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“Nothing in life is to be feared,  

it is only to be understood.  

Now is the time to understand more, 

so that we may fear less.” 

 

Marie Curie 
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ABSTRACT 

In the recent decade, one of the important keynote message 

derived through the summation of our global efforts against cancer 

is the need to better understand cancer cell metabolism for the 

development of better and efficacious personalized therapy. 

Cancer cells undertake a multifaceted rewiring of metabolic 

pathways in order to support their proliferative and invasive 

nature, which requires a systems level investigation to fully 

comprehend the scale of metabolic deregulation. 

In this study, we systematically investigated the metabolic 

differences using untargeted metabolomics and 13C flux omics 

approach in oncogenic K-Ras driven tumours. We tested the 

effects of drug inhibitors targeting glucose and glutamine 

metabolism to unravel the alternative metabolic pathways required 

for cancer cell survival.  

We further expanded our research towards understanding the role 

of cellular metabolism in driving resistance to endocrine 

therapeutic drugs in ERα positive breast cancer. We identified 

specific metabolic mechanisms of utilization of glutamine in 

resistant cells while also providing further basis for the use of 

metformin as an adjuvant in the treatment of endocrine therapy-

resistant cancers. 

Finally, we contributed to current understanding about cancer cell 

metabolism by exploring the role of glutamine beyond its role as 

a carbon and nitrogen source in driving growth and proliferation 

of cancer cells. Upon substitution of glutamine with appropriate 
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nitrogen and carbon sources, cancer cells exhibited reverse 

Warburg phenotype. 

The findings from this thesis open up new avenues of research 

through the identification of new putative targets and bring us one 

step closer towards designing much better and efficacious 

therapeutic strategy for the treatment of cancer patients. 
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RIASSUNTO 

Nell'ultimo decennio, uno dei messaggi chiave derivante dalle 

ricerche scientifiche sul cancro è la necessità di comprendere 

meglio il metabolismo delle cellule tumorali per lo sviluppo di una 

terapia personalizzata migliore e più efficace. Le cellule tumorali 

attuano un riarrangiamento metabolico che coinvolge diversi 

processi per supportare la loro natura proliferativa ed invasiva.  

Per meglio comprendere l’entità del cambiamento metabolico, in 

questo studio abbiamo utilizzato un approccio systems level 

impiegando la metabolomica untargeted e la flussomica mediante 

isotopi stabili del carbonio (13C) in cellule tumorali esprimenti un 

K-Ras oncogenico. 

Abbiamo testato gli effetti di farmaci inibitori del metabolismo di 

glucosio e glutammina per indagare eventuali vie metaboliche 

alternative attivate per la sopravvivenza delle cellule tumorali. 

Inoltre abbiamo investigato il ruolo del metabolismo cellulare 

nello sviluppo della resistenza alla terapia endocrina nel 

carcinoma mammario ERα positivo. I dati ottenuti hanno 

permesso di identificare specifici meccanismi metabolici di 

utilizzo della glutammina in cellule resistenti alla terapia, 

suggerendo l’utilizzo del farmaco metformina come adiuvante nel 

trattamento dei tumori resistenti alla terapia ormonale. 

Infine, abbiamo contribuito alla comprensione del metabolismo 

delle cellule tumorali nel guidare la crescita e la proliferazione, 

esplorando il ruolo della glutammina oltre la nota funzione di fonte 

di carbonio e azoto; infatti sostituendo la glutammina con fonti 
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alternative di carbonio e azoto, si osserva un fenotipo reverse 

Warburg. 

I risultati di questa tesi aprono strade di ricerca per 

l'identificazione di nuovi potenziali obiettivi terapeutici e ci 

portano verso la progettazione di una strategia terapeutica migliore 

e più efficace per il trattamento dei pazienti oncologici. 
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ABBREVIATIONS 

AcCoA acetyl-CoA 

ACLY ATP citrate lyase 

Akg alpha-ketoglutarate 

AMP adenosine mono phosphate 

ATP adenosine tri phosphate 

CBM constraint based modelling 

DCA dichloroacetate 

DNA deoxyribose nucleic acid 

DNMTs DNA methyl transferases  

EMU elementary metabolite unit 

ETC electron transport chain 

FADH2 reduced flavin adenine dinucleotide 

FBA flux balance analysis 

GC-MS gas chromatography-mass spectrometry 
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JMJC jumonji-C  

KAT lysine acetyltransferases  

LC-MS liquid chromatography-mass spectrometry 

MALDI matrix assisted laser desorption ionisation. 

MFA metabolic flux analysis 

MS mass spectrometer 

MYC v-myc avian myelocytomatosis viral oncogene homolog 

NADH reduced Nicotinamide adenine dinucleotide 

NMR nuclear magnetic resonance 

OCR oxygen consumption rate 

OXPHOS oxidative phosphorylation 

PDC pyruvate decarboxylase 

PET positron emission tomography 

PPP pentose phosphate pathway 

PRMT5 protein arginine N-methyltransferase 5 

ROS reactive oxygen species 

SAM s-adenosyl-methionine  

TCA tri carboxylic acid 
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1.1 CANCER 

Cancer can be described as a highly complex systems disease that 

defies univocal definition, and one of the major obstacle in our 

efforts to defeat cancer has been largely due to the confusions 

surrounding the origin of the disease, where much of the 

misperception arises from an absence of a unifying theory. 

Absence of a clear idea about origin of cancer makes it difficult to 

formulate an effective and clear strategy for the prevention and 

management of the disease, where paradoxes and contradictions 

add to its ever increasing complexity (Baker and Kramer, 2007; 

Gibbs, 2003; Hanahan and Weinberg, 2000; Soto and 

Sonnenschein, 2004). Even after decades of research, this failure 

to clearly define the origin of disease is reflected by the 

consistently increasing number of cancer cases, now making 

cancer the second leading cause of death worldwide.  

For a long time cancer has been considered as a genetic disease 

where damage to a cell’s DNA was blamed for the transformation 

of a normal cell into potentially dreadful cancer cell. Discovery of 

oncogenes like MYC (Duesberg et al., 1977), PI3K (Chang, 1997), 

RAS (Shih et al., 1979), ERBB (Bister and Duesberg, 1979; Lai et 

al., 1979) and tumour suppressor genes like TP53 (LANE and 

CRAWFORD, 1979) and RB (Knudson, 1971) inspired a wealth 

of research towards finding gene targets that could potentially 

drive transformation of cancer cells. These findings of 

innumerable number of gene changes in different cancers has led 

to idea that cancer is not a single disease but a collection of 

different diseases (Vogelstein and Kinzler, 1993), bringing forth 
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the notion that cancer treatment will require personalized drug 

therapies (Fojo and Parkinson, 2010; Rosell et al., 2009).  

Riding in the wave of somatic mutation theory of cancer for over 

half a century, massive genome projects have been carried out in 

possibly all forms of cancer with an aim not only to identify gene 

defects that could serve as targets for treatment of cancer but also 

to gain a deeper understanding about the cause of the disease. But 

recently, increasing number of researchers have challenged the 

somatic mutation theory of cancer and consequently, questioning 

whether the data generated from these sequencing projects would 

likely ever provide any definite cure for the disease (Baker and 

Kramer, 2007; Fojo and Parkinson, 2010; Sonnenschein and Soto, 

2000; Soto and Sonnenschein, 2004).  

Considering the fact that mutations in cancers arise sporadically, 

and mutations in cells within the same tumours drastically differ 

from each other, (Loeb et al., 2003) let alone between different 

forms of cancer (Jones et al., 2015), further backs up the 

arguments made against somatic mutation theory, as not all the 

cells of the tumour would carry the same mutation for treatment to 

be 100% effective. Increasing number of evidence suggests that a  

lot of the mutations in cancer arise due to downstream 

epiphenomenon (Shackleton et al., 2009), hence, these gene 

defects may take part in the progression of the disease, but not 

necessarily be the cause of the disease.  

Even though a large genetic heterogeneity exists among more than 

100 types of cancer, Hanahan and Weinberg described six 

fundamental traits that were common and required by almost all 
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forms of cancer for their growth and survival, which today we 

know as the hallmarks of cancer. (Hanahan and Weinberg, 2000). 

This revolutionary review lead to a universal acceptance of cancer 

as a multifactorial disease, overtaking the somatic mutation 

theory, and has guided cancer research for the past decade. One 

widely recognized addition to cancer hallmarks recently has been 

the concept of metabolic reprogramming (Hanahan and Weinberg, 

2000; de Mas et al., 2014) (Figure 1.1).  

 

Figure 1.1 : Hallmarks of Cancer. Capabilities required by cancer cells to become 

tumorigenic and eventually malignant which include Evasion of growth suppression, 

genome instability and mutation, ability to replicate continuously, tumour promoting 

inflammation, ability to invade and metastize, induce angiogenesis, and ability to evade 

immune recognition. Metabolic reprogramming has been identified as an emerging 

hallmark and a promising target for treatment of cancer cells and devise new therapeutic 

approaches. (Adapted  from (de Mas et al., 2014)) 
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1.2 CANCER METABOLIC THEORY-THE FORGOTTEN 

GOSPEL 

Much before the dawn of somatic mutation theory postulated by 

Theodor Boveri in 1914 that combination of chromosomal defects 

could cause cancer (Doonan et al., 2012), investigation and 

diagnosis of medical conditions were performed by evaluation of 

external phenotypical traits as well as assessment of biological 

fluids accessible from the patients such as urine, blood etc. First 

such report on different traces in urine samples of cancer patients 

was published by Johannes Muller in 1838 (Müller, 1838) 

following which metabolic traits of cancer began to play a role in 

determining treatment regimen for cancer patients.  

One of the earliest hypothesis about deregulated respiration 

required by cancer cells was put forward by August von 

Wasserman, and he set out to show treating animal models with 

inhibitors of mitochondrial metabolism like selenium-eosin could 

reduce the growth of tumours (Wassermann et al., 1911). Human 

trials of this compound were discontinued after patients showed 

high selenium toxicity. 

Few years later, German biochemist Otto Warburg went on to 

embark on his pioneering work towards systemic investigation of 

cell metabolism in several animal models and postulated his 

hypothesis which today we know as the Warburg effect (Warburg 

et al., 1924). Warburg observed presence of glucose and oxygen 

and increased production of lactic acid in liver carcinoma cells of 

rats and formulated his theory that cancer cells undergo aerobic 

glycolysis to ferment glucose into lactate in presence of high levels 
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of oxygen. His work was further validated by Cori and Cori in an 

in vivo setting (Cori and G.T.Cori, 1925).  

This hypothesis has become the basis for tumour imaging in 

modern medicine using labelled glucose analogues via PET scan 

(Figure 1.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Whole body PET scan of a 68 year old man showing excessive skeletal 

metastasis and radioactive uptake of 18F-FDG into multiple bone lesions.  Adapted from  

(Iagaru et al., 2009) 
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Though other researchers alongside Otto Warburg, showed 

importance of cellular metabolism in cancer by treating children 

with acute lymphoblastic leukaemia via targeting nucleotide 

metabolism (FARBER et al., 1947), the era of cellular 

biochemistry in conjunction to cancer research was soon 

overshadowed by discovery of DNA as genetic & transferable 

material (Avery, 1944; Hershey, 1952), followed by discovery of 

molecular structure of DNA (Watson, J. D., & Crick, 1953) which 

guided cancer research for coming half a century and became the 

rationale for the massive genome projects. 

Even though the key focus of researchers shifted from metabolism 

towards investigation of the genome, identification of mutations 

in many metabolic genes capable of driving tumour development 

kept shocking the field (Baysal, 2000; Tomlinson et al., 2002). It 

was surprising to note that though no specific gene mutation or 

genetic abnormality was common to all forms of cancer (Loeb, 

2001; Nowell, 2002; Vitucci et al., 2011), nearly all forms of 

cancer showed similar deregulated glucose metabolism regardless 

of their tissue of origin (Seyfried et al., 2014). Even the founders 

of DNA structures asked researchers to pay special attention to 

cancer cell metabolism (Almac and Ince, 2007).  

Now nearly after two decades of research, there has been a 

renewed interest in understanding cellular metabolism as nearly 

all cancer associated genetic mutations have been shown to alter 

metabolic pathways to support tumorigenesis (Boroughs and 

DeBerardinis, 2015; Cantor and Sabatini, 2012; Ward and 
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Thompson, 2012). Today a detailed understanding of metabolic 

reorganization in cancer stands crucial for formulating appropriate 

and effective therapy for treatment and management of the 

disease.
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1.3 REWIRED METABOLIC PATHWAYS IN CANCER 

Warburg argued that only the cells which have the capability to 

increase glycolysis followed by a damage to cellular respiration 

have the ability to form cancer (Warburg, 1956). This increased 

glycolysis allowed cells to maintain energy homeostasis required 

for their survival as a compensatory mechanism to its respiratory 

damage. In recent years scientists have identified many other 

alterations of metabolic pathways and expanded Warburg’s 

concept to include energy derived from TCA cycle, amino acids, 

nucleotide metabolism, and fatty acid oxidation (Figure 1.3), some 

of which are explained below.  

 

 

 

Figure 1.3: Overview of rewired metabolic pathways in cancer. The main metabolic 

pathways which contribute for macromolecule production as well as cellular 

bioenergetics  to maintain sustained proliferation in cancer cells are glycolysis, TCA 
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cycle, pentose phosphate pathway, nucleotide synthesis, cholesterol synthesis, 

glutaminolysis and fatty-acid synthesis. Adapted from (Schulze and Harris, 2012) 

1.3.1 Deregulated nutrient uptake 

In order to maintain the energy balance and fulfil biosynthetic 

demands, cancer cells have to increase their import of nutrients 

from the environment. Among the most abundant energy sources, 

glucose and glutamine play the most prominent role in supporting 

anabolic growth. In addition, oxidation of glucose and glutamine 

allows generation of NADH and FADH2 which mediate the 

transfer of electrons in ETC to aid ATP generation. 

Increased glucose consumption has been a paramount feature of 

cancer cells which now is being exploited as a valuable tool for 

detection of tumours via PET imaging.  

Many cancer mutations in the signalling cascade like PI3K/Akt, 

mTOR, PTEN etc. have been shown to alter the activity of glucose 

transporters (GLUT1) and can be inhibited by interfering with 

signalling cascade (Benz et al., 2011; Makinoshima et al., 2015).  

Another oncogenic influence on glucose consumption is mediated 

by RAS by upregulating GLUT1 mRNA expression as well as 

influencing various other metabolic pathways (Figure 1.4).  

Similar to glucose, glutamine also plays a crucial role in 

supporting anabolic demands of cancer cells and increased 

glutamine uptake is now being seen as an important feature in 

cancer (Wise and Thompson, 2010). It has been shown that cancer 

cells can maintain TCA cycle by replenishing TCA cycle 

intermediates by a process called as anaplerosis, and glutamine is 

an important anaplerotic source for many proliferating cells. 
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Oncogenic activation of signalling pathways mediated by c-Myc 

have been shown to upregulated glutamine uptake by increased 

expression of glutamine transporter ASCT2 and SN2 as well as 

activation of other enzymes of glutamine metabolism (Gao et al., 

2009; Mannava et al., 2008).   

 

 

 

Figure 1.4: RAS effects on cell metabolism: metabolic effects of RAS on glucose uptake 

are mostly mediated by HIF-1α, either directly or via activation of PI3K/Akt or 

converging with mTOR activation. This activation leads to increased glycolysis and 

hence increased glucose uptake by upregulation of GLUT1 activity (Pylayeva-Gupta et 

al., 2011). 

 

Targeting glucose and glutamine transporters has shown to 

suppress tumour growth and resentitize resistant tumours to 

therapy (Lai et al., 2014; Wang et al., 2015). 
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1.3.2 Rewired Glucose metabolism and Pentose Phosphate 

Pathway 

Glycolytic pathway helps normal cells convert the up taken mole 

of glucose into two moles of pyruvate resulting in a net gain of 

two moles of ATP and two moles of NADH. In a well oxygenated 

tissue this pyruvate enters mitochondria and gets completely 

oxidized to CO2 via TCA cycle generating about 36 moles of ATP. 

As mentioned earlier as Warburg effect, cancer cells metabolize 

the consumed glucose into lactate as the end product instead of 

pyruvate to further derive energy via TCA cycle. Even though 

energetically inefficient, increased glycolysis allows cancer cells 

to potentially exceed the total cellular ATP produced via 

glycolysis than that can be produced by the slower oxidative 

phosphorylation (GUPPY et al., 1993). Another explanation for 

higher glycolytic rates could be because it helps cancer cells to 

synthesise metabolic intermediates required for biosynthetic 

pathways including citrate and glycerol for lipid synthesis, ribose 

for nucleotides, and amino acids.  

It has been shown that increased lactate secretion allows 

acidification of extracellular environment favouring tumour 

invasion due to pH dependent activation of cathepsines and 

metalloproteases which allows degradation of extracellular 
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matrices and membranes of neighbouring tissues (Kroemer and 

Pouyssegur, 2008; Swietach et al., 2007). 

Thus glycolytic pathway has emerged as an interesting potential 

target in cancer therapy. Inhibitors of enzymes involved in 

glycolytic pathway like HK-2 (DeWaal et al., 2018), PFK1 (Zhu 

et al., 2016), LDHA (Fantin et al., 2006) have shown promising 

outcome in inhibiting tumour growth and some are in clinical trials 

(Figure  1.5) 

 

Figure 1.5: An overview of glycolytic inhibitors along with their respective targets. 

Adapted from  (van der Mijn et al., 2016) 
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Cancer cells constantly need to manage their high oxidative stress 

as well as nucleotide synthesis to maintain their highly 

proliferative nature, for which they heavily rely upon pentose 

phosphate pathway (PPP) to meet its anabolic demands (Patra and 

Hay, 2014). The glucose which enters into the cells gets 

phosphorylated into glucose-6-phosphate and then can be destined 

towards glycolysis or can be shunted by glucose-6-phospate 

dehydrogenase (G6PD) towards PPP. The shunted glucose then 

can be utilized to produce reducing equivalents NADPH via the 

oxidative branch of PPP and ribose-5-phosphate via the non-

oxidative branch which serves as the backbone for nucleotide 

synthesis, thus Targeting PPP could vastly be exploited for cancer 

therapy. 

 

1.3.3 Glutaminolysis exploited 

Glutamine being the most abundant amino acid in human serum 

plays an important role as a source of carbon for biosynthesis of 

macromolecules and regulation of cellular redox potential. 

Carbons derived from glutamine are used not only for synthesis of 

amino acids but also to replenish intermediates of TCA cycle 

(DeBerardinis et al., 2007). Glutaminolysis refers to the process 

where glutamine is converted to alpha-keto glutarate (aKG) via 

glutamate. It has been shown that cancer cells consume glutamine 

in larger amounts than normal cells (Eagle, 2007; Sauer et al., 

1982) and the consumed glutamine can be redirected towards 

lactate production which can promote cancer cell growth, known 
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as the WarburQ effect (Damiani et al., 2017). Glutamine is shown 

to promote resistance to cell death in cancer (Wise et al., 2008) 

and could also be a potentially drive resistance to drugs against 

cancer treatment. The complete oxidation of glutamine requires 

aKG to enter TCA cycle and exit as malate. Malate subsequently 

gets converted to pyruvate via malic enzyme and subsequent re-

entry into TCA cycle as acetyl-CoA with subsequent ATP 

production.  

Glutamine can also be converted to citrate via a specialized 

mechanism known as reductive carboxylation followed by 

glutaminolysis. Reductive carboxylation of glutamine mediated 

by isocitrate dehydrogenase 1 (IDH1) has been shown to support 

tumour growth (Mullen et al., 2012) and is a major contributor for 

production of cytosolic Acetyl-CoA required for lipid synthesis 

(Metallo et al., 2012) as well as epigenetic regulation via histone 

acetylation mediated by the action of ATP citrate lyase (ACLY) 

(Wellen et al., 2009). 

Glutamine metabolism has emerged as a promising target and 

glutaminase inhibitors like CB-839 are now under clinical trials 

for treatment of cancer patients (Xu et al., 2018). 

 

1.3.4 de-novo fatty acid synthesis 

Rapidly proliferating cancer cells constantly require large stocks 

of lipids as building blocks for assembly of biological membranes. 

Though majority of the cells in our body derive the required lipids 

from bloodstream, many cancer cells show activation of de-novo 
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lipid synthesis. This excessive lipid demand is fulfilled via 

transport of mitochondrial citrate into cytosol via mitochondrial 

citrate carrier (SLC25A1) followed by breakdown of citrate into 

oxaloacetate and Acetyl-CoA via ACLY. Malic enzyme further 

converts the formed OAA into pyruvate generating the necessary 

NADPH required for lipid synthesis. Biosynthesis of lipids begins 

with the carboxylation of cytosolic Acetyl-CoA into malonyl-CoA 

by acetyl-CoA carboxylase (ACC) which gets assembled into long 

chains of fatty acid chains via the action of fatty acid synthase 

(FASN) (Figure 1.6).  
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Figure 1.6: regulation of de novo lipid synthesis in cancer:  Growth factors and hormone 

receptors play essential roles in tumour-related FASN overexpression. Tumour 

microenvironment stress, as well as multiple other factors are involved in FASN 

overexpression and elevated lipogenesis in cancer. FASN and growth factor-dependent 

signalling are mutually regulated in cancer cells (Mashima et al., 2009).    

 

Lipogenesis is controlled by many signalling pathways which are 

often deregulated in cancer. SREBPs (Sterol regulatory binding 

proteins) greatly control synthesis of fatty acids and cholesterol. 

Akt is also shown to phosphorylate ACLY (Berwick et al., 2002) 

and activate expression of genes involved in cholesterol and fatty 

acid synthesis (Porstmann et al., 2005).  

Targeting enzymes involved in fatty acid metabolism such as 

ACLY (Shah et al., 2016), SLC25A1 (Fernandez et al., 2018), 3-

hydroxy-3-methylglutaryl-CoA reductase (HMGCR) (Nguyen et 

al., 2015) have not only shown to restrict tumour growth but also 

to resensitize cancer cells to therapy. Some Inhibitors of lipid 

synthesis are now under clinical trials (Bjarnadottir et al., 2013). 

 

1.3.5 Redox homeostasis and ROS detoxification 

Reactive oxygen species (ROS) are by-products of glycolysis and 

oxidative metabolism carried out in mitochondria that must be 

excreted or neutralized.  ROS is essential for many biological 

functions such as cell growth, inflammation and also acts as 

signalling molecule (Finkel, 2011). 

ROS has been associated with a large number of diseases and also 

cancer. In cancer cells a disruption of redox homeostasis is 

observed along with high levels of ROS resulting in oxidative 
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stress. Oxidative stress mediated signalling events have been 

shown to promote phenotypical traits of cancer cells like, motility, 

adhesion, tumour stemness and proliferation (Figure 1.7) (Sosa et 

al., 2013).  As mentioned moderate amounts of ROS is beneficial 

for cancer cells but high levels can induce cell death, thus cancer 

cells regulate their ROS levels by modulations of pathways 

producing NADPH as well as ROS scavenging pathways such as 

superoxide dismutases, glutathione peroxidase, peroxiredoxins, 

glutaredoxins, thioredoxins or catalase. 

 

 

Figure 1.7: ROS levels and cancer. Low levels of ROS can promote proliferation and 

cell survival whereas high ROS levels can induce cell death. Cancer cells very cleverly 

manage their ROS levels via balancing metabolic machinery involved in ROS 

production as well as antioxidant mediated ROS scavenging towards their benefit 

(Cairns et al., 2011). 

 

 

1.3.6 Altered mitochondrial metabolism 

For a long time it was believed that cancer cells derive all their 

energy via glycolysis due to excessive damage to mitochondrial 
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respiration (Warburg, 1956). Even though this phenomenon is 

partially, observed in many cancer, complete damage of 

mitochondrial function is detrimental for cancer cells (Vyas et al., 

2016).  Mitochondria’s are highly specialized organelles involved 

in variety of cellular functions like energy homeostasis, redox 

homeostasis, generation of ROS, maintenance of cytosolic 

calcium levels (Ca2+), production of biosynthetic precursors such 

as Acetyl-CoA, and initiation of apoptosis.   

As mentioned before that cancer cells exploit glutaminolysis to 

alter TCA cycle metabolism, one of the major pathways occurring 

inside mitochondria.  

Mitochondria are also responsible for production of Acetyl-CoA 

which can also be generated by oxidation of fatty acids inside the 

mitochondria.  Cancer cells are known to upregulated carnitine 

palmitoyltransferase (Zaugg et al., 2011), an enzyme responsible 

for the import of Fatty acyl-CoA into the mitochondria which can 

be hydrolysed to generate ATP fuelling cancer growth.  

Cancer cells are also known to employ reverse Warburg effect 

where H2O2 secreted by cancer cells forces adjacent fibroblast to 

switch to glycolytic metabolism due to H2O2 mediated 

mitochondrial damage. The lactate and ketones secreted by 

fibroblasts are then used as to feed cancer cells mitochondrial 

energy production and produce precursors for cancer cell 

biogenesis (Bonuccelli et al., 2010). 

Cancer cells can also regulate their intrinsic Ca2+ levels by 

phosphorylation of type 3 inositol triphosphate receptor which 

reduces intrinsic calcium levels (Pinton et al., 2011) and  possibly 
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inactivation of mitochondrial apoptotic pathways thus improving 

cancer cell survival.
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1.4 METABOLIC REGULATION OF EPIGENETICS 

Cancer can be described as a culmination of different epi-

phenomena resulting in a unique regulation of its gene expression 

favouring sustained growth, proliferation and survival of cancer 

cells.  This complex regulation of gene expression can be 

controlled by various epigenetic machinery such as methylation, 

acetylation, GlcNAcylation and phosphorylation. Large number 

of global epigenetic abnormalities along with genetic alterations 

have been observed in a wide variety of cancers (Hatada, 2010; 

Jones and Baylin, 2002).  

Various metabolic pathways help in synthesis of important 

metabolites that are essential for maintenance of cancer cell 

epigenetic landscape (Figure 1.8).  
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Figure 1.8: Metabolic pathways and metabolites involved in regulation of epigenetic 

machinery (Lu and Thompson, 2012). 

1.4.1 Histone and DNA Methylation  

Methylation is the process of addition of methyl group to DNA or 

lysine/arginine groups of histone complex. Methylation requires 

transfer of methyl group from S-adenosyl-methionine (SAM) to 

either DNA or histone by the action of DNA methyl transferases 

(DNMTs) or Histone methyl transferases (HMTs) respectively.  

SAM is  derived through methionine metabolism and alteration of 

methionine metabolism can have direct effect on DNA/Histone 

methylation and consequently, alter gene expression (Mentch et 

al., 2015). (Figure 1.9)  

Cancer cells are known to show hypermethylation in CpG islands 

of regions controlling expression of tumour suppressor genes such 

as retinoblastoma 1 or BRCA1 whereas overall all global 

hypomethylation of DNA (Esteller, 2000; Feinberg and 

Vogelstein, 1983; Greger et al., 1989). Histone methylation also 

plays a significant role in cancer where nearly half of all the HMTs 

known are associated with cancer (Albert and Helin, 2010). 

