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Abstract. We present new results from accurate and fully generafivisigic simulations of
the coalescence of unmagnetized binary neutron stars aitbus mass ratios. The evolution
of the stars is followed through the inspiral phase, the ereand prompt collapse to a
black hole, up until the appearance of a thick accretion,dighich is studied as it enters
and remains in a regime of quasi-steady accretion. Althaugimple ideal-fluid equation
of state with" = 2 is used, this work presents a systematic study within a fgéperal
relativistic framework of the properties of the resultintadk-hole—torus system produced
by the merger of unequal-mass binaries. More specificaleystow that:(1) The mass of
the torus increases considerably with the mass asymmetryegnal-mass binaries do not
produce significant tori if they have a total baryonic masgg,. > 3.7 Mq; (2) Tori with
massesVor ~ 0.2 M are measured for binaries with/tot ~ 3.4 M and mass ratios
g ~ 0.75 — 0.85; (3) The mass of the torus can be estimated by the simple expnessio
Mior(q, Miot) = [e1(1 — q) + ¢2] (Mmax — Miot), involving the maximum mass for the
binaries and coefficients constrained from the simulati@msl suggesting that the tori can
have masses as large B&or ~ 0.35 Mg for Miot ~ 2.8 Mg andg ~ 0.75 — 0.85;
(4) Using a novel technique to analyze the evolution of the taifind no evidence for the
onset of non-axisymmetric instabilities and that veryditif any, of their mass is unboun¢i)
Finally, for all the binaries considered we compute the detepgravitational waveforms and
the recoils imparted to the black holes, discussing thepets of detection of these sources
for a number of present and future detectors.

PACS numbers: 04.30.Db, 04.40.Dg, 04.70.Bw, 95.30.L6®3d

The numerical investigation of the coalescence and merfybinary neutron stars (NSs)
within the framework of general relativity is receiving neasing attention in recent years
(seee.qg. [1}12,[3[4[ 5[ 6,17,18] and references therein). Drastic impneents in the simulation
front regarding mathematice.g.formulation of the equations), physics.§.incorporation
of equations of state (EOSs) from nuclear physics), and nicaiemethods €.g. use of
high-resolution methods and adaptive mesh refinement)galath increased computational
resources, have allowed to extend the scope of the earljaions €.g. [9]). Larger initial
separations have recently started being considered anel gbtine existing simulations have
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expanded the range spanned by the models well beyond btae®H) formation [3[-8.17].
This is allowing the computation of the entire gravitatibwaveform from the early inspiral
to the decaying tail of the late ringing of the formed BH. Tlastruction of such waveform
templates is still one of the driving motivations to perfobinary NS simulations, as such
events are among the most promising sources of detectadl@ajional radiation for laser
interferometric detectors. The current estimate for theeat®n rate relative to the first-
generation interferometric detectors+~s 1 event per~ 40 — 300 years, increasing to an
encouragingv 10 — 100 events per year for the advanced detecfors [10]. The secajat m
incentive behind this type of simulations is establishirigether the end-product of the merger
can act as the underlying mechanism operating at the cemigate of short-hard gamma-ray
bursts (SGRBs)[11,12]. The consensus emerging from tietiegisimulations suggests the
formation, depending on the suitability of the initial pavaters of the simulated model, of
a BH of stellar mass surrounded by a hot disk. Driven by neatprocesses and magnetic
fields, such a compact system may be capable of launchingtarigtic fireball with an energy
of ~ 10*® erg on a timescale @f.1 — 1 s [13].

This paper is dedicated in particular to investigating tte-time dynamics of the torus
formed after the merger of unequal-mass NS binaries. As weritie below, all but one model
of our initial sample have mass ratio different from one viknas simulations have shown that
the key parameter controlling the amount of mass left in thle fibr a given initial mass in the
system and EOS is the NS mass rafid [14, 1]. Broadly speakimgéneral trend is simple:
the larger the departure from equal-mass ratio, the moreritapt tidal effects become in the
less massive star, resulting in its tidal disruption. Beesthis takes place when the separation
is still comparatively large, the angular momentum of thdteras still large and it results in
larger-size and more massive disks. Early and low-resmiwgimulations with an ideal-gas
EOS [14] have been shown to yield a disk mass of several pero¢the total mass of the
system for a mass ratio ef 0.85. Improved simulations by [1] which adopted a hybrid
EOS to mimic realistic, stiff nuclear EOS, indicate that thass of the disk is- 0.01 M or
slightly larger when the merger does not result in prompgapske to a BH but in the formation
of a hypermassive NS of large ellipticity (which later cpas to a BH following angular-
momentum transport caused by emission of gravitationaatiad). Similar disk masses, as
large as~ 0.02 M, are also reported in the latest simulations[df [8], in whicé initial
orbital separation of the two stars is larger than in previoorks.

