
Global Optimization in Machine Learning: the design of

a Predictive Analytics application

Antonio Candelieri1 and Francesco Archetti1

1 University of Milano-Bicocca, Department of Computer Science, Systems and Communica-

tion, Milan, 20126, Italy
antonio.candelieri@unimib.it

Abstract. Global Optimization, especially Bayesian Optimization, has become

the tool of choice in hyperparameter tuning and algorithmic configuration to op-

timize the generalization capability of Machine Learning algorithms.

The contribution of this paper is to extend this approach to a complex algorithmic

pipeline for predictive analytics, based on time series clustering and Artificial

Neural Networks. The software environment R has been used with mlrMBO, a

comprehensive and flexible toolbox for Sequential Model Based Optimization.

Random Forest has been adopted as surrogate model, due to the nature of deci-

sion variables (i.e. conditional and discrete hyperparameters) of the case studies

considered. Two acquisition functions have been considered: Expected improve-

ment and Lower Confidence Bound, and results are compared.

The computational results, on a benchmark and a real-world dataset, show that

even in a complex search space, up to 80 dimensions related to integer, categor-

ical and conditional variables (i.e., hyperparameters), Sequential Model Based

Optimization is an effective solution, with Lower Confidence Bound requiring a

lower number of function evaluations than Expected Improviement to find the

same optimal solution.

Keywords: hyperparameters optimization, global optimization, machine learn-

ing.

1 Introduction

The successful application of Machine Learning (ML) in a broad range of domains

has recently led to an increase in the demand of these solutions. The goal of any ML

algorithm is to make accurate prediction on new data (generalization). However, there

is not a unique choice and an algorithm that scores top on one learning task can score

poorly on another, as summarized by the “no free lunch theorem” [1]. While this result

emphasized the role of the ML experts in the design of reliable applications, the recent

interest is focusing on the possibility to disclose ML potential by making it easy to be

used off the shelf also by non-experts, taking, in some sense, the human out of the loop

[2]. Indeed, a growing number of commercial enterprises is addressing this demand

2

(e.g., Microsoft’s Azure Machine Learning, Google’s Prediction API, Vizier and Hy-

pertune, Amazon Machine Learning and SigOpt, among others).

Every ML service needs to solve the fundamental issues of deciding which algorithm

to use on a given dataset and how to set all the hyperparameters. While a lot of research

have been tackling this problem (also named automated machine learning, AutoML)

through the application of meta-heuristics (e.g. Genetic Algorithms), more recent works

suggest to use Global Optimization (GO), in particular Bayesian Optimization (BO)

[2][3]. AutoML was first addressed in AUTO-WEKA [4] that combines a highly para-

metric ML framework with BO. More recently, a new and robust AutoML system based

on SciKit-Learn has been proposed in [5]. This system, AUTO-SKLEARN, uses sev-

eral classification algorithms, data preprocessing and feature processing methods, lead-

ing to an overall number of 110 hyperparameters, which are handled through BO.

ML algorithms are usually compared according to their generalization capability,

which consists in evaluating their loss – or any performance index (e.g. accuracy or

root mean squared error in classification and regression tasks, respectively) – on a k-

fold cross validation procedure. This means that each algorithm must be trained and

tested k times, making this procedure time consuming and significantly expensive, es-

pecially for those algorithms whose training is expensive/slow. Finally, usually a lim-

ited “budget” to train and test different configurations of an ML algorithm is available,

comprising computational resources such as CPU, wall-clock time, memory usage.

Sequential Model Based Optimization (SMBO) is a general framework for GO of

black-box expensive objective functions, a well-suited tool for optimal hyperparame-

ters tuning of ML algorithms.

Contribution of this paper is the design, implementation and validation of a SMBO

framework for addressing the automatic configuration of a complex ML pipeline – in-

stead of a single algorithm – aimed to perform accurate time-series forecasting based

on two consecutive phases: time-series clustering and Artificial Neural Network

(ANN). All the hyperparameters in the pipeline are decision variables and the objective

is the minimization of the forecasting error at the end of the pipeline.

The rest of the paper is organized as follows: in section 2 the basics on SMBO are

presented; section 3 presents the predictive pipeline; section 4 provides the details on

the experimental setting, and section 5 summarizes results and provides discussion.

