MantisTable: a Tool for Creating Semantic
Annotations on Tabular Data

1[0000—0001—7840—6228 : 1,2[{0000—0002—8046—7502
[I, Anisa Rulal:2! I,
1[0000—0002—5047—7371]

Marco Cremaschi
Alessandra Siano!, and Flavio De Paoli

! University of Milan - Bicocca, Viale Sarca 336, Milan, Italy
{marco.cremaschi,anisa.rula,flavio.depaoli}@unimib.it
a.siano2@campus.unimib.it
? Univeristy of Bonn {rula}@cs.uni-bonn.de

Abstract. This paper describes MantisTable, an open source Semantic
Table Interpretation tool, which automatically annotates tables using a
Knowledge Graph. MantisTable provides a graphical interface allowing
users to analyse the results of the semantic table interpretation process
and validate the final annotations. The tool also provides a guided mode
for viewing and editing annotations by users. Thanks to MantisTable
features, it is possible to create semantic annotations and favour the
publication and exchange of tabular data.

Keywords: Semantic Web - Ontology - Linked Data - Knowledge Graph
- Semantic Table Interpretation - Semantic Annotations

1 Introduction & Motivation

A vast amount of structured data represented in tables that contain relevant
information are available on the Web. Despite the huge corpus of such tables
on different topics, they set limitations on artificial intelligent tasks such as se-
mantic search and query answering. Some approaches started to propose [6, 5, 2]
extraction, annotation and transformation of tabular data into machine-readable
formats. The problem of semantically annotating tables, also known as Seman-
tic Table Interpretation (STI), presents different challenges as demonstrated by
the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching®
whose aim is benchmarking systems dealing with the semantic annotation tables.

STI takes a well-formed and normalised relational table (i.e. a table with
headers and simple values, thus excluding nested and figure-like tables), and
a Knowledge Graph (KG) which describes real-world entities in the domain of
interest (i.e. a set of concepts, datatypes, predicates, entities, and the relations
among them) in input, and returns, a semantically annotated table in output.
This process comprises different steps to semantically annotate tables such as
semantic classification of columns, which classify a column either in literal or
named entity. These steps are usually performed manually or semi-automatically

3 https://www.cs.ox.ac.uk/isg/challenges/sem-tab/

2 Cremaschi M. et al.

which require more users involvement who are often not familiar with seman-
tic modelling. They need support to understand and explore the footprint of
annotation steps.

Although previous efforts partially tackled the STI problem in the past [6],
there is still no full support by single tools. DataGraft?, a cloud-based service
that provides an interface to transform tabular data into RDF triples, performs
semantic annotations manually. TableMiner+ is a tool that supports only Web
tables for which the user must provide a URL. Moreover, a few approaches that
state to provide fully automatic tools, their code is not available or accessible,
and in most cases it cannot be executed for imprecise information on the config-
uration settings. Only a few are open source and, to the best of our knowledge,
none of them fully support users with the comprehensive STI steps through an
interactive interface.

On one hand, it is worth noticing that the task of annotating semantics
of tables is more complicated than the annotation of textual documents, due
to the lack of a context, usually deductible in the case of text documents. On
the other hand, the development of tools in this domain is characterised by
a certain complexity because of several elements of the table simultaneously
considered. In this paper, we propose MantisTable®, a web interface and an
open source Semantic Table Interpretation tool that automatically annotates,
manages and makes accessible to humans and machines the semantic of tables.
This tool is independent of any particular context. Additional built-in guidance
functionalities help to avoid common pitfalls and create correct annotations.
The current implementation of MantisTable is released as open source under the
Apache 2.0 License. Although an STT contains several steps, as will be explained
in the next section, the key feature of our tool is the involvement of all the STI
steps that run fully automatically.

2 Overview of MantisTable

The MantisTable tool implements STT steps through five phases:

Data Preparation aims to clean and uniform data inside the table. Trans-
formations applied to tables are as follows: remove HTML tags and stop words,
turn text into lowercase, solve acronyms and abbreviations, and normalise mea-
surements units. The latter is performed by applying regular expressions, as
described in [3].

