 

Map Accuracy Assessment  

The map's accuracy was assessed comparing the outputs with 732 randomly distributed points 

that proportionally cover all the monitored areas. The points were manually classified, and the 

accuracy of the maps was evaluated visually using the orthomosaics; this was possible due to 

the high resolution of the UAV images that allowed an on-screen check conducted by an expert 

in coral reefs and with good knowledge of the study area (Kattenborn, et al., 2019; Ventura et 

al., 2018). Then, the accuracy evaluation was done comparing the outputs with the reference 

data in a confusion matrix (Table 3) to estimate the user and producer accuracy, the overall 

accuracy of the maps and calculate the Kappa Index (Congalton and Green, 2008). Finally, the 

benthic cover maps from 2017 and 2018 were compared in ArcGis 10.6 to highlight the 

differences between the two years and calculate the gain and loss in the three classes (Table 2).  
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Results 

 

High-Resolution Orthomosaics and Benthic Assemblages Maps  

The processing of the UAV images has led to the realisation of high-resolution orthomosaics 

(1.5 cm/px) of 16 hectares of shallow-water coral reef environments around the island of 

Magoodhoo for the years 2017 and 2018. The achieved detail of the models provides an 

overview of the benthic communities dynamic obtained with low-cost surveys. Moreover, the 

quality of the data allowed to highlight the difference in benthic assemblages extension 

between the two years from the simple visual comparison of the orthomosaics (Fig. 4) 

The benthic assemblages maps realised from the OBIA analysis define the distribution of Hard 

Coral, Coral Rubble and Sand on selected portions of the fours monitored areas a few months 

after 2016 bleaching events and more than two years later (Fig. 4). The comparison of the maps 

revealed a general loss of Hard Corals frameworks extension, from 25% to 44%, with a total 

loss of 6119 m2. Consequently, it is evident the increase of the other two classes, Sand and 

Coral Rubble. Particularly Coral Rubble, a class closely linked with the degradation and 

fragmentation of the corals' colonies, shows a significant increase in Area 1, Area 2 and Area 

4 the most affected by the reduction of Hard Coral.  

 

Maps accuracy  

The benthic community maps had an overall accuracy of 79 % and a Kappa index of 56% (Tab. 

3), which represent a moderate agreement level, according to Congalton & Green (2008). 

Individual classes had a user accuracy of 85% for Sand, 66% for Coral Rubbles and 86% for 

Hard Corals. The lower accuracy of the Coral Rubble is mainly due to the absence of precise 

boundaries between the other two classes. In some areas, the mixture of sand with corals 

rubbles form a transition zone which may lead to misclassification. This also applies to the 

margin between Hard Coral and Rubble. During the map processing in eCognition the jagged 

margins of the segments have been smoothed. This processed may have created some 

centimetric imprecision on the boundaries between the class that in several cases can contribute 

to an accuracy reduction.  
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Discussion 

 

AUV surveys and image processing  

The use of UAV data combined with SfM algorithms is increasing in the last years for 

environmental researches in different fields: plastic and marine litter monitoring (Fallati et al., 

2019; Martin et al., 2018), marine megafauna surveys (Colefax et al., 2018; Kiszka et al., 2016; 

Raoult et al., 2018), coastal geomorphology (Laporte-Fauret et al., 2019; Lowe et al., 2019), 

structural geology (Bonali et al., 2019), forestry sciences (Baron et al., 2018; Kattenborn et al., 

2019). From the first description of the great potential of this coupled techniques in monitoring 

ecology and geomorphology of the coral reefs by Casella et al. (2016) are still few the studies 

that have improved this methodology in this field (Collin et al., 2019; Levy et al., 2018; Parsons 

et al, 2018).  

In our study, we used for the first time UAV images coupled with SfM and OBIA algorithms 

to monitor and map changes in coral reefs benthic assemblages following a mass bleaching 

event. The high-resolution orthomosaics produced in our study confirm the potential of these 

low-cost and versatile tools for the monitoring of shallow-water reefs environments. Besides, 

no temporal survey limits allowed to observe through time environmental impacts and the 

resulting changes. Consumer-grade UAV, like DJI Phantom 4, can take off from the shore or 

a small boat. This flexibility allowed to easily monitor reef structure, such as patch reefs in the 

lagoon, far from the coast. Obviously, UAVs cannot be compared to a satellite in terms of 

spatial cover: satellite imagery analysis allowed to map an entire reef system (Hedley et al., 

2012; Roelfsema et al., 2018; Roelfsema et al., 2013). However, even if the spatial and 

temporal resolutions of the satellite sensors has improved in the last decade (Sentinel 2 offer 

10 m/pix in visible bands and a revisit time of 5 days) is not even comparable to the centimetric 

resolution obtain from the UAV surveys. This level of detail placed the monitoring activities 

of marine environments with the UAVs on a scale that lies between a satellite and a 

snorkelling/diving survey (Casella et al., 2016; Ventura et al., 2018).  

On the other hand, the main limitations of this type of UAV are the low accuracy of the built-

in GPS and the restriction in data analysis for RGB images. Regarding the precision of the 

GPS, the unmodified geolocation is expected to have an error up to 3 m (Kalacska et al., 2018). 

This level of inaccuracy does not allow to compare the same area, monitored during two 

different flights, without precise GCPs. To overcome this limitation, we georeferenced our 

models with RTK GCPs collected in all the areas. Instead, problems in the classification system 
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for high-resolution UAVs RGB imagery (e.g. the extremely time spending on-screen manual 

classification) can be overcome with the application of OBIA algorithms. OBIA processing 

considers not only the spectral information but also the geometrical and spatial relation between 

pixels or group of them (Blaschke, 2010) and allowed us to manage RGB spatial data with low 

spectral separation between the classes (e.g. Hard Coral and Coral Rubbles). Moreover, the use 

of OBIA helped to speed up the classification process: once the ruleset has been developed, it 

can be applied to all the orthomosaics that represent the same environments with slights 

changes in features parameters. 

Another critical factor that may restrict the potential of the UAVs benthic habitats surveys is 

the influence of environmental conditions on the water column. Thus, it is important to monitor 

weather conditions and oceanographic parameters before the flight. Therefore, we planned the 

surveys to minimise class misclassification errors, and the data acquisition were performed for 

all the monitored areas during the same optimal conditions in 2017 and 2018. 

 

Classification and maps comparison  

The benthic assemblage maps produced from the processing of orthomosaics with OBIA had 

a good overall accuracy, 79%, that confirm the validity of the classification process. The 

process allows classifying benthic cover types (Sand, Coral Rubble and Hard Coral) with 

higher accuracy than maps realised from satellite images with the same methodology 

(Roelfsema et al., 2018; Roelfsema et al., 2018).  

The maps represent the composition of the fore reef benthic assemblages, around Magoodhoo 

islands, few months after the 2016 coral bleaching event and more than two years later. Before 

the bleaching,  coral reefs around Magoodhoo were composed of flourished frameworks of 

Acropora spp colonies (mainly branching but with some tabular) (Fig. 6, a-b) with an increase 

of massive Porites spp colonies moving from the shore towards the reef crest. During the 

bleaching, the most affected corals were tabular and branching Acropora spp, the primary 

habitat-forming species of shallow reef environments in the Maldives (Pisapia et al., 2016). 

Mortality rates in this genus reached 80% (Marine Research Center, 2016) and signs in colonies 

desegregation were already recorded a few months after the event (Perry & Morgan, 2017). 

The benthic maps (Fig.4) described an environment where most of the extension of Hard Coral 

class consists of dead Acropora still in living position (Fig.6, c-d). In addition, this category 

was composed by 35% of dead coral and only 14% by alive corals (Saponari et al., in prep.). 

Unfortunately, it was not possible to discriminate the status of corals just from UAV images 

but were necessary direct snorkelling observations. 



52 
 

 

The comparison of the maps between 2017 and 2018 show a substantial reduction in Hard 

Coral class. The dead colonies gradually lose their structure due to the impairment caused by 

the action of bioeroders and the mechanical action of currents and waves. Therefore was 

evident a shrinking of the coral frameworks in all the monitored areas from 25% to 44% (Tab 

2). Most of the decline was driven by the degradation of branching and tabular colonies that in 

some areas entirely disappeared from the reef (Fig. 6, a-b). Consequently, an expansion of 

Coral Rubble was recorded. The extension of these degraded areas can lead to an increase of 

algal cover and the formation of unstable substrate unsuitable for coral larvae settlement (Roth 

et al., 2018). 

In Area 3, the trends of the benthic assemblages, from 2017 to 2108, are slightly different from 

the other three (Tab. 2). This because the reef is more sheltered than the other three for its 

position inside a small lagoon, and the mechanical action of waves and currents on colonies is 

less pronounced. 

Nevertheless, the general effect observed in all the mapped environments was a marked 

transformation in benthic assemblages with a resulting flattening of the reefs. Rugosity is a 

crucial ecological factor since biodiversity is strongly correlated to habitat complexity (Anelli 

et al., 2017; Newman et al., 2015; Perry & Alvarez-Filip, 2019). The negative variation in this 

parameter due to the transition from healthy coral reefs to a post bleaching degraded 

environments can have significant implications on reef-associated organisms such as fish. 

Moreover, the described changes in the structural complexity of the fore reef can lead to an 

increase in the rates of coastline erosion as a result of the loss of their coastal protection 

functions (Harris et al., 2018; Perry & Alvarez-Filip, 2019). The comparison of the selected 

portions of the DTM models obtained from the SfM workflow let us detect the decline in 

substrate rugosity (Fig 6, c-d.). Unluckily, we were not able to compare the DTMs of the entire 

areas in order to obtain lost rugosity rates due to the inaccuracy of the Z values. In future 

studies, this limitation can be overcome with accurate water depth GCPs collection to scale the 

Z value correctly in all the models.  

 

Final remarks  

 

The future of the coral reefs in the Anthropocene is unknown. The increase of the extreme 

heating events driven by climate change could make the coral assemblages recovery after a 

bleaching event more challenging (Hughes et al., 2018). In the Maldives, the full recovery from 
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the 2016 mortality could take decades (Gilmour et al., 2013; Graham et al., 2011; Hughes et 

al., 2019) and may be adversely affected by the increase of coral reefs exploitation from 

fisheries activities, tourism and land reclamation (Aslam & Kench, 2017; Fallati et al., 2017; 

Naylor, 2015). Moreover, the action of corallivorous organisms, such as Culcita sp 

(Montalbetti et al., 2019), on small coral colonies and recruits can further increase the recovery 

time. In this scenario, affordable monitoring techniques and reproducible protocol are essential 

to improve data collection in order to enhance our knowledge of spatial and temporal patterns 

of coral reefs after a major impact. 

Our study determined for the first time the enormous potential of UAV data coupled with SfM 

and OBIA analysis as a tool to monitor over time shallow-water coral reef assemblages. The 

protocol that we described is efficient and reliable and confirmed the capability of commercial 

UAV to acquire high-resolution data in a fast and easy way. The spatial resolution achieved 

from the orthomosaics allowed us to classify benthic community types with good accuracy and 

the comparison of the maps through time has shown clearly the deterioration of the fore reef 

environments.  

There are still some limitations, as the difficulty in the calibration of DTMs in order to calculate 

an accurate rugosity variation, that can easily overcome in the future thanks to a better GCPs 

collection plan and the continuous increase of the efficiency of UAV platforms. However, the 

maps generated in this work can be used as a starting point for a long term monitoring program 

to check the dynamics of shallow water coral assemblages in this new human-dominated era. 
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Tables and Figures  

 
 

Fig. 1 (a.) Geographic location of the study area, Republic of Maldives; (b.) Faafu Atoll. (c.)The four 

monitored reef areas around Magoodhoo island: red dashed lines indicated the snorkelling transects. 
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Fig.2 Example of UAV flight paths over Area 2 in 2017 and 2018 
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Tab.1 Date of UAV surveys, flight acquisition parameters and SfM processing specifications of selected areas.  

 
                        

   2017  2018 

                     

   
AREA 1 AREA 2  AREA 3 AREA 4  AREA 1 AREA 2  AREA 3 AREA 4 

UAV Images 
Acquisition 

Flying Date 11-Feb 12-Feb 05-Feb 18-Feb  04-Nov 14-Oct 05-Nov 

Flying Altitude 35 m  35 m 

Frontal Overlap 85%  85% 

Lateral Overlap 75%  75% 

Speed 2.2 m/s  2.2 m/s 

Shutter Interval 2.0 s  2.0 s 

Image Resolution 1.5 cm/px  1.5 cm/px 

Covered Area 4.98 Ha 4.46 Ha 1.20 Ha 5.37 Ha  5.52 Ha 4.38 Ha 1.49 Ha 5.39 Ha 

Images Numbers  495 431 123 662  550 425 186 664 

                    
   

         

SfM Processing 

Alignment and Dense Cloud 
processing accuracy  

High 

 

High 

Dense Cloud Points 87,138,680 56,885,927 12,412,455 96,498,907  89,836,998 54,737,644 15,038,040 96,149,457 

DTM Resolution cm/pix 2.94  3.16  2.97  2.86   3.08  3.17  3.1  2.9  

Ortomosaic Resolution 
cm/pix 

1.49  1.58  1.43 1.36   1.54 1.58 1.55  1.45  
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Fig. 3 Deploy of Ground Control Points over easily recognisable features from drone images  
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Fig. 4 High-resolution orthomosaics of Area 2 (a. and c.) and OBIA classification of benthic assemblages (c. and 

d.) on February 2017 and November 2018  
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Tab. 2 Extension of the cover of benthic assemblages on the monitored areas trough years obtained. 

The loss of Hard Coral class is expressed in percentage for the total mapped area.  

 Area 1  Area 2  Area 3  Area 4 
            

  2017 2018   2017 2018   2017 2018   2017 2018 
            

Hard Coral 28% 15%  41% 26%  56% 42%  35% 20% 

Coral Rubble 41% 54%  30% 32%  5% 4%  34% 54% 

Sand 31% 31%  29% 42%  39% 54%  31% 26% 

            
Loss of Hard 
Corals on the 

total area 
11 % (-2811 m2) 

  
14 % (-1733 m2) 

  
14 % (-290 m2) 

  
15 % (-1285 m2) 
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Fig. 5 Comparison of Coral class mapped in February 2017 (polygons in RED) and November 2018 

(polygons in GREEN). The overlap of the two maps highlights the reduction of the extension of the 

coral colonies over the years.  
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Tab. 3 Error matrix and accuracy index for the classified maps.  

 

Accuracy Table 

    Control Reference       
        

Benthic maps  

 Hard Coral  Coral Rubble  Sand Total User Accuracy % Producer Accuracy % 

Hard Coral 349 39 21 409 85 86 

Coral Rubble  52 169 35 256 66 78 

Sand  2 7 58 67 86 51 
       

Total 403 215 114 732   

     Overall Accuracy Kappa Index 

     79%  0.56 
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Fig. 6 a. – b. Underwater pictures of branching and tabular Acropora spp. colonies took before 

bleaching (February 2016) on the reef flat of Magoodhoo. c. – d. Dead branching and tabular corals 

still in living position on the same areas few months after the bleaching event (February 2017) 
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Fig. 7 Same portions of orthomosaic and DTM of reef flat Area 4 in February 2017 (a.-c.) and 

November 2018 (b.-c.). By comparison of images a. – b. is possible to notice the partially disappearance 

of Acropora table colonies and the increase of rubble areas. c. – d. DTM models comparison highlight 

an overall flattening of the area due to the disintegrationof tabula coral colonies.  
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Abstract 

Mapping and monitoring of marine habitats are crucial tools for coastal management and the 

implementation of conservation measures. CARLIT index is based on the cartography of 

littoral assemblages and their sensitivity to changes of environmental conditions. It has been 

widely tested and applied in the Mediterranean Sea since its introduction in 2007, to assess the 

ecological status of water bodies within the Water Framework Directive (WFD). Sinis coast 

(Sardinia, Western Mediterranean) comprises Penisola del Sinis - Isola di Mal di Ventre MPA, 

being a poorly inhabited and almost devoid of man-made structures. The methodology was for 

the first time applied in 2008, representing the first application in Sardinia and among the first 

ever. In 2018, we re-monitored the same coastline coupling a drone technology integration of 

the classic methodology. The aim of the study was to compare the ecological status 10 years 

later and to develop a GIS database with more detailed information respect to previous data 

that will be available at high resolution for future monitoring and developments (e.g. coverage, 

DTM). Data were gathered by boat or by walking along the coast and high-resolution images 

were acquired by a commercial drone, elaborated using Structure from Motion (SfM) technique 

and georeferenced. CARLIT revealed an overall stability of ecological status of water bodies 

10 years later, with some slight differences along restricted stretches of coast. The 

implementation of high resolution GIS based mapping of littoral habitats will allow to obtain 

mailto:d.grech@fondazioneimc.it
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more detailed data on the vertical zonation and extent of the most abundant assemblages. 