Observational data seems to indicate that the total gtait@ masses of the known
galactic NS binary systems are in a narrow range.65 — 2.85 M, [15] and there is also
evidence indicating that the masses of the two NSs are nequsl, with the baryonic mass
ratio g = M, /M- being between and~ 0.7 (Hereafter we will refer ta; simply as the
“mass ratio” but we report in tablg 1 also the ratio in the ADMsses;, ,,,; ¢ andq, .,
do not coincide because of the nonlinear relation betweeyob& and gravitational mass).
However, there is no theoretical reason to assume that ahespss NS binaries are not
produced in nature as often as the seemingly prevailing sthexactly equal-mass systems,
particularly for twin giant progenitor§ [16, 17]. There amedeed, recent computations and
observations that contradict the predominance of almasttgxequal-mass systenmis [18] 17].
On the one hand, binary population synthesis computatierisgmed by[[18] show two peaks
in the observability-weighted distribution of double N&mne of these peaks is arougd- 1
and appears when both masses are closeltd /.. The second peak is around considerably
smaller mass ratios and depends on the assumed maximum haasmgle NS (which is in
turn dependent on the EOS considered): the higher this tasstffer the EOS) the more
significant the second pegk [18./19]. However, the cruciedpater determining the shape
of the distribution is the inclusion of hypercritical acttom onto the compact object during
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the brief but critical “common-envelope” evolution phageh® close binary[19]. Similarly,
recent computations by [lL7] also accounting for the effettsypercritical accretion during
the red-giant evolution of the less massive component obthary lead to a pattern of NS
binaries consisting of pulsars which are50% more massive than their companion NSs.

An additional issue which motivates our study has to do with investigation of
the long-term stability and dynamics of the formed accretitisks. It is well known
that thick accretion disks orbiting BHs may be subject to anber of instabilities, both
axisymmetric, such as the so-called “runaway instabil[Bd], or non-axisymmetric, such
as the “Papaloizou-Pringle instability™ [21]. The first grie particular, if present, could
destroy the torus on dynamical timescales, challengingvilability of the BH-torus
model for SGRBs. Early time-dependent, axisymmetric, garelativistic-hydrodynamical
simulations of the runaway instability of non-self-grafing tori around BHs were performed
by [22,[23]. The distribution of specific angular momentumthie disk,? = —uy/uy,
with u4 and u, being the corresponding components of the 4-velogity was the key
parameter discriminating stable from unstable models asehsimulations. It was found
that /—constant models were runaway unstable while power-lawilligions ¢ = Kr<
were stable for very small values of the angular momenturpesto (much smaller than
the Keplerian valuex = 0.5). Recent fully relativistic simulations by [24], which for
the first time have take into account the self-gravity of tiek dindicate that self-gravity
does not favour the appearance of the instability, irredpgeof the angular-momentum
distribution. Under the effect of a perturbation, marglypatable models show the presence
of axisymmetric oscillations for several dynamical timales without the manifestation of
the runaway instability, a§ [25] had previously found foe ttase of non-self-gravitating tori.
Indeed, the introduction of perturbations triggers qumsiodic oscillations (QPOs) lasting
tens of orbital periods, with amplitudes that are modifiety atightly by the small loss of
matter across the cusp [25,126]. The spectral distributidch@associated eigenfrequencies
shows the presence of a fundamemptatiode and of a series of overtones in a harmonic ratio
2:3, which have been proposed to explain the QPOs observed Krthg luminosity of low-
mass X-ray binaries (LMXBs) containing a BH candidate wiik QPOs of small tori near
the BH [2728[2D]. In addition, when sufficiently massivelaompact, the oscillations of
these tori are responsible for an intense emission of giimital waves [25, 30, 31, 26].

Overall, theab-initio simulations reported here indicate that large-scale tiith masses
Mior ~ 0.2 Mg can be produced as the result of the inspiral and merger afypNSs with
unequal masses and that even larger masses can be predichédafries with smaller total
masses. These tori are typically of large size, with quagpt&rian distribution of angular
momenta, showing quasi-stationary evolutions and therelesef dynamical instabilities. As
such, these results may provide additional informatioemaaht to all the above issues for BH—
torus systems formed in a fully consistent manner withinftamework of general relativity.
Furthermore, the gravitational-wave emission computed heveals that the waveforms are
sensitive to the mass ratio in the binary, both during theimas and after the merger, and
could be used to extract important information on the stmeceand EOS of the progenitor
stars. Such observations, however, will most likely haveetyg on the advanced detectors,
which will become operative in a few years.

