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Abstract

Every living organism needs to tightly regulate its growth depending on the
environment that surrounds it. This is true from the single-celled microorganisms to
the mammals. Failure to correctly respond to environmental changes can be dangerous
for the correct homeostasis of the cell. For this reason, the molecular basis and the
regulation of many signalling pathways are conserved from bacteria to man and
understanding this regulation is critical both for basic biology and to its application,
from fermentations to medical science.

The work contained in this thesis is focused on the budding yeast Saccharomyces
cerevisiae and on the analysis of its metabolism at the crossroad between carbon and
nitrogen. S. cerevisiae is able to grow on different nitrogen sources, which can be
classified as preferred or non-preferred. Not all the good nitrogen sources affect
cellular processes in the same way. Glutamate is a very important amino acid and a
good nitrogen source, being involved as nitrogen donor in several biosynthetic
processes and possessing a carbon backbone (alpha-ketoglutarate), which can enter
the TCA cycle.

In the first chapter, we investigated growth, metabolism and transcriptional profiles of
yeast cells grown in minimal media supplemented with either ammonium or glutamate,
both considered good nitrogen sources. During the exponential phase, cells using
glutamate as a nitrogen source have a larger cell size compared to cells grown in
presence of ammonium. In stationary phase, glutamate-supplemented accumulate
higher biomass levels. We refer to this behaviour as “enhanced growth”. In glutamate-
grown cells, the deepest transcriptional and metabolic rearrangement takes place after
glucose exhaustion and show a profound alteration of the metabolism of storage
molecules during growth on glutamate with an accumulation of trehalose and fatty
acids, which correlate with a higher stress resistance. Flux balance analysis simulations
with a core model of yeast metabolism correctly predicted the optimal growth yield
and computational analysis of the flux distribution identified a different allocation of
oxygen as responsible for the observed interplay between ethanol and glutamate.

Simulations using the model mentioned above suggest that growth on media
containing glutamate as the only carbon and nitrogen source is possible. Despite these
considerations, a wild-type S. cerevisiae strain is not able to grow in these conditions.
To understand the reasons underlying this growth inability, in chapter 2 we applied a
laboratory evolution approach and isolated 4 different mutants able to grow in the
presence of just glutamate, vitamins and supplements. Sequencing of the mutant
clones showed that they all carry mutations affecting the Ras/cAMP/PKA pathway.
These results show that modification of the carbon sensing pathways can alter
metabolism, allowing yeast to utilize glutamate in a way that the wild type strain
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cannot. Transcriptomics analysis of the more interesting mutant revealed a general up-
regulation of the biosynthesis of amino acids and nucleotides, as well as an enhanced
expression of plasma membrane transporter genes, including glutamate permeases.
Together with the enhancement of energy producing pathways, like fatty acids B-
oxidation, we propose that these changes are among the driving forces in the
adaptation of the evolved mutants.

In conclusion, our integrated analysis allowed us to demonstrate how glutamate
cellular fate is strongly interlinked both with carbon and nitrogen metabolism and
sensing and offers an example of combination of different techniques, which is able to
deliver a system-level interpretation of biological data.



Introduction

Regulation of cellular growth

Every cell that exists, from the smallest single celled bacteria to the most specialized
cell in our body, is not an island. Cells are, in fact, living in an environment and every
cellular aspect needs to be tightly regulated in order to react to endogenous stimuli of
different origin.

One of the fundamental cellular properties is the ability of the cell to consume and
synthesize molecules to sustain life, grow in size, replicate its genome and organelles
and divide. The regulation of this many aspects of growth is crucial for the maintenance
of the homeostasis of the cell and of the multicellular organism the cell may be part of.

For this reason, different selective pressures led to the development of different
regulatory networks depending on the type of organism and on its habitat.

Eukaryotic cells that form a multicellular organism respond primarily to hormones and
growth factors, which can come either from the same cell (autocrine), from the
surrounding cells (paracrine) or from distant organs (endocrine). For this reason,
mammalian cells separated from their organism cannot be cultivated in vitro, even
when all the nutrient they need are present, if growth-factor containing serum is not
present. In fact, the ability to grow in the absence of these kind of external stimuli is a
feature of cancer cells (Hanahan and Weinberg, 2011).

On the other hand, microorganisms respond primarily to the availability of nutrients to
decide if and how to grow and divide.

The work in this thesis focuses on the regulation of growth by nutrients in the budding
yeast Saccharomyces cerevisiae, a unicellular microorganism widely used both as a
biotechnological tool (from the classical fermentations to the production of
metabolites and heterologous proteins) and as a model organism for the study of
different molecular mechanisms which are conserved in humans.

Since the regulation of cell growth between yeast and mammals depends on such
different stimuli, it may not seem a good idea to use S. cerevisiae as a model organism.
Anyway, the components of the signalling pathways are highly conserved, and various
mutations in homologues of genes coding for yeast nutrient sensing pathways are
associated with a deregulation of growth and tumorigenesis in humans (Bos, 1989)
(Eltschinger and Loewith, 2016) (Faubert et al., 2015).



S. cerevisiae metabolism

Yeast carbon metabolism is centred on glucose

Yeast is able to metabolize a lot of different carbon sources, mostly carbohydrates
deriving from plants. This has been exploited for a long time by humans for production
of food and beverage, at first in a spontaneous way and later with more consciousness
of the fact that fermentation was the result of the action of a living organism.

Glycolysis: from glucose to pyruvate

To perform the reaction that we use for all those processes yeast must break down
sugars to obtain energy and building blocks for anabolic reactions. The first step toward
this objective is a process known as glycolysis, which happens without the requirement
for the presence of oxygen and produces energy storage molecules like the nucleotide
triphosphate ATP and reduces molecules of the coenzyme NAD to NADH.

The starting molecule of glycolysis is glucose, a monosaccharide that is yeast favourite
carbon source and is, therefore, able to regulate a variety of cellular processes by the
action of sensing and signal transduction systems (see Effect of the signal transduction
pathways). Glucose can be directly imported in the cell via specific transporters (see
Glucose) or derived from more complex or different sugars. The first step of glycolysis
is allowed by enzymes called hexokinases, which attach a phosphate moiety from ATP
to a glucose molecule to yield glucose 6-phosphate (Figure 1). Yeast possesses three
hexokinases, encoded by HXK1, HXK2 and GLK1 genes. Hxk2 gene is the main
hexokinase in cells growing on glucose (Bianconi, 2003).

Glucose 6-phosphate is later converted, by the action of Pgil, to fructose 6-phosphate,
which is, in turn, phosphorylated to fructose-1,6-bisphosphate. This reaction consumes
one more molecule of ATP and is catalysed by the gene products of PFK1 and PFK2,
which are the two subunits of phosphofructokinase. The aldolase encoded by FBA1 and
the triose phosphate isomerase Tpil allow the production of 2 molecules of
glyceraldehyde-3-phosphate (Compagno, Dashko and Piskur, 2014).

This ends the ATP-consuming part of glycolysis, which is followed by the second part,
where energy storage molecules are produced. The reactions catalysed by Tdh1/2/3,
Pgk1, Gpm1, Eno1/2 and Pyk2/Cdc19 lead to the production of 2 molecules of pyruvate
for every molecule of glucose. During these reactions, 4 molecules of ATP and 2 of
NADH are generated (Compagno, Dashko and Piskur, 2014).
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The many fates of pyruvate reflect different growth strategies
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Figure 2 — Main reactions associated with pyruvate metabolism (Pronk, Yde Steensma and Van Dijken, 1996)

The pyruvate generated this way is the starting point of many biochemical pathways
(summarized in Figure 2), that eventually lead to the re-oxidation of NADH molecules
to NAD* (Pronk, Yde Steensma and Van Dijken, 1996).

One particular pathway that start from pyruvate has been largely exploited by mankind
over the centuries: alcoholic fermentation. In this process, one molecule of pyruvate is
decarboxylated to acetaldehyde, which is, in turn, converted into ethanol in a NADH-
consuming reaction catalysed by one of the alcohol dehydrogenases isozymes encoded
by ADH1, ADH3, ADH4 and ADH5 (de Smidt, du Preez and Albertyn, 2008).

The other possible metabolic fate of pyruvate is respiration. This process takes place in
the mitochondria, so it requires the transport of pyruvate in the organelle and its
conversion to acetyl-CoA, catalysed by the pyruvate dehydrogenase complex,
composed by Lat1-Pdal-Pdb1-Lpd1-Pdx1 (Pronk, Yde Steensma and Van Dijken, 1996).
There, the acetyl-CoA generated goes through 10 reactions (the tricarboxylic acid, or
TCA cycle), shown with the corresponding enzyme-coding genes in Figure 3.

At the end of these reaction acetyl-CoA is transformed into oxaloacetic acid, which ends
up reacting with a new acetyl-CoA molecule in the first reaction, catalysed by citrate
synthase, therefore closing the cycle. As a final result of the TCA cycle, 2 molecules of
NAD* are reduced to NADH that add up to the molecule formed during glycolysis
(Compagno, Dashko and Piskur, 2014). The electrons carried by those NADH molecules
are then transferred to the electron transport chain, in a process that allows for the
production of ATP and the re-oxidation of all the NADH molecules. Moreover, in the
reaction catalysed by succinate dehydrogenase (also known as respiratory chain
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complex Il), electrons are transferred to a ubiquinone molecule, reducing it to ubiquinol
(Rutter, Winge and Schiffman, 2010).

Another important function of the TCA cycle is the generation of precursor molecules
for various biosynthetic processes. In particular, oxaloacetic acid is required for the
biosynthesis of lysine and aspartate (Jones and Fink, 1982) and 2-oxoglutarate (also
known as a-ketoglutarate) is required for the biosynthesis of glutamate (Cooper, 1982).
Because the reactions forming and degrading glutamate are central in yeast nitrogen
metabolism (see p.16), this molecule is the interface between carbon and nitrogen
metabolism.
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Figure 3 - TCA cycle (from yeastgenome.org)

The next step is the transfer of the electrons stored in the NADH molecules to a series
of proteins and protein complexes located in the mitochondrial matrix, called the
electron transport chain (Figure 4). The first component of the electron transport chain
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is the NADH:ubiquinone oxidoreductase encoded by NDE1, which carries out the
function of mammalian complex |, reducing a ubiquinone molecule to ubiquinone. In
contrast with complex |, Ndel does not pump protons across the membrane. As
mentioned in the last paragraph, complex Il also carries out the same reactions with
the electrons

taken from succinate in the TCA cycle. Complex lll catalyse the opposite reaction,
transferring the electrons from ubiquinol to cytochrome c. This first cycle of reduction
and re-oxidation of ubiquinone, called Q cycle, leads to the translocation of protons to
the mitochondrial intermembrane space. A similar cycle is the result of the action of
complex IV, which oxidizes cytochrome c transferring the electrons to the final
acceptor, O,. The protons translocated with these two reactions then pass through the
F1FO ATP synthase which is able to generate ATP. In yeast, the total amount of ATP
generated through glycolysis and respiration of a glucose molecule is 16 ATP (Bakker et
al., 2001).

Matrix
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;:chrome c;:
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Space i\ ' \

Figure 4 - Electron transport chain, general scheme and protein-coding genes
(adapted from Van Der Bliek, Sedensky and Morgan, 2017)

Analysing the number of ATP molecules produced by alcoholic fermentation and
respiration, it is evident that most efficient pathway is the latter. Despite this, yeast is
mostly known for its ability as a fermenter, even in the presence of oxygen.
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The reason behind this weird behaviour is the so-called “Crabtree effect”. Named after
its discoverer, it is the fact that S. cerevisiae (and the other Crabtree-positive yeasts),
even during aerobic growth, prefer fermentation over respiration, as long as a large
guantity of glucose is present in the growth medium.

This has been explained as a precise growth strategy which has conferred several
advantages to S. cerevisiae, called “make-accumulate-consume” (PiSkur et al., 2006).
This strategy is mostly due to the repression exerted by glucose and other Cg sugars on
respiration genes (see p. 31). It allows yeast to quickly consume a large quantity of
glucose, therefore subtracting from its competitors. Moreover, the ethanol produced
inhibits the growth of many other microorganisms, while S. cerevisiae is resistant.
Finally, if oxygen is present, yeast can utilize the ethanol previously produced, giving
rise its characteristic “diauxic growth” (Figure 5).

A

Culture density

Diauxic
shift

Glucose,

Log scale

Post-diauxic . Stationary
! phase M phase
< a 'nn::
(days)

Figure 5 - Typical growth curve of a yeast culture growing on a glucose-containing medium. S. cerevisiae
cells, after an initial lag phase, grow rapidly on glucose and produce ethanol, which is later consumed
after the diauxic shift (Busti et al., 2010).

Yeast Ethanol consumption is due to the catalysis operated by Adh2 enzyme, which
converts the alcohol to acetaldehyde, that is, in turn, transformed into acetate. Both
the enzymes are dehydrogenases and reduce NAD* to NADH. Acetyl-CoA is then
synthesized from acetate by Acsl and Acs2 and enters the TCA cycle, fuelling the
electron transfer chain.
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Interestingly, human tumour cells show a similar metabolism of glucose, with an
accelerated glycolytic flux and the largest portion of ATP formed by substrate-level
phosphorylation and not by oxidative phosphorylation. Fermentation by cancer cells
(also known as Warburg effect) has lactate as a final result instead of ethanol. So,
despite many differences in the regulation of the biochemical pathways, yeast is a very
interesting mode of human deregulated cancer metabolism (Legisa, 2014).

Anabolism and anaplerotic reactions

When yeast cells are growing on non-fermentable carbon sources, like ethanol or other
C, or C3 compounds, they need to synthesize hexoses for biosynthetic purposes. This
aim is reached via the gluconeogenetic pathway. Gluconeogenesis is, essentially, the
reverse of glycolysis and share with it many enzymes. The few different enzymes are
those catalysing the irreversible reactions, that involve ATP production or consumption
(Compagno, Dashko and Piskur, 2014). The conversion of pyruvate into
phosphoenolpyruvate (with oxaloacetate as intermediate) is mediated by the
subsequent action of pyruvate carboxylase, encoded by PYC1 or PYC2, and
phosphoenolpyruvate carboxykinase, encoded by PCK1 (Pronk, Yde Steensma and Van
Dijken, 1996).

Yeasts also need to produce molecules to replace missing intermediates in the TCA
cycle that are removed for biosynthetic purposes. This necessity is satisfied by the so-
called anaplerotic reactions. The reaction catalysed by Pyc1/2 is important in fuelling
the cycle with oxaloacetate (Pronk, Yde Steensma and Van Dijken, 1996). Another
relevant pathway for this purpose is the glyoxylate cycle. This pathway is composed,
for the first three, of shared reactions with the TCA cycle, from oxaloacetate to
isocitrate. The last reaction takes place in the cytoplasm, where citrate is previously
exported (Strijbis and Distel, 2010). There, instead of converting isocitrate to a-
ketoglutarate, the isocitrate lyase encoded by /CL1 converts it to succinate and
glyoxylate (Fernandez, Moreno and Rodicio, 1992), which is in turn imported into the
peroxisome, where the malate synthase Mls1l condensate Acetyl-CoA and glyoxylate
into malate (Hartig et al., 1992). The pentose phosphate pathway is another important
metabolic route which subtract glucose-6-phosphate from glycolysis for biosynthetic
purposes. In particular, the hexose phosphate goes through a series of reactions shown
in Figure 6, that lead to the production of intermediates required for the anabolism of
amino acids and nitrogen bases and NADPH, needed both for providing the energy
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Introduction

required for metabolic reactions and for oxidative stress resistance (Compagno, Dashko
and Piskur, 2014).
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Figure 6 - Pentose phosphate pathway (from yeastgenome.org)
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Nitrogen metabolism revolves around glutamate and ammonia

Allantoin Citrulline
Allantoate Arginine
3’ Ornithine

' A
ng?le Proline |, .-€ucine Phenylalanine
Serine Alanine Is?)ael?:éne Tr-ryrtoos'?]gn
Asparagine—> Asgartate STYPROP
ABA Methionine
acetyl-CoA l Threonine
Lt NH,*
oxaloacetate citrate NADPHH" NaDP- 4 ATP ADPP,
GLN1
malate v e
a-Ketoqutarate Glutamate Glutamine
cycle
GDH2
succinate NADH,H* NAD* NADH,H-
NH - a-Keto-
glutarate
Amino Acids Amino Acids
Ala, Arg, Asp, Cys Asn, Trp

Gly, His, lle, Leu . ST
Lys, Mot Phe, pro P Urines, Pyrimidines
Ser, Thr, Tyr, Val

Figure 7 - Assimilation and utilization of the main nitrogen sources in S. cerevisiae (Ljungdahl and Daignan-Fornier, 2012)

Yeast natural habitat is composed by fruits and vegetables that undercome
decomposition. This environment is particularly enriched in compounds that serve as
nitrogen sources. For this reason, the metabolic routes that yeast uses to incorporate
that nitrogen have to account for the enormous heterogeneity of the possible nitrogen
containing compounds (Figure 7). The type of nitrogen sources that yeast can
metabolize are most of the amino acids, urea, compounds derived from purines and
the nitrogen base uracil. Each of this substances is able to sustain yeast growth at a
different growth rate, and some can only allow yeast to perform a limited number of
cell duplications, therefore it is not completely true to affirm that they are able to be
used as nitrogen sources by yeast (Cooper, 1982).

The study of the different cellular degradation systems for nitrogen containing
compounds has been performed mostly by isolation of mutants lacking specific
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enzymes in the various catabolic pathways or genes coding for protein involved in the
control of nitrogen metabolism.

From a lot of possible nitrogen sources derive a lot of catabolic pathways. This leads to
a difficult classification of this pathways. Luckily a lot of this metabolic branches
converge on common substances and this allow to group them according to the final
product of their degradation.

The first group of pathways is the one that generate ammonia as the final product. This
includes the allantoin, urea and asparagine degradation pathways. The ammonium
generated in this way must be converted to glutamate by NADP-dependent glutamate
dehydrogenases (Gdh1 and Gdh3). The other pathways converge directly on glutamate.
For this reason, glutamate and ammonia are central in yeast nitrogen metabolism
(Cooper, 1982), and this is one of the reasons that led us to investigate the differences
observed between these two compounds used in culture media. The relationship
between them is what | will mostly focus on in the next paragraph.

Glutamate and ammonia are the interface between nitrogen compounds anabolism
and catabolism. They can sustain yeast growth as sole nitrogen sources and are the
most important nitrogen donors in the cellular biosynthetic reactions, together with
glutamine. The reactions that convert ammonia and a-ketoglutarate into glutamate
and vice versa is catalysed by glutamate dehydrogenases (GDHs). Yeast possesses 3
different GDHs, characterized using a different cofactor.

GDH2 catalyses the conversion of glutamate to ammonia, according to the reaction:

L-glutamate+NAD* S a-ketoglutarate+NADH+NH4*

GDH1 and GDH3 are the two NADP-dependent isoforms responsible for the opposite
reaction:

a-ketoglutarate+NADPH+NH:" S L-glutamate+NADP*

The other option yeast cells have for the interconversion of ammonia and glutamate is
the reaction catalysed by the synergic action of glutamine synthase GLN1:

L-glutamate+ATP+ NHs* — L-glutamine+ADP+P;

and glutamate synthase GLT1:

L-glutamine+a-ketoglutarate+NAD(P)H — 2 L-glutamate+NAD(P)*
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which, in the end, converts a-ketoglutarate and ammonia to glutamate (Cooper,
1982).

None of these pathways is essential, as shown by the fact that the single gdh14, gdh34A
and gl/t1A mutants, as well as the double mutants, are able to grow on a synthetic
medium containing ammonia as a nitrogen source, even if with different growth
defects depending on the mutation and on the carbon source (DelLuna et al., 2001)
(Avendano et al., 1997). The triple deletion mutant is not able to grow in such condition,
while it is able to grow when glutamate is provided as nitrogen source (Campero-
Basaldua et al., 2017).

This indicates a partial redundancy of pathways for ammonia assimilation. As said
before, the deletions of the enzymes have different effects during growth on different
carbon sources. This difference is particularly evident in the case of the two paralogs
Gdh1 and Gdh3. GDH3 gene expression is induced in the presence of ethanol and
repressed during growth on glucose, while GDH1 levels do not change. Another
difference between the two isoforms is that Gdhl consumes a-ketoglutarate at a
higher rate (DeLuna et al., 2001). We can conclude that the fact that Gdh1 is more
important for growth on fermentable carbon sources, while Gdh3 with non-
fermentable carbon sources is probably due to the different availability of a-
ketoglutarate and energetic reasons.

Biosynthesis of amino acids

Every cell needs amino acids to build proteins for sustaining life. Unlike mammalian
cells, yeast is able to synthesize all the amino acids required for protein synthesis
starting from the backbone derived from a carbon source and ammonia, with the
reactions described in the last paragraph.

Amino acids can be divided into different families that are derived from a common
precursor amino acid, summarized in Table 1.

Family AAs

glutamate glutamate, glutamine, arginine, proline, lysine
aromatic  phenylalanine, tyrosine, tryptophan

serine serine, glycine, cysteine, and methionine

aspartate aspartate, asparagine, threonine, cysteine, methionine
pyruvate alanine, valine, leucine, isoleucine

Table 1 - Biosynthetic family of amino acids
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Biosynthesis of nucleotides and energy metabolism

Another important class of nitrogen-containing compounds is nucleotides. They serve
different roles in the cell: they form nucleic acids, serve as energy supply for the
different cellular processes (ATP), they are used as signalling molecules (GTP, cAMP)
and they are important components of cofactors (NAD, FAD, Coenzyme A) (Ljungdahl
and Daignan-Fornier, 2012).

Nucleotides follow different biosynthetic pathways for purines and pyrimidines
synthesis which include both salvage pathway for the reutilization of components of
the growth medium or of the cellular catabolism and de novo synthesis from amino
acids and carbohydrates (Figure 8).
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Figure 8 - De novo and salvage synthesis of pyrimidines (left) and purines and histidine (right) (Ljungdahl and Daignan-Fornier, 2012)

As shown in the figure, nitrogen metabolism and in particular glutamate and
glutamine, have an important role as precursor or donor for the synthesis of both
types of nucleotides. In addition, phosphate is also a crucial nutrient for the synthesis
of different nucleotides, as shown by the fact that among mutants carrying
overexpression of the PHO5 gene, encoding for yeast acid phosphatase, the loss of
function adk1 and adol mutants were found (Gauthier et al., 2008). These genes are,
respectively, the adenylate and adenosine kinase, responsible for the synthesis of
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AMP and ADP. These enzymes, together with those involved in metabolic reactions
that produce ATP are really important because of the importance of adenosine
nucleotides (collectively called AXP) in the energy metabolism and sensing of the cells.

This reflects in the fact that a commonly used parameter to measure the energetic
state of the cell is the so called adenylate energy charge, calculated with the following
equation:

EC = ([ATP] + 0.5 [ADP])/([ATP] + [ADP] + [AMP])

When all adenine nucleotide pool is in form of AMP the energy charge (EC) is zero, and
the system is completely discharged (zero concentrations of ATP and ADP). With only
ADP, the energy charge is 0.5. If all adenine nucleotide pool is in form of ATP, the EC is
1. Therefore, the EC value could be a measure of the cell’s ability to carry out the
anabolic and maintenance reactions required to grow and to remain alive (Atkinson
and Walton, 1967) and the regulation of these reactions involving phosphate is crucial
for the maintenance of energy homeostasis.

Glycogen and trehalose are yeast reserve carbohydrates

Just like us, yeast cells must store the extra energy obtained by nutrient (especially
glucose). Amongst the various ways of storage, two fundamental molecules are
glycogen and trehalose. Aside from being similar in some ways, they are synthesized in
different moments of yeast growth and their function is not the same.

The starting molecule for production of both trehalose and glycogen is UDP-glucose,
which is then polymerized in different ways by the action of different enzymes (Figure
9).

Glycogen is a branched polysaccharide with a high molecular mass. It is composed of
a-(1, 4)-glucosyl chains with a-(1, 6)-linkages. The average length of each linear chain
is 13 glucose molecules (Francois, Walther and Parrou, 2012). Biosynthesis of glycogen
is similar to that of many biomolecules of high molecular mass. It is composed of 3
fundamental steps: initiation, elongation and ramification (Francois and Parrou, 2001).

The initiation step is performed by a protein called glycogenin, which possess a self-
glycosylating activity and reacts with UDP-glucose, forming a short a-(1,4)-glucosyl
chain, by formation of a covalent bond with a tyrosine residue. Yeast glycogenin is
encoded by GLG1 and GLG2 genes (Frangois, Walther and Parrou, 2012). While the
presence of these genes is not essential for glycogen biosynthesis, the double glg1 glg2
mutant shows a random accumulation of glycogen only in some colonies. Therefore,
the existence of alternative initiation routes for glycogen biosynthesis is probably true,
but glycogenin presence ensures a good level of glycogen production in every cell
(Torija et al., 2005).
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Figure 9- Structure and metabolic routes for trehalose and glycogen biosynthesis (from Francois, Walther & Parrou, 2012)

The elongation step is operated by the glycogen synthase, which is present in yeast as
the two isoforms Gsyl and Gsy2, which are very similar proteins and catalyse the
polymerization of glucose units with a-(1,4)- glycosidic bonds. The importance of the
two isoforms is different in cells growing in different carbon sources, with Gsy2 being
responsible for most of the glycogen production during growth on glucose, and the two
being equally important in cells growing on galactose (Frangois, Walther and Parrou,
2012).

The branching step is due to the action of the amylo (1,4)—(1,6)-transglucosidase
encoded by GLC3, which catalyse transfer of 6-8 glucose residues from the end of a
linear chain to form a a-(1,4)- glucosidic bond with an internal residue (Francois and
Parrou, 2001). Branching activity is fundamental for glycogen biosynthesis, as shown
by the deletion of GLC3, which strongly reduce the polysaccharide accumulation (Thon
et al., 1992).
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Glycogen breakdown occurs via two distinct mechanism for the cytosolic and vacuolar
compartments. Cytosolic glycogen is degraded by the action of glycogen phosphorylase
Gph1l and the debranching enzyme Gdb1l. The former catalyses the removal of glucose-
1-P from the linear a-(1,4) chain, while the latter is able to transfer maltosyl or
maltotriosyl molecules from a branch to a linear chain and to remove the a-(1,6) bond.
Gph1 is activated by phosphorylation, the players involved still not being completely
elucidated (see PKA). Vacuolar glycogen is imported in the compartment during growth
on glucose, and constitute a reservoir protected from cytosolic degradation. The
breakdown of this pool is due to the action of the gene product of SGA1, which encodes
an amylo-(1,4),(1,6) glucosidase, whose reaction yields glucose as final product.
Expression of SGA1 is induced during stationary phase or starvation and during
sporulation (Francois, Walther and Parrou, 2012).