Furthermore, the drone technology will represent even more a historical baseline to follow 

temporal dynamics of marine vegetation, for both the early detection of native species 

regression and the spreading of non-indigenous one. 

Introduction 

 

The Mediterranean coastal seascape has sharply changed in the last decades, mainly due to the 

disappearance of sensitive species to local anthropogenic disturbances and global climate 

changes. Benthic communities associated with rocky littoral habitats are known to significantly 

respond to slight changes of environmental conditions, thus they are considered good 

bioindicators of water quality for the implementation of Water Framework Directive (WFD) 

2000/60/EC. Their occurrence is taken into account for the assessment of the ecological status 

of water bodies in the Mediterranean Sea, according to the Cartography of littoral and upper-

sublittoral rocky-shore communities (CARLIT) method (Ballesteros et al. 2007). They include 

shallow species, such as Cystoseira spp., threatened (UNEP/MAP-SPA/RAC, 2018) because 

experiencing a huge decline in Mediterranean Sea (Thibaut et al. 2015). This is especially 

noticeable where an historical baseline of long phycological tradition is present, allowing to 

recognise an appropriate reference point and correctly interpret the possible decline. On the 

contrary, this is not evident when proper dated historical records are lacking. Despite the 

CARLIT methodology is widespread all around the Mediterranean Sea (Badreddine et al. 2018 

and reference therein), only a few examples of re-surveys after many years have been reported 

in literature, namely for France (Blanfuné et al. 2017) and Spain (Torras et al. 2015).  

The method proposed by Ballesteros et al. (2007) has been modified, simplified (Blanfuné et 

al. 2017 and references therein) and empirically adjusted (Lasinio et al. 2017). 

Notwithstanding, to date, no technological improvements have been yet considered to increase 

the amount and resolution of collected information during the monitoring of rocky shore 

communities, especially for detailed shift detection. In recent years, commercial drones became 

a powerful tool for environmental applications including surveying and monitoring, that are 

essential for the implementation of habitat mapping and conservation measures (Lorah et al. 

2018; Ventura et al. 2018).  

In the Sinis Peninsula (Western Sardinia, Italy), apart from former punctual references, i.e. 

phycological lists (Cossu, 1992; Gueneau et al. 1992), the CARLIT assessment of Guala et al. 

(2010) performed during spring 2008 is the most significant oldest semiquantitative baseline 
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of macroalgal assemblages. 

This paper aims to re-evaluate the CARLIT along the same strength of the coast, exactly 10 

years later, in order to assess historical change of macroalgal communities and water quality 

along the Sinis Peninsula. Additionally, the potential of Unmanned Aerial Vehicles (UAVs) or 

briefly ‘drones’ have been assessed i) to test the feasibility of data aquisition for the addition 

to the CARLIT protocol; ii) to explore new type of data available from this type of approach; 

iii) to built a detailed reference baseline for future comparisons in the study area. 

 

Material and methods 

This study was carried out along the Marine Protected Area of Penisola del Sinis - Isola Mal di 

Ventre (thereafter, MPA) located in the Middle-West coast of Sardinia (Italy). The shoreline is 

characterized by different coast typology: rocks and cliffs alternating with sandy beaches for 

about 27 km of coastline. Northwards the MPA is exposed to western winds, while southwards 

(inside the Gulf of Oristano) is sheltered from dominant winds and waves. The study area is 

contiguous to a wide wetland system (Cabras and Mistras lagoons) and the Tirso mouth, the 

main river in Sardinia, both affecting the Gulf of Oristano, where they flow into. Along the 

exposed shoreline some freshwater springs flow by rocky cliffs (Su Tingiosu) and by the 

outback behind some main beaches (Is Arutas and Funtana Meiga). The area is scarcely 

urbanised with a demographic density of about 90 inhabitants/km2 almost stable during the 

decade 2008-2017 (ISTAT, 2017). As a matter of fact, it can be considered very low compared 

to other Mediterranean sites where Fucales assemblages were assessed (Thibaut et al. 2015; 

Grech, 2017) such as Portici in the Gulf of Naples (Italy) with 12,000 inhabitants/km2. In the 

entire Sinis coast, 12,000 is the mean number of touristic influx per season. A treatment plant 

system, devoted to civil and industrial wastewater, is located about 10 km apart from the MPA. 

It was settled in the 80s and was dedicated at the beginning to the industrial area and the 

Oristano city. Between the years 1990-2000, the plant system was extended to treat also 

neightbouring municipalities wastewater outputs. The treatment plant receives wastewater for 

a Population Equivalent or unit per capita loading (PE) of 79.423 (N. ab/eq) with a flow of 

31.111 mc/g. (Provincia di Oristano, 2014). Discharge outlet flows into the industrial port 

channel and then into the sea. The water circulation is mainly forced by the NW wind and is 

characterised by a short water-residence time (Cucco et al. 2006), with a fast and intense 

exchange of water masses with the open sea. Under the most common wind forcing, 1.5 days 

is required to renew the 70% of the gulf water. 
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The re-monitoring of CARLIT was carried out along the entire coastline of the MPA through 

the traditional method, by assigning the sensitivity level (SL) to benthic communities per each 

stretch of rocky coast and assessing the Ecological Quality Ratio (EQR) according to 

Ballesteros et al. (2007). The EQR values were calculated for each of the two water bodies 

(WB1 and WB2, respectively inside and outside the gulf) as defined by Guala et al. (2010) on 

the basis of the different geographic orientation and exposure to prevailing winds. In addition, 

we used a DJI Phantom4, a consumer grade drone, to collect macroalgal assemblage 

orthophotos. Take-off and landing were controlled manually from a small boat or by walking 

along the coastline. Different geomorphological relevant features (sensu Ballesteros et al., 

2007) were selected to test the cruise feasibility and the cartographic rendering (i.e. accuracy, 

distortion, coverage) at different flying height (from 5 to 20 m a.s.l.). All the images were 

edited using the photogrammetric software Agisoft PhotoScan Professional and Structure from 

Motion (SfM) techniques to obtain a digital model of the coast and analysed through free and 

open source Geographic Information System (QGIS) to compute the surfaces covered by the 

most abundant assemblages. 

 

Results 

 

The EQR values were maintained both in WB1 (from 0.64 to 0.60) and WB2 (from 0.97 to 

0.95), with the same ‘Good’ and ‘High’ ecological status respectively, after 10 years. 

Superimposing the stretches of coastline with corresponding SL assigned to thriving 

communities in 2008 and 2018, some slight differences were detected and are represented in 

Fig. 1. 

Through the drone survey, more than 2,500 high-resolution orthophotos of macroalgal 

assemblages were collected. The best compromise between sampled area and resolution was 

found at 15 m of flying height. Through the image processing, high-resolution ortho-mosaics 

(0,5 cm/px; Fig. 1) and digital terrain models (DTMs) were obtained. From the digital models 

and orthophotos of the coast, the coverages of the shallow subtidal communities and terrain 

attributes (slope, aspect, rugosity) were estimated with a cenimetric accuracy and a sampling 

effort of 2.6 h/km. As additional result, here we defined the Index of Cystoseirety (IoC), namely 

the ratio between surface of the species and the coastal length (see example reported in Fig. 1). 
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Discussion and conclusions 

 

The CARLIT index shows that the water quality did not changed from the first assessment in 

the MPA. The drone survey allowed to integrate the CARLIT data with more accurate 

information on the distribution and the surfaces covered by the most abundant communities. 

This study demonstrated the high stability of the 10-years-later-CARLIT assessment (among 

the first in the Mediterranean Sea and the first reported in Italy). Despite this index could be 

performed every 3 years across all the water bodies without significant reduction in the 

confidence of EQR classification (Cavallo et al. 2016), it was no longer monitored in the study 

area after 2008 and this contribution updated the information to 2018. 

Our results point out once more, as suggested by Guala et al. (2010), that Sinis coast (outside 

the gulf) is the ideal candidate to represent a proper reference site, at least for the biogeographic 

area that includes the coastline of Sardinia and the north Tyrrhenian sea (see Bianchi, 2004), 

with higly biodiverse stands along a very heterogenous geomorphological coastline. 

Considering the high level of EQR in WB2, with lushy forests of C. amentacea and C. crinita, 

the area is worth of conservation measures, detailed investigations and more frequent 

monitoring programmes. On the contrary, higher trophic conditions are evident inside the gulf, 

probably because of the influence of surrounding inland water systems. Although the 

assessment of the anthropic pressure was beyond the scope of this work, tourism activities in 

the Sinis area have shown a definitely slight increase in recent past. We felt confident that 

habitat destruction could be exluded at present, however human trampling should be monitored 

as some patterns may be significant and no data are currently available. 

The slight difference of SLs recorded along a few stretches of coast (Fig.1), could be due to 

both natual temporal dinamics of algal communities and the influence of human pressure. 

Notwithstanding we cannot exclude the bias of the subjectivity of the CARLIT index assessors.  

The innovative technique of post-processing images from drone allowed us to compute coastal 

surfaces covered by the most abundant community assemblages with a decimetric accuracy, 

through a relatively low sampling effort considering also the increased amount of information 

acquired. The current contribution is far to propose a further integration of CARLIT, that is 

complete for the purpose for which it was conceived. However, the information coming from 

otho-mosaics and terrain attributes allow to detaily characterize the forests and open new 

scenarios of studies and analysis such as the IoC and the computation of spatial patterns through 

a seascape ecology approach. 
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This study suggests that new developments are available for the assessments of shallow rocky 

shores and complementary data collected by drone could be coupled to raise the amount and 

the quality of data from standard monitoring. The use of this instrument, in conjunction with 

SfM algorithms, will offer a powerful contribution, that is additional to the EQR assessment, 

used until now. Furthermore the post processing workflow could be remarkably improved and 

the selection with mapping of the communities could be considerably simplified through 

algorithms (Adams, 2008), i.e. Object-based Image Analysis (OBIA; Ventura, 2018). Once 

implemented, such an analysis could automatically detect CARLIT categories on the ortho-

mosaics to be furtherly validated by an expert and trained eye. Future habitat mapping, with 

improved sensors and longer battery life of drones, will easily advance the classic visual 

method, adding detailed and georeferenced data about assemblage coverage and terrain 

attributes (i.e. slope, aspect, bathymetry and DTM) with relatively low cost, sampling effort 

and high accuracy. These achievements will give a detailed baseline to follow temporal 

dynamics (e.g. the early detection of macroalgal community shifts and slight SL change with 

high resolution models of coastline), and could allow to disentangle global changes to local 

one (punctual pollution or habitat destruction) in a study area that is still far from to be properly 

studied from a phycological point of view. 

1). 
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Tables and Figures  

 

 

Fig. 1: SL variation after 10 year along the Sinis coastline (Red=decrease; Green=increase; 

Grey=stable). Black line below the coastline indicate the sectors where othomosaic photos where 

acquired (A, B). Example of a 3D model coastline with the superimposed orthophotos (C). Final result 

of drone survey with delimited macroalgal assemblages (D) 
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ABSTRACT 

Mediterranean seascapes are currently facing massive changes, with the disappearance of 

sensitive species responding to local anthropogenic disturbances and global climate changes. 

Mapping and monitoring of marine habitats are crucial tools for highlighting the occurrence of 

community shift that should be taken into account in coastal management and the 

implementation of conservation measures. Proper reference baselines are generally lacking, 

especially for marine forests of brown macroalgae (Fucales, Ochrophyta). They are considered 

among the most important marine ecosystem-engineers, forming extended stands comparable 

to land forests. They increase three-dimensional complexity and spatial heterogeneity of rocky 

bottoms, thus providing directly or indirectly substrate, refuge, shelter and food for a lot of 

animal and plant species at different life history stages. Despite their ecological importance, 

sensitiveness to anthropogenic disturbances and conservation interest, in the Sinis Peninsula 

(Western Sardinia, Italy), Fucales are historically understudied compared to other 

Mediterranean areas. A review of historical records and current research has been performed 
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in order to shed light on the gaps in our knowledge and to discuss future possibilities for their 

management and conservation. 

 

KEYWORDS: 

Sinis Peninsula (Sardinia, Italy); Cystoseira; Habitat Conservation; Coastal Ecosystems; 

Cutting-edge Technology  
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Introduction 

 

In the last decades, Mediterranean seascapes have faced massive changes. Responding to local 

anthropogenic disturbances and global climate changes, many sensitive species are in decline 

throughout the basin with some reported cases of local extinction (Thibaut et al., 2015 and 

references therein). Mapping and monitoring of marine habitats are crucial tools for 

highlighting the occurring community shift and should be taken into account in coastal 

management and for the implementation of conservation measures. The lack of proper 

reference baselines in marine ecosystems is rather common and generally leads to the so called 

‘Shifting Baseline Syndrome’ (Pauly 1995) which is hampering the proper assessment of the 

status of an ecosystem. 

In vegetated sub-littoral systems, the best-known dramatic change is the shift from complex, 

three-dimensional forests of brown macroalgae (Fucales, Ochrophyta) to turf species. Fucales 

are considered among the most important marine ecosystem-engineers, forming extended 

stands comparable to land forests, increasing three-dimensional complexity and spatial 

heterogeneity of rocky bottoms, thus providing substrate for many other algae and refuge, 

shelter and food for a lot of species at different life history stages. Reference baselines of 

marine forests have been described along the most frequented and investigated study areas of 

the Mediterranean Sea, where the first marine biological stations were located (Sauvageau, 

1912; Funk, 1927, 1955; Ercegovic, 1952). Conversely, suitable studies on marine macroalgae 

in remote areas (or those not easily accessible from the mainland), have been historically 

complex or absent. This is the case of the Sinis Peninsula, located along the western coast of 

Sardinia (Italy), an area historically far from both mainstream access and the scientific 

community. Thus, this area is rarely taken into account by phycological research. At the 

beginning of the 1900s, the entire Sardinian population was comparable to that of Naples (Italy) 

(among the biggest cities in Europe, with 600,000 inhabitants). Here the Prussian Zoologist 

Felix Anton Dohrn founded the visionary project of the ‘Stazione Zoologica di Napoli’ in 1872. 

This is a marine station which has hosted thousands of international researchers since its 

institution. In the following years, other marine stations (i.e. in Banyuls, Roscoff, Endoume, 

Split, and Rovinj) would be settled close to populated coastlines, where many researchers 

worked year after year in the continuous study of marine algal flora and fauna. The algal 

vegetation of the Western Mediterranean was initially studied by dredging near these marine 

biology research centers. These studies built important baselines for marine ecology, allowing 
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in recent times for the comparison of historical records with current ones and evidencing the 

abrupt changes (Thibaut et al., 2015 and references therein; Grech, 2017). 

The Sinis Peninsula is currently one of the less densely populated coastal area of Sardinia. 

Because of the non-negligible pressure of fisheries (Vandeperre et al., 2008), it cannot be 

considered a pristine area. However, it could be assumed to be low impacted seascape, at least 

for benthic communities of the intertidal zone. Here, in 1988, the International Marine Centre 

(IMC) was founded in Torregrande (Oristano, Italy). 

The aim of this study is to review all the past records concerning the marine forests and to 

summarize recent findings and achievements. Given the presence of the ‘Penisola del Sinis - 

Isola di Mal di Ventre’ Marine Protected Area (MPA), these findings should serve as baseline 

for future management and conservation perspectives of these communities. 

 

Methodology 

 

A review on Cystoseira and Sargassum has been conducted for the Sinis Peninsula and the Gulf 

of Oristano. A frequent problem while studying fucalean forests is the lack of data with enough 

taxonomic resolution. Therefore, also grey literature as well as peer-reviewed journals was 

considered for this study. Records have been collected and a geodatabase has been developed 

(including all the historical and current information) on the basis of past experience of FuCart 

DB (Fucales Cartography DataBase; Grech, 2017). 
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Results  

 

The first historical records of marine forests in Sardinia are relatively few and sparse, consisting 

of algal lists (Barbey, 1884). Here, the record of C. amentacea in Capo Mannu is the oldest one 

for the study area. Other historical records for the Sinis Peninsula were published more than 

100 years later and are spotted (Cossu et al., 1992; Gueneau et al., 1992; Sales, 2010) with 

some of them doubtful. Cossu et al., (1992) reported 18 fucalean species (15 Cystoseira spp. 

and 3 Sargassum spp.) in Sardinia. Cormaci et al., (2005) afterwards reported the rare C. 

squarrosa in Castelsardo (Northern Sardinia) that is the only place in the Western 

Mediterranean Sea (another one is in Sicily) where populations of this species are known to 

occur. 