Column Analysis whose tasks are the semantic classification that assigns
types to columns that are named entity (NE-column) or literal column (L-
column), and the detection of the subject column (S-column). The first step of
Column Analysis phase is to identify good L-column candidates. To accomplish
this task, we consider 16 regular expressions that identify several Regextypes
(e.g., geo coordinate, address, hex color code, URL). If the number of occur-
rences of the most frequent Regextype in a column exceeds a given threshold,

* https://datagraft.io/
® http://mantistable.disco.unimib.it

MantisTable: a Tool for Creating Semantic Annotations on Tabular Data 3

that column is annotated as L-column, otherwise, it is annotated as NE-column.
The second step deals with the subject column detection that takes into account
the identified NE-columns. We can define the S-column as the main column of
the table based on different statistic features (e.g. the percentage of cells with
unique content and distance from the first NE-column).

Concept and Datatype Annotation deals with mappings between
columns headers and semantic elements (concepts or datatypes) in a KG. In
the first step of Concept Annotation, we perform the entity-linking by searching
the KG with the content of a cell, to get a set of candidate entities. We use
the DICE similarity measure between the content of the cell and the candidate
entities to disambiguate the content of the cell. In the second step of Concept
Annotation, the abstract and all concepts for each winning entity are retrieved
from DBpedia®. For each extracted concept, we count the occurrences in the
abstract. For the Datatype Annotation, the results of the Column Analysis are
taken into consideration. To associate a Datatype to each column, a Regextype
is applied on the content of each column.

Predicate Annotation, whose task is to find relations, in the form of predi-
cates, between the main column and the other columns to set the overall meaning
of the table. MantisTable considers the winning concept of the S-column as the
subject of the relationship, and the remaining columns as objects. Further, the
entities identified as subjects and objects are further searched in the KG. In
order to identify the correct predicate, we compare the content of the column
and the candidate predicates.

Entity Linking deals with mappings between the content of cells and enti-
ties in the KG. The annotations obtained in the previous steps are used to create
a query for the disambiguation of the cell contents. If more than one entity is
returned for a cell, the one with a smaller edit distance (i.e., Wagner-Fischer
distance) is taken.

3 Application Interface

MantisTable is a web application developed with NodeJs” and the Meteor frame-
work®. The source code is released through a Git repository”. In order to scale
and therefore improve efficiency, MantisTable has been installed in a Docker
container to achieve parallelisation at the application level and facilitate the
deployment on servers. The management of resources is performed by a load
balancer (i.e., HAproxy'?). The five phases of the STI have been modularly
implemented allowing an easy replacement or extension by other developers.
MantisTable Loading and Storing. Tables are imported and stored in a
MongoDB database. In MantisTable, a list of loaded tables is displayed on the

5 For the demo we use DBpedia as one of the largest KG which covers different topics.
Other KGs can be used.
" https://nodejs.org/
8 https://www.meteor.com/
9 https://bitbucket.org/disco_unimib/mantistable-tool /
10 https://www.haproxy.org/

4 Cremaschi M. et al.

main page. For each table, a series of metadata is provided, such as name, date
of loading, date of last modification, which tasks have already been performed
and which are being executed thus making the user aware of the status of the
annotation process. Finally, users can download the annotated tables at the end
of the annotation process. Through the interface it is possible to add and load
new tables (in JSON format), delete all tables of the Gold Standard (T2Dv2!!
and Limaye200 [1]) and process all tables in batch. It is also possible to update
or delete every single table.

MantisTable Execution. After selecting a table, it is possible to manage
the execution of the five phases described in Section 2. The user can either run
all steps together or run them step-by-step to supervise the execution (Fig. 1 -
info mode).