Trehalose, on the other hand, is a much simpler molecule, being a disaccharide
composed by two glucose molecules connected by a a-(1,1) bond (Figure 9). The
conversion of UDP-glucose to trehalose is performed by a protein complex containing
the two trehalose synthases, encoded by TPS1 and TPS2, together with the structural
proteins encoded by TPS3 and TLS1 (Figure 10). The reaction proceeds in two steps, the
first being the conversion of UDP-glucose to trehalose-6-P (catalysed by Tps1) and the
subsequent removal of the phosphate moiety by the trehalose-6-P phosphatase Tps2.

Trehalose degradation is due to the action of hydrolytic enzymes called trehalases, that
are able to catalyse a reaction yielding 2 molecules of glucose from every molecule of
trehalose. Yeast possesses two types of trehalase activities: neutral (with a pH optimum
around 7) and acid (optimal pH=4) (Francois, Walther and Parrou, 2012). Cytosolic
trehalose catabolism is carried out by the neutral trehalase activity, which is mostly due
to the action of the enzyme encoded by the NTH1 gene. In fact, deletion of this gene
abolishes intracellular trehalose metabolization in most growth conditions. Nthl
protein, like many others involved in storage compound metabolism, is regulated by
PKA-dependent phosphorylation (see PKA). S. cerevisiae possesses a second neutral
trehalase, encoded by NTH2 and paralog of NTH1, whose enzymatic activity was
doubtful for a long time. In more recent times, it was shown that its gene product is
actually responsible for a “residual neutral trehalase activity” in a nth1A strain during
particular growth conditions, such as stationary phase (Jules et al., 2008) and recovery
from stress (Garre and Matallana, 2009).

The acid trehalase activity of yeast is due to the action of the protein Ath1, which is
localized to both the vacuoles and at the periplasm and cell wall. While it has been
established that Ath1 is active at the surface of the cell and that its presence is required
for extracellular trehalose utilization (Jules et al., 2004), the vacuolar function of the
protein is still to be elucidated. Some have hypothesized that the vacuolar acid
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Introduction

trehalase is just sequestered there to avoid degradation of trehalose protecting the
cells surface (Eleutherio et al., 2014).
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Figure 10 - Biosynthesis and degradation of trehalose and glycogen (Frangois, Walther and Parrou, 2012))
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Storage lipids and lipid droplets

Yeast has been extensively used as a model for the study of lipid metabolism. Like other
living organisms, yeast metabolism produces and utilize fatty acids (FAs), glycerolipids,
glycerophospholipids, sterols and their derivatives, sphingolipids, prenol lipids,
glycolipids, and polyketides.

Lipids serve various functions in the cell, two of the most important being forming the
biological membranes (sphingolipids and phospholipids) and serving as energy storage
molecules (triglycerides and steryl esters). Both these kind of molecules derive from
FAs, which can derive from biosynthesis, breakdown of more complex lipids and uptake
from the environment (Klug and Daum, 2014).

Fatty acids can be either free (FFAs) or assembled in more complex lipids. They are
carboxylic acids which possess a carbon chain with a defined length and can be fully
saturated or have a certain degree of unsaturation (i.e. the number of double bonds in
the carbon chain). Yeast have a defined composition of fatty acids, which was defined
experimentally and is susceptible of changes depending on the growth condition of the
cells. Generally speaking, yeast most abundant FAs are palmitoleic acid (C16, 1
unsaturation), palmitic acid (C16, fully saturated) and stearic acid (C18, 1 unsaturation)
and the less abundant are myristic acid (C14, 1 unsaturation) and cerotic acid (C26, fully
saturated) (Klug and Daum, 2014).

De novo synthesis of FAs is the most related to the topics of this thesis, because it is the
route by which energy and elements extracted from other environmental nutrients are
incorporated into lipids. It takes place in the cytoplasmic and mitochondrial
compartments, and later in the endoplasmic reticulum (ER) for elongation and
desaturation.

The first step in FAs synthesis is the reaction catalysed by acetyl-CoA-carboxylase:
ATP + acetyl-CoA + HCO3™ = ADP + phosphate + malonyl-CoA

Yeast possesses two isoforms of this enzyme: one cytoplasmic that uses Acetyl-CoA,
encoded by ACC1, and another mitochondrial, encoded by HFA1.

The next steps are catalysed by two different fatty acid synthase (FAS) complexes in the
cytoplasm and in the mitochondria. In particular, cytosolic (or type |) FAS complex is
composed of two subunits formed, in turn by hexamers of Fas1 (B subunit) and Fas2 (a
subunit) proteins. These proteins bear multiple enzymatic activities. In particular, Fas1
possess acetyl transferase, enoyl reductase, dehydratase and malonyl-palmitoyl
transferase activities. Fas2 bears acyl carrier protein, 3-ketoreductase, 3-ketosynthase
and phoshopantheteine transferase activities (Tehlivets, Scheuringer and Kohlwein,
2007). Mitochondrial (or type Il) FAS complex, instead, is formed by six proteins that
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only have one enzymatic activity each. In detail, Acpl is the acyl-carrier protein, Cem1
is the PB-ketoacyl-ACP synthase, OAR1 encodes a 3-oxoacyl-acyl-carrier protein
reductase, Htd2 functions as 3-hydroxyacyl- thioester dehydratase, Etrl is an enoyl-
ACP reductase and PPT2 encodes a phosphopantetheine protein transferase (Klug and
Daum, 2014). The final results of the action of both FAS complexes is the transfer of
two carbons from a molecule of malonyl-CoA to a growing saturated acyl chain, as
shown in Figure 11.
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Figure 11 - Main reactions of fatty acid synthesis, from (Tehlivets, Scheuringer and Kohlwein, 2007)

Addition of more carbon atoms to the long chain fatty acid generated via these
reactions takes place in the ER and requires the action of specialized proteins called
elongases, encoded by ELO1, ELO2 and ELO3 genes (Rossler et al., 2003). Finally,
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introduction of double bonds is due to the desaturation reaction catalysed by the
protein Olel (JE, VM and CE, 1989).

FFAs that are not transformed in the amphiphilic lipids that compose the biological
membranes (sphingolipids and phospholipids) can be toxic for the cell. For this reason,
they are transformed into bigger inert molecules: triacyclglycerols (TAGs), composed
of three fatty acid chains linked to a glycerol molecule. The same goes for sterols,
another class of membrane lipids synthetized from Acetyl-CoA and formed by four rings
of carbon atoms with a side acyl chain and an hydroxylic group which serves as a
hydrophilic moiety. These compounds can also cause lipotoxicity and are therefore
converted into sterol esters (SEs) by esterification with a fatty acid (Klug and Daum,
2014).

Both these two types of molecules constitute yeast way of storing fats, that at the right
moment can be used to obtain energy and to synthesize membrane lipids. They are
stored in specialized cellular organelles, called lipid droplets (LDs). At first these
particles were considered just reservoirs of the above mentioned neutral lipids, but
they turned out to be very dynamic organelles, whose defects in multicellular
eukaryotes give rise to a series of diseases (Kohlwein, Veenhuis and van der Klei, 2013).
LDs are composed of an external monolayer of phospholipids which contain the TAGs
and SEs and contain proteins as well, mostly enzymes of lipid metabolism.

For example, degradation of storage lipids is performed on the surface of lipid droplets,
where TAGs are hydrolysed by lipases (encoded by TGL3, TGL4 and TGL5) and SEs are
attacked by the action of hydrolases Tgll and Yeh1 (Radulovic et al., 2013).

Another important feature of LDs is their ability to interact with other organelles. The
main example is their interaction with peroxisomes, which is associated with the B-
oxidation of FAs. That is the process by which fatty acids are degraded to yield acetyl-
CoA and a reduced acyl-CoA with 2 carbon atoms. This process requires the
translocation of FAs into the peroxisome operated by the complex formed by the
proteins Pxal and Pxa2 (for long chain fatty acids) or by Ant1 and Pex11 (for medium
chain fatty acids). For the first group the activation with coenzyme A happens in the
cytoplasm before the import, while for the latter it is performed inside the peroxisomal
compartment by the medium chain fatty acyl-CoA synthetase Faa2. Subsequently, the
enzyme encoded by POX1 gene catalyses the oxidation of acyl-CoA to trans-2-enoyl-
CoA in a reaction which is coupled with the one performed by the catalase Ctal, due to
the release of H,0; in the first reaction. The next step is the conversion of trans-2-enoyl-
CoA to 3-ketoacyl-CoA thanks to the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA
hydratase activities of the Fox2 enzyme. Finally, the gene product of POT1 catalyses the
cleavage of 3-ketoacyl-CoA into acyl-CoA and acetyl-CoA (Ploier, Daum and Petrovic,
2014).
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Nutrient transport and sensing lead to the activation of signalling pathways

Glucose

Glucose is imported into the cell via different membrane proteins that allow a
facilitated distribution of the nutrient. These proteins are called Hxt (hexose
transporters).

Yeast possesses 20 HXT genes that belong to the family of hexose transporters (in
particular, HXT1-17, GAL2, SNF3 and RGT2), whose function is redundant, as shown by
the fact that deletion of each single gene does not prevent growth on glucose.

Genes Hxt1-7 are the most important transporters and deletion of all 7 genes prevents
growth on glucose.

It is not surprising that yeast is endowed with a great number of glucose transporters
and sensing mechanism, because, as we saw before, glucose is the fundamental carbon
source for yeast metabolism. Moreover, S. cerevisiae, due to its lifestyle and habitat, is
exposed to very different concentrations of glucose and other sugars and it needs to
react accordingly for maintaining a good homeostasis.

Consistently, the different functional transporters are dedicated to transport of glucose
under different concentrations and have different affinity for the sugar
(ImM<Km<100mM) and their expression in strictly regulated by the growth condition
(Busti et al., 2010).

Even if they belong to the hexose transporter family, SNF3 and RGT2 gene products
have lost the ability to transport the sugar into the cell. They act as sensor of
extracellular glucose concentration and therefore allow the cell to adjust glucose
uptake and metabolism. In particular, Snf3 is sensible to low levels of extracellular
glucose, while Rgt2 senses high levels of the hexose (Kayikci and Nielsen, 2015). The
action of these two sensors generates an intracellular signal, which regulates the
transcription of HXT genes. This signal is mediated by the casein kinases encoded by
YCK1 and YCK2 with regulation by PKA pathway, which leads to the expression of the
corrects HXT genes.

Yeast also possesses a glucose-sensing system that relies on a G-protein coupled
receptor (GPCR) that is able to activate Protein Kinase A (PKA) signalling pathway. This
kind of receptor is usually connected to 3 intracellular protein subunits (o, p and y) that,
in response to the ligand interaction dissociate into a a monomer and a By dimer,
activating the downstream signal.

In this particular system, the GPCR is the Gprl protein, while the a subunit is encoded
by GPA2. Many candidate genes have been identified as putative B and y subunits for

27



a complex with Gpa2: in particular the kelch proteins Gpb1 and Gpb2, but it was shown
that, even if they have a role in PKA signalling they do not actually behave as  and y
proteins. Gpa2 has a GTPase activity stimulates the activity of adenylate cyclase Cyrl,
which catalyse the reaction converting AMP to cAMP, activating PKA signalling (see p.
32).

Sensing intracellular glucose is as important as sensing sugars outside the cell and
concur to activate some of the same pathways. One of the most relevant system is the
Ras pathway. This pathway is composed by a small monomeric G-protein (Rasl or
Ras2), which is active when bound to GTP and inactive after GTP hydrolysis. Therefore,
the proportion of GTP- and GDP-bound Ras must be finely regulated. This regulation is
the result of the action of guanine nucleotide exchange factors (GEFs, encoded by
CDC25 and SDC25), and GTPase Activating Proteins (GAPs, encoded by IRA1 and IRA2).
GEFs mediate activation of Ras, while GAPs stimulate hydrolysis of GTP and inactivation
of the G-protein (Busti et al., 2010).

The molecular mechanism by which Ras proteins are activated by glucose are not
completely clear. The main hypothesis involves an action of glucose-6-phosphate on
Cdc25/Sdc25, since phosphorylation of glucose is required for this activation (Redkaer
et al., 2014).

Another intracellular glucose signalling pathway is the one that relies on Hxk2 and Migl
and that regulates the activity of the kinase homologous to the mammalian AMP-
activated kinase, which in yeast is encoded by SNF1 gene.

Hxk2 is a so-called “moonlighting protein”. Aside from its cytoplasmic function in
glycolysis, it was shown that it also localizes to the nucleus, where it interacts with DNA
and with the transcriptional factor Migl, inhibiting the expression of several genes, like
the invertase SUC2 (Rgdkaer et al., 2014).

The Snfl kinase, instead, sense when glucose levels are low. Unlike its mammalian
counterpart, the activation is not due to AMP, but is correlated with the levels of ADP.
Itis therefore strictly linked to the energetic state of the cell. Anyway, the specific signal
triggering this activation has not been identified (Kayikci and Nielsen, 2015).

Nitrogen

Yeast possesses several permeases dedicated to the transport of amino acids and
ammonium (Figure 12). The variety of nitrogen sources that yeast can metabolize
results in the need for specialized sensing mechanisms to discriminate the nitrogen
containing compounds.

28



A big difference between sensing of extracellular nitrogen and glucose in yeast is that
the former relies both on non-transporting sensors and transceptors, capable of
importing the molecule while transmitting the signal into the cell.

Permease Substrate(s) Affinity
Agpl Aszparagine, glutamine, other amino acids Low
Agp3 Glutamine High
Alp1 Arginine —a
Bap2 Leucine High
Bap3 Cysteine, leucine, isoleucine, valine High
Canl Arginine High
Dip5 Dicarboxylic amino acids High
Gapl L-Amino acids High
Gnpl Glutamine High
Hip1 Histidine High
Lyp1 Lysine High
Mepl Ammonium High
MepZ Ammonium High
Mep3 Arnrmoniumm Low
Mmp1 S-Methylmethionine High
Mup1 Methionine High
Mup3 Methionine Low
Ortl Ornithine —
Putd Proline High
Sam3 5-Adenosylmethionine High
Tat1 Valine, leucine, iscleucine, tyrosine, Low
tryptophan, histidine
Tat2 Tryptophan, tyrosine High
Ugad y-Aminobutyrate —
Yetl Cysteine High

a— not reported.

Figure 12 - The different permeases present in yeast for amino acids and ammonium (Zhang et al., 2018)

Extracellular amino acids are sensed by the SPS sensor system. In their presence, the
signal originating from this sensor induces the expression of genes involved in amino
acid transporters and metabolic enzymes.

One of the key components is the protein encoded by SSY1, which shows great
similarity with the amino acid permeases, but does not transport them. The N-terminal
region of Ssyl interacts with Ptr3 and Ssy5, constituting the sensor. In the presence of
amino acids that in a process that involves phosphorylation and ubiquitination, activate
the downstream effectors Stpl and Stp2 allowing them to enter into the nucleus,
where they act in combination with the transcriptional activators Dal81-Uga35
(Rgdkaer et al., 2014).
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In addition to sensing via the SPS system, yeast cells possess several permeases that
are needed for import of amino acids into the cell and for their sensing. This kind of
proteins are called transceptors (Van Dijck et al., 2017).

One of the first identified transceptors is the Gapl permease, which mediate the import
into the cell of all the canonical L-amino acids, plus L-citrulline, 4-aminobutyric acid,
some D-amino acids. Studies have shown that Gapl is able to activate PKA signalling.
This activation does not require catabolism of the amino acids and the transmission of
the signal is not due to cAMP production. Ammonium addition also have the same
effect of amino acids addition on PKA activation. This signal is mediated by the three
amino acid transceptors encoded by MEP1, MEP2, with the bigger effect being due to
Mep?2 (Steyfkens et al., 2018).

Intracellular nitrogen is sensed by a highly conserved pathway that rely on the Tor
kinases and the complexes in which they participate. Contrary to the multicellular
eukaryotes, yeast possesses 2 different Tor kinases, encoded by TOR1 and TOR2. Their
gene products belong to the phosphatidylinositol protein kinase family, and form two
different complexes (composed as in Table 2), called TORC1 and TORC2.

TOR complex [Subunits

Torlor Tor2 (mainly Torl)
Lstl

Kogl

Tco89

Tor2

Avol

TORC2 Avo2

Avo3

Bit6

TORC1

Table 2 - Composition of yeast TOR complexes 1 and 2

TORC2 regulates mainly actin cytoskeleton and cell polarity and it is activated by
changes in plasma membrane tension (Eltschinger and Loewith, 2016), TORC1 is
activated by intracellular amino acid availability and regulates processes related to
cellular growth (Loewith, 2010).
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The localization of TORC1 is the vacuolar membrane. There, it is activated by the Ego
complex, composed of Egol, Ego2, Ego3, Gtrl, and Gtr2 proteins. The Ego proteins are
the structural subunits and function in recruiting the complex to the vacuolar
membrane and stabilizing the interaction. Gtrl/2 are the regulatory subunits, which
form a heterodimer, which functions as a GTPase and it is completely active when GTP
is bound to Gtrl and GDP is bound to Gtr2. Both GEFs (Vam6 for Gtrl) and GAPs (L-
Leucyl-tRNA and SEACIT complex for Gtrl, Lst4-Lst7 and SEACAT complexes for Gtr2)
are present in yeast cells and respond to amino acid presence (Figure 13). Moreover,
free tRNAs have been shown to inhibit TORC1 independently of the Gtr1/2 heterodimer
(Zhang et al., 2018).
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Figure 13 - Activation of TORC1 via the Gtr1-Gtr2 heterodimer (Nicastro et al., 2017)

Effect of the signal transduction pathways

In the last chapter, signals activating many signalling pathways have been mentioned.
These pathways have pleiotropic effects on the cell growth, metabolism and energy
and they are really important for the cell homeostasis. It is, therefore, important to
understand what their main targets are and which cellular processes they affect.

31



PKA

The signal transduction pathway dependent on Protein Kinase A is the most important
for glucose signalling, as demonstrated by the fact that 90% of yeast transcriptional
changes due to a shift from a non-fermentable carbon source (like galactose) to glucose
can be obtained as well by expression of a hyperactive Ras2 protein (Zaman et al.,
2009).

The purpose of PKA signalling in the presence of glucose is to positively regulate growth
to allow the fast utilization of the preferred carbon source. Therefore, glycolysis is up-
regulated, while genes required for utilization of non-fermentable carbon sources
(respiration and gluconeogenesis) is repressed, as are the genes related to stress
response (Busti et al., 2010).

Glucose allow cells not only to grow faster but also to sustain a higher biosynthetic
activity, which is consistent with the bigger cell size of glucose-grown cells. A way in
which PKA signalling regulates this process is the induction of genes required for
ribosome biogenesis. In particular, PKA regulates the localization of Sfp1 transcription
factor, targeting it to the nucleus where it promotes transcription of ribosome
biogenesis (Ribi) and ribosomal protein (RP) genes (Marion et al., 2004).

PKA effect on the suppression of the stress response is mediated by action on the
transcription factors encoded by MSN2 and MSN4. This regulation is also at the level of
the localization of the proteins (Gorner et al., 1998). Msn2/4 bind to the promoter of
genes containing the STRE element. These genes participate in the response to a variety
of different stresses regulating different processes like detoxification from reactive
oxygen species, carbohydrate metabolism, proteolysis and protein folding (Gasch et al.,
2000).

Yak1 kinase is also a target of PKA action. It was first thought to function in a parallel
pathway antagonizing PKA function. In particular, it phosphorylates and positively
regulate Msn2 and Hsfl proteins (Lee et al., 2008). The latter is a transcription factor
that express another category of stress-related genes, which contain the HSE element,
involved in various stresses as well as in the diauxic shift. Moreover, its phosphorylation
acts on the Crfl transcriptional repressor antagonizing the transcription of ribosomal
genes. Just like for the Msn proteins, PKA phosphorylation affects Yak1 localization and
keeping it out of the nucleus, indirectly regulating the processes (Busti et al., 2010).

When PKA is active, cells are in optimal growth conditions and do not need to stop.
Therefore, the activity of a protein kinase like Rim15, whose role is mainly in governing
the entry into stationary phase, must be stopped. Rim15 generally downregulates
growth acting mainly by activating Gisl (post diauxic shift transcription factor)
(Pedruzzi et al., 2000). Other targets of its regulation are Igol and Igo2 (Talarek et al.,
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2010), which serve a protective role for the mRNA of the genes required for the entry
into Go phase. As it will be shown by the following paragraphs, signalling pathways are
not linear, but fully interconnected. Therefore, it is not surprising that Rim15 also acts
on Msn2/4 and Hsfl (Lee et al., 2013). PKA phosphorylation of Rim15 inhibits its kinase
activity (Reinders et al., 1998).

PKA also regulates the activity of the Rgtl transcription factor, leading to the expression
of HXT genes (Busti et al., 2010).

TORC1

As for PKA, a wide number of cellular processes are regulated by TORC1. The stimuli
that activate these two pathways are different, but in both cases the meaning is that
the cell is growing in a good environment with good nutrients. Therefore, it is not
surprising that many downstream targets are common between the two kinase
complexes.

TORC1 action is mainly mediated by two effectors: the kinase encoded by SCH9 and the
Tap42-protein phosphatase complex (Loewith, 2010).

Sch9 is a protein kinase finely regulated by TORC1 phosphorylation and, therefore, it is
used as a readout for TORC1 activation (Urban et al., 2007). Its targets include Rim15,
which is kept in the cytoplasm, blocking its action. Moreover, Sch9 regulates ribosome
biogenesis acting on RNA polymerases |, Il and Il (Smets et al., 2010), autophagy and
lifespan regulation (Sampaio-Marques et al., 2011) and sphingolipid metabolism (Zhang
et al., 2018).

The other main branch of TORC1 signalling is due to its action on Tap42. TORC1-
dependent phosphorylation promotes its association with the protein phosphatase 2A
(PP2A) complex and the PP2A-like complex containing the Sit4 phosphatase. Tap42
interaction lead to inhibition pf the complexes. This result in a repression of nitrogen
catabolite repression (NCR) and stress response, one of the main biological process
regulated by PP2A and PP2A-like (Zhang et al., 2018).
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TORC1 also directly regulates Sfpl, as an additional control on ribosome biogenesis
(Loewith, 2010).
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Figure 14 - TORC1 direct effectors and the pathways they regulate (Loewith, 2010)

Snfl

As already mentioned, the Snfl kinase senses low levels of glucose and is therefore very
important for the shift from a fermentative to a respiratory metabolism. A glucose level
of 0.2% or below activates Snfl by relieving its autoinhibition and promoting the
binding of Snf4 regulatory subunit (Kayikci and Nielsen, 2015).

Once activated, Snfl phosphorylate different targets having different transcriptional,
post-transcriptional and post-translational effects. In particular, Migl phosphorylation
by Snfl causes its dissociation from DNA and allows the expression of the genes
repressed by glucose (Kayikci and Nielsen, 2015). On the other hand, Snfl
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phosphorylation of Cat8 induces the expression of gluconeogenetic genes required for
growth on non-fermentable carbon sources, like FBP1, MLS1 and ICL1. Phosphorylation
of Adrl induces the expression of genes required for ethanol and fatty acid metabolism
(Young et al., 2003). The latter is also affected at a post-translational level by an
inhibitory phosphorylation of Accl and an activating modification of Fox2 (Usaite et al.,
2009). Moreover, phosphorylation of Gcn4 blocks the biosynthesis of amino acids
(zaman et al., 2009). As a general result, expensive biosynthetic pathways are shut
down, while reactions that produce energy are up-regulated.

Finally, Snfl induce stress response by phosphorylating Msn2 (De Wever et al., 2005).

PKA, TOR and Snfl pathways are closely interconnected. Not only they share a large
number of cellular targets (Figure 15), but the crosstalk between the pathways is
relevant. For example, PKA and TORC1l negatively regulate Snfl activity and
localization, while Snfl activity seems to inhibit the activation of Sch9 (Shashkova,
Welkenhuysen and Hohmann, 2015).

Ribosomal G " R Stress NCR Amino Inhibition of
biogenesis Tl DROY responsas genas acid translation
synthesis

Figure 15 - Common targets of the signalling of TORC1, PKA and Snfl pathways (R@dkaer et al., 2014)

Regulation of nitrogen transport and metabolism

Most of the work in this thesis concerns the utilization of nitrogen sources. Therefore,
it is useful to spend a few words on the specific regulation of the cellular machinery
required for the consumption of nitrogen sources.
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Figure 16 - Retrograde signalling in yeast (Liu and Butow, 2006b)

Yeast strains distinguish between preferred and not preferred nitrogen sources (green
and red, respectively, in Figure 7). In the presence of a preferred nitrogen source, the
NCR pathway is activated, even if the level of repression achieved is different for
different preferred nitrogen sources (Godard et al., 2007). This pathway is mediated by
the action of 4 transcription factors: GIn3 and Gatl (activators) and Gzf3 and Dal80
(repressors). Genes subjected to NCR have a GATA sequence in their promoter and
these transcription factors bind to that. In the presence of a preferred nitrogen source
GIn3 and Gatl are phosphorylated by TOR and sequestered by the Ure2 protein and
cannot activate the expression of the NCR genes. Moreover, Gatl itself is under
regulation by NCR (Zhang et al., 2018). 41 genes have been identified as target of the
NCR by classical genetics and molecular biology, and the list have been expanded with
the contribution of transcriptomics analyses. They include broad-range and non-
preferred amino acids and ammonium permeases, as well as many genes involved in
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central nitrogen metabolism, including the “central hub” composed by GLN1, GDH1-3
and GLT1 (Godard et al., 2007).

A pathway partly mentioned above is the general amino acid control (GAAC), which is
activated during starvation for at least one amino acid. The outcome of this activated
pathway is a down-regulation of protein synthesis via phosphorylation of the
translation factor elF2 (Conrad et al., 2014) and an increase in amino acid biosynthetic
processes, due to an increased activity of the transcription factor Gen4, positively
regulated in a transcriptional and translational way (Zhang et al., 2018). As a rule of
thumb, when the NCR is active, the GAAC is not and vice versa (Godard et al., 2007).

As we have covered in the metabolism chapter, the TCA cycle is the point where carbon
and nitrogen metabolism connect, due to the reaction producing a-ketoglutarate. The
latter is under the control of the so-called retrograde signalling (RTG), which is a
pathway by which the cell can sense mitochondrial disfunctions and which is very
sensitive to the nitrogen source. As in the case of NCR, two transcriptional activators
(Rtgl and Rtg3) are responsible for the expression of RTG-regulated genes and are, in
turn, subjected to regulation by TORC1 and SPS pathways, as well as other positive and
negative regulators (summarized in Figure 16). Genes regulated by this pathway include
those coding for enzyme in the first part if the TCA cycle (PYC1, CIT1, ACO1, IDH1 and
IDH2), the glyoxylate cycle citrate synthase Cit2 and DId2, a mitochondrial enzyme that
converts D-2-hydroxyglutarate to a-ketoglutarate (Liu and Butow, 2006a). Generally
speaking, good nitrogen sources repress the expression of RTG-regulated genes. The
strongest effect is, anyway, seen on glutamate, proline and citrulline (Godard et al.,
2007).