In the study area, C. barbata was reported by Addis et al., (2004) and Casu et al., (2006) in 

‘Penisola del Sinis - Isola di Mal di Ventre’ MPA. Nonetheless, based on this study we 

contemplate the possibility that this may be a misidentification of a late summer habitus of C. 

amentacea, which is rather abundant in the area. This uncertainty about the records is also 

exacerbated by the lack of abundant Herbaria vouchers and samples collection of the area, and 

by a lack of clear and unequivocal reported sites of presence (GPS coordinates, pictures in 

references) that could be examined and resurveyed by specialists after decades, i.e. as was 

properly done by Cormaci et al., (2005). Moreover, if C. barbata is present in the study area it 

is considered rare, since we have only collected stranded specimens until now in two sites in 

the Gulf of Oristano (Mare Morto and Mistras). The most likely source of this species is close 

to the mouth of the wetland system in the gulf. However, we cannot exclude surface drifting 

of detached thallus from sites outside the study area. C. foeniculacea and C. compressa have 

also been reported in the lagoons of Santa Giusta (Magni et al., 2008) and Curru de S’Ittiri 

(Provincia di Oristano, 2013), respectively. Their occurrence should be confirmed and checked 

along the complex wetland systems. 

The only proper reference baseline of this study area (concerning upper sublittoral species) is 

the cartography of littoral and upper-sublittoral rocky-shore communities, performed by 

applying the CARLIT method in 2008 (Guala et al., 2010). Although it is not entirely 

appropriate to consider this work as a historical baseline, it represents the starting point for our 

studies, at least for the upper subtidal species. In addition, some punctual records on the lower 

subtidal species have been reported by ENEA (1990), in the framework of the feasibility study 
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of “Penisola del Sinis - Isola Mal di Ventre” MPA. Nevertheless, it is worth stressing that after 

Guala et al., (2010), no other studies were performed in the area. 

Recently, within the GIREPAM project (Integrated Management of Ecological Networks 

through Parks and Marine Areas, Programme Interreg Maritime Italy-France 2014-20, 

http://interreg-maritime.eu/web/girepam), surveys on habitats 1120 (Posidonia beds) and 1170 

(Reefs) have been carried out in the MPA to assess possible disturbances from anthropic 

activities and to define management guidelines. These activities lead to the re-implementation 

of the CARLIT method during the year 2018 (Grech et al., 2019) and confirmed the high 

stability of the index after 10 years, testifying even today by a high ecological quality of the 

upper sublittoral habitats of the Sinis Peninsula, with continuous lush forests of the most 

sensitive species C. amentacea and C. crinita. As an integration of the CARLIT index, 

Unmanned Aerial Vehicles (UAVs) were tested in 2018 (Grech et al., 2019) to map the shallow 

communities and to compute Cystoseira species coverage along the study area. All the 

information reviewed and recent achievements are represented in Figure 1. 

Moreover, detailed surveys have recently been conducted and the distribution of rare species 

such as C. algeriensis has been mapped extensively along the coastline. Additionally, recently 

new records have been reported (Grech, 2019). On the basis of this review, along the Sinis 

Peninsula, 8 taxa of Cystoseira have been reported in the upper sublittoral fringe, namely: C. 

algeriensis, C. amentacea, C. barbata (stranded), C. brachycarpa, C. compressa var. 

compressa, C. compressa var. pustulata, C. crinita, C. sp.. Below the water mark 7 taxa are 

reported: C. algeriensis, C. brachycarpa, C. crinita, C. foeniculacea, C. montagnei, C. 

usneoides, C. zosteroides. Overall, 12 taxa occur, 4 of them are Mediterranean endemism. 

Further study on marine forests is currently underway within the project ‘Amelioration by 

Benthic habitat-formers under Climate Change’ (ABC2; Bulleri et al., 2018) in order to 

understand the extent to which marine belts and forests can reduce environmental stress, 

regulate and maintain associated benthic assemblages, through the establishment of a network 

of experimental setups along Mediterranean and Atlantic coasts of Europe (Bulleri et al., 2018). 

Data logging is currently in progress (Figure 2). 
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Discussion and Conclusions 

 

Although most marine forests are under protection within the framework of international 

agreements (Berne Convention, 1979, Habitats Directive, 1992; Barcelona Convention, 1995) 

fucalean species are currently not effectively protected on a Mediterranean scale, not even 

within marine reserve zones. Moreover, there is a lack of knowledge about their distribution, 

due to the paucity of continuous and widespread data. 

This contribution sheds light on the marine forests of the Sinis Peninsula and the Gulf of 

Oristano. Here, the upper subtidal species do not seem to be threatened by local stressors, 

although some of them (e.g. human trampling) may be increasing in recent years and should 

be quantified in future. The deep species, on the other hand, are quite vulnerable to fisheries: 

the branched species can be detached by fishing gears (i.e. trammel nets) that could be one of 

the main factors of decline (Thibaut et al., 2015; Grech, 2017). The study area, although 

scarcely studied from an algological point of view, is characterized by a high biodiversity of 

marine forest (Grech et al., 2019) and deserves further study. Deep species distribution data is 

lacking in the study areas as in most of the deep Mediterranean habitats (Ballesteros et al., 2009 

and references therein; Capdevila et al., 2016 and references therein). Moreover, there is 

paucity of information on how climate change could potentially affect marine forests and how 

they can cope with these stressors. Recent studies suggested that climate change could 

influence some critical steps of their life cycle and a create susceptibility of marine forests to 

climate change, forecasting that up to 94% of originally suitable areas could be lost (Buonomo 

et al., 2017). Marine forests display clear signs of regression that are still not clearly understood 

across their distribution range (Thibaut et al., 2015 and references therein). The risk of losing 

these forests before gaining awareness about them and their extension is high. There is an 

urgent need for a detailed mapping all along the Mediterranean Sea. The putatively low local 

human impact in the study area makes the Sinis Peninsula the ideal candidate to represent a 

natural laboratory for testing the response of marine forests facing climate change. Therefore, 

the current research addressed at improving knowledge of distribution, extent, status of these 

forests and the environmental variables (e.g. temperature, light, water motion) affected by 

climate change, is crucial. The area, with its high abundance of very sensitive species, can be 

useful for the scientific community as a source of reproductive stages for in situ and ex situ 

pilot restoration projects of degraded habitats, which are recently becoming more common 

along the Mediterranean Sea (Falace et al., 2018). In-depth knowledge of natural systems and 
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increased awareness of the ecosystem services they provide are crucial for an effective 

integrated management of coastal and marine areas aimed at reducing biodiversity loss and 

ecosystem degradation. As for marine forests, an effective tool can be represented by 

dissemination and outreach activities through participatory methodologies, e.g. Citizen Science 

projects (Grech, Buia, 2017) aimed at marine forest reporting 

(https://www.facebook.com/ProgettoFucales/; http://www.progetto-fucales.it/) and/or to their 

decline. Reconstructing historical baselines engaging citizens through Local Ecological 

Knowledge (LEK) and Citizen Science is feasible in highly populated zones (i.e. Grech, Buia, 

2017) with many stakeholders (e.g. the sharing of old and current photos from underwater 

photographers), strongly engaged with marine research institute activities. In the context of 

Sardinia, this approach is still in its infancy and seems complex at the moment, especially 

because the area is scarcely populated, with relatively low touristic influx and fishermen are 

generally not prone to collaboration and cooperation. 
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Fig. 1 Marine Forests of the study area. Bathymetry up to a depth of 45 m is represented on the map, 

with a step of 5 meters (Brambilla et al., 2019). Methodological CARLIT communities (e.g. C. 

amentacea 5 to 1) are based on Guala et al., (2010). 

 

 

 

2 Km 
 

 

 

 

CARLIT 2018 DATA 

 Sinis 

Peninsula 

Gulf of 

Oristano 



89 
 

 

Fig. 2. Amelioration by Benthic habitat-formers under Climate Change (ABC2) set-up (A), 

Temperature/Light logging data (B) detail of Hobo data logger and plaster clods for water motion 

assessment (C). 

 

  



90 
 

2.4 

Fallati, L., Polidori, A., Salvatore, C., Saponari, L., Savini, A., & Galli, P. (2019). 

Anthropogenic Marine Debris assessment with Unmanned Aerial Vehicle imagery and deep 

learning: A case study along the beaches of the Republic of Maldives. Science of The Total 

Environment, 133581. https://doi.org/10.1016/j.scitotenv.2019.133581 

 

Anthropogenic Marine Debris assessment with Unmanned Aerial Vehicle 

imagery and deep learning: A case study along the beaches of the Republic 

of Maldives  

 

Luca FALLATI a,b,, Annalisa POLIDORI c,, Christian SALVATORE c, Luca SAPONARI a,b, Alessandra SAVINI 

a,b,⁎, Paolo GALLI a,b 

 

a Department ofEarth and Environmental Sciences, University ofMilan-Bicocca, Milan, Italy  

 

b MaRHE Center (Marine Research and High Education Center), Magoodhoo Island Faafu Atoll, Maldives  

 

c DeepTrace Technologies S.R.L., Milan, Italy 

 

Abstract 

Anthropogenic Marine Debris (AMD) is one of the major environmental issues of our planet 

to date, and plastic accounts for 80% of total AMD. Beaches represent one of the main marine 

compartment where AMD accumulates, but few and scattered regional assessments are 

available from literature reporting quantitative estimation of AMD distributed on the 

shorelines. However, accessing information on the AMD accumulation rate on beaches, and 

the associated spatiotemporal oscillations, would be crucial to refining global estimation on the 

dispersal mechanisms. In our work, we address this issue by proposing an ad-hoc methodology 

for monitoring and automatically quantifying AMD, based on the combined use of a 

commercial Unmanned Aerial Vehicle (UAV) (equipped with an RGB high-resolution camera) 

and a deep-learning based software (i.e.: Plastic Finder). Remote areas were monitored by 

UAV and were inspected by operators on the ground to check and to categorise all AMD 

dispersed on the beach. The high-resolution images obtained from UAV allowed to visually 

detect a percentage of the objects on the shores higher than 87.8%, thus providing suitable 

images to populate training and testing datasets, as well as gold standards to evaluate the 

software performance. Plastic Finder reached a Sensitivity of 67%,with a Positive Predictive 

https://doi.org/10.1016/j.scitotenv.2019.133581
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Value of 94%, in the automatic detection of AMD, but a limitation was found, due to reduced 

sunlight. 
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Introduction  

 

Environmental contamination generated by Anthropogenic Marine-Debris (AMD) represents 

one of the most ubiquitous and long-lasting environmental change of our planet (Laist, 1987; 

Ryan, 2015). AMD is responsible of several ecological, ecotoxicological, economic and social 

impacts. However, the extent to which it is harming wildlife and plants, endangering human 

health and reducing the availability of ecosystem good and services (Laist, 1987; Rochman et 

al., 2013; Hengstmann et al., 2017) is still to be properly understood and quantified (Eriksen et 

al., 2014; Thompson et al., 2009). It has been estimated that from 5 to 13 million tonnes of 

litter enter the oceans each year (Jambeck et al., 2015; Geyer et al., 2017) and that plastic 

accounts for over 80% of the total AMD (UNEP 2005; Laist, 2011; Thiel et al., 2013; Penca, 

2018).  

Plastic is persistent and for the most part (roughly 60%) less dense than seawater (Andrady, 

2011; Ryan et al., 2009). Once introduced into the marine environment from multiple sources 

(both sea- and land-based), buoyant plastic can be transported by surface currents and winds 

(Kako et al., 2010), recaptured by shorelines (Kako et al., 2014) or degraded into microplastic 

(Barnes et al., 2009; Cinner et al., 2018). Distribution and accumulation of plastic into the 

marine environment are indeed controlled by circulation patterns and prevailing winds, coastal 

and seafloor geomorphology (Barnes et al., 2009; Galgani et al., 2000; Savini et al., 2014) and 

anthropogenic activities (Ramirez-Llodra et al., 2013). Well known hotspots of accumulation 

include the sea surface, where aggregations of a large amount of persistent and light plastic 

take place at ocean gyres, creating giant “garbage-patches” (Eriksen et al., 2014; Law et al., 

2010, 2014), but also submarine canyons, where litter originating from land accumulates in 

large quantities (Pierdomenico et al., 2019) and the shores, particularly beaches (Corcoran et 

al., 2009). Although data documenting the occurrence of plastic everywhere in the oceans 

(from the surface to the deep seafloor - Thompson et al., 2004 and Van Cauwenberghe at al., 

2013) are quite exhaustive, a consistent quantification of the total amount accumulated within 

the diverse marine compartments, has not been accurately outlined. While reliable estimations 

have been provided for the giant surface garbage-patches (Lebreton et al., 2018; Eriksen et al., 

2014), scarce information is available from the deep and poorly unexplored seafloor, but 

nonetheless for the shorelines, where only a few and scattered regional assessments were 

provided (Martin et al., 2018; Vlachogianni et al., 2018; Andrades et al., 2016; Ebbesmeyer et 

al., 2012). Plastic accumulation on beaches may represent the terminal phase of oceanic 
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transport or a transient stage with a successive washed to the sea following storms or tides 

movements (e.g. Shimizu et al., 2008). Knowing the accumulation rate on beaches and 

associated spatiotemporal oscillations would be a crucial information to refine global 

estimation on the dispersal mechanisms of plastic in the marine environment and its amount in 

each compartment. Most of our knowledge on the quantity of plastic accumulated on beaches, 

at different temporal scales, is based on sparse and regional monitoring activities, performed 

following different protocols and without standardized procedures, making difficult data 

integration and comparisons among regions (e.g. Galgani et al., 2015; Watts et al., 2017). 

Beach litter estimation, at places performed within the framework of dedicated monitoring 

activities (among others the Marine Strategy Framework Directive - Directive 2008/56/EC – 

Galgani et al., 2014), is also commonly subjective and time-labor consuming, since it relies on 

visual census where items are recorded along transects (Lavers et al., 2016; Lavers and Bond, 

2017). Only recently the use of aerial imagery has been proved to be an appropriate and 

efficient method to monitor beach litter (Kako et al., 2012; Kataoka et al., 2018; Sha et al., 

2018; Deidun et al., 2018). In particular, the use of Unmanned Aerial Vehicles (UAVs) 

equipped with RGB cameras, beside the advantage of the low-cost, allows the collection of 

high resolution imagery data (i.e.: at centimetre level - Casella et al., 2016; Flynn and Chapra, 

2014) over quite large areas (e.g. hundreds of hectares), also not easily accessible, with great 

flexibility in terms of time and frequency of data collection (i.e. decades of hectares per day), 

and under conditions where satellites would be of limited use (i.e.: high cloud cover, limited 

image resolution). Nevertheless, estimation of beach litter from RGB imagery of various 

sources (UAVs included), over large and even remote areas, still requires standardization of 

sampling techniques and data processing. Also, objective identification of plastic items on 

aerial imagery, based on automatic image classification is a novel field of investigation. To the 

best of our knowledge, only one work has been recently published on the use of UAV Remote 

Sensing combined to Artificial Intelligence (AI) for beach-litter monitoring by Martin et al. 

(2018). They proved the ability of machine learning (ML) in performing less time-labour 

consuming (40 times faster than humans) and subjective methodologies to detect AMD, but 

the best sensitivity reported in Martin et al. (2018) for AMD automatic quantification was low 

(i.e.: 44%).  

In our study, we therefore focused on the improvement of the sensitivity of the AI algorithm 

and the associated positive predicted values, which account for the false positive AMD. For 

this purpose, we provided a deep learning, rather than a random-forest, machine-learning 

approach, as previously implemented by Martin et al. (2018), being deep learning more 
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beneficial for object detection (LeCun at al., 2015; Chollet 2017; Guest at al., 2018). An 

essential output of our work is, in addition, the formulation of a combination of protocols to 

automatically detect and quantify beach litter along the shores of selected remote islands in the 

Republic of Maldives, defined by the 2010 UNPD’s Assessment of Development Results a 

vulnerable “Small Island Developing State (SIDS)”. The protection of the environment from 

pollution is indeed extremely important for SIDS as, aside from other reasons that are common 

to all countries, two important industries (tourism and fisheries) depend on a pristine 

environment (UNEP, 1999).  