The paper is organised as follows: Secfibn 2 describes thieematical and numerical
framework of our simulations. Sectidd 3 discusses the dycmwf the coalescence and
merger of our model sample. Next, in Sectidn 4 we focus on thayais of the tori
formed after the merger and on their physical propertiese iBsue of the gravitational-
wave emission from unequal-mass NS mergers is discusse@dtio8[% and the main
conclusions of our investigation are presented in SeElidn &ddition Appendix A provides
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quantitative measures of the accuracy of our numerical ogsthWe use a spacelike signature
(—,+,+,+) and a system of units in which= G = Mg = 1 (or in other units whenever
more convenient). Greek indices are taken to run ftoto 3, Latin indices froml to 3 and
we adopt the standard convention for the summation oveatedéndices.

2. Mathematical and Numerical Setup

All the details on the mathematical and numerical setup uUsedroducing the results
presented here are discussed in depth_in[[82, 3]. In whatviisll we limit ourselves to a
brief overview.

2.1. Einstein and Hydrodynamics equations

The evolution of the spacetime is obtained using 4t TIE code, a three-dimensional
finite-differencing code providing a solution of a confointaceless formulation of the
Einstein equations with al“+ log” slicing condition and a “Gamma-driver” shift condition
(the interested reader is addressed 1o [32, 33] for a ddtdikzussion of the equations and
gauges used). The general-relativistic hydrodynamicatoys are instead solved using the
Whisky code presented in [84,135,133], which adopts a flux-consee/fdrmulation of the
equations as presented [n[36] and high-resolution shapkucing schemes. Thehisky
code implements several reconstruction methods, suchtaksMariation-Diminishing (TVD)
methods, Essentially-Non-Oscillatory (ENO) methods| [33hd the Piecewise Parabolic
Method (PPM)I[[38]. Also, a variety of approximate Riemanivers can be used, starting
from the Harten-Lax-van Leer-Einfeldt (HLLE) solvér [3@ver to the Roe solver [40], and
the Marquina flux formula]41] (se€ [34,135] for a more detitBscussion). All the results
reported hereafter have been computed using the Marquirddtmula [42] and a PPM
reconstruction. We stress again (as already dori€ i [3h@})the use of high-order methods
and high-resolution igssentialto be able to draw robust conclusions on the inspiral and
merger. Lower-order methods in the reconstruction and Eselution may yield convergent
and apparently reasonable results which however contanga kruncation error. Specific
examples of this type of problem are presented in Appendif [8Joand in Figure4 of [[7].
Also, a measure of our overall accuracy is presented in Agigekbelow and shows that by
employing such methods we are able to conserve energy andaamgomentum tov 1%
over a timescale of 140 ms.

The system of hydrodynamics equations is closed by an EOSlisksissed in detalil
in [3], the choice of the EOS plays a fundamental role in thetymerger dynamics and
significantly influences the survival time, against graiataal collapse, of the hyper-massive
neutron star (HMNS) likely produced by the merger. It is &fere important that special
attention is paid to use EOSs that are physically motivatexi,done in[[43] within a
conformally flat description of the fields and a simplifiedatreent of the hydrodynamics.
Because we are here mostly concerned with drawing a firsitgtisa picture of the properties
of the torus in a space of parameters that is as vast as cotopatly affordable, we have
employed the commonly used “ideal-fluid” EOS, in which thegsurep is expressed as
p = pe(T’ — 1), wherep is the rest-mass density,is the specific internal energy, afis
the adiabatic exponent. Such an EOS, while simple, provéde=asonable approximation
and we expect that the use of realistic EOSs would not chdremain results of this work.
Furthermore, it was shown in [44] that the inspiral of eqorass binaries of NSs described
by realistic EOSs can be reproduced quite well by studying With the same mass and radii
but constructed as polytropes with= 2.
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As in [3], the gravitational-wave signal is extracted usiwg methods. The first method
uses the Newman-Penrose formalism so that the gravitdtieenge polarization amplitudes
hy andhy are then related t&, by simple time integral$ [45]

}.LF - 1h'>< = \Il4 ) (1)
where the double overdot stands for the second-order timieatige and the curvature scalar
Uy = — amgn‘“m"mm‘s (2)

is defined as a particular component of the Weyl curvatursae’, 35, projected onto a
given null frame{l, n, m,m} (see [32] for details). The second and independent method
is instead based on the measurements of the non-sphernigg-gavariant perturbations of a
Schwarzschild BH (see ref$. [46.147,1 48] for some applicetiof this method to Cartesian-
coordinate grids). In particular, the gravitational-waedarization amplitudes are in this case
expressed in terms of gauge-invariant metric perturbafidf