Studying modulation of growth by nutrients

Anybody who starts to work on the relationship between nutrients and growth, even
in a tiny unicellular yeast, can’t help but feel lost in all the metabolic and signalling
pathways described so far. The first good help is always to look at omics data for our
condition of interest: changes in transcriptome, proteome and metabolome are always
useful to have a general picture of what is happening to that cell in that particular
environment. This approach has been used to obtain some of the information
contained in this introduction and also for the generation of the results of this thesis.
Sometimes these analyses are not sufficient, and there are a few other approaches on
which | would like to dwell upon.

Computational modelling

Classical genetics, molecular biology and biochemistry rely on a reductionist approach,
that most of the time is not able to provide the full picture of a particular cellular
process, let alone of the entire cellular physiology.
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Introduction

With the development of more powerful computers, it has become possible to perform
simulations of biological systems that before were way too expensive from a
computational point of view. This has led to the birth of a new science called systems
biology. Systems biology is where biology, chemistry, computer science, mathematics
and physics come together to solve complex problems.

The first step is always to define a mathematical model that is able to describe, in a
formal way, the biological system of interest, which in our case will be the yeast
metabolism. The model must be constructed in a way that allow for in silico predictions
to be tested in the wet lab and to incorporate omics data into the simulation. The
mathematical representation of a metabolic network is a graph, in which the
metabolites are nodes and the reactions that connect them are edges (Cazzaniga et al.,
2014).

Genome-wide
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No parameters

Compartmental
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Small-scale
Dynamic
Quantitative
Continuous/discrete time
Stoichiometry
Fully parameterized
Compartmental
Well-stirred/diffusion

Figure 17 - Summary of the types of mathematical models in systems biology (Cazzaniga et al., 2014)

The types of models that can be used for describing a metabolic network can be

classified in terms of scale as:

e Toy models, which comprise few reactions (e.g. model of glycolysis)
e Core models, that contain a higher number of reactions, usually involved in a
particular sub-process (e.g. model of central carbon metabolism)
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e Genome-wide models, that contain all the information known about
metabolism and that have been possible after the genomic era and the
development of high-throughput technology (e.g. YEAST7 (Sanchez et al.,
2017)). This model contains the higher number of information about the
system and while this is advantageous, it has a high computational cost, which
reflects on the kind of simulations performed.

A different, but related, level of classification regards the level of detail of the model
(Figure 17).

Interaction-based models provide a qualitative description of the structure of the
network being described. This kind of model usually starts from the information
contained in pathway databases like KEGG (https://www.genome.jp/kegg/) and are
useful to understand the presence of different functional modules in our biological
systems. In other words, to have a topological view of the network (Stelling, 2004).

The description of the topology of the network is useful for identifying several of its
emerging properties, and it is the first constraint that limits the functioning of the
system. Other constraints are the stoichiometry of the reactions and their reversibility
(Stelling, 2004). These can be used to construct the so-called constraint-based models,
which consider the system under the assumption of a steady-state (therefore, they
cannot take time into account) and can be used to compute all the possible
physiological states the system can reach (in terms of distribution of the reaction
fluxes), given the imposed constraints, which can also come from experimental data.
The mathematical formalization of constraint-based models is the so-called
stoichiometric matrix, in which the rows represent the metabolites and the columns
represent the reaction (Cazzaniga et al., 2014).

The dynamic simulations are the most fine-grained and the most predictive in systems
biology. To perform those, there is a need for a lot of information about the system. In
fact, in addition to the relationship between the components of the model, the kinetic
parameters of the reactions and the starting conditions of the system must be known
(Stelling, 2004). Because of that, even if these parameters are known, this kind of
modelling requires specific the knowledge of specific mathematical formalisms (based
on differential equations) and it has a high computational cost. For this reason, dynamic
mechanism-based approaches are mostly used for toy or core models.

Flux Balance Analysis
Throughout the chapter of this thesis a particular kind of constraint-based model will
be used, which is called flux balance analysis (FBA). FBA was not born within systems
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biology, but instead it was borrowed from metabolic engineering, where it was used
for the enhancement of production. Due to its initial purpose, FBA does not simply
show every possible flux distribution given the constraints, but instead select the top-
scoring distribution according to an objective. The objective function is selected by the
user according to the scientific problem to be solved (e.g. maximization of biomass or
metabolite production) (Feist and Palsson, 2010). This assumption is very useful from a
production point of view. In regard to the maximization of biomass, cells are
undoubtedly more complicated than that, as we have discussed in the previous
chapters. Nevertheless, especially for the evolution of microorganisms, there is a very
high selective pressure to have an optimal growth in a given environment. For this
reason, keeping in mind that cells do not necessarily need to accumulate the maximum
amount of biomass possible in every occasion, this objective function can be a useful
approximation, and has been used to predict the behaviour of different microbial
species (Burgard and Maranas, 2003).

In addition, many other objective functions can be implemented, depending on the
biological process of interest. For example, maximizing the ATP production is a useful
approach to study mitochondrial metabolism (Cazzaniga et al., 2014).
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Introduction

Directed evolution to monitor adaptation

A different approach to study how yeast or any other microorganism reacts to nutrients
is to observe the evolution of the strain under exam when it is put in an environment
which is different from its ideal habitat.

One of the typical conditions to which yeast cells need to adapt is a medium with a poor
carbon source or with a low amount of it. Yeast strains are cultivated for several
generations in that particular conditions and if the right mutation arises that is able to
allow for a better growth, it should be possible to identify by sequencing a pathway or
a cellular function of interest which is modified and give the cells their phenotype.

Evolution experiments can be performed either from a population starting from a single
clone, or more initial strains can be crossed to have more starting variability, and this
can influence the recovered mutations (Figure 18).
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Figure 18 - The Ras pathway is the target of multiple mutation in yeast adapted to unfavourable conditions. Genes in red are
found mutated in populations starting from a single clone, those in green in crossed population and blue in both (Long et al.,
2015)
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From these experiments, it is easy to expect the emergence of mutations in genes
involved in the specific metabolic pathway for the consumption of the nutrients
present in the medium. Sometimes that happens, but mutations in the signal
transduction pathways are also very frequent.

Glucose signalling, and in particular Ras/PKA/cAMP pathway, is one of the most
affected from these mutations, as can be observed in Figure 18 (Long et al., 2015).

To sum up, directed evolution can be a useful way both to elucidate unclear metabolic
mechanisms and regulation and to obtain useful mutant for various applications. What
it important to keep in mind is that evolution already shaped genomes to exploit the
environment for the best. As a result, it is not surprising that many of the yeast strains
adapted to survive and proliferate in difficult conditions, display a disadvantage,
compared to their reference background, when they grow in optimal media (Wenger
etal., 2011).
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Chapter 1: Glutamate, a multi-purpose nutrient sustaining
enhanced yeast growth
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Abstract

We investigated growth, metabolism and transcriptional profiles of yeast cells grown
in minimal media supplemented with either ammonium or glutamate, both considered
good nitrogen sources. During the exponential phase, cells using glutamate as a
nitrogen source have a larger cell size compared to cells grown in presence of
ammonium. In stationary phase, glutamate-supplemented accumulate higher biomass
levels. We refer to this behaviour as “enhanced growth”.

In glutamate-grown cells, the deepest transcriptional and metabolic rearrangement
takes place after glucose exhaustion and show a profound alteration of the metabolism
of storage molecules during growth on glutamate with an accumulation of trehalose
and fatty acids, which correlate with a higher stress resistance.

Flux balance analysis simulations with a core model of yeast metabolism correctly
predicted the optimal growth yield and computational analysis of the flux distribution
identified a different allocation of oxygen as responsible for the observed interplay
between ethanol and glutamate.
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Introduction

Every living organism needs to tightly regulate its growth depending on the
environment that surrounds it. This is true from the single-celled microorganisms to
the mammals. Failure to correctly respond to environmental changes can be dangerous
for the correct homeostasis of the cell. For this reason, the molecular basis and the
regulation of many signalling pathways are conserved from bacteria to man (Smets et
al., 2010).

Mammalian cells are part of a greater organism, and their growth need to be tightly
regulated both by nutrient availability and growth factors. Cells that do not regulate
their growth correctly can give rise to pathologies like cancer. This is true on many
cellular levels, from the senescence to the regulation of metabolism. In fact, a
deregulated metabolism is considered a hallmark of cancer (Hanahan and Weinberg,
2011).

The yeast Saccharomyces cerevisiae, on the other hand, primarily regulate its growth
in response to changes in the availability of nutrients in the environment and to the
presence of stresses. Evolution selected a variety of sensing mechanisms and signal
transduction pathways, that enable yeast to apply different strategies to react to
environmental cues. One of the main examples is the so-called “Crabtree effect”, in
which S. cerevisiae can ferment glucose to ethanol even in the presence of oxygen if
the sugar concentration is high enough. This allows yeast to grow faster and outgrow
competing microorganism, whose growth is also inhibited by the ethanol
produced(Broach, 2012).

It is also important to keep in mind that high growth rate is not necessarily the goal of
an efficient nutritional regulation. It was shown that there is actually a trade-off
between growth rate and biomass yield (Bachmann et al., 2013), which can be more or
less important depending on the growth condition (Wortel et al., 2018). Moreover, not
all the nutrients are used to sustain growth and cellular components, but some are
stored as reserve compounds, like lipids and storage carbohydrates. In yeast, glycogen
is synthesized during the exponential growth on glucose, and serves mainly as stored
carbon and energy, while trehalose is accumulated during the post-diauxic growth on
ethanol and acts as a stress protectant (Francois and Parrou, 2001).

One of the fundamental nutrients that yeast needs to react to is nitrogen. S. cerevisiae
is able to grow on a variety of nitrogen sources that and shows different responses
based on the amount and quality of the nitrogen source. Nitrogen-containing
compounds can be classified into preferred and poor nitrogen sources for a given yeast
strain. This classification can depend either on how well they are able to sustain its
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growth or by the ability of the preferred source to cause the repression of genes
required for the utilization of alternative nitrogen sources (Godard et al., 2007).

There is not much work investigating the influence of different nitrogen sources on the
physiology of yeast during the whole growth, and even less that focuses on changes in
the transcriptome and metabolome that result from the interaction between the
growth phase and the nitrogen source.

Glutamate is a very important amino acid that can be utilized by yeast cells as a nitrogen
source. It is, together with glutamine, one of the main compounds used as nitrogen
donors for yeast biosynthetic reactions (Cooper, 1982). The degradation and
assimilation of glutamate is mainly due to the NAD-dependent oxidative deamination
catalysed by the GDH2 enzyme (Miller and Magasanik, 1990). This reaction yields
ammonia and a-ketoglutarate, which is an important intermediate in the citric acid
cycle. This fact place glutamate at the interface, not only between nitrogen
biosynthesis and degradation of nitrogen containing compounds, but also between
carbon and nitrogen metabolism. Ammonium sulphate is the standard nitrogen source
for yeast synthetic media. For this reason, we used it as a reference to test how a
combined nutritional source like glutamate is able to change yeast behaviour. In
particular, we monitored the physiology of our strain in the two different conditions
(always in the presence of glucose) and we performed transcriptomics and
metabolomics experiments, followed by molecular and biochemical validations.

The following results describe the growth phase-dependent phenotype of the
glutamate-grown cells, which we called “enhanced growth”. We investigated this
phenotype with a combination of classic cellular biology, transcriptomics,
metabolomics and computational modelling. We found a great alteration of
transcription and metabolism in cells grown on glutamate, compared to those in
ammonium. This leads to a higher biomass production, which we show to be the result
of aninterplay between carbon and nitrogen source, and to an accumulation of reserve
carbohydrate and an enhanced stress resistance.
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Materials and methods
Strains and Media

The prototrophic GRF18 (GRFc) strain (Brambilla et al., 1999) was used in this study.
Inoculum cultures were prepared from -80°C glycerol stocks on YPD agar plates
containing 10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose and 20 g/L agar.

Media were prepared according to (Verduyn et al., 1992) with 20 g/L glucose or 20 g/L
ethanol as carbon sources and either 5 g/L ammonium sulphate or 14 g/L glutamate
monosodium salt monohydrate as nitrogen sources.

Shake flask cultures

Precultured cells were inoculated in 500 mL Erlenmeyer flasks containing 100 ml of
minimal medium (Verduyn et al., 1992) with the same composition of cultures. The
starting ODego, ranging between 0.02 and 0.2, was suitable to reach the desired growth
phase the day of sampling.

The cultures were grown at 30°C in a rotary shaker at 150 rpm.

Inhibition of respiration was obtained with the addition of Antimycin A (Sigma-Aldrich)
at a final concentration of 5 uM to exponentially growing cells.

To test the effect of the inhibition of fatty acids synthesis, a sublethal dose (1 uM) of
cerulenin (BioVision, Inc.) was added to the cultures at the beginning of the exponential
growth phase (2-3-10° cells/mL)

To monitor the recovery from oxidative stress H,0, 0.5 mM was added to exponentially
growing cells (ODgso= 0.5).

Batch cultivation in fermenter

Cultivations in fermenter were run in Biostat-B fermentors (B-Braun), filled with 1.5 L
of defined medium with vitamins and trace metals (Verduyn et al., 1992). The initial
glucose concentration was 20 g/L, nitrogen sources were 5 g/L ammonium sulphate or
14 g/L glutamate monosodium salt monohydrate.

Cultures were grown at 30° C at pH 5.0 and 0.2 M KOH was used as a titrant.

For anaerobic experiments, glucose concentration was 50 g/l and the medium was
supplemented with 10 mg/L ergosterol and 420 mg/L Tween 80 (Brambilla et al., 1999).
To maintain anaerobic condition the air supply was replaced by nitrogen gas (flow rate,
0.15 I/min, 0.1 v/v/m).
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Glucose-limited aerobic chemostat cultivations

Chemostat cultivation was performed in Biostat-B fermentors (B-Braun). A defined
medium with vitamins and trace metals was used (Verduyn et al., 1992). The glucose
concentration in the reservoir medium was 8 g/L. A constant working volume of 1300
mL was maintained via an effluent line coupled to a peristaltic pump. A dissolved
oxygen concentration above 30% of air saturation was maintained by an air flow of
1.3/min (1 v/v/m) and a stirrer speed of 1000 rpm. The temperature was maintained at
30°C and the culture pH was kept at 5.0 by automatic addition of 2 M KOH.

Cultures were assumed to be in steady state when at least six volume changes had
passed since the last change in growth conditions and the culture did not exhibit
metabolic oscillations.

Measurement of growth parameters

Optical density of the culture was measured at 660 nm using an Ultrospec 500 pro
spectrophotometer (Amersham).

Cell titre and volumes were obtained after 30s of sample sonication and appropriate
dilution in a NaCl 0.9% solution, with a Coulter Counter model Z2 (Beckman Coulter)
equipped with a 70 um aperture tube.

Budding Index was calculated by scoring at least 300 cells under an Olympus CH20
microscope

Determination of dry cell weight

The dry cell weight (DCW) was determined by filtering 10 mL of culture broth through
pre-dried 0.22 um membranes filters. The filters were washed with demineralized
water and dried to constant weight in a microwave oven (van Dijken JP et al., 2000).

Determination of RNA, protein and neutral lipids contents by flow cytometry

At least 2-107 cells from growing cultures were centrifuged and fixed in 70% ethanol to
allow the staining of intracellular components. To stain RNA, cells were washed with
ice cold PBS (3.3mM NaH2PO4, 6.7mM Na2HPO4, 127mM NacCl. 0.2mM EDTA, pH 7.2),
resuspended in 1 mL of propidium iodide staining solution (0.046mM propidium iodide
in 0.05M Tris—HCI, pH=7.7; 15mM MgCI2) and incubated for 30 min in ice, protected
from the light. Cell suspensions were separated by sonication for 30 s before being
analysed. For protein staining, cells were resuspended in a fluorescein isothiocyanate
solution (50 pg/mL FITC in 0.5MNaHCO3) for 30 min in ice and in the dark; cells were
washed three times with PBS and sonicated before the analysis. For neutral lipids
quantification, cells were stained with Nile Red solution (10 pg/mL Nile Red in PBS) for
10 min at RT; cells were then washed once in PBS and sonicated before the analysis.
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Stained cells were analysed with a FACSCalibur (BD Biosciences) flow cytometer and
excited at 488 nm with an lon-Argon laser. 30000 cells were analysed for each sample.

Fluorescence microscopy of lipid droplets

To observe lipid droplets directly cells were washed with PBS and stained with BODIPY
493/503, added at a final concentration of 1 pg/mL and incubated for 10 min at RT in
the dark. Cells were then observed under a Nikon Eclipse E600 fluorescence
microscope, equipped with a 100X, 1.4 oil Plan-Apochromat objective using a standard
fluorescein filter. Image acquisition was performed with a Leica DC 350F camera and
the obtained files were processed with ImageJ (http://imagej.nih.gov/ii/).

RNA preparation and hybridization

Cells were collected by filtration at the indicated time points and total RNA was
extracted with the phenol-chloroform method (Schmitt, Brown and Trumpower, 1990)
from biological triplicate samples in the and analysed using Affymetrix Genechip Yeast
Genome 2.0 Arrays, containing approximately 5,744 probe sets for 5,841 of the 5,845
genes present in S. cerevisiae. Messenger RNA was amplified and hybridized onto the
array as recommended by Affymetrix.

Microarray data analysis

Raw data (CEL files) were normalized with the Robust Multi-Array method using the R
package simpleaffy. Normalized data matrix values are expressed in log2 scale.

To evaluate the differential gene expression linear regression models and empirical
Bayes moderated F statistics were used, as implemented in the R/Bioconductor
package Limma (Ritchie et al., 2015).

Functional analysis of DEGs

To identify Gene Ontology and KEGG terms over-represented in the differentially
expressed genes identified by the transcriptomic analysis the online tool FIDEA
(http://circe.med.uniromal.it/fidea/) was used to perform an enrichment analysis. The
p-value threshold was set at 0.05.

Refinement of the GO terms list obtained from FIDEA to remove redundant terms was
performed with REVIGO (http://revigo.irb.hr/).

To obtain further information on the regulatory network of the DEGs, the “Rank by TF”
tool of the Yeastract database (http://www.yeastract.com/) was used to predict a
ranking of the main transcription factors (TFs) for responsible for the regulation of
our genes of interest.
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To investigate the interactions occurring between the gene products of some of the
DEGs, the tool STRING (https://string-db.org/) was used.

Quantitative Real-time PCR

Reverse transcription of the extracted total RNA was done using the SensiFAST™ cDNA
Synthesis Kit (Bioline). Quantitative Real-time PCR reactions were performed in a
MiniOpticon system (BIO-RAD) with the SsoFast EvaGreen Supermix (BIO-RAD). Primer
sequences are available on request. The CFX Manager software (BIO-RAD) was used to
analyse the obtained data, which were normalized to the expression levels of the TAF10
housekeeping gene within the same sample.

Analysis of intracellular metabolites

Around 5 mg of exponentially growing cells (ODss0=0.7) were collected by filtration and
qguenched with 1.5 mL 50% MeOH at T<-40 °C. Samples were then centrifuged at
maximum speed for 1 min and the supernatant was discarded. For metabolites
extraction, 400 ul of ice-cold chloroform, 800 ul of 50% MeOH and 20 pl of 2 mM
norvaline (as internal standard) were added and samples were mixed by vortexing for
30 min at 4 °C. Following centrifugation for 5 min at 4 °C, the resultant supernatant was
concentrated through evaporation. MSTFA (N-Methyl-N-(trimethylsilyl)
trifluoroacetamide) was used to derivatize samples in an automated WorkBench
(Agilent Technologies). The analysis was carried out with 7200 accurate-mass Q-TOF
GC/MS (Agilent Technologies). Data handling and analysis was performed with Mass
Hunter and Mass Profiler Professional software (Agilent Technologies). Raw data were
normalized on the internal standard (norvaline) signal and on the DCW of the sample.

Intracellular trehalose was extracted according to (Parrou and Frangois, 1997).
Trehalose concentration was determined using a Trehalose kit (Megazyme
International Ireland).

Analysis of extracellular metabolites

2 mL of culture broths were taken from the shake flask, chemostat or batch cultures.
Samples were centrifuged for 2 min at maximum speed in microcentrifuge.
Supernatants were stored at —20°C until analysis.

Extracellular glucose and ethanol concentrations were determined by D-glucose—Hk
and Ethanol enzymatic assays (Megazyme International Ireland), respectively.

Glutamate and AKG concentrations were determined by H-NMR analysis. Briefly, the
medium pH was adjusted to 7.5, 750 uL of sample were frozen in liquid nitrogen and
lyophilised. Samples were then resuspended in D,0 and 4,4-dimethyl-4-silapentane-1-
sulfonic acid (DSS) was added at a final concentration of 1.5 mM (as an internal control).
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550 plL of samples were used for NMR spectrum acquisition with a Bruker Advance Il
600 MHz spectrometer. Spectra were analysed with the MestReNova software.

Determination of glutamate metabolic fate

From a standard preculture cells were inoculated in a medium containing *C Glutamate
(Cambridge Isotope Laboratories) at the usual concentration of 14 g/L. Samples were
collected for the following 72 hours and both supernatants (as described above) and
cellular extracts (extracted using the boiling ethanol method) (Gonzalez, Francois and
Renaud, 1997) were analysed via NMR for the presence of *3C compounds. In particular,
samples were resuspended in H,0:D,0 9:1. Acquisition of the NMR spectrum in the
absence of DSS allows to monitor the *3C-labelled fraction of each compound under
exam, thanks to the splitting of *H signals due to coupling with *3C carbons. Then, after
addition of DSS 2mM to the samples, the absolute concentration of each metabolite
can be calculated.

Determination of enzymatic activities

Cellular soluble protein fraction was extracted as described previously (Landi et al.,
2015). Briefly, cells were centrifuged at 2000 g and washed twice with 20 mM
phosphate buffer (pH 7.0); the pellets were resuspended in a buffer containing 1 mM
EDTA and 0.1 mM PMSF and mixed with an equal volume of acid-washed glass beads.
Suspensions were subjected to 5-8 cycles of vortexing, (shaking for 1 min and placing
the sample on ice for another 1 min, alternatively), and the cell debris was removed by
centrifugation at 13,000 g for 10 min at 4 °C. The total protein in the supernatants was
determined by Coomassie Plus Assay kit (Thermo scientific) with bovine serum albumin
as a standard, and enzyme activities were assayed at 25 °C using an Ultrospec 500 pro
spectrophotometer (Amersham).

To determine catalase activity, 5.0-50-ul aliquots of soluble protein extract were added
to 1.0 ml of 13 mM H,0; in 50 mM phosphate buffer (pH 7.0). H,0, decomposition was
monitored at 240 nm (£240=43.6 M~ cm™). One Unit of catalase activity is the amount
of enzyme that catalysed the degradation of 1 umol of H02/min.

Pckland Mls (and Icl1) activities were determined according to (de Jong-Gubbels et al.,
1995).

3-Hydroxyacyl-CoA dehydrogenase activity was determined according to (Ueda et al.,
1985).

Determination of stress resistance

Exponentially growing cells were collected at an optical density between 0.3-0.5,
concentrated and exposed to the following stresses: 49°C (10 min); sorbitol 4M (1 h);

50



LiCl 2M (3h); H,0; 2mM (1h). Serial dilutions of the suspension were plated on YPD
plates and incubated for 3 days at 30°C.

Determination of cell viability

The percentage of dead cells within the population was determined by flow cytometry
after staining with 4.6uM propidium iodide.

YENIM1 network reconstruction

The model has been extracted from YEAST 7 and is designed to evaluate the
contribution of glucose, glutamate and ammonium/ammonia (only NHs is modelled as
a simplification) to cellular growth. Mitochondrion and cytosol are the considered as
compartments. Linear pathways have been lumped in a unique reaction. The model is
structurally free from thermodynamically infeasible loops. The model includes about
100 reactions and 80 metabolites pertaining to the following pathways: glycolysis, TCA
cycle, the mitochondrial electron transfer chain, GABA, glutathione, synthesis of
palmitate and main amino acids (glutamate, proline, alanine, arginine, aspartate), urea
cycle, glyoxylate, ethanol and acetate fermentation, pentose phosphate, trehalose,
glycerol. The model includes a biomass formation reaction formulated according to
biomass macromolecular composition estimations in (Cortassa, Aon and Aon, 1995).

Flux Balance Analysis

To run FBA simulations a stoichiometric matrix S and a set of constraints (upper and
lower bound of fluxes) are required. The steady state constraint is defined by the
equation dx/dt=S-v =0, where dx/dt are time derivatives of metabolite concentrations
represented by the product of the mxn matrix S times the vector of fluxes v = (vy, v, ...,
Vo), Where v; is the flux of reaction i, n is the number of reactions, and m is the number
of metabolites. The ensemble of functional states that the system can reach given a
boundary condition / determines the feasible solutions space @ = Zn/. By exploiting
linear programming, FBA allows for optimization of the flux through a weighted sum of
fluxes. In particular, we used the COBRA Toolbox and the GLPK solver. Because FBA only
returns a single solution, we exploited Flux Variability Analysis to assess the flux
variation range consistent with the maintenance of the maximal growth obtained with
FBA (Damiani et al., 2017).

Single reaction deletion experiment

Each single reaction in the model is deleted by setting the boundaries (both the upper
and the lower bound) of the allowed flux trough that reaction to 0. After the deletion
FBA is newly performed to optimize biomass. The percentage ratio of the newly
obtained biomass value over the baseline value (value obtained when flux is allowed
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through all model reactions) is registered. Once the boundaries of the deleted reactions
are set back to their original values a new single deletion is performed.

Sampling in the region of feasible solutions

As a complement to classic FBA, Monte-Carlo approaches are emerging with the aim of
exploring the entire region of feasible flux distributions. In this work, we apply the
simplex method with a random set of objective functions to be maximized, as in
(Damiani et al., 2017). The maximization of each of these objective functions gives a
corner in the space of solutions.