Our study proposes an ad-hoc combination of protocols to: 1) collect UAV-images suitable for 

the training of a deep-learning algorithm, 2) provide smart gold standards to estimate the 

algorithm performances, 3) train and test the deep-learning algorithm in near real-time 

conditions. We believe that our work could be useful to propose new best-practices for applying 

deep learning to automate the procedure of litter detection and quantification by UAV systems 

on beaches, which in turn could offer an instrumental tool for sustainable solid waste 

management.  
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Materials and Methods 

 

Study Area  

The case-study area consists of different islands of the Republic of Maldives (Fig. 1a), an 

archipelago composed of 1192 atoll islands stretched for 860 km, in North-South direction, 

located in the middle of the Indian Ocean. The islands are grouped in 20 administrative atolls 

and divided under three distinct categories: inhabited, uninhabited and resort islands (Fallati et 

al., 2017). The archipelago, with its peculiar geographical location and its 644 km of coastline, 

represents the perfect place for the deposition of plastic debris that are drifted from the surface 

currents of the Indian Ocean (Barnes, 2004). In addition, local sources of littering are 

represented by the waste production on the inhabited islands and those discharged into the sea 

from the numerous boats that daily cross the atolls. In the Maldives, the high dispersion of land 

mass and population, both of them spread over a distance of 860 km, creates a negative effect 

on solid waste management issue. With the exception of resort islands, which represent the 6% 

of the total archipelago surface and where beach clean-up is a daily routine operated by resort 

employees, most part of the coastline of each Maldivian island, is indeed covered, to an 

undefined extent, by AMD coming from different sources (Fig. 2) 

As testing regions for our study, we selected three different coastal areas. Two of these islands 

(Adangau and Jinnathuga) are in Faafu Atoll, one (En’Boodhoo) is in Alif Dhaalu Atoll (Fig. 

1b, c). The three islands were chosen as representatives of small-size uninhabited islands of the 

archipelago, where beach-cleaning cannot be guaranteed by resort employees or government 

personnel. En’Boodhoo is an island of 1.8 ha, located in the western lagoon of Alif Dhaalu 

Atoll. The island is desert, and the human presence is mainly related to the safari boats that 

stop nearby, and to touristic picnic and barbeques on the beach. Adangau (1.1 ha) and 

Jinnathuga (1.9 ha) are two islands of Faafu Atoll located in the Atoll’s eastern lagoon.  These 

two are similarly used as picnic island from the inhabitants of the Atoll. The primary sources 

of litter on these islands are both the direct release of waste and oceanic transport. The target 

testing area within the islands was selected as a portion of the beach with direct access to the 

sea, different exposition to the winds and currents, with the presence of psammophytes plants 

and natural debris (leaves, roots and twigs) as well as litter. 
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Aerial Surveys  

 

UAV  

In order to achieve large-scale reproducibility of a protocol to collect UAV images, we propose 

to use a consumer-grade UAV, equipped with a high-resolution RGB camera, to survey the 

study area. For this purpose, we used the DJI Phantom 4 drone, a quadcopter with high sensing 

qualities, equipped with a 1/2.3” CMOS camera sensor (12.4 MP) that can collect images with 

a resolution (R) of 4000x3000 pixels and an integrated GPS/GLONASS system. Compared to 

fixed-wing UAVs, that can cover with a single flight a larger area and can handle a higher 

quality camera, Phantom 4 is lightweight, easy to carry, and can smoothly fly at low altitude to 

obtain good ground-resolution images. Moreover, easy take off and landing procedures make 

this drone an outstanding, cost-effective solution for low altitude and short-range studies. All 

the metadata are recorded in an EXIF (Exchangeable Image File Format) file, which includes 

information on the pictures such as shutter speed, apertures, ISO and GPS coordinates (latitude, 

longitude and altitude). Flight time with a single battery is roughly 25 min. 

 

UAV Survey Protocols  

Three different altitudes, namely 10, 15 and 35m were considered to define the optimal 

protocol in terms of image quality and number of images required to cover the area of interest 

(AOI):  

1) ground sample distance (GSD) being defined as: 

 

𝐺𝑆𝐷 𝑚𝑚/𝑝𝑖𝑥 =
𝑆𝑊 × 𝐹𝐻

𝐹𝐿 × 𝐼𝑊
  

 

where SW is the sensor width, FH is the flight high, FL is the focal length of the camera, and 

IW is the image width (Ventura et al., 2018), and 

2) number of images of interest (IOI) being defined as: 

 

𝐼𝑂𝐼 =
𝐴𝑂𝐼 [𝑚2]

𝐷 [𝑚2]
=

𝐴𝑂𝐼 [𝑚2]

𝑅 [𝑝𝑖𝑥𝑒𝑙𝑠2]  𝐺𝑆𝐷2[𝑚2/𝑝𝑖𝑥𝑒𝑙𝑠2]
 

      

where D is the dimension of the area covered by a single image at a specific GSD, and R is the 

resolution in terms of pixel of the images, as defined in paragraph 2.2.1. 
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The surveys were planned using DJI GS PRO (www.dji.com/it/ground-station-pro) a free Ipad 

application released by DJI. This app allows designing all the aspects of the drone mission: 

generate optimal flight paths, set camera parameters and directly monitor data acquisition on 

the Ipad screen. For all the surveys we set a fix flight altitude with a frontal and lateral overlap 

of 80 % and 70 %, respectively, a -90° gimbal angle (nadir orientation), a shooting interval of 

2 seconds (equal time interval mode) and a constant velocity of 1.3 m/s. Before starting the 

UAV overflight weather condition (wind speed, cloud coverage) and the presence of obstacles 

along the path was checked. A metric tape was laid on the beach (e.g. for several meters), in 

order to check the spatial accuracy of the orthomosaic during the postprocessing. Once all the 

parameters were set, the UAV automatically took off  and completed the mission (e.g. 

trajectory in Fig. 3 a, b). 

 

Reconstruction of the AOI 

The images were processed by Agisoft PhotoScan (www.agisoft.com), a commercial Structure 

from Motion (SfM) software, widely used by the scientific community for its user-friendly 

interface, spontaneous workflow and the excellent quality of the point cloud output (Burns at 

al., 2017; Cook, 2017; Bonali et al., 2019). The process is dived in three main steps (Fig. 3 c): 

drone photos alignment using high accuracy setting; high-quality dense 3D point cloud 

generation; creation of a Digital Terrain Model (DTM) from the dense could. As final outputs 

we obtained, from the DTM, orthomosaics with a GSD of  4.4 mm/px,  8.2 mm/pix and 14 

mm/pix respectively for the three flights altitude (10, 15 and 35 m). The models are geo-

referenced thanks to the coordinates stored into the EXIF files of each image. For more 

extensive information on the process, see Verhoeven (2011) and Ventura et al., (2016). The 

orthomosaics generated from images collected at 10 m altitude, were considered as our AOI 

and used for data assessment.  

 

Gold Standards 

 

In-Situ Ground Assesment  

We performed an in-situ ground assessment (GA) of the AOI, aimed at quantifying the AMD 

on the studied shorelines in order to calculate the efficiency of the UAV survey-protocols. This 

quantity represents our first Gold Standard (GA-GS). As a first step, a recognition of the 

investigated shorelines was conducted to detect AMD. The items found during the inspection 

http://www.dji.com/it/ground-station-pro
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were counted and classified by the operators into different subtypes (Table 1). The category 

named “other”  refers to objects and fragments that were smaller than 5 cm, which is the 

minimum size of the target objects that we decided when defining the optimal protocol 

described in terms of the image quality. Then, these objects were re-arranged in the specific 

AOI to be monitored by UAV overflights.  

 

Image Screening 

In order to evaluate the quality of the images, a comparison was made between the number and 

type of items counted by the operators during the in-situ GA on the beach, and the number and 

type of items counted by an operator during an image screening (IS) of the orthomosaic on a 

PC. The AMD recognised via IS represents our second GS (IS-GS), and a smart best-estimate 

of the actual GA-GS. Indeed, proving the feasibility of identifying and estimating the AMD by 

screening images collected by UAVs, rather than by operators on the ground, is crucial to 

choose the optimal UAV survey-protocol for the collection of images suitable for deep 

learning, and to establish procedures that allow avoiding the time-consuming GA of the 

operators. 

 

The Deep-Learning Algorithm 

In order to allow easy access to AI non-expert users, we used a commercial software – 

PlasticFinder (Italian software license 012677 D011755, DeepTrace Technologies, 

www.deeptracetech.com/ ) – to detect and quantify AMD. The core algorithm of the software 

is a deep-learning convolutional neural network (CNN). CNNs are a class of multilayer 

architecture suitable for processing RGB images for classification and object detection tasks, 

where the stack of convolutional layers allows for translation invariance - i.e. the net is trained 

to recognize an object independently of its position within the image. 

The adoption of a deep learning approach has one main motivation. In order to provide a tool 

that could favour a scalable approach, i.e. adaptable to different scenarios, a large image-

database was needed to provide a general training set, i.e. a set of images to let the algorithm 

learn the classes of interest. The main advantage of deep learning is that it automates the most 

critical part of a ML workflow: the feature extraction. In contrast to conventional ML methods 

(e.g. Random Forest, Support Vector Machine, Gradient Boosting Machines), that require 

hand-design features as input, a neural network is made of trainable multilayers that learn 

automatically the features through geometric transformations and gradual adjustments of 
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learning weights with respect to a feedback signal, thus being more suitable than conventional 

ML for large dataset training (LeCun 2015, Chollet 2017). The PlasticFinder CNN has been 

tailored for 5 classes of images, namely: “vegetation”, “sea”, “sand”, “AMD” and “other” (i.e. 

sand with small pieces of wood, stones, algae). UAV images obtained from the survey of 

Jinnathuga island were used for the collection of the training set (Fig. 4)  

The island was chosen on the basis of the fact that all the classes of interest were present. 

Therefore, we selected training images, within the AOI, representing the classes of interest. For 

each class, a balanced number - of the order of thousands – of different samples was collected, 

in order to tailor the algorithm on the specific experimental settings. A subsample  of UAV 

images (N=3) collected on the other two islands, Adangau and En’Boodhoo, were used for the 

testing set. The surveys of the testing-set islands were finalised at different experimental 

conditions (Table 1) which allowed to investigate the influence of climate, light and shadow 

on the efficacy of the algorithm. When a tested image is input in the software, it returns pixel-

wise classification heatmaps, representing a pixel probability-map for each class, and a 

bounding-boxes map with the detected AMD.  

The performance of the automatic detection, classification and quantification were measured 

by comparing the results with the two GS. The metric is expressed in terms of true positive 

(TP), false negative (FN) and the false positive (FP) items, rather than in terms of pixels, for 

an easier interpretation. The statistical measure of the performances is expressed through the 

Sensitivity = TP / (TP+FN), the Positive Predictive Value PPV = TP/(TP+FP), and the 

harmonized mean of Sensitivity and PPV, given by the F-score = 2TP/(2TP+FP+FN). 
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Results 

 

Optimization of UAV Survey Protocols 

The optimal protocol for the UAV survey, as a compromise between image resolution and 

number of IOI to cover the AOI, was found at a UAV altitude of 10 m, corresponding to a GSD 

of 4.4 mm/pixels. The know dimension of the objects (metric tape) in the orthomosaics strongly 

matches the true dimensions measured on the beaches with an average accuracy of ≈1mm. 

Table 1 reports the different AOI covered following the optimal protocol for three selected 

islands, namely Jinnathuga, Adangau and En’Boodhoo islands, and the corresponding number 

of minimum IOI.  

 

Gold Standards  

Table 1 reports the experimental results of the in-situ GA and of the IS of the AOI. The 

matching scores express the ratio of the AMD found via IS to the AMD found during the GA. 

This score accounts for the estimated error in the use of the GS produced via IS.  

 

The Deep-Learning Algorithm 

Training, testing and performance  

The training of the tailored CNN, performed on images from Jinnantuga-island (Fig. 4), 

achieved a validation accuracy higher than 95%. Adangau and En’Boodhoo-islands images 

(Fig. 5-a. – Fig 6-a.) were used to test the algorithm. A pixel-wise probability heat-map of each 

input image has been obtained by the software, as well as a bounding-boxes map for the 

detected AMD (Fig. 5-a. – 6-a.). In particular, for each pixel, a probability is given to be 

classified as AMD, thus allowing a visual understanding of the specific areas that might be 

subjected – with a different probability of risk exposure – to the presence of plastic debris. 

Figure 5-c. and 6-c., shows bounding-boxes maps with all AMD detected. Table 2 reports the 

numerical results obtained by comparing the software output and the IS-GS for each image. 

The results highlight the average software-performance for En’Boodhoo drops of a factor of 

about 3 with respect to the Adangau case.  

Therefore, these results give the evidence that the collection of UAV- images suitable for the 

training and testing of the deep-learning algorithm, should rely on specific recommendations 

regarding the optimization of the UAV survey, the collection of the GS, and the development 

of the algorithm itself
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Discussion 

 

The UAV survey and the AMD detection  

The low cost, the high resolution and the high flexibility of UAVs quickly turned out to make them 

extremely versatile and useful tools for the investigation and analysis of a number of environmental 

issues. Small UAVs are used indeed with increasing frequency, in many research activities with 

applications in different fields: structural geology (Bonali et al., 2019), forestry sciences (Baron et 

al., 2018; Mlambo et al., 2017), mapping of sensitive marine habitats (Ventura et al., 2018), marine 

megafauna surveys (Colefax et al., 2018; Kiszka et al., 2016), coral bleaching detection (Levy et al., 

2018). These platforms, especially the commercial drones, are proving to be useful tools for high-

resolution remote sensing data collection, especially because of their small size, the increased lifetime 

of the batteries and the possibility to plan autonomous flights with user-friendly ground station 

software. Moreover, SfM algorithms allow obtaining accurate Digital Terrain Models (DTMs) and 

orthomosaics over large areas.  

AMD was monitored worldwide through aerial surveys, along the beaches, since 2012 (Kako et al., 

2012; Deidun et al., 2018; Kataoka et al., 2018; Martin et al., 2018; Sha et al., 2018) but explored 

locations are still limited (Fig. 7). Besides, more significant, it is the absence of a standardized 

protocol for data acquisition and elaboration. Previous studies, performed using a balloon equipped 

with a digital camera (Kako et al., 2012) and aerial photographs (Kataoka et al., 2018), faced problems 

related to the orthorectification and to the pixel-size of the images: a GSD of 10 cm/pix allowed 

identifying only groups of debris and not the single objects. The recent adoption of UAVs for AMD 

monitoring overcome a number of limitations mainly related to the flight altitude and to the GSD, to 

the orthorectification of the images, and to the repeatability of the surveys in a short time. However, 

the data-processing procedures are not uniform, ranging from visual interpretation of the images 

(Deidun et al., 2018) and spectral profile analysis of litter (Sha et al., 2018), to the use of machine 

learning methods (Martin et al., 2018). The use of AI classifiers (Martin et al., 2018) is more complex 

for different reasons, among which the lack of publicly available large databases (providing adequate 

images to train algorithms) is notable. The difficulty of developing scalable approaches, i.e. 

procedures that do not depend on local environmental constrains, is also a major issue for the use of 

AI clasisfiers. 

 

The advantages in using UAVs, in terms both of resolution and monitoring repeatability, match 

perfectly with the need of understanding the pattern of aggregation in a remote area such as the 

Republic of Maldives. Here, a considerable amount of marine litter has been reported, despite the 
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remoteness of the location (Imhof et al., 2017). However, Imhof et al. (2017) highlighted the need for 

a robust protocol, allowing extensive sampling in space and time to collect scientifically sound data 

(Imhof et al., 2017). Remote-sensing studies, related to the accumulation and transportation of AMD, 

were not conducted before this work in the Republic of Maldives (Fig. 7). The lack of such monitoring 

studies for this area is significant, considering that plastic debris from the rivers of South Asia 

contributes to 67% of the global annual input (Lebreton et al., 2017) and that countries on the Indian 

Ocean are among the principal producer of mismanaged plastic waste (Jambeck et al., 2015). Besides, 

it is not clear where all this plastic, that should accumulate in the Indian Pacific, gyre is going (Mheen 

et al., 2019). Thus, the proposed methodology will improve and standardise the data collection of 

marine-litter accumulation on beaches and shorelines, gathering valuable and comparable data, even 

in remote and isolated areas. 

 

The results of our study confirm most of the advantages of using a consumer-grade drone to carry out 

environmental monitoring. In particular, the use of a DJI Phantom 4 drone allowed to speed up 

considerably the standard walking beach survey and to access remote areas such as Maldives. 