, 1 N N m
h+ - 1h'>< = E &Z’m <Q2_m - 1/700 Qém(t )dt ) *QYZ ) (3)

where_,Y“™ are thes = —2 spin-weighted spherical harmonics a@¢ , Q; = the (gauge-
invariant) odd-parity (or axial) current multipoles anceawparity (or polar) mass multipoles
of the perturbed metric, respectively. In practice, thesdtipoles are computed on a set of
2-spheres of fixed coordinate raditig, = 200 (i.e. ~ 300 km).

The two wave-extraction methods yield results whose difiees are smaller thary,
and hereafter we will concentrate only on the one using theygdnvariant perturbations
as it reduces the number of integration constants to be rdeted when computing the
gravitational-wave strain.

2.2. Adaptive Mesh Refinements and Grid setup

The grid hierarchy is handled by tltearpet mesh refinement driver [50]. It implements
vertex-centered mesh refinement, also known as the bowynatethod, and allows for
regridding during the calculation as well as multiple grehters. With mesh refinement, a
small number of grids with different resolutions, callefimement levels, overlay each other,
and are nested in a way that the coarsest grid has the lacgest and the finest grid the
smallest extent. While the refined grids in the interionalfor an increased resolution where
it is most desired, the outer boundary can at the same timejiiteak a large distance.

The timestep on each grid is set by the Courant conditiorrésged in terms of the speed
of light) and so by the spatial grid resolution for that levile typical Courant coefficient
is set to be0.35. The time evolution is carried out usingh-order—accurate Runge-Kutta
integration algorithm. Boundary data for finer grids arecakdted with spatial prolongation
operators employingrd-order polynomials and with prolongation in time emplay2nd-
order polynomials. The latter allows a significant memoryirsg, requiring only three
timelevels to be stored, with little loss of accuracy dudmlbng dynamical timescale relative
to the typical grid timestep.

For the inspiral phase of the system of binary NSs, two griders{r., : i = 1,2} are
defined, with one grid center located at the grid point whieeerést-mass density reaches its
maximumpm.x = max(p) and the other grid center located at theaymmetric pointice. the
grid point correspondent tp,,. and rotated byi80 degrees around the-axis). The grid
hierarchy is composed of six refinement levels arid:al refinement factor for successive
levels. Once the conditiopmax = max(pPmax,i) > 1.2 pmax,initial IS Satisfied, which is
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known from experience to occur during the merger phase aficdoefre collapse, the grid

hierarchy is reduced to a single grid center fixed at the ordithe grid. At the initial time,

the finest grids cover each star completely. Later, duriegnierger phase, matter outflows
cross the boundary to the second finest grid and subsequeltly other coarser refinement

levels. The grid resolution varies frofys = 0.15 (i.e. ~ 221 m) for the finest level to
A; = 4.8 (i.e.~ 7.1 km) for the coarsest level, whose outer boundary i&4atin our units

(i.e.~ 360 km). Initially, the number of grid points across the linear dimsion of a star is of

the order ofl00. The torus surrounding the BH after collapse is usually notained within

the finest grid, but its high-density region is covered bysbeond finest grid with resolution
As = 0.3.
The whole grid is set up to be symmetric with respect tq #the) plane for both unequal-

mass binaries and equal-mass binaries. The boundary wedére chosen to be radiative
for the metric, in order to prevent gravitational waves frecattering back into the grid, and
static for the hydrodynamical variables. Note that the a&®®tup is identical to that adopted

in [3].

Table 1. Properties of the binary NS initial data. From left to righetcolumns show: the

name of the model (assembled from its rounded total baryerEss preceded by the letter

M and its mass ratio preceded by the letigr the total baryonic masa/i.t of the system,

the total ADM massV , ,,, of the system, the ratio of the baryonic masses of the twe star

q = My/M;, the ratio of the ADM masses of the two stars, the total angulamentum
J, the initial orbital frequency,,},, the initial maximum rest-mass densjty,ax, the mean
radius7; of each star, the axis ratid; of each star, the individual ADM mas®/ > of each

star as considered in isolation at infinity, and the compssifi> of each star as considered

in isolation at infinity. The mean radius is definedrass (r- + r— + r1 + rp01)/4, Where
r— andr4 are the radii of the star parallel to the line connecting tlaessr | is the radius

in the equatorial plane perpendicular to that line, apg is the radius perpendicular to the
equatorial plane. The axis ratio is defined as the ratio batviiee mean radius parallel to the
line connecting the stars, and the mean radius in the plampepéicular to that line, namely
Ay = (ry + Tpol)/ (T + 7). All values excepipmax are provided by the output of the

LORENE code, and the accuracy 8f:,; and.J is the one at which thehisky code is able
to reproduce them for the present setup.