Identification of the fluxes that are statistically different between growth
conditions

To determine the fluxes that were most sensitive to changes in nutrient availability, we
sampled the solution space of the model at control (e.g ammonium) and at a condition
of interest (e.g. glutamate), exploiting the optimization of a random set of multi-
weighted objective functions. For each flux, we then determined a Z-score that
guantifies its significance of change and that can be positive or negative. Zis computed

Z=1X - X-}_}g‘l 'Ilp.%i + Ei

* where X is the average of the flux in the control, X: is

as
2
the average of the flux in the condition of interest, P1is the variance for condition 1,

2
@Zis the variance for condition 2, and n is the sample size.
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Chapter 1: Glutamate, a multi-purpose nutrient sustaining enhanced yeast growth

Results
Physiological response to glutamate is affected by the diauxic growth phase

We compared growth-related physiological parameters of cells supplemented with
either ammonium sulphate or glutamate as a sole nitrogen source during diauxic
growth in shake flasks. Phase |, Il and Il are denoted by a white, light grey and dark grey
colour throughout the paper. The sampling points are indicated as T1, T2 and T3
respectively. A fourth time point (Tewon), used in some of the experiments refers to
exponential growth on ethanol.

Although during exponential growth (phase |, white background) cells grow with the
same growth rate in both media (Figure A and Table ), glutamate-grown cells display a
significant alteration in the coordination between cell growth and cell cycle, witnessed
by the longer budded phase and increased cell volume. Increased cell volume reflects
a true increase in cellular accumulation of biomass, as indicated by RNA and protein
distributions (Figure D).

Glucose consumption and ethanol accumulation curves are very similar for both
cultures, suggesting a similar distribution of the main metabolic routes (Figure B).
Glutamate-grown cells release a large amount of alpha-ketoglutarate (AKG) in the
growth medium. *C-labelled glutamate experiments show that almost 100% of AKG in
the medium derived from glutamate (Supplementary table S2). In Phase | we observed
a linear relation between consumed glutamate and excreted AKG, indicating that
almost half of glutamate-deriving carbon moieties entering the cells during the
fermentative growth phase are not assimilated (E).

Starting from Phase Il the difference in cell size, RNA and protein content between cells
grown in glutamate and ammonium-supplemented cells starts to attenuate (Table 1)

T1
amm . glut,
MDT (min) 151112 1512248
TB(min) 106£3.2 | 128+ 1.6 (**)
Vol (1) 2=+] 63£2.4(**)

Protein content (P) | 21628 | 383 £ 12 (*%%)
RNA content (R) 19017 | 444 £31 (*%%)

RNA/P 118 0.97

Cells/ml 6.AE+06 6.2+E06
ODgeo 03£0.02 0.3 £0.08
DW (g/1) 012001 | 0.14%0.01

Table 1 — Quantitative data about growth, size and biomass formation of ammonium- and glutamate-grown cells. Data are reported for
T1, T2 and T3 time point, which correspond to those indicated in Figure A.
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Chapter 1: Glutamate, a multi-purpose nutrient sustaining enhanced yeast growth

and the linear relation between glutamate consumption and AKG release is lost (Figure
E). Concurrently, a positive bias in biomass formation becomes evident, either
considering cell titre, optical density or dry weight, the latter being 3.5 times higher in
glutamate compared to ammonium-grown cells (Table 1).
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Figure 1 — (A) Glutamate induces visible effects on growth starting from glucose exhaustion. Cellular growth, expressed as culture
optical density. Three main growth phases were defined in relation to presence of glucose and type of metabolism. For each phase,
arrows indicate the chosen sampling point. Data represent an average growth curve, obtained by the interpolation of several
independent experiments. For each point standard deviation is represented.
(B) Glucose and ethanol evolution during growth on ammonium sulphate (blue symbols) and glutamate (red symbols) medium.
Graph shows the interpolation of data coming from several independent experiments. For each point standard deviation is

represented. Other symbols like in A.

(C) Glutamate and 2-oxoglutarate (AKG) evolution during growth on glutamate medium. Graph shows the interpolation of data
coming from several independent experiments. For each point standard deviation is represented. Other symbols like in A.

(D) Glutamate influences cellular dimension during exponential batch growth. Single cell protein and RNA distributions obtained
with a cytofluorimetric analysis. Glutamate-grown cells (red line) display a relevant increase of their average values respect to

ammonium (blue line).

(E) Sustained release of 2-oxoglutarate formed from glutamate. Linear relation between glutamate consumed and AKG secreted.
Points were obtained in phasel (exponential growth on glucose). For each sampling point the mmoles of glutamate consumed were
plotted against the mmoles of AKG found in the medium. Dotted line represent a linear interpolation of the experimental points.

55



Transcriptional rearrangement during the diauxic growth on glutamate

The transcriptomes from cells growing on media supplemented with either ammonium
or glutamate have been analysed in triplicate on Affymetrix microarrays (Yeast 2.0) at
T1, T2 and T3 sampling points. 771 differentially expressed genes (DEGs, cut-off log2
FC=1) were found in at least one sampling point, indicating that the expression of a
relevant fraction of the yeast genome is affected by the nitrogen source during the
diauxic growth.

Figure 2A shows that a significant variation in gene expression correlates with the
growth phase, the first branching between gene expression data being relative to the
different sampling points (Figure 2A). The deepest glutamate-induced rearrangements
occur after glucose exhaustion (T2 and T3), suggesting that glutamate affects the
transcriptional program in coordination with the physiological state of the cells,
highlighting previously undetermined changes between glutamate and ammonium-
grown cells (Godard et al., 2007).

Given the low number of DEGs common among different time points (Figure 2B), we
separately searched for enriched KEGG pathways and GO terms connected to the DEGs
at each time point (Figure 2C and Supplementary figure S6). For cells exponentially
growing on glutamate (T1), we found a overrepresentation of up-regulated GO terms
mostly related to amino acid metabolism, consistent with a general de-repression
of genes subjected to NCR (nitrogen catabolite repression) (Ljungdahl and Daignan-
Fornier, 2012). On the contrary, both GO and KEGG pathways enrichment showed a
negative transcriptional response of genes coding for enzymes of the TCA cycle. After
glucose exhaustion (T2) the transcriptional reprogramming on glutamate showed a
sharp predominance of up-regulated genes. GO and KEGG analyses highlighted the de-
repression of gluconeogenic and TCA cycle genes, together with genes related to
reserve carbohydrate and fatty acid metabolism and a down-regulation of GO terms
related to hexose transporters. Finally, up-regulation of peroxisomal and lipid
metabolism was maintained also for T3.

Only 22 DEGs are common to the three sampling points (Figure 2B). These common
DEGs could possibly represent the core of the genes involved in the response to
glutamate growth. Classification according to GO Biological Functions (Supplementary
figure S1) indicates that 9 of the core genes encode proteins implicated in the transport
of various metabolites, including amino acids (TAT2, MMP1), GABA (UGA4) and iron
(FET3). Other functions represented include lipid metabolism (INO1, YSR3 and ICL2),
aromatic amino acid metabolism (AR0O9, ARO10), and energy sensing (TOS3, SPL2). Four
of the core DEGs have still unknown functions (YBRO56W, YKL107W, YDL241W,
YGL262W).
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Given the observed large number of glutamate responsive genes, we decided to further
test the effective relation among the 22 core DEGs. Further analysis, conducted with
the STRING software, showed some statistically relevant interactions (co-expression,
physical interaction, genomic co-localization) among some of the products of these 22
genes and central cellular functions like gluconeogenesis and energy sensing (Figure
2D). Using the tool “Rank by TF” within the web tool Yeastract, we obtained a ranking
of the main transcription factors (TFs) responsible for the regulation of the 22 core
glutamate DEGs. Figure 2D indicates that the transcriptional regulatory networks
emerging from this analysis are densely interconnected, further sustaining the notion
that a common pattern is embedded in the 22 common DEGs.

GO-term enrichment of the 771 genes through the web tool REVIGO provided 2
different tree maps for biological process (Supplementary figure S3) and molecular
functions (Supplementary figure S4). Enriched biological processes terms include
ketone metabolism, organic substance transport, iron homeostasis, and external
encapsulating structure organization. Enriched molecular functions are mainly
connected with transporters and oxidoreductase activity, with the involvement of
redox cofactors.
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Figure 2 — (A) Correlation treemap of samples similarities. (B) Venn diagram showing the overlay of the differential expressed genes
(DEGs) between cells growing on glutamate vs. cells growing on ammonium sulphate in the 3 growth time points. Overall, 771 DEGs
are identified. Only 22 DEG are common to the 3 conditions, while 110 DEGs are shared between T2 and T3. 771 DEG, distributed in
3 physiological conditions.

(C) KEGG enrichments of metabolic pathways up or downregulated by the nitrogen source. KEGG Pathway enrichment of up- and
down-regulated genes between cells growing on glutamate vs. cells growing on ammonium sulphate in the 3 growth time points.
(D) Putative interactions between the 22 core DEGs. Results, obtained with the software STRING showed some cluster of co-
expression, gene interaction and genetic neighbourhood. (E) Network of regulators controlling the expression of the 22 core DEGs.
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Rewiring of metabolism for post-diauxic growing cells stimulates fatty acid
metabolism and the formation of trehalose from glutamate through
gluconeogenesis

The transcriptional analysis reported above indicates that growth on glutamate causes
a complex, growth phase-modulated transcriptional reprogramming. First of all, we can
observe changes in the expression of genes encoding enzymes involved in nitrogen
metabolism or in glutamate and related amino acids biosynthesis. Moreover, the
transcriptional rewiring includes genes whose products are involved in nutrient
transport, stress response, lipid metabolism, oxidoreductase activity, sulphur
metabolism response, as well as gluconeogenesis and TCA.

To further characterize metabolic rearrangement induced by growth in glutamate-
supplemented medium, intracellular extracts from samples collected at times T1, T2,
T3 and Teon Were analysed by GC-MS (gas chromatography coupled to mass
spectrometry) (Figure 3). Parallel samples were analysed for expression of relevant
genes, in order to confirm Affymetrix data and to include the TewonSampling point. Figure
4 summarizes some of the pathways modulated by glutamate, and that could play a
role in the observed enhanced growth phenotype. Blue metabolites in the figure
indicate the so-called reporter metabolites, i.e. those spots in metabolism where a
substantial transcriptional regulation occurs. That is either to maintain homeostasis
or to adjust the concentration of the metabolite to a level required for proper
functioning of the metabolic network (Patil and Nielsen, 2005). The full list of reporter
metabolite is reported in Supplementary figure S7 and computational details in
Materials and methods. Finally, some relevant enzyme activities were measured.

Glutamate-fed cells have high levels of intracellular glutamate, as well as a high
content, especially at the T2 and Teon time points, of TCA/glyoxylate intermediates
(citrate, malate, glyoxylate). An increased content of free fatty acids was detectable at
Tewoh in the presence of glutamate, as well as an accumulation of trehalose toward the
end of growth.

Several among the identified reporter metabolites take part in the central carbon
metabolism, for example TCA/glyoxylate cycle intermediates, and in the biosynthesis
of storage macromolecules such as fatty acids and trehalose.

Figure 4 also reports the heatmaps of some enzymatic activities relevant for the
pathways identified with previously described techniques. To maintain figure
consistency, we expressed data as fold change of the chosen activity on glutamate
against ammonium, sampled at the usual times, while respective activities are reported
in the Supplementary figure S8. Although sometimes modulated slightly differently
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compared to transcriptomic data, all the enzyme assayed resulted in good accordance
with the global picture.

As a result of the described multi-layer analysis, we could therefore identify a core
metabolic pathway that suggests a possible route for utilization of the glutamate
carbon backbone. Briefly, during exponential growth on glucose, the presence of
glutamate causes repression of the genes coding for the first three enzymes of the TCA
cycle (CIT1, ACO1, IDH1/2), suggesting that in this growth condition anaplerosis of AKG
derived by glutamate catabolism could lead to a decreased fuelling of the TCA cycle
with glycolytic carbon. In turn, the reduction of acetyl-CoA request by glyoxylate cycle
would allow this intermediate to be redistributed along other pathways, like FA
metabolism. Following glucose exhaustion, the overexpression of the genes coding for
cytosolic malate dehydrogenase (MDH3), phosphoenolpyruvate carboxykinase (PCK1)
fructose-1,6-bisphosphatase (FBP1) and of the genes constituting the machinery for
biosynthesis of fatty acids (ACC1, FAS1, FAS2) suggests an enhanced gluconeogenic flux
funnelling the biosynthesis of storage macromolecules. Overexpression of
peroxisomal genes for the B-oxidation of fatty acids starts as well after glucose
exhaustion and persists during growth on ethanol, in coordination with the expression
of genes coding for trehalose and glycogen biosynthesis and catabolism. The apparently
counterintuitive activation of both production and catabolism of fatty acid could be
useful to the cell for recycling of NADH and NADPH produced in the TCA cycle.

This mechanism has been further validated by the determination of fatty acids and
trehalose levels along the growth. Indeed, a cytofluorimetric analysis of the average
fluorescence of cells stained with fluorescent marker Nile red, showed an accumulation
trend for cells growing in presence of glutamate (Figure 5A). Microscopic analysis
revealed a gradual accumulation of lipid droplets, starting from T2, that grew in number
and in dimension till the end of growth (Figure 5B). More generally, lipid metabolism
and increase of biomass on glutamate seems to be correlated, since the phenotype
resulted abolished in the presence of sub-lethal amounts of the inhibitor of fatty acid
biosynthesis cerulenin (Figure 5D).
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Presence of glutamate stimulates also reserve carbohydrate accumulation. In
particular, we evaluated the intracellular accumulation of trehalose. Consistently with
literature data, trehalose accumulated during the post-diauxic shift. However, we
observed a different trend for the two nitrogen sources, with cells on glutamate
showing a greater accumulation, followed by partial reuse, in the time window
coincident to the largest difference in biomass formation (Figure 5C). Interestingly, a
NMR analysis cells growing on 3C labelled glutamate revealed that a substantial
amount of the carbon in trehalose derive from glutamate (Supplementary table S1).

[33032) L-glutamic acid 2 [18.398)
(791) DL-isoleucine 2 (10.225) [ \ LOg FC

[5951) L-serine 1 [9.706)
[5951) L-serine 2 [11.174)
[5960) aspartic acid 1 [12.002)
[5950] L-alanine 1 (7.4748)
[138] S-aminovaleric acid 2 [14.955)
[6262) L-ornithine 2 [16.632)
[867) malonic acid 1 (8.919)
[439227) pipecolic acid 2 [11.22)
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[638129) citraconic acid [10.792)
[1001] phenethylamine [13.742)
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Figure 3 - Heatmap of all the metabolites analysed with the GC-MS, colour coded according to the fold change in glutamate vs
ammonium in the different time points and grouped according to their involvement in metabolic pathways.
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Figure 5 — (A) Accumulation of trehalose in cells with glutamate as nitrogen source approaching the stationary phase. Nitrogen
source has a deep impact on trehalose content. Cell extract obtained during growth on ammonium sulphate (black symbols) or
glutamate (white symbols) have been subjected to NMR analysis. Trehalose accumulates starting from glucose exhaustion with
different dynamics in the two conditions.

(B) Fluorescence microscopy analysis highlights lipid droplets accumulation in the presence of glutamate. Sample cells on
ammonium sulphate or glutamate have been collected at the end of growth (T3) and stained with Nile Red (10 ug/ml) for the
detection of lipid droplets. Consistently with cytofluorimetric assay, cells on glutamate shows higher amounts of lipid droplets.

(C) Lipid enrichment in the presence of glutamate. Fluorescence induced by Nile Red has been measured during batch grown on
glucose thoughtfully the growth curve. Average fluorescence has been weighted for cellular dimension and plotted against time.
Presence of glutamate (white symbols) result in an increase of fluorescence starting from glucose exhaustion (40-45 hrs) respect to
control cells (black symbols).

(D) Cerulenin inhibition of biomass formation on glutamate.
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Central carbon metabolism accounts for the differences in growth yields, which
mainly relies on FADH oxidation and glyoxylate

To further confirm and better detail the indications about the metabolic rewiring taking
place in the presence of glutamate provided by transcriptome and metabolome data
analysis, we performed constraint-based simulations of yeast metabolism for different
nitrogen sources.

Constraint-based models rely on a steady state assumption for internal metabolites and
are therefore well suited to mimic chemostat experiments.

First, we assessed whether a core model of central carbon metabolism was able to
correctly predict the growth yield (dry weight production over glucose consumption
rate) given constraints on exchange fluxes with the environment, as derived from
chemostat experiment. For this purpose, we exploited our previously developed YENIM
model (Frascotti et al, in preparation), which includes the main pathways leading to
biomass formation from glucose, glutamate and ammonium.

Different constraints were set for simulations of growth with glutamate or ammonium
as nitrogen source, according to corresponding chemostat experiments at different
dilution rates D. For glucose, glutamate and oxygen uptake, as well as for ethanol
secretion, the exact experimental flux value is imposed. For AKG secretion, the
experimental flux is imposed for simulations on glutamate only. For every imposed flux
the computational value (lines) and the experimental value (diamonds) always
coincide. The availability of ammonium (NH; when YENIM1 is used) is bounded
according to its concentration in the culture medium times the medium inflow rate.
The effective usage (lines) of NH; according to FBA (maximization of growth) of YENIM1
model against allowed availability (diamonds) is reported (Figure 6, top right panel).
This confirms that NHs is not limiting in simulations, in accordance with experimental
evidence.

We performed Flux Balance Analysis to predict the maximal growth yield of the two
experimental conditions, given experimental constraints on the influx of glucose,
glutamate and ammonium and on the efflux of main secreted products: ethanol and
AKG.

Figure 7A shows that the core model predicts experimental growth yields as accurately
as the genome-wide model YEAST 7 (Aung, Henry and Walker, 2013). Accuracy of both
models worsen at high dilution rates.

During a chemostat culture, the variation of the dilution rate (i.e. of the growth rate)
shifts the metabolism from completely respiratory to a mixed respiro-fermentative
condition, characterized by a progressive glucose accumulation and ethanol
production.
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It can be noticed (Figure 6) that, the growth yield on glutamate largely outperforms
that on ammonium, especially when metabolism is completely respiratory, and that
ethanol production occurs at lower dilution rates in glutamate. Conversely, the spread
between the growth yields of the two conditions decreases as the dilution rate
increases, with the growth yield on glutamate, as well as the accumulation of ethanol
and AKG, reaching levels comparable to those reported for shaking flask data. In light
of these results, we are confident that central carbon metabolism is strongly involved
in the rearrangement and that we can focus on the simulation outcomes of the more
handily core model for more in-depth investigations in the following.

To assess which pathways are mainly exploited in the different nitrogen conditions, we
performed single reaction deletion analysis. Reactions that, when depleted, mostly
affect the capability to either abide by experimental constraints or to reach
experimental growth yields indicate the pathways the metabolism mainly rely on.
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Figure 7 report those reactions that display differential effect for growth on ammonium
sulphate and glutamate at dilution rate 0.2 (to simulate a fermentative condition).
Obvious differences directly follow from the different nitrogen source: glutamate
uptake is essential in glutamate (EX_Glu), whereas ammonium uptake is essential in
ammonium (EX_NH3). Along similar lines, NADPH-dependent glutamate
dehydrogenase is essential in ammonium as it is needed to synthesize glutamate for
biomass. Similar results are retrieved from analysis at different dilution rates
(Supplementary figure S10).

A large difference emerged in the utilization of succinate dehydrogenase (Sdh) and
FADH, oxidation in the respiratory chain (Resp2). While cells in ammonium are
completely insensitive to removal of this pathways, cells in glutamate largely depend
on them. Notably, the extent of oxygen utilization (EX_02) does not have a significantly
different impact on the two conditions.

The cytosolic reaction that converts isocitrate to succinate and glyoxylate (Icl) seems to
play a significant role in glutamate, whereas it is negligible in ammonium.

Also, the reaction from pyruvate to acetaldehyde (Pdc) affects growth on glutamate at
a larger extent. Worth of note, the glycolytic reaction catalysed by aldolase (Fba) is only
essential in glutamate.

Blomass (WT - KO/ WT
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Figure 7 - Reaction deletion analysis (D~0.2): the fraction of biomass reduction observed after deleting a single reaction, while
retaining the wild-type constraints, is reported for reaction having a different effect in glutamate and ammonium (aerobic) simulated
growth conditions
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Interplay between glutamate and ethanol assimilation improves growth yields

Batch experiments showed a more complex behaviour as compared to chemostat
experiments, with utilization of glutamate becoming more relevant when glucose is no
longer available.

We hypothesize that major differences between the two experiments are associated
with the different extent of utilization of the respiratory chain. It is indeed well known
that high glucose levels repress mitochondrial activity (Busti et al., 2010) (Kayikci and
Nielsen, 2015). On the other hand, during glucose-limited chemostat growth, the
residual glucose does not exceed the concentration needed to establish glucose
repression. The onset of respiro-fermentative metabolism at high dilution rates is the
result of the saturation of the oxidative pathways (Kappeli, 1981) and of the uncoupling
of respiration due to organic acid production (Postma et al., 1989).

We analysed in silico the impact of mitochondrial capacity on the ratio between the
maximal growth yield on glutamate over that on ammonium, when the carbon source
is either ethanol or glucose. At this aim, we varied the upper bound of the oxygen
consumption rate, which is a direct proxy of the respiratory chain capacity, from 1to 5
mmol/h, given 1 mmol/h of either glucose or ethanol consumption.

A first notable result comes from the observation that the spread between the
theoretical maximal growth yield of the two nitrogen conditions is not significantly
affected by mitochondrial capacity, when glucose is used as carbon source (Figure 8A).
This result suggests that the reason for a larger difference between the two nitrogen
sources - in terms of growth yields - for low dilution rates does not merely lay in the
enhanced utilization of the respiratory chain, but rather in a multi-faced interaction of
factors.

In support of this hypothesis, we observed that, when releasing a single constraint at
the time, the remaining constraints suffice for a correct prediction of the growth yields.
For example, when the constraint on AKG secretion was released, we still observed
secretion of AKG in the presence of glutamate (Supplementary figure S9A). Along
similar lines, when the constraint on glucose uptake was released, we still observed a
good correspondence between computational and experimental glucose uptake rates
(Supplementary figure S9-B). Even when both constraints on carbon secretion (in the
form of AKG or ethanol) were released, the accuracy of the growth yield predictions
was not significantly affected (Supplementary figure S9-C). Notably, when the
constraint on glucose uptake and AKG secretion are concurrently released, the spread
between the growth yield of the two nitrogen conditions shrinks (Supplementary figure
S9-B/D). In this situation, cells on glutamate secrete more AKG and intake more glucose
than expected. As the glucose uptake rates of the two conditions get closer, so do the
corresponding yields, meaning that advantage on glutamate derived from the capacity
to make comparable biomass amounts by using less glucose, and thus by using
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yield Glu / yield NH4

glutamate as carbon source. When cells are allowed to secrete more AKG, they will use
glucose rather than glutamate as carbon source. This result suggests that utilization of
glutamate nitrogen is coupled either with AKG secretion or with lower glucose uptake
rates. All in all, these findings clarify that that the small difference in the growth yield,
observed in shake-flask, can be ascribed to glucose repression of the utilization of
glutamate carbons, which results in high secretion rates of AKG. Taken together these
findings indicate a high degree of consistency between batch experiments and
computational results for high glucose conditions.

As opposed to utilization of glucose, utilization of ethanol strictly depends on
mitochondrial activity: accordingly, when only one mol of oxygen is allowed to be
consumed per mol of ethanol no feasible solution could be found (Figure 8A). At least
2 moles of oxygen are required to fully consume 1 of ethanol. A less expected result
comes from the observation that the spread between the theoretical maximal growth
yield (biomass over ethanol consumption) of the two nitrogen conditions, is instead
significantly affected by mitochondrial capacity, when ethanol (rather than glucose) is
used as carbon source.

For instance, when 4 moles of oxygen can be consumed per mol of ethanol, the growth
yield on glutamate outperforms by about 3 times (2.8) that on ammonium, indicating
that some oxygen is employed to metabolize glutamate.

Indeed, growth of ammonium and glutamate yeast cultures in the absence of
oxygenation and with the presence of the respiratory chain inhibitor Antimycin A
completely abolishes enhanced growth (Supplementary figure S12).
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Figure 8 — Interplay of carbon, nitrogen and oxygenation is crucial for the enhanced growth phenotype.

(A) Simulation of growth on glutamate and either glucose or ethanol as carbon source. FBA was performed with different upper bounds
of oxygen consumption (left). The value of 4 mmol/h was used to simulate growth on glutamate and ammonium with ethanol and

with forced production of palmitate and trehalose with different lower bounds (right)
(B) Reaction deletion analysis for growth with forced palmitate and trehalose production

(C) Analysis of differential fluxes between growth in glutamate+ethanol and ammonium+ethanol with forced production of palmitate

with the limit of at least 80% of the optimal growth yield.
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Glutamate-induced metabolic rewiring does not only benefit biomass formation,
but also stress resistance

As long as optimal solutions are concerned we did not observe differential production
of fatty acids nor trehalose between glucose and ammonium, as opposed to what
observed in previous experimental analysis. This inconsistency suggests that secretion
of these metabolites is not optimal for biomass and that the system may be in a
suboptimal space.

To investigate this issue, we compared the two nitrogen conditions, when some
secretion of both palmitate and trehalose is forced. We focused on a condition in which
glutamate largely outperforms ammonium (namely the point corresponding to oxygen
4 in Figure 8A — left), and we scanned different values of the lower bounds of the
production of the two metabolites. Figure 8A (right) reports the ratio between the
growth yields of the two conditions for each pair of values. Remarkably, the spread
between the two yields tend to increase as palmitate and trehalose accumulation
increases. For instance, when we forced a 0.015 accumulation of both trehalose and
palmitate the yield ratio reached 4. We focused on this latter condition to analyse the
different metabolic routes followed by the cells, when either ethanol or glucose are
supplied in the presence of either glutamate or ammonium. At this aim we compared
the effects of a single reaction deletion analysis.

Figure 8B reports the effect on growth for those reaction deletions whose effect differ
in at least one of the 4 conditions under study. It can be noticed that the deletions of
palmitate and trehalose restore the optimal state and thus result in a growth yield
increase, which is more significant in ammonium than in glutamate. Interestingly, the
gly_3 reaction (Glyox[m] + Ala[m] => Gly[m] + Pyr[m]) is essential in ethanol only when
ammonium is the nitrogen source, whereas Cit_1 (Oaa[m] + AcCoA[m] => Cit[m]) seems
to play a more significant role in glutamate plus ethanol.

We analysed the fluxes that significantly differ between ammonium and glutamate,
when ethanol is the carbon source. We sampled the flux distributions that allow to
achieve at least 80% of optimal growth (given the constraints on trehalose and
palmitate accumulation). We used random objective functions as sampling method, as
in (Damiani et al., 2014). This kind of sampling is not limited only to biomass yield and
can give more information on our system.