On the surveyed islands, anthropogenic debris were found everywhere: on the water’s edge, just left 

there from waves and tides; on the upper part of the beaches and in the bushy coastal vegetation, 

likely carried there from storm tides and winds, or left by local tourists. The selected GSD allowed 

the identification and categorization of debris for each single detected item, making our remote 

observations comparable to the ones performed by operators on the ground. In fact, the matching 

between the ground-assessment and the visual screening of the images is higher than 87% (Tab. 1). 

In addition, the results of our survey protocol shows that the majority of the detected objects (Tab. 1) 

were plastics bottles and aluminium cans. Particularly abundant were also flip flops on En’Boodhoo 

and Adangau. These three categories of debris were observed with different degradation level: from 

brand new, with labels and the colours still intact, to partially disrupted. This can indicate the 

heterogeneity of the sources: some of them can be just washed up on the shore from the closest 

inhabited island or discharged from boats that passed nearby; others may have float in the ocean for 

thousands of kilometres before reaching the shore. Instead, the higher presence of plastic bags (foods 

wraps and plastic bags) on Adangau island is most probably due to the use of the island as a picnic 

and barbeque location from the inhabitants of the atoll.  

The graphical outputs and the numerical results for Adangau Island show good performances (Figure 

5, Table 2) and, in particular, in the face of an average sensitivity of 67%, the average PPV reaches 

94%. This means that the deep-learning algorithm performance is affected by a non-negligible 

number of FN items – impacting on the sensitivity – but also that, on the other hand, the software is 
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highly specific in the ability to recognize AMD with respect to FP items. In addition, it should be 

noted that, for Adangau island, the software performance is quite stable, even when the number of 

real AMD-items on the beach increases (Table 2). The pixel-wise classification heatmaps for 

En’Boodhoo-island, shown in Figure 6-b, qualitatively confirm the good ability of deep learning 

algorithm, in recognizing the presence or absence of elements belonging to the “sea” class. Also, the 

software correctly reports on a low-probability with respect to the presence of vegetation (below 

30%). On the contrary, the heatmaps for the other classes draw attention to issues that become evident 

when looking at the zoomed bounding-boxes maps in Figure 8, and to the quantitative results shown 

in Table 2. In this case, the average software-performance for En’Boodhoo drops of a factor of about 

3 with respect to the Adangau case. This limitation can be explained by considering the different 

lighting conditions. In particular, Adangau-island images were collected at 12 am of a sunny day, 

therefore with similar sunlight-conditions of the testing set of Jinnathuga island. On the contrary, 

En’Boodhoo images were collected at 5 pm, and the shadows in the proximity of footprints (Fig.8) 

or of real AMD, represent pitfalls for the algorithm, as clarified by the high number of FP items in 

Table 2. As a matter of facts, the software was not trained to recognize footprints or shadows, and 

therefore such a limitation restricts the use of PlasticFinder, in its present version, to specific sunlight-

conditions. For these reasons, we suggest conducting the survey with the sun high on the horizon, in 

order to avoid excessive shadows on the surveyed areas. However, to date, and to the best of our 

knowledge, there is only another algorithm presented to the scientific community, that has been 

developed for the specific purpose of automatically detect and quantify AMD along the shores by 

using a combination of UAV images and AI. In their pioneering work, Martin et al. (2018), focused 

their efforts in the Saudi-Arabian shorelines. They faced the highly-challenging task of both detecting 

and classifying the AMD typology with a series of multi-class random-forest classifiers, based on the 

extraction of HoG features. The authors validated the feasibility of using AI for AMD detection, but 

pointed out that the use of deep learning would have been more beneficial with respect to their 

approach that achieved a maximum sensitivity of only 44%. Therefore, our work represents the first 

implementation to automatically detect and accurately quantify AMD, based on a deep-learning 

approach. Results in Table 3 point out that PlasticFinder performances give better results, with respect 

to all the metrics, especially if used in the appropriate sunlight conditions. In particular, PlasticFinder 

PPV is much higher than the one obtained by Martin et al. (2018), allowing for a more specific tool 

to alarm on and quantify the presence of AMD. 

In fact, it is important to highlight that, in order to monitor the presence of AMD and to know which 

are the areas that require an urgent intervention (i.e. those where AMD accumulate the most), it is 

essential to have a tool that is able to detect only AMD, without mistaken false positives. To this 
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extent, reaching a high PPV is more crucial than a high Sensitivity. Also, the fact that the reached 

Sensitivity is constant, despite the different loads of litter on the beach, is also a good result because 

it shows that the more is the AMD, the higher is the litter detected by PlasticFinder, i.e. this 

technology is able to detect accumulation zones. 

These results reflect the major advantage of deep learning, with respect to conventional ML methods, 

which is the fact that it is not necessary to pre-transform data (e.g. an image) into selected features to 

feed models, but data can be input into neural-network models to let them automatically identify the 

best representations that allows tasks such as detection or classification (LeCun et al., 2015). 

 

Best-practices optimization and future improvements  

In order to optimize and enhance best practices for AMD remote-sensing monitoring, further 

improvements should be applied to the adopted protocols and methods.  

In terms of the UAV survey, we reckon that once all the flight parameters have been set, the 

monitoring can be carried out from a small boat, in the proximity of the shores, without the need of 

reaching the beach, often inaccessible for the presence of coral reefs all around the islands. Therefore, 

this methodology can be particularly useful in geographical sites, such as the Maldives, where the 

presence of many small remote uninhabited islands, and the need to optimise the AMD beach-

monitoring, represents a pressing matter.  

In terms of the ground assessment protocol, such assessment is used to validate the reliability of the 

methodology, but, in implementing the protocol, it is not supposed to happen every time (otherwise 

the protocol would lose its time-efficiency). For this reason it has been not included in the Protocol 

recommendations (Table 4). In general, the beach should be left untouched before the UAV survey 

to avoid footprints or other environment manipulations that could affect the methodology 

performance, especially in remote places.  

Another important remark is that, for a relevant fraction of the AMD, the deposition on the beach is 

only a transitory phase before being taken up by the currents to resume the floating travel in the ocean. 

Instead, other AMD can be trapped on the upper part of the beach, where environmental factors and 

the erosive action of the sand can accelerate the plastic degradation processes. The microplastics 

particles (< 5mm) produced by the degradation of the AMD trapped on the upper part of the shore 

can enter in the sediments or can be released as contaminants in the water of the lagoon (Saliu et al., 

2018; Saliu et al., 2019). Therefore, fast and efficient data collection and image analysis of the 

distribution of AMD on the shore, as well as specific AI tools for its automatic and objective 

assessment are necessary, but not sufficient, since microplastic is lost from this detection and 

quantification. However, the distribution and quantitation of AMD, as obtained from our protocol, 
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could be used to understand which are the most impacted areas, and the AMD depositional seasonal 

trends connected to the Indian Ocean currents patterns (Mheen et al., 2019). The creation of an 

integrated model could allow stakeholders (e.g. governments, NGO) using this information in order 

to promote mitigation actions, such as specific citizenship awareness initiatives, beach–clean up 

events, but also addressing – with a data-driven approach - the interception of the floating AMD, 

before reaching the shorelines. 

 

Finally, we would suggest some improvement for PlasticFinder, for example, by a more in-depth 

training, with the aim of avoiding sunlight-conditions dependence for its use, which represents, to 

date, one of its major limitations. Also, optimization should be implemented to scale up the algorithm 

speed and ability to process full orthomosaic images, overcoming time-scale limitations due to 

processing of a large amount of data. In Table 4, we summarize and suggest an optimal protocol, with 

key recommendations.  
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Conclusion  

 

Our work was aimed at proposing an efficient and reliable monitoring protocol, to address a pressing 

worldwide environmental issue such as AMD deposition along the shores. Low altitude remote-

sensing data are essential for obtaining a synoptic overview of extended areas, and UAVs are 

powerful tools to acquire them. Our study, confirmed the use of a commercial drone for AMD 

monitoring as a fast and reliable surveys methodology. The use of UAV is instrumental to survey 

remote areas and the spatial resolution achieved in the collected images allowed to detect a percentage 

of the objects on the shores higher than 87.8%. A deep-learning based software, PlasticFinder, has 

been used for the automatic detection and quantification of AMD, providing analysis of the UAV 

collected images. In the Maldivian case study, the overall performances were good, reaching a PPV 

of 94% with the better sunlight conditions, much greater than the only state-of-the-art AI algorithm 

so far published in literature. The only critical limitations, observed in our study, are determined by 

environmental circumstances encountered during the survey, and especially sunlight conditions and 

the associated terrain shading effects: restrictions are given for the images that can be analysed with 

the deep-learning algorithm in its present version, where the PPV is reduced to 54%.  
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Tables and Figures 

 

 

Fig. 1. Geographic location of the study area, Republic of Maldives (a.), Alif Dhaalu and Faafu Atolls (b.), 

and islands selected as testing sites (c.): 1 En'Boodhoo, 2 Jinnathuga, 3 Adangau. 
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Fig. 2. Debris accumulation in the Maldives: (a) one of the ferries port in Malè (capital city) with evident 

accumulation ofplastic bottles released in the ocean from the boats or from the streets of the city; (b) Litter and 

plastic debris accumulated near the shore of Thilafushi, the only landfill island of the archipelago; (c, d) plastic 

waste deposited by the high tide on the beach of Adangau; (e, f) plastic waste deposited in the bushes and on 

the shores of En'Boodhoo. 
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Fig. 3. Drone survey over Adangau (a.) sandy long beach. The path followed by the drone (b.) is overlayed on 

the high-resolution orthomosaic that was generated applying the SfM workflow (c.) to RGB images. 

v
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Table 1. AOI, number of minimum IOI, climate, light and weather conditions of each investigated Maldivian 

island during the UAV survey and the in-situ ground assessment (GA). The number of items collected during 

the GA on each beach is listed per each class, and the items identified via image screening (IS) via PC are also 

reported. 

 

 Jinnathuga Adangau En’Boodhoo 

AOI (m2) 216 1056 225 

IOI 1 5 1 

Climate (Month) April November October 

Light (Time) 12 pm 12 pm 5 pm 

Weather (Conditions) Sunny Sunny Cloudy 

Use Training Set Testing Set Testing Set 

AMD Class GA IS GA IS GA IS 

Lighter 4 1 1 1 4 4 

Bottle 21 21 50 54 47 43 

Straw 1 0 1 0 0 0 

Net 11 8 3 3 2 3 

Plastic Bag 7 7 43 50 3 2 

Aluminum Can 8 6 11 13 21 14 

Plastic containers 3 3 1 1 12 7 

Plastic utensils 0 0 20 8 1 0 

Flip Flop 1 1 13 8 32 29 

Other 26 25 4 3 13 19 

TOTAL 82 72 147 141 135 120 

Matching  Score (%) 87.8 95.9 88.8 

 

 

Fig. 4. Examples ofJinnathuga island images (a., b. and c.), used as training set for the deep-learning algorithm. 

Note the presence ofthe different classes in the images, in particular “AMD” in (a), “sand” in (a), (b) and (c), 

“sea” in (b), “vegetation” and “other” in images (a) and (c).  
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Fig. 5. Canvas on the left (a.), fromtop to bottom: testing-set images A1, A2 and A3 for Adangau-island. Central canvas (b.), from top to bottom: PlasticFinder 

pixel-wise classification heatmaps for Adangau-island images A1, A2 and A3 representing, respectively, the classes sea (A), sand (B), vegetation (C) other/AMD 

(D), and AMD(E)with the probability scale ranging from 0 to 1. Canvas on the right (c.), fromtop to bottom: PlasticFinder bounding-boxesmaps for the Adangau 

island images A1, A2 and A3. Each green bounding box is identified as an item of AMD by the software. 
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Fig. 6. Canvas on the left (a.), from top to bottom: testing-set images E1, E2, E3 for En'Boodhoo island. Central canvas (b.), from top to bottom: PlasticFinder 

pixel-wise classification heatmaps for En'Boodhoo-island images E1, E2, E3 representing, respectively, the classes sea (A), sand (B), vegetation (C), other/AMD 

(D), and AMD (E) with the probability scale ranging from 0 to 1. Canvas on the right (c.), fromtop to bottom: PlasticFinder bounding-boxesmaps for the  
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Table 2. Results for the Adangau and En’Boodhoo testing-set images A1, A2, A3 and E1, E2, E3, respectively. 

Average scores (AVG) are also given for each set. AMD accounts for the total real items in each image, as 

identified by the gold standard. True positive (TP), false negative (FN) and false positive (FP) items are 

combined to express the software performance in terms of sensitivity, PPV and F-score. 

 

IMG AMD TP FN FP Sensitivity (%) PPV (%) F-score (%) 

Adangau 

A1 37 25 12 0 0.68 1.00 0.81 

A2 58 40 18 4 0.69 0.91 0.78 

A3 89 56 33 6 0.66 0.90 0.74 

AVG 61.3 40.3 21 3.3 0.67 0.94 0.78 

En’Boodhoo 

E1 71 23 48 66 0.32 0.26 0.29 

E2 43 5 38 6 0.12 0.45 0.19 

E3 98 25 73 65 0.26 0.28 0.27 

AVG 70.6 17.6 53 45.6 0.23 0.25 0.33 
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Fig. 7. Geographic distribution ofstudies that used remote sensing techniques tomonitor anddetect beachdebris: 

1Vancouver Island, Canada (Kataoka et al., 2018); 2Malta (Deidun et al., 2018); 3 Saudi Arabia (Martin et al., 

2018); 4 Fuzhou, Fujian, China (Sha et al., 2018); 5 Seto Inland Sea, Japan (Kako et al., 2012); 6 Republic 

ofMaldives, present study area 

 

 

Table 3. Comparison between results from Martin et al. (2018) (average on the overall results), PlasticFinder 

results for Adangau island and averaged results for Adangau and En’Boodhoo island 

Algorithm TOT TP FN FP Sens (%) PPV (%) F-score (%) 

Martin et al. 415 164 251 1941 0.40 0.08 0.13 

PlasticFinder 

(Adangau) 
61.3 40.3 21 3.3 0.67 0.94 0.78 

PlasticFinder 

(AVG A/E) 
131.9 57.9 74 48.9 0.44 0.54 0.49 

 

 

 

Fig. 8. Examples ofshadows in the proximity offootprints (left image) and ofitems ofAMD (right image), that 

aremistaken as AMD by the software, representing pitfalls for the algorithm in its present version. 
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Table 4. Optimal protocol and key recommendations for the optimization of the UAV survey, the collection 

of gold standards and of UAV images suitable for the training and testing of a deep-learning algorithm. 

 
UAV Survey  

Flight Altitude 10 m 

GSD 4.36 mm/pix 

Camer Gimbal Orientation -90° (nadir orientation) 

Images acquisition along fixed paths 80% frontal overlap 

 70% lateral overlap 

 2 seconds of shooting interval 

 1,3 m/s costant velocity 

Gold Standard  

Ground Assessment AMD inspection and subtype classification (to be limited  to few 

representative areas for the validation of methodology)  

 AMD Size > 5 cm 

Image Screening AMD counting and subtype classification 

 Matching Score > 80% 

Deep Learning   

Training # of images per class ~ 103  

 Validation accuracy for tailored CNN > 95% 

Testing # of images ~ # IOI 

 Use IS-GS to test performances with metrics 

 Use GA-GS to estimate error on the IS-quantified performance 
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Chapter 3 

Moving below the surface: underwater photogrammetry and acoustic 

remote sensing  

  



122 
 

3.1 

Anelli, M., Julitta, T., Fallati, L., Galli, P., Rossini, M., & Colombo, R. (2017). Towards new 

applications of underwater photogrammetry for investigating coral reef morphology and habitat 

complexity in the Myeik Archipelago, Myanmar. Geocarto International, 6049(December), 1–14. 

https://doi.org/10.1080/10106049.2017.1408703 

 

Towards new applications of underwater photogrammetry for investigating coral 

reef morphology and habitat complexity in the Myeik Archipelago, Myanmar 

 

Martina ANELLI a, Tommaso JULITTA a, Luca FALLATI b, Paolo GALLI c, Micol ROSSINI a, Roberto COLOMBO a 

 

a Remote Sensing of Environmental Dynamics Lab, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy 

b 
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy 

c Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy 

 

Abstract 

Photogrammetry represents a non-destructive, cost-effective tool for coral reef monitoring, able to 

integrate traditional remote sensing techniques and support researchers’ work. However, its 

application to submerged habitats is still in early stage. We present new ways to employ Structure 

from Motion techniques to infer properties of reef habitats. In particular, we propose the use of Digital 

Surface Models and Digital Terrain Models for assessing coral colonies extension and height and 

discriminating between seabed and coral cover. Such information can be coupled with digital rugosity 

estimates to improve habitat characterisation. DTM, DSM and orthophotos were derived and used to 

compute a series of metrics like coral morphologies, reef topography, coral cover and structural 

complexity. We show the potentialities offered by underwater photogrammetry and derived products 

to provide useful basic information for marine habitat mapping, opening the possibility to extend 

these methods for large-scale assessment and monitoring of coral reefs. 
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Introduction 

 

Coral reefs are often called the ‘tropical rainforests of the sea’ for their astounding richness of life. 