2 Global Optimization via Sequential Model Based

Optimization

2.1 SMBO process

 Let 𝑓(𝑥): 𝑋 → ℝ be an arbitrary black-box expensive function to be optimized,

where 𝑋 ⊆ ℝ𝑑 is the search space spanned by the decision variables. Each dimension

𝑋𝑖 can be either categorical (i.e., 𝑋𝑖 = {𝑤𝑖1, … , 𝑤𝑖𝑠}, with 𝑠 the number of possible val-

ues) or numeric and bounded (i.e., 𝑋𝑖 = [𝑙𝑖 , 𝑢𝑖]). The final aim of any GO strategy,

including SMBO, is to find the optimum 𝑥∗, with

3

𝑥∗ = arg min
𝑥∈𝑋

𝑓(𝑥)

The first of the two basic elements of SMBO is a surrogate model 𝑓(𝑥) approximat-

ing 𝑓(𝑥) and cheaper to evaluate. The surrogate model is continuously updated any

time a new evaluation of the (actual) objective function is performed. The “sequential”

nature of SMBO is related to the identification the next most promising to evaluate.

The new point is obtained through a mechanism that is the other basic element of

SMBO, usually known as acquisition function. The generic SMBO process is summa-

rized in the following steps.

Sequential Model Based Optimization process

1: Sample an initial set of points and evaluate the objective function on them to obtain the initial

set 𝐷1:𝑛 = {(𝑥𝑖 , 𝑓(𝑥𝑖))}
𝑖=1:𝑛

2: Fit the surrogate model 𝑓(𝑥) according to 𝐷1:𝑛 = {(𝑥𝑖 , 𝑓(𝑥𝑖))}
𝑖=1:𝑛

= {(𝑥𝑖 , 𝑦𝑖)}𝑖=1:𝑛 where

𝑦𝑖 = 𝑓(𝑥𝑖)

3: Compute the acquisition function according to the current 𝑓(𝑥) and identify the next promising

point 𝑥𝑛+1

4: Evaluate the objective function in 𝑥𝑛+1 and update 𝐷𝑛+1 = 𝐷𝑛 ∪ {(𝑥𝑛+1, 𝑦𝑛+1)}

5: If a given termination criterion is satisfied STOP, otherwise 𝑛 = 𝑛 + 1 and go to 2

2.2 Surrogate Models

The most widely used surrogate model in SMBO is Gaussian Process (GP), also

known as Kriging regression [6]. A GP is a non-parametric model completely defined

by its prior mean function 𝜇0: 𝑋 → ℝ and a covariance function or a positive-definite

kernel 𝑘: 𝑋 × X → ℝ. Intuitively, a GP is analogous to a function, but instead of return-

ing a single numeric value for an arbitrary 𝑥̅, it returns the mean and variance of a

normal distribution over the possible values of 𝑓(𝑥̅). Therefore, given the set of points

and associated evaluations 𝐷1:𝑛 = {(𝑥𝑖 , 𝑓(𝑥𝑖))}
𝑖=1:𝑛

= {(𝑥𝑖 , 𝑦𝑖)}𝑖=1:𝑛 and a given point

𝑥̅, the estimation of 𝑓(𝑥̅), conditioned on 𝐷1:𝑛, is normally distributed, where the pos-

terior mean and variance evaluated at any point 𝑥̅ represent the model’s prediction and

uncertainty, respectively, in 𝑓(𝑥̅).

The main drawback of GP is the computational complexity: at every iteration the

surrogate is inferred with a complexity 𝑂(𝑛3) where 𝑛 is the number of evaluations

performed so far. This means that also time for the identification of the next point to

evaluate, as well as the overall wall-clock time, increases over the SMBO iterations.

Furthermore, this approach scales poorly with the dimensionality of the search

space: to reduce the impact of dimensionality some proposals have been recently sug-

gested [7][8]. To mitigate these problems, alternative surrogate models have been pro-

posed: one of the most widely adopted is Random Forest (RF) for regression. RF is an

ensemble learning strategy, whose base classifiers/regressors are Decision Trees (DTs).