It is apparent (Figure 8C) that in the glutamate condition there is a higher activation of
the glyoxylate cycle and of amino acids metabolism, in agreement with transcriptional
data analysis results. Although the same lower bound of palmitate and trehalose
accumulation was imposed to both nitrogen conditions, we observed a significantly
higher accumulation of palmitate in glutamate. Conversely, trehalose production does
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not differ in the two conditions. This result was expected given that trehalose
production is demanding in terms of ATP consumption but, as opposed to palmitate
secretion, is not involved in redox balance and thus is inefficient not only for growth
but for every (random) metabolic function.

It can be hypothesized that, when glucose is the carbon source, because utilization of
glutamate for biomass does not provide a significant advantage in growth yield, the
systems do not rewire completely towards glutamate utilization, but exploits glutamate
for storage of fatty acids and trehalose which may in turn provide advantages that are
not related to biomass formation, as for instance resistance to stress, and hence are
not taken into account by FBA computations.

To investigate the physiological reason for the higher production of storage molecules
of cells growing on glutamate, we assayed whether these cells were resistant to various
stresses. From the drop-test in Figure 9 we can observe that glutamate-grown cells
show a lower sensitivity, compared to ammonium-grown cells to heat, osmotic, saline
and oxidative stress. The latter was confirmed by liquid cultures treated with oxygen
peroxide (Supplementary figure S11).
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Figure 9 - Glutamate confers stress resistance to exponentially growing cells. Aliquots (0.5 OD) of exponentially growing cells have
been collected and exposed to the following stresses: hydrogen peroxide 2 mM (1 hr), 50°C (10 minutes), LiCl 2M (3 hr), Sorbitol 4 M
(1 hr). Sequential dilution of treated and untreated cells were spotted on YPD and incubated for 3 days. N: ammonium sulphate, G:
glutamate, -: untreated cells, +: treated cells.
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Discussion

S. cerevisiae, like every organism, apply different growth strategies to exploit what the
environment can offer, and is able to rewire a lot of different, although interconnected
cellular processes to react appropriately to changes in the available carbon- and
nitrogen-containing compounds, as well as other micronutrients and to perturbation of
the cellular energy status (Zaman et al., 2008).

Yeast adaptation to different nitrogen sources relies on many sensing mechanisms that
are able to discriminate the quantity and quality of both intracellular and extracellular
nitrogen. Cells react to the growth in different nitrogen sources by activating different
pathways and modulating transcription and metabolism at different levels (Cooper,
1982) (Ljungdahl and Daignan-Fornier, 2012).

Godard and colleagues investigated the effects of 21 nitrogen sources on yeast growth
rate and transcription (Godard et al., 2007). They were able to classify most of the
nitrogen sources into two groups, which they called A and B. Compounds in the group
A allow fast growth and show activation of the nitrogen catabolite repression (NCR)
and of the unfolded protein response (UPR), while they display a mild activation of SPS
pathway and of the retrograde signalling (RTG). On the other hand, the NCR is inactive
in the nitrogen sources of the B group, while general amino acid control (GAAC) is
active. According to this study, both ammonium, the standard nitrogen source for yeast
culture media, and glutamate belong to the group A of nitrogen sources and can
therefore be considered among those “preferred” by S. cerevisiae. They sustain growth
with a similar doubling time and they slightly differ in the activation of UPR, which is
weaker in ammonium, and in the regulation of RTG, which is completely inactive in
glutamate.

We decided to further expand the comparison between these two nitrogen sources,
starting from a more in-depth physiological characterization. A very interesting result
that we observed was the very interesting relationship between the growth phase and
the assimilation of the different nitrogen source. In fact, growth on glutamate always
present very interesting features, compared to growth in ammonium. The difference in
cell size observed during the exponential growth on glucose, which is not the result of
vacuolation but correlates with an increase in the RNA and protein content, reflects an
alteration of the length of the cell cycle phases that deserves further analysis.

Interestingly, the difference in phenotype persists during the subsequent phases of the
diauxic growth, but the specific phenotype changes. In fact, after glucose is exhausted,
and during growth on the ethanol produced during glucose fermentation, glutamate
grown-cells are able to use the extra carbon obtained by glutamate to make biomass,
divide more and reach a higher cell density. Moreover, chemostat experiments proved
that the metabolic state of the cell has a great influence on the enhanced growth
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phenotype of glutamate cells, with a higher difference in biomass yield obtained with
growth at low dilution rate (respiratory metabolism) that flatten gradually moving to a
higher dilution rate (respiro-fermentative metabolism).

The integrated analysis we performed was crucial to put together the pieces of the
puzzle and to understand from different angles the deep metabolic changes that allow
cells to perform the apparent easy task that is to exploit the extra carbon backbone of
a richer nutrient.

Simulation of chemostat experiments was the best starting point for our computational
analysis and allowed us to validate the reliability of our core model in predicting
phenotypes related to the presence of different nitrogen sources as well as a genome-
wide model. Growth yields at different dilution rates were substantially comparable to
experimental values, especially for low dilution rates. Moreover, predictions of
relevant reaction carried out with deletion analysis highlighted the importance of
respiration. Accordingly, cells grown in anaerobiosis, in the presence of the respiratory
inhibitor antimycin A, or with deletion of the succinate dehydrogenase do not display
enhanced growth.

One of the possible conclusions derived from the data discussed so far could be that
the respiratory metabolism is the only responsible for the observed phenotype.
However, during growth in shaking flasks, different factors are at play. Because of the
higher concentrations of nutrient, glucose plays a much more important role,
influencing not only respiratory enzymes but generally re-shaping cellular transcription
and metabolism (Zaman et al., 2009).

Experimental data show an interesting correlation between glutamate-derived AKG
secretion and glucose uptake from the medium only during growth on glucose as a
carbon source. It seems that cells fail to correctly utilize AKG and, therefore is forced
to waste a great part of it. During the exponential growth rate, accordingly, we do not
observe any up-regulation of the internal AKG mitochondrial transporters. That begins
to appear at glucose exhaustion, together with the up-regulation of TCA cycle. Flux
balance analysis further strengthen the link between glucose and AKG, showing that
the imposed constrains on the import of the former and on the export of the latter are
interconnected and the result of metabolic reactions. In fact, only, abolishing the two
of them leads to a loss of accuracy in the predictions of growth yields between
ammonium and glutamate. Strikingly, varying oxygen consumption without changing
these parameters did not affect growth on glucose.

During simulations on ethanol, on the other hand, yeast metabolism was instead shown
to be capable of fully exploiting glutamate carbons without having to excrete them in
the form of AKG, and this process was shown to be highly dependent on respiration,
confirming experimental data.
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Finally, we showed that the accumulation of more biomass is only one of the
consequences of the metabolic rearrangement of glutamate-grown cells. Glutamate
cultures also enhance the gluconeogenic pathway and redirect fluxes towards the
biosynthesis of storage molecules like fatty acids and trehalose, for which we observe
an accumulation. The continuous exchange of information between the wet lab
analyses and the computational simulations, allowed us to affirm that accumulation of
this compounds is not strictly necessary for the enhanced biomass production, from a
theoretical metabolic point of view. Nevertheless, simulations with suboptimal
biomass yields proved that it is possible to produce trehalose and fatty acids and still
maintain a difference between glutamate and ammonium and that. More in vivo
experiments showed that fatty acid biosynthesis is essential to maintain the enhanced
growth phenotype in glutamate, while having little effects on ammonium-grown cells.
On the other hand, trehalose derived from glutamate could confer the cells different
growth advantages, being implicated in their enhanced stress resistance.

In conclusion, integration of physiology, transcriptomics, metabolomics and
computational simulations proved to be a valuable tool for a system-level
understanding of yeast reaction to ammonium and glutamate. It could be interesting
to further analyse differences between the other nitrogen sources with the same
approach both to understand yeast regulation of growth and metabolism and to
identify more appropriate growth conditions for cultivation of industrially relevant
strains. In this sense, both glutamate-induced yeast enhanced growth and stress
resistance could be further evaluated for yeast utilization as a cell factory.
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Supplementary information

hours ODeggo Glc Etoh | CPEtoh | Trehalose cP
(g/) (g/) (%) (mmol/OD) Trehalose
(%)
40 16.3 0 6.44 <1 0.0025 0
60 30.3 0 2.32 <1 0.1342 31
84 35.1 0 0 <1 0.1121 29
Supplementary table S1 - NMR determination of trehalose content in cells growing on 3C-glutamate and 2%
glucose.
log (h)] oD | Glu (mMm) Bew, |[AKG (mM) Yc% Fum (mM) "C%
8] 0.1 85 g5 013 1l 8] 8]
4 03 Ta g5 03 63 8] 8]
5] 0G 7 g5 0.s2 85 8] 8]
24 13 8 46 nd 7.9 95 018 25
275 16.3 42 nd 5.6 95 024 22%
43 303 25 =) 72 95 0.2 22%
53 334 27 g2 72 9 0.2 22%
T2 3501 249 g3 7.3 9 0.2 22%

Supplementary table S2 - AKG released in the medium originate from glutamate deamination. Table reports the result of a

13C-glutamate pulse to exponentially growing cells. Few hours after the substitution, AKG resulted labelled in high
percentage. Labelling was maintained till the end of growth.
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Volumes

Supplementary figure S2 - Protein RNA and cell volume distributions trends along growth. Facs
distribution from cells sampled at T1,T2 and T3 (see figure 1A). Up: cells on ammonium sulphate. Down:

cells on glutamate.
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Chapter 1: Glutamate, a multi-purpose nutrient sustaining enhanced yeast growth
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Supplementary figure S5 - Intersection T2-T3 Up and Down regulated genes — KEGG enrichment
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Chapter 1: Glutamate, a multi-purpose nutrient sustaining enhanced yeast growth
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Supplementary figure S9 - Computational simulation of biomass yield of glutamate and ammonium cultures at different dilution rates.

No AKG

No glc

No AKG
No ethanol

No glc
No AKG

=15 : YENIM
& 1
3 =L 08 By -~ Clu
£ 1 o Y
% 06 ey
.0 9 L] e _\_\.
®05 w4 » Sy
5 e »
(/] =
0.2 p
% . ¢ oo ¢
0.1 0.15 0.2 0.25 0
D(h-1) 0.1 0.15 1 0.2 0.25
<10 D (h-)
< ] YENIM
I‘_” 8 —Amm. (comp.) 4 & = Amim.
=] —Glu (comp.) -Gl
E 5 # Amm (exp.) & mO.B I ___?_\ O 4
- & Glu (exp) E B)o 5 .
g = BRI T N
=1 mo4
§ 2 >— ‘ .\:.
E 02 ¢
o> 0
0
0.1 0.15 0.2 0.25
D (-1
&1 1 YENIM
Ig’ G, - -=Amm.
€ 10 0.8 O‘\G -=Glu
E @
5 S06) 7 e N
= ¢ L
E —l @-'\
o 5 wo4 ~ RN
@ = . e
—_ \
2 0.2
©
£ 0
o 0.1 0.15 0.2 0.25
D (h—1) 01 015 02 025
1
D(h")
-CI ——
‘Tmm ; YENIM = 15
— —Amm. (comp.) Y -
g 8 —Glu (comp.) ¢ o ::gll'nm Lom
E | | ¥ Amm (exp) o ¢ | g 1
o < Glu (exp.) o 3
5 4 Qo5 €T O 5
=1 w N ©o5
3 2 > I Sl §
I} & ‘> U]
8 0 ¢ 0 ~ 0
2 01 0.5 1 02 025 01 045 02 o025 ¢
D) D (h")

90

01 0.15 02

D (h-")

0.25




Biomass (WT-KO)/ WT

D~0.1

08

06

041

02

Biomass (WT-KO) I WT

gl
=

Biomass (WT-KO)/WT

I olu

D~0.25

1
09

08

07 -

06—

05

04

03

02—

01

Supplementary figure S10 — Reaction deletion analysis for different dilution rates

91



oD

10 - B NH4
B Glu

Aerchic Anaerobic Antimycin

Supplementary figure S12 — Final biomass accumulation
for ammonum and glutamate cultures in aerobic and
anaerobic condition and in the presence of the

100 -
10
1
=== NH4
0.1 —— perox
- - Glu
—&— perox
0.01 . . . .
0 20 40 60 80

time (h)
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Abstract

Saccharomyces cerevisiae is able to grow on different nitrogen sources. Previous data
from our laboratory showed that growth on glutamate causes an increase in biomass
due to the utilization of glutamate carbon atoms for biosynthetic purposes. Moreover,
simulations using a Flux Balance Analysis (FBA) model of yeast metabolism suggest that
growth on media containing glutamate as the only carbon and nitrogen source is
possible. Despite these considerations, a wild-type S. cerevisiae strain is not able to
grow in these conditions. To understand the reasons underlying this growth inability,
we applied a laboratory evolution approach and we isolated 4 different mutants able
to grow in the presence of just glutamate, vitamins and supplements.

Sequencing of the mutant clones showed that they all carry mutations affecting the
Ras/cAMP/PKA pathway. These results show that modification of the carbon sensing
pathways can alter metabolism, allowing yeast to utilize glutamate in a way that the
wild type strain cannot.

Transcriptomics analysis of the more interesting mutant revealed a general up-
regulation of the biosynthesis of amino acids and nucleotides, as well as an enhanced
expression of plasma membrane transporter genes, including glutamate permeases.
Together with the enhancement of energy producing pathways, like fatty acids B-
oxidation, we propose that these changes are among the driving forces in the
adaptation of the evolved mutants.
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Introduction

Microorganisms react to being exposed to different environments and nutrients by
activating different metabolic and signalling pathways, that enable them to make the
best out of the situation they find themselves in (Zaman et al., 2008). Evolution and
natural selection shape the cellular metabolism and its regulation. As a result, the
metabolic and signalling network can sustain growth on different nutrients and can do
that with different efficiency.

Glutamate is a preferred nitrogen source for Saccharomyces cerevisiae, i.e. it is able to
sustain growth at a high rate and activate the Nitrogen Catabolite Repression (NCR) to
shut down the pathways required for the utilization of alternative nitrogen sources
(Godard et al., 2007). The contribution of glutamate to the anabolism of nitrogen-
containing compounds within the yeast cell is remarkable, as 85% of the total nitrogen
groups used for this purpose originates from this amino acid.

After being internalized into the cell, glutamate is mostly degraded by the action of
glutamate dehydrogenase Gdh2, which breaks it into ammonium and alpha-
ketoglutarate (AKG) (Cooper, 1982). The latter can be used to fuel the TCA cycle. The
presence of this carbon backbone readily available, suggest a possible C-anabolic use
of the molecule.

As a matter of fact, several yeast species, like Scheffersomyces stipites and Candida
shehatae, are capable of utilizing glutamate, as well as other amino acids, as a
combined carbon and nitrogen source (Freese et al., 2011) and the homologue of
budding yeast Gdh2 is required for this metabolism.

We recently uncovered the molecular changes induced by the use of glutamate as a
nitrogen source in the yeast Saccharomyces cerevisiae. In particular, we elucidated the
transcriptional and metabolic rewiring that allows it to incorporate the carbon
backbone of glutamate and exploit it for biosynthetic purposes. We found an
interaction between the carbon and the nitrogen source and an accumulation of
reserve compounds in cell growing in glutamate (Brambilla et al., in preparation).

Despite these considerations, wild type S. cerevisiae fails to grow using glutamate as a
carbon source. The aim of this work is to understand the reason for this growth
inability, to discriminate if it is purely a matter of metabolic network or if other cellular
components are in play.

To gain further insights on the underlying molecular reason, we used both
computational and wet lab analyses. In particular, we exploited laboratory evolution to
isolate mutants which were able to use glutamate as carbon and nitrogen source.
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Here we present the results obtained by the selection and characterization of
adaptively evolved mutants, derived from a prototrophic budding yeast strain, which
are indeed capable of using the backbone of glutamate as a carbon source.

The integration of physiological, computational and genomic analysis allowed us to
affirm that S. cerevisiae metabolism, although not being the best choice for the C-
catabolic utilization of glutamate, is not completely incapable of performing this task.
In fact, we found that the reason for the lack of growth for wild-type strains in this
condition is due to signal transduction regulation and in particular to PKA signalling.
Transcriptomics analysis of one of the evolved mutant pointed hints at the regulation
of biosynthesis and transporters as a possible explanation for the mutants behaviour.

The recurrent appearance of signal transduction mutants in different laboratory
evolution experiments (Long et al., 2015) (Li et al., 2018) (Hong et al., 2011) will be
discussed.
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Materials and Methods

Strains and media

The prototrophic S. cerevisiae strain GRFc (Brambilla et al., 1999) was used as a
reference strain and was used to perform adaptive evolution. Inoculum cultures were
prepared from —80°C glycerol stocks on YPD agar plates containing 10 g/L yeast extract,
20 g/L peptone, 20 g/L glucose and 20 g/L agar.

Media were prepared according to (Verduyn et al.,, 1992) with 14 g/L glutamate
monosodium salt monohydrate as nitrogen source and glucose or ethanol at different
concentrations when an additional carbon source was needed.

Shake flask cultures

Precultured cells were inoculated in 500 mL Erlenmeyer flasks containing 100 ml of
minimal medium (Verduyn et al., 1992) with the same composition of cultures. The
starting ODgso, ranging between 0.02 and 0.2, was suitable to reach the desired growth
phase the day of sampling.

The cultures were grown at 30°C in a rotary shaker at 150 rpm.

Batch cultivation in fermenter

Cultivations in fermenter were run in Biostat-B fermenters (B-Braun), filled with 1.5 L
of defined medium with vitamins and trace metals (Verduyn et al., 1992). Cultures were
grown at 30° C at pH 5.0 and 0.2 M KOH was used as a titrant.

Glucose-limited aerobic chemostat cultivations

Chemostat cultivation was performed in Biostat-B fermentors (B-Braun). A defined
medium with vitamins and trace metals was used (Verduyn et al., 1992). The glucose
concentration in the reservoir medium was 8 g/L. A constant working volume of 1300
mL was maintained via an effluent line coupled to a peristaltic pump. A dissolved
oxygen concentration above 30% of air saturation was maintained by an air flow of
1.3/min (1 v/v/m) and a stirrer speed of 1000 rpm. The temperature was maintained at
30°C and the culture pH was kept at 5.0 by automatic addition of 2 M KOH.

Cultures were assumed to be in steady state when at least six volume changes had
passed since the last change in growth conditions and the culture did not exhibit
metabolic oscillations.

Measurement of growth parameters
Optical density of the culture was measured at 660 nm using an Ultrospec 500 pro
spectrophotometer (Amersham).
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Adaptive evolution

The reference strain was grown in shaking flasks containing the described medium
with 0.2 g/L of glucose as a carbon source and glutamate as a nitrogen source.
Cultures were serially diluted into fresh growth medium and, after = 80 generations,
cells were plated onto agar plates containing only glutamate as carbon and nitrogen
source. Cells were then inoculated in shaking flasks containing the same medium as
the plates. The cultures were again serially diluted and after = 30 generations they
were plated and clones were tested again to confirm their ability to grow.

Genome sequencing

The genome of the four most interesting clones, along with the reference strain, were
sequenced with the next-generation lllumina technology (IGA technology services) to

the aim of identifying differences within the open reading frames, relative to the wild-
type reference strain.

RNA preparation and hybridization

Cells were collected by filtration at the indicated time points and total RNA was
extracted with the phenol-chloroform method (Schmitt, Brown and Trumpower, 1990)
from biological triplicate samples in the and analyzed using Affymetrix Genechip Yeast
Genome 2.0 Arrays, containing approximately 5,744 probe sets for 5,841 of the 5,845
genes present in S. cerevisiae. Messenger RNA was amplified and hybridized onto the
array (Biogem S.c.ar.l) as recommended by Affymetrix.

Microarray data analysis

Raw data (CEL files) were analyzed by Biogem S.c.ar.| using the R-Bioconductor
software. More than 500 genes were identified as differentially expressed (DEGs)
between the different culture conditions (Fold Change >2; Corrected P value <0,01).
Fold changes were converted to log2 values.

Functional analysis of DEGs

To identify Gene Ontology and KEGG terms over-represented in the differentially
expressed genes identified by the transcriptomic analysis the online tool FIDEA
(http://circe.med.uniromal.it/fidea/) was used to perform an enrichment analysis. The
p-value threshold was set at 0.05.

To obtain further information on the regulatory network of the DEGs, the “Rank by TF”
tool of the Yeastract database (http://www.yeastract.com/) was used to predict a
ranking of the main transcription factors (TFs) for responsible for the regulation of
our genes of interest.
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Flux Balance Analysis

To run FBA simulations a stoichiometric matrix S and a set of constraints (upper and
lower bound of fluxes) are required. The steady state constraint is defined by the
equation dx/dt =S - v = 0, where dx/dt are time derivatives of metabolite
concentrations represented by the product of the mxn matrix S times the vector of
fluxes v = (vy, v, ..., Vo), Where v;is the flux of reaction i, n is the number of reactions,
and m is the number of metabolites. The ensemble of functional states that the
system can reach given a boundary condition / determines the feasible solutions
space @ = 2nl. By exploiting linear programming, FBA allows for optimization of the
flux through a weighted sum of fluxes. In particular, we used the COBRA Toolbox and
the GLPK solver. Because FBA only returns a single solution, we exploited Flux
Variability Analysis to assess the flux variation range consistent with the maintenance
of the maximal growth obtained with FBA (Damiani et al., 2017).

Determination of stress resistance

Exponentially growing cells in synthetic medium were collected at an optical density
between 0.3-0.5, concentrated and exposed to the following stresses: 51°C (10 min);
sorbitol 4M (1 h); LiCl 2M (3h); H,0, 2mM (1h). Serial dilutions of the suspension were
plated on YPD plates and incubated for 3 days at 30°C.
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Results

Computational simulations predict growth on glutamate as carbon and nitrogen
source

We previously showed (Brambilla et al, in preparation) that the carbon backbone of the
glutamate molecule can be incorporated by yeast during growth the post-diauxic
growth phase on ethanol and allows an enhanced growth of S. cerevisiae, compared
with a standard nitrogen source like ammonium sulphate.

However, unlike other yeasts, S. cerevisiae is not able to grow on media containing only
glutamate as carbon and nitrogen source (Freese et al., 2011).

To investigate this apparent contradiction, we took advantage of a core model of yeast
metabolism, which we previously developed (Frascotti et al, in preparation). We
performed constraint-based simulations of yeast growth in the presence of glutamate
and either glucose, ethanol or none additional carbon source. Interestingly, we could
observe a theoretical growth in the presence of glutamate as the only carbon and
nitrogen source (Figure 1).

This result suggests that budding yeast metabolism, and in particular the reactions
included in our core model could support the use of glutamate to provide all the carbon
and nitrogen necessary for biomass production.

Therefore, the lack of growth observed by the wild-type strain could be the result of

the regulation of cellular growth in the presence of such a poor carbon source.

0,14

0,12
0,1

0,08

0,06

0,04

Calculated biomass yield

0,02

with glucose with ethanol w/o carbon
source
Figure 1 - Computational investigation of growth in glutamate as exclusive carbon
and nitrogen source. Optimal growth yield (biomass over carbon source. Glutamate is
considered a carbon source only in the absence of glucose/ethanol ) as predicted by
FBA - for YENIM core model
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Hyperactivation of the PKA pathway allows the use of glutamate as carbon
source

We decided to isolate mutants that could be able to exploit the metabolic potential
highlighted by our computational simulations and, to this aim we performed an
adaptive evolution starting from a prototrophic yeast strain (Figure 2A). We performed
a first round of selection in a medium containing glutamate and low glucose (= 80
generations), followed by a second round in a minimal medium containing only
glutamate as carbon and nitrogen source (= 30 generations).

At the end of the adaptive evolution protocol we were able to isolate 4 clones (6A, 13C,
LB2, LB7) with the ability to grow using glutamate as a carbon source (Figure 2B).
Analysis of the growth of the four mutants revealed differences in their growth rate
and in their final biomass yield. However, all the clones grow with very high duplication
times, ranging from 29 to 47 hours.

To understand the molecular reason behind the growth on glutamate, we sequenced
the genome of the evolved mutants and compared it with the reference wild-type
strain GRFc. As expected for growth in such a poor condition, the mutants contain many
mutations throughout the genome. It was particularly useful to compare the mutations
in the different strains. Strikingly, the common target of the mutations in all the four
strains is the Protein kinase A (PKA) pathway. In particular, 3 out of 4 mutants carry
mutations in the GPB2 gene and the other mutant is mutated in the IRA2 gene (Figure
20C).

Ira2 is one of the two GTPase activating proteins (GAPs) of yeast Ras proteins (Tanaka
et al., 1990), which enhance the fraction of GDP-bound Ras and therefore decrease
Ras/cAMP/PKA signalling (Colombo et al., 2004). Gpb2, together with Gpb1 is a kelch
repeat protein, which is a multistep regulator of PKA pathway. They act both upstream
of Ras by binding Iral/2 C-terminal domain and stabilizing the GAPs (Harashima et al.,
2006) and directly on PKA, favouring the binding of the catalytic Tpk subunits to the
regulatory subunit Bcyl (Peeters et al., 2006).

LB7, LB2 and 6A mutant carry nonsense mutations in the GPB2 gene, which generate
truncated versions of the protein of 190 (LB2, LB7) and 488 (6A) amino acids. Gpb2
contains 7 kelch repeats, which fold as a B-propeller and seems to be implicated in
protein-protein interaction (Harashima and Heitman, 2002). In the LB7 and LB2
mutants none of the kelch repeats is present, while in the 6A mutant only 3 out of 7
repeats are present. In both cases, there is a clear alteration of its protein-protein
interaction capability. On the other hand, the 13C clone carries a mutation that
introduces a stop codon in the position 1952 of /RA2. The truncated protein generated
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A

this way still possesses the Ras-interacting domain (or most of it) but lacks the C-
terminal Gpb-interacting domain.

As a result, we predict that the mutants should have an hyperactivation of the PKA
pathway. An enhanced PKA activity is known to increase sensitivity to different
stresses. Consistently, both LB7 (mutated in GPB2) and 13C (mutated in /RA2) clones
display a lower resistance to temperature, oxidative, osmotic and saline stresses,
compared to the wild-type strain (Figure 2D).