TCA cycle intermediate aKG acts as a substrate for Jumonji-C 

(JMJC) domain-containing HDMs (JHDMs) and TET 

methylcytosine dioxygenases, which also take part in regulation 

of DNA methylation.  These dioxygenases are inhibited by 

structurally similar metabolites such as fumarate, succinate and 2-

hydroxyglutarate (Xiao et al., 2012).  

Targeting methionine metabolism by regulating 

methylthioadenosine phosphorylase and inhibiting protein 
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arginine N-methyltransferase 5 (PRMT5) can be exploited for 

therapeutic purposes in cancer (Marjon et al., 2016). 

 

 

Figure 1.9: DNA and histone methylation. Schematics representing production of SAM 

via methionine metabolism involved in DNA and histone methylation mediated by the 

action of DNMTs and HMTs respectively. TCA cycle regulation of TETs and histone 

lysine demethylases (KDMs). Adapted from  (Etchegaray and Mostoslavsky, 2016). 

 

1.4.2 Histone acetylation 

Acetyl-CoA fuels TCA cycle for generation of ATP under aerobic 

condition and is a crucial building block for lipids, cholesterol and 

other components required for cell growth.  Acetyl-CoA is also a 

substrate for histone acetyl transferases (HATs) which mediates 

epigenetic control by transfer of acetyl groups onto histone tails.  
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Global histone acetylation levels vastly vary within the cells of 

tumour itself, which reflects the cellular diversity probably due to 

differences in tumour microenvironment (Seligson et al., 2009). 

Global histone acetylation levels are greatly influenced by the 

activity of three enzymes ACLY, PDC and ACSS2. These enzymes 

utilize intermediates of metabolic pathways like TCA cycle or 

glycolysis like citrate, pyruvate and acetate to produce acetyl-CoA 

in the nucleus. Acetyl-CoA can also be produced locally in sub 

nuclear domains to specifically acetylate certain histone targets by 

action of lysine acetyltransferases (KAT) (Figure 1.10).   

 

 

Figure 1.10: Metabolic regulation of global and local histone acetylation by conversion 

of metabolites like citrate, acetate and pyruvate into Aceyl-CoA. 
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Targeting these enzymes has emerged as a double edge sword as 

it allows interfering with metabolic-epigenome axis. Many of the 

drugs targeting these enzymes are under clinical trials treatment, 

such as Dichloroacetate (DCA) which activates PDC (Chu et al., 

2015),  N-(2,3-di-2-thienyl-6-quinoxalinyl)-N′-(2-methoxyethyl) 

urea which inhibits ACSS2 activity (Comerford et al., 2014) and  

BMS-303141 (Li et al., 2007), ETC-1002 (Gutierrez et al., 2014) 

and hydroxycitrate (Ballantyne et al., 2013) inhibiting ACLY 

activity. 
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1.5 TOOLS TO IDENTIFY METABOLIC 

VULNERABILITIES 

1.5.1 Enzymatic assays 

Metabolic differences in cancer cells are mediated by 

dysregulation of various metabolic enzymes of key pathways in 

order to gain or lose certain metabolic functions by upregulating 

or downregulating important metabolites involved in cellular 

function. Traditionally, quantification of certain metabolites were 

done by introducing purified enzymes into biological system such 

as biological fluid or cell suspension and measuring the levels of 

product formed indicating the presence and abundance of 

metabolites under investigation.  An array of different metabolic 

enzymes will provide an information on the levels of different 

metabolites present in the system which can be used to assess the 

biological activity happening in the cell.  

Enzymatic assays can also be used to assess certain organellar 

information such as Citrate synthase activity can provide an 

information about mitochondrial activity and density of the cell 

(Peyrot et al., 2018).  Though enzymatic assays allow to gauge 

into certain metabolic functions, they only allow to do so one 

metabolite at a time, providing a very narrow perspective of 

metabolism. 

 

1.5.2 Transcriptomics 

Transcriptomic refers to the study of transcriptome (complete set 

of RNA transcripts) of a cell. Investigation of gene expression can 
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highlight on the activity of key metabolic genes whose 

upregulation or downregulation could influence metabolic profiles 

in cancer cells. 

Even though transcriptomic activity does not always really 

translate down and reflect on metabolic activity, integrated 

analysis of transcriptomic and metabolomics together can be 

utilized to uncover enhanced enzyme-metabolite coupling in 

cancer (Auslander et al., 2016), and can be combined with genome 

scale metabolic models to perform systems level analysis of 

cancer cell metabolism (Lewis and Abdel-Haleem, 2013).  

1.5.3 Proteomics 

The study of the protein composition of the cells is referred to as 

proteomics. Many proteomics based techniques like Reverse 

Phase Protein Array (RPPA), LC-MS/MALDI based proteomics, 

etc can give an information about the alteration of protein levels 

of metabolic enzymes. Even though estimation of protein levels 

can give an idea about the metabolic activity of the cells, we still 

cannot determine the exact effect of it on metabolism as protein 

levels does not necessarily correlate with protein activity which 

highly depends on many post translational modifications (Ryšlavá 

et al., 2013). Proteomics based analysis of metabolism has been 

used to elucidate the role of many metabolic enzymes of glycolysis 

and glutamine metabolism (Zhou et al., 2012), which can be 

coupled to other techniques to perform an integrative analysis of 

cancer metabolism. 
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1.5.4 Metabolomics  

Metabolome refers to the complete set of small molecule 

metabolites (less than 1kDa) present in a system such as a cell or 

body fluids, and metabolomics refers to the study of metabolome 

by simultaneous measurement of hundreds of metabolites (Dunn 

et al., 2005).  Metabolomics is the youngest of –omics 

technologies when compared to genomics, transcriptomics and 

proteomics, and provides a holistic view of metabolism telling us 

what is actually happening in a system (Schmidt, 2004) and can 

be exploited to get accurate knowledge on the biological state of a 

tumour. 

Initial metabolomics techniques were based on use of nuclear 

magnetic resonance (NMR), but now they are complemented with 

very high throughput mass spectrometers (MS) providing much 

higher sensitivity and wider range of detection of metabolites 

(Griffiths et al., 2010).  

NMR is based on analysis of certain magnetic properties of 

nucleus of atoms, and it identifies compounds based on the 

differences in atomic composition. When introduced under high 

magnetic field, different atoms in a compound behave differently 

based on how atoms are influenced by their surrounding atoms as 

well based on their intrinsic properties. This knowledge of 

differences in atomic behaviour of different compounds is used to 

identify as well as quantify their levels in biological systems. 

NMR allows quantification of metabolites in micro molar ranges 

and since it being non-destructive, the analytes can be further 

processed for other investigations, adding a great value for highly 
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precious samples like patient materials. Disadvantage of using 

NMR techniques is its low sensitivity and low range of detection 

of metabolites when compared to MS. 

MS uses differences in masses of compounds based on their 

atomic composition to identify and quantify metabolites.  MS 

techniques are coupled to separation techniques like gas or liquid 

chromatography which can better resolve and separate the 

compounds based on their physico-chemical properties. These 

separation techniques help separate different metabolites based on 

their retention time so that different metabolites reach the MS at 

different times. Combination of both retention time and mass 

provides accurate identification of metabolites and LC/GC-MS 

together can provide identification and quantification of a wide 

spectrum of metabolites (Figure 1.11).  

 

Figure 1.11: Spectrum of metabolites that can be detected using LC/GC-MS 
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One drawback of using MS is that the technique is disruptive and 

hence the samples cannot be subjected for further evaluation, but 

this technique is highly sensitive and allows very low detection 

limit (<5 ppm). 

 

Untargeted metabolic profiling has been extensively used in 

cancer profiling and identification of biomarkers for the disease 

(Lam and Law, 2014) (López-López et al., 2018).  

 

1.5.5 Stable isotope tracing 

Measurement through metabolomics can give an information 

about the steady state levels of metabolites but does not provide 

information on specific reaction rates that generated those 

metabolites. Due to recent advancement in analytical techniques, 

stable isotope tracing approach has become widely popular to 

analyse specific rates of reactions and identify specific metabolic 

routes taken by the cells to rewire their metabolism. Analysis of 

metabolic fates of precursors like glucose or glutamine labelled 

with isotope of carbon 13C provides an insight on the dynamic 

activity of metabolic pathways and provides mechanistic 

explanations for perturbations observed during steady state 

metabolomics analysis. Stable isotope technique has helped 

researchers to identify various additional metabolic pathways that 

are activated in cancer such as transketolase 1 (TKTL1) pathway 

(Diaz-Moralli et al., 2016), acetate metabolism (Mashimo et al., 

2014),  reductive metabolism of glutamine (Metallo et al., 2012),  

one carbon metabolism (Yang and Vousden, 2016), glycine and 
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serine metabolism (DeBerardinis, 2011), thus, enhancing the 

perspective about metabolic rewiring engaged by cancer cells in 

order to adapt and manipulate their microenvironment. 

1.5.6 13C metabolic flux analysis (MFA) 

To understand the complexities of mammalian systems we require 

systems level approaches to analyse the differences in metabolic 

network in different phenotypes (Thiele et al., 2013). The isotope 

distribution data obtained through tracer experiments can be 

combined along with the knowledge about specific growth rates 

as well as consumption and secretion rates of metabolites into a 

MFA assigns flux values to the reactions in the model network and 

confidence intervals for each estimated fluxes (Figure 1.12). The 

fluxes are resolved using an elementary metabolite unit (EMU) 

framework that allows efficient simulation of isotopic labelling 

data  in a biochemical network model (Antoniewicz et al., 

2007)metabolic model. The model consists of network of 

reactions from various different metabolic pathways which can be 

used to computational quantify the intracellular fluxes in cancer 

cells.      
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Figure 1.12: Schematics for application of 13C MFA in cancer studies. Information about 

growth rates, metabolite consumption and secretion as well as isotope tracer data are 

combined into metabolic network and the intracellular fluxes can be resolved using 

software like INCA and metran providing a detailed understanding about the differences 

in flux distributions in cancer cells (Antoniewicz, 2018). 

 

.  
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1.5.7 Genome scale metabolic models (GSMMs) and Flux balance 

analysis 

Construction of the genome scale metabolic network has enabled 

researchers to simplify the complexity of the vast human 

metabolism (Brunk et al., 2018). GSMM networks consists of all 

known metabolic reactions of an organism and the genes that 

encode for each enzyme. 

Flux balance analysis (FBA) is a mathematical approach to 

analyse the flow of metabolites through a metabolic network.  

FBA approach applied on GSMMs makes it possible to predict the 

growth rate of an organism for e.g. cancer or the rate of production 

of important metabolites that can drive tumour growth. 

FBA can be constrained using  already, known information about 

the organism (Constraint based modelling (CBM)) such as 

consumption and secretion rates of metabolites or other –omics 

data like transcriptomics data can be mapped on the  models thus 

allowing flow metabolites through a reaction only within certain 

limits correlating with the gene expression level (Özcan and Çakır, 

2016). This allows system level investigation about the phenotype, 

combining information obtained through different approaches. 

FBA techniques work by finding the best solution i.e. flux 

distribution for a given objective function (Maximise biomass or 

ATP) within the given constraints (Figure 1.13).  
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Figure 1.13: Concept of flux balance analysis.  With no constraint the flux distribution 

may lie at any given space, but when constraints are applied it restricts the flux 

distribution within an allowable solution space and the network may acquire any flux 

distribution within this space.  FBA can identify a single best optimal flux distribution 

for a given objective function which lies on the edge of the allowable solution space. 

 

 

Usually, FBA requires a user determined objective function, but 

FBA can be reengineered to use flux distribution obtained through 

13C MFA and identify the objective function to best match the 

input flux distribution. This would allow researchers to better 

understand the cancer cell behaviours and what the cancer cells 

are trying to do for e.g. upon drug treatment. 
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2. AIM OF THE THESIS       
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Cancer research has seen a renewed interest in understanding cellular 

metabolism, which today stands crucial for the development of more 

efficacious and personalized treatment strategies. A detailed understanding of 

cancer metabolic rewiring is essential to identify the metabolic vulnerabilities 

of the cancer cells in order to offer new potential avenues for cancer treatment. 

This thesis is part of recent and promising scientific interest which aims not 

only to shed on the metabolic differences among various tumours, but also to 

dissect the metabolic reprogramming engaged by cancer cells in response to 

various drug treatment, thus, contributing to the combined global effort 

towards precision medicine. The main objectives of this thesis can be divided 

into three specific aims. 

 

1. Analysis of metabolic differences in oncogenic K-Ras driven lung and 

colon cancer cells and test a combinatorial treatment strategy targeting 

glutaminolysis and aldolase activity towards restraining tumour 

growth and proliferation.  

 

2.  Understand metabolic rewiring driving resistance to endocrine 

therapeutic drugs in ERα positive breast cancer using metabolomics 

and systems level modelling approach.  

 

3. Investigate the role of glutamine in promoting enhanced proliferation 

of K-Ras transformed NIH3T3 mouse fibroblast, by substituting it with 

respective nitrogen source (Non-essential amino acids) and carbon 

source. (alpha-ketoglutarate) 
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- Metabolic fingerprinting of tumours can identify personalized 

medicine 
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3.1 ABSTRACT 

Cancer cells are characterized by a metabolic rewiring using 

glucose and glutamine to sustain the enhanced and unrestricted 

growth. We experimentally detect metabolic fingerprinting to 

better identify effective therapies in A549-K-RasG12S lung 

cancer cells and HCT116-K-RasG13D colon cancer cells. 

Consistently with ability of tumour cells to carry out a metabolic 

switching from glucose to glutamine and vice versa observed, we 

teste isolated or combined effects of CB-839 glutaminase inhibitor 

and BKM120 PI3K and aldolase activity inhibitor to tear down the 

versatile metabolic phenotype. We show that combinatorial drug 

treatment both in vitro and in tumour xenografts is effective in 

restraining growth in both cancer cell types, with a more 

pronounced effect observed for A549 lung cancer cells. This study 

support the notion that cancer metabolic fingerprint may be useful 

to select combined precision treatment in a clinical trial setting 
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3.2 INTRODUCTION 

Cancer cells are characterized by a metabolic rewiring in which 

glucose is converted to lactate and glutamine metabolized to α-

ketogluatarate (Akg) in the tricarboxylic acid (TCA) cycle 

generating complex flexible metabolic pathways able to sustain 

the enhanced and unrestricted growth of cancer cells (Davidson et 

al., 2016; Gaglio et al., 2016). This basic scheme may be modified 

by the presence in the cellular environment (both in vivo and in 

vitro) of amino acids such as proline, arginine, asparagine, and 

lactate (Elia et al., 2017; Kremer et al., 2017; Pavlova et al., 2018; 

Sonveaux et al., 2008).  

The kind of activated oncogenes (Hsu and Sabatini, 2008; Wolpaw 

and Dang, 2017), the tissue of origin of the tumours, nutrients and 

cytokines present in the tumour stroma have all been reported to 

affect cancer metabolic rewiring (CMR) (DeBerardinis and 

Chandel, 2016; Rahman and Hasan, 2015). CMR may be activated 

by oncogenic K-Ras, found mutated in approximately 35% of lung 

adenocarcinomas and 45% of colorectal cancers and able to 

increased tumourigenicity, poor prognosis, environmental 

adaptation and acquired drug resistance (Rahman and Hasan, 

2015).  

Metabolomics profiling technologies, metabolic pathway 

identifications and flux analysis are able to experimentally 

determine metabolomics fingerprinting (Nielsen, 2017) to better 

characterize the metabolic pathways followed in any given CMR.  

Although the described metabolic rewiring has already been taken 

to open new therapeutic windows, pursued by a number of new 
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inhibitors and drugs, the complexity and heterogeneity of cancer 

metabolism, has not allowed, so far, predictive ability and full 

exploitation of CMR for precision oncology. It is therefore of 

interest ascertain whether it would be possible to detect any 

correlation between metabolic fingerprinting and drug sensitivity, 

in order to better identify effective therapies. 

CMR inhibitors like CB-839, a reversible, non-competitive 

allosteric glutaminase (GLS) inhibitor, has been reported to 

exhibit an anti-proliferative activity in triple-negative breast 

cancer (TNBC) cell lines and xenografts (Gross et al., 2014). CB-

839 was well tolerated in preclinical studies in mice, with no 

weight loss or toxicity observed, reducing cancer cell growth “in 

vitro” but not “in vivo” (Davidson et al., 2016; Gaglio et al., 2016). 

Inhibitors targeting signalling steps such as pan-PI3K inhibitor 

NVP-BKM120 (BKM120), are known to inhibit cancer cell 

growth and able to decrease glucose consumption by modulating 

release of active aldolase from actin cytoskeleton in vitro and in 

vivo (Hu et al., 2016). 

To get deeper insight in the many issues previously raised on the 

interplay of oncogenic K-Ras, origin tissue, cancer metabolic 

rewiring and drugs sensitivity, here we provide evidences that 

A549-K-RasG12S lung cancer cells and HCT116-K-RasG13D 

colon cancer cells present clear differences in their metabolic 

rewiring and in sensitivity to treatments with either BKM120 or 

CB-839 as detected using metabolomics-mass-spectrometry 

approaches.  
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Combinatorial drug treatment both in vitro and in tumour 

xenografts is effective in restraining growth in both cancer cell 

types, with a more pronounced effect observed for A549 lung 

cancer cells. Therefore, we propose that a cancer cells typing by 

detailed metabolic profiling and/or metabolic pathways analysis 

may be useful to select precision treatment performed in a 

clinically relevant timeframe 
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3.3 RESULTS 

3.3.1 Differences in metabolic pathways detected in vitro in A549 

lung and HCT116 colon human cancer cell lines 

A detailed cellular typing of A549-K-RasG12S (A549) lung 

cancer cells, HCT116-K-RasG13D (HCT116) colorectal cancer 

cells and Ros1-driven lung cancer cells HCC78, was performed 

(Figure 3.S1A). Consistently with the published data (Gaglio et 

al., 2016), growth curves showed similar high proliferation rates 

in A549 and HCT116 cancer cell lines as compared to Ros1-

HCC78 (Figure 3.S1A). Statistical PCA analysis of untargeted 

metabolomic profiling revealed a similar metabolic phenotype in 

A549 and HCT116 cancer cell lines as compared to Ros1-HCC78 

lung cancer cells (Figure 3.1A). These data were consistent with 

the rates of glucose and glutamine consumption and of lactate and 

glutamate secretion in A549 and HCT116 as compared to HCC78 

cells (Figure 3.S1B), as well as with the proliferation rates under 

nutrients deprivation (Figure 3.S1C and 3.S1D). As shown in 

Figure 3.S1C and S1D, A549 and HCT116 cancer cells exhibited 

reduced rate of growth both under glucose and glutamine 

limitation, confirming that activated K-Ras sustained enhanced 

growth by using both nutrients (Gaglio et al., 2011), while HCC78 

cancer cells, driven by oncogenic Ros 1, cells are glutamine 

limitation insensitivity but showed glucose dependence in 

sustaining cell proliferation (Figure 3.S1C and 3.S1D).  
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To better profile A549 and HCT116 metabolism, we measured the 

relative abundance of intracellular metabolites of glycolysis and 

TCA cycle (Figure 3.1B).  
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Figure 3.1. Metabolic phenotyping of A549-K-RasG12S (A549) and HCT116-K-

RasG13D (HCT116) human cancer cell lines 

(A) Principal component analysis (PCA) of A549 (■), HCT116 (■) and HCC78 

(■), with mean centering and scaling to display the inherent variance between the 

metabolic phenotypes. 

(B) Relative metabolite abundances in A549 (■) and HCT116 (■) cells 

measured by GC/MS. 

(C) Untargeted metabolic profiling of A549 lung and HCT116 colon-rectal 

cancer cell lines. Hierarchical clustering heatmaps show significantly (p ≤ 0.05) different 

intracellular metabolites by LC-MS and GC-MS (left panel). Enriched metabolic 

pathways were ranked according to their FDR values calculated by the MetPa method 

implemented in MetaboAnalyst 4.0 software (upper right panel). The most significant 

pathways were represented by both the bigger/red dots and by those dots with higher log 

p value. The pathway impact is calculated as the sum of the importance measures of the 

matched metabolites normalized by the sum of the importance measures of all 

metabolites in each pathway. Volcano plot showing metabolites with fold change (FC) 

> 2 and  cutoff of P < 0.005 (lower right panel) 

(D) Atom transition map of [U-13C6].glucose (blue circles) and [U-13C5]-

glutamine (violet circles) used to detect metabolic changes. Filled circles indicate 13C 

enrichment. Glycolysis and TCA cycle intermediates metabolites labelling from [U-

13C6]-glucose and [U-13C5]-glutamine in A549 (■) and HCT116 (■) cancer cells. 

(E) Mitochondrial respiration reflected by OCR levels was detected in A549 

CTR (■) and under combinatorial treatment (■) cancer cells under basal conditions or 

following the addition of oligomycin (0.1 μM), the uncoupler FCCP (F, 0.5 μM) or the 

electron transport inhibitor Rotenone (R, 2 μM). (n=5). 

 

Although oncogenic human K-Ras cancer cells showed a similar 

basic metabolic phenotype, the relative abundance of intracellular 

metabolites involved in glycolysis and  

TCA cycle metabolism suggested a preferential glucose utilization 

to lactate in A549 lung cancer cells, as compared to HCT116 colon 

cancer cells showing increased relative abundance level of Cit and 

Succ (Figure 3.1B). Furthermore, statistical analysis of the 
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untargeted metabolic profiling performed in A549 and HCT116 

cancer cells showed an enrichment of metabolites involved in 

glycolysis, amino acids metabolism, amino sugar metabolism, 

inositol phosphate metabolism (inositol signalling pathway) and 

glycerolipid metabolism (Figure 3.1C). Notably, metabolites 

associated with glycolysis including branching of glycerol 

phosphate shuttle (such as G6P, F6P and Lac) displayed 

statistically significant higher levels in A549, as compared to 

HCT116 cancer cell lines (Figure 3.1C). On the contrary, 

metabolites involved in biosynthetic processes, such as Ala, Ser, 

Arg, N-A-O (N-Acetylornithine), 5-A-P (5-Aminopentanoate), 

Thr, Aco and Al-Thr were less abundant in A549 as compared 

with HCT116 cells (Figure 3.1C). In addition, Volcano Plot 

algorithm with a cut-off of P < 0.005 and fold change (FC) > 2 

highlighted the abundance of metabolites: G6P, myo-In, Aco and 

Lac significantly differed between A549 and HCT116 cancer cells 

(Figure 3.1C, lower right panel). Moreover, metabolic profiling 

comparison between lung cancer cell lines (A549-K-Ras mutated 

and HCC78-Ros1 mutated) identified in A549 significantly larger 

intracellular relative abundance of Glc, Gln, Glu and Akg, as well 

as metabolites involved in amino acids metabolism, such as Gly, 

Lys, Thr, Met, Thr, Spd, Met and Trp (Figure 3.S1E). In opposite 

way, decreased levels of metabolites such as: Cit, Fum, Mal and 

Ala (Figure 3.S1E), further suggested a higher activation of 

glycolysis in A549 as compared to HCC78 lung cancer cells. 

These findings, indicating a more sustained glucose utilization to 

lactate in A549 lung cancer cells and a higher TCA cycle 
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intermediates levels in HCT116 colon cancer cells, prompted us 

to perform metabolomic pathways identification using uniformly 

labelled glucose ([U-13C6]-Glucose) and glutamine ([U-13C5]-

Glutamine) stable isotope tracers. A high M6 labelling of G6P and 

F1,6BP, as well as M3 labelling of Pyr and Lac, was observed 

using [U-13C6]-Glucose (Figure 3.1D, blue dots) confirming the 

high glycolytic activity of both lung and colon cancer cells (Figure 

3.1D, blue and red bars). At the same time, higher M3-Ala and 

M2-Cit labelling (using labelled Glc) indicated that HCT116 

colon cancer cell line had a higher conversion rate of glucose via 

TCA cycle than A549 lung cancer cells (Figure 3.1D, blu dots and 

red bars). In addition, we found higher levels of M3/M5-Cit and 

M3-Asp, indicating that glucose entry into TCA cycle via pyruvate 

carboxylase (PC) converts M3-Pyr into M3-Oaa which either 

condenses with acetyl-CoA to produce M3- and M5-Cit or 

generates M3-Asp via transaminase (Figure 3.1D, blu dots and red 

bars). In parallel analysis, the glutamine contribution to TCA cycle 

metabolite pools was estimated using [U-13C5]-Glutamine isotope 

tracer (Figure 3.1D, violet dots) and its conversion to M5-Glu, 

M5-AKG, M4-Cit (Figure 3.1D, lilac and violet bars), M4-Fum 

and M4-Mal (Figure 3.S1F). The relative isotope abundances 

indicated that both human cancer cells preferentially use 

glutamine into TCA cycle by canonical forward oxidative reaction 

(Figure 3.1D, lilac and violet bars and S1F). Additionally, the 

higher labelling of M5-Cit, M3-Mal and M3-Asp found in A549, 

as compared to HCT116 cells, confirmed the glutamine reductive 
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carboxylation reaction, as previously reported in lung cancer cells 

(Metallo et al., 2011).  

Taken together, A549 lung cancer cell and HCT116 colon cancer 

cells used nutrients in a slightly different way and suggested that 

A549 lung cancer cells, generating notoriously poorly 

vascularized tumours, displayed a perfect decoupling of nutrients 

in which glucose was converted to lactate and glutamine used to 

maintain TCA cycle metabolite pool and sustain anabolic 

processes. On the other hand, HCT116 colon cancer cells, known 

to generate more vascularized tumours, are able to use glucose and 

glutamine in a complementary and mutually reinforcing manner 

to sustain enhanced growth. Hence, to test whether differential 

utilization of glucose and glutamine in A549 lung cancer cells and 

HCT116 colon cancer cells could be the result of their different 

mitochondrial activity, we measured the oxygen consumption rate 

(OCR) (Figure 3.1E). Consistently with our hypothesis, we 

observed that HCT116 colon cancer cells showed higher levels of 

basal oxidative phosphorylation (OXPHOS, indicated by OCR) 

than A549 lung cancer cells (Figure 3.1E). However, the lower 

basal and maximal mitochondrial respiration of A549 cells was 

not due to mitochondrial dysfunction, as confirmed by the higher 

ATP production levels in lung cancer cells (Figure 3.S1G -left 

panel-), as compared to colon cancer cells, and unchanged ROS 

levels between two cell lines (Figure 3.S1G-right panel-).  