It practically proved to be a scalable and highly parallelizable solution for regression

problems and inherits the capability of DTs to deal also with categorical and conditional

4

variables. An RF generates a multitude of DTs, at training time, and provides as output

the mean (or median) prediction among the individual trees, when adopted for regres-

sion. RF differs from other typical ensemble methods (e.g. voting systems) in the way

they introduce random perturbations into the training phase. The basic idea is to com-

bine bagging, to sample examples from the original dataset, and random selection of

features, used to train every tree of the forest. The algorithm for training a RF regression

model is summarized as follows.

Random Forest learning algorithm

Given:

• S the size of the forest (i.e. number of decision trees in the forest)

• N the number of examples in the dataset (i.e. evaluations of the objective functions)

• M the number of features (i.e. decision variables) representing every example

• m the number of features (i.e. decision variables) to be randomly selected from the M avail-

able for each leaf node of the tree to be split

• nmin the minimum node size in the tree

1: for i = 1 to S

2: sample, with replacement, a subset of N instances from the dataset

3: for every terminal node (leaf) of the i-th decision tree having size lower than nmin

4: select m features (i.e. decision variables) at random from the M available

5: pick the best feature (i.e. decision variable) and split among the possible m

6: split the node in two children nodes (new leaves of the decision tree)

7: end for

8: end for

Injecting randomness simultaneously with both bagging and features selection al-

lows for training a collection of DTs with controlled variance. Variance is crucial in

replacing GPs with RF process: the possibility to compute the variance of the RF allows

for keeping the overall SMBO process as is, except for the regression method.

2.3 Acquisition Functions

Any acquisition function aims at managing the trade-off between exploration and

exploitation. At each iteration of the SMBO process the new promising point 𝑥 has to

be identified by weighting the advantage of considering the region of the search space

currently providing more chance to improve the current solution – which means “ex-

ploiting” the current knowledge represented by the surrogate model 𝑓(𝑥) – rather than

moving towards less explored regions of 𝑋 – which means “exploring” new solutions,

in particular according to the uncertainty of the surrogate model 𝑓(𝑥).

Expected Improvement (EI) [9] and Confidence Bound (CB) are the most adopted

acquisition functions [2] and are also considered in this paper. EI measures the expec-

tation of the improvement on 𝑓(𝑥) with respect to the predictive distribution of the

surrogate model 𝑓(𝑥), while CB is a strategy that is optimistic with respect to the un-

certainty. Lower Confidence Bound (LCB) and Upper Confidence Bound (UCB) are

used for minimization and maximization problems, respectively. EI is computed as:

𝐸𝐼(𝑥) = (𝑓+ − 𝜇(𝑥))Φ(𝑍) + 𝜎(𝑥)𝜙(𝑍)

5

where 𝑓+ is the best value observed so far (“best seen”), 𝜇(𝑥) and 𝜎(𝑥) are respec-

tively the mean and standard deviation of the surrogate model, Φ(𝑍) and 𝜙(𝑍) are the

distribution and the density of the standard normal distribution, and 𝑍 is:

𝑍 = {

𝑓+ − 𝜇(𝑥)

𝜎(𝑥)
𝑖𝑓 𝜎(𝑥) > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒

LCB, used in this study, is computed as:

𝜇(𝑥) − 𝛽𝜎(𝑥)

where 𝛽 is a parameter, usually known as “inflate”, to balance the trade-off between

exploration and exploitation (we use 𝛽 = 1, in this study).

To solve the original black-box optimization problem the optimization of the acqui-

sition function is required, but this process is usually cheaper and easier than the origi-

nal one and it is addressed through methods, such as the derivative free DIRECT or

multi-start BFGS (Broyden–Fletcher–Goldfarb–Shanno), in the case of continuous de-

cision variables, or “focus search” (proposed in the mlrMBO software) to handle nu-

meric, categorical, mixed and hierarchical/conditional decision variable spaces (thus,

well suited for a RF based surrogate model).

3 The Predictive Analytics Application Proposed

3.1 Case Studies and Available Data

To validate the proposed approach, we used a benchmark and a real-world dataset.