To further strengthen the causal link between the mutations and the growth
phenotype, we deleted the entire GPB2 gene and observed that this deletion allows
yeast to grow on glutamate medium, even if the phenotype is worse than that one of
the GPB2-mutants, LB7. (Supplementary figure S1).
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Figure 2 — Laboratory evolution and chharacterization of the evolved mutant capable of growing on glutamate as a carbon source.
(A) Scheme of the performed laboratory evolution. (B) Growth of the four isolated mutants in a mineral medium containing only
glutamate, vitamins and essential supplements. (C) Visualization of the most interesting mutations present in the four mutants and
their relationship with the protein domains. (D) Drop-test for stress resistance. Aliquots (0.5 OD) of exponentially growing cells (in
minimal medium with glucose) have been collected and exposed to the following stresses: hydrogen peroxide 1 or 2 mM (1 hr), 50°C
(10 minutes), LiCl 2M (3 hr), Sorbitol 4 M (1 hr). Sequential dilution of treated and untreated cells were spotted on YPD and incubated
for 3 days.
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C-assimilation of glutamate is enhanced by pH and possibly oxygenation control
For further analyses, we chose to use the mutant which showed the best growth
phenotype, which was LB7. To assess the importance of different physiological
parameters for the growth on glutamate only medium, we cultivated the strain in batch
fermentor, keeping the pH at 5 and the dO, above 50%. In this condition, LB7 strain still
grows with slow growth rate, but, unlike the shaking flask experiments, it is able to
reach a much higher biomass, up to 10 ODgso. Moreover, it is able to consume all the
glutamate that is contained in the medium (Figure 3A).

To evaluate the impact of the different parameters for LB7 growth, we performed the
same growths but without control of oxygenation and pH. LB7 grown in this condition
reaches a final biomass comparable to that of the growth in the shaking flasks. We also
monitored the parameters during this growth and found out that, while the pO; stays
constant for all the growth, the pH changes from an initial value below 6 to almost 7.
These results suggest a greater importance of pH control rather than oxygenation
control for LB7 growth. Consistently, mutant cells (LB7 and gpb2A4), when grown in
flasks with 100 mM MES buffer at pH 5.5 the final biomass accumulation showed an
increase of more than 3 folds, even if not comparable to that of the fermentor growths.

For this last reason, we think that oxygen limitation could also be a factor in the difficult
growth of the mutant cells using glutamate as carbon and nitrogen source.

Indeed, growth in glucose-limited chemostat allowed us to evaluate the respiratory
parameters (O, consumption and CO; production) of LB7, which are enhanced in this
condition. Moreover, it allowed us to measure the biomass production, which is
reduced compared to the wild-type strain (Figure 3B). This is consistent with literature
data that indicate a trade-off in mutant isolated from laboratory evolution, which result
less efficient than the wild-type in rich media (Wenger et al., 2011) (Hong and Nielsen,
2013).
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Figure 3 - Evaluation of LB7 properties in fermentor and chemostat. (A) LB7 cells were grown in fermentor at controlled pH and
oxygenation. Growth was evaluated by spectrophotometry and external glutamate concentration was measure by NMR. (B)
Physiological parameters of LB7 (white) and wild-type (black) growing in a glucose-limited chemostat. DW=dry weight;
q02=oxygen consumption; qCO2=carbon dioxide production.
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Transcriptomic analysis shows a modulation of metabolism and transport in LB7
cells

To have a more comprehensive view of the changes occurring into the mutant cells that
could allow growth on glutamate as a carbon source, we investigated the
transcriptional changes that occurred in such condition. Due to the inability of the wild-
type cells to use glutamate as a carbon source, we lacked a proper control for our
analysis. Therefore, we decided to investigate the changes in transcription caused by
the mutation and those caused by the growth in glutamate separately (Figure 4A).

To this aim, we cultivated wild-type GRFc cells in fermentor, in a medium containing
glutamate as a nitrogen source and ethanol as a carbon source, to allow respiratory
growth and to avoid glucose repression (condition A). Our condition B was the same
growth performed using the LB7 strain. Finally, we cultivated LB7 cells in a medium
containing only glutamate as carbon and nitrogen source (condition C).

We extracted the RNA and analysed the transcriptome using Affymetrix Yeast 2.0
microarray. Strikingly, as shown in the dendrogram of our samples, the C condition is
transcriptionally more similar to the A condition than to the B (Figure 4).

With the data obtained we performed two comparisons: B vs A, which told us which
genes were differentially expressed between wild-type and mutant cells in the
presence of glutamate and ethanol, and C vs B, which showed us the changes in
expression due to the growth in our unusual growth medium.

As shown in Figure 4C, the widest transcriptional rearrangement occurs in the B vs A
comparison, where we found more than 600 differentially expressed genes (DEGs). In
this comparison, the majority of the genes are up-regulated (fig). The C vs B
comparison, on the other hand, shows a more modest change in transcription (= 200
DEGs), with a predominance of down-regulated genes. Finally, 118 genes were
common between the 2 lists of DEGs, which were all regulated in opposite ways in the
two comparisons (Figure 4D).

To gain further insights into the biological pathways and functions affected in the two
comparisons, we used the web tool FIDEA, which is able to retrieve functional terms
from Gene Ontology and KEGG databases significantly associated with a list of genes.

Figure 4E shows the terms retrieved from the Gene Ontology slim (a subset of the GO
terms) significantly associated with the DEGs derived from the two comparisons under
exam. Many of the terms associated with the B vs A gene list are shared with those
related to the C vs B comparison. In particular, transcription of genes involved in
metabolic processes such as small molecule, amino acid and sulphur compounds
metabolism and transmembrane transport are affected both by LB7 genotypic changes
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and by the growth on glutamate as a carbon and nitrogen source. Resembling what has
been observed for the general analysis, all these terms are mostly up-regulated in the
LB7 mutant compared to the wild-type, and down regulated when the mutant is grown
in glutamate. Strikingly, the only term significantly associated with the C vs B
comparison is the one related to the peroxisomal compartment.

KEGG terms enrichments (Supplementary figure S2A) confirm the results, elucidating
regulation of the different amino acid biosynthetic pathways, which will be discussed
in the next paragraph.

The analysis of the GO cellular compartments terms (Supplementary figure S2B)
reveals, for the B vs A comparison, changes in the external compartment of the cell,
with a =75% of up-regulated genes whose product is localized in either the cell wall or
the plasma membrane. The latter term is also associated with the list of DEGs in the C
vs B comparison, with a slight predominance in up-regulation. Consistent with the GO
slim analysis, a wide up-regulation of genes associated to the peroxisomal matrix is
observed.

Biological processes related to our DEGs are mostly metabolic, reflecting what we
observe with the KEGG terms. Additionally, mutated cells compared to wild-type (B vs
A, Supplementary figure S3) show a downregulation in the assembly of the respiratory
chain and growth in glutamate only (C vs B, Supplementary figure S4) also down-
regulates purine biosynthesis.

From this preliminary analysis we can conclude that hyperactivation of the PKA
pathway induces an up-regulation of different metabolic processes (mostly
biosynthetic) and of the transport of molecules in the cell, while the growth in
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glutamate medium downregulates genes in the same pathways, but with a lower
extent.
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Figure 4 — (A) Scheme of the transcriptomic analysis of LB7 mutant. Condition A: wild type GRFc strain growing in
ethanol+glutamate; Condition B: LB7 mutant growing on ethanol+glutamate; Condition C: LB7 mutant growing on
glutamate only. (B) Correlation treemap of samples similarities. (C) Significant differentially expressed genes in the
Bvs A and C vs B comparisons (fold change>2, p-value<0.01) (D) Number of DEGs in the two comparisons ain
intersection between the two gene lists. (E) GO slim terms significantly associated with the B vs A (top) and C vs B
(bottom) DEGs lists.
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LB7 mutation modulates amino acid and nucleotides biosynthesis, while growth
in glutamate enhances energy producing pathways

One of the most interesting terms derived from the FIDEA analysis are those related to
the metabolism of amino acid. We therefore investigated in more detail the regulation
of the amino acid biosynthetic pathways. As visualized in Figure 5A, in the B vs A
comparison, we can observe an up-regulation of several biosynthetic pathways. In
particular, we identified genes positively regulated in the pathways that synthesize the
amino acids directly from glutamate (Lys, Arg, Pro), those belonging to the pyruvate
(Leu, Val, lle) and oxaloacetate (Asn, Cys) families. Consistently, analysis of the
transcription factors involved in the regulation of the B vs A comparison indicates a
strong role of Gcn4 in the transcriptional rearrangement of the LB7 mutant
(Supplementary table S1).

Interestingly, only a small fraction of the pathways just mentioned are down-regulated
in the C vs B comparison. In particular, the Lys and Arg biosynthesis. In addition, also
the Tyr biosynthesis, which were not regulated by the LB7 mutation, is down-regulated
by growth using glutamate as a carbon source. Additionally, the pentose phosphate
pathway is up-regulated in this condition.

Another transcription factor significantly associated with both the B vs A
(Supplementary table S) and C vs B (Supplementary table S2) DEG lists is Bas1, which is
involved in the purine and histidine biosynthetic pathways. In fact, the initial reactions
of this pathway (those leading to IMP) are up-regulated by the LB7 mutation and down-
regulated by growth in glutamate as carbon and nitrogen source, at a very similar
extent (Figure 5C, right). In the downstream part of the pathway, the C vs B condition
seems to be correlated with a down-regulation of AMP production, while the LB7
mutation up-regulated the reaction leading to GMP production. Additionally, in the B
vs A comparison, biosynthesis of the pyrimidines is up-regulated, while one of the same
components of the pathway is down-regulated by the switch from the B to the C
condition (Figure 5C, left).

An interesting term that emerged from the GO enrichment analysis is the one related
to the peroxisome in the C vs B analysis. We reasoned that this could mean a regulation
of the B-oxidation of fatty acids. As shown in Figure 5B, growth in glutamate only,
compared to growth in glutamate and ethanol, causes a transcriptional up-regulation
of the POX1, FOX2 and POT1 genes, which allow cells to convert fatty acids to acetyl-
CoA, as well as the CTA1 catalase gene, involved in the detoxification of the hydrogen
peroxide produced in the process. No regulation of the B-oxidation pathway in the LB7
mutant growing on glutamate and ethanol, compared to the wild-type strain grown in
the same condition (B vs A), is observed.
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Chapter 2: Alterations of the nutrient sensing pathways allow yeast to utilize glutamate as a combined
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Figure 5 — Transcriptional regulation of metabolic genes involved in amino acid biosynthesis (A), fatty acid 6-oxidation (B) and
nucleotide biosynthesis (C, left: pyrimidine biosynthesis, right: purine and histidine biosynthesis). Regulation of transcription is
represented as arrows. Upward arrows indicate up-regulation, downward arrows represent down-regulation. Red arrows are relative
to the B vs A comparison, while blue arrow indicate a regulation in the C vs Bcomparison. Absence of arrows indicate a lack of significant
alteration of the transcript levels (fold change too low or p-value too high). Figures A and B are modified from Liungdahl and Daignan-
Fornier, 2012.
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LB7 shows an increase in the expression of several amino acid permeases
Finally, because of the significant association of the term related to transmembrane
transport to both the comparisons, we investigated the transcriptional regulation of
the genes coding for yeast transporters.

First, we obtained the list of the list of yeast transporters from the Yeast Transport
Proteins Database (http://ytpdb.biopark-it.be) and we observed how many of that
proteins were regulated in the two comparison we performed for the three
transporters categories: plasma membrane transporters, internal membrane
transporters and not yet characterized transporters (Supplementary figure S5).

About 10% of internal membrane transporters genes display a regulation both in both
the comparisons performed. The same or a minor fraction of the plasma membrane
transporters and uncharacterized transporters is regulated in the C vs B comparison.
On the other hand, 27% of plasma membrane transporters genes is regulated by the
LB7 mutation (B vs A) and, in particular, 24% of them is up-regulated. This is also true
for the 16% of the still unknown transporters genes.

Because of the data just discussed, we assessed the regulation of plasma membrane
transporters specifically involved in nitrogen-containing compounds transport (Figure
6). As already observed for components of their biosynthetic pathways, we found that
many genes coding for amino acid permeases are up-regulated in the presence of the
mutations of LB7 and the vast majority of those is not down-regulated in the C vs B
comparison, which means that they still are more expressed in the LB7 strain growing
on glutamate. Interestingly, among those DEGs are both the broad-range amino acid
permease GAP1 and the dicarboxylic amino acid permease DIP5, which are the two
transporters known to be involved in glutamate import into the yeast cell. In addition
to this, 5 out of 9 of the unknown transporters show similarities with amino acids and
carboxylic acids permeases.

The C vs B comparison doesn’t show a regulation by the culture medium of the
expression of plasma membrane permeases. The only interesting data is the up-
regulation of the ammonium exporter gene ATO3, coding for an ammonium exporter,
which could be involved in a detoxification mechanism.

We can conclude that both known transporters for glutamate and putative amino acid
permeases are overexpressed in the LB7 mutant, compared to the wild-type. Although
growth with glutamate as the only carbon source does cause a general down-regulation
in the transcription of transmembrane transporters, it does not affect the regulation of
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these permeases. For this reason, it is possible to hypothesize that they their level could
be high enough to play a role in the growth of LB7 in glutamate only.
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Chapter 2: Alterations of the nutrient sensing pathways allow yeast to utilize glutamate as a combined
carbon and nitrogen source
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Figure 6 — Transcriptional regulation of nitrogen-related transporters (modified from Ljungdahl and Daignan-Fornier,
2012). The representation of the changes in transcription is the same as Figure 5.
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Discussion
In this chapter we have studied how a prototrophic yeast strain subjected to laboratory
evolution was able to acquire a completely new metabolic capability, absent in the
wild-type strain: incorporate the carbon atoms of glutamate, not only as an additional
source of carbon during co-consumption with ethanol, but without any other carbon
compound.

The result of our computational analysis showing that yeast central metabolism can
sustain growth on glutamate as carbon and nitrogen source, together with the fact that
yeast is able to exploit glutamate carbon atoms during growth on ethanol (Chapter 1)
indicates a regulatory mechanism behind the lack of growth of wild-type S. cerevisiae
using glutamate as a carbon source. Considering this, it is not entirely surprising that all
the four mutants we retrieved carried mutations components of the signal transduction
machineries.

Nevertheless, the bioinformatic analysis of the transcriptomics results retrieved almost
exclusively terms related to metabolic pathways or transport of nutrients. In particular
we observe, for a fraction of terms, an up-regulation caused by the LB7 mutation (and
hence, by PKA activation) and a down-regulation induced, in the mutant, by the growth
in glutamate without another carbon source. Interestingly, the magnitude of the
regulation in the two directions, is rarely very different in the two conditions. We have
no way to evaluate the level of these transcripts in the wild-type with glutamate as the
only carbon source, because it cannot sustain growth in such condition. Anyway, it is
interesting to hypothesize that the down-regulation observed in the mutant reflects
what happens in the wild-type. This suggest the fascinating possibility that the
hyperactivation of the PKA pathway is able to trick the cell, mimicking the presence of
a richer nutrients, which does not shut down all the needed pathways and can, at its
slow pace, grow. This could explain the curious data that show that LB7 grown in
glutamate only has a transcriptional profile more similar to that of the wild-type strain
grown in glutamate and ethanol than to a LB7 grown in that condition.

Biosynthesis of amino acid and purine nucleotides seems to be central in the metabolic
rewiring that is generated by the deletion of GPB2 found in the mutant. Two of the
main players involved in the transcription of genes in these pathways are Gcn4 and
Bas1, whose targets are significantly enriched in the B vs A gene list. It is not the fist
time that these genes have been associated with PKA. In fact, Gcn4 targets have been
found up-regulated following Ras-hyperactivation (Zaman et al., 2009) and the Snfl
kinase, negatively regulated by PKA, is involved in the repression of GCN4 translation
(Shirra et al., 2008). Moreover, interaction between Gcn4 and Basl were already
identified as crucial in the different Crabtree effect observed in a laboratory evolved
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strain characterized by a loss of function mutation in RAS2 (Martinez et al., 2014). It is
possible that their combined effect is also important for LB7 phenotype.

The effect of PKA on yeast transporters is also interesting. The LB7 strain presents a
wide up-regulation of the plasma membrane transporters. The two amino acid
permeases that caught our eye (DIP5 and GAP1) are not usually regulated in the same
way. In fact, Gapl is under the control of the nitrogen catabolite repression, which is
active when an optimal nitrogen source, like glutamate, is present (Godard et al., 2007).
On the other hand, Dip5 is specifically required for the import of glutamate and
aspartate into the cell. It seems that the mutation is able to change the classical pattern
of regulation of the two permeases. How that is done remains to be elucidated,
because the effect of PKA on Gapl1 so far is not absolutely clear and seems to be more
inhibitory than promoting (Garrett, 2008).

In the results section we have focused mainly on the amino acid permeases, but the
transcription of various sugar (mannose, fructose, glucose) transporters, sulphate and
phosphate permeases and proteins devoted to the import of vitamins and other
essential ions is also up-regulated in the LB7 mutant. This is consistent with the fact
that mutations in components of the PKA pathway are frequent in different kinds of
evolution experiments: from a generic increase of fithess compared to other
competitors (Venkataram et al., 2016) (Kvitek and Sherlock, 2013) to a better utilization
of a non-preferred carbon source (Hong et al., 2011).

In the last cited article, Nielsen and colleagues identify several strains harbouring
mutations in the RAS2 protein or in CYR1 gene, coding for the yeast adenylate cyclase,
which are able to use galactose more efficiently without having direct mutations on the
pathways involved in galactose utilization. Our results strengthen the relationship
between adaptation to new growth condition and the signal transduction, derived from
their intrinsic pleiotropic nature.

From the point of view of applications and future perspectives, the consequences of
this reasoning are different. First, laboratory evolution is confirmed to be a valuable
tool for developing strains of interest carrying non-trivial mutations, which could both
be directly useful for production or for better understanding growth regulation.
Moreover, the great power of the modulation of the signalling pathways could be
directly exploited by more focused mutagenesis, in order to obtain various mutants.
Finally, it is fascinating to observe how the obtained strains perform in the different
conditions, from a nutrients-rich environment (in which they usually perform worse
than their reference wild-type strains) (Wenger et al., 2011) to a different poor
environment. Integrated analysis of the behaviour of the different strains in the
presence of different nutritional sources could really boost the understanding of
cellular metabolism and its regulation.
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Chapter 2: Alterations of the nutrient sensing pathways allow yeast to utilize glutamate as a combined
carbon and nitrogen source

Supplementary information
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Supplementary figure S1 — (A) Growth gpb2A on glutamate as carbon and nitrogen source, compared to wild-type and LB7 strains. (B)
Measure of pH and oxygenation for growth in fermentor without control of those parameters. (D) Growth of wt, LB7 and gpb2A4 on
glutamate only shaking flask, buffered at pH 5.5 with 100mM MES.
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Supplementary table S1 — Transcription factors significantly associated with the B vs A gene list

Transcription Factor

Sok2p
Baslp
Xbplp
Gcndp
Met32p
Ace2p
Cin5p
Swi5p
Mig3p
Zaplp
Ume6p
Msn2p
Msndp
Pdrip
Teclp
Stel2p
Yox1p
Gislp
Aftlp
Yhplp
Gat4dp

Msslp

% in our set

54.24%
67.33%
33.90%
66.26%
17.26%
83.20%
46.53%
41.91%
37.90%
36.98%
38.06%
64.71%
52.54%
33.59%
70.88%
71.65%
33.90%
17.57%
34.21%
31.59%
9.24%

0.31%
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% in Yeastract

15.60%
14.55%
15.65%
14.36%
20.36%
11.30%
13.85%
13.98%
14.73%
15.59%
16.78%
12.29%
13.28%
15.14%
12.05%
12.07%
15.40%
29.08%
15.79%
15.92%
27.52%

100.00%

p-value

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00



Skolp
RIm1p
Mitlp
Mfglp
Com2p
Dig2p
Sfplp
Pho2p
Yap6p
Flo8p
Yaplp
Rphlp
Arrlp
Mot3p
Stp2p
Pdr3p
Miglp
Upc2p
Nrglp
Stplp
Rox1p
Adrlp
Crzlp
Cup2p

Edslp

25.42%
21.88%
0.15%

0.15%

0.15%

0.15%

74.88%
26.35%
24.65%
24.50%
62.87%
19.26%
34.82%
16.64%
17.57%
26.96%
13.56%
10.63%
18.64%
18.49%
21.73%
20.34%
16.64%
15.25%

5.70%
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17.82%
19.92%
100.00%
100.00%
100.00%
100.00%
11.21%
15.91%
16.39%
16.26%
11.81%
17.58%
14.11%
18.34%
17.70%
14.86%
19.43%
21.70%
16.71%
16.62%
15.61%
15.94%
16.90%
17.10%

27.21%

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

0.0000E+00

1.0000E-15

1.0000E-15

1.0000E-15

3.0000E-15

4.0000E-15

1.3000E-14

1.4000E-14

6.0000E-14

1.4200E-13

4.9000E-13

5.3300E-13

8.0300E-13

1.6240E-12

3.0330E-12

3.9870E-12

4.8890E-12

1.4878E-11

5.7994E-11

1.3553E-10



Met4p
Met31p
Hsflp
Sutlp
Mgalp
Met28p
Mig2p
Rmelp
Swidp
Opilp
Leu3p
Cbflp
Hap4p
Ixrlp
Rpilp
Rfx1p
Ger2p
Kardp
Gzf3p
Ashlp
Oaflp
Skn7p
Raplp
Spt23p

Cadlp

31.74%
11.56%
34.21%
14.02%
16.80%
7.55%

9.09%

11.25%
22.80%
10.48%
15.72%
30.05%
21.42%
33.28%
6.01%

16.33%
26.50%
18.95%
8.32%

54.39%
19.11%
21.88%
51.46%
34.05%

17.41%
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13.30%
18.38%
12.77%
16.55%
15.48%
21.30%
19.22%
17.51%
13.83%
17.80%
15.32%
12.79%
13.93%
12.46%
22.41%
15.06%
13.09%
14.29%
18.69%
11.07%
13.90%
13.42%
11.13%
12.09%

14.16%

1.6292E-10

4.6289E-10

1.2591E-09

2.1758E-09

2.7946E-09

2.8845E-09

5.6748E-09

7.5111E-09

1.0913E-08

1.2027E-08

1.7379E-08

1.9630E-08

2.1873E-08

2.2000E-08

2.2630E-08

2.2866E-08

3.4867E-08

3.7680E-08

6.6253E-08

8.1872E-08

1.6517E-07

1.6666E-07

1.8285E-07

2.0326E-07

2.3785E-07



Fhilp
Phd1p
Inodp
Sfllp
Rgmlp
Dal80p
Lysldp
Tos8p
Rtg3p
Tbslp
Rtglp
YPRO15C
Stp3p
Stp4p
Ecm22p
Oaf3p
GIn3p
Ino2p
Pho4dp
Abflp
Hotlp
Aft2p
Rpndp

Wtm2p

24.50%
16.49%
27.73%
4.78%
9.71%
5.86%
0.77%
9.86%
14.33%
3.54%
7.40%
4.31%
1.23%
5.08%
11.71%
9.71%
22.50%
13.87%
25.89%
46.84%
3.39%
11.40%
31.59%

4.78%

12.74%
14.01%
12.30%
20.95%
15.91%
18.91%
71.43%
15.69%
13.78%
22.55%
16.55%
20.29%
42.11%
18.75%
14.29%
15.00%
12.29%
13.62%
11.92%
10.80%
21.57%
14.15%
11.47%

18.34%

8.4432E-07

9.0174E-07

1.5313E-06

2.4824E-06

2.6503E-06

3.5292E-06

3.5878E-06

3.6435E-06

9.8742E-06

9.9979E-06

1.2325E-05

1.3172E-05

1.6201E-05

1.6474E-05

1.7711E-05

1.9136E-05

2.0839E-05

2.2196E-05

2.5970E-05

2.7099E-05

3.1819E-05

3.1822E-05

3.3193E-05

4.4097E-05

Supplementary table S2 - Transcription factors significantly associated with the C vs B gene list
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Transcription Factor
Baslp
Sok2p
Gcndp
Msslp
Gislp
Mitlp
Mfglp
Metdp
Zaplp
Pdrip
Msn4p
Arrlp
Aftlp
Ume6p
Adrlp
Sfplp
Swi5p
Rox1p
Cin5p
Pho2p
Ace2p
Msn2p
Yaplp

Pdr3p

% in our set
73.66%
62.05%
79.02%
0.89%
21.88%
0.45%
0.45%
45.09%
44.64%
41.52%
58.93%
43.30%
39.73%
40.18%
27.68%
81.25%
47.77%
29.02%
51.34%
32.14%
85.71%
68.75%
69.20%

33.48%
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% in Yeastract
5.49%
6.16%
5.91%
100.00%
12.50%
100.00%
100.00%
6.52%
6.50%
6.46%
5.14%
6.05%
6.33%
6.11%
7.49%
4.20%
5.50%
7.20%
5.27%
6.70%
4.02%
4.51%
4.48%

6.37%

p-value

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
1.0000E-15
1.0000E-15
3.7000E-14
4.2500E-13
5.0300E-13
6.2900E-13
3.4870E-12
5.9520E-12
6.5010E-12
9.4120E-12
9.8070E-12
1.4815E-11
1.8496E-11
2.4140E-11
4.8651E-11
5.7126E-11

7.5623E-11



RIm1p
Hsflp
Gat4dp
Skolp
Miglp
Cadlp
Rpn4p
Yap6p
Hotlp
Kardp
Yox1lp
Gzf3p
Met32p
Teclp
Cbflp
Stel2p
Flo8p
Stp2p
Yap5p
Rmelp
Opilp
Mot3p
Stplp
Nrglp

Sutlp

24.11%
42.41%
11.61%
27.68%
17.41%
24.55%
41.96%
27.68%
7.14%

25.00%
35.27%
12.50%
18.30%
70.54%
36.16%
70.54%
26.34%
19.64%
24.11%
14.73%
13.84%
18.30%
20.98%
20.98%

17.41%
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7.57%
5.46%
11.93%
6.70%
8.61%
6.89%
5.26%
6.35%
15.69%
6.50%
5.53%
9.69%
7.45%
4.14%
5.31%
4.10%
6.03%
6.83%
6.16%
7.91%
8.12%
6.96%
6.51%
6.49%

7.09%

1.1955E-10

5.3622E-10

6.8235E-10

7.3891E-10

1.4571E-09

2.8951E-09

5.9098E-09

6.3019E-09

1.3757E-08

1.7402E-08

2.0718E-08

2.1158E-08

4.0924E-08

4.5223E-08

8.1953E-08

9.8472E-08

1.0976E-07

1.7480E-07

2.0764E-07

2.0994E-07

2.7134E-07

2.8219E-07

2.8339E-07

3.0810E-07

3.4088E-07



Yhplp
Crzlp
Met31p
Xbplp
Mig3p
Oaf3p
Cat8p
Met28p
Rphlp
Nrg2p
Stb5p
Edslp
Upc2p
Dal81p
Fhilp
Hap4p
Mig2p
Haplp

Lysl4p

31.25%
19.20%
14.29%
33.04%
36.61%
13.84%
9.38%

9.38%

19.64%
12.05%
27.68%
6.70%

11.16%
12.05%
28.12%
23.66%
10.27%
11.16%

1.34%
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5.43%
6.73%
7.84%
5.26%
4.91%
7.38%
9.17%
9.13%
6.19%
7.78%
5.33%
11.03%
7.86%
7.32%
5.05%
5.31%
7.49%
7.18%

42.86%

3.7475E-07

3.7510E-07

3.9110E-07

5.7257E-07

2.2027E-06

2.2379E-06

2.5279E-06

2.7184E-06

2.8538E-06

3.4232E-06

4.1979E-06

4.8161E-06

6.2091E-06

1.1116E-05

2.1414E-05

2.7011E-05

3.0475E-05

3.0761E-05

3.0768E-05



Conclusions

In the two chapters of this thesis we have analysed in depth the different ways in which
glutamate can be used by wild-type and mutant cells for different cellular purposes. At
their core, both chapters place glutamate carbon backbone at the centre of its
specificity. Glutamate is just an enzymatic reaction away from ammonium, the
standard nitrogen source used in synthetic yeast media and alpha-ketoglutarate, a key
intermediate of TCA cycle (Magasanik and Kaiser, 2002). AKG also results from the
many transamination reactions in which glutamate is the donor molecule (Cooper,
1982).