Therefore these results indicate that oncogenic K-Ras mutations 

greatly alter glucose and glutamine utilization to support enhanced 

growth, but with a distinctive difference in using same nutrients. 
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3.3.2 Differences of in vitro sensitivity of human cancer cells to 

BKM120 and CB-839 drugs able to inhibit cancer metabolic 

rewiring 

Consistently with ability of tumour cells to carry out a metabolic 

switching from glucose to glutamine and vice versa in accordance 

with the environmental context (Davidson et al., 2016), we chose 

BKM120 reported to inhibit PI3K and aldolase activity (Hu et al., 

2016), and CB-839 as glutaminase inhibitor (Gross et al., 2014) to 

assess their isolated or combined effects in our cellular models 

(Figure 3.2A). Following dose-response curves for BKM120 

(Figure 3.S1H -left panel-) and CB-839 (Figure 3.S1H –right 

panel-) to select appropriate concentrations, all three cancer cell 

lines showed significant aldolase activity reduction by BKM120 

and glutamate production was strongly inhibited by CB-839, in 

agreement with the known mechanism of action of the two drugs 

(Figure 3.2B, 3.2C, S1I and S1J).  

To further test the efficacy of treatments, we performed prolonged 

proliferation curves under either BKM120 or CB-839 in single 

treatments, or in combination, BKM120 plus CB-839 (Figure 

3.2D, 3.2E and S1K). Specifically, A549 lung cancer cells showed 

a larger decrease of cell number when grown under prolonged 

single treatment with CB-839 than under BKM120 (Figure 3.2D, 

left panel, light blue and green colours, respectively). Instead, we 

observed an increased reduction of proliferation in HCT116 grown 

under prolonged single treatment with BKM120, rather than with 
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CB-839, which showed not significant changes as compared to 

CTR (Figure 3.2D, right panel). A growth behaviour similar to 

HCT116 was observed in HCC78-Ros1 lung cancer cells, which 

showed growth reduction under BKM120 treatment, but not with 

CB-839 (Figure 3.S1K), perhaps due to significantly higher 

autophagy mechanism activated in HCT116 and HCC78 under 

BKM120 treatment, as compared to CB-839 and control (CTR) 

(Figure 3.S1L). Moreover, a dramatic reduction of cell 

proliferation was observed in all cellular models under 

combinatorial BKM120 plus CB-839 treatment, as compared to 

CTR (Figure 3.2D, 3.2E and S1K, blue color), suggesting a 

synergic effect of the combined treatment in reducing cell 

viability. Furthermore, the merge statistical analysis of metabolic 

profiling in A549 cancer cells revealed similar metabolic 

signatures in CB-839 alone and in combinatorial BKM120 plus 

CB-839, as opposed to CTR and BKM120 alone (Figure 3.2 F, left 

upper panel). In particular, the significant higher level of 

metabolites such as: G6P, F6P, G1P, 6P-GL, R5P, X5P, N-A-Glc-

N-1P and N-A-Glc-N-6P (Figure 3.2F, left panel, and S2A), 

involved in first step of glycolysis, pentose phosphate pathway 

(PPP) and amino sugar metabolism (Figure 3.2F, left lower panel) 

suggested an attempt to activate alternative glucose-dependent 

pathways in ROS stressed A549 (Figure 3.S2B) under combined 

treatment, as compared to CTR. This stress was further reinforced 

due to decreased levels of Gln, Glu, 5-Oxo and All-Cys involved 

in glutathione metabolism (Figure 3.2F, left panel).  
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Figure 3.2. Combinatorial glycolysis and glutamine metabolism drugs induce 

growth arrest in A549 and HCT116 human cancer cell lines 

(A)  Schematic representation indicating pharmacological targets of major 

substrate metabolic pathways for K-Ras cancer cells. Dashed arrows represent reactions 

consisting of multiple steps.  

(B)  Aldolase activity of A549 (■) and HCT116 (■) cancer cells under 1μM 

BKM120 for 48h. 

(C) Glutamate production of A549 (■) and HCT116 (■) under 50nM CB-839 

for 48h.  

(D)  Proliferation curve of A549 (left panel) and HCT116 (right panel) incubated 

with BKM120 (■), CB-839 (■) or BKM120 + CB-839 (■) and CTR (■) collected and 

counted at indicated time points.  

(E)  Morphological analysis of A549 and HCT116 treated with BKM120 + CB-

839.  

(F and G) Untargeted metabolic analysis of A549 and HCT116 cancer cell. Hierarchical 

clustering heatmaps show significantly (p ≤ 0.05) different intracellular metabolites in 

the four experimental conditions by LC-MS and GC-MS. Enriched metabolic pathways 

were ranked according to their FDR values calculated by the MetPa method 

implemented in MetaboAnalyst 4.0 software. The most significant pathways combined 

treatment compared to CTR (F and G lower panel) were represented by both the 

bigger/red dots and by those dots with higher log p value. The pathway impact is 

calculated as the sum of the importance measures of the matched metabolites normalized 

by the sum of the importance measures of all metabolites in each pathway. 

 

Consistently with the drop of enhanced proliferation and the 

results described above, we observed a significant decrease of 

metabolites involved in nucleotide metabolism and in the TCA 

cycle (Figure 3.2F and S2A). A less relevant effect of combined 

treatment was observed in HCT116 and HCC78 human cancer 

cells metabolic profiling (Figure 3.2G, S2C and S2E). Similar to 

A549, the merge statistical analysis of metabolomics datasets 

showed a significant increase of metabolites involved in 

glycolysis and decreased levels of metabolites involved in TCA 
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cycle metabolism under combined treatment and CB-839 alone as 

compared to BKM120 single treatment and CTR (Figure 3.2G and 

S2C). In addition, we observed that HCT116 treated with 

combined drugs showed a remarkable increase of metabolites, 

such as: Succ-S-A (Ala, Asp and Glu metabolism) able to generate 

succinate which could enter the TCA cycle, 3-M-Pyr involved in 

tryptophan metabolism, Acac involved in keton bodies 

metabolism and able to promote Mek-Erk signalling (Kang et al., 

2015), and 3-S-Ala involved in taurine and hypotaurine 

metabolism (Figure 3.3 F, upper and lower panels). The activation 

of the latter unusual metabolic pathway (taurine and hypotaurine 

metabolism) with antioxidant action (Huang et al., 2016) could 

probably protect HCT116 cancer cells from the significant 

increased level of ROS generated by combined drugs treatment 

(Figure 3.S2D).  

 

 

3.3.3 Metabolic pathways identification and metabolic flux 

analysis (MFA) to assay combinatorial drugs treatment responses 

in A549 and HCT116 cancer cells 

To have more information on the impact of drugs treatment on 

A549 and HCT116 cancer cells metabolism and their ability to 

activate alternative metabolic pathways, we performed 13C and 

15N stable-isotope tracing and mass spectrometry analysis. As 

expected, using [U-13C6]-Glucose (Figure 3.S3A, blue dots) we 

did not observe changes between CTR and treatments with 
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individual and combined drugs in G6P and F1,6BP labelling, 

involved in the first part of glycolysis (Figure 3.S3A and S3B). 

We found, instead, a significant decreased labelling in metabolites 

such as: M3-Pyr, M3-Lac, M3-Ala and M2-Cit in the 

combinatorial treatment and in CB-839-treated cells as compared 

to BKM120 and CTR (Figure 3.S3A and S3B). In addition, this 

analysis identified significant increased levels of M4-Akg and 

M4-Asp, but not of M4-Fum and M4-Mal, obtained from second 

turn (dark blue dots) of TCA cycle, in A549 under combined 

treatment and in CB-839-treated cells (Figure 3.S3A, S3B and 

S3C), as opposed to M2-Akg and M3-Asp (M3-Asp was generated 

by glucose via PC, as described above) labelling observed in A549 

CTR and under BKM120 treatment (Figure 3.S3A and S3C ). 

In addition, using [U-13C5]-Glutamine (Figure 3.3C, violet dots) 

we observed the significant lower levels of M5-Glu, M5-Akg, M4-

M5-Cit and M3-M4-Asp labelling from [U-13C5]-Glutamine tracer 

(Figure 3.S3A -violet dots-) were indicative of decreased 

glutamine oxidation into TCA cycle under combined treatment 

and CB-839 alone, as compared to CTR and single BKM120 

(Figure 3.S3A and S4B), confirming the in vitro efficacy of the 

inhibitors (Rahman and Hasan, 2015). 

To better characterize the metabolic response to combinatorial 

drugs treatment effectiveness, we employed 13C Metabolic Flux 
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Analysis (MFA) approach to quantify fluxes comparing control 

and combinatorial drugs treatment conditions.  
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Figure 3.3. Metabolic flux analysis of A549 lung cancer cells under combinatorial 

drug treatments  

(A) Schematic of central carbon metabolism with net flux values estimated by 

13C MFA for A549 cancer cells CTR and under BKM120 plus CB-839 treatments. 

Arrows colors (red color up flux and violet low flux) and the thickness represent the 

significantly different fluxes (based on 95% confidence intervals).  

(B) Schematic representation and percentage isotope labelling enrichment of 

metabolites from [U-13C6]-Glucose in A549 cancer cells. 

(C) Schematic representation and percentage isotope labelling enrichment of 

metabolites from [U-13C5]-Glutamine and [α15N]Gln in A549 cancer cells. 

 

Flux estimations through the metabolic network was carried out 

using elementary metabolite unit (EMU)-based algorithm and its 

associated confidence intervals by assessing flux fit sensitivity to 

minor flux deviations listed in Supplementary Table 1, and the full 

dataset  and model description are provided in Supplementary 

information and Supplementary Figures S3D. 

These data indicated that combinatorial drugs treatment induced a 

significant decreased glycolytic flux as well as reduced flux of 

glutamine oxidation via TCA cycle (Figure 3.3A and S3D) 

confirmed by decreased basal mitochondrial respiration (Figure 

3.S3E). Simultaneously, MFA analysis of A549 under combined 

treatment suggested an attempt to activate alternative glucose-

dependent pathways by increased flux of PPP, increased flux of 

glucose oxidation by TCA cycle through reactions of i) PDH 

enzyme flux towards ACL, ii) Oaa to Asp flux and iii) Mal to Pyr 

through malic enzyme (Figure 3.3A). 

Deeper isotope labelling analysis, confirmed this attempt of 

glucose metabolic reprogramming, usually activated in cancer 
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cells to fulfil anabolic demands (Hay, 2016), in stressed A549 

under drugs treatment even through activation of amino sugar 

metabolism by labelling of M4 UDP-Glc, M6-N-Ac-GlcN-1P and 

M6-UDP-N-Ac-GlcN (Figure 3.3B pink, and S4A). Moreover, 

M5-Ru5P (ribulose 5 phosphate) labelling indicated an 

independent activation of PPP in all conditions, while the 

significant decrease in A549 under combined treatment and CB-

839 of M4-Hpx (hypoxanthine) (Figure 3.3 B and S4A) - involved 

in nucleotides metabolism (Figure 3.3 B, light green) - was 

coherent with the reduction of enhanced proliferation as showed 

in Figure 3.2D. 

The glucose metabolic reprogramming observed under drugs 

treatment prompted us to investigate also the drugs effect on 

glutamine alternative metabolic activation by [U-13C5]-Glutamine 

(Figure 3C, violet dots) and [15N]Gln (Figure 3.3C, fuchsia dots) 

stable isotope tracers. The contribution of glutamine into 

asparagine and metabolism known to promote, respectively, 

cancer cell proliferation (Krall et al., 2016) and survival (Kremer 

et al., 2017) was shown by significant increased labelling in M2 

asparagine (Asn) (Figure 3.3C red color) and lack labelling 

changes in M2-creatinine (Cre) (Figure 3.3C light blue color). 

Specifically, both metabolites were derived from forward 

glutamine utilization in the TCA cycle, cleavage of M4-Cit by 

ATP citrate lyase in M2-labelled Oaa inferred from the labelling 

of M2-Asn and M4-Oaa catalyzed to PEP by pyruvate 

carboxykinase (PCK) followed to glycine (Gly) and by glycine 

amidinotransferase (AGAT) and N-guanidinoacetate 
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methyltransferase (GAMT) synthesized in Cre (Figure 3.3C). 

Moreover, the unaltered glutamine contribution into glutathione 

metabolism by M2 GSH and GSSG (green color) (Figure 3.3C and 

S4C) it was also observed. Interestingly, the significant change 

observed in M2-Asn, M5-Pro and M5 4-hydroxy glutamate 

semialdehyde (4-H-Glu-S-A) labelling observed in A549 under 

combined BKM120 plus CB-839 and single CB-839 treatments, 

as compared to CTR and single BKM120, indicated the 

involvement of glutamine to proline metabolism (Figure 3.3C, 

light yellow). Moreover, we observed 2HG accumulation in A549 

cells, both CTR and under all treatments, but with different 

labelling incorporation (Figure 3.3C and S4C). It is well known 

that 2HG is a typical metabolite accumulated in cancer with 

IDH1/2 mutations produced through glutamine reductive 

carboxylation (Dang et al., 2010; Metallo et al., 2011) and linked 

to epigenetic control because structurally similar to AKG (Ma et 

al., 2015). Surprisingly, we found M3-2HG labelling in the CTR, 

derived from forward TCA glutamine utilization, and M5-2HG 

labelling in A549 under combinatorial treatment (Figure 3.3C). 

Glutamine is also required for the amino-nucleotides sugar 

metabolism (pink color), where it donates an amino group to 

glucose-6-phosphate to produce glucosamine-6-phosphate. M1 

UDP-N-Ac-GlcN labelling in A549 under combinatorial 

treatment and single CB-839 derived from [15N]Gln labelling 

(Figure 3C, fuchsia dots, and S4D) showed a loss of glucose and 

glutamine co-ordination during hexosamine biosynthesis, which 

has been shown to regulate cell growth and proliferation through 
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glycosylation of signal transduction components (Wellen et al., 

2010). We also found significantly lower labelling for some 

metabolites (such as Glu, Ala, Pro and Asp) in A549 exposed to 

combined treatment and single CB-839, as compared with CTR 

and single BKM120 ones (Figure 3.3C and S4D). In addition, the 

significantly lower labelling on M1 and M2 nucleobase adenine, 

generated from [α-15N]Gln‐derived nitrogen atoms from Asp, 

found in A549 under BKM120 plus CB-839 compared with CTR 

and single treatments was consistent with the strong effect of 

combined treatment on cell proliferation arrest (Figure 3.3C). 

In HCT116 colon cancer cells isotope labelling experiments 

identified a distinctive response from those observed in A549 lung 

cancer cells, similar but weaker effects, (Figure 3.4 and S5). In 

fact, using [U-13C6]-Glucose (Figure 3.S5A blue circles) we did 

not observe changes in G6P and F1,6BP labelling between CTR 

and all treatments, whereas a significant decreased labelling was 

detected in M3-Pyr, M3-Lac, M3-Ala and M2-Cit labelling under 

combinatorial treatment as compared to the others (Figure 3.S5A 

and S5B). In contrast with A549, HCT116 under combinatorial 

and single CB-839 treatments displayed significantly higher 

labelling in M4-Asp derived from a second turn (dark blue circle) 

of TCA cycle (Figure 3.S5A). It is worth to note that single CB-

839 treatment, through a significant M2 Cit, M4 AKG, and M4 

Asp labelling, accounted for increased glucose utilization into 

TCA cycle in order to skip the glutaminase inhibitor effect (Figure 

3.S5B).  
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These results were confirmed by MFA analysis (Figure 3.4A). 

Specifically, in opposite way to A549, these data indicated that 

HCT116 under combinatorial treatment showed no significant 

change in the first step of glycolysis but with significant reduction 

in the second one (Figure 3.4A). The increased flux of lactate 

production probably owing to increased flux of Mal to Pyr and 

sustained by increased glutamine oxidation via TCA cycle (Figure  
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Figure 3.4. Metabolic flux analysis of HCT116 colon rectal cancer cells under 

combinatorial drug treatments 

(A) Schematic of central carbon metabolism with net flux values estimated by 

13C MFA for HCT116 cancer cells CTR and under BKM120 plus CB-839 treatments. 

Arrows colors (red color up flux and violet low flux) and the thickness represent the 

significantly different fluxes (based on 95% confidence intervals). 

(B) Schematic representation and percentage isotope labelling enrichment of 

metabolites from [U-13C6]-Glucose in HCT116 cancer cells. 

(C) Schematic representation and percentage isotope labelling enrichment of 

metabolites from [U-13C5]-Glutamine and [α15N]Gln in HCT116 cancer cells. 

 

4A and S5C), although a decreased basal mitochondrial 

respiration (Figure 3.S5D). Flux results for HCT116 CTR and 

under combined BKM120 plus CB-839 treatments are listed in 

Supplementary Table 2.  

In addition, isotope labelling analysis of the alternative glucose-

dependent metabolic pathways of HCT116 cancer cells did not 

show any effect on nucleotides metabolism (Figure 3.4B, light 

green) between CTR and treatments. Rather, we observed 

significant lower labelling in M5 Ru5P and M4 Hpx colon cancer 

cells, confirming the lack of effect by CB-839 single treatment 

(Figure 3.S5B). In addition, the significant higher labelling M6 

UDP-Glc and M6 UDP-N-Ac-GlcN in HCT116 under combined 

treatment compared to CTR (Figure 3.4B, pink color) confirmed 

amino sugar metabolism activation, as previously observed in 

A549 (Figure 3.3B). 

Similar to A549, using [U-13C5]-Glutamine tracer (Figure 3.S5A, 

violet dots) we observed decreased glutamine utilization into TCA 

cycle under combined treatment, as determined by significant 
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lower levels of M5 Glu, M5 Akg, M4 and M5 Cit and M3 and M4 

Asp labelling in HCT116 under combined treatment and CB-839 

(Figure 3.S5A and S6A), and unaltered glutamine contribution 

into the Asn (red color) and Arg metabolism (blue color), as 

indicated by not significant labelling in M2 Asn and M2 Cre, 

(Figure 3.4C and S6B). Interestingly, the significant lower 

labelling in M5 Pro and 4-H-Glu-S-A and in M5 GSSG (Figure 

3.4C), both involved in resistance to oxidative stress, confirmed 

the significant higher ROS levels detected in HCT116 under 

combined treatments, as compared to CTR and A549 (Figure 

3.S2). Moreover, [U-13C5]-Glutamine C3 2HG labelling in CTR 

derived from forward glutamine oxidation and C5 2HG labelling 

(Figure 3.4C), as well as the higher [15N]Gln labelling M1 UDP-

N-Ac-GlcN (Figure 3.4C, fuchsia circles) in HCT116 cancer cells 

under combinatorial treatment, once again confirmed the similar 

effect of the combinatorial therapy observed in A549 (Figure 3.3), 

probably due to the stronger link between metabolism and 

epigenetic machinery used to skip therapy. This weaker but similar 

effect of combinatorial drugs on HCT116 was further confirmed 

by decreased labelling in M1 Glu, Ala, Pro and Asp metabolites, 

as well as by the lack of changes in M1 and M2 adenine labelling, 

as compared to other treatments (Figure 3.4C and S6C). 

Taken together these findings demonstrate that the changes in 

metabolic fingerprinting observed after drug combinatorial 

treatment derive from both inhibitory effect specific for each cell 

type and each drug.  
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3.3.4 BKM120 and CB-839 combinatorial treatment inhibits A549 

and HCT116 tumour growth in mouse xenografts  

To finally demonstrate the efficacy of the BKM120 plus CB-839 

combined therapy in tumour growth inhibition, we evaluated drug 

treatments response in a mouse xenograft model obtained with 

subcutaneous injection of A549 lung cancer cells and in another 

one obtained with HCT116 colon cancer cells injection (Figure 

3.5, 3.6, 3.7 and S7). In accordance with published data, we 

administered mice xenografts with BKM120 (50 mg/kg) 

(Alagesan et al., 2015; Alikhani et al., 2013) and CB-839 (200 

mg/kg) (Davidson et al., 2016; Gross et al., 2014) in combination. 

When tumours reached a volume of 130-150 mm3, mice were 

treated for 15 days with vehicle (CTR) or a combination of 

BKM120 plus CB-839 (Treat). Mice were monitored for tumour 

growth using caliper and for glucose metabolism using [18F]FDG-

PET scans performed before receiving the therapy (pre-treatment 

scan), during the therapy and at the end of therapy (Figure 3.5, 3.6 

and S7). A549 tumours treated with BKM120 plus CB-839 

displayed remarkable tumour growth inhibition during the entire 

therapeutic window, as determined by significant decreased 

tumour volume as compared to CTR or BKM120 or CB-839 

administered alone, (Figure 3.5A, left panel and 5B) followed by 

significant lower levels of post mortem tumour weight (Figure 

3.S7A) highlighting the synergistic effect of combinatorial 

treatment.  
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Figure 3.5. Analysis of A549 lung tumours under combinatorial treatment. 

(A) Tumour size measured by caliper in mice and when tumours reached a 

volume of 130-150 mm3 mice were treated for 15 days with vehicle (CTR) or a 

combination of BKM120 (50 mg/kg in NMP/PEG300 (10/90, v/v) o.g. daily) plus CB-

839 (200 mg/kg dissolved in 25% (w/v) hydroxypropyl-b-cyclodextrin in 10 mmol/L 

citrate (pH 2.0) o.g. twice daily) (Treat) left panel. -Middle panel- [18F]FDG uptake in 

A549 tumours exposed to the combinatorial treatment compared to CTR expressed as 

tumour to background ratio (T/B). -Right panel- Lactate labelling evaluated using [U-

13C6.]-Glucose infused in A549 xenograft mice exposed to the combinatorial treatment 

compared to CTR and analyzed by GC-MS.  

(B)  Post mortem analysis of tumour volume (left panel) of A549 tumours 

exposed to the combinatorial treatment compared to CTR.  

(C) Representative transaxial [18F]FDG PET images of CTRL and combined 

treatment mice performed before and after drugs administration. Color scale is expressed 

as SUV value. 

(D) Untargeted metabolic analysis of A549 lung adenocarcinoma tumours. 

Hierarchical clustering heatmap shows significant (p ≤ 0.05) different intracellular 

metabolites. Enriched metabolic pathways were ranked according to their FDR values 

calculated by the MetPa method implemented in MetaboAnalyst 4.0 software. The most 

significant pathways combined treatment compared to CTR were represented by both 

the bigger/red dots and by those dots with higher log p value. The pathway impact is 

calculated as the sum of the importance measures of the matched metabolites normalized 

by the sum of the importance measures of all metabolites in each pathway. 

 

These results were further confirmed by [18F]FDG-PET scan 

revealing significant decreased level of [18F]FDG uptake in A549 

tumours exposed to the combinatorial treatment compared to CTR 

(Figure 3.5A, middle panel, and 5C). In addition, considering the 

valuable role of LDH (lactate dehydrogenase) as a marker in 

patients with cancer, [U-13C6]-Glucose was infused by repeated 

injections (Lane et al., 2015) in A549 xenograft mice to evaluate 

lactate labelling. Consistent with [18F]FDG uptake, we found 
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decreased lactate labelling in A549 tumours treated with BKM120 

plus CB-839, as compared to vehicle (Figure 3.5A, right panel). 

Furthermore, post mortem untargeted metabolic profiling 

identified a significant decreased relative abundance of 

metabolites involved in amino acids metabolism (Lys metabolism, 

Tyr metabolism, Ala-Asp-Glu metabolism, Pyr metabolism), 

except for Ala and Cys, that showed higher levels in A549 treated 

tumours, compared to vehicle (Figure 3.5D). In addition, by 

uniformly labelled [U-13C6]-Glucose administration no significant 

M3-Asp labelling and significant M2-Glu, M2-PEP, M2-Ser and 

M2-Cre was observed in A549 tumours treated and vehicle 

(Figure 3.5E),  
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Figure 3.6. Analysis of HCT116 colon rectal tumours under combinatorial 

treatment. 

(A) Tumour size measured by caliper in mice and when tumours reached a 

volume of 130-150 mm3, mice were treated for 15 days with vehicle (CTR) or a 

combination of BKM120 (50 mg/kg in NMP/PEG300 (10/90, v/v) o.g. daily) plus CB-

839 (200 mg/kg dissolved in 25% (w/v) hydroxypropyl-b-cyclodextrin in 10 mmol/L 

citrate (pH 2.0) o.g. twice daily) (Treat) left panel. -Middle panel- [18F]FDG uptake in 

HCT116 tumours exposed to the combinatorial treatment compared to CTR expressed 

as tumour to background ratio (T/B). -Right panel- Lactate labelling evaluated using [U-

13C6]-Glucose infused in HCT116 xenograft mice exposed to the combinatorial 

treatment compared to CTR and analyzed by GC-MS.  

(B) Post mortem analysis of tumour volume (left panel) of HCT116 tumours 

exposed to the combinatorial treatment compared to CTR. 

(C) Representative transaxial [18F]FDG PET images of CTRL and combined 

treatment mice performed before and after drugs administration. Color scale is expressed 

as SUV value. 

(D) Untargeted metabolic analysis of HCT116 colon rectal tumours. 

Hierarchical clustering heatmap shows significantly (p ≤ 0.05) different intracellular 

metabolites. Enriched metabolic pathways were ranked according to their FDR values 

calculated by the MetPa method implemented in MetaboAnalyst 4.0 software. The most 

significant pathways combined treatment compared to CTR were represented by both 

the bigger/red dots and by those dots with higher log p value. The pathway impact is 

calculated as the sum of the importance measures of the matched metabolites normalized 

by the sum of the importance measures of all metabolites in each pathway. 

 

highlighting the glucose carbon contribution via TCA cycle to 

support cancer cell proliferation in tumour-bearing animals. 

Finally, to sustain the value of the therapy, we tested the 

hepatotoxicity of drugs by assessing aspartate transaminase (GOT) 

and alanine transaminase (GPT) activity, notoriously used as 

indicators of healthy and diseased states in patients (Figure 3.7A). 

In addition to lack of significant weight changes between Treat 
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and CTR, we did not find significant differences in transaminases 

activity between A549 Treat and CTR (Figure 3.S7B and 3.7A). 

A similar trend has been observed in HCT116 tumour-bearing 

mice that showed significant regression of tumour volume during 

the therapeutic window (Figure 3.6A, left panel and 3.6B) and post 

mortem tumour weight (Figure 3.S7C), as well as significant 

decreased levels of [18F]FDG uptake and [U-13C6]-Glucose lactate 

labelling under combinatorial treatment, as compared to vehicle 

(Figure 3.6A middle and right panel, and 3.6C). Nevertheless, as 

we found a significant effect of the combinatorial treatments in 

HCT116 xenograft mice, we confirmed in vivo the lower efficacy 

of BKM120 plus CB-839 combinatorial therapy in HCT116 

tumours, as compared to A549 (Figure 3.5 and 3.6). The similar 

effect has been confirmed by post mortem untargeted metabolic 

profiling revealing a significant decreased relative abundance of 

metabolites involved in amino acids and nucleotides metabolism 

observed in treat HCT116 tumours as compared to CTR (Figure 

3.6D, left and right panels). It was also interesting to note the 

similar stable isotope-labelled metabolite profiling of M3-Asp, 

M2-Glu, M2-PEP, M2-Ser and M2-Cre labelling using [U-13C6]-

Glucose isotope tracer in HCT116 tumours (Figure 3.6E) observed 

in A549 (Figure 3.5E) above described, although coming from 

different origin tissues. Finally, we also tested hepatotoxicity of 

drugs by GOT and GPT activity and we observed a slight hepatic 

stress, but not toxic effect in treated HCT116 tumours as compared 

to CTR (Figure 3.7C). Unlike to that observed in A549, we noticed 

a significant weight difference in treated animals compared to 
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CTR suggesting a possible search of treatment related-alternative 

sources for tumour progression (Figure 3.S7D). 