Model

Mot My pyg

(Mg)

4, dapm

J/10%°

(gcm?/s)

Vorb
(Hz)

pmax /1014
(s/cm?)

T2, T1
(km)

Az, Ay

Mpe, M3°
(Mg)

Cee,C8°

M3.
M3.
M3.
M3.

M3
M3

6ql.
790.
4g0.
4g0.
.590.
.4490.

00
94
91
80
75
70

3.56,3.23
3.68,3.33
3.40,3.11
3.37,3.08
3.46,3.14
3.37,3.07

1.00, 1.00
0.94,0.94
0.91,0.92
0.80,0.81
0.75,0.77
0.70,0.72

8.92
9.37
8.33
8.36
8.40
7.98

303.32
306.56
299.06
303.62
300.84
298.47

7.58
9.75
7.58
9.21
12.7
12.8

12.0,12.0
12.0,11.0
13.1,12.1
13.8,11.3
13.0,10.1
14.6,10.0

0.95,0.95
0.95,0.96
0.93,0.95
0.90,0.97
0.89,0.98
0.85,0.98

1.643,1.643
1.643,1.742
1.512,1.643
1.400,1.723
1.390, 1.804
1.304,1.805

0.130,0.130
0.130,0.150
0.111,0.130
0.097,0.146
0.096,0.171
0.087,0.172

2.3. Initial data

We use quasi-equilibrium initial data generated with thdthtlomain spectral-method code

LORENE developed at the Observatoire de Paris-Meudaoh [51]. Foerimdormation on the

code and its methods, the reader is referred talbRENE web pages[[52]. In particular,
because the binaries are not expected to be corotatihgf®3]se irrotational configurations,
defined as having vanishing vorticity, and obtained underatditional assumption of a
conformally flat spacetime metric [61].
Some of the models investigated in this paper are publichilave on servers of
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the Meudon group[]52]. Others have been created by us spdifior the unequal-
mass simulations presented here. The models of the lowest ratios have been kindly
provided by Dorota Gondek-Rosifiska). The EOS assumedhéoinitial data is in all cases
the polytropic EOS = K p' with an adiabatic indeX’ = 2 and a polytropic coefficient
K = 0.0332 ppuc c?/nl,. = 123.6 (in units wherec = G = M, = 1), wherep,u. andng .
refer to the nuclear rest-mass and number densities, asggc For this particular EOS,
the allowed maximum baryonic mass for an individual stab&is\~ 2.00 My,. The initial
coordinate separation of the stellar centers in all cas@ésHst5 km.

The models used as initial data include both equal-mass Isiadd most importantly
unequal-mass models. As mentioned in the Introduction ave toncentrate on the dynamics
of the massive tori resulting from the merger. The formatidrthe torus is enhanced for
smaller mass ratios. Although the observational evidesaeot very firm [15/54] there
is also no theoretical reason ruling out their possibleterise [18/1[7]. A full list of all
considered models together with a selection of physicahtiiess defining theme.g.baryon
and ADM mass, orbital frequency and initial angular momentetc., is given in tablgl 1.
To distinguish simply the different binaries we adopt thikofming naming convention: any
initial data binary is indicated as>g#, with % being replaced by the rounded total baryonic
massM;. of the binary neutron-star system a#dby the mass ratig. As an example,
M3.4g0.80 is the binary with total baryonic madg;.. ~ 3.4 M. and mass ratig = 0.80.

3. Dynamics of the coalescence and merger

3.1. General dynamics

In a previous work[[B], we have investigated the dynamicshef ¢coalescence and merger
of equal-mass binary NSs for models with total baryonic ma&s; 2.912 Mg and
Mot = 3.250 Mg . It was found that for any of the two EOSs considered, biisanéh
(initial) total baryonic mass below a certain limit do notlapse promptly to a BH but rather
yield an oscillating HMNS, which undergoes delayed coliaps a BH. Independently of
the mass ratio, all of the binaries under consideration haxe masses higher than those
considered in[[3] and all collapse promptly never leading tdMNS even if the EOS used
here is a non-isentropic one (see discussiorl_in [3] on therdifit qualitative behaviour
between an isentropic and a non-isentropic EOS). This abseira HMNS, however, is the
direct consequence of the chosen initial data rather thaatfe of unequal-mass mergers
and it has been here exploited simply to reduce the compugdttosts by shortening the time
of the collapse to a BH.