VISUALIZATION MODE [0

EDIT MODE

L@ MOUNTAN s @ #HEGHTINMETERs L) RANGE
Jasie

3 T 4

@ LEFT SIDE BAR @ CONsOLE

I o - I —— - - I

Fig. 1. MantisTable interface overview: Visualization Mode (1. left side bar, 2. console),
Info Mode (3. right side bar), Edit Mode (4. edit form)

MantisTable Exploration. It is possible to navigate all the executed steps
by clicking on each phase and analyse the results in the visualization mode (Fig.
1 - 1. left side bar). For all phases, additional information about the execution
is shown in the console located under the table (Fig. 1 - 2. console). By clicking
on a header or body cell, information about the current phase is reported in the
info mode (Fig. 1 - 3. right sidebar).

Fig. 1 shows the table after the Column Analysis. Different colours are used
to immediately distinguish the different columns types: S-column, NE-columns,
and L-columns. The L-column headers show representative icons of the Regex-
type that has been assigned to them. By clicking the header cells contextualised
information is displayed, e.g. features for the identification of S-column are dis-
played for NE-columns, and the distribution of candidate regular expressions are
shown for L-column.

" http://webdatacommons.org/webtables/goldstandard V2.html

MantisTable: a Tool for Creating Semantic Annotations on Tabular Data 5

After the Concept and Datatype Annotation phase, clicking on a header cell
opens the right sidebar to display the selected concepts (for NE-columns) and
datatypes (for L-column). Clicking on a body cell, two tabs are opened to dis-
play the candidate entities (with the similarity scores computed to select the
winning one), and candidate concepts associated with the entities (with score).
To enhance the awareness of the user, the abstract from DBpedia related to
the winning concept is also reported. With the same approach, the user can
browse the predicate annotations by first selecting that phase on the left, and
then view the annotation relating to the relationship between the S-column and
the columns on the right sidebar.

MantisTable Editing. Even if MantisTable implements a fully automated
annotation process, it is important to allow users to understand what has been
achieved and give them the opportunity to modify and enhance the results. The
former has been achieved with the exploration features sketched above, the latter
has been accomplished by providing a widget to edit the annotations (Fig. 1 -
4. edit mode). The annotation validation and editing require that the user has
previous knowledge about the structure of the KG. Therefore, to support the
user we integrate ABSTAT!? [4], a Resource Description Format (RDF) data
set profiling tool. It takes a dataset and the relative ontology (in OWL format)
in input, and produces a summary and some statistics about the dataset. In
addition, ABSTAT provides access to summaries via APIs that allow to easily
extract information about the KG such as the frequency of a particular concept
in the KG or the frequency of a particular type of pattern. In essence, ABSTAT
provides information on how concepts and properties are used within DBpedia,
thus supporting the user to make better choices.

4 Acknowledgments

This research has been supported in part by EU H2020 projects EW-Shopp -
Grant n. 732590. Special thanks to Roberto Avogadro, David Chieregato, Carlo
Mattioli and Blerina Spahiu for their support during the development of the
project.

References

1. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables
using entities, types and relationships. VLDB 3, 1338-1347 (2010)

2. Pham, M., Alse, S., Knoblock, C.A., Szekely, P.: Semantic Labeling: A Domain-
Independent Approach, pp. 446-462. Springer (2016)

3. Ritze, D., Lehmberg, O., Bizer, C.: Matching html tables to dbpedia. In: Proceedings
of the 5th International Conference on Web Intelligence, Mining and Semantics. pp.
10:1-10:6 (2015)

12 http://backend.abstat.disco.unimib.it

Cremaschi M. et al.

. Spahiu, B., Porrini, R., Palmonari, M., Rula, A., Maurino, A.: Abstat: ontology-
driven linked data summaries with pattern minimalization. In: ISWC. pp. 381-395.
Springer (2016)

. Venetis, P., Halevy, A., Madhavan, J., Pagca, M., Shen, W., Wu, F., Miao, G., Wu,
C.: Recovering semantics of tables on the web. Proc. VLDB Endow. 4(9), 528-538
(2011)

. Zhang, Z.: Effective and efficient semantic table interpretation using tableminer+.
Semantic Web 8(6), 921-957 (2017)