Figure 3.7. Analysis of toxicity and prolonged therapeutic responses in A549 and 

HCT116 tumours under combinatorial treatment. 

(A) Evaluation of hepatotoxic effect of drugs by assessing aspartate 

transaminase (GOT) and alanine transaminase (GPT) (right panel) of A549 liver mice 

exposed to the combinatorial treatment compared to CTR. 

(B) Kaplan–Meier survival curves of A549 lung tumour bearing mice. 

Combined treatment significantly increased survival compared to BKM120 alone (p < 

0.05). 

(C) Evaluation of hepatotoxic effect of drugs by assessing aspartate 

transaminase (GOT) and alanine transaminase (GPT) (right panel) of HCT116 liver mice 

exposed to the combinatorial treatment compared to CTR. 

(D) Kaplan–Meier survival curves of HCT116 colon rectal tumour bearing mice. 

Combined treatment significantly increased survival compared to BKM120 alone (p < 

0.01). E 
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Further groups of A549 and HCT116 tumours bearing mice were 

treated with the combination of BKM120 and CB-839 or vehicle 

to monitor survival. The combination of the two drugs 

significantly increased survival of both tumour models (Figure 

3.7B  

and D): in detail median survival of HCT116 tumour bearing mice 

raised from 14 to 21 days (p < 0.0001) and that of A549 tumour 

bearing mice from 36 to 62 days (p < 0.01). These data confirmed 

the lower efficacy of the combined treatment on HCT116 tumour 

than on A549 and consequently the capability of HCT116 tumour 

to use other sources of energy. 
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3.4 DISCUSSION 

Herein, we demonstrate a large variability of the metabolism in 

A549 lung K-RasG12S and HCT116 colon K-RasG13D human 

cancer cells and substantial differences in metabolic profiling and 

flux determination after individual and combined drug treatment 

in vitro and in vivo. In fact, despite untargeted metabolic profiling 

showed similar statistical PCA analysis for A549 lung and 

HCT116 colon cancer cells grown in vitro, the two cell lines 

harboring a K-Ras activated oncogene, showed profound 

differences in nutrients utilization (Figure 3.1) and drugs 

sensitivity (Figure 3.2). In A549 lung cancer cells most of glucose 

was converted to lactate and alanine via PC, CB-839 strongly 

inhibited cell growth and profoundly affects metabolic profiling 

(Davidson et al., 2016) while BKM120 was almost ineffective 

(Figure 3.1 and 3.2). In the opposite way, HCT116 colon cancer 

cells showed glucose contribution both to the TCA cycle and in 

lactate production, CB-839 was almost ineffective on cancer cell 

growth but showed detectable changes in metabolic profiling and 

BKM120 inhibited cancer cell growth but showed lower 

significant changes in metabolic profiling (Figure 3.1 and 3.2). 

This metabolic difference can be due to the presence of a mutation 

(H1047R) in the catalytic domain of PIK3CA gene in HCT116 

cells (Samuels et al., 2005). This mutation in catalytic domain 

leads to the constitutive kinase activation that induce hyperactivity 
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of downstream signalling related with proliferative cues. 

Consistently with our metabolic results, it has been observed that 

PIK3CA mutant cell lines showed enhanced glucose metabolism 

followed by higher lactate levels and mitochondrial TCA cycle 

enzyme 2-oxoglutarate dehydrogenase (OGDH) activity was 

required to ensure both enhanced cell proliferation in culture and 

tumour maintenance in vivo as compared to PIK3CA wild type 

(WT) cells (Ilic et al., 2017).  

Of interest it was the identification of PPP, amino sugars and 

nucleotides alternative metabolic pathway activation from glucose 

utilization (Figure 3.3 and 3.4), possibly to residually sustain 

growth under combinatorial drugs treatment. Moreover, the 

significant increased Asp labelling, as preserving mechanism, 

observed using both 13C stable isotope tracers in both human 

cancer cell lines (Figure 3.S3 and S5) could be used as asparagine 

substrate to sustain ASCT2 (Slc1a5) antiport with glutamine 

allowing the net entry of 1–2 carbon atoms into the cell and 

oxidized in the TCA cycle to produce ATP (Scalise et al., 2017). 

This glucose metabolic reprogramming, as well as the metabolic 

defect observed in 2HG production (Figure 3.3C and 3.4C) from 

glutamine observed under drugs treatments, can explain how 

cancer metabolic rewiring contributes to tumour epigenetic 

alterations, thereby affecting cancer therapeutic responses. 

Furthermore, lung A549 cancer cells showed increased arginine, 

asparagine and proline labelling from glutamine (Figure 3.3) 

known to be involved in survival, enhanced proliferation (Elia et 

al., 2017; Krall et al., 2016; Kremer et al., 2017). These findings 
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may shed new light on the involvement of altered metabolism of 

glucose and glutamine, with a variety of alternative pathways, we 

observed on TGCA expression data for lung and colon 

adenocarcinoma patients (Figure 3.S7E and F).  

The interesting findings reported in this paper is the synergic 

antitumour effect of BKM120 and CB-839 combined treatment 

both in A549 lung cancer cells (Figure 3.5) and in HCT116 colon 

cancer cells xenografts (Figure 3.6). We observed significant 

tumour reduction and prolonged therapeutic responses in mice 

correlated with reduced 18F-FDG uptake seen in both A549 K-

RasG12S lung (Figure 3.5) and HCT116 K-RasG13D colon 

xenografts (Figure 3.6). Noteworthy, the combination of BKM120 

and CB-839 metabolic inhibitors in A549 K-RasG12S and 

HCT116 K-RasG13D xenografts mice induced severe energetic 

stress and metabolic crisis, which resulted in significant tumour 

growth regression (Figure 3.5, 3.6 and 3.7) without toxicities 

association (Figure 3.7). In addition, uniformly labelled [U-13C6]-

Glucose in vivo administration confirmed the glucose carbon 

contribution via TCA cycle to support cancer cell proliferation in 

tumour-bearing animals (Figure 3.5 and 3.6) (Davidson et al., 

2016). However, in vitro as well as in vivo findings showed a 

better clinical response A549 to combinatorial therapy in 

comparison with HCT116 suggesting that the concomitant 

mutation in PIK3CA gene could influence metabolic dependency 

and treatment sensitivity. In fact, Maira et al. (Maira et al., 2011) 

showed that cells expressing both KRAS and PI3Kα mutations 

displayed a lower sensitivity to BKM120 in comparison with 
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PI3Kα mut/KRAS WT. The authors suggested that the reduced 

effect in double mutants was related with the activation of 

alternate K-Ras dependent signalling pathways such as the 

extracellular signal-regulated kinase (ERK) which is not 

modulated by BKM120 administered alone (Hong et al., 2016). In 

our case the administration of a glutaminase inhibitor seems to 

partially overcome the activation of alternate K-Ras dependent 

signalling pathways induced by the double mutation.  

Taken together the findings show that combinatorial drug 

treatment reduce the growth of tumour xenografts and support the 

notion that cancer metabolic fingerprint may be useful to select 

combined precision treatment in a clinical trial setting. Moreover, 

the utilization of predicting models of CMR (Damiani et al., 2017; 

Liberti et al., 2017) which have been able to shed light on the logic 

of metabolic rearrangement, may contribute to open the way to a 

systems metabolomics led drug treatment and discovery.
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3.5 MATERIALS & METHODS 

3.5.1 Cell culture  

A549 cell line was routinely grown in Dulbecco’s modified 

Eagle’s medium (DMEM) containing 4mM L-glutamine, 

supplemented with 10% fetal bovine serum. HCT116 cell line was 

grown in DMEM containing 4mM L-glutamine, supplemented 

with 10% newborn calf serum. HCC78 cell line was grown in 

Roswell Park Memorial Institute (RPMI) 1640 medium containing 

2mM L-glutamine, supplemented with 10% fetal bovine serum. 

All the media were supplemented with 100 U/ml penicillin and 

100 mg/ml streptomycin and the cells were incubated at 37 °C in 

a 5% CO2 incubator. All reagents for media were purchased from 

Life Technologies (Carlsbad, CA, USA). 

 

3.5.2 Mice experiments 

Mice chosen for these studies are 7/8-weeks old nu/nu female mice 

(Envigo RMS S.r.l. Italy). Animals were kept under specific 

pathogen free conditions and experiments were carried out in 

compliance with institutional guidelines for the care and the use 

of experimental animals, which have been notified to the Italian 

Ministry of Health and approved by the Ethics Committee of the 

IRCCS San Raffaele Scientific Institute of Milan. 

 

3.5.3 Method Details 

Cell proliferation analysis and cell treatments 

Cells were plated in 6-well plates in normal growth medium. 
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For the proliferation curves in nutrients deprivation conditions, 

culture medium was replaced after 18 hours with a normal 

medium, a low glutamine medium (0.5mM glutamine) or a low 

glucose medium (1 mM glucose). The cells were collected and 

counted after 24, 48, 72 and 144 hours.  

For the dose-response curves, cells were treated with the indicated 

amounts of CB-839 (MedChem Express) and BKM120 (Selleck 

Chemicals) for 48 hours and then counted. Data are expressed as 

percentage of survival with respect to the control condition 

(normal growth medium). 

For the proliferation curves in the presence of the drugs, cells were 

treated with 50nM CB-839 and/or 1 µM BKM120 for 24-48-72-

144 hours and then counted. 

 

3.5.4 Metabolites quantification in spent media samples 

Absolute quantification of glucose, lactate, glutamine and 

glutamate in spent media was determined enzymatically using 

YSI2950 bioanalyzer (YSI Incorporated, Yellow Springs, OH, 

USA). 

 

3.5.5 Seahorse oxygen consumption rate 

Cellular oxygen consumption rate (OCR) was measured with a 

Seahorse XF extracellular flux analyzer (Seahorse Bioscience Inc) 

according to the manufacturer’s instructions. Briefly, cells were 

seeded in a Seahorse XF 24-well assay plate at a cell density of 

20000 cells per well in normal growth medium. After overnight 
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attachment, the medium was washed and replaced with 

prewarmed assay medium (non-buffered DMEM supplemented 

with 1mM sodium pyruvate, 25mM glucose and 4mM glutamine, 

pH 7.4) and incubated in a non-CO2 incubator at 37 °C for 60 min. 

Basal levels of OCR were recorded followed by a mitochondrial 

stress test (1μM oligomycin, 1μM FCCP, 0.5μM rotenone/ 

antimycin A). 

 

3.5.6 Metabolites extraction from cell culture samples 

For untargeted experiments, cells were plated in 6-well plates with 

normal growth medium. After 18 hours, cells were washed with 

PBS and incubated for 48 hours in fresh complete medium in the 

presence or the absence of treatments. For labelling experiments, 

cells were incubated for 48 hours in fresh media supplemented 

with 25mM [U-13C6]-Glucose or 4mM [U-13C5] glutamine or 

4mM [alpha-15N] glutamine (purchased by Cambridge Isotope  

Laboratories, Inc.) in the presence or the absence of treatments.  

Metabolites extraction for GC-MS analysis was performed as 

described previously (Gaglio et al., 2016). Briefly, cells were 

quenched with 1:1 ice-cold methanol:water and collected by 

scraping. After sonication, one volume of chloroform was added, 

and cells were vortexed at 4°C for 20 min. Samples were 

centrifuged at 12000 g for 10 min, and the aqueous phase was 

collected in a new tube and evaporated under airflow at 37°C. 

For metabolites extraction for LC-MS analysis, cells were quickly 

rinsed with NaCl 0.9% and quenched with 500 µl ice-cold 70:30 
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methanol-water. The plates were placed at -80°C for 10 minutes, 

then the cells were collected by scraping with a pipette tip. Cells 

were sonicated 5 sec for 5 pulses at 70% power twice. Samples 

were centrifuged at 12000g for 10 min and the supernatant was 

collected in a new tube and evaporated under air flow at 37°C. The 

samples were resuspended with 150 μl of H2O prior to analyses. 

 

3.5.7 Metabolites extraction from tissue samples 

Metabolites extraction for GC-MS analysis was performed as 

described previously (Gaglio et al., 2016). Briefly, 0.1 ml ice-cold 

methanol was added to 10mg of tissue. An equal volume of water 

was added and samples were sonicated, incubated at -80°C and 

sonicated again. One volume of chloroform was added and 

samples were vortexed at 4°C for 30 min and then centrifuged at 

12000g for 10 min. The aqueous phase was recovered and 

evaporated under airflow at 37°C. 

For metabolites extraction for LC-MS analysis, the protocol was 

adapted from Naz et al (Naz et al., 2013). Briefly, 100 µl ice-cold 

50:50 methanol-water was added to 10mg of tissue and samples 

were sonicated 5 sec for 5 pulses at 70% power twice. After a 30 

min incubation at -80°C, samples were sonicated as described 

above. A total of 100μL of homogenate was vortexed with 320μL 

of ice-cold methanol for 2 minutes. Then 80μL of methyl-tert-

butyl ether (MTBE) was added and the samples were placed on a 

shaker for 1 h at room temperature. The extracted samples were 

then centrifuged at 12000g for 20 min. 400μL of supernatant was 
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recovered and evaporated under air flow at 37°C. The samples 

were resuspended with 150μl of H2O prior to analyses. 

 

3.5.8 GC-MS metabolic profiling 

Derivatization was performed using automated sample prep 

WorkBench instrument (Agilent Technologies). Dried polar 

metabolites were dissolved in 60μl of 2% methoxyamine 

hydrochloride in pyridine (Pierce) and held at 40°C for 6 h. After 

dissolution and reaction, 90μl of MSTFA (N-Methyl-N-

(trimethylsilyl) trifluoroacetamid) was added and samples were 

incubated at 60°C for 1h. Derivatized samples were analyzed by 

GC-MS using a DB-35MS column (30 m x 0.25mm i.d. x 0.25 

µm) installed in an Agilent 7890B gas chromatograph (GC) 

interfaced with an Agilent 7200 Accurate-Mass Quadrupole Time-

of-Flight (QTOF) mass spectrometer (MS) operating under 

electron impact (EI) ionization at 70eV. Samples (1μl) were 

injected in a splitless mode at 250°C,using helium as the carrier 

gas at a flow rate of 1 ml/min. The GC oven temperature was held 

at 100°C for 2 min and increased to 325°C at 10°C/min. GC/MS 

data processing was performed using Agilent Muss Hunter 

software and statistical and pathway analyses were performed 

using Mass Profiler Professional (MPP) software and 

MetaboAnalyst 4.0 (Chong et al., 2014). Relative metabolites 

abundance was carried out after normalization to internal standard 

d27 Myristic acid and cell number. 
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For labelling experiments, dried polar metabolites were dissolved 

in 60μl of 2% methoxyamine hydrochloride in pyridine (Pierce) 

and held at 40°C for 6h. After dissolution and reaction, 90μl of 

MTBSTFA + 1% TBDMCS (Pierce) were added and samples 

were incubated at 60°C for 1h.  

1μl of sample was injected in splitless mode at 270°C, using 

helium as the carrier gas at a flow rate of 1 ml/min. The GC oven 

temperature was held at 100°C for 3 min and increased to 300°C 

at 3.5°C/min. The data were pre-processed using the OpenChrom 

software package (Wenig and Odermatt, 2010). Raw intensity 

values across accurate masses were first binned into unit masses 

(i.e. 50, 51, 52, etc. ± 0.1 m/z) and exported as “.csv” files 

followed by conversion to NetCDF using the OpenChrom 

software’s file converters. Mass isotopologue distributions 

(MIDs) were determined using Matlab by integrating metabolite 

ion fragments and correcting for natural abundance using in-house 

algorithms adapted from (Fernandez et al., 1996). 

 

3.5.9 LC-MS metabolic profiling 

LC separation was performed using an Agilent 1290 Infinity 

UHPLC system and an InfintyLab Poroshell 120 PFP column (2.1 

x 100 mm, 2.7 μm; Agilent Technologies). Mobile phase A was 

water with 0.1% formic acid. Mobile phase B was acetonitrile with 

0.1% formic acid. The injection volume was 15 μL and LC 

gradient conditions were: 0 min: 100% A; 2 min: 100% A; 4 min: 

99% A; 10 min: 98% A;11 min: 70% A; 15 min: 70% A; 16 min: 



 

Chapter 1 Rohit Bharat 93 

100% A with 5 min of post-run. Flow rate was 0.2 mL/min and 

column temperature was 35°C. MS detection was performed using 

an Agilent 6550 iFunnel Q-TOF mass spectrometer with Dual 

JetStream source operating in negative ionization mode. MS 

parameters were: gas temp: 285°C; gas flow: 14 l/min; nebulizer 

pressure: 45psig; sheath gas temp: 330°C; sheath gas flow: 12 

l/min; VCap: 3700 V; Fragmentor: 175 V; Skimmer: 65 V; 

Octopole RF: 750 V. Active reference mass correction was 

through a second nebulizer using masses with m/z: 112.9855 and 

1033.9881. Data were acquired from m/z 60–1050. Data analysis 

and isotopic natural abundance correction was performed with 

MassHunter ProFinder and MassHunter VistaFlux software 

(Agilent). 

 

3.5.10 13C Metabolic flux analysis 

13C MFA was carried out using INCA v1.7 based on Elementary 

Metabolite Unit (EMU) framework (Young, 2014; Young et al., 

2008). Flux through metabolic network consisting of Glycolysis, 

PPP, TCA, FA, & Biomass synthesis was constructed 

(Antoniewicz, 2018) and was was estimated by lease squares 

regression of metabolite labelling pattern and measured 

extracellular fluxes. The flux values of the network were 

iteratively adjusted using a Levenberg-Marquardt (local search) 

algorithm to minimize the sum of squared residual (SSR) objective 

function. The best global fit was found after estimating at least 50 

times using random initial guesses for all reactions in the 
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metabolic network. All the fluxes were subjected to chi-square 

statistical test to assess goodness of fit and 95% confidence 

intervals were computed (Antoniewicz et al., 2006). 

 

3.5.11 Aldolase activity in cell samples 

Aldolase activity was measured in cell samples in the presence or 

the absence of 1µM BKM120 using the Aldolase Activity 

Colorimetric Assay Kit (BioVision). 6x105 cells were 

homogenized in 100μl of assay buffer and then the samples were 

processed according to the protocol kit. Activity was read 

kinetically for 20 minutes at OD 450 nm using a Cary 60 UV-Vis 

spectrophotometer (Agilent Technologies). 

 

3.5.12 ROS levels measurement  

ROS levels were measured using the DCFDA Cellular Ros 

Detection Assay Kit (Abcam, Cambridge, UK). Cells were 

harvested and stained with 20μM dichloro-diyidro- fluoresceine-

diacetate (DCFDA) for 30 min at 37°C. Thereafter, cells were 

washed and fluorescence was measured at excitation/emission 

wavelengths of 485nm/535nm respectively using Cary Eclipse 

Fluorescence Spectrophotometer (Agilent Technologies).  

 

3.5.13 ATP quantification in cell samples 

ATP levels were measured using ATP Colorimetric/Fluorometric 

Assay Kit (BioVision) according to the manufacturer’s protocol. 

Fluorescence was measured at excitation/emission wavelengths of 
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535nm/587nm respectively using Cary Eclipse Fluorescence 

Spectrophotometer (Agilent Technologies).  

 

3.5.14 Autophagy detection 

Autophagic activity was detected by using the Cyto-ID™ 

Autophagy Detection Kit (ENZO Life Sciences). Cells were 

harvested by centrifugation and washed in assay buffer. Samples 

were resuspended in 250 µl of freshly diluted Cyto-ID reagent and 

incubated at 37 °C for 30 min, followed by two washes and 

resuspension in 500 µl of assay buffer. The Cyto-ID fluorescence 

was immediately measured at excitation/emission wavelengths of 

480 nm/530 nm, respectively, using a Cary Eclipse Fluorescence 

Spectrophotometer (Agilent Technologies) 

 

3.5.15 ALT and AST activity in liver tissues 

Alanine Aminotransferase (ALT) Activity Fluorometric Assay Kit 

and Aspartate Aminotransferase (AST) Activity Colorimetric 

Assay Kit were purchased by Biovision. Briefly, 10 mg of mouse 

livers were homogenized in 200μl of appropriate assay buffer in 

TissueLyser II (Qiagen) for 30 seconds, 30 Hz power. The samples 

were then processed according to the manufacturer’s protocols. 

For ALT activity, the fluorescence was read kinetically for 60 

minutes at excitation/emission wavelengths of 535nm/587nm 

respectively using Cary Eclipse Fluorescence Spectrophotometer 

(Agilent Technologies). AST activity was assessed reading 
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kinetically for 60 minutes at OD 450 nm using a Cary 60 UV-Vis 

spectrophotometer (Agilent Technologies). 

 

3.5.16 Animal model and pharmacological therapy 

A549 K-RasG12S (5 x 106) or HCT116 K-RasG13D (2 x 106) 

cells in 200 ul of phosphate-buffered saline (PBS) and Matrigel 

mixed at 1:1 were injected subcutaneously (s.c) on the right flanks 

of 7/8-weeks old nu/nu female mice (Envigo RMS S.r.l. Italy). 

After cells injection, mice were monitored twice a week for body 

weight and tumour volume was measured using a digital caliper 

and calculated following the formula: tumour volume = (long side 

* (short side)2) / 2. 

NVP-BKM120 was formulated in NMP/PEG300 (10/90, v/v). 

Solution was freshly daily prepared just before gavaging by 

dissolving the powder, first in N-Methyl-2-pyrrolidone (NMP, 

Sigma Aldrich) with sonication and then by adding the remaining 

volume of PEG300 (Sigma Aldrich) as previously described 

(Alagesan et al., 2015). The application volume was 10 mL/kg. 

CB-839 was dissolved in a vehicle containing 25% (w/v) 

hydroxypropyl-b-cyclodextrin (Cayman Chemical Company) in 

10mmol/L citrate (pH 2.0). The formulation was 20 mg/mL for a 

final dosing volume of 10 mL/kg as previously described (Gross 

et al.). When a mean tumour volume reached 130-150 mm3, mice 

were divided into groups (n = 7-12) and orally administered with 

vehicles (CTR) or with a combination of CB-839 (200 mg/kg 

twice daily, 5 d per week) and NVP-BKM120 (50 mg/kg daily, 5 
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d per week) for two weeks. At the end of the study, animals were 

sacrificed and tumours collected for post mortem metabolomics 

analyses. For labelling experiments, 1M [U-13C6]-Glucose in 

sterile PBS was infused injecting 80 μl (20 mg) of solution at 15 

min intervals 3 times before the sacrifice.For survival study, 

treatments were administered until either a tumour dimension 

reached 15 mm or both dimensions exceeded 10 mm or for evident 

signs of disease (i.e. motor difficulty). Mice were sacrificed with 

cervical dislocation under isoflurane anesthesia. 

 

3.5.17 PET imaging and quantification 

PET images were obtained using a YAP-(S)-PET II small animal 

scanner (ISE s.r.l., Pisa, Italy). Animals were acquired before 

therapy, after 7 days and after 15 days. Acquisitions and images 

analysis and quantification were performed as previously 

described (Gaglio et al., 2016). 

Quantification and statistical analysis 

Results are expressed as mean value ± SD. Experimental 

differences were tested for significance with the Student’s t-test 

or, when possible, with the Two Way ANOVA test. A p-value of 

0.05 or less was considered statistically significant. Statistics are 

included in the figure legends. 
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Supplementary Figures Legend: 

Figure 3.S1. Metabolic pathways analysis of lung and colon 

cancer cells. 

(A) Proliferation curve of A549 (■), HCT116 (■) and HCC78 (■), 

human cancer cells. Cells were plated in normal medium, 

collected and counted at indicated time points. 

(B) Extracellular uptake and secretion of Glc, Lac, Gln, and Glu 

in lung and colon cancer cells grown for 48h. 

(C and D) Proliferation curve of A549 (left panel), HCT116 

(middle panel) and HCC78 (right panel) cancer cells. Cells were 

plated in 6-well plates in normal medium. Culture medium was 

replaced after 18h with normal medium (■), containing 1mM 

glucose (■, C) or 0.5mM glutamine (■, D -lower panel-) . Cells 

were collected and counted at the indicated time points. Error bars 

indicates SD (n=3).  

(E) Metabolic pathways analysis of A549 and HCC78 lung cancer 

cells. Comparison of samples by Student’s t-test statistical 

analysis (A549 versus HCC78 lung cancer cells). Student’s t-test 

statistical analysis was performed using Mass Profiler 

Professional (MPP) software. The dendrogram was produced by 

applying a hierarchical clustering algorithm. The color range 

legends was automatically generated by MPP, considering the 

minimum and maximum values of most compounds identified to 

highlight the best differences between samples through the most 

suitable color scale.  
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(F) Fumarate and Malate labelling from [U-13C5]glutamine in 

A549 (■ ) and HCT116 (■). Data represent mean ± SD of five 

independent experiments.  

(G) ATP levels and intracellular ROS levels were measured by 

enzymatic assay and DCFDA staining respectively in A549 (■) 

and HCT116 (■) grown in medium for 48h. Error bars indicate SD 

(n=3).  

(H) BKM120 dose response curves for A549, HCT116 and 

HCC78 measured as cells per well treated for 48 hours with 0 to 

20μM BKM120 (left panel). CB-839 dose response curves for 

A549, HCT116 and HCC78 measured as cells per well treated for 

48 hours with 0 to 1000nM CB-839 (right panel). Error bars 

represent standard deviation for n=3 biological replicates.  

(I) Aldolase activity of HCC78 cancer cells under 1μM BKM120 

for 48h measured by enzymatic assay.  

(J) Glutamate production of HCC78 cancer cells under 50nM CB-

839 for 48h 

(K) A549 and HCT116 cancer cell lines were incubated with 

aldolase inhibitor (BKM120 ■), glutaminase inhibitor (CB839 ■) 

or BKM120 + CB-839 (■) and CTR ■ collected and counted at 

indicated time points.  