Indeed, they are unique habitats in terms of productivity and biodiversity: they sustain the food chain, 

provide shelter for a wide variety of marine life, act as a buffer for shorelines and contribute to the 

creation of sand for beaches (Moberg and Folke 1999). They also support the subsistence of local 

communities, commercial fisheries and are home to organisms able to be potential source of 

medicines (Moberg and Folke 1999). According to data from the Food and Agriculture Organization 

of the United Nations (FAO), which have been reported by the CBI Market Information Database, 

more than 2 million tonnes of marine fish is captured each year in the Burmese coastal areas. As 

regards tourism, coral reefs attract foreign and domestic visitors and generate revenues, including 

foreign exchange earnings, in over 100 countries and territories. Some 30% of the world’s reefs are 

of value in the tourism sector, with a total value estimated at nearly US$36 billion per year (Spalding 

et al. 2017). 

Moreover, corals embody a relevant source of recreation and tourism. Climate change and anthropic 

stress represent the main threat for the integrity of such habitats and the setting-up of management 

plans is becoming ever more urgent (Rogers et al. 2014). 

A detailed characterization of reef areas is essential and coral mapping can provide many useful 

information for planning conservation strategies. For example, coral cover, coral biodiversity and 

morphology, reef health status and topographic complexity (rugosity) can be considered key factors 

related to coral reef resilience (Ferrari et al. 2016). 

Remote sensing techniques represent a powerful tool for characterizing morphology and habitat 

complexity in coral reefs. Indeed, several studies demonstrated the successful use of spectral 

information for mapping coral cover at medium–large scale (from tens to hundreds of square 

kilometres), by exploiting traditional remote sensing techniques like airborne or satellite systems, 

multispectral or hyperspectral devices (Hochberg et al. 2003; Joyce and Phinn 2013; Joyce et al. 2013; 

Hedley et al. 2016). However, there are some limitations concerning these techniques, primarily 

imposed by the spectral variability of benthic types and sub-pixel mixing at large scales (Knudby et 

al. 2007; Hedley et al. 2012). 

Photogrammetric analysis and Structure from Motion (SfM) techniques can integrate traditional 

remote sensing techniques, providing high-resolution models (pixel size of few millimetres) able to 

reproduce small areas at a significant scale. The application of photogrammetric techniques is 

increasing due to technological evolution and is becoming more relevant for underwater remote 

sensing studies, as it represents a cost-effective method for the monitoring of coral reefs (Burns et al. 
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2015) and a valid support to human interpretation (Williams et al. 2012), especially on large areas. In 

addition, photogrammetry is a non-destructive technique allowing the acquisition of information 

without coral removal and is less time-consuming than visual estimation, so larger areas can be 

covered (Bythell et al. 2001; Cocito et al. 2003; Gutierrez-Heredia et al. 2016) and repeatedly mapped 

to obtain time series. 

Although SfM techniques are well introduced for terrestrial surveys (Fonstad et al. 2013; Colomina 

and Molina 2014; Javernick et al. 2014; Gonçalves and Henriques 2015), they are still at an early 

stage for underwater studies. In relation to coral reefs, close-range photogrammetry was first used by 

Bythell et al. (2001) to compute structural complexity metrics from coral colonies. Since then, only 

few studies on underwater 3D photogrammetry have been published and they are mainly focused on 

colony-scale (Bythell et al. 2001; Cocito et al. 2003; Courtney et al. 2007; McKinnon et al. 2011; 

Burns et al. 2015; Lavy et al. 2015; Gutierrez-Heredia et al. 2016). Only recently, the application of 

this technique at reef scale received wider attention, being a still open and challenging issue 

(Friedman et al. 2012; Williams et al. 2012; Figueira et al. 2015; Leon et al. 2015; Ferrari et al. 2016; 

Guo et al. 2016). 

When talking about conservation and monitoring, the analyses of topographic features are needed to 

investigate structural complexity, which can fill the gap in understanding the dynamics driving 

biodiversity, function and resilience of coral reefs (Ferrari et al. 2016). So, three-dimensionality is 

essential to realistically describe the reef structure (Fisher et al. 2007; Burns et al. 2015). Rugosity 

can be considered one of the best descriptor of structural complexity (Knudby and LeDrew 2007). 

Currently, on-field methods are widely applied in marine ecological studies. The most common one 

is the ‘chain-and-tape’ method (Knudby and LeDrew 2007), where the ratio between the linear 

distance and the contour of the benthos under the chain is calculated as a measure of structural 

complexity. However, such sampling technique is time consuming and requires multiple chains of 

different size to be efficient at different spatial scales. Moreover, chains can easily tangle with reef 

organisms and damage them (Dustan et al. 2013). Technology comes to help, allowing the digital 

estimation of such parameter. Digital Surface Models (DSM) and Digital Terrain Models (DTM) 

provide the basic three-dimensional products and recent studies demonstrated their efficacy (Figueira 

et al. 2015; Leon et al. 2015; Ferrari et al. 2016; Storlazzi et al. 2016). A DSM is an elevation model 

that includes the tops of any objects, while the DTM is a bare-earth elevation model. 

In addition to rugosity, taxonomical identification (Done 1982) and estimate of live coral cover 

(Jokiel et al. 2015) concur in integrating the assessment of reef biodiversity and structural complexity. 

Although the taxonomical details are not retrievable from SfM, digital modelling offers different 
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approaches that may provide feasible alternatives, able to improve the set of information for assessing 

reef health status. 

The generation of orthophotos provides a wide overview of the study area, which could be used as a 

preliminary instrument for the visual analysis of the seabed coverage. 

From an accurate photointerpretation, a trained observer can retrieve information on the abundance 

of the different coral morphologies. Such morphological classification can then be coupled with an 

ecological approach, aimed to the evaluation of the conservation status of the reef: each morphology 

corresponds to one of three different adaptive strategies, corresponding to the vertices of a ternary 

diagram in which the abundances can be plotted (Edinger and Risk 2000). So, products derived from 

SfM analysis can provide information of ecological relevance with two main advantages: on one 

hand, the critical issues of taxonomic identification are avoided; on the other hand, there is integration 

between coral biodiversity and the estimate of live coral cover. 

The main aim of this study is to explore how underwater photogrammetric techniques and derived 

products (i.e. DTMs, DSMs and orthomosaics) can show the complexity and heterogeneity of the 

underwater marine habitat. In particular, the novelty of this study is to integrate DTMs and DSMs for 

assessing the height of coral colonies and for discriminating between seabed and coral cover, in order 

to compute their areal extent. This approach leads to the generation of meaningful data, which may 

support marine biologists’ in characterizing and monitoring marine habitat. 

For the first time, these techniques were applied to coral reefs belonging to an extremely relevant but 

still unexplored area: the Myeik Archipelago, Myanmar. More in detail, we focused on two 

representative bays located in Lampi Marine National Park (LMNP) (Figure 1), which differ in coral 

status, and we demonstrated the use of underwater photogrammetry as an innovative tool for 

characterizing coral reef. 
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Materials and methods 

 

Study Area 

LMNP was designated in 1996 and includes a group of islands belonging to the Myeik Archipelago 

in the Tanintharyi region of southern Myanmar (Figure 1). The park protects evergreen and mangrove 

forests, beaches and dunes, coral reefs, seagrass and a rich biodiversity, with over 1000 recorded 

species. It also supports the living of about 3000 people in 5 settlements. Despite coral reefs in 

Rakhine and Tanintharyi Regions, in particular offshore islands of Myeik Archipelago, are the most 

extensive and diverse in Myanmar, the species diversity and health of this ecosystem were largely 

unexplored and thus poorly known until recently (Wongthong et al. 2015). The prolonged isolation 

of north Andaman reefs is conducive to speciation, therefore, the likelihood of endemism amongst 

corals is high (Brown 2007). In addition, Myanmar, and particularly the Myeik Archipelago, is 

threatened by the increasing illegal human activities (Wongthong et al. 2015). Population growth in 

the adjacent areas causes corresponding increase in the use of natural resources to satisfy the growing 

human needs. Unfortunately, such exploitation takes the form of illegal hunting, illegal fishing, 

overharvesting of marine flora and fauna (including sea cucumbers, sea shells, etc.) and illegal 

logging for house and boat construction. Marine habitats in the archipelago are particularly damaged 

by blast fishing and trawlers, which are dramatically damaging the coral reefs inside and outside the 

Park. 

Lampi (N 10°50′, E 98°12′) is the largest island (205 km2) and represents the core of the park. It is 

48 km long and hilly (150–270 m asl), with both rocky coastline and sandy beaches. The sea depth 

between LMNP and the mainland is on average 12 m and nowhere deeper than 24 m (Oikos 2014). 

Due to anthropogenic impact, the reef conservation status is highly heterogeneous across Lampi 

island. In particular, healthier reefs can be found in the north more than in the southern part: the 

combination of the 2010 bleaching event and relentless destructive fishing have seriously affected 

the southern reefs (BOBLME 2015), so we chose two areas capable of outlining such opposite 

conditions. On one hand, ‘Site 1’ represents a well-preserved area, with a high coral biodiversity. The 

complexity of the reef increases with depth. The first part of the transect, the shallowest, is dominated 

by branching corals and small massive colonies. The increase in depth and the reduction of sediment 

deposition leads to the dominance of a variety of growth forms. In the deepest part of the transect 

huge Porites colonies, small branching, tabular and mushroom corals are inserted in a complex and 

extensive framework of living corals. On the other hand, ‘Site 2’ represents a highly degraded area, 

where habitat complexity is lost and almost all corals are dead and covered by algae. This site is 

poorly populated with few growth forms. The corals biodiversity is low, just some Porites sp. and 
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Heliopora coeruela are alive. The seabed is covered by coral rubbles and algae turf. Algae cover the 

surface of recently dead massive corals too.  

 

Underwater filming 

Images of the two different bays (Figure 1) have been collected through underwater videos, which 

have been realized during a spring campaign in 2016 lasted from the 16th to the 26th of March. 

The device used for the image collection is an Olympus Digital Camera, model TG-4, with an 

acquisition rate of 30 frames/second and a focal length of 4.5–18 mm (35 mm equivalent). The filmed 

areas consisted of transects or quadrats, whose geographic position and perimeter were defined by 

buoys, which served as ground control points (GCPs). The filming has been performed by snorkel-

ling. The camera has been assembled on a floating wooden board, which permitted to maintain the 

device at the water surface level (Figure 2). GPS positioning with field notes and photographs/video 

of submerged habitats, coral health and bottom depth were also collected. For geolocation, we used 

a Garmin eTrex10. The device is equipped with the WAAS (Wide Area Augmentation System) 

system, thus providing position with an associated error of less than 3 m. 

 

DSM, DTM and orthophoto generation 

The extracted and processed with Agisoft PhotoScan (version 1.2.6), a stand-alone software product 

that performs photogrammetric processing of digital images and generates 3D spatial data (Agisoft 

LLC 2011; Leon et al. 2015). 

Once photos were loaded, they were grouped in blocks (chunks) as they were too numerous. A 

subsequent inspection was then required for removing blurred images and photos with unrelated 

elements (e.g. bubbles, parts of bodies). Then, image quality was estimated and pictures with a low-

quality value (<0.5) have been discarded. 

The resulting 3D model was georeferenced by assigning geographic coordinates (X, Y) and elevation 

values (Z) to the buoys reproduced in the model, with Agisoft providing a scaling accuracy of 

0.005 m. Photoscan requires at least three GCPs to perform georeferencing, so the manual insertion 

of extra points was performed where necessary. For extra points, X, Y values were obtained from a 

GIS base map and Z values from a bathymetric chart of the island. Table 1 summarizes the parameters 

applied for the image processing. 

The processing chain led to the generation of a DSM and an orthomosaic for each area. The very 

high-resolution orthophoto (pixel size 1.6 mm) was subsequently used for the morphological 

description of coral colonies. In addition, the DTM was also obtained by editing and interpolating the 

dense point cloud: points corresponding to the seabed were classified as ‘Ground’, in order to 
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distinguish them from the rest of the cloud. Unlike the DSM, which does not discern between the 

seabed and the top of coral colonies, the DTM represented the elevation of the seabed. 

Computation of coral metrics 

Basing on both the DSM and DTM models, three different coral metrics related to habitat complexity 

were retrieved using digital image processing and GIS techniques: 

 

(i) Coral morphologies 

(ii) Reef properties: topography and coral cover  

(iii) Structural complexity 

These metrics were selected because they can be accurately derived from DSM and DTM models and 

provide useful information about reef conservation status (Edinger and Risk 2000; Burns et al. 2015; 

Figueira et al. 2015). 

 

Characterization of coral morphologies 

A visual classification of coral morphologies (massive, branching, plate like/tabular, 

foliaceous/laminar, free living, columnar) was initially performed on the whole area: each coral 

colony reproduced in the orthophoto was assigned to a specific growing morphology. 

Then, based on the assumption that coral morphologies can be associated with adaptive strategies, 

each colony was assigned to one of the three groups defined according to the r-K-S ternary diagram 

proposed by Edinger and Risk (2000) and firstly proposed by Grime for land plant (Grime 1977): 

 

(i) Ruderals (R): pioneer organisms with high grow and mortality rates, which rapidly 

colonize the environment. 

(ii) Competitors (K): Competitors are species that thrive in areas of low intensity stress and 

disturbance and excel in biological competition. Competitors do this through a 

combination of favourable characteristics, including rapid growth rate. 

(iii) Stress tolerators (S): slow-growing organisms that are able to survive the environmental 

stresses. They generally respond to environmental stresses through physiological 

variability. 

The percentage cover of each morphological category was calculated and summed to the other 

percentages belonging to the same adaptive strategy, in order to calculate X and Y values for plotting 

the bays into the diagram. 
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Inferring reef properties 

The DSM and the DTM contain useful information about the three-dimensionality of the reproduced 

areas, which allowed exploring other descriptors of habitat heterogeneity such as topography and 

coral extension. For both the reference sites, the two raster layers were compared along arbitrary 

transects in order to describe the seabed topography. 

Slope is one of the main metrics related to the seabed topography and average values for the two sites 

were computed from slope maps derived from the DTM. 

The DSM and DTM were also used to detect coral colonies and map their areal extent, based on their 

height on the seabed. We produced a raster layer describing the height of coral colonies, by 

subtracting the values of the DSM (elevation of the top of the coral colonies) to the ones of the DTM 

(elevation of the seabed, alias the base of the colonies). The resulting raster was classified in ‘seabed’ 

and ‘coral colonies’ by defining an elevation threshold of 0.05 m: pixels with elevation values smaller 

than 0.05 m were assigned to the ‘seabed’ class, otherwise to the class ‘coral colonies’. A threshold 

of 0.05 m was selected to include sand, small bumps of the seabed and coral rubbles.  

 

Mapping reef structural complexity 

Reef structural complexity was computed as the ratio between 3D and 2D areas, in accordance with 

previous studies (Burns et al. 2015; Figueira et al. 2015). For both the reference sites, we estimated 

an average rugosity for the whole extent and a ‘local’ rugosity, in order to detect variations across the 

reef. In the second case, the DSM of the areas was split into three sectors from shallow waters close 

to the shore to the deeper areas: shallow, intermediate and deep, then an area of 25 m2 was considered 

for each sector.  
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Results and discussion 

 

Bays overview and processed data 

Given the large number of pictures, frames were grouped in blocks (chunks) and the models (DSM 

and DTM) were obtained by merging the partial reconstructions. Where edges were clearly 

unrepresentative because of errors in the projection or insufficient overlapping between cameras, they 

were cut. Tables 2 and 3 sum up details from the processing report generated with Photoscan. 

Site 1 (health bay) resulted in a straight transect of about 50 m in length and 375 m2 in extent, 

spreading from the near-shore to the reef top. Site 2 (degraded bay) consisted of an area of about 

352 m2 delimitated by four buoys. The gap in the reef status is well shown in the derived orthophotos: 

in site 1 coral reefs show large biodiversity, high structural complexity and coral colonies occupy all 

the available spaces; rugosity is high, especially in the deepest area, and the presence of algae and 

coral rubble is marginal. Conversely, site 2 showed a significant reduction in biodiversity and 

structural complexity, with coral colonies in a visible state of sufferance or dead and coral rubble 

covering the seabed. Columnar and ruderal corals are dominant and the algal turf is abundant. 