Figure[1 shows a selection of representative isodensitiocos on the equatorial plane
for the equal-mass binamy3.64g1.00. At the initial time, the stars are in their quasi-
equilibrium configuration at a coordinate separation of @5 kThe binary progressively
speeds up while inspiralling. After slightly more than twibits have been completed (namely
after about 5-6 ms), the stars merge and, about 2-3 ms lat@p@arent horizon (which we
search with the code df[55]) is found. The ideal-fluid EOS &yed in the simulations allows
for shock-heating and an increase of the specific internaidggre, as shown in[[]; this, in
turn, causes some matter to be ejected from the rotatingaterject and to propagate into
the surrounding artificial atmosphere. The evolution of eles . 6g1 . 00 shows that matter
is ejected in small amounts during the inspiral phase anargel amounts during the merger
phase, when the shocks are much stronger. Therefore, whgli Spiral arms can certainly be
observed in the outer regions during the merger phase (sgasttwo snapshots of figurk 1),
they do not have sufficient angular momentum to reach distaas large as in the unequal-
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Figure 1. Isodensity contours for the3 . 6g1 . 00 model on thez, y) plane. The times when
the frames have been taken are shown on top of the plots akileaior-code for the rest-mass
density is indicated to the right of each plot. Additionailsodensity contours are shown for
the values ofp = 1019, 10'1,10'2,10'2:5 1013, 1035 104, 10145, 10'® g /cm?®. The
third frame (at time t = 5.760 ms) shows the onset of the metiyerast two frames (at times

t = 8.210 ms, t = 8.276 ms) show the behaviour of the system during the collapse to a BH.

mass models (see discussion below). Instead, the spirahaima around the rapidly rotating

central object formed by the two NS cores. Quantitativeltesagarding the BH spin and the

mass and angular momentum of the remaining disk will be dsediin subsequent sections.
To contrast the evolution of an unequal-mass binary, figlsb®vs the same selection
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Figure 2. Isodensity contours for the3 . 4q0 . 70 model on thez, y) plane. The times when
the frames have been taken are shown on top of the plots akileaior-code for the rest-mass
density is indicated to the right of each plot. Additionailsodensity contours are shown for
the values ofp = 1019, 10'1,10'2,10'2:5 1013, 1035 104, 10145, 10'® g /cm?®. The
third frame (at time t = 4.104 ms) shows the onset of the metiyerast two frames (at times

t = 6.620ms, t = 7.414 ms) show the behaviour of the system during the collapse to a
BH. Note that the computational domain is much larger thaatvidr shown and extends to
~ 360 km

of isodensity contours on the equatorial plane as repredent figure[1, only now for
the M3.4g0.70 model, which has the smallest mass ratio considered in thik.wThe
asymmetry of the binary system is already apparent at thialitime. The heavier star is
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much more compact than its extended less massive compamiiict) is deformed already
at the initial distance by tidal forces. In addition, the tsgrof mass does not coincide with
the point halfway between the centers of the stars, but hifsesl toward the more massive
star. During the inspiral phase, the heavier and more congtacis only slightly affected
by its companion, whereas the latter is decompressed yaptile being accreted onto the
heavier star. This is visible in the three intermediate pagfigure[2. The tidal disruption
of the lower-mass NS when it still retains a large fractioit®angular momentum results in
an extended tidal tail, which, unlike what happens in theaéguass case, transfers angular
momentum outwards in a much more efficient way. This leadsd@ddrmation of large spiral
arms extending well beyond the domain shown in figure 2 arichately to a more rapid
ejection of matter. Gravitationally bound matter travedlalong the spiral arms away from the
central object will form a more massive accretion torus acbthe central BH than that formed
in the case of an equal-mass, symmetric binary system. uidhie noted that, although the
rest-mass density of the matter in these spiral arms is nmeher than the central one, it has
nevertheless densitigs> 1010 g/cnfg and thus well in a general-relativistic regime.

3.2. Properties of the black hole

As mentioned above, because of the large initial mass ofytbterm and irrespective of the
mass ratio, the merged object rapidly collapses to a BH. éssrand angular momentum have
been computed making use of the dynamical-horizon formma[&6,57], which provides a
simple and accurate measure of the BH properties also wheristisubject to the inflow
of mass and angular momentum][35]. In the case of the equsé-iiaary, because the
disk resulting from the merger has comparatively small méss BH settles rapidly to
an approximately stationary configuration, and the massspimd of the BH measured at
formation,i.e. M = 2.56 M anda = J/M? = 0.745, respectively, do not vary significantly
throughout the subsequent evolution of the system. On ther dtand, when considering
unequal-mass binaries, the mass and the spin of the BH showheotimescale of the
simulations, a variation in time of 5% and~ 2%, respectively, because of the continued
and intense accretion of both mass and angular momenture[dabows the corresponding
parameters for all models at the final time of the evolutiohjclv is not the same for the
different binaries considered.