 (L) Analysis of basal autophagy of A549, HCT116 and HCC78 

measured by Cyto-ID® Autophagy detection kit 
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Figure 3.S2. Metabolic pathways analysis of A549 and HCT116 

cancer cells under drugs treatment 

(A) One way ANOVA statistical analysis box plot (CTRL versus 

combinatorial treatment) and box plot of intracellular metabolites 

of A549 in the four experimental conditions by LC-MS and GC-

MS. 

(B) Intracellular ROS levels of A549 CTR and under 

combinatorial treatment measured by DCFDA staining. Error bars 

indicate SD (n=3). 

(C) One way ANOVA statistical analysis box plot (CTR versus 

combinatorial treatment) and box plot of intracellular metabolites 

of HCT116 in the four experimental conditions by LC-MS and 

GC-MS. 

(D) Intracellular ROS levels of HCT116 CTR and under 

combinatorial treatment measured by DCFDA staining. Error bars 

indicate SD (n=3). 

(E) Untargeted metabolic profiling of HCC78 lung cancer cell 

lines. Hierarchical clustering heatmaps show significantly 

(p ≤ 0.05) different intracellular metabolites by LC-MS and GC-

MS (left panel). Enriched metabolic pathways were ranked 

according to their FDR values calculated by the MetPa method 

implemented in MetaboAnalyst 2.0 software (upper right panel). 

The most significant pathways were represented by both the 

bigger/red dots and by those dots with higher log p value. The 

pathway impact is calculated as the sum of the importance 
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measures of the matched metabolites normalized by the sum of the 

importance measures of all metabolites in each pathway.  

Figure 3.S3. [U-13C6]glucose isotope labelling enrichment of 

A549 cancer cells under drugs treatment 

(A) Schematic representation and percentage isotope labelling 

enrichment of metabolites from [U-13C6]glucose (blue circle) and 

[U-13C5]glutamine (violet circle) in A549 cancer cells. 

(B-C) Intermediate metabolites labelling of glycolysis (B), TCA 

Cycle and amino acids (C) from [U-13C6]glucose of A549 in the 

four experimental conditions by LC-MS and GC-MS. 

(D) Net flux values estimated by 13C MFA for A549 cancer cells 

CTR and under BKM120 plus CB839 treatments. Net flux values 

for cells are listed using abbreviation R1, R2,...R26, respectively. 

(E) Mitochondrial respiration reflected by OCR levels was 

detected in A549 CTR (■) and under combinatorial treatments (■) 

cancer cells under basal conditions or following the addition of 

oligomycin (0.1 μM), the uncoupler FCCP (F, 0.5 μM) or the 

electron transport inhibitor Rotenone (R, 2 μM).(n=5). 

Figure 3.S4. [U-13C6]-glucose, [U-13C5] and [α-15N]-glutamine 

isotope labelling enrichment of A549 cancer cells under drugs 

treatment 

(A) Amino sugar metabolism and PPP intermediates from [U-

13C6]glucose labelling of A549 in BKM120 and CB-839 

conditions by LC-MS and GC-MS. 
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(B-C) Intermediates metabolites labelling of TCA cycle (B), 

amino acids and glutathione metabolism (C) from [U-13C5] 

glutamine of A549 in BKM120 and CB-839 conditions by LC-MS 

and GC-MS. 

(D) Intermediates metabolites isotope labelling from [α-

15N]glutamine of A549 in BKM120 and CB-839 conditions by 

LC-MS and GC-MS. 

Figure 3.S5. [U-13C6]glucose isotope labelling enrichment of 

HCT116 cancer cells under drugs treatment 

(A) Schematic representation and percentage isotope labelling 

enrichment of metabolites from [U-13C6]glucose (blue circle) and 

[U-13C5]glutamine (violet circle) in HCT116cancer cells. 

(B) Intermediates metabolites labelling of glycolysis, TCA Cycle, 

and alternative glucose metabolic pathways from [U-13C6]glucose 

of HCT116in the four experimental conditions by LC-MS and 

GC-MS. 

(C) Net flux values estimated by 13C MFA for HCT116 cancer 

cells CTR and under BKM120 plus CB839 treatments. (Net flux 

values for cells are listed using abbreviation R1, R2,...R26, 

respectively. 

(D) Mitochondrial respiration reflected by OCR levels was 

detected in HCT116 CTR (■) and under combinatorial treatments 

(■) under basal conditions or following the addition of oligomycin 
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(O, 1 μM), the uncoupler FCCP (F, 0.5 μM) or the electron 

transport inhibitor Rotenone (R, 2 μM).(n=5). 

Figure 3.S6. [U-13C5] and [α-15N]-glutamine isotope labelling 

enrichment of HCT116cancer cells under drugs treatment 

(A-B) Intermediates metabolites labelling of TCA cycle (A), 

amino acids and glutathione metabolism (B) from [U-13C5] 

glutamine of HCT116 in BKM120 and CB-839 conditions by LC-

MS and GC-MS. 

(C) Intermediates metabolites isotope labelling from [α-

15N]glutamine of HCT116 in BKM120 and CB-839 conditions by 

LC-MS and GC-MS. 

Figure 3.S7. Post-mortem analysis of A549 and HCT116 tumours 

after treatment. 

(A) Post mortem analysis of tumour weight of A549 tumours 

exposed to the combinatorial treatment compared to CTR.  

(B) Weight of A549 xenograft mice exposed to the combinatorial 

treatment compared to CTR. 

(C) Post mortem analysis of tumour weight of HCT116 tumours 

exposed to the combinatorial treatment compared to CTR.  

(D) Weight of HCT116 xenograft mice exposed to the 

combinatorial treatment compared to CTR. 
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(E-F) TGCA expression data for lung and colon adenocarcinoma 

patients of glycolysis-associated gene (E) and glutamine 

metabolism-associated gene (F) 
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4.1 ABSTRACT 

Adaptation to endocrine therapy by estrogen receptor alpha (ERα) 

positive breast cancer cells via drug specific mechanisms has 

posed a substantial challenge in the treatment of ERα positive 

patients. Deeper understanding of metabolic rewiring used by 

cancer cells to survive and overcome the effects of drugs appears 

crucial for development of efficacious personalized treatment 

strategy. Here, using untargeted metabolomics, stable isotope 

resolved fluxomics and systems level modelling approach, we 

demonstrated the metabolic heterogeneity among endocrine 

therapy (ET) resistant and sensitive phenotypes to highlight drug 

dependent differential metabolic rewiring in ERα positive breast 

cancer. Divergence of metabolic propensity from glucose to 

glutamine was found to be a focal factor triggering enhanced 

mitochondrial function and fatty acid synthesis via reductive 

carboxylation, potentially conferring increased epigenetic 

regulation capability due to increased Acetyl-CoA. By using 

transcriptomics driven flux balance analysis (FBA) and 13C 

metabolic flux analysis (MFA) we identified vital fluxes 

differentiating the resistant phenotypes along with the 

identification of potential targets that could aid in personalized 

treatment strategy. Increased OXPHOS was a strategic feature 

observed in aromatase inhibitor (AI) resistant cell lines where 

targeting with anti-diabetic drug metformin showed remarkable 

outcome vindicating its role as an adjuvant for therapy of AI 

resistant ERα positive patients.
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4.2 INTRODUCTION 

Over 70% of the breast cancer exhibit oncogenic activation of ERα 

signalling pathway (Musgrove and Sutherland, 2009) and this has 

served as the basis for ET which employs selective estrogen 

receptor modulator (SERM) like Tamoxifen, or selective estrogen 

down regulator. (SERD) like Fulvestrant/Faslodex and AI like 

Letrozole and Anastrozole, for both cancer prevention and 

treatment (Palmieri et al., 2014). However, over 40% of the ERα 

patients receiving ET eventually relapse (Clarke et al., 2015; 

Forbes et al., 2008; Ma et al., 2015; Markopoulos, 2010). Several 

molecular mechanisms for resistance development have been 

proposed in the past but despite significant efforts and discoveries 

made in recent years the exact cause of ET failure in ERα breast 

cancer patients remain largely unknown. 

Understanding metabolic pathways required by tumour cells is 

now observed as a key component driving development of tumour 

therapeutics (Vander Heiden, 2013). Many cancer cells exhibit 

increased demand for nutrients like glucose to maintain their 

highly proliferative nature (Heiden et al., 2009). This altered 

metabolism could be a consequence of differential expression of 

oncogenes which promote the increased aerobic glycolysis, fatty 

acid (FA) synthesis and glutaminolysis providing them the 

metabolic flexibility required to support their cell growth and 

proliferation (Commisso et al., 2013; Gao et al., 2009; Yun et al., 

2009). Resistance to ET drugs in ERα Breast cancer could also be 

attributed to deregulation of metabolic pathways regulated by 

oncogenes such as MYC (Miller et al., 2011), mTOR 
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(DeGraffenried et al., 2004) etc. However, even though targeting 

signalling pathways seems like a promising avenue for the care of 

breast cancer patients exhibiting endocrine resistance, it still poses 

a challenge, as little is known about the complex regulation and 

interplay between the networks.  

Recent finding showed that ERα breast cancer cells exhibit 

differential epigenetic reprogramming in response to ET in a drug 

specific mechanism and show upregulation of metabolic pathway 

for cholesterol biosynthesis in a specific drug resistant model 

(Nguyen et al., 2015). However, a detailed understanding of the 

metabolic rewiring occurring in response to drug treatment 

remained unknown. In this study we vastly explored the metabolic 

differences among ET sensitive (MCF-7) and the derived resistant 

models (Tamoxifen resistant-MCF-T, Fulvestrant resistant-MCF-

F, and Long Term Estrogen Deprived-LTED mimicking AI 

resistance) using Mass spectrometry based metabolomics, 13C-

Fluxomics and Computational Modelling approaches, supported 

by their transcriptomics knowledge, to show how differential 

utilization of glutamine in a specific drug resistant model redirects 

the metabolic switching towards a glucose independent 

mechanism and thus leading to enhanced mitochondrial function 

via OXPHOS as well as increased FA synthesis via reductive 

carboxylation of glutamine. Metabolic profiling of these sensitive 

and resistant models provides and insight to the key metabolic 

pathways which could be driving endocrine resistance and 

potentially open up new avenues for developing better targeted 

therapies. 
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Additionally we also show an already available diabetic drug-

Metformin which is under clinical trial for its potential as a 

neoadjuvant in cancer therapy (Decensi et al., 2015),(Hadad et al., 

2015) could prove to be a major asset to address the problem of 

ET resistance in AI resistant model. 
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4.3 RESULTS 

4.3.1 Analogous metabolic response but divergent metabolic 

adaptation to ET drugs 

To understand the impact of specific drug treatments on ERα 

breast cancer metabolism we started our analysis by looking into 

the immediate effect of ET drugs (Tamoxifen, Fluvestrant, and 

Estrogen (E2) Deprivation) on consumption and secretion of 

important nutrients like glucose, glutamine, lactate and glutamate 

and its consequential effect on cell proliferation of our cell line 

model MCF-7 (Figure-4.1 A-C). The metabolic phenotype of 

MCF-7 is highly glycolytic which is elucidated by the 

ΔLac/ΔGluc ratio of ̴ 2 (Figure-4.1C). The drug treatments 

showed substantial decrease in glucose consumption and lactate 

secretion where E2 deprivation showed the maximum decrease 

(Figure-4.1B), but interestingly this decrease in consumption and 

secretion of glucose and lactate respectively was not reflected 

correspondingly in cell proliferation rates when compared to 

tamoxifen treatment with respect to normal condition, where 

tamoxifen treatment had a much stronger effect on cell 

proliferation compared to –E2 (Figure-4.1A). A significant 

increase in glutamine consumption was observed in all the drug 

treatments (Figure-4.1B) but increase of ΔLac/ΔGluc ratio was 

only observed in –E2 condition (Figure-4.1C) suggesting that the 

lactate produced could be coming through glutamine. This 

observation could explain why E2 deprivation did not show much 

stronger immediate effect on cell proliferation as tamoxifen, as 

glutamine could be fuelling the cell survival in -E2 condition, 
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whereas the increased glutamine consumption in tamoxifen 

treatment could be as a stress response  

(#Data for Fulvestrant treatment under analysis and to be 

included) 

Next we compared the metabolic differences among ET sensitive 

(MCF-7) and the derived resistant cell lines (MCF-T, MCF-F and 

LTED) (Figure-4.1 D-F) where MCF-7 had the fastest 

proliferation whereas LTED was the slowest (Figure-4.1D). We 

noticed that after adaptation to ET drugs over the course of 

resistance development the tamoxifen resistant and fulvestrant 

resistant MCF-T & MCF-F respectively had regained back their 

glucose consumption ability and had higher glucose consumption 

rates compared to MCF-7 and same was reflected in their Lactate 

secretion but LTED did not (Figure-4.1E). ΔLac/ΔGluc of MCF-

T was ̴2, similar to MCF-7 suggesting a glycolytic phenotype, but 

MCF-F and LTED showed ratios much higher (Figure-4.1F) 

indicating metabolic rewiring from glucose to glutamine or other 

carbon sources for lactate production. Interestingly the 

proliferation rates of the cell lines inversely correlated with 

ΔLac/ΔGluc ratio where glycolytic phenotypes having the highest 

proliferation rates and decreased proliferation due to a switch from 

glucose to glutamine mediated metabolism (Liberti and Locasale, 

2016). The expression of insulin dependent glucose transporter 

GLUT4 was highly upregulated in MCF-T and greatly 

downregulated in LTED (Figure-4.1G), whereas the glutamine 

transporters SNAT1 and SNAT2 were significantly upregulated in 

LTED (Figure-4.1 H, I) correlating with the consumption rates. 
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Figure-4.1. Metabolic differences among ET sensitive and resistant cell lines. A. 

Effect of acute treatment with Tamoxifen/E2 Deprivation on cell proliferation of breast 

cancer cell line MCF-7 cell line. B. Effect of drug treatment (+Tamoxifen/-E2) on 

metabolite consumption/secretion rates of MCF-7 measured after 48hrs. C. Graph 

depicting changes in Lactate to glucose ratio upon drug treatment (+Tamoxifen/-E2) on 

MCF-7 measured after 48hrs. D. Differences in proliferation rates of MCF-7 compared 

to drug resistant cell lines MCF-T, MCF-F and LTED. E. Dissimilarities in metabolite 

consumption and secretion rates among ET sensitive and resistant cell lines. F. 

Differences in Lactate over glucose ratio among ET sensitive and resistant cell lines. G. 

Graph of mRNA expression of glucose transporter gene GLUT4 (SLC2A4). H. Graph 

of mRNA expression of glutamine transporter gene SNAT2 (SLC38A2). I. Graph of 

mRNA expression of glutamine transporter gene SNAT1 (SLC38A1). J. Comparison of 

changes in glucose consumption rates among cell lines when grown in normal media or 

upon nutrient perturbation with low glutamine condition. K. Comparison of changes in 

glutamine consumption rates among cell lines when grown in normal condition of upon 

nutrient perturbation with low glucose condition. L. Comparative differences in lactate 

secretion rates when cell lines were subjected to either normal or low glucose condition 

or low glutamine condition. M. Schematics depicting the differences among ET sensitive 

and resistant cell lines based on their dependence on glucose or glutamine metabolism 

 

Nutrient perturbation experiments further validated the above 

findings and revealed the metabolic flexibility of the resistant cell 

lines where MCF-7 did not show any significant difference in 

glucose consumption when grown in low glutamine condition 

(Figure-4.1 J) indicating their less dependence on glutamine but 

their lactate secretion was significantly reduced in low glucose 

condition but not in low glutamine (Figure-4.1 L). MCF-T cells 

could compensate for glucose or glutamine perturbation by 

increasing glutamine or glucose consumption respectively 

(Figure-4.1 J, K). Glucose consumption of LTED cells was 

decreased when subjected to low glutamine media indicating their 
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higher dependence on glutamine and probable reduction in 

metabolic activity (Figure-4.1 J), whereas their glutamine 

consumption was increased when subjected to growth in low 

glucose media.  

The switch from glucose to glutamine mediated metabolism seems 

to be independent of Estrogen Receptor (ER) status or E2 

availability for the cells (Figure-4.1 M) as MCF-F have 

completely downregulated ER due to action of fulvestrant and 

partial downregulation of activity of tamoxifen on ER in MCF-T 

(Dixon, 2014). 

 

4.3.2 Glutamine drives diversification of metabolic profiles in 

response to drug treatment. 

Metabolic profiling of ET sensitive and resistance cells using 

untargeted mass spectrometry reveals a wide array of differences 

in metabolic profiles of the sensitive and resistant cell lines. 

Metabolites related to glutamine metabolism such as glutamine, 

alpha-ketoglutaric acid, glutamic acid etc. were found to be highly 

upregulated in the resistant cell lines and metabolites dependent 

on glucose metabolism such as fructose, glycerol-1-Phosphate, 

DHAP etc. were found to upregulated in MCF-7 (Figure- 4.2A) 

consistent to the above findings from nutrient consumption 

experiments (metabolite abundances of few key metabolites are 

shown in Supplementary fig-4.S3). Even though all the endocrine 

therapeutic approaches work by altering estrogen receptor, but 

contrary to the belief that they would have a similar effect on the 
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cells, we show that the all the ET drugs have completely different 

effect on breast cancer metabolism as can be seen from the PCA 

analysis of the resistant and sensitive cell lines (Figure- 4.2B). 

LTED and MCF-F had the most diverse effect as can be seen from 

the separation on component 2 of the PCA plot. We see that MCF-

F & MCF-T grouped much closely together when compared with 

LTED and MCF-7 indicative of similar activity of the drugs 

belonging to the same class i.e. SERM’s but even though 

tamoxifen resistant cell line had a grouping closer to MCF-F it was 

in between MCF-7 and MCF-F which could explain the partial 

agonist activity of tamoxifen (Macnab et al., 1984)   . Variable 

importance in projection analysis (VIP) (Figure- 4.2C) reveals 

cholesterol as one of the key metabolites for LTED cell lines and 

the metabolite abundance of cholesterol was also found to be 

almost 2 fold higher in LTED compared to other cell lines 

(Supplementary fig-4.S3) which coincided with our previous 

findings from the RNAseq analysis (Nguyen et al., 2015). VIP 

analysis showed high score for eicosapentaenoic acid (EPA) in 

LTED which was intriguing as it has been shown to restore 

tamoxifen sensitivity in breast cancer with high Akt activity 

(deGraffenried et al., 2003), upregulation of EPA along with gene 

regulating its biosynthesis- ACOT2 which shows to have better 

relapse free survival in patients with high ACOT2 activity 

(Supplementary Fig-4.S4). Gene which regulates synthesis for the 

precursor for EPA (FADS1) was also found to be upregulated in 

LTED (Supplementary fig-4.S1A) suggesting an alternative role 

of this metabolite in AI resistance which should be investigated 
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further. Patients with high FADS1 showed poor RFS compared to 

their low expression counterparts (Supplementary Fig-4.S4) 
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Figure-4.2 Untargeted metabolic profiling and pathway analysis of ET resistant cell 

lines. A. Hierarchical clustering heat maps showing significantly (p ≤ 0.05) different 

intracellular metabolites quantitated by GC-MS based untargeted metabolic analysis of 

MCF-7, MCF-T, MCF-F & LTED cancer cells using Metaboanlayst 4.0. B. Principal 

component analysis (PCA) of MCF-7, MCF-T, MCF-F and LTED with mean centring 

and scaling to display the inherent variance between the metabolic phenotypes. C. 

Variable importance in projection investigation of key metabolites among ET resistant 

and sensitive cell lines. D. Metabolic pathway enrichment analysis of significantly 

different metabolites (p<0.05) in resistant cell lines (MCF-T, MCF-F & LTED) when 

compared to MCF-7. E. Pathway impact analysis of metabolites significantly different 

in MCF-T vs MCF-7. F. Pathway impact analysis of metabolites significantly different 

in MCF-F vs MCF-7. G. Pathway impact analysis of metabolites significantly different 

in LTED vs MCF-7 

 

Enrichment of metabolites belonging to protein biosynthesis, 

ammonia recycling, urea cycle, methionine metabolism was found 

in resistant cell lines compared to MCF-7. (Figure- 4.2D). 

Analysis of pathway impact of individual cell lines compared to 

MCF-7 (Figure- 4.2 E-G) shows that pathways related to glucose 

metabolism like amino sugar and nucleotide metabolism, fructose 

metabolism, glycine serine and threonine metabolism had an 

higher impact on MCF-T (Figure- 4.2E), whereas glutamine 

mediated metabolism like glutathione metabolism, aspartate and 

glutamate metabolism, TCA cycle etc had an higher impact on 

MCF-F and LTED (Figure- 4.2F and G). Higher glutathione 

metabolism reveals higher Reactive Oxygen Species (ROS) 

related stress management capabilities in MCF-F and LTED cells 

owing to increased glutamine reliance. Pathway perturbation 

analysis shows activation of nucleotide salvage pathways in 

LTED compared to MCF-7 (Supplementary Fig-4.S1B) which 
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could be a probable mechanism to sustain the nucleotide demand 

in case of a probably impaired pentose phosphate pathway as a 

consequence of decreased dependence and utilization of glucose. 

4.3.3 Augmented lipogenesis propelled by reductive 

carboxylation drives resistance. 

Next we unravelled the differences in metabolic fluxes using [U-

13C6] Glucose and [U-13C5] Glutamine stable isotope tracers 

(Figure- 4.3 and 4). As it was expected LTED showed decreased 

M3 labelling in pyruvate (PYR) from [U-13C6] glucose (Figure- 

4.3A) corresponding with overall decreased Mole Percent 

Enrichment (MPE) (Figure- 4.3B). Interestingly LTED and MCF-

F showed higher M2 PYR labelling which indicates their higher 

malic enzyme activity in the direction of malate to pyruvate axis, 

which was verified by the higher expression of ME1 gene 

compared to MCF-7 (supplementary Fig-4.S1A). MCF-T showed 

increased M3 labelled alanine (ALA) which corresponded with the 

increased expression of GPT gene (supplementary Fig-4.S1A). 

Whereas LTED showed decreased M3 alanine but higher M2 

labelled alanine, indicating that in LTED phenotype the ME1 

derived pyruvate was preferentially being used more for alanine 

synthesis when compared to others. ME1 enzyme generates  

necessary NADPH required for fatty acid biosynthesis(Carracedo 

et al., 2013) and glutathione metabolism(Salvemini et al., 1999) 

and intervention of ME1 has been shown to abrogate cancer 

growth(Fritz et al., 2013). This could also be one of the reason for 

higher glutathione metabolism observed earlier. Citrate labelling 
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obtained from [U-13C6] glucose unravelled the compromised 

utilization of glucose to fuel TCA cycle in resistant phenotypes as 

can be seen from the MPE of citrate (Figure- 4.3B).  
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Figure-4.3 Difference in glucose metabolism among ET sensitive and resistant cell 

lines mapped using [U-13C6]-glucose. A. Schematic representation and percentage 

isotope labelling enrichment of metabolites from [U-13C6]-glucose in MCF-7, MCF-T, 

MCF-F & LTED cells for the metabolites of the central carbon metabolism. The 

coloured bubbles represent the most abundant labelling pattern for the specific 

metabolites whereas darker blue bubbles represent the labelling pattern upon the second 

round of TCA cycle. B. Mole percent enrichment showing the contribution of [U-13C6]-

glucose in labelling of various metabolites. 

 

But surprisingly LTED showed much higher M2 labelling in 

citrate, but M4 and M6 labelled citrate which indicate the 

subsequent 2nd and 3rd round of TCA were found to be slower 

than MCF-7, thus the higher M2 labelling in LTED could be due 

to decreased preference for glucose derived citrate and hence 

accumulation of citrate in mitochondria which could further be 

exported out into the cytoplasm to be used for lipogenesis via 

SLC25A1 mitochondrial citrate carrier which was found to be 

much upregulated in LTED cells (Supplementary fig-4.S1A). 

SLC25A1 has recently been shown to drive stemness and therapy 

resistance in lung cancer (Fernandez et al., 2018) and could 

potentially serve as a key factor and probable target in AI 

resistance as well. M2 and M4 labelling patterns of succinate, 

fumarate and malate further validate the decreased dependence on 

glucose to fuel TCA cycle in resistant phenotypes.  

Analysis of mass isotopomer distribution obtained through [U-

13C5] glutamine (Figure- 4.4) reveals increased reductive 

carboxylation of glutamine in LTED and MCF-F seen from higher 

M5 labelled citrate as well as M3 labelling of malate, fumarate and 
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aspartate when compared to MCF-7 (Figure- 4.4A). Increased 

MPE of TCA metabolites via glutamine was seen in resistant cells 

compared to sensitive counterpart indicating overall higher 

glutamine utilization (Figure- 4.4B). M4 labelling of succinate, 
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fumarate, and malate in MCF-T conveys higher rate of forward 

TCA cycle compared to LTED and MCF-7. 
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Figure-4.4 Difference in glutamine metabolism among ET sensitive and resistant 

cell lines mapped using stable isotope tracer [U-13C5]-glutamine. A. Schematic 

representation and percentage isotope labelling enrichment of metabolites from [U-

13C5]-glutamine in MCF-7, MCF-T, MCF-F & LTED cells for the metabolites of the 

central carbon metabolism. The coloured bubbles represent the most abundant labelling 

pattern for the specific metabolites whereas darker red bubbles represent the labelling 

pattern upon the second round of TCA cycle. B. Mole percent enrichment showing the 

contribution of [U-13C5]-glutamine in labelling of various metabolites. 

 

As stated earlier increased cholesterol biosynthesis was observed 

in AI resistant cell lines hence we wanted to assess the 

contribution of glucose and glutamine driving lipid synthesis. 

Analysis of overall palmitate abundance shows significantly 

higher palmitate levels in LTED (supplementary Fig-4.S2A). 

MPE analysis shows that no significant differences on Palmitate 

derived from [U-13C6] glucose but much higher MPE was 

observed for palmitate derived from [U-13C5] glutamine in LTED 

cell lines indicating that glutamine regulated greater acetyl co-a 

(AcCoA) contribution for lipid synthesis via reductive 

carboxylation in LTED compared to other resistant phenotypes 

(Supplementary Fig-4.S2C-D).  Further to validate these findings 

AcCoA levels were measured in the cell lines grown in low 

glucose and low glutamine media (Supplementary Fig-4.S2B). 