A three-dimensional representation of the DSMs is shown in Figure 3. We used the same colour ramp 

with fixed intervals to make the topography represented in the two digital models comparable. For 

site 1, minimum and maximum depth was, respectively, −0.19 and −6.23 m; for site 2 was −2.5 and 

−5.3 m. The comparison between the two models highlighted a difference in the average depth: – 

2.64 m in site 1 and −3.95 m in site 2. Such difference in depth increases if considering the modal 

values shown in the histograms in Figure 3; in particular, for site 2, we noticed that modal values 

exceed the average depth, setting a gap of almost 2 m in depth with site 1. 

During the survey, we noticed a different structure of the seabed in the two bays and the Digital 

Models are in line with such observation: in site 1 there is a wide back-reef area with remarkably 

shallow waters (which is visible from satellite images too), beyond which waters get deep fast and 

denote a net, rapid change in the slope of the seabed; in site 2 the backreef area is not well delimited 

and depth values are more homogeneous across the site. 

 

Although an assessment of the absolute accuracy of the two models was not possible due to the lack 

of true reference model against which to compare those generated from photogrammetry approaches, 

there is a general accordance between the digital products and the on-field observations, 

demonstrating the reliability of the approach. Recent studies also demonstrated that a good relative 

accuracy (few millimetres) is achievable in 3D models reconstructed in both air and water using a 
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camera similar to the one employed in this study. Although accuracy in air resulted higher than in 

water, both results were acceptable (Guo et al. 2016). 

It is reasonable to think that the accuracy of the model could have been affected by four main critical 

issues which emerged during the filming: 

 

(i) oscillation of the camera because of waves, leading to sudden changes in the shot and, 

consequently, blurred frames; 

(ii) the maintenance of the swimming trajectory in order to allow a partial overlapping while 

filming on the way to and the way back; 

(iii) the formation of condensation and bubbles in front of the lenses, which hide part of the 

scene, lower the frame quality and affect the correct alignment of the frames; 

(iv) low visibility because of water turbidity. In case of abundant resuspension of sediments, 

the seabed is not clearly visible. 

Morphological analysis 

The visual classification brought to the quantification of the abundance of both coral morphologies 

(Table 4) and rKS groups (Table 5). Massive morphologies, considered as stress tolerators, were 

dominant in site 1, representing more than 40% of coral cover. At a larger scale, the same dominance 

was noticed by Fauna and Flora International during a fast reef check survey of the Myeik archipelago 

(Wongthong et al. 2015). The abundance of rKS groups represents the data-set used to plot the sites 

in the ternary diagram (Figure 4). As a result, the estimated conservation quality for site 1 is good 

(CC = 4), while it’s lower for site 2 (CC = 3). The quantification of dead coral cover would have 

improved the analysis, widening the difference in the conservation quality between the two bays. 

 

Topography and coral cover 

The use of transects concurs in providing a general overview of the reference areas. In particular, the 

degradation of the seabed, the increase in depth and the progressive increase in height and size of 

coral colonies (the latter for site 1) can be appreciated by shifting from point A to point B (Figure 5). 

Regarding slope, average values of 22 and 16 degrees, were computed, respectively, for site 1 and 

site 2. 

Figure 6 shows the classification in ‘seabed’ and ‘coral colonies’ of the two sites, based on the 

difference between DSM and DTM. For site 1, coral colonies occupy an area of 183.7 m2, 

corresponding to about the 49% of the whole area. For site 2, coral extends for 199 m2 and covers an 

area of about 53%. The estimate for site 1 results in accordance with the estimation of hard coral 
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cover in Lampi Island provided by Fauna and Flora International, which indicated a percentage of 

40–60%. 

Such result provides a preliminary mapping of coral cover and could be used as basic information for 

fieldworks. Then, it can be integrated by trained biologists able to assess whether a colony is dead or 

alive. It is clear that the latter step is essential for the assessment of the conservation status: the coral 

cover is almost the same, but site 2 is highly impacted and most of the colonies are dead, so there is 

a huge gap in the quality of the two habitats. 

 

Reef structural complexity evaluation 

The ratio between the 3D and 2D areas allowed to quantify an abstract concept like the one of 

complexity and provided a common numerical attribute for making a comparison between the two 

reference sites. Figure 7 shows the DSMs with the selected areas of 25 m2, which have been 

highlighted with a different colour ramp. 

As expected, for Site 1 local rugosity was higher in correspondence of the deepest area of the reef, 

where coral colonies are close together, higher and more massive (Table 6); ‘shallow’ and ‘intermedi-

ate’ areas of site 1 belonged to the backreef area and showed similar values, so they were considered 

homogeneous. 

Site 2 exhibited structural differences compared to bay 1. Coral colonies were in fact more scattered 

and no remarkable differences in the ‘local’ rugosity were appreciated among the three sectors (Table 

7). In ecology, structural complexity is a key factor positively related to biodiversity and carrying 

capacity of habitats (Yanovski et al. 2017). The overall higher rugosity values in site 1 compared to 

site 2 thus confirmed its better health status and degree of conservation. 

Such observations were supported by the visual analysis of the orthophotos, which depicted habitats 

with substantial structural differences: while in site 1 there was a clear gradient from the shallowest 

part of the reef to the reef top (e.g. increase in colony size, coral colonies density), site 2 appeared 

more homogeneous. Such gap between the two bays may be related to hydrodynamics: in site 1, coral 

colonies are shallower and may undergo a greater hydrodynamism, especially on the top of the reef 

where waves break, while in site 2 coral colonies are deeper and grow in a lower energy environment. 

Indeed, the overall estimated rugosity was very similar to the estimated rugosity in the backreef area 

of site 1, which represents a low-energy environment too. This consideration is supported by other 

studies, which demonstrated the fact that corals can benefit from increased currents: high densities of 

living corals were found in areas of enhanced currents, with living colonies abundant at the summit 

where current speed were highest also in other study areas (Dorschel et al. 2007; Lenihan et al. 2014). 
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Conclusions 

 

The underwater world represents a present-day topic, especially when talking about delicate 

ecosystems like coral reefs, which are terribly suffering the effects of climate change and anthropic 

stress. For this reason, it is also a fascinating challenge for scientific research and remote sensing 

techniques represent a source of solutions, continuously in progress, for supporting the efforts of 

marine biologists. 

In this study, we demonstrated the potential of Structure from Motion techniques and GIS tools for 

retrieving basic information and coral metrics for the support of marine conservation plans in two 

bays characterized by different health conditions. In particular, we introduced the use of three-

dimensional products like DSM and DTM not only for describing the seabed topography and 

structural complexity but also for assessing coral colony extent and heights. 

The relatively simplicity of this workflow encourages its repeatability and permits non-specialists to 

learn photogrammetry for coral monitoring, opening the possibility for local inhabitants to perform 

their own surveys and make their datasets accessible for coral researchers (Gutierrez-Heredia et al. 

2016). 

From a remote sensing perspective, these data will help to monitor coral processes by combining 

bathymetric maps and spectral information from satellite data, to generate time series and a useful 

tool for pursuing management strategies in the context of sustainable development and produce a 

satellite derived nautical chart of the area using physics-based model inversion. 

Some future desirable developments are the setting up of a method of validation with ground data 

and the improvement of coral extension assessment as regards the discrimination of dead colonies 

and the digital classification of corals genera based on their morphology. 

While ecological and biological knowledges can be still integrated and supported by technology, 

computer vision sciences may widen the frontiers of image classification (Varma and Zisserman 

2005), improving the chances for technology to permeate and support the world of habitat mapping. 
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Tables and Figures 

 

Figure 1. location of the study area: from a general view of Myanmar to Lampi Island, with a focus on the 

two bays used as case study. 
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Figure 2. Illustration of the assembled filming device (a) and sampling scheme (b).  
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Table 1. Processing parameters for Site 1 and Site 2. 

 

 

Table 2. Image processing output data 

 

 

Table 3. Digital Surface Model data 
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Figure 3. DSMs of sites 1 (above) and 2 (below), with related histograms showing the frequency of depth values. note: 

the three-dimensional representation enhances the topography of the seabed. 

 

Table 4. Abundance of coral morphologies for sites 1 and 2. 

 

Note: Quantities are expressed as the number of counted coral colonies. 

 

Table 5. Abundance of rKS groups for sites 1 and 2. 
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Figure 4 ternary diagram defining the conservation value (cc) for both the reference sites. 

 

 

Figure 5. Transects for sites 1 and 2 and corresponding profiles (a and b, respectively). 

Notes: the solid lines display the profiles of the top of the coral colonies (DSM), while the dashed blue lines 

delineate the depth of the bottom (DTM). the greater the distance from the shore, the deeper the seabed. 
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Figure 6. Seabed classification 

 

 

Figure 7. Sectors of 25 m2 defined on the DSM and used for measuring local rugosity in site 1 and 2. note: S 

= shallow; I = intermediate; D = deep. 
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Table 6. Estimated rugosity for site 1 

 

Notes: The average rugosity is 1.95, if considering the sectors the highest rugosity (so the highest habitat 

complexity) corresponds to the reef crest. 

 

Table 7.Estimated rugosity for site 2 

 

Notes: The average rugosity is 1.82, the absence of remarkable differences among sectors suggested a more 

homogenous area compared to site 1. 
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Integrating acoustic depth measurements and photogrammetry-based 3D point 

clouds for the generation of a continuous digital terrain model in coral reef 

environments  
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Abstract 

Our work presents a tested methodological protocol for the generation of a fine-scale digital terrain 

model (DTM) in coral reef environments. A portion of an atoll reef (namely the Magoodhoo reef 

located in the Maldivian archipelago, the southern part of Faafu atoll) has been remotely mapped 

from the reef flat area to the connected and deeper lagoon environment, collecting elevation data by 

different sources according to the surveyed depths. In particular we acquired acoustic depth 

measurements using a multibeam echosounder (MBES) and 3D point clouds applying the Structure 

from Motion (SfM) technique to RGB images, collected using an Unmanned Aerial Vehicle (UAV). 

All obtained data were calibrated and validated with RTK-GNSS measurements and successfully 

integrated in order to generate a harmonized DTM for the surveyed sector of the Magoodhoo reef. 
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Introduction 

 

Until no more than a decade ago, geomorphological mapping in coral reef environments was carried 

out using satellite data ground-truthed by field studies, and focused on the investigation of the recent 

evolution of basically the shallow or emerged coral-reef associated landforms. Mainly because of 

their complex topography and the considerable extension of very shallow areas (i.e. reef flat areas), 

traditional mapping methods lacked, in most of the cases a continuous 3-dimensional representation 

of coral reef landforms at high resolution, across all their extension, with the deeper lagoon regions 

included. Nevertheless, as for all coastal landforms, the knowledge of the fine-scale submerged 

topography (and derived terrain parameters) is instrumental for a better understanding of 

geomorphological changes and for proposing in turn informed management measures.  

The present-day most advanced techniques used to collect high resolution elevation data and multi-

spectral imagery – both for land surface and the seafloor – in coral reef environments, span from 

traditional acoustic mapping (multibeam echosounder bathymetry and backscatter) to the use of 

satellite-derived bathymetry, LIDAR technology, Unmanned Aerial Vehicles (UAV - equipped with 

RGB cameras and additional innovative sensors) coupled with photogrammetry and traditional 

topographic surveys (which although they provide only point data, are instrumental for remote data 

calibration and validation). Data processing represents in all the cases a fundamental step for ensuring 

accuracy and reliability of obtained measurements, especially for allowing a precise integration of all 

data sources into a continuous digital terrain model (DTM).  

In our work a harmonised DTM is generated for the Magoodhoo reef (southern Faafu Atoll, Republic 

of Maldives) from multibeam echosounder-based depth measurements, 3D point clouds (obtained 

applying SfM technique to UAV imagery) and topographic surveys. All employed techniques are 

presented, and limits in their use are briefly discussed. 

 

Study Area 

 

The surveyed area is a part of an atoll reef of the Republic of Maldives, an archipelago, stretched for 

860 km in a North-South direction and formed by a double chain of atolls separated by an Inner Sea 

(<500 m deep), in the middle of the Indian Ocean. The atolls of the Maldives are very complex 

structures in form of annular mid-ocean reefs. The reef rim is broad and flat and contains islands in 

some instances (composed of unlithified or poorly consolidated sand or gravel), or can be a broad 

reef flat in others. It encloses a central lagoon and is interrupted by major passages that enable 
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significant water exchange between ocean and lagoon. Maldivian atolls can be formed by heavily 

dissected atoll reef rim and moderate lagoon depths (40-60 m), with numerous lagoonal patch reefs 

(with or without islands) and faros (i.e.: central/northern atolls), or by a more continuous atoll reef 

rim containing extended islands, but deeper lagoons (70-80 m) and few lagoonal patch reefs (i.e.: 

southern atolls).  

Faafu atoll has a sub-circular shape, with a convex side toward west, and is 29 kilometres long from 

North to South and separated from the northern Ari atoll by the channel known as Ariadhoo Kandu. 

Few, slightly straight, broad and elongated reefs typify the western side, while more abundant and 

smaller reefs mark the eastern rim. It forms a perfect semicircle on the east, but its western side is 

rather indented. There are not many islands. In the interior of its lagoon, there are four islands and 

several large farus, dry at low tide. 

 

Materials and Methods 

 

Elevation data for the emerged and very shallow areas are derived from SfM techniques application 

to UAV imagery.  

UAV data were collected using a DJI Phantom 4 quadcopter equipped with a 12.4 megapixels camera 

integrated with a high precision 3-axis gimbal and, with a global navigation satellite system 

(GPS/GLONASS). Survey routes were planned using DJI Ground Station Pro Software and photos 

were collected every 2 seconds at 30m fixed altitude with an overlap of 90% along the path and 80% 

between adjacent routes, at 2 m/s horizontal speed. Data were collected during low tide and dawn 

daytime to avoid excessive sun glint and with calm wind conditions, to avoid distortions caused by 

water motion. UAV photos were processed using Agisoft Metashape Pro, following the common 

workflow for SfM techniques. 

In order to reach the maximum accuracy, SfM model was calibrated using 10 Ground Control Points 

(GPCs) collected with a high-resolution GNSS. Due to the lack of an official GNSS base station 

network in the Maldivian Archipelago, a local RTK system was prepared using a couple of Emlid 

Reach RS© in Base-Rover configuration. Emlid Reach RS© single frequency receiver runs with the 

open-source RTK processing software RTKLIB [1], and they can reach centimetre-level accuracy 

with the ambiguity parameters resolved. The base station was fixed in the same location every day, 

collecting satellite data continuously, and it was used as caster on rtk2go service. Rover received our 

local base correction using NTRIP (Networked Transport of RTCM via Internet Protocol) as client 

on the same service. Baseline was always less than 10 km. 



146 
 

Bathymetric data were collected using a Teledyne Reson 8125 (455kHz) multibeam echosounder 

system (MBES). Speed of sound in the water was measured using a Valeport miniSVS for the 

correction at the sonar head and a Teledyne Reson SVP15 as sound velocity profiler for the water 

column. Positioning data coming from the Emlid Reach RS rover in RTK mode, NTRIP corrected by 

rtk2go from our local base station. MBES sonar head was pole-mounted on the dhoni side (typical 

Maldivian boat) in horizontal and 45-degree inclination configuration, in order to reach the very 

shallow reef flat zone and to allow the overlap between the UAV SfM point clouds and the MBES 

model. Bathymetric survey was performed using QPS Qinsy and acoustic data were processed with 

QPS Qimera software. 

After MBES data processing and the generation of 3D point clouds, the work focused on the 

generation of a  unique DTM integrating the two datasets, using the overlapping MBES data as GCPs 

for the SfM model. SfM technique by itself produce a model of a surface without any measurements, 

consequently, resulting models are more subjected to deformation called “dome effect” [2, 3, 4]. To 

reduce this effect and to give a correct spatial location, GCPs and referencing scale were introduced 

to the model. Since the processing of MBES data includes corrections of tide variations, speed of 

sound measurements, correct patch test calibration, wobble analysis and TU Delf sound speed 

inversion, the generated DTM is not affected by deformations and accuracy is high. 

Selected depth values obtained from the MBES-based DTM was then used as GCPs to calibrate the 

UAV-based DTM. The overlap between the two datasets allowed in particular to recognize common 

and well-defined morphological features, used as a second generation of GCPs for SfM processing.  