The former is known as “Appliances energy prediction Data Set”1 and the latter consists

of the urban water demand data in Milan, from 2016-10-01 to 2017-09-30. Unlike the

water case study, the energy dataset is multivariate, but we adopted our predictive pipe-

line to find an accurate univariate forecasting model for the energy consumed by appli-

ances. Urban water demand data were collected through the Supervisory Control And

Data Acquisition (SCADA) system monitoring the urban water distribution network in

Milan, serving approximately 1.5 million habitants. In both case studies, data were or-

ganized into a distinct time-series dataset 𝐷 = {𝑥1, … , 𝑥𝑙} consisting of 𝑙 vectors, one

for each day in the observation period, and where each vector 𝑥𝑖 is a set of 24 ordered

values, one for each hour of the day.

3.2 A Two Stage Machine Learning based Pipeline

This section provides the details about the predictive analytics pipeline to optimize.

Although we have already presented the idea of two consecutive analysis stages, which

are time-series clustering and regression, respectively [10-12], the optimization of the

overall pipeline is addressed in this paper for the first time.

1 https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

6

Time-series data are organized into a dataset where each row is a vector of V com-

ponents representing the evolution of data in a time window of interest (e.g., hourly

water or energy consumptions during the day).

The basic advantage of using time-series clustering as first stage is that it might allow

for the identification of typical patterns within the time window of interest and, conse-

quently, for splitting the dataset into subsets (i.e. clusters) which are then used in the

second stage. In this paper, time-series clustering is performed via kernel k-means [13].

At the second stage, an ANN is trained for each cluster: with respect to [10-12], this

leads to a reduction of the number of forecasting models to be trained and, potentially,

the number of hyperparameters to be optimized. Fig. 1 summarizes the overall pipeline.

Fig. 1. The proposed predictive analytics pipeline: first stage is clustering through kernel

k-means; second stage consists to learn an ANN for each cluster

First Stage: Clustering. The kernel k-means algorithm [13] is a generalization of

the standard k-means: it implicitly maps data from the Input Space, spanned by the

original set of features (i.e. decision variables of the SMBO process), to a higher-di-

mensional space, namely Feature Space. Therefore, kernel k-means can discover clus-

ters that are non-linearly separable in Input Space. In [14] optimization of kernel k-

means through SMBO has been proposed with the aim to replace graph partitioning in

a leakage localization application to increase computational efficiency.

Given a set 𝒳of vectors x1, x2, …, xn, the kernel k-means objective can be written as

the minimization of:

𝑔(𝑥𝑖) = ∑ ∑ ‖𝛷(𝑥𝑖 − 𝑥̅𝑘)‖2

𝑥∈𝐶𝑘

𝑘̅

𝑘=1

, ∀ 𝑥𝑖 ∈ 𝒳

Where 𝑘̅ is the number of clusters, 𝛷(𝑥) is a (non-linear) function mapping vectors

xi from the Input Space 𝒳 to the Feature Space, and 𝑥̅𝑘 is the centroid of cluster Ck.

Expanding ‖𝛷(𝑥𝑖 − 𝑥̅𝑘)‖2, 𝑔(𝑥𝑖) can be written as:

𝑔(𝑥𝑖) = 𝛷(𝑥𝑖)𝛷(𝑥𝑖) −
2 ∑ 𝛷(𝑥𝑖)𝛷(𝑥𝑗)𝑥𝑗∈𝐶𝑘

|𝐶𝑘|
+

∑ 𝛷(𝑥𝑗)𝛷(𝑥𝑖)𝑥𝑗,𝑥𝑖∈𝐶𝑘

|𝐶𝑘|2
.

7

Only inner products are used in the computation of the distance between every vector

𝑥𝑖 ∈ 𝒳 and the centroid of the cluster Ck. Thus, given a kernel matrix Kij = 𝛷(𝑥𝑖)𝛷(𝑥𝑗),

these distances can be computed without knowing explicit representations of 𝛷(𝑥).

Second Stage: Artificial Neural Network based forecasting. The second stage of

the pipeline consists in training 𝑘̅ different ANNs, one for each one of the 𝑘̅ clusters

resulting from the first stage. The first 𝑣 values of the time series and the remaining

𝑉 − 𝑣 are, respectively, the input and output neurons of every ANN. In this study we

set 𝑣 = 6 for both the two datasets, meaning that the first six actual values are sufficient

to forecast, in one shoot, the overall consumption pattern for the day.