Surprisingly AcCoA levels in LTED were much higher compared 

to other phenotypes and no significant effect in overall AcCoA 

levels was observed when grown in low glucose conditions 

indicating their ability to increase glutamine consumption as seen 

above upon nutrient perturbation. AcCoA severely dropped in 
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LTED when subjected to low glutamine indicating majority of the 

AcCoA in LTED was contributed via glutamine in contrary to 

glucose. MCF-F did not show much difference when compared 

between low glucose and low glutamine. Acety-CoA is a key 

molecule not only for lipid synthesis but also has great implication 

on epigenetic modification via histone acetylation, hence allowing 

modulating gene expression of vital genes. Increased reductive 

carboxylation and ACLY activity could potentially allow greater 

histone acetylation capability (Wellen et al., 2009) to LTED cells 

allowing them to differentially regulate their gene expression and 

potentially acquire AI resistance (Supplementary Fig-4.S2E) 

4.3.4 Reprogrammed mitochondrial metabolism in AI resistance  

Next we employed 13C Metabolic Flux Analysis (MFA) to 

compute fluxes through central carbon metabolism. Metabolic 

model covering glycolysis, TCA metabolism, the pentose 

phosphate pathway (PPP), and fatty acid and biomass biosynthesis 

was constructed and data for uptake/secretion of major cellular 

fluxes like glucose, glutamine, lactate and glutamate were 

incorporated along with mass isotopomer distribution of 

metabolites. Flux estimations through the metabolic network was 

carried out using elementary metabolite unit (EMU)-based 

algorithm and its associated confidence intervals by assessing flux 

fit sensitivity to minor flux deviations (Figure- 4.5A) 

(Antoniewicz et al., 2006; Young, 2014; Young et al., 2008). The 

flux distributions indicated increased TCA metabolism including 

pyruvate dehydrogenase and glutamine anaplerosis in LTED when 
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compared to others (Figure- 4.5B) but had the lowest flux through 

glycolysis indicating its glucose independent metabolism.  
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Figure-4.5. 13C Metabolic Flux Analysis of MCF-7, MCF-T, MCF-F and LTED cell 

lines. A. Schematics of Central carbon metabolism depicting the differences in flux 

distributions obtained through 13C MFA among MCF-7, MCF-T and LTED cell lines 

where the colours and the thickness of the arrows depict the differences in flux 

distribution through a reaction of the pathway. Where Violet colour represents very low 

flux shown with a thinner arrow and Red colour indicates higher flux through a reaction 

indicated with a thicker arrow. B. Bar graph of flux distribution through various 

reactions of the metabolic network calculated by 13C metabolic flux analysis. 

 

Corresponding to MPE, LTED showed the maximum flux towards 

fatty acid synthesis. Increased flux through PPP was observed in 

MCF-T where as MCF-F showed the highest rates of flux through 

glycolysis. MCF-7 and MCF-T showed higher flux in alanine 

secretion but was absent in MCF-F and LTED. (All the flux 

estimations for the cell lines are included in Supplementary Table 

4.S1). Speculating based on increased flux through TCA cycle in 

LTED we assessed the mitochondrial activity in the cell lines by 

measuring oxygen consumption rate using a seahorse XF analyser 

(Figure- 4.6A). LTED cell line despite least glucose utilization 

showed the maximal basal respiration as well highest maximal 

respiratory capacity (Figure- 4.6C). Surprisingly MCF-F showed 

the least mitochondrial respiration. ATP production through 

respiration was the higher in LTED compared to other cell lines 

(Figure- 4.6B) whereas MCF-7 showed the highest non-

mitochondrial respiration (Fig.-6D). Higher respiratory capacity 

of the LTED cell lines could is an indication towards their 

enhanced metabolic flexibility, possibly conferring endocrine 

resistance. Increased mitochondrial respiration has been observed 
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in drug resistance in other hormone dependent cancer like prostate 

cancer (Ippolito et al., 2016). 

 

 

4.3.5 Metformin as a potential adjuvant in treatment of AI resistant 

tumours. 

Having established the high mitochondrial respiration in AI-

resistant cell line, we investigated the effect of anti-diabetic drug 

metformin (1,1-dimethylbiguanide hydrochloride) on cell 

proliferation and viability of the ET sensitive and resistant 

tumours. Metformin has been shown to has been shown to have 

anti-proliferative, anti-invasive, and anti-metastatic effects in 

multiple cancer cells (Cantrell et al., 2010; Leclerc et al., 2013) 

including breast cancer (Sharma and Kumar, 2018), but it is 

application on treatment of therapy resistant cancers has not been 

well exploited. Upon treatment with varying doses of metformin, 

remarkable results were obtained in case of LTED where 

metformin severely inhibited the cell proliferation at increasing 

doses (Figure- 4.6E). Slight dose dependent decrease in cell 

proliferation was also observed in MCF-T but no significant effect 

was seen in MCF-F upon increasing doses of metformin. Cell 

viability measurements showed more than 70% cell death in 

LTED cells whereas only about 10% cell death was observed in 

MCF-7 at the same concentration of metformin (20mM) (Figure- 

4.6F). MCF-T also showed slight decrease in cell viability on 

higher doses on metformin. These findings vindicate the adjuvant 



 

Chapter 2 Rohit Bharat 146 

use of metformin in breast cancer treatment and also promises its 

potential benefits in treatment of AI-Resistant cancer. 
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Figure-4.6 Differences in mitochondrial metabolism within resistant and sensitive 

phenotypes. A. Differences in mitochondrial respiration depicted by oxygen 

consumption rates (OCR) under basal condition and upon subsequent treatment with 

drugs altering the mitochondrial activity namely Oligomycin (1µM), Uncoupler FCCP 

(0.5µM) or electron transport inhibitor Rotenon&Antimycin A (2µM). B. Graph 

showing the ATP production via respiration obtained by subtracting the OCR after 

Oligomycin treatment from the basal respiration for the cell lines. C. Graph depicting 

the maximal respiratory capacity for the cell lines obtained by subtracting basal OCR 

from the OCR obtained after FCCP addition. D. Graph showing differences in the non-

mitochondrial respiration for the resistant and sensitive cell lines. 
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4.4 DISCUSSION 

Acquired drug resistance poses a major hurdle for the efficacy of 

endocrine therapy, and for this reason enormous efforts have been 

made in the last decade to identify molecular mechanism assisting 

resistance development. 

Herein we comprehensively analyzed the metabolic differences 

among ET resistant cell lines (MCF-T.  MCF-F, LTED) and 

sensitive cell line (MCF-7) and showcased the vast metabolic 

heterogeneity and drug dependent differential metabolic rewiring 

among the phenotypes. Treatment of MCF-7 with endocrine 

therapeutic drug induced increased glutamine consumption, 

whereas decreased inhibited glucose consumption and lactate 

secretion. Estrogen has been shown to increase insulin mediated 

glucose consumption and activation of GLUT4 (Cheng et al., 

2001; Yao and Brinton, 2012) and AKT mediated increased 

glycolysis in breast cancer cells (O’Mahony et al., 2012). Thus the 

decrease of glucose consumption and lactate secretion could be 

due to meddling with estrogen signalling via ET drugs. The 

metabolic switching and increased glutamine consumption could 

be an acute survival response mediated by cancer cells in order to 

maintain energy homeostasis. Upon prolonged treatment with ET 

drugs we see a regain and increase of glucose consumption in 

tamoxifen and fulvestrant cell lines whereas LTED cells still 

heavily relied upon glutamine rather than glucose. Tamoxifen and 

fulvestrant have been shown to interfere with mitochondrial 
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function (Chen et al., 2008; Cheng et al., 2001). This deregulated 

mitochondrial function could lead to altered AMP/ATP ratio 

leading to activation of AMPK complex (Hardie, 2011) which can 

increase glucose consumption and downregulate cholesterol and 

lipid synthesis (Jeon, 2016) in MCF-T and MCF-F and opposite 

for LTED. Glutamine consumption in all the resistant cell lines 

still remained higher than MCF-7 suggesting utilization of 

glutamine for much more enhanced functions rather than just 

maintaining energy homeostasis and potentially fueling activation 

of pathways required for resistance. 

Detailed metabolic profiling using untargeted metabolomics 

approach highlighted the different metabolic pathways which 

were activated in resistant cell lines. An upregulation of glutamine 

mediated metabolites and pathways was seen in all the resistant 

cell lines rendering better ROS management capability via 

activation of pathways like glutathione metabolism (Mailloux et 

al., 2013). The hypothesis for AMPK mediated regulation of 

glucose and lipid metabolism were supported form metabolomics 

analysis where we saw decreased cholesterol in MCF-T and MCF-

F whereas LTED showed higher cholesterol levels in concordance 

with our previous findings from transcriptomic analysis. (Nguyen 

et al., 2015)  Increased EPA levels in LTED is an interesting 

finding as enzymes responsible for synthesis of EPA (FADS1 & 

ACOT2) show to be upregulated (Supplementary figure 4.S1) and 

have poor survival of ER+ breast cancer patients (Supplementary 

Figure 4.S4). ACOT2 is also involved in pathway of ovarian 
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steroidogenesis utilizing cholesterol for synthesis of estradiol. The 

evaluation of EPA as a biomarker as well the dissecting its role in 

driving resistance is an interesting avenue for further research. 

Systems level analysis of flux distribution we highlighted the 

differences in flux distribution where reductive carboxylation of 

glutamine in LTED cell lines is a significant finding as glutamine 

is found to fuel increased lipogenesis and acetyl-CoA synthesis. 

Acetyl-CoA is involved in a range of metabolic functions 

including epigenomic regulation of DNA via histone acetylation. 

Increased ACLY expression directly links the metabolic and 

epigenetic axis (Wellen et al., 2009). This enhanced Acetyl-CoA 

level mediated by ACLY activity could render higher epigenetic 

control to LTED cells via allowing them to maintain the epigenetic 

landscape favoring growth and survival under lack of estrogen 

availability. Along with ACLY, finding the increased expression of 

mitochondrial citrate transporter SLC25A1 further substantiates 

the importance of reductive carboxylation for these cells, making 

these two as an interesting target against resistance. Using 13C 

MFA approach we resolved the flux distributions which is vital to 

determine the key fluxes required for cancer cells survival. 

Targeting cancer cells by inhibiting their vital fluxes can be a 

promising approach which can used to prevent cancer metabolic 

rewiring and thus making therapy more efficacious. Using 13C 

MFA we identified increased fluxes in TCA cycle of LTED which 

were further validated by increased mitochondrial respiration in 

these cell lines further and subsequent treatment with metformin 
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showed remarkable results against LTED. Thus detailed analysis 

of metabolism stands crucial for determining therapy and 

guaranteeing promising outcome. 

MCF-T and MCF-F showed decreased mitochondrial activity and 

did not respond to metformin treatment, this further could point 

towards leading to differential AMPK activity in these cell lines 

and needs further analysis. 

This study is limited by the lack of animal experiments, but it 

highlights the detailed metabolic rewiring using a comprehensive 

systems level analysis which contributes towards the very limited 

knowledge available about cancer metabolic rewiring in resistance 

towards endocrine therapy. These findings may potentially open 

up new avenues of research and discovery of novel and 

considerably better therapeutic targets led by systems 

metabolomics approach for the treatment of ERα positive breast 

cancer patients. 

,  
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4.5 MATERIALS & METHODS 

4.4.1 Cell culture  

The ET sensitive a(MCF-7) and resistant (MCF-T, MCF-F, 

LTED) cell lines were a generous gift from Dr. Luca Magnani 

(Imperial College London). MCF-7 cell line was routinely grown 

in Dulbecco’s modified Eagle’s medium (DMEM) containing 

4mM L-glutamine, 1mM sodium pyruvate, plus 10-8 M 17-b-

estradiol (SIGMA E8875) supplemented with 10% fetal bovine 

serum (FBS). MCF-T and MCF-F were cultured as MCF-7 

(without estradiol) with the addition of 10-7 M 4-

Hydroxytamoxifen (SIGMA H7904) and 10-7 M Fulvestrant 

(SIGMA I4409) respectively. LTED cell line was grown in Pheol 

red free-DMEM containing 4mM L-glutamine, 1mM sodium 

pyruvate and 10% charcoal stripped FBS. All the media were 

supplemented with 100 U/ml penicillin and 100 mg/ml 

streptomycin and the cells were incubated at 37 °C in a 5% CO2 

incubator. All reagents for media were purchased from Life 

Technologies (Carlsbad, CA, USA). 

 

4.4.2 Cell proliferation analysis and cell treatments 

Cells were plated in 6-well plates in normal growth medium. For 

the proliferation curves in nutrients deprivation conditions, culture 

medium was replaced after 18 hours with a normal medium, a low 

glutamine medium (0.5mM glutamine) or a low glucose medium 

(1 mM glucose). The cells were collected and counted after 24, 48, 

72 and 144 hours.  
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For the proliferation curves in the presence of the drugs, cells were 

treated with indicated amounts of drugs and counted at intervals 

of 24, 48, 72, 144 hours. For the dose-response curves, cells were 

treated with the indicated amounts tamoxifen, fulvestrant or 

deprived of Estrogen for 72 hours and then counted. 

 

4.4.3 Cell viability analysis 

Cells were plated in 6-well plates in normal growth medium and 

the media was replaced with media containing metformin 

(Indicated concentrations) after 24 hrs. Cell viability was assessed 

using trypan blue dye exclusion assay after 72hrs of treatment. 

Data are expressed as percentage of survival with respect to 

control condition (Normal growth medium with Vehicle) 

 

4.4.4 Metabolites Consumption and Secretion analysis 

Absolute quantification of glucose, lactate, glutamine and 

glutamate in spent media was determined enzymatically using 

YSI2950 biochemistry analyzer (YSI Incorporated, Yellow 

Springs, OH, USA). 

 

4.4.5 Acetyl-Coa Quantification. 

Quantification of Acetyl-Coa in cell lines was carried out using 

commercially available PicoProbe™Acetyl-CoA Fluorometric 

Assay Kit (BioVision, Milpitas, CA) 
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4.4.6 Metabolites extraction from cell culture samples 

For untargeted experiments, cells were plated in 6-well plates with 

normal growth medium. After 18 hours, cells were washed with 

PBS and incubated for 48 hours in fresh complete medium in the 

presence or the absence of treatments. For labelling experiments, 

cells were incubated for 48 hours in fresh media supplemented 

with 25mM [U-13C6] glucose or 4mM [U-13C5] glutamine 

(purchased by Cambridge Isotope Laboratories, Inc.) in the 

presence or the absence of treatments.  

Metabolites extraction for GC-MS analysis was performed as 

described previously (Gaglio et al., 2011).  

For metabolites extraction for LC-MS analysis, cells were quickly 

rinsed with NaCl 0.9% and quenched with 500 µl ice-cold 70:30 

methanol-water. The plates were placed at -80°C for 10 minutes, 

then the cells were collected by scraping with a pipette tip. Cells 

were sonicated 5 seconds for 5 pulses at 70% power twice. 

Samples were centrifuged at 12000g for 10 min and the 

supernatant was collected in a new tube and evaporated under air 

flow at 37°C. The samples were re-suspended with 150 ul of H2O 

prior to analyses. 

 

4.4.7 GC-MS metabolic profiling 

Derivatization of the samples for untargeted GC-MS analyses was 

performed as described (Gaglio et al., 2011). For labelling 

experiments, derivatization was carried out by first dissolving the 

polar metabolites using 60μl of 2% methoxyamine hydrochloride 
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in pyridine (Pierce) held at 40°C for 6h. After dissolution and 

reaction, 90 μl of MTBSTFA + 1% TBDMCS (Pierce) were added 

and samples were incubated at 60°C for 1h. Derivatized samples 

were analyzed by GC-MS using a DB-35MS column (30 m x 

0.25mm i.d. x 0.25 µm) installed in an Agilent 7890B gas 

chromatograph (GC) interfaced with an Agilent 7200 Accurate-

Mass Quadrupole Time-of-Flight (qTOF) mass spectrometer 

(MS) operating under electron impact (EI) ionization at 70eV. For 

untargeted experiments, GC-MS analyses was performed as 

previously described (Gaglio et al., 2011). Statistical and pathway 

analysis of the untargeted metabolomics data was performed using 

Metaboanalyst 4.0(Chong et al., 2018)  

For labelling experiments, 1μl of sample was injected in split less 

mode at 270°C, using helium as the carrier gas at a flow rate of 1 

ml/min. The GC oven temperature was held at 100°C for 3 min 

and increased to 300°C at 3.5°C/min. The data were pre-processed 

using the OpenChrom software package (Wenig and Odermatt, 

2010). Raw intensity values across accurate masses were first 

binned into unit masses (i.e. 50, 51, 52, etc. ± 0.1 m/z) and 

exported as “.csv” files followed by conversion to NetCDF using 

the OpenChrom software’s file converters. Mass isotopologue 

distributions (MIDs) were determined using MATLAB by 

integrating metabolite ion fragments and correcting for natural 

abundance from an adapted in-house algorithm (Fernandez et al., 

1996) 
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4.4.8 Seahorse oxygen consumption rate 

Cellular oxygen consumption rate (OCR) was measured with a 

Seahorse XF extracellular flux analyzer (Seahorse Bioscience Inc) 

according to the manufacturer’s instructions. Briefly, cells were 

seeded in a Seahorse XF 24-well assay plate at a cell density of 

4000 cells per well in normal growth medium. After overnight 

attachment, the medium was washed and replaced with pre 

warmed assay medium (non-buffered DMEM supplemented with 

1mM sodium pyruvate, 25mM glucose and 4mM glutamine, pH 

7.4) and incubated in a non-CO2 incubator at 37 °C for 60 min. 

Basal levels of OCR were recorded followed by a mitochondrial 

stress test (1μM oligomycin, 1μM FCCP, 0.5μM rotenone/ 

antimycin A). Three measurements of OCR were taken for the 

baseline and after sequential injection of mitochondrial inhibitors. 

Data was normalized to the protein concentration by Bradford 

assay ((Bio-Rad, Hemel Hempstead, UK) 

 

4.4.9 13C Metabolic flux analysis 

13C MFA was carried out using INCA v1.7 based on Elementary 

Metabolite Unit (EMU) framework (Young, 2014; Young et al., 

2008). Flux through metabolic network consisting of Glycolysis, 

PPP, TCA, FA, & Biomass synthesis was constructed 

(Antoniewicz, 2018) and was estimated by lease squares 

regression of metabolite labelling pattern and measured 

extracellular fluxes. The flux values of the network were 

iteratively adjusted using a Levenberg-Marquardt (local search) 
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algorithm to minimize the sum of squared residual (SSR) objective 

function (Gavin, 2013). The best global fit was found after 

estimating at least 50 times using random initial guesses for all 

reactions in the metabolic network. All the fluxes were subjected 

to chi-square statistical test to assess goodness of fit and 95% 

confidence intervals were computed (Antoniewicz et al., 2006). 
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SUPPLEMENTARY FIGURE LEGENDS 

Figure 4.S1: A) bar plots of expression data for FADS1, ACOT2, 

ME1, GPT, ACLY, ACSS2 and SLC25A1. B) Pathway perturbation 

score analysis for MCF-T, MCF-F, LTED, LTED-T (Long term 

estrogen deprived-Tamoxifen resistant), LTED-F (Long term 

estrogen deprived-Fulvestrant resistant) with respect to MCF-7 

represented by points 1, 2,3,4,5 respectively showing activation of 

nucleotide salvage pathway in LTED. 

 

Figure 4.S2 A) Bar plot for metabolite abundance of palmitate in 

MCF-7, MCF-T, MCF-F and LTED. B) Intra cellular acetyl-CoA 
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levels in cell lines MCF-7, MCF-T, MCF-F and LTED in normal 

media as well in nutrient deprived media. C) Mole percent 

Enrichment of Palmitate obtained through [U-13C6]-Glucose in 

MCF-7, MCF-T, MCF-F and LTED cell lines. D) Mole percent 

Enrichment of Palmitate obtained through [U-13C5]-Glutamine in 

MCF-7, MCF-T, MCF-F and LTED cell lines. E) Schematics 

depicting model of resistance in LTED cell line. 

 

Figure 4.S3: Intracellular metabolite levels quantified using 

untargeted GC-MS in MCF-7 (Red), MCF-T (Green), MCF-F 

(Blue) and LTED (Turquoise) cell lines  

 

Figure 4.S4: Surival plot depicting Relapse free survival of ER+ 

Breast cancer patients with high expression or low expression for 

following genes.  ACLY, FADS1, ACOT2, SLC25A1 and ME1  
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5.1 ABSTRACT 

The enhanced growth and survival of K-Ras-transformed cells rely 

on deep changes in metabolism, including glutamine addiction and 

increased oxidative stress.  

We study glutamine roles in metabolism, signal transduction and 

redox homeostasis in K-ras-transformed NIH3T3 mouse 

fibroblasts (NIH-RAS), by complementing glutamine deprivation 

with dimethyl-α-ketoglutarate (AKG) and nonessential amino 

acids (NEAA).  

The combination AKG+NEAA only partly rescues glutamine 

deprivation, likely due to a low glutamine synthetase (GS) activity 

in NIH-RAS cells. This substitution results in low levels of 

nucleotides and the non-use of reductive carboxylation of AKG –

predicted by ENGRO model– to synthesize lipids, whose content 

is lower due to downregulated expression of genes involved in 

lipogenesis that correlates with lower NADPH levels. 

Thus, in NIH-RAS cells glutamine is essential as a carbon and 

nitrogen source for biosynthesis (amino acids, nucleotides and 

glutathione) and as a signalling molecule. 

We successfully exploit an integrated, Systems Biology approach 

to study nutritionally-perturbed transformed cells, pushing 

forward a system-level understanding of complex diseases like 

cancer. 
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5.2 INTRODUCTION 

In the last decades, increasing attention has been directed to the 

dependency of some cancer cells on the conditionally essential 

amino acid glutamine [1,2,3,4]. Indeed, during situations of stress, 

the organism needs glutamine supplementation with the diet to 

satisfy the increased demand of this amino acid [1,2]. Similarly, 

rapidly growing cancer cells may display an increased glutamine 

consumption to sustain their fast proliferation and may die rapidly 

in the absence of glutamine [3]. Moreover, it has been shown that 

glutamine synthetase (GS) levels in glutamine-dependent cell 

lines are inversely correlated with sensitivity to glutamine 

deprivation [17]. As a metabolic precursor, glutamine is used for 

protein, RNA and DNA biosynthesis. Moreover, through the 

process known as glutaminolysis, glutamine generates ammonia 

and glutamate (GLU) that, in turn, can be catabolized to α-

ketoglutarate (AKG) through either transamination or oxidative 

deamination. As such, glutamine participates in energy production 

and cellular redox homeostasis, being a precursor of the 

antioxidant glutathione [4]. As the carbon skeleton from 

glutaminolysis can be used for anabolic or anaplerotic processes, 

tumour cells may be addicted to glutamine as an alternative fuel 

(which is oxidized to CO2 for energy production), or because 

glutamine-derived AKG enters the TCA cycle to replenish 

metabolic intermediates removed for biosynthesis, particularly 

NADPH and fatty acids [5]. Alternatively, glutamine can undergo 

reductive carboxylation (RC), which consists in the reverse 

conversion of AKG into citrate through mitochondrial and 
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cytosolic isoforms of NADP+/NADPH-dependent isocitrate 

dehydrogenase. Subsequent metabolism of glutamine-derived 

citrate provides both the acetyl-CoA for lipid synthesis and the 4-

carbon intermediates needed to produce remaining TCA cycle 

metabolites and related macromolecular precursors [6]. 

Besides playing a particularly important role in cell growth and 

metabolism, glutamine acts as a signalling molecule that 

ultimately activates a master regulator of protein translation, the 

mammalian target of rapamycin (mTOR) pathway [7,8]. mTOR is 

an atypical serine/threonine kinase that integrates several stimuli 

to regulate cell growth, metabolism, and aging [9]. Indeed, 

mTORC1 acts by phosphorylating multiple downstream targets, 

including the p70 ribosome protein S6 kinase (S6K1), that 

phosphorylates and activates ribosomal protein S6 (rpS6), a 

component of the 40S ribosomal subunit involved in the regulation 

of cell size and cell proliferation [10]. Although mTOR-signalling 

appears to respond most acutely to the essential amino acid 

leucine, glutamine uptake and export is required for EAA 

activation of mTORC1 [8,11]. 

We propose to dissect glutamine roles in cell proliferation by using 

K-ras-transformed NIH3T3 mouse fibroblasts (NIH-RAS) as 

cellular model, extensively characterized in our laboratory 

[12,13,14]. We feed glutamine-deprived NIH-RAS with dimethyl-

alpha-ketoglutarate (AKG) –a membrane-permeable analogue of 

alpha-ketoglutarate- as carbon source and nonessential amino 

acids (NEAA: Pro, Ala, Asp, Asn) as nitrogen source, to 
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reconstitute glutamine and facilitate the understanding of its roles 

in sustaining cell growth. In a Systems Biology perspective, we 

study NIH-RAS cell metabolism with ENGRO metabolic model 

and –omics technologies, highlighting that glutamine owns 

multiple and unique roles in proliferating cells and may not be 

substituted by other nutrients, even if contained in its structure. 

Indeed, we demonstrate that glutamine is necessary to activate 

mTOR pathway and hence lipogenesis and, above all, to maintain 

redox homeostasis, allowing NIH-RAS cells to produce lipids 

through reductive carboxylation of glutamine and to provide a 

source of nitrogen for nucleotide biosynthesis.
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5.3 RESULTS 

5.3.1 Alpha-ketoglutarate and nonessential amino acids partly 

rescue glutamine deprivation in NIH-RAS cells 

To study nutritional dependency of transformed cells, the first step 

usually consists in the analysis of physiological readouts, like cell 

proliferation and viability, under different nutrient perturbations. 

In this context, we first evaluated parental NIH3T3 and 

transformed NIH-RAS cell proliferation under glutamine 

deprivation and we observed that both NIH3T3 and NIH-RAS cell 

lines are glutamine-addicted, as they die in the absence of this 

amino acid (Supplementary Figure 3.S1 for NIH3T3 cells, Figure 

5.1A for NIH-RAS cells, light blue line). This is in accordance 

with previous literature data [15]. 

Given that glutamine is a nitrogen and carbon source, we tried to 

substitute this amino acid with other nutrients having analogous 

function. Particularly, when glutamine is available in the medium, 

it is converted into glutamate and ammonium by glutaminase 

(GLS), then glutamate is converted into α-ketoglutarate and 

ammonium either by glutamate dehydrogenase (GDH) or 

transaminases (Figure 5.1B, left panel). As these reactions are 

reversible, we decided to supplement dimethyl-α-ketoglutarate 

(AKG) –a membrane-permeable analogue of α-ketoglutarate– and 

ammonium to glutamine-deprived NIH3T3 and NIH-RAS cells, 

in order to allow these cells to synthesize glutamine through 

glutamine synthetase (GS)-catalysed reaction (Figure 5.1B, right 

panel). As a source of ammonium, we provided NIH3T3 and NIH-
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RAS with nonessential amino acids (NEAA: aspartate, asparagine, 

alanine, proline), since previous experiments demonstrated that 

supplementing ammonium sulfate or ammonium acetate to 

NIH3T3 and NIH-RAS cells resulted in cell toxicity and death 

(data not shown), differently from what happens in yeast.  