Therefore, we obtained, as a final output of SfM processing, a DTM with a significant reduction of 

the “dome effect” (thanks to to the additional GCPs), with a calibrated spatial reference. 

 

Results and Discussions 

 

The overall workflow for the generation of a continuous DTM in coral reef environments is shown 

in Figure 1, further details are given hereunder. 

The most accurate data set acquired, in term of elevation measurements, is represented by the 

bathymetric multibeam surveys, where minimum standards for hydrographic surveys were employed, 

as reported by the International Hydrographic Organization (IHO 2008). 3D point clouds data 

obtained by the UAV survey still do not have international standard as reference for defining data 

accuracy. Nevertheless, our methodology included the selection of calibrated multibeam bathymetric 

data values as additional GCPs used to calibrate the DTM obtained from the generated UAV-based 

3D point clouds. The proposed methodology leads thus to the generation of a continuous DTM 
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(Figure 2), based on the integration of two datasets, where the more accurate data at lower resolution 

(i.e.: bathymetric data with a 0.50m grid cell size) drove the calibration of high-resolution 

photogrammetry-based 3D point clouds. 

 

Conclusions 

 

The workflow proposed for integrating different elevation data sets acquired in coral reef 

environments appears to be effective insofar as the resulting product is continuous and has a high 

spatial resolution.  

The critical point is represented by the need to develop an effective and standardised technique for 

improving the accuracy of bathymetric data derived from the UAV-based 3D point clouds. 

Nevertheless, results proved to be efficient in producing a continuous DTM for coral reef 

environments, where the main constraint for the final model is related to the resolution. SfM model 

reaches a cell resolution less than 5cm compared to the 50 cm cell of the MBES model. In order to 

merge both the model we downgraded the SfM model to 50cm, that in any case still represents a high-

resolution DTM for studying geomorphological changes in coral reef environments. 
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Figures and Tables 

 

Fig. 1. Workflow for the generation of a continuous DTM, integrating 3D point clouds data acquired by UAV 

and MBES bathymetric data. 

 

 

Fig. 2. A: Plot view (A) and 3D view (B) of the continuous DTM, generated from the integration of 3D point 

clouds data acquired by UAV and MBES bathymetric data. 
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General Discussion and Conclusion 

 

Climate change and anthropogenic activities are profoundly modifying coastal environments 

worldwide (Baker et al., 2008; Dolan & Walker, 2006; Fine et al., 2019; Hughes et al., 2019; Pergent 

et al., 2014). These impacts are affecting some of the most productive ecosystems on Earth, causing 

habitat loss, fragmentation, contamination and communities shifts (Hughes et al., 2007). The 

reduction of the recurrence time between these impacts is limiting the recovery and can eliminate the 

resilience capacity of the habitats (Adger et al., 2005; Jordà et al., 2012; Mcleod et al., 2019). The 

direct consequences of these degradations process on the population in low-lying and developing 

countries are concrete and will vary between and within regions (Wong et al., 2014). In fact, coastal 

and marine ecosystems provide a wide variety of benefits to humans in the form of goods and services, 

and the relative loss of income is difficult to estimate (Hicks, 2017; Moberg & Folke, 1999; Moberg 

& Rönnbäck, 2003). Under these prospects for the future, monitoring activities are crucial to identify 

and quantify anthropogenic or climatic stresses and their effects on coastal environments, highlighting 

the occurrence of community shift and tracking subsequent recovery or decline over time and space 

(Malthus & Mumby, 2003; Manfreda et al., 2018).  

This doctoral project was focused on proposing efficient and reliable monitoring protocols for 

collecting and analysing remote sensing data suitable for all coastal regions around the world.  

 

Satellite remote sensing data allowed to collect information on extended areas and the presence of 

longterm databases facilitate temporal analysis (Ampou et al., 2018; El-Askary, Abd El-Mawla et al., 

2014; Were et al., 2013). In Chapter 1 these imageries were found useful for monitoring processes 

on large-scale like Land Use and Land Cover Change (LULCC) that, in coastal regions can have a 

direct impact on marine environments. The land-use and land-cover map produced in this study, 

together with change analysis, can help to understand the effects of LULCC on coral reefs and the 

increase in erosion. It can also contribute to the development of sustainable land-use policies for 

forecasting the impacts of climate change on the islands of the archipelago.  

In Chapter 2 was highlighted the potential of consumer-grade Unmanned Aerial Vehicles (UAV) as 

powerful low altitude remote-sensing platforms for obtaining synoptic overviews of selected key 

areas. Above all, the use of UAV allowed to collect data in inaccessible coastal zones. The processing 

of the images with Structure from Motion (SfM) algorithms allowed obtaining high-resolution 

orthomosaics, with a centimetric resolution, and Digital Terrain Model (DTM). Innovative processing 

techniques as Machine Learning (ML) and Object Base Image Analysis (OBIA) were used to 

elaborate data with several purposes. The UAV data were acquired under different climatic conditions 
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and geographic regions both over tropical and temperate coastal sea. All the studies collected in this 

chapter confirmed the potential of the use of a commercial UAV as a fast and reliable survey 

methodology. Therefore, the protocols developed have proved their worth regardless locations of the 

tested area. 

The article in Paragraph 2.1 described, for the first time, the use of UAV images coupled with SfM 

and OBIA algorithms to monitor and map changes in coral reefs benthic assemblages following a 

mass bleaching event (2016). The spatial resolution achieved from the orthomosaics allowed us to 

classify benthic community types with reasonable accuracy, and the comparison of the maps through 

time has shown clearly the deterioration of the fore reef environments. Moreover, the maps generated 

with the described protocols can be used as a starting point for a long term monitoring program to 

check the dynamics of shallow water assemblages in this new human-dominated era.  

In Paragraphs 2.2 and 2.3, the same procedures were applied to create a new mapping method for 

the cartography and the monitoring of littoral assemblages of the Mediterranean, including the key 

coastal community of Cystorseira forest. The innovative technique of post-processing images from 

UAV proposed in this study allowed us to compute coastal surfaces covered by the most abundant 

community assemblages with centimetric accuracy through a relatively low sampling effort, also 

considering the increased amount of information acquired. Besides, the information coming from 

orthomosaics and terrain attributes allow detailing characterise the forests and open new scenarios of 

studies and analysis such as the Index of Cystoseirety (IoC) and the computation of spatial patterns 

through a seascape ecology approach.  

In this research project was considered not only the potential of UAV for mapping and quantify 

natural impacts on coastal communities, but also to asses one of the most significant environmental 

issues of our planet to date: Anthropogenic Marine Debris (AMD) and their accumulation on the 

beaches (Cozar et al., 2015; Jambeck et al., 2015). Access information on the AMD accumulation 

rate on beaches and the associated spatio-temporal oscillations would be crucial to refining global 

estimation on the dispersal mechanisms. In Paragraph 2.4 was described a novel and an ad-hoc 

methodology for monitoring and automatically quantifying AMD, based on the combined use of 

UAV and a deep-learning based software. The results proved that the use of UAV is instrumental in 

surveying remote areas and the spatial resolution achieved in the collected images allowed detecting 

a percentage of the objects on the shores higher than 87.8%. The deep-learning based software, 

PlasticFinder, has been tested for the automatic detection and quantification of AMD, providing 

analysis of the UAV collected images. In the Maldivian case study, the overall performances were 

excellent, much higher than the only state-of-the-art AI algorithm so far published in the literature. 

Furthermore, although the methodology was tested in the Maldives its applicability is global. 
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Satellite and drone allowed to map and monitor coastal environments in optimal condition to a 

maximum of 20/30 meters (J. D. Hedley et al., 2018; Traganos et al., 2018) but to go deeper are 

necessary different sensing techniques with submerged platforms (Micallef et al., 2017; Goodman et 

al., 2013).. Chapter 3 described two methodologies used to collect data in near coast environments 

where the condition are not suitable (water not enough transparent or benthic communities to deep) 

for the use of satellite or UAV. In Paragraph 3.1 was defined the potential of underwater 

photogrammetry and SfM to infer properties of reef habitats. In particular, was proposed the use of 

Digital Surface Models and Digital Terrain Models, obtained from underwater photos processing, for 

assessing coral colonies extension and height and discriminating between seabed and coral cover. 

Such information can be coupled with digital rugosity estimates to improve habitat characterisation. 

The relative simplicity of the proposed workflow encourages its repeatability and permits non-

specialists to learn photogrammetry for coral monitoring, opening the possibility for local inhabitants 

to perform their surveys and make their datasets accessible for coral researchers.  

In Paragraph 3.2 we acquired acoustic depth measurements using a multibeam echosounder (MBES) 

and 3D point clouds applying the SfM technique to RGB images, collected using an UAV over the 

shallow areas. All obtained data were calibrated and validated with RTK-GNSS measurements and 

successfully integrated in order to generate a harmonized DTM that describe, with high-resolution, 

coral reef environment from the shallow to the deepest part of the lagoon. 

 

Technological advantages are actively supporting the diffusion of new monitoring platforms useful 

to track the effect of climate change and anthropogenic pressure on coastal environments. The 

development of automatic methods for image capture and processing combined with more accessible 

platforms and sensors, in term of cost and dimension, will increase our capability of capturing fine-

ecological processes and communities changes. In this regard, the importance to harmonise the 

different approaches to impacts assessment is crucial to generate useful tools for pursuing 

management strategies in the context of sustainable development. This thesis described the potential 

of different platforms, combined with innovative data processing techniques, to address pressing 

global coastal environmental issues. The publications produced during the PhD project confirmed the 

high potential of the integration of different platforms and processing methodologies. Therefore, the 

innovative protocols described are efficient and reliable for collecting and analysing data in coastal 

regions all around the world in order to asses anthropogenic and climatic impacts. 
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Appendix  

 

In this paragraph are collected the abstract of the articles produced during the PhD but 

not closely linked to the project. 

 

Appendix 1 

Gerloni, I. G., Carchiolo, V., Vitello, F. R., Sciacca, E., Becciani, U., Costa, A., … Tibaldi, A. (2018). 

Immersive Virtual Reality for Earth Sciences. 2018 Federated Conference on Computer Science and 

Information Systems (FedCSIS), 15, 527–534. https://doi.org/10.15439/2018F139 

 

Immersive Virtual Reality for Earth Sciences 

Ilario Gabriele Gerloni, Vincenza Carchiolo 

Department of Electrical, Electronic and Computer Engineering, University of Catania, Italy Email: ilario.gerloni@gmail.com 

Fabio Roberto Vitello, Eva Sciacca, Ugo Becciani, Alessandro Costa, Simone Riggi  

Astrophysical Observatory of Catania, Italian National Institute for Astrophysics (INAF), Italy Email: fabio.vitello@inaf.it 

Fabio Luca Bonali, Elena Russo, Luca Fallati, Fabio Marchese, Alessandro Tibaldi  

Department of Earth and Environmental Sciences, University of Milan Bicocca Email: alessandro.tibaldi@unimib.it 

 

Abstract 

This paper presents a novel immersive Virtual Reality platform, named ARGO3D, tailored for 

improving research and teaching activities in Earth Sciences. The platform facilitates the exploration 

of geological environments and the assessment of geo-hazards, allowing reaching key sites of interest 

(some of them impossible to be reached in person) and thus to take measurements and collect data as 

it can be done in the real field. The target audience of ARGO3D encompasses students, teachers and 

early career scientists, as well as civil planning organisations and non-academics. The overall 

workflow for real ambient reconstruction, processing and rendering of the virtual ambient is 

presented, as well as a detailed description of the VR software tools and hardware devices employed. 
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Appendix 2 

 

Mel, K., Luca, B. F., Fabio, V., Varvara, A., Ugo, B., Elena, R., … Whitworth, M. (n.d.). Workflows 

for Virtual Reality Visualisation and Navigation Scenarios in Earth Sciences. 

https://doi.org/10.5220/0007765302970304 

 

Workflows for Virtual Reality Visualisation and Navigation Scenarios in Earth 

Sciences 

Krokos Mel1,3 , Bonali Fabio Luca2, Vitello Fabio3, Antoniou Varvara4, Becciani Ugo3, Russo Elena2, Marchese Fabio2, 

Fallati Luca2, Nomikou Paraskevi4, Kearl Martin1, Sciacca Eva3 and Malcolm Whitworth5 

 

1University of Portsmouth, School of Creative Technologies, Eldon Building, Winston Churchill Ave, Portsmouth, PO1 2UP, U.K 

2University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza 4 – Ed. U04, 20126 Milan, Italy 

3Italian National Institute for Astrophysics (INAF), Astrophysical Observatory of Catania, Italy 

4National and Kapodistrian University of Athens, Department of Geology and Geoenvironment, Panepistimioupoli Zografou, 15784 Athens, Greece 

5University of Portsmouth, School of Earth and Environmental Sciences, Burnaby Road, Portsmouth, PO1 3QL, U.K 

 

Abstract  

This paper presents generic guidelines for constructing customised workflows exploiting game 

engine technologies aimed at allowing scientists to navigate and interact with their own virtual 

environments. We have deployed Unity which is a cross-platform game engine freely available for 

educational and research purposes. Our guidelines are applicable to both onshore and offshore areas 

(either separately or even merged together) reconstructed from a variety of input datasets such as 

digital terrains, bathymetric and structure from motion models, and starting from either freely 

available sources or ad-hoc produced datasets. The deployed datasets are characterised by a wide 

range of resolutions, ranging from a couple of hundreds of meters down to single centimetres. We 

outline realisations of workflows creating virtual scenes starting not only from digital elevation 

models, but also real 3D models as derived from structure from motion techniques e.g. in the form of 

OBJ or COLLADA. Our guidelines can be knowledge transferred to other scientific domains to 

support virtual reality exploration, e.g. 3D models in archaeology or digital elevation models in 

astroplanetary sciences. 
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Appendix 3 

 

Bonali, F.L., Tibaldi, A., Marchese, F., Fallati, L., Russo, E., Corselli, C., Savini, A., UAV-based 

surveying in volcano-tectonics: An example from the Iceland rift, Journal of Structural Geology 

(2019), doi: https://doi.org/10.1016/j.jsg.2019.02.004 

 

UAV-based surveying in volcano-tectonics: An example from the Iceland rift 
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Abstract  

In the present work, we applied the use of an Unmanned Aerial Vehicle (UAV) - a quadcopter - and 

the Aerial Structure from Motion digital photogrammetry image processing technique (ASfM) to 

study volcano-tectonics and tectonic features in an active Icelandic rift. Data have been collected in 

order to evaluate the Holocene deformation in the Northern Volcanic Zone of Iceland. We mapped 

397 structures, mainly related to extension fractures and subordinately normal faults in the 

Theistareykir Fissure Swarm, obtaining 1098 and 21 structural data, respectively. This allowed to 

reconstruct an overall spreading direction of N108° during Holocene times, and to calculate a stretch 

of 1.013 regarding 8–10 ka old lava units. Deformation in the area is related to both dyke intrusions 

and extensional tectonics. Furthermore, detailed geological-structural field and UAV surveys were 

also performed in two test areas in order to determine data accuracy and the associated reliability of 

this approach. In addition to the above, different flight heights were tested, suggesting that photo 

collection with a 12.4 MPx camera at 100 m is efficient to study fracture dilation and kinematics. 
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Abstract 

This study used wastewater-based epidemiology (WBE) to investigate the lifestyle of the inhabitants 

of Malé, the capital of the Republic of Maldives. Raw wastewater 12-h composite samples were 

collected from nine pumping stations serving the city area - thus representative of the whole Malé 

population. Samples were analysed by liquid chromatography coupled to mass spectrometry for 

estimating the profile of use of a large number of substances including illicit drugs, alcohol, caffeine, 

tobacco and pharmaceuticals. The illicit drugs most used were cannabis (THC) and heroin (700 and 

18 g/day), with lower consumption of cocaine and amphetamines (0.1–1.2 g/day). It is important to 

note that the consumption of cannabis in Malé was comparable to that measured in other countries, 

while the consumption of heroin was higher. Among cathinones, mephedrone was detected at the 

highest levels similar to other countries. Consumption of alcohol, which is not allowed in Maldives, 

was found (1.3 L/day/ 1000 inhabitants), but at a low level compared with other countries (6–44 

L/day/1000 inhabitants), while the consumption of caffeine and tobacco was generally in line with 

reports from other countries. Unique information on pharmaceuticals use was also provided, since no 

official data were available. Human life style was evaluated by applying for the first time the full set 
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of WBE methodologies available in our laboratory. Results provided valuable epidemiological 

information, which may be useful for national and international agencies to understand population 

lifestyles better, including illicit drug issues, and for planning and evaluation of drug prevention pro- 

grams in Malé. 

 