The position of glutamate in the cellular metabolism reflects in the many ways in which
we have shown it modifies and interacts with the cellular machinery. For instance, the
interaction with the different carbon source is not just a matter of respiratory versus
fermentative metabolism and glucose repression but is due to a different allocation of
metabolic fluxes. On the other hand, chapter 2 mutants present alterations in the PKA
pathway, which responds primarily in sensing glucose (Busti et al., 2010) and elicits
many of the cellular responses associated with presence of the sugar (Zaman et al.,
2009). Nonetheless, transceptors-based sensing of nitrogen and other nutrients after
starvation is reported to activate PKA when glucose and all the other nutrients required
for fermentative growth are present (Steyfkens et al., 2018).

We showed that S. cerevisiae is capable of using the carbon atoms of glutamate for
accumulation of biomass. Wild-type budding yeast C-catabolic use of glutamate is
confined to post-diauxic growth on ethanol, while during fermentation of glucose a
great part of AKG is secreted in the growth medium. In addition, glutamate carbons are
incorporated into storage molecules which sustain an enhanced stress resistance. On
the other hands, activating mutations in the protein kinase A signalling pathway are
required for growth on glutamate as both a carbon and nitrogen source. We showed
that this growth is strongly dependent on the pH of the growth medium and mutant
cells are characterized by up-regulation of genes involved in biosynthesis and transport
of amino acids.

It should already be obvious, and it is further strengthen by the results presented in
this thesis, that the traditional biochemical representation of distinct metabolic
pathways for utilization and anabolism of carbon, nitrogen and other nutrients is far
from what happens in the cell. Dealing with this notion can be confusing, and it wold
be a struggle to grasp a complete picture of the cell with a classical cell biology
approach. For this reason, throughout the two chapters, a lot of information came from
the use of -omics techniques (especially transcriptomics) and constraint-based
modelling.
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It should be noted that this kind of enquiry is that none of this analysis is self-sustaining.
Integration of high-throughput data, physiological measurements and computational
simulations is crucial. Without genomic data we would not have been able to
reconstruct the metabolic network, and without constraints derived from chemostat
experiments we would not have had a validation for its accuracy. Finally, without
validation from actual data computational simulations would not have had the same
impact. On the other hand, the second chapter probably would not have existed at all,
if it wasn’t for the result of the computational simulations, which showed the
theoretical capacity of S. cerevisiae to use glutamate as carbon, nitrogen and energy
source.

Yeast is particularly well suited for flux balance analysis, because continuous chemostat
cultures are as close as it is possible to get to the steady state which is the underlying
assumption of FBA. However, metabolic models and computational simulations are
widely used also for multicellular eukaryotes. The paper reported in the appendix of
this thesis (Graudenzi et al., 2018) takes many of the concepts here discussed and
applies them to human cells. In this work, we manually reconstructed a model of
human metabolism and we developed a data integration framework, for the
integration of transcriptomic data. Starting from these kind of data, scores can be
assigned to the different metabolic reactions present in the model, which were used to
cluster cancer patients according to their metabolic status and predict their prognosis.

This approach is similar to that seen in chapter 1 for the analysis of the reporter
metabolites. This shows the flexibility of metabolic models, which do not necessarily
require to compute the simulations to provide useful information about biological
systems.

In conclusion, our work with glutamate not only provided answers and interpretations
of yeast metabolic and signalling strategies but offers an example of combination of
different techniques, which is able to deliver a system-level interpretation of biological
data.
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ARTICLE INFO ABSTRACT

Keywords:
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Effective stratification of cancer patients on the basis of their molecular make-up is a key open challenge. Given
the altered and heterogenous nature of cancer metabolism, we here propose to use the overall expression of
central carbon metabolism as biomarker to characterize groups of patients with important characteristics, such
as response to ad-hoc therapeutic strategies and survival expectancy.

To this end, we here introduce the data integration framework named Metabolic Reaction Enrichment Analysis
(MaREA), which strives to characterize the metabolic deregulations that distinguish cancer phenotypes, by
projecting RNA-seq data onto metabolic networks, without requiring metabolic measurements. MaREA com-
putes a score for each network reaction, based on the expression of the set of genes encoding for the associated
enzyme(s). The scores are first used as features for cluster analysis and then to rank and visualize in an organized
fashion the metabolic deregulations that distinguish cancer sub-types.

We applied our method to recent lung and breast cancer RNA-seq datasets from The Cancer Genome Atlas and
we were able to identify subgroups of patients with significant differences in survival expectancy. We show how
the prognostic power of MaRFA improves when an extracted and further curated core model focusing on central
carbon metabolism is used rather than the genome-wide reference network.

The visualization of the metabolic differences between the groups with best and worst prognosis allowed to
identify and analyze key metabolic properties related to cancer aggressiveness. Some of these properties are
shared across different cancer (sub) types, e.g., the up-regulation of nucleic acid and amino acid synthesis,
whereas some other appear to be tumor-specific, such as the up- or down-regulation of the phosphoenolpyruvate
carboxykinase reaction, which display different patterns in distinct tumor (sub)types.

These results might be soon employed to deliver highly automated diagnostic and prognostic strategies for
cancer patients.

1. Introduction a generic cell, as well as Gene-Protein-Reaction (GPR) associations,
which are logical formulas that describe how gene products concur to
catalyze a given reaction.

Several strategies have been proposed to integrate -omics data into

Alterations of energy metabolism play a relevant role in several
pathologies, such as metabolic syndrome, ageing, cancer, diabetes and

neurodegeneration [1]. Current research on human metabolism typi-
cally relies on genome-wide reconstructions of human metabolic net-
works [2], such as Human Metabolic Reaction (HMR) [3] and Recon
[4,5]. These models include most metabolic reactions that may occur in
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https://doi.org/10.1016/j.jbi.2018.09.010

metabolic networks by exploiting GPRs, in order to derive context-
specific models, e.g., the active metabolic network in a given cell or
tissue [6-8]. Such approaches are usually conceived in the framework
of constraint-based modeling and, in particular, of Flux Balance Analysis
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Fig. 1. MaREA pipeline. (A) MaREA takes as input a n sample x m genes matrix T which includes the normalized read count of each gene from a given cross-sectional
RNA-seq dataset. (B) MaREA can use different input metabolic reaction networks, e.g., the genome-wide Model, or any subset of it. (C) A Reaction Activity Score (RAS)
is defined for any reaction r in the input network and any sample, by distinguishing the case of reactions involving enzymes composed by different subunits (in this
case the RAS is computed as the minimum of the transcript level of the genes encoding the subunits), and that of reaction catalyzed by different enzyme isoforms (in
this case the RAS is computed as the sum of the transcript level of the genes encoding the isoforms). (D) Given two distinct subsets Ty and T of the original dataset,
the RASs of a given reaction in the two cases are compared; if the p-value of the Kolmogorov-Smirnov test is significant (<0.05 - default) and the log, fold-change is
larger than 0.263 (default), that reaction will be marked in the final graph as up- or down-regulated. Accordingly, a reaction ranking can be provided. (E) MaREA can
stratify patients by employing the RAS as feature on standard clustering methods, e.g., k-means. Survival analyses, such as log-rank test on Kaplan-Meier curves, can
finally provide a prognostic validation of the clusters (notice that the image is intended for explanatory purpose only and does not reproduce any real case study).

(FBA) [9]. FBA relies on linear programming techniques to compute the
flux through each reaction under a steady state assumption, and requires
metabolic measurements to constrain nutrient exchange. Un-
fortunately, the simultaneous presence of metabolic measurements and
distinct -omics data on the same patient is rarely available in public
databases, such as the The Cancer Genome Atlas (TCGA) [10]. Besides,
the same metabolic constraints hardly hold for all patients within a
single dataset, and more so in highly heterogenous diseases, such as
cancer.

Moreover, FBA poses many modeling challenges, e.g., the definition
of an appropriate objective function and unfeasibility problems (see
Section 2 for a more detailed discussion).

To address many of these issues, we here introduce a novel data-
integration framework named Metabolic Reaction Enrichment Analysis
(MaREA) (Fig. 1), which focuses on transcriptional deregulation of me-
tabolic reactions, rather than on metabolic flux estimation. That is,
MaREA processes transcriptional data, such as RNA-seq, without re-
quiring metabolic measurements.

For each reaction of a given metabolic network, MaREA computes a
Reaction Activity Score (RAS), which describes the extent of its activity
in a given condition, as a function of the expression of the genes en-
coding for the subunits and/or the isoforms of the associated enzyme(s).
The RAS provides a more refined information than the mere list of
genes associated with a reaction, without requiring the setting of any
arbitrary threshold, or to binarize data (i.e., gene present or absent), as
required by other approaches, such as [11]. Analogous scores are have
been employed to integrate continuous gene expression data in con-
straint-based simulations [6-8]. However, in MaREA the RAS is not
used to define constraints or objective functions in FBA simulations.
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Instead, it is used as a static representation of the metabolic deregula-
tion of a given sample, which can be directly used to compare different
sample sets, e.g., different patient cohorts, or physiological vs. patho-
logical condition.

Moreover, the features extracted by MaREA can be used to stratify
samples in an unsupervised manner (Metabolic Feature Extraction). Such
stratification might provide relevant prognostic indications, as shown
in the case studies in Section 3.

In summary, MaREA can be used to:

(i) rank reactions according to their activity variation across different
phenotypes and/or experimental conditions.

(ii) Enrich the map of human metabolic routes with the RAS variation,
providing a clear and user-friendly visualization of how deregu-
lated paths are interconnected.

(iii) Efficiently stratify samples according to their metabolic activity,
hence providing a new unsupervised clustering tool, with testable
clinical relevance, which can be assessed, e.g., via standard sur-
vival analyses.

In order to test our approach, we applied MaREA to the investiga-
tion of cancer metabolic heterogeneity. The heterogeneity of cancer
genotypes and phenotypes hinders the identification of targets for ef-
fective treatments and is a major cause of tumor relapse [12]. There-
fore, it is common practice to statistically compare the gene expression
of patient cohorts, based on clinical observations and/or molecular
features, in order to understand how the hallmarks of cancer can be
(alternatively) achieved in terms of gene expression regulation. A par-
ticularly relevant hallmark for cancer treatment is the metabolic
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reprogramming of cancer cells [13,14].

In particular, we applied MaREA to two distinct publicly available
datasets in the TCGA database [10]: (i) the TCGA-BRCA dataset on
breast cancer [15], and (ii) the TCGA-LUAD dataset on lung adeno-
carcinoma [16]. In the analyses, we employed both the genome wide-
model Recon 2.2 [4] and a manually curated subset of it, corresponding
to the model of central carbon metabolism (HMRCore), previously used
in [17,18].

Because the TCGA-BRCA dataset includes both cancer and normal
biopsies for a subset of the samples, we first used MaREA to show its
effectiveness in identifying, rank and visualize the enriched metabolic
reactions between normal and cancer samples. This allowed to re-
produce well-known features of cancer deregulation and produce new
experimental hypotheses. Finally, we used MaREA to stratify cancer
patients in distinct metabolic clusters with respect to both the TCGA-
BRCA and the TCGA-LUAD datasets. Standard survival analysis high-
lighted statistically significant prognostic predictions for the identified
clusters.

MaREA is freely available as a user-friendly MATLAB tool, which
allows to process input transcriptomic data, e.g., RNA-seq, in various
file formats, and input metabolic networks in COBRA-compliant file
format [19], e.g., SBML (see “Availability” Section at the end of the
paper).

2. Materials and methods
2.1. Input

MaREA takes as input any RNA-seq dataset in the form of an x m
matrix T, where n is the number of genes and m is the number of
samples of the considered cohort (see Fig. 1-A). Each element
Tji=1, .,n,j=1, ..,m corresponds to the normalized read count of
gene i in sample j such as, for instance, the RPKM (Reads per Kilobase
per Million mapped reads).

MaREA then filters T according to a specific input reaction network
N, e.g., the genome-wide metabolic network Recon 2.2 [4] or any
possible subset of it. In particular, we define the set of reactions as
R = {r € N}. Therefore, T is filtered by retaining only the rows corre-
sponding to genes that are associated with enzymes involved in the
reactions included in R (see Fig. 1-B).

GPR logical formulas include AND and OR logical operators. AND
rules are employed when distinct genes encode different subunits of the
same enzyme, i.e., all the subunits are necessary for the reaction to
occur. OR rules describe the scenario in which distinct genes encode
isoforms of the same enzyme, i.e., either isoform is sufficient to catalyze
the reaction.

For example, the succinate-Coenzyme A ligase enzyme is formed by
the subunits alpha (gene SUCLG1) and beta gene (SUCLG2) and cata-
lyzes the reaction Pi + succinyl-CoA + GDP < CoA + succinate + GTP.
The gene-enzyme rule for this reaction is therefore: SUCLG1 AND
SUCLG2. Conversely, ACACA and ACACB are respectively fully func-
tional enzyme for the reaction acetyl-coenzyme A ligase carboxylase, thus
the rule is ACACA OR ACACB. Such logical operators can of course be
combined to depict multi-protein catalytic complexes or more complex
situations involving both subunits and isoforms. For instance, ribonu-
cleotide reductase is formed by two subunits: the catalytic (M1) and the
regulatory one. The latter exists in two isoforms (M2 and M2B). The
rule for this enzyme will therefore be RRM1 AND (RRM2 OR RRM2B).

2.2. Reaction Activity Score (RAS)

To avoid the definition of arbitrary thresholds on the transcript
level, we do not resolve the logical expressions in a Boolean fashion, but
we employ a Reaction Activity Score (RAS), for each sample j =1, ...,m,
and each reaction r € R (see Fig. 1-C). In particular, in order to com-
pute the RAS we distinguish:

39

Journal of Biomedical Informatics 87 (2018) 37-49

® Reactions with AND operator (i.e., enzyme subunits).

RAS,; = min(T;;: i € A,), (@B

where A, is the set of genes that encode the subunits of the enzyme
catalyzing reaction r.
® Reactions with OR operator (i.e., enzyme isoforms).

RAS,j= ) T,

i€0r

(2)

where O, is the set of genes that encode isoforms of the enzyme that
catalyzes reaction r.

In case of composite reactions, we respect the standard precedence
of the two operators. Let [R| be the cardinality of the set of reactions, the
final output is therefore a IRl X m matrix M, where each element M, ; is
the RAS computed for reaction r in sample j.

Similarly to what has been proposed in [20] to improve FBA pre-
dictions, the intuition underneath the introduction of the RAS is that
enzyme isoforms contribute additively to the overall activity of a given
reaction, whereas enzyme subunits limit its activity, by requiring all the
components to be present for the reaction to occur.

Clearly, we are here adopting a deeply simplified approach to re-
action network modeling, by neglecting, for instance, the great het-
erogeneity of reaction kinetic constants and protein binding affinities,
of translation rates, and any possible post-transcriptional regulation
effect that might occur within a cell. An optimal choice would be to
weigh all the reactions according to such quantities, yet direct mea-
surements or robust estimates are very rarely available, especially for
genome-wide models. Therefore, at first approximation, we here as-
sume that all enzyme isoforms and subunits contribute uniformly to the
reaction activity of a given reaction, as we expect that this choice does
not affect the up-/down-regulation interplay observed at the network
level.

2.3. Reaction enrichment: visualization and ranking

One important feature of MaREA is the ability to identify and vi-
sualize in an explicit way the metabolic routes that are up- or down-
regulated in different sample sets and/or experimental conditions (see
Fig. 1-D).

Given two distinct RNA-seq datasets, or two partitions of the same
dataset, T4 and Tp, and an input metabolic reaction network N, we first
compute the RAS matrices M, and M. For each reaction r € N we then
perform a non-parametric two-sample Kolmogorov-Smirnov (KS) test
with a default p-value threshold equal to 0.05, to verify whether the
distributions of RASs over the samples in the two sets are significantly
different.

In that case, we compute the log, fold-change of the average RAS, in
the two groups. Because KS-test considers as significantly different
distributions with the same mean, but different standard deviation, by
default we consider as relevant only log, fold-change larger than
log,(1.2) = 0.263 (i.e., corresponding to a 20% variation of the average
RAS). In line with the philosophy of GSEA [21], we use a relaxed
threshold for the fold-change because even a difference of 20% in genes
encoding members of a metabolic pathway may dramatically alter the
flux through the pathway. The significance threshold on the p-value of
the Kolmogorov-Smirnov test, on the other hand, ensures that expres-
sion distributions of the two groups are indeed different. Notice that
MaREA allows the user to choose different values for the RAS p-value
and the fold-change threshold.

Next, MaRFA uses the significant RAS fold-changes to: (i) determine
a ranking of the most relevant up- and down-regulated reactions in the
two sets, (ii) map such quantities over the input metabolic network N,
by respectively coloring in red/blue the up-/down-regulated reactions,
and by setting the edge thickness as proportional to the RAS fold-
change. The reactions that will either display non-significant p-value
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(either due to identical distributions or to statistically insufficient
sample size) or a RAS fold-change below the threshold will not be in-
cluded in the ranking and will be marked in gray color on the metabolic
network.

2.4. RAS-based sample stratification

Another advantage of our approach is that it is possible to employ
the RAS as an effective feature to identify sample subgroups (or clusters)
that share similar metabolic properties (see Fig. 1-E). In particular,
MaREA includes a k-means clustering [22], which uses the RASs of all
reactions r € R (normalized on patients) to identify sample clusters
with distinct metabolic behaviors. Clusters can be compared by means
of the reaction enrichment procedure described above, by ranking the
significantly different reactions in the distinct clusters and visualizing
the RAS fold-changes on the input network.

When data is available, clusters can also be tested via standard
survival analysis, such as the log-rank test on Kaplan-Meier curves, hence
providing an orthogonal validation of the clustering results with clinical
relevance. We show how clustering on RASs indeed can produce sig-
nificant prognostic predictions.

2.5. Metabolic network

To compute the RAS of cancer samples in a given TCGA dataset at
the genome-wide scale, we used the GPRs included in the most up-to-
date genome-wide network of human metabolism: Recon 2.2 [4]. In
particular, in order to visualize MaREA results at the genome-wide
level, we modified the graphical attributes of the model map in xml
format obtained from the Virtual Metabolic Human (VMH) - https://
vmh.uni.lu — which is readable by the tool Cell Designer [23].

To focus, instead, on central carbon metabolism, we used the me-
tabolic core model (HMRcore) introduced in [18]. For the sake of
completeness, we included in the model mitochondrial palmitate de-
gradation and gluconeogenesis. As the original version of the model
does not include information on GPRs, such rules have been extracted
and manually curated from Recon 2.2 [4] and included in the HMRcore
model. In particular, we verified the correctness of GPR rules taking
into account the information retrieved from the Human Protein Atlas
[24] for the protein tissue location, from UniProtKB [25] for the enzyme
complex composition, and from KEGG [26] to check gene/enzyme as-
sociation. We checked for possible inconsistencies within Recon 2.2 and
29 GPRs were corrected. All the corrections made on Recon 2.2 GPR
associations are reported in Supplementary Table S1. Notably, we
corrected for the rules for Complex I-V of the respiratory chain, which
were too strict in their original formulation. In particular, most patients
in the BRCA dataset would have a null RAS for Complex IV, as gene
COX7B2 is not expressed in most patients. It is important to notice that
if we perform a FBA simulation with a null upper bound for Complex IV
reaction, we do not obtain any optimal solution with the HMRcore
model. The original rule considers indeed many genes that are actually
isoforms and not subunits, thus requiring an OR and not an AND op-
erator. In particular, in the original formulation COX7B does not allow
to substitute for COX7B2.

The final version of the HMRcore model includes 264 reactions with
a GPR rules and 405 metabolic genes that are associate to them. Genes
are identified with the HGNC ID provided by the HUGO Gene
Nomenclature Committee [27]. The SBML of the model is provided in
Supplementary file S1. The tabular description of the model is provided
in Supplementary file S2.

It should be noted that not every reaction in the metabolic models is
associated with a gene-enzyme rule: for instance some reactions have
been included to fill the gaps in steady state computations, but we lack
knowledge on the associate genes. In detail, 4742 (263) reactions over
7785 (314) are associated with a gene-enzyme rule, in the genome-wide
(core) model. For such reactions it was possible to compute the RAS.
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2.6. Datasets

We applied the MaREA pipeline to two TCGA cohorts.

The breast cancer dataset (TCGA-BRCA) published in [15], which
also includes healthy/control samples. We downloaded the dataset
via the cBioPortal [28]. This dataset includes the expression profile
(RNA Seq V2 RSEM) of biopsies taken from 817 patients. For 105 of
them, the expression profile of the normal tissue is also included.
The lung adenocarcinoma dataset (TCGA-LUAD, provisional) pub-
lished in [16], downloaded via the cBioPortal [28]. The dataset
includes the expression profile (RNA Seq V2 RSEM) of 586 biopsies
from 584 patients. In our analyses we used the data of patients with
only one sample.

Because the above datasets identify genes with Entrez IDs, we au-
tomatically converted them into HGNC IDs. We found a correspondence
for 1654 (391) genes over the 1673 (404) included in the genome-wide
(core) metabolic model. We opted to neglect missing genes in the
computation of the RASs, as done in [6]. However, we were still able to
compute a reliable RAS for most reactions associated with a GPR, as
missing genes were involved in reactions with an AND operator only in
three cases: namely, in the GPRs that involve mitochondrial genes
(Complex I, III, IV and V), which are not detected by RNAseq. The
MaREA tool provides the user with an alternative option to handle these
cases: rules with AND operator, involving missing genes, can be dis-
regarded tout-court.

2.7. Other approaches

As specified in the Introduction (Section 1), metabolic networks are
typically used in FBA simulations. In addition to the aforementioned
problem regarding the scarce availability of both metabolic and tran-
scriptomic data on the same patient, another challenge when dealing
with FBA is the definition of an appropriate objective function.

Although maximization of metabolic growth may approximate well
the objective of cancer cells [29], this assumption should not be ex-
tended to normal cells, nor generalized to other pathologies. Moreover,
integration of transcriptomic data into FBA constraints often prevents
the identification of a non-null solution [8,6,7] and requires the ad hoc
release of some constraints. The impact of this problem is particularly
evident when dealing with RNA-seq data, as they are more prone to
include null values than transcriptomic data obtained otherwise, e.g.,
with microarrays, and thus to translate into null constraints. A major
example is given by the gene that encodes for the transporter of water
from mitochondria to cytosol (AQP8), which may often take value 0.
Yet, this reaction is necessary to reach a steady state in which the re-
spiratory chain is used.

Null constraints leading to infeasible solutions may also derive from
errors in GPR association rules. Due to their large scope, curation errors
are frequent in genome-wide metabolic networks. Genome-wide models
are also known to be prone to the presence of thermodynamically in-
feasible cycles [30], hence they may predict unrealistic flux distribu-
tions.

Because of all these reasons, a modeling expert is thus required to
guide the biologist among the multitude of current methodologies for
transcriptomics integration in constraint-based models, as they are
known to provide heterogenous predictions [8,6].

MaREA was conceived to overcome such limitations, providing a
simpler framework for trascriptomic data integration in metabolic
networks, with relevant translational impact.

The spirit of MaREA is somehow in line with that of Gene Set
Enrichment Analysis method (GSEA) [21], which seeks to characterize
the sets of up- or down-regulated genes in different phenotypes [21].
The underlying rationale is that even a mild, but concerted, variation in
the expression of a set of genes involved in a certain cellular (metabolic)
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function might be as relevant as a much larger variation in the in-
dividual activity of a single gene.

However, MaREA markedly differs from GSEA. The typical GSEA
analysis outcome provides generic indications on the deregulated
functions of a cell, or on specific functional behaviors when focusing on
particular gene sets, derived, for instance, from the Reactome pathway
database [31].

The GSEA enriched sets are list of genes involved in comprehensive,
thus potentially quite large, metabolic pathways (as, e.g., “DNA re-
plication”), failing to provide details on which specific metabolic routes
are favored in a given condition. In particular, metabolic functions can
be alternatively achieved by metabolizing different nutrients and/or by
following different catabolic and anabolic routes, in a complex and
largely undeciphered interplay. For this reason, simply knowing
weather a certain function is up- or down-regulated might not be suf-
ficient to shed light on how such function might be achieved in distinct
cancer phenotypes.

More recent approaches aim at building sets of genes to be enriched
according to the information included in genome-wide metabolic net-
works. Specifically, Metabolic Reporter Analyses try to provide knowl-
edge about variations in metabolite concentrations, starting from sets of
genes that are classified according to the associated metabolites [32].
However, such methods do not provide information about which re-
actions are up- or down-regulated, and thus hinder the identification of
putative targets for cancer treatment.

MaREA can provide a finer resolution to the analysis of metabolism
than GSEA and reporter metabolites analyses, by enriching individual
metabolic reactions in distinct experimental conditions. Moreover,
MaREA improves over current methods based on genome-wide models,
by providing a list of curated Gene-Protein-Reaction associations for
human central carbon metabolism, and an easy-to-interpret map of
corresponding central carbon pathways for visualization of results.

Similarly to the recently introduced PARADIGM approach
(PAthway Recognition Algorithm using Data Integration on Genomic
Models [33]), MaREA extracts a key metabolic feature (the RAS) for
each sample. However PARADIGM relies on integrating data from
multiple sources and requires curated pathway interactions among
genes, hence both the input data and final objective are significantly
different.

As specified above, MaREA can be used to stratify samples in an
unsupervised manner. Distinct approaches make use, for instance, of
the information on enriched signaling pathways [34] or of that on
mutational profiles [35-38] to classify cancer samples and subtypes.

3. Results
3.1. Breast cancer vs. normal (TCGA-BRCA)

In order to evaluate the overall usefulness of MaREA results, we first
applied it to a well-known and characterized case-study, the compar-
ison between cancer and normal metabolism. We performed two steps
for this analysis: Reaction Enrichment and Reaction Ranking.