Supplementing equimolar amounts of glutamate (GLU, 4 mM) to 

glutamine-depleted NIH3T3 and NIH-RAS did not rescue their 

growth ability (Supplementary Figure 3.S1 for NIH3T3 cells, 

Figure 5.1A for NIH-RAS cells, dark green line), as reported by 

Eagle [16] and, later, by Tardito [17]. Similarly, supplementing 

NEAA or AKG was ineffective in rescuing growth 

(Supplementary Figure 3.S1 for NIH3T3 cells, Figure 5.1A for 

NIH-RAS cells, yellow and light green lines, respectively). 

Only co-supplementation of AKG AND NEAA (Supplementary 

Figure 5.S1 for NIH3T3 cells, Figure 5.1A for NIH-RAS cells, red 

line) restored cell growth and viability, but only in NIH-RAS cells. 

The apparent mass duplication time (MDT) of NIH-RAS in both 

these conditions was about 4.5 longer than in standard (STD) 

medium. 

Due to the low number of NIH3T3 cells grown in –

GLN+AKG+NEAA medium and to the ensuing low reliability of 

experimental results obtainable with such a small cell fraction, we 

decided to focus our attention on NIH-RAS cells and to analyse 

different parameters in these cells grown in STD versus –

GLN+AKG+NEAA medium. 



 

Chapter 3 Rohit Bharat 180 

  

Figure 5.1 Proliferation and physiology of nutrient perturbed-mouse fibroblasts. 

(A) Growth kinetics of NIH-RAS cells grown under different nutrient conditions as 

indicated (STD: 4 mM Gln; AKG: 4 mM dm-aKG; NEAA: 4 mM Ala, 4 mM Asp, 4 

mM Asn, 4 mM Pro; GLU: 4 mM Glu) and counted daily with trypan blue excluding 

method (semilog curves). (B) Representative scheme of cell metabolism in STD (left) 

and –GLN+AKG+NEAA (right) media. (C) AKG and NEAA consumption for NIH-

RAS cells after 54 h of growth under conditions indicated. Measurements were made 

with GC-MS on fresh and spent media. (D) Cellular size of NIH-RAS cells grown in 

STD and –GLN+AKG+NEAA, determined by measuring protein content per cell 
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(Bradford assay). **P<0.01 (Student’s t-test). (E) Representative images of electron 

microscopy (TEM) analysis of fixed NIH-RAS cells grown in STD and –

GLN+AKG+NEAA media for 54 hours (magnification: 4200X). (F) Volumes 

distribution of NIH-RAS cells grown in STD and –GLN+AKG+NEAA, determined by 

Coulter Counter analysis (G) Cell area calculated on the pictures obtained from TEM 

analysis (H) Quantification of lipid droplets, mitochondria and autophagosomes made 

on the pictures obtained from TEM analysis. 

 

We aimed to understand if NIH-RAS cells internalize and 

consume AKG and NEAA supplemented to the glutamine-free 

medium. NIH-RAS cells grown in –GLN+AKG+NEAA consume 

substantial amounts of AKG, Asp and Asn. Little if any 

consumption of Ala and Pro was detected, suggesting that Asp and 

Asn may be the only required amino acids to allow growth of NIH-

RAS in glutamine-deprived media supplemented with AKG 

Figure 5.1C). This conclusion is supported by growth kinetics 

results (Figure 5.1A, fuchsia line). 

Next, we analysed cell dimensions by measuring protein content 

per cell and cell volume and we found that NIH-RAS cells are 

significantly smaller when grown in –GLN+AKG+NEAA 

medium compared to STD medium (Figure 5.1D,5.1F).  

This observation was confirmed by the TEM analysis of the 

intracellular morphology of NIH-RAS cells grown in STD and in 

–GLN+AKG+NEAA medium (Figure 5.1E,1G), in which 

glutamine-deprived NIH-RAS cells supplemented with AKG and 

NEAA display a higher number of mitochondria (Figure 5.1H). 
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5.3.2 Glutamine-deprived NIH-RAS cells supplemented with 

AKG+NEAA downregulate the expression of genes involved in 

lipogenesis 

Transcriptomic analysis on NIH-RAS cells grown in STD and in 

–GLN+AKG+NEAA media revealed that only 115 genes are 

differentially expressed between the two nutritional conditions 

(Fold Change >1.5; corrected P value <0.05) (Figure 5.2A). The 

heat map in Figure 5.2A shows the hierarchical clustering of such 

differentially expressed genes (DEGs), represented in green if 

downregulated in NIH-RAS cells grown in –GLN+AKG+NEAA 

medium, while in red if upregulated. As STRING and Panther 

analyses revealed (Figure 5.2B and C, respectively), most of the 

DEGs deal with metabolism, especially cholesterol biosynthesis 

and transport. Other identified DEGs are involved in the response 

to the oxidative stress induced by nutrient deprivation, like that 

mediated by p53 signalling pathway, and in cell cycle, like the 

downregulated Cdkn1a gene. 

To integrate transcriptomic data and deepen the aspect of the 

strong impact on metabolism induced by growth in –

GLN+AKG+NEAA medium, a computational analysis was 

carried out to identify the “reporter metabolites” (Figure 5.2D; see 

Materials and Methods for the reporter metabolite identification 

process). Reporter metabolites are those spots in the metabolism 

where there is a substantial regulation either to maintain 

homeostasis (i.e. a constant metabolite level) or adjust the 

concentration of the metabolite to another level required for proper 
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functioning of the metabolic network. Thus, the identification of 

reporter metabolites adds knowledge to the pathway analysis 

shown in Figure 5.2C, as it considers the information on the 

connectivity and the magnitude of the significance of change for 

differentially expressed genes. Moreover, reporter metabolite 

analysis also takes into account genes not differentially expressed, 

which can exhibit significant coordinated changes when 

considered together.  

Reporter metabolite analysis confirmed that most of the 

downregulated genes in cells grown in –GLN+AKG+NEAA 

medium deal with lipid synthesis, especially cholesterol synthesis 

and transport (Figure 5.2D), which is a process that requires a high 

amount of NADPH. In this regard, the most relevant reporter 

metabolite (i.e. to which the highest normalized score is 

associated) was NADP –either in its reduced or oxidized form- 

(Figure 5.2D), suggesting potential differences in redox state 

between NIH-RAS cells grown in STD medium and glutamine-

deprived NIH-RAS cells.  
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Figure 5.2 Transcriptional profile of NIH-RAS cells under nutrient perturbation. 

(A) Heat map of significant DEGs (115; FC>1.5; corrected P value<0.05) in NIH-RAS 
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grown in –GLN+AKG+NEAA versus STD media. (B) STRING analysis of putative 

interactions between the identified DEGs. (C) List of pathways affected by the identified 

DEGs (Panther analysis). (D) Main reporter metabolites (RM) mapped in red on steroid 

biosynthetic pathway. In parenthesis: normalized score for each RM.  

To validate transcriptomic data, we performed quantitative real-

time PCR analyses on some differentially expressed genes, 

important in cell cycle and metabolism, particularly in lipid 

metabolism (Figure 5.3A). Then, we analysed cell cycle in NIH-

RAS cells grown in STD and –GLN+AKG+NEAA media by co-

labelling cells with anti-BrdU and anti-Ki67 antibodies (two 

markers of cell proliferation) (Figure 5.3B). In line with the 

reduction of mass duplication time (MDT) of NIH-RAS cells 

grown in –GLN+AKG+NEAA medium (Figure 5.1A), we 

obtained a lower growth fraction in nutritionally-perturbed 

condition. Finally, we measured lipid and cholesterol levels in 

STD and –GLN+AKG+NEAA media, confirming a lower lipid 

content (Figure 5.3C-D) and a reduction of 40% of cholesterol 

levels under glutamine deprivation (Figure 5.3E). 
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Figure 5.3 Glutamine-deprived NIH-RAS cells supplemented with AKG and 

NEAA downregulate cell cycle and lipogenesis. (A) Quantitative real-time PCR 

analysis of the expression of those genes found differentially expressed in the 

transcriptomics analysis (see Figure 4). (B) Fluorescence microscopy analysis of cell 

cycle phase of NIH-RAS cells grown under conditions indicated and hybridized with 

antibodies against Ki67 (marker for all cell cycle phases except for G0 phase) and BrdU 
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(marker of S-phase). (C-D) Nile Red staining of lipids in NIH-RAS cells grown in STD 

and –GLN+AKG+NEAA media. Cells were analyzed with confocal microscope (60X 

magnification) and photos were taken after exciting with FITC (left) and AlexaFluor488 

channels (right). Green and red cell fluorescences integrated on cell area were 

determined using ImageJ software and plotted in the histograms (D). (E) Cholesterol 

levels in NIH-RAS cells grown in STD and –GLN+AKG+NEAA media, measured with 

Total Cholesterol Assay kit (Cell Biolabs). *P<0.05; **P<0.01; ***P<0.001 (Student’s 

t-test).  

 

5.3.3 AKG and NEAA mitigate oxidative stress and redox 

unbalance induced by glutamine deprivation in NIH-RAS cells. 

As mentioned above, computational analyses on transcriptomic 

data suggested that NIH-RAS cells grown in STD and in –

GLN+AKG+NEAA media may differ in terms of redox potential 

(Figure 5.2D). Thus, we wanted to explore this aspect, as well as 

to further validate transcriptomic results.  

As expected from reporter metabolites analysis (Figure 2D), we 

found a different NADPH content in NIH-RAS cells grown in 

STD and in –GLN+AKG+NEAA media. Particularly, glutamine-

deprived NIH-RAS cells supplemented with AKG and NEAA 

display 40% of NADPH when compared to the same cells grown 

in STD medium (Figure 5.4A). 

According to literature data on K-ras-transformed cell lines [19], 

we found that glutamine deprivation enhances oxidative stress in 

NIH-RAS cells, and supplementation of AKG or NEAA partly 

decreases ROS levels, especially when combined in the –

GLN+AKG+NEAA medium (Figure 5.4D). 
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Measuring reduced glutathione (GSH) and total glutathione 

(GSH+GSSG) levels (Figure 5.4-C), we found that glutamine 

deprivation leads to decreased GSH and GSH+GSSG levels, due 

to the lack of glutamate (and ensuing glutathione) precursor 

glutamine. As seen for ROS levels, supplementation of AKG or 

NEAA –but above all their combination- partly restores basal 

GSH and GSH+GSSG levels. According to the role of ROS 

scavenger that glutathione in the reduced form has [20], we 

obtained a negative correlation between ROS and GSH levels 

(Figure 5.4E)  
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Figure 5.4 Redox state of NIH-RAS cells is altered when grown in –

GLN+AKG+NEAA medium. (A) NADPH levels of NIH-RAS cells grown under 

conditions indicated as determined with NADP/NADPH Quantitation Kit (BioVision). 

*P<0.05; **P<0.01 (Student’s t-test). (B) Relative ROS levels in NIH-RAS cells grown 

for 54 h under conditions indicated as determined by DCFDA staining. Each bar 

represents the mean of at least three independent experiments with error bars 

representing the standard deviation. (C) Reduced glutathione levels measured after 54 h 

from medium change as described in Rahman et al. 2006. Each bar represents the mean 

of at least three independent experiments with error bars representing the s.d. (D) Total 

glutathione levels measured after 54 h from medium change as described in Rahman et 

al. 2006. Each bar represents the mean of at least three independent experiments with 

error bars representing the s.d. (E) Negative correlation between reduced glutathione 

levels and ROS levels. 

 

 

5.3.4 Glutamine-deprived NIH-RAS cells supplemented with 

AKG and NEAA show an increased mitochondrial respiration 

As a first attempt to study NIH-RAS cell metabolism, we analysed 

glycolysis and oxidative phosphorylation (OXPHOS), the two 

major mechanisms in mammalian cells to produce ATP [Zhang et 

al. 2012]. Specifically, we measured the extracellular acidification 

rate (ECAR), which approximates glycolytic activity under certain 

conditions, and the mitochondrial oxygen consumption rate 

(OCR), which is a key metric of mitochondrial function. The 

increased ratio of OCR to ECAR in NIH-RAS cells grown in –

GLN+AKG+NEAA medium compared to that of NIH-RAS cells 

grown in STD medium may indicate cellular preference for 

OXPHOS versus glycolysis when mitochondria are coupled for 

oxygen consumption and energy generation through ATP synthase 

activity (Figure 5.5A). 
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A lower diversion of glucose into lactate may also derive from the 

increased reliance of NIH-RAS cells on glucose to produce 

essential building blocks –like amino acids- in the absence of 

glutamine. Thus, we analysed fresh and spent media to measure 

glucose consumption (and subsequent lactate production), finding 

that NIH-RAS grown in –GLN+AKG+NEAA may consume a 

little less glucose (and produce a little less lactate). However, the 

differences are minor and unlikely to be significant. On the 
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contrary, cells grown in –GLN+AKG+NEAA produce and secrete 

large quantities of glutamate (Figure 5.5B). 

 

Figure 5.5 Glutamine-deprived NIH-RAS cells supplemented with AKG and 

NEAA decrease lactate production while enhancing oxygen consumption to sustain 

an increased use of ATP. (A) Ratio between Oxygen Consumption Rate (OCR) and 
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Extracellular Acidification Rate (ECAR) of nutritionally-perturbed NIH-RAS cells 

measured using the XF24 Extracellular Flux Analyzer under basal conditions. Results 

derive from 2 independent experiments each performed   in  7 replicates.   (B)   Glucose   

and glutamine consumption and lactate and glutamate production under conditions 

indicated measured with YSI Analyzer. (C-D) Response to oligomycin, FCCP and 

rotenone/antimycin A treatment (C) and relative respiratory parameters (D) of NIH-RAS 

cells grown in STD and –GLN+AKG+NEAA media measured during a MitoStress Test 

performed with the XF24 Extracellular Flux Analyzer (Seahorse Biosciences). (E) 

Relative ATP levels in NIH-RAS cells grown in STD and –GLN+AKG+NEAA media 

for 54 h, measured by Victor (Perkin Elmer) after using ATPLite Assay Kit (Perkin 

Elmer). (F) MitoTracker Red and MitoTracker Green analysis of mitochondria of NIH-

RAS cells grown in STD and –GLN+AKG+NEAA media, measured by FACS and –for 

MitoTracker Red- with a confocal microscope. **P<0.01; ***P<0.001 (Student’s t-test). 

 

First, as low energy levels may contribute to the slow growth of 

glutamine-deprived NIH-RAS cells, we measured ATP content, 

which was reduced of about 50% in glutamine-deprived NIH-RAS 

compared to NIH-RAS grown in STD medium (Figure 5.5D). 

 

 

5.3.5 Glutamine-deprived NIH-RAS cells do not follow reductive 

carboxylation of AKG and divert Glucose and NEAA mainly to 

glutamate production 

We analysed metabolic profile of NIH-RAS cells grown in STD 

and in –GLN+AKG+NEAA media with GC/MS technology. As 

Figure 5.6A shows, in –GLN+AKG+NEAA condition we 

observed a vast downregulation of metabolites when compared to 

STD media. Metabolites like Glucose, cytosine and Erythrose-4-

Phosphate, Citrate were present in higher level in –

GLN+AKG+NEAA condition, whereas Malate, Asparate, Serine, 



 

Chapter 3 Rohit Bharat 193 

glycine etc were downregulated when compared to STD 

condition. Increased glucose and Citrate levels could indicate the 

comping mechanism under glutamine deprivation in order to 

maintain energy homeostasis and the data correlated with the 

transcriptomic analysis where increased expression of genes 

involved in glucose metabolism was observed in –

GLN+ALG+NEAA condition (Figure 5.6A). Pathway enrichment 

analysis of the metabolites downregulated and upregulated in –

GLN+AKG+NEAA condition reveal downregulation of 

metabolites belonging to pathways of Urea cycle, Ammonia 

recycling, glutamate metabolism, alanine and amino sugar 

metabolism (Figure 5.6B), whereas enrichment of pathways 

Transfer of Acetyl group to mitochondria, fatty acid biosynthesis, 

glycolysis, citric acid cycle, (Figure 5.6C), indicating higher 

mitochondrial engagement and thus coinciding with higher 

mitochondrial number as well as activity observed earlier (Figure 

5.5). The higher amount of Fatty acids like Palmitic acid, Stearic 

acid and caprylic acid observed in –GLN+AKG+NEAA condition 

contradicts with findings of transcriptomic analysis where 

decrease expression of genes involved in lipogenesis was 

observed. This difference in metabolic level and transcriptomic 

level could be due to higher accumulation of these fatty acids as a 

result of impaired metabolism in –GLN+AKG+NEAA condition, 

rather than caused by increased synthesis.  
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Figure 5.6 Metabolome and metabolic fluxes of NIH-RAS cells under nutrient 

perturbation. (A) Heatmap of Metabolic profile of NIH-RAS cells grown in Std and in 

–GLN+AKG+NEAA for 54 h, analyzed with GC-MS. (B) Pathway enrichment of 

metabolites downregulated in –GLN+AKG+NEAA condition (C) Pathway enrichment 

of metabolites upregulated in –GLN+AKG+NEAA condition (D) Percentage of 

metabolite labelling from [U-13C6]glucose in NIH-RAS cells grown in STD and –

GLN+AKG+NEAA conditions. The analysis was made with GC-MS on NIH-RAS cells 

grown for 54 h. NA = not applicable, due to isotope dilution by external addition of 

NEAAs. (E) Percentage of metabolite labelling from [U-13C5]glutamine (for STD 

medium) or from [1-13C]glutamate (for –GLN+GLU+NEAA medium) analyzed with 

GC-MS after 54 h of cell growth. (F) Percentage of metabolite labelling from 

[15N]aspartate and from [15N]asparagine in NIH-RAS cells grown for 54 h in –

GLN+AKG+NEAA medium, measured with GC-MS. 

 

Next, we analyzed the fluxome of NIH-RAS cells grown in STD 

and in –GLN+AKG+NEAA media to understand if glucose 

(another major nutrient source for transformed cells) is diverted to 

other pathways to sustain growth when cells are glutamine-

deprived and to understand if supplements AKG and NEAA under 

glutamine deprivation follow the same metabolic pathways as 

glutamine.  

First, we provided NIH-RAS cells grown in STD and –

GLN+AKG+NEAA media with [U-13C6]-Glucose, finding that, 

compared to STD medium labelled glucose is preferentially 

converted to serine, glycine and glutamate in –

GLN+AKG+NEAA medium and less converted to lactate (Figure 

5.6D). This was further validated from the lower M+3 labelled 

lactate derived from [U-13C6]-Glucose in –GLN+AKG+NEAA 

condition (Figure 5.7). –GLN+AKG+NEAA showed higher M+3 

labelled pyruvate indicating higher flux towards glucose to 
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pyruvate and correlating with higher glycolysis observed from 

metabolomics analysis (Figure 5.7).  

 

Figure 5.7 Flux map of NIH-RAS cells under nutrient perturbation. Metabolic flux 

map depicting major flux distribution obtained through [U-13C6]-Glucose in STD and –

GLN+AKG+NEAA condition. Blue arrows depict flux for NIH-RAS cells grown in 

STD media whereas Red arrows represent flux for NIH-RAS cells grown under –

GLN+AKG+NEAA condition. The thickness of the arrows represent the condition with 

higher or lower flux where thicker arrows represent higher flux for the specific reaction. 

Grey arrows represent fluxes not resolved using [U-13C6]-Glucose. Blue bubbles 

represent the most abundant labelling pattern obtained using [U-13C6]-Glucose. 

 

–GLN+AKG+NEAA condition also showed significant decrease 

in flux from pyruvate to alanine correlating with metabolomic 
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analysis (Figure 5.6B) whereas higher pyruvate carboxylase flux 

was observed in cells grown in STD condition (Figure 5.7). Cells 

grown in –GLN+AKG+NEAA showed higher M+2 & M+4 citrate 

labelling via [U-13C6]-Glucose suggesting higher citrate synthase 

flux and higher utilization of acetyl Co-A into mitochondria, 

similarlily higher M+2 and M+4 labelling was observed in 

Glutamate indicating utilization of glucose for glutamate 

synthesis. Forward TCA cycle flux was slower in –

GLN+AKG+NEAA condition observed by lower M+4 labellin of 

Succicate, Fumarate and Malate (Figure 5.7).    The enhanced 

growth of RAS transformed cells possibly due to WarburQ effect 

[22] the evidence of which can be observed from higher fluxes in 

reactions catalysed by succicate dehydrogenase, fumarase, 

pyruvate carboxylase and lactate dehydrogenase leading to higher 

lactate secretion supported by TCA cycle in STD condition 

(Figure 5.7) is lost when grown in –GLN+AKG+NEAA 

condition. 

Then, we provided [U-13C5]-glutamine to NIH-RAS cells grown 

in STD medium (Figure 5.6E). Compared to what seen for 

glucose, NIH-RAS cells showed a higher use of glutamine for the 

synthesis of TCA cycle intermediates and for NEAA biosynthesis 

(with the exception of glucose-derived alanine), while lactate fully 

derived from glucose rather than from glutamine.  

Likewise, we provided [1-13C]-glutamate -and NEAA- to 

glutamine-deprived NIH-RAS cells. Strikingly, about 80% of the 

glutamate was still [1-13C]-labelled<, suggesting that glutamate 
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may not be converted to other metabolites under glutamine 

deprivation (Figure 5.6C). 

Finally, we provided NIH-RAS cells grown in –

GLN+AKG+NEAA medium either with [15N]-aspartate or with 

[15N]-asparagine (the only NEAA that enter NIH-RAS cells) to 

follow their intracellular destiny. While asparagine is not used to 

synthesize other molecules, aspartate is mainly used to produce 

glutamate, since 43% of glutamate is 15N-labelled (Figure 5.6F). 

 

Previous results on NIH-RAS cell metabolism [21] suggested that 

glutamine reductive carboxylation (RC) through the aconitase-

catalyzed reaction is a marker of the enhanced growth of NIH-

RAS cells when compared to their parental NIH3T3 normal cell 

line. Therefore, we performed a series of Flux Balance Analysis 

(FBA) simulations on the model on central carbon metabolism 

ENGRO introduced in [22] by maximizing the backward direction 

of the aconitase–catalyzed reaction in both STD and –

GLN+AKG+NEAA conditions. The aim of the analysis was to 

investigate the compatibility of the two growth conditions with the 

possibility of undergo RC. Figure 5.8A-B shows that when the 

backward direction of aconitase-catalyzed reaction is maximized, 

NIH-RAS cells grown in –GLN+AKG+NEAA medium are less 

capable of relying on RC for fatty acid synthesis. Indeed, the 

aconitase-catalyzed reaction displays a much higher flux value for 

NIH-RAS cells grown in STD medium than for glutamine-

deprived NIH-RAS cells. Furthermore, FBA experiments 

highlighted that recurring to RC in –GLN+AKG+NEAA growth 
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condition implies a 62%-reduction of biomass synthesis flux with 

respect to growth in STD medium, according to experimental 

observations (Figure 5.1B).  

 

 

 

Figure 5.8 Utilization of reductive carboxylation (RC) pathway in NIH-RAS cells 

under nutrient perturbation. (A-B) Flux balance analysis (FBA) experiments on 

ENGRO network to maximize the backward direction of the aconitase-catalyzed 

reactions for NIH-RAS cells grown in STD (A) and –GLN+AKG+NEAA (B) media. 

(C) Map and experimental values of labelling destiny when [U-13C5]glutamine is 
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metabolized both reductively and oxidatively (for STD medium). (D) Map and 

experimental values of labelling destiny when [1-13C]alpha-ketoglutarate is metabolized 

oxidatively (for –GLN+AKG+NEAA medium). 

To validate computational results, we provided [U-13C5]-

glutamine to NIH-RAS cells grown in STD medium (Figure 

5.8C), founding that glutamine-derived labelled AKG undergoes 

both RC and forward TCA cycle. Indeed, both citrate M4 

isotopomer (i.e. with 4 labelled carbon atoms, typical of oxidative 

metabolism) and citrate M5 isotopomer and M3 fumarate, 

M3malate and M3 aspartate (typical of reductive metabolism) are 

generated, in line with previous results [19]. 

On the contrary, as predicted by ENGRO model, we demonstrated 

that [1-13C]-AKG in glutamine-deprived NIH-RAS cells only 

follow very significantly reduced RC, since neither TCA 

intermediates nor citrate were labelled (labelled carbon atom is 

indeed lost as CO2 in the decarboxylation step from AKG to 

succinyl-CoA) (Figure 5.8D). Surprisingly we observe a very high 

M2 labelling of glutamate and glutamine from [1-13C]-AKG 

suggesting the conversion of aKG to glutamate, but exact 

mechanism needs to be resolved. 
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5.4 DISCUSSION 

Growing cancer cells often depend on glutamine, some cell lines 

dying rapidly when deprived of this amino acid [3,4]. Glutamine 

concentration modulates the cancer phenotype of K-ras- 

transformed mouse fibroblasts [15]. Here we show that these cells 

are addicted to glutamine, since cells depleted of this amino acid 

stop growth and rapidly loose viability. Glutamine is composed by 

alpha-ketoglutarate and ammonium. Addition of these compounds 

(AKG+NEAA medium) to glutamine-deprived NIH-RAS cells 

restores viability, but cell proliferation is strongly hindered, cells 

being reduced in size and slow growing (Fig.5.1). Transcriptional 

analysis of AKG+NEAA-grown vs standard medium-grown NIH-

RAS cells indicates limited differences in gene expression, mostly 

limited to genes involved in lipogenesis and – to a lesser extent – 

in cell cycle. Computational analysis that mapped expression data 

onto a genome-wide metabolic model highlighted NADPH as a 

major reporter metabolite. Biochemical assays of NADPH levels 

and lipid (including cholesterol) content validated these results. 

Our group previously showed using computational flux balance 

analysis (FBA) validated by experimental data, that NIH-RAS 

cells use intense aerobic glycolysis and glutamine reductive 

carboxylation as the fittest emergent strategy to support cell 

growth. When grown in AKG+NEAA medium, NIH-RAS cells 

largely revert their Warburg phenotype (Fig. 5.5) and no longer 

use AKG to fuel fatty acid biosynthesis through reverse 

carboxylation. FBA confirmed that when AKG + NEAA is used, 

attempts to maximize reverse carboxylation results in poor 
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biomass accumulation. Consistently with partial recovery of 

proliferation rate of NIH-RAS grown in AKG+NEAA medium by 

glutamine synthase overexpression, FBA data indicate that 

decreasing the glutamine synthase flux has strong impact on 

biomass accumulation in NIH- RAS cells when AKG+NEAA are 

used as growth substrates (data not shown). 

In summary, these results reinforce the notion that glutamine 

supports the Warburg effect in hyperglycolytic cancer cells. They 

further indicate that, because of limiting glutamine synthase 

activity (data not shown), AKG+NEAA induces a large metabolic 

rearrangement that includes decreased accumulation of lipids – 

linked a drop in AKG reverse carboxylation – and NADPH, a 

decrease in fermentation and up-regulation of respiration (reverse 

Warburg effect). 