It is important to highlight that the “internal” organization of the ANN is completely

free, only the number of input and output neurons have been set up, while all the other

ANN’s hyperparameters are optimized through the SMBO process. The list of ANN’s

hyperparameters is provided in the following section 3.2. Finally, the number of ANNs

is not given a priori, it depends on the number k of clusters identified from the first

stage. In any case the training process for the k ANNs is performed in parallel.

In the following Fig. 2 the second stage of the predictive analytics pipeline is sum-

marized, describing how data in a cluster are used to train the corresponding ANN.

Fig. 2. Second stage of the predictive analytics pipeline: training an ANN on a cluster

3.3 Hyperparameters of the Predictive Analytics Application

The following Table 1 and Table 2 summarize, separately for the two stages, the hy-

perparameters of the predictive analytics pipelines (i.e., decision variables).

Table 1. - Decision variables / hyperparameters for the clustering phase

Variable Hyperparameter Type Description

𝑥1 𝑘̅ integer Number of clusters. Possible values are form

3 to 9

𝑥2 kernel type categorical Type of kernel used in the kernel based clus-

tering. Possible kernels are:

linear, spline, rbf, laplace, bessel, polynomial

8

𝑥3 σ numeric,

conditioned

Hyperparameter of the rbf, laplace and Bessel

kernels. Possible values are in [10-5, 105]

𝑥4 degree integer,

conditioned

Hyperparameter of the bessel and polynomial

kernels. Possible values are 2, 3 or 4

Table 2. - Decision variables / hyperparameters for the ANN learning phase

Variable Hyperparameter Type Description

𝑥̅1
𝑘 hidden layers integer Number of hidden layers in the artificial

neural network. Possible values are 1,2 or 3

𝑥̅2
𝑘 neurons in the

hidden layer 1

integer Number of neurons in the hidden layer 1.

Possible values are from 1 to 20

𝑥̅3
𝑘 neurons in the

hidden layer 2

integer,

conditioned

Number of neurons in the hidden layer 2 (if

𝑥̅1
𝑘 > 1). Possible values are from 1 to 20

𝑥̅4
𝑘 neurons in the

hidden layer 3

integer,

conditioned

Number of neurons in the hidden layer 3 (if

𝑥̅1
𝑘 > 2). Possible values are from 1 to 20

𝑥̅5
𝑘 algorithm categorical Type of algorithm used to train the artificial

neural network. Possible values are: back-

prop, rprop+, rprop-, sag, slr

𝑥̅6
𝑘 learning rate numeric,

conditioned

Learning rate of the backprop algorithm.

Possible values are in the range [0.1, 1.0]

𝑥̅7
𝑘 error function categorical Function used to compute training error.

Possible values are: sse and ce

𝑥̅8
𝑘 activation func-

tion

categorical Function used to compute the output of

every neuron. Possible values are: logistic

and tanh

𝑥̅9
𝑘 linear output logical This hyperparameter defines whether to use

a linear combination in the output layer of

the artificial neural network or not. Possible

values are TRUE or FALSE.

According to the value of the decision variable 𝑥1 (i.e. the number of clusters) the

number of decision variables in the second phase is consequently defined: it is 𝑥1 times

9. Since 𝑥1 is an integer ranging from 3 to 9, this means that the overall number of

decision variables for the pipeline ranges from 4 + 3 × 9 = 31 to 4 + 9 × 9 = 85.

3.4 Prediction Error as Objective Function

The performance measure used to evaluate the overall predictive analytics pipeline

is based on the Mean Average Percentage Error (MAPE), a widely adopted measure to

evaluate time-series forecasting models in different application domains, such as envi-

ronmental observations or water/energy consumptions. The MAPE between an actual

time series and its forecast is computed as follows:

𝑀𝐴𝑃𝐸 =
1

𝑇
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡

|

𝑇

𝑡=1

9

where 𝐴𝑡 and 𝐹𝑡 are the actual and forecasted value, respectively, at time 𝑡 and 𝑇 is

the number of time steps predicted. However, there are 2 specific issues to address in

using MAPE for the evaluation of our predictive analytics pipeline:

• we have a MAPE value for every time series in the dataset (computed through cross

validation)

• an ANN is trained for every cluster identified in the first stage, so MAPE should be

considered for every cluster.