3.1.1. Reaction enrichment

The reactions that have been identified by MaREA as significantly
up- or down-regulated in cancer - with at least a 20% increase/decrease
- and the magnitude of the deregulation are mapped on the central
carbon metabolic network (HMRcore) in Fig. 2, as well as on the
genome-wide metabolic network in Supplementary Fig. S1. It can be
observed (Fig. 2) that the pathway of glycolysis is over-expressed in
cancer. Extensive utilization of glucose is indeed a well established trait
of breast and of cancer cells in general [39]. Cancer cells need glucose
to feed the metabolic requirement of enhanced proliferation, with
particular emphasis on (1) de novo synthesis of nucleotides for genome
replication; (2) synthesis of amino acids for protein synthesis; (3)
synthesis of fatty acids to support the expansion of cellular membranes;
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(4) ATP generation for energetic requirements.

Accordingly, MaREA returned the following metabolic “modules” as
largely up-regulated in cancer: (1) synthesis of nucleotides from
Phosphoribosyl-pyrophosphate (PRPP in Fig. 2); (2) metabolism of the
non-essential aminoacids serine (Ser), glycine (Gly), alanine (Ala), as-
paragine (Asn), aspartate (Asp), arginine (Arg) and proline (Pro); (3)
synthesis of cholestrol (Chol) from citrate (Cit).

As far as ATP production is concerned, the interpretation of the si-
tuation portrayed by MaREA is, as expected, less straightforward.
Cancer cells are believed to rely more on fermentation of glucose to
lactate rather than on oxidation of glucose in the mitochondria (inner
box of the map in Fig. 2), despite the presence of oxygen: a phenom-
enon well-known as the Warburg Effect [14,13]. However, in contrast
to Warburg’s original hypothesis that damaged mitochondria are at the
root of this phenomenon, the ability of mitochondria to carry out oxi-
dative phosphorylation is not defective in most tumors [13]. In line
with these studies, on the one hand lactate secretion seems to be up-
regulated in cancer (reaction crossing the external box in Fig. 2). On the
other hand, the respiratory chain (represented by the 4 reactions at the
bottom of the mitochondrial box, which are catalyzed by protein
Complexes I, II, IIT and IV, plus the reaction that oxidize succinate to
fumarate, while reducing ubiquinone to ubiquinol, catalyzed by Com-
plex I) is not significantly down-regulated in this breast cancer dataset,
whereas, complex V is slightly up-regulated.

Remarkably, the results shown in Fig. 2 suggest that the working-
mode of the TCA cycle may be abnormal in breast cancer, as high-
lighted in [29]. In particular, up regulation of NADPH-dependent iso-
citrate dehydrogenase, which catalyzes the reductive carboxylation of
a-ketoglutarate (AKG) to isocitrate, may be linked with the mutations
often reported for these enzyme in breast and other cancer types [40]. It
has been suggested that this enzyme may support reductive glutamine
metabolism in cancer and a branched TCA cycle flux mode [29].

The agreement of the results in Fig. 2 with the obvious traits of
cancer metabolism supports the reliability of our approach, which
might shed light on less established traits. Deregulations of breast
cancer metabolism identified by the approach, which may be worth of
note are, among others: (1) deregulation of beta-oxidation of palmitate;
(2) upregulation of folate metabolism; (3) deregulation of Phosphoe-
nolpyruvate carboxykinase, which converts oxaloacetate (OAA) into
phosphoenolpyruvate (PEP).

3.1.2. Reaction ranking

After filtering out the reactions whose activity does not differ be-
tween cancer and normal samples, MaREA allows to rank the remaining
reactions according to the extent of their up- or down-regulation.
Supplementary Table S3 reports the following bits of information for
each reaction included in the genome-wide model: the log fold change,
the reaction formula, the pathway in which the reaction is involved and
a description of its role. As genome-wide models include several reac-
tions that are associated with the very same GPRs, typically involving
transporters/enzymes with low substrate specificity, in Fig. 2 we report
the top 10 deregulated reactions with different GPRs.

These reactions include 3 up-regulated reactions and 7 down-
regulated ones. Most of them are associated with a single gene, in-
cluding, consistently with the results obtained for the HMRcore model:
fatty acids oxidation and PEP carboxykinase, which are significantly
down-regulated; lactate (or substrates pertaining to the same family)
transport, which is up-regulated in cancer. Single-gene top deregulated
reactions not included in the HMRcore model relate to deregulated
vitamine A, glycine and alkaloid metabolism and to up-regulated
transport of serotonine. Notably, in accordance with this results, it has
been reported [41] that serotonine promotes tumor growth and survival
in breast cancer, and that vitamin A [42] plays a role in cancer treat-
ment and prevention.

Two top deregulated reactions are associated with a pair of genes
linked by an OR and AND respectively: (1) down-regulated antiporter of
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Fig. 2. Reaction enrichment and ranking: breast
cancer vs. normal samples. (A) HMRcore map

enriched by MaREA: Reactions up-regulated in
breast cancer sample set are marked in red, re-
actions up-regulated in normal sample set are
marked in blue. A list of the abbreviations used
in the map is provided in the abbreviations sec-
tion. Thickness of the edges is proportional to the
fold-change. Non-Classified reactions, i.e., reac-
tions without information about the corre-
sponding gene-enzyme rule, are marked in black.
Dashed gray arrows refer to non-significant de-
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ala_D[e] +gn_L[c] <=>ala_Dc] +gIn_Lle]

for[c] + nad[c] -> co2[c] + nadh[c]
nad|c] + retinol_9_cis[c] <=> h[c] + nadh[c] + retinal_cis_9[c]

lac_L[e] + nal[e] <=> lac_L[c] + nal[c]

coumarinfc] + h[c] + nadphlc] + 02[c] -> h2o[c] + hcoumarin[c] + nadp[c] | Cytochrome metabolism

legme[r] + h2o[r] -> ecgon|[r] + h[r] + meoh[r] Alkaloid synthesis

Gene Rule |UP7 POWN| 100 ey
HGNC:13734| Down | -531
HGNC:11050 Up 4,95
HGNC4455 | Down | 4,85
HGNC:8724 | Down | 4,76
HGNC:11026

and Down -4,75
HGNC:11058

HGNC:3978 | Down | 4,70
HGNC:9940 | Down | 4,40
HGNC:19119]  Up 439
HGNC:2608

or Up 437

HGNC:2610

HGNC:17

the aminoacids alanine, serine, glycine and threonine with glutamine;
(2) up-regulated Cytochrome P450 2A6, which is involved in the me-
tabolism of many xenobiotics.

The down-regulation observed for the former reaction is in line with
recent studies that have linked the resistance of specific cancer cell lines
to amino acid analogs anticancer drugs to a decreased expression of the
corresponding transporter [43,44].

The up-regulation identified for the latter reaction (P450 2A en-
zyme) is worth of note, as P450 enzymes may be involved in carcino-
gens activation in breast cancer. Environmental carcinogens have been
identified in the etiology of breast cancer. For example, CYP2A6 protein
detected in the breast can activate nitrosamines and food mutagens to
their ultimate carcinogens and thus could play a role in the initiation of
breast cancer [45]. Moreover, this enzyme can metabolize clinically
important drugs, such as the tamoxifen [46], which represents the most
widely used hormonal therapy for breast cancer, and the coumarin
[47,48], whose metabolism was proven to produce some metabolites
having estrogenic and cytotoxic activities.

3.1.3. Comparison with GSEA results
The GSEA and MaREA approaches are not directly comparable, as

42

they present several differences in goals, input data, parameters, vari-
ables and outputs. For instance, MaREA computes an individual activity
score for each sample, whereas GSEA only considers expression fold-
changes between pairs of experimental conditions. In order to provide
an overview of how the information produced by the two com-
plementary approaches may differ, without any claim about which
approach should be preferred, we disregarded the addition multiple test
correction (FDR) used by GSEA, and we considered the gene-sets that
pass the nominal p-value test, with the same threshold used in MaREA
standard settings (i.e., p = 0.05). We did not set any threshold on the
minimum size of gene-sets.

To run GSEA we used two kind of gene sets: (1) curated gene sets
based on Reactome, as directly provided by the GSEA tool; (2) gene-sets
reconstructed by us, which correspond to the genes associated with
each reaction in the genome-wide model and which are provided in gmt
format (GSEA compliant) in Supplementary File S2.

The first kind of gene-sets represent a typical application of GSEA to
gene-sets involved in broad metabolic functions. The second kind is
directly comparable to the sets used to compute the RAS by our ap-
proach. It should be mentioned that the second type includes many
single gene-sets (i.e., size 1) because many reactions are catalyzed by
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enzymes associated with a single gene. For this reason, we set the
minimum set size to 1 in the GSEA options.

The application of GSEA to Reactome gene-sets returned 144 gene
sets significantly enriched in cancer, and 60 gene-sets significantly
enriched in normal, at nominal p-value <0.05. When ranking the ob-
tained gene-sets according to the returned Enrichment Score (ES), we
observed that, as expected, the first 10 gene sets enriched in cancer
refer to generic metabolic functions (in particular: cell cycle and mi-
tosis, asparagine glycosylation, DNA replication and chromosome
maintenance, HIV infection and kinesins). The results highlight how
MaREA should be used as a complement to GSEA analysis, in order to
provide a more fine-grained analysis of metabolic deregulations.

Conversely, the application of GSEA to the more fine-grained da-
tasets, based on Recon 2.2 reactions, returned a number of reactions
significantly deregulated much lower than that returned by MaREA.
MaREA returned 3339 reactions as significantly up- or down-regulated
by at least 20% (p-value <0.05), whereas GSEA returned 105 gene sets
significantly enriched in cancer, and 110 gene-sets significantly en-
riched in normal, at nominal p-value <0.05. This discrepancy is mainly
due to the presence of gene-sets including a single-gene, which are
reasonably penalized by the GSEA approach. For instance, the single-
gene sets associated with serotonin and vitamin A metabolism, which
were ranked in the top 10 deregulated reactions by MaREA and might
play a role in cancer according to literature, do not pass the nominal p-
value test in GSEA. It is worth noticing that also the top-ranked reac-
tions in MaREA that involve genes in OR (Cytochrome metabolism) or
in AND (extracellular transport of alanine, serine, glycine and threo-
nine) do not pass the significance test in GSEA.

Taken together, these results indicate that MaREA provides a more
complete and refined portray of metabolic deregulations. Moreover, as
opposed to GSEA, MaREA computes an independent score for each
sample (the RAS), which can be used to cluster samples in an un-
supervised fashion. We illustrate such application of MaREA in the next
section.

3.2. Sample stratification via MaREA

MaREA can also be used to stratify samples into distinct metabolic
subgroups or clusters, also when the presence and number of such
clusters is unknown. To this end, in order to provide an experimental
validation of the stratification results, we also employed other known
measures, such as, e.g., the survival probability of patients.

To provide an example application and compare different clustering
features, we performed unsupervised clustering on two distinct cancer
datasets: (1) the TCGA-BRCA dataset on breast cancer and (2) the TCGA-
LUAD dataset on lung adenocarcinoma (see Section 2.6, Datasets, for
details).

In particular, we performed a k-means unsupervised clustering over
two distinct metabolic networks as input — (1) HMRCore and (2) Recon
2.2 — with different inputs k € {1, 2, ...,9}. We repeated the clustering
using three different distance measures, respectively based on: (a)
normalized RAS,” (b) RNA-seq data of all metabolic genes, (c) the
predicted fluxes.

To predict fluxes via FBA computation, we used the E-Flux method
[49], which uses the RAS to set constraints on the flux boundaries, and
we optimized for growth. The RAS was first normalized across patients
as proposed in [50]. We allowed each extracellular nutrient considered
in the baseline version of Recon 2.2 to be uptaken/secreted (upper and
lower bound set to —1 and 1 respectively, as in [49]).

For each case, we performed n = 100 bootstrap iterations, with
random centroid assignments, selecting as optimal the clustering run

2To avoid possible biases due the differences in RAS range and distribution
across reactions, we normalizes the RAS value of each sample by dividing by the
maximum RAS for that reaction.
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displaying the maximum inter-cluster distance. We then tested the re-
sulting sample clusters against the survival probability (as retrieved
from clinical data in the original datasets [15,16]), via a log-rank test
on the Kaplan-Meier curves with respect to overall survival (0OS), disease-
free interval (DFI), and disease-specific survival (DSS).

3.2.1. Metabolic subgroups of breast cancer (TCGA-BRCA)

By applying MaREA to the TCGA-BRCA dataset, we found statisti-
cally significant differences (p < 0.05) in the Kaplan-Meier curves in the
following cases:

(i—a) HMRcore using RAS and k = 2, for OS, DFI, and DSS.
(ii—a) Recon 2.2 using RAS and k = 2 for DFL.
(i—b) HMRcore using RNA-seq of metabolic genes

and k = 2 for DFI, and DSS; and k = 9 for OS, DFI, DSS.

All the other cases displayed not significant differences in survival
expectancy (p > 0.05), including those based on clusters identified on
fluxes.

In Fig. 3 we show the most significative result, obtained with (i—a)
HMRcore with RAS with k = 2 (Subgroup 1: 630/817 samples, Sub-
group 2: 187/817 samples). One can see that the curves of the two
clusters never overlap, leading to a significant log-rank test (p = 0.046).

This result indicates that the up-/down-regulation patterns, as en-
coded by the RAS values, might indeed be used to split samples in
metabolic groups with significantly different prognosis. It is also worth
noticing that, by looking at the composition of the two subgroups with
respect to the well-established PAM 50 classification [51] (available for
481 on 817 samples), the subgroup with the worst prognosis (Subgroup
2) is largely constituted (i.e., ~ 70%) by samples belonging to the Basal-
like group, which are present in a very small percentage in Subgroup 1
(105 Basal-like samples in 107, i.e., the ~ 98%, belong to Subgroup 2),
and show almost no samples from Luminal A subgroup. Subgroup 1,
instead, is dominated by Luminal A (200 Luminal A samples in 201, i.e.,
the ~ 99.5%, belong to Subgroup 1) followed by Luminal B and Her 2
subtypes in different proportions.

This result first suggests that there exists a detectable metabolic
signature of Basal-like cancer samples, and this is, to the best of our
knowledge, a novel result, worth of further investigations. Besides, it is
worth noticing that the differences observed at the metabolic level in-
deed translate into distinct survival probabilities, which standard
classification may fail to capture.

More in detail, by looking at the reactions significantly up-/down-
regulated with respect to the case Subgroup 1 (best prognosis) vs.
Subgroup 2 (worst prognosis) portrayed in Fig. 3 for the core model —
and in Supplementary Fig. S2 and Table S4 for the genome-wide model
— one can see that many reactions that are enriched in cancer against
normal are also enriched in worst against best prognosis, including
glycolysis, nucleotide synthesis and serine metabolism. Remarkably
some metabolic pathways that are not significantly deregulated in
cancer are significantly up-regulated in the worse prognosis subgroup,
with particular regard to palmitate biosynthesis.

3.2.2. Metabolic subgroups of lung adenocarcinoma (TCGA-LUAD)

In the case of lung adenocarcinoma, the results of sample stratifi-
cation via MaREA are even more striking. In Fig. 4 one can see the
Kaplan-Meier overall survival curves and the corresponding p-value of
the log-rank test, with respect to the stratification obtained in the 6
aforementioned scenarios:

(i—a) HMRcore with RAS.

(i—b) HMRcore with RNA-seq of metabolic genes.
(i—=c) HMRcore with fluxes.

(ii—a) Recon 2.2 with RAS.

(ii—b) Recon 2.2 with RNA-seq of metabolic genes.
(ii—c) Recon 2.2 with fluxes.
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Fig. 3. Breast cancer metabolic clusters. (A) The Kaplan-Meier curves (time unit = days) and the p-value of the log-rank test with respect to the two metabolic
clusters of the TCGA-BRCA samples identified by MaREA. The result was obtained using a k-means unsupervised clustering (k = 2) with HMRcore and RAS.
Subgroups 1 and 2 are shown). (B) Composition of the two TCGA-BRCA metabolic clusters identified by MaREA with respect to the PAM50 breast cancer classi-
fication. The number of samples in each group is displayed on the bars. (C) Enriched map of HMRcore with respect to the TCGA-BRCA metabolic clusters 1 and 2. A
list of the abbreviations used in the map is provided in the Abbreviations Section (see below). Red arrows refer to reactions up-regulated in Subgroup 2 (worst),
whereas blue arrows refer to reactions up-regulated in Subgroup 1 (best). Black arrows refer to “Non Classified” reactions, i.e., reactions without information about
the corresponding gene-enzyme rule. Dashed gray arrows refer to non significant deregulations according to the Kolmogorov-Smirnov test. Solid gray arrows refer to

reactions with a log2 fold change below 0.263.

with respect to k € {1, 2, ...,9}; scenarios with p < = 0.01 are marked in
green, with 0.01 < p < = 0.05 in yellow, with p > 0.05 are not shown.

In all cases, we were able to retrieve clusters with significantly
different prognosis for at least some values of k, the best results being
obtained in cases (i—a) HMRcore with RAS, (i—b) HMRcore with RNA-
seq of metabolic genes, and (ii—b) Recon 2.2 with RNA-seq of metabolic
genes, which show highly significant p-values (p < 0.01) for most va-
lues of k (similar results are obtained for DFI and DSS curves - not
shown here).

In this regard, we expect the stratifications with larger k to be ef-
fective in deciphering the inherent heterogeneity of lung adenocarci-
noma, whereas fewer and larger clusters might partially hide this effect.
Notice that also in this case the clusters identified on fluxes display the
worse predictive power on survival expectancy, at least for higher va-
lues of k.

Even though the stratification performances of RAS and RNA-seq
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data of metabolic genes are both remarkable and somehow comparable
with respect to survival outcome, we here remark that only with the
former approach it is possible to enrich and rank the reactions that
distinguish such groups and which, accordingly, might be targeted by
metabolic drugs.

For instance, in Fig. 5 we show the metabolic map enriched via
MaREA by comparing Subgroup 4 (best prognosis) and Subgroup 3
(worst), in the case of clustering obtained with HMRcore and RAS with
k = 4 (such stratification provides a good trade-off between a suffi-
ciently large k and sufficiently large clusters).

Finally, it is worth noting that some key up-/down-regulation pat-
terns observed when comparing worst versus best prognosis BRCA
clusters are conserved in the LUAD case, such as up-regulation of gly-
colysis, nucleotide synthesis and amino acid metabolism. This result
would suggest that key regularities of cancer metabolic deregulation,
directly linked with metabolic growth (i.e., DNA and protein synthesis),
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this article.)

might be shared across distinct cancer types, and deserves further in-
vestigations.

4. Conclusions

We have here introduced MaREA, a computational pipeline that
integrates transcriptomic data into metabolic networks, to compare the
metabolism of samples in distinct subgroups or different experimental
conditions.

In particular, the reaction enrichment performed via MaREA allows
to identify the metabolic patterns underlying the phenotypic and
functional properties observed in different sample subgroups, as in the
case of (but not limited to) patients with distinct cancer subtypes. This
is an important advantage of MaREA, especially when the estimation of
metabolic fluxes is not possible or is scarcely reliable. The interpreta-
tion of the results is then favored thanks to the effective visualization of
up-/down-regulated reactions directly on the metabolic networks.

Furthermore, MaREA can effectively stratify samples in clusters
with similar metabolic activity, in unsupervised fashion. Its prognostic
power can be evaluated via standard survival analysis.

The case studies on TCGA cancer datasets proved that MaREA can
reproduce known properties and traits of metabolic networks in dif-
ferent scenarios. For instance, MaREA allowed to identify the key me-
tabolic paths that distinguish normal from tumor samples, but it also
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provided cues to formulate and test new experimental hypotheses.
Moreover, the metabolic clusters of samples identified by MaREA dis-
played significantly different survival expectancy, as retrieved from
clinical data, for both breast and lung cancer, and this proved that
metabolic reprogramming plays a crucial role in cancer aggressiveness.

In the Lung Adenocarcinoma case study (TCGA-LUAD dataset), up
to 9 sample subgroups with significantly different prognosis have been
identified, by exclusively taking into account transcriptional regulation
of metabolic reactions. In the breast cancer case study (TCGA-BRCA
dataset), the metabolic differences in terms of patient prognosis were
less relevant, suggesting that metabolic heterogeneity might play a
milder role in breast cancer as compared to lung cancer. However,
MaREA was able to identify two BRCA metabolic clusters characterized
by significantly different prognosis and that show a striking overlap
with Luminal A and Basal-like standard signatures.

When comparing distinct clustering features, RASs and transcripts
proved to be more effective than fluxes in identifying sample subgroups
with different prognosis, probably due to the lack of proper constraints
on extracellular fluxes in FBA computation.

Besides, clustering based on the core model displayed a better
prognostic power than that based on the genome-wide model, at least
when employing the RAS, despite a dramatic reduction of the dataset
dimensionality. This result highlights the importance of the curation
process of the GPR associations that was performed for the core model,
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with a log2 fold change below 0.263.

and which could be further refined.

Abbreviations

We also recall that a major benefit of using the RAS, rather than
only the transcripts, lays in its effectiveness in summarizing metabolic
deregulation when comparing two cohorts or experimental settings. In
fact, MaREA allows to identify, rank and visualize critical metabolic
reactions, which might more easily be targeted, e.g., with metabolic
drugs, rather than targeting the expression of individual genes.

However, as MaREA does not provide information on metabolic
fluxes, we believe that MaREA results should be complemented with
metabolic measurements and flux simulations, when possible, to pro-
vide an all-encompassing picture of metabolism and its deregulation.
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1,3BPGA
10-formyl-THF
2PG

3PG

3PPyr

3PSer

6PDG

6Pgl

AcAcACP

1,3-Bisphospho-p-glycerate
10-Formyltetrahydrofolate
2-phospho-p-glycerate
3-phospho-p-glycerate
3-phosphonooxypyruvate
3-phosphoserine
6-phospho-p-gluconate
glucono-1,5-lactone-6-phosphate
acetoacetyl-ACP
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AcAcCoA
AcACP
AcCoA
ACP
ADP
AKG
Ala
AMP
Arg
ArgSuc
Asn
Asp
ATP
BRCA
CDP
Chol
Ci

Cit

CMP
Co2
CoA
Ccp

CTP
Cytc-ox
Cytc-red
dADP
dAMP
dCDP
dCMP
dGDP
dGMP
DHAP
DHF
dTMP
dUDP
dUMP
Ery4P
F16BP
F6P
FAD
FADH2
FBA
FDR
for

fPP
Fum
G6P

GA
GA3P
GDP
Gle
Gln
Glu
GluSA
Gly
GMP
GSEA
GPR
GTP

H20
HCO3-

acetoacetyl-CoA
acetyl-ACP

acetyl-CoA

acyl carrier protein
adenosine 5’-diphosphate
alpha-ketoglutarate
alanine

adenosine 5-monophosphate
arginine
argininosuccinate
asparagine

aspartate

adenosine 5'-triphosphate
Breast Cancer

cytidine 5’-diphosphate
cholesterol

citrulline

citrate

cytidine 5-monophosphate

carbon dioxide

coenzyme A

carbamoyl-phosphate

cytidine 5’-triphosphate
ferricytochrome c

ferrocytochrome ¢

2’-deoxyadenosine 5’-diphosphate
2’-deoxyadenosine 5’-monophosphate
2’-deoxycytosine 5’-diphosphate
2’-deoxycytosine 5’-monophosphate
2’-deoxyguanosine 5’-diphosphate
2’-deoxyguanosine 5’-monophosphate
dihydroxyacetone phosphate
7,8-Dihydrofolate
2’-Deoxythymidine-5’-monophosphate
2’-Deoxyuridine-5’-diphosphate
2’-Deoxyuridine-5-monophosphate
erythrose-4-phosphate

fructose 1,6-bisphosphate

fructose 6-phosphate

flavin adenine dinucleotide

flavin adenine dinucleotide reduced
Flux Balance Analysis

False Discovery Rate

formate

farnesyl diphosphate

fumarate

glucose 6-phosphate

guanidinoacetate
glyceraldehyde 3-phosphate
guanosine 5’-diphosphate
glucose

glutamine

glutamate

glutamate 5-semialdehyde
glycine

guanosine 5’-monophosphate
Gene Set Enrichment Analysis
Gene-Protein-Reaction
guanosine 5’-triphosphate
proton

water

hydrogencarbonate
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HGNC
HMGCoA
MP
ippPP
Iso
Isocit
KS

Lact
Mal
MalACP
MalCoA
MaREA

meTHF
mTHF
NAD
NADH
NADP
NADPH

NH3

02

OAA

Orn

P5C

Palm
PalmCarnitine
PalmCoA
PARADIGM

PEP
Pi
Ppi
Pro
PRPP
Putr
Pyr
Q
QH2
R5P
RAS

RPKM
Ru5P
SBML
Sed1,7BP
Sed7P
Ser
Succ
SuCoA
TCGA
THF
UDP
UMP
UTP
VMH
Xil5P
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HUGO Gene Nomenclature Committee
hydroxymethylglutaryl-CoA
2’-inosine-5’-monophosphate
isopentenyl diphosphate

isocitrate

isocitrate

Kolmogorov-Smirnov

lactate

malate

malonyl-ACP

malonyl-CoA

Metabolic Reaction Enrichment Analysis

5,10-Methenyltetrahydrofolate
5,10-Methylenetetrahydrofolate
nicotinamide adenine dinucleotide
nicotinamide adenine dinucleotide reduced
nicotinamide adenine dinucleotide phosphate
nicotinamide adenine dinucleotide phosphate
reduced

ammonia

oxygen

oxaloacetate

ornithine

1-pyrroline-5-carboxylate

palmitate

palmitoylcarnitine

palmitoyl-CoA

PAthway Recognition Algorithm using Data
Integration on Genomic Models
phosphoenolpyruvate

phosphate

diphosphate

proline

phosphoribosyl pyrophosphate

putrescine

pyruvate

ubiquinone

ubiquinol

ribose 5-phosphate

Reaction Activity Score

Reads per Kilobase per Million mapped reads
ribulose 5-phosphate

Systems Biology Markup Language
sedoheptulose 1,7-bisphosphate
sedoheptulose 7-phosphate

serine

succinate

succinyl-CoA

The Cancer Genome Atlas
5,6,7,8-Tetrahydrofolate

uridine 5’-diphosphate

uridine 5’-monophosphate

uridine 5’-triphosphate

Virtual Metabolic Human
xylulose-5-phosphate

Availability of data and material

MaREA is provided as Matlab tool and is freely available at this link:
https://github.com/BIMIB-DISCo/MaREA, along with the source code
and the input models. The datasets to reproduce the case studies pre-
sented in this paper can be downloaded at this link. The TCGA-BRCA
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