As confirmed by FBA computational experiments, these 

rearrangements lead to a slow growth phenotype (decreased 

biomass accumulation in FBA terms). Once confirmed in human 

cancer cell lines, these studies will provide useful in deigning 

clinical protocols that make use of drugs directed against 

glutamine metabolism [4].  
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5.5 MATERIALS & METHODS 

5.5. 1 Cell culture  

Two cell lines have been used in this work, namely normal 

NIH3T3 mouse fibroblasts (obtained from the ATCC, Manassas, 

VA, USA) and a K-Ras-transformed normal-derived cell line –that 

we refer to as NIH-RAS. Both control and ras-transformed 

NIH3T3 have been passaged a similar number of times, taking 

care to refreeze the cell lines immediately and to use them for a 

limited number of passages. The cell lines are periodically assayed 

to check that the major properties of the cells do not change over 

time, that the major transformation-related phenotypes are 

retained and ras-dependent. The cell lines were routinely grown in 

Dulbecco’s modified Eagle’s medium (Invitrogen Inc., Carlsbad, 

CA, USA) containing 10% newborn calf serum (NCS), 4 mM 

glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin, that 

we refer to as standard medium (STD), at 37°C in a humidified 

atmosphere of 5% CO2. Cells were passaged using trypsin-

ethylenediaminetetraacetic acid (EDTA) (Invitrogen Inc., 

Carlsbad, CA, USA) and maintained in culture before 

experimental manipulation. 

 

5.5.2 Cell proliferation analysis  

Cells were plated at the density of 3000 cells/cm2 in standard 

medium and incubated overnight at 37°C and 5% CO2. After 18 

h, cells were washed twice with phosphate-buffered saline (PBS) 

and, to verify the response to glutamine deprivation, cells were 

incubated in medium without glutamine (Invitrogen Inc., 
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Carlsbad, CA, USA), possibly supplemented with dimethyl-2-

oxoglutarate (AKG, 4 mM, Sigma Aldrich Inc.) or glutamate 

(GLU, 4 mM, Sigma Aldrich Inc.) and/or nonessential amino acids 

(Pro, Ala, Asp, Asn, 4 mM each, Sigma Aldrich Inc.).To measure 

cell proliferation, cells were treated with trypsin at 0, 24, 48, 54, 

72, 144, 168, 192, 240 and 312 hours after medium change. Viable 

(i.e., unstained) cells were counted in a Bürker chamber after 

staining with 0.5% trypan blue.  

 

5.5.3 Apoptosis Assay  

Cells were plated at the density of 3000 cells/cm2 in standard 

medium and incubated overnight at 37°C and 5% CO2. After 18 

h, cells were washed twice with PBS and incubated for 30 hours 

in medium without glutamine (Invitrogen Inc., Carlsbad, CA, 

USA), supplemented with dimethyl-2-oxoglutarate (AKG, 4 mM, 

Sigma Aldrich Inc.) and nonessential amino acids (Pro, Ala, Asp, 

Asn, 4 mM each, Sigma Aldrich Inc.). For apoptosis analysis, 

1×106 cells (adherent and in suspension cells) were collected, 

stained with Annexin V-FITC (Immunotools, GmbH) and 

propidium iodide (Sigma Aldrich Inc.) and analyzed by FACScan 

(Becton-Dickinson) using the FL1 and FL2 channels. Data 

analysis was performed with Flowing Software. 

 

5.5.4 Autophagy assay 

Autophagy was determined by using Autophagy Assay Kit (Sigma 

Aldrich Inc.) following manufacturer’s instructions. Briefly, NIH-

RAS cells that had to be grown in STD medium were plated at 
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3000 cells/cm2, while NIH-RAS cells that had to be grown in –

GLN+AKG+NEAA medium were plated at 9000 cells/cm2 in 

glass bottom petri dishes, suitable for confocal microscopy, with 

normal growth medium (STD). After 18 h at 37°C and 5% CO2, 

cells were rinsed twice with PBS and medium change was done, 

by incubating cells for 24 h with STD or –GLN+AKG+NEAA 

media. Cells were then incubated with the Autophagosome 

Detection Reagent working solution for 30 minutes in a 37°C in a 

5% CO2 incubator and washed 4 times with wash buffer. Cells 

were imaged immediately under a confocal microscope with a 

DAPI channel. 

 

5.5.5 Cell size measurement 

NIH-RAS cells were plated at 3000 cells/cm2 (for 54 h-growth in 

STD and for 144 h-growth in –GLN+AKG+NEAA) and at 9000 

cells/cm2 (for 54 h-growth in –GLN+AKG+NEAA) in 6-well 

plates in STD medium and incubated overnight at 37°C and 5% 

CO2. After 18 h, cells were washed twice with PBS and incubated 

for 54 h and 144 h in STD medium or in –GLN+AKG+NEAA 

medium. Cells were then 1) trypsinized and counted in a Bürker 

chamber (Trypan blue excluding method) and 2) scraped in lysis 

buffer to measure protein content with Bradford assay [28]. The 

resulting protein content was then normalized on cell number for 

both nutritional conditions (STD and –GLN+AKG+NEAA) to get 

the protein content per cell, which is an indicator of cell size. 
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5.5.6 Determination of intracellular ROS  

Intracellular accumulation of H2O2 and O2•- was determined 

after 54 h from medium change with 2’,7’-

dichlorodihydrofluoresceine diacetate (Sigma Aldrich Inc.). The 

cells were incubated for 30 minutes at 37°C with H2DCFDA 10 

mM, treated with trypsin, resuspended in PBS supplemented with 

NCS 10% (Invitrogen Inc., Carlsbad, CA, USA) and acquired by 

FACScan (Becton-Dickinson), using the Cell Quest software (BD 

Bioscience). The percentage of ROS producing cells was 

calculated for each sample and corrected for autofluorescence 

obtained from samples of unlabelled cells. 

 

5.5.7 Determination of glutathione levels 

For reduced and total glutathione measurements, cells were plated 

at the density of 3000 cells/cm2 in standard medium and incubated 

overnight at 37°C and 5% CO2. After 18 h, cells were washed 

twice with PBS and incubated for 54 h in STD medium or in 

medium without glutamine (Invitrogen Inc., Carlsbad, CA, USA), 

possibly supplemented with dimethyl-2-oxoglutarate (AKG, 4 

mM, Sigma Aldrich Inc.) and/or nonessential amino acids (Pro, 

Ala, Asp, Asn, 4 mM each, Sigma Aldrich Inc.). Cells were then 

treated with trypsin, collected, washed twice with PBS and lysed 

through freeze-and-thaw cycles. Samples were deproteinized with 

a 5% 5-sulfosalicylic acid solution, centrifuged to remove the 

precipitated protein and assayed for glutathione. GSH 

measurement was an optimization of Tietze’s enzymatic recycling 

method [23], in which GSH is oxidized by the sulfhydryl reagent 
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5,5’-dithio-bis (2-nitrobenzoic acid) (DTNB) to form the yellow 

derivative 5’-thio-2-nitrobenzoic acid (TNB), measurable at 412 

nm and the glutathione disulfide (GSSG) formed is recycled to 

GSH by glutathione reductase in the presence of NADPH. The 

amount of glutathione in the samples was determined through a 

standard curve of reduced glutathione. Glutathione levels were 

normalized to protein content measured by Bradford assay (Bio-

Rad reagent) on an aliquot of cell extract collected before 

deproteinization. 

 

5.5.8 NADPH levels 

The measurement of NADPH levels of NIH-RAS grown in STD, 

–GLN+AKG+NEAA and –GLN+GLU+NEAA media was made 

using NADP/NADPH Quantification Colorimetric Kit 

(BioVision), following manufacturer’s instructions. Cells were 

seeded at the density of 3000 cells/cm2 (for growth in STD 

medium) and 9000 cells/cm2 (for growth in –GLN+AKG+NEAA 

and –GLN+GLU+NEAA media) in 150-mm dishes in STD 

medium and incubated overnight at 37°C and 5% CO2. After 18 

h, cells were washed twice with PBS and incubated for 54 h in 

STD, –GLN+AKG+NEAA or –GLN+GLU+NEAA media. The 

day of the analysis, cell metabolism was quenched with liquid 

nitrogen and cells were lysed with NADP/NADPH Extraction 

Buffer provided with the kit. After following the protocol, 

NADPH and NADP+NADPH were quantified by reading the 

absorbance of the samples at 450 nm and comparing it with 

NADPH standard curve. 
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5.5.9 Cholesterol levels 

Cholesterol levels of NIH-RAS grown in STD and –

GLN+AKG+NEAA media were measured by using Total 

Cholesterol Assay Kit, Colorimetric (Cell Biolabs), following 

manufacturer’s protocol. Cells were seeded at the density of 3000 

cells/cm2 (for growth in STD medium) and 9000 cells/cm2 (for 

growth in –GLN+AKG+NEAA medium) in 150-mm dishes in 

STD medium and incubated overnight at 37°C and 5% CO2. After 

18 h, cells were washed twice with PBS and incubated for 54 h in 

STD or –GLN+AKG+NEAA media. The day of the analysis, cells 

were lysed with a mixture of chloroform:isopropanol:NP-40 

(7:11:0.1) and samples were processed according to the datasheet 

instructions. Finally, cholesterol levels were assayed by reading 

the absorbance of the samples at 570 nm and comparing it with 

cholesterol standard curve. 

 

5.5.10 Lipid content (Nile Red staining) 

The neutral lipid dye Nile Red (9-diethylamino-5H-

benzo[α]phenoxazine-5-one) was used for lipid staining. The 

stock solution (1.0 mg/ml) in methanol was stored frozen (−20°C) 

in dark. Staining was carried out on live cells by adding the dye to 

a final concentration of 10 ng/ml directly in the culture medium 

for 5 minutes. Then, the dye was carefully washed out using PBS 

prior to microscopy. Lipid droplets were then visualized with 

confocal microscope (Nikon Eclipse Ti-E; 60X magnification) by 

exciting with FITC (green fluorescence) and AlexaFluor488 (red 

fluorescence) channels. Total fluorescence (i.e. green+red) per 



 

Chapter 3 Rohit Bharat 209 

cell was determined by analysing photos with ImageJ software: 

regions of interest (ROIs) corresponding to each cell were drawn 

on brightfield images, then ROIs were superimposed on photos 

acquired by exciting both with green and red fluorescence. Then, 

the corrected total cell fluorescence (CTCF) –normalized on cell 

area– was calculated, after subtracting the mean fluorescence of 

the background readings, by summing the corrected green and red 

fluorescence. 

 

5.5.11 RNA extraction and transcriptomic analysis  

Cells were plated at the density of 3000 cells/cm2 in standard 

medium and incubated overnight at 37°C and 5% CO2. After 18 

h, cells were washed twice with PBS and incubated for 54 h in 

STD medium or for 144 h in medium without glutamine 

(Invitrogen Inc., Carlsbad, CA, USA) supplemented with 

dimethyl-2-oxoglutarate (AKG, 4 mM, Sigma Aldrich Inc.) and 

nonessential amino acids (Pro, Ala, Asp, Asn, 4 mM each, Sigma 

Aldrich Inc.). RNA was then extracted from cells by using 

TriFastTM reagent (EuroGOLD) and generated triplicate samples 

were stored at -80°C until the analysis. The QC evaluation was 

performed using Nanodrop and Agilent 2100 Bioanalyzer. Single 

strand biotinylated cDNA was generated from 200 ng of total 

RNA using two cycles of cDNA synthesis with the Affymetrix 

WT PLUS expression Kit. The first cycle-first strand synthesis 

was performed using an engineered set of random primers that 

excluded rRNA-matching sequences and included the T7 

promoter sequences. After second-strand synthesis, the resulting 
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cDNA was in vitro transcribed with the T7 RNA polymerase to 

generate a cRNA. This cRNA was subjected to a second cycle-

first strand synthesis in the presence of dUTP in a fixed ratio 

relative to dTTP. Single strand cDNA was then purified and 

fragmented with a mixture of uracil DNA glycosylase and 

apurinic/apirimidinic endonuclease 1 (Affymetrix) in 

correspondence of incorporated dUTPs. DNA fragments were 

then terminally labelled by terminal deoxynucleotidyl transferase 

(Affymetrix) with biotin. The biotinylated cDNA was hybridized 

to the Clariom D Arrays (previously known as Mouse GeneChip 

MTA 1.0 Arrays) containing more than 214000 full-length 

transcripts. After the hybridization, chips were washed and 

scanned on the Affymetrix Complete GeneChip® Instrument 

System, generating digitized image data (DAT) files and CEL 

files. CEL files were analyzed by R Bioconductor Oligo and 

Limma Packages, respectively. The full dataset was normalized by 

using the Robust Multialignment Algorithm (RMA). Results were 

filtered for a Fold Change ≥1.5. The genes were classified as 

Differentially Expressed if showed a FDR corrected p-value ≤ 

0.05. 

 

5.5.12 Reporter metabolites 

Transcriptomic data were mapped on the corresponding enzymes 

of a genome scale metabolic model adding the p value obtained 

from a Student's t-test as a specification of the significance of 

differential gene expression (and so of the change for each 

enzyme). Each pi was then converted to a Z score of the enzyme 
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node (Zni) connected to the enzyme under investigation, by using 

the inverse normal cumulative distribution (θ–1). 

Zni = θ–1 (1-pi) 

Thus, each metabolite node in the genome-wide metabolic model 

(GWMM) was scored based on the normalized transcriptional 

response of its neighboring enzymes. Dealing with differential 

data, the normalized transcriptional response has been calculated 

as size-independent aggregated Z scores of the k neighboring 

enzymes. 

Z metabolite = (1/√k) ∑ Zni 

The scoring used to identify reporter metabolites was a test for the 

null hypothesis “neighbor enzymes of a metabolite in the 

metabolic graph show the observed normalized transcriptional 

response by chance”. Metabolites with the highest score are 

defined as reporter metabolites, namely those metabolites around 

which transcriptional changes occur. 

To perform the analyses, the Cobra Toolbox function 

“reporterMets” was used, which implements under Matlab the 

reporter metabolites algorithm by Patil and Nielsen [30]. 

Regarding the input, the Recon 2.2 model [31] was used. 

 

5.5.13 Metabolomic analyses 

For metabolite extraction, NIH-RAS cells that had to be grown in 

STD medium were plated at 3000 cells/cm2, while NIH-RAS cells 

that had to be grown in –GLN+AKG+NEAA medium were plated 

at 9000 cells/cm2 –in order to reach the same cell density after 54 

h– in 6-well plates with normal growth medium (STD). After 18 
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h at 37°C and 5% CO2, cells were rinsed twice with PBS and 

incubated for 54 h in STD medium or –GLN+AKG+NEAA 

medium. After 54 h from medium change, cells were quickly 

rinsed with NaCl 0.9% and quenched with 0.4 ml ice-cold 

methanol. An equal volume of water was added, and cells were 

collected by scraping with a pipette tip. Cells were sonicated 5 

seconds for 5 pulses at 70% power three times. One volume of 

chloroform was added, and cells were vortexed at 4°C for 20 min. 

Samples were centrifuged at 12000 g for 10 min, and the aqueous 

phase was collected in a new tube and evaporated under airflow at 

37°C. Dried polar metabolites were dissolved in 60 μl of 2% 

methoxyamine hydrochloride in pyridine (Pierce) and held at 

40°C for 6 h. After dissolution and reaction, 90 μl of MSTFA (N-

Methyl-N-(trimethylsilyl) trifluoroacetamid) was added and 

samples were incubated at 60°C for 1 h. For cell culture, GC/MS 

analysis was performed using 6890 GC system combined with 

5975BMS system (Agilent Technologies) equipped with a 30-m 

DB-5MS capillary column operating under electron impact (EI) 

ionization at 70eV. 1 μl of sample was injected in splitless mode 

at 250°C, using helium as the carrier gas at a flow rate of 1 ml/min. 

The GC oven temperature was held at 70°C for 2 min and 

increased to 325°C at 10°C/min. GC/MS data processing was 

performed using Agilent MassHunter software and statistical 

analyses were performed using Mass Profile Professional (MPP) 

software [32]. Relative metabolites abundance was carried out 

after normalization to internal standard norvaline and cell number. 
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5.5.14 13C tracer analyses 

All labelling experiments were performed in media with 10% 

dialyzed newborn calf serum (NCS) for 54 h. All tracers were 

purchased from Sigma-Aldrich. For metabolite extraction, NIH-

RAS cells that had to be grown in STD medium were plated at 

3000 cells/cm2, while NIH-RAS cells that had to be grown in –

GLN+AKG+NEAA medium were plated at 9000 cells/cm2 –in 

order to reach the same cell density after 54 h– in 6-well plates 

with normal growth medium (STD). After 18 h at 37°C and 5% 

CO2, cells were rinsed twice with PBS and medium change was 

done, by incubating cells for 54 h with STD or –

GLN+AKG+NEAA media containing dialyzed NCS and the 

proper tracer [U-13C6]-Glucose, [U-13C5]-glutamine, [1-13C]-

glutamate, [15N]-aspartate or [15N]-asparagine). Labelled cell 

cultures were then washed with 0.9% NaCl and metabolism was 

quenched in liquid nitrogen and then with -20°C cold 70% 

methanol. After cell scraping in 70% methanol (containing 

internal standards norvaline and glutarate), -20°C cold chloroform 

was added and the samples were vortexed at 4°C to extract 

metabolites. Phase separation was achieved by centrifugation at 

4°C. The methanol-water phase containing polar metabolites was 

separated and dried using a vacuum concentrator. Dried 

metabolite samples were stored at −80 °C.  

Polar metabolites were derivatized for 90 min at 37 °C with 7.5 µl 

of 20 mg/ml methoxyamine in pyridine and subsequently for 60 

min at 60°C with 15 µl of N-(tert-butyldimethylsilyl)-N-methyl-

trifluoroacetamide, with 1% tert-butyldimethylchlorosilane [33] 
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(Sigma-Aldrich). Mass distributions and metabolite 

concentrations were measured with a 7890A GC system (Agilent 

Technologies) combined with a 5975C Inert MS system (Agilent 

Technologies). 1 µl of sample was injected into a DB35MS 

column in splitless mode using an inlet temperature of 270°C. The 

carrier gas was helium with a flow rate of 1 ml/min. Upon 

injection, the GC oven was held at 100°C for 3 min and then 

ramped to 300°C with a gradient of 2.5°C/min followed by a 5 min 

after run at 320°C. The MS system was operated under electron 

impact ionization at 70 eV and a mass range of 100–650 amu was 

scanned. Mass distributions were extracted from the raw ion 

chromatograms using a custom Matlab M-file [34]. Mass spectra 

were corrected for naturally occurring isotopes [35] and for 

potential metabolite contamination in a blank extraction. All 

labelling fractions were transformed to a natural abundance 

corrected mass distribution vector (MDV) [36]. Metabolite levels 

were determined based on the internal standards norvaline and 

glutarate, and protein content determined with Pierce™ BCA 

Protein Assay Kit (Thermo Fisher Scientific) to normalize 

metabolomics data. 

 

 

5.5.16 ENGRO metabolic network reconstruction 

A metabolic network designed to evaluate the contribution of 

glucose and glutamine to biomass formation was extracted from 

the HMR [37] and Recon 2 [38] databases and manually curated. 

It includes central metabolic pathways and the connected 
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production of building blocks for lipids and protein biosynthesis, 

together accounting for 80% of the dry cellular biomass [38]. To 

streamline the analysis of ENGRO emergent properties, unless 

strictly required by reaction thermodynamics, all metabolites are 

assumed in the same compartment and linear pathways are lumped 

into a single reaction. The obtained model is structurally free from 

thermodynamically infeasible loops, which is a major problem in 

genome-wide models [39].  

 

5.5.17 Flux Balance Analysis (FBA) 

FBA requires a stoichiometric matrix S and a set of constraints 

that impose the upper and lower bound of fluxes. The steady state 

constraint is defined by the equation dx⁄(dt=S∙v=0), where dx/dt 

are time derivatives of metabolite concentrations represented by 

the product of the m×n matrix S times the vector of fluxes 

v=(v_1,v_2,〖…,v〗_n), where vi is the flux of reaction i, n is the 

number of reactions, and m is the number of metabolites. The 

ensemble of functional states that the system can reach given a 

boundary condition I determines the feasible solutions space 

Φ=Σ∩I. By exploiting linear programming, FBA allows for 

optimization of the flux through a weighted sum of fluxes. In 

particular, the COBRA Toolbox [40] and the GLPK solver were 

used. 
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Cancer is a 16th century disease now posing as a 21st century 

epidemic which urgently requires futuristic solutions. Even 

though massive cancer genome projects have greatly expanded our 

knowledge about cancer, we still are far from finding a reliable 

and effective therapy for treatment of cancer patients. The 

evolution of cancer cells under therapeutic pressure rendering the 

ability to evade drug effects has been a real bottle neck for cancer 

researchers in their efforts to develop better and efficacious 

therapy. Inter and intra tumour genomic/epigenomic heterogeneity 

further adds to this complexity in clinical practice (Stanta and 

Bonin, 2018). Despite this vast genomic heterogeneity among 

tumours, majority of the cancers invoke similar metabolic 

pathways to survive and maintain their proliferative nature 

(Coller, 2014). This feature of cancer cells has boggled scientist 

and hence, has sparked the renewed interest in understanding 

cellular metabolism for cancer therapeutics.  

Through recent scientific efforts, it has become clearly evident the 

vast influence metabolic rewiring plays in driving tumorigenesis 

of cancer cells, and also in rendering the ability to evade 

therapeutic pressure. Thus, a systems level investigation of cancer 

metabolism should be of utmost importance in our current and 

future medical regime in devising a therapeutic strategy for the 

treatment of cancer patients. Understanding the metabolic 

demands of cancer cells would help us in developing much more 

better and efficacious therapy customized based on the patient’s 

predicted pharmacodynamics response.  
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Metabolic therapy have experienced failures in the past because of 

lack of clear understanding about metabolic rewiring engaged by 

cancer cells, as upon targeting with one metabolic inhibitor, cancer 

cells can still rewire their metabolism and switch to alternate 

mechanism for their survival. Thus in chapter 1, we highlighted 

the role of two inhibitors targeting glucose and glutamine 

metabolism. We dissected the role of these inhibitors on the 

proliferation and growth of lung and colon cancer cell lines 

individually as well as a combination therapy. Not only had we 

identified the metabolic differences between K-ras driven lung and 

colon cancer but also the differences in metabolic response to 

inhibition of one or the other pathway.  Targeting the most 

predominantly used metabolic pathways identified by cancer cells 

i.e glucose or glutamine metabolism, we showed that tumour 

growth can be strictly inhibited in-vitro as well in-vivo using a 

combinatorial approach. Though targeting by just BKM120 or 

CB-839 do show interesting results in restricting cancer 

proliferation, cancer cells are still able to survive by switching 

their metabolism to the alternate source. Thus, restricting cancer 

metabolic rewiring by targeting at two vital chokepoints could be 

a promising approach in treatment of K-ras driven cancers as it 

renders cancer cells constricted in terms of their options to switch 

metabolic pathways required to sustain growth. 

This study also highlighted alternative mechanism activated by 

cancer cells in order to sustain survival by means of PPP, amino 

sugar and nucleotide metabolism, which further contributes in 
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expanding our current understanding about cancer cell 

metabolism. Drug toxicity has always been a concern when 

developing a chemotherapeutic strategy, but here we showed that 

combinatorial treatment of cancer cells with metabolic inhibitors 

BKM120 and CB-839 showed minimal to no toxicity when tested 

in mice further substantiating its relevance to be used in clinical 

setting.  

Metabolomics approach can not only be used to understand 

oncogenic influence on tumorigenesis, but also understand the 

influence of drug treatment and eventual development of drug 

resistance, which is a major challenge today in cancer 

therapeutics. Chapter 2 sheds light in the metabolic rewiring 

engaged by cancer cells in order to survive and become resistant 

to endocrine therapeutic drugs vastly used in treatment of ER+ 

breast cancer.  

Using metabolomics, fluxomics and computational modelling 

approach we showcased the drug dependent differential metabolic 

rewiring of pathways in development of resistance to endocrine 

therapeutic drugs. Glutamine metabolism was found as a focal 

regulatory pathway which seemed to rescue cancer cells upon drug 

treatment and eventually leading development into resistant 

phenotype. Systems level investigation of the metabolism 

revealed vast differences in metabolism of resistant and sensitive 

cell lines, and helped identify putative targets which could be 

exploited for use against resistant tumours.  
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We identified reductive carboxylation of glutamine as a key 

mechanism in resistant cell lines which allowed for increased lipid 

and cholesterol synthesis driving growth and proliferation of 

resistant cells.  

The use of metformin has been highly debatable as an adjuvant to 

cancer therapy (Camacho et al., 2015). But it is very important to 

understand the metabolic phenotype of cancer cells in order for 

metformin to be efficacious in clinical setting. We showcased that 

aromatase inhibitor resistance lead to increased OXPHOS and 

increased mitochondrial function thus making it a suitable target 

for treatment via metformin. Upon treatment with metformin, we 

observed remarkable results in inhibiting cancer cell proliferation 

and growth of AI resistant cells. Thus understanding of metabolic 

phenotype makes choosing appropriate adjuvants for cancer 

therapy more relevant and easier.   

Finally, in chapter 3 we dived into exploiting the role of glutamine 

and its contribution in growth and proliferation of cancer cells. 

Glutamine being the most abundant amino acid in human serum 

plays an important role not only as a nitrogen source, but also as a 

carbon source fuelling TCA cycle. To assess the importance of 

glutamine in growth of K-Ras transformed NIH3T3 cell lines we 

substituted glutamine with its constituents, aKG and ammonium, 

provided as NEAA. Our results confirm the role of glutamine in 

supporting the Warburg effect in hyperglycolytic cancer cells. 

Growth in AKG+NEAA induces a large metabolic rearrangement 

that includes decreased accumulation of lipids – linked to a drop 
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in AKG reverse carboxylation - and NADPH, a decrease in 

fermentation and up-regulation of respiration (reverse Warburg 

effect). These rearrangements lead to a slow growth phenotype. 

The major role of metabolic rewiring in the ensuing slow growth 

of NIH-RAS cell in AKG+NEA medium was confirmed by FBA 

computational experiments.  

So through the three chapters of the thesis, we not only highlighted 

the role metabolism in fuelling growth and proliferation of cancer 

cells, but also on how cancer metabolic rewiring aids in driving 

resistance to ET, while also shedding light on the role  of 

glutamine in cancer metabolism. We showed how targeting 

metabolic chokepoints can prevent cancer metabolic rewiring, and 

how proper understanding of cancer metabolism is crucial for 

formulating a treatment strategy along with determining the proper 

choice of adjuvants.  

Though further investigations are needed to properly understand 

the relevance and harness the full potential of these findings in the 

treatment of cancer patients, this thesis does contribute towards 

expanding our current understanding about cancer cell metabolism 

in order to design personalised therapies of tomorrow. 
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