We note that finding and tracking the apparent horizon in #se of binaries with small
mass ratio is far from being simple since the asymmetry inntleeger dynamics leads to
a noticeable motion of the “center-of-mass” of the systenenct¢, the location of the trial
surface for the apparent horizon cannot be simply assakiata pre-existing black hole (as
in the case of BH binarie5 [32]) or to a pre-determined cowtdi location (as in the case of
the collapse of a rotating stdr [35]). The end-result of tumplication is that the apparent
horizon could not be tracked successfully in all the modetsan consideration. This was the
case of model®3.4q0.80 andM3.4g0. 70, for which it was not possible to measure the
mass and spin of the corresponding BH. Furthermore, in tee cithe binary3.5g0.75
the measurements were not made with the dynamical-hor@omaiism but rather by using
the ratio of the polar to equatorial circumference of theaappt horizon as discussed in detalil
in [35]. Cross-checking the two measurég.(apparent-horizon distortion and dynamical-
horizon formalism) in the cases where both are possible sltioat they are equally reliable
(see also the extended discussiorin [35]). Overall, tha aadilable suggests the existence
of a local maximum ot for ¢ ~ 0.9, but more data is clearly necessary to confirm this.

Interestingly, when inspecting carefully the apparentizar in the lowg model
M3.5g0.75 it is possible to appreciate that its appearance precedesinite when the
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two stellar cores merge and is in contrast with what happetismodels with highg. By
comparison, we believe the same happens also for the hitsarg g0 . 70, although in this
case we were not able to detect an apparent horizon. Of ctihese considerations have little
physical importance as the interior of the apparent horig@ausally disconnected with what
is astrophysically observable; nevertheless this resaitiges another interesting example of
the rich phenomenology relative to the appearance and dgearfitrapped surfaces (see, for
instance, the discussion in sectitof [58]).

Table 2. Columns2 — 5 report the properties of the final BiHe. mass, angular momentum,
spin parameter, and kick velocity, while coluntiis 7 report the measured torus massés,.

and those inferred from relatio(@fmr. Also shown in columns 8 and 9, respectively, are
the numerical errotgor = |1 — (Mtor )y /(Mtor )y | @ cOmputed by comparing different
resolutions (mediumi.e. Ag = 0.19, and high,i.e. Ag = 0.15) for each model and the
relative errores, = |Mior — Mior|/Mior Of the phenomenological expression for the mass
of the torus with respect to the numerical data. Clearlyhiharies with high mass ratio are
not well described by relatiofi)(6) even though their nunaricror is not very large.

MOdel M J a= J/M2 Vkick Mtor |J/\2-/tor| €tor €fit
(km/s) (M) (Mo)

M3.69l.00 256  4.90 0.745 0.28  0.0010 0.021  28% > 100%
M3.790.94 264  5.18 0.743 121.95 0.0100 0.048  12% > 100%
M3.490.91 299  7.29 0.815 59.33  0.0994 0.103 0.8%  89.6%
M3.4q0.80 - - - 56.22  0.2088  0.193  1.5% 7.4%
M3.5q0.75 3.000 7.13f 0.7921 18.05 0.0802 0.173 25% 8.1%
M3.4q0.70 - - - 15.82 02116 0.202  2.4% 4.6%

 We could not compute the dynamical horizon for this modethsoreported values are calculated
from the apparent horizon, with the method employed in $astVA and VB1 of ref.[[35].