Thus, since we have formulated a single-objective optimization problem, some ag-

gregation on MAPE values is needed to have just one value for the objective function,

given a setting of the pipeline’s hyperparameters. We have decided to consider the min-

imization of the worst MAPE computed on every time series data and over the entire

set of ANN forecasters. Finally, the optimization problem can be stated as:

min
𝑥∈𝑋

 {𝑓(𝑥) = max
𝑘=1,…,𝑘̅

𝑀𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑘}

where 𝑀𝐴𝑃𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑘 is the worst (i.e. the highest) value of MAPE computed through 10-

fold cross validation on the cluster 𝑘 = 1, … , 𝑘̅. Folds were obtained through a random

stratified split, without considering any information about time periods.

4 Experimental Setting

4.1 Set Up of the SMBO Process

We have decided to adopt the following setting for the SMBO process:

• Initialization: 100 initial evaluations of the objective function, through ran-

dom Latin Hypercube Sampling (LHS)

• Surrogate model: Random Forest – the choice was driven by the nature of the

hyperparameters (i.e. discrete and conditioned decision variables)

• Acquisition Function: LCB and EI

• Termination Criteria: Maximum number of evaluations set to 500 (excluding

the 100 evaluations for initialization)

 The default configuration for RF was used: 500 trees and 1/3 of features selected

from those available. The objective function is the one described in the previous section

3.4. An experiment using Random Search (i.e. 600 iterations of LHS) has been also

performed to better understand the benefits provided by SMBO.

4.2 Computing System Configuration

Experiments have been performed on the following system: Intel Core i7-4712HQ

@ 2.30GHz, RAM 16GB, Microsoft Windows10 (64bit). The framework has been im-

plemented by using R 3.4.0 (x64) with the packages: mlrMBO [15], neuralnet, kernlab.

10

5 Results and Discussion

This section summarizes the results obtained by applying the proposed approach.

A small portion of each dataset has been used as independent test set, while the larger

part has been used to perform 10 folds-cross validation. The indicators considered to

evaluate the optimization process are:

• the “best seen” (i.e. max objective function value obtained over function evaluations)

• the first iteration which “best seen” appears at

• and wall-clock time.

Information on computational time is split in: training time (required to fit the sur-

rogate model), proposition time (required to identify the next point 𝑥𝑛+1 to evaluate)

and evaluation time (required to perform the new function evaluation, 𝑓(𝑥𝑛+1)).

Table 3 and Table 4 summarize results on the two datasets, separately. SMBO found

a better configuration of the predictive pipeline than Random Search (i.e. 600 function

evaluations on LHS), and with a very small MAPE. Although MAPE starts with higher

values on the energy data, the final values are quite similar for the two datasets.

With respect to computational time: for LCB, training time is 0.7-0.8% of the overall

wall-clock time, and proposition time is around 3.0-3.3%. This means the effort is al-

most completely devoted to evaluate objective function: this is quite logical, as it re-

quires to run clustering and, even more expensive, 10 folds-cross validation on as many

ANNs as the clusters identified. Similar percentages have been obtained for EI.

Table 3. – Results on water dataset. Some measures are not applicable for LHS

Acquisition

Function

MAPE Best

Seen [%]

Best Seen

Iteration*

Training

Time [secs]

Proposition

Time [secs]

Evaluation

Time [secs]

EI 0.10 386 1337.69 5855.86 184181.80

LCB 0.10 182 1335.24 5711.23 188850.80

LHS 14.80 - - - 59764.04

* preliminary 100 evaluations for initialization are included

Table 4. – Results on energy dataset. Some measures are not applicable for LHS

Acquisition

Function

MAPE Best

Seen [%]

Best Seen

Iteration*

Training

Time [secs]

Proposition

Time [secs]

Evaluation

Time [secs]

EI 0.08 196 1963.19 6505.95 193732.90

LCB 0.08 147 1584.38 6394.54 195716.20

LHS 6.67 - - - 230760.60

* preliminary 100 evaluations for initialization are included

In the following Fig. 3, the evolution of the “best seen” over the SMBO iterations is

reported, for both the LCB and EI, and for the two datasets, separately. In all the cases

11

SMBO has identified the same optimal solution. Moreover, in the case of LCB, SMBO

required a lower number of function evaluations than EI.

Fig. 3. Results on water data (left) and energy data (right): best seen MAPE over function

evaluations, for LCB and EI. First 100 evaluations are for initialization.

When the best forecasting pipelines, one for each dataset, were applied to the corre-

sponding portions of data left as independent test sets, the computed MAPE resulted to

be aligned with that obtained in 10 folds-cross validation, more precisely: 0.19% and

0.12% for the water and energy data, respectively.

6 Conclusions

Given the increasing systems complexity, black-box optimization will be gaining

ever more importance as a design paradigm for such diverse targets as physical systems,

user interfaces and ML applications. SMBO is an effective backbone for building one

such optimization infrastructure, both statistically sound and flexible enough to cater to

different design targets and delivery environments.

Although a major finding of this paper is that SMBO can still handle up to 85 vari-

ables, the hundreds of them, as required to tune Deep Learning algorithms, are still a

challenge: promising research areas are to use a portfolio of acquisition functions on a

parallel architecture and to perform SMBO in a low dimension manifold identified by

random, Laplacian or Deep embedding.

Finally, ongoing work is aimed at applying SMBO to optimize the forecasting pipe-

line on other application domains, even those which, unlike water and energy, could be

not characterized by typical behaviours, for instance to forecast price, volume or return

of financial stocks.

Compliance with Ethical Standards:

Conflict of Interest: Antonio Candelieri declares that he has no conflict of interest.

Francesco Archetti declares that he has no conflict of interest.

12

Ethical approval: This article does not contain any studies with human participants

or animals performed by any of the authors.

References

1. Wolpert, D. H.: The lack of a priori distinctions between learning algorithms. Neural com-

putation, 8(7), 1341-1390 (1996).

2. Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., de Freitas, N.: Taking the human out of

the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1), 148-175,

(2016).

3. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian Optimization of Machine Learn-

ing Algorithms, arXiv:1206.2944 [stat.ML] (2012).

4. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K. Auto-WEKA: Combined selection

and hyperparameter optimization of classification algorithms. In: Proceedings of ACM

SIGKDD. 847–855 (2013).

5. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient

and robust automated machine learning. In Advances in Neural Information Processing Sys-

tems, 2962-2970 (2015).

6. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic black-box

systems via sequential kriging meta-models, J. Glob. Optim., 34(3), 441–466, (2006).

7. Wang, Z., Zoghi, M., Hutter, F., Matheson, D., De Freitas, N.: Bayesian Optimization in

High Dimensions via Random Embeddings, Proc. Int. Jt. Conf. Artif. Intell., 1778–1784,

(2013).

8. Kandasamy, K., Schneider, J., Pòczos, B.: High Dimensional Bayesian Optimisation and

Bandits via Additive Models, in International Conference on Machine Learning, 37, 295–

304, (2015).

9. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the

extremum, in Towards Global Optimisation 2, L. Dixon and G. Szego, Eds. Elsevier, 117-

130, (1978).

10. Candelieri, A., Archetti, F.: Identifying typical urban water demand patterns for a reliable

short-term forecasting - The icewater project approach, Procedia Eng., 89, 1004–1012,

(2014).

11. Candelieri, A., Soldi, D., Archetti, F.: Short-term forecasting of hourly water consumption

by using automatic metering readers data, Procedia Eng., 119(1), 844–853, (2015).

12. Candelieri, A.: Clustering and support vector regression for water demand forecasting and

anomaly detection, Water, 9(3), 224, (2017).

13. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts.

In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pp. 551–556 (2004)

14. Candelieri, A., Giordani, I., Archetti, F.: Automatic Configuration of Kernel-based Cluster-

ing: an optimization approach, in International Conference on Learning and Intelligence Op-

timization, pp. 34-49 (2017). Springer, Cham.

15. Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: A Modular

Framework for Model-Based Optimization of Expensive Black-Box Functions. arXiv pre-

print arXiv:1703.03373 (2017).