Finally, also reported in tab[g 2 is the recoil velocity imigal to the BH at the end of
the inspiral and computed using the gravitational-wavession as discussed in [59,132] for
binary BHs. We recall, in fact, that together with energy andular momentum, gravitational
radiation also carries away linear momentum. If the bingsgesm has a degree of asymmetry
(either in the mass or in the spin) then the trajectories eftiio bodies will be (slightly)
different (e.g.with the smaller body moving more rapidly and, hence, beimgarefficient
in beaming its emission) and the momentum loss in one daretill not be balanced by an
equal loss in the diametrically opposite direction. Thigefis well-known in binary BHs,
where the recoils from quasi-circular inspirals can be agelaas~ 4000 km (see [[60] for
a recent review), but it has never been reported before f@arpiNSs. The recoil velocities
reported in tabl€]2 are clearly much smaller than those medsar binary BHs. However,
they could still yield astrophysically interesting resutteing comparable or larger than the
escape velocity from the core of a globular cluster that.is ~ 50 km [61]. Furthermore,
and possibly surprisingly, the values reported here fatational binaries which have very
little initial spin, are not much smaller than those complft® non-spinning binary BHs (see,
e.g., [62] for a recent update) and have a local maximumyfer 0.9.
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Figure 3. Isodensity contours for the binariess . 6gq1.00 (left panels) and13.490.70
(right panels) showing the morphology of the tori at the orafethe QSA on the(z, y)
plane (upper rows) and on ther, z) plane (lower rows). Note that the disks in the
two panels have very different lengthscales, with the omeM®. 4q0.70 being about3
times larger than that fan3. 6q1.00. The colormap used here is different from the one
in figures[1 andd2. Additionally, isodensity contours arevamdor the values ofp =
109,101,102, 103 g /cm3.

4. Torus Formation and Properties

4.1. General Dynamics

In figures[3 and14 we show color-coded contours of the ressndessity for models
M3.6gl.00 (left panels) and13.4q0 .70 (right panels), either in théx, y) plane (upper
rows) and in théz, z) plane (lower rows). The snapshots in figuke 3, in particalamespond
to the timet ~ 10 ms when the systems enter the regime of quasi-stationary tzmt(€QSA,
see below for definition), shortly after the formation of @, while those in figur&l4 refer
to the final time of the evolutior, ~ 21 ms. These figures allow for a closer view of the
morphological features of the disks, in particular, the@tsal dimensions and thickness, and
are a natural continuation of the dynamics already showginrdis 1 anfl]2, although they use
a different colormap that has been tuned to yield a bettetrastin the density profiles.

The large morphological differences between these twoemér models are clearly
visible in these figures. The equal-mass model produceshdyhsggmmetric, geometrically
thin disk, similar to the ones already observed for otheraéquass initial data in[3]. The
unequal-mass model, on the other hand, at the time of the ohsglee regime of QSA is
characterized by the presence of a large spiral arm, whismbgyet been accumulated onto
the central disk surrounding the formed BH. The asymmetrthandistribution of matter
at this stage is also apparent from the color map of the rassrdensity. Only at the end
of the simulation the disk of the unequal-mass binary aegulr more axisymmetric shape.
The diameters of the disks and their heights perpendicaltire horizontal plane differ in a
significant way between the two models. More specificallthatend of the evolution and
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Figure 4. The same as figukd 3 but showing the tori at the end of the siioila

using thep = 10*° g/cm3 isodensity contour as the reference value below which riadisr
not considered part of the disk, our simulations yield digateters of~ 50 km for model
M3.6qgl.00 and~ 150 km for modelM3. 4g0.70. The corresponding vertical scale~s5

km and~ 35 km, respectivelﬂ Taking into account all the models of our sample, we find that
both scales increase as the mass ratio decreases. Even ordrenaticing is the fact that, in
the cases considered, while the tori differ in size by abdat#or~ 3, they differ by a factor

~ 200 in mass, while having comparable mean rest-mass densgedirther discussion in

section§ 42 anld 4.8).

4.2. Rest-mass Evolution

In order to establish how the asymmetry in the mass of the t&s iN the binary leads to tori
with different masses we show in figude 5 the evolution of titaltrest mass, defined as

Moy = /pWﬁd?’:c = /D\/'_yd?’z, (4)
v v

normalized to its initial value and for the different models this equationV = au’ is
the Lorentz factorq being the lapse function, andis the determinant of the spatial metric.
All the curves in figurd b have been shifted in time to coincidé..;, which represents
the (collapse) time at which a rapid decrease of the tot&élmess takes place following the
formation of a BH. Note that, in practice, the collapse tisdifferent for all models, ranging
from around 6 ms for modet3 . 4g0 .70 to around 11 ms for model3 . 4g0. 80.

1 Of course it should be noted that the spatial dimensionsrtegidere depend on the cut-off chosen for the rest-

mass density. Using cut-offs smaller thar= 10'° g/cm® would lead to considerably larger estimates for the sizes
of the tori.
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Figure 5. Evolution of the total rest masséd; .. normalized to their initial values for all the
models considered. The order of magnitude of the massdraati the accretion torus can
be read off the logarithmic mass scale on the vertical axtse durves referring to different
models have been shifted in time to coincide af;, which represents the time when the very
rapid decrease of the total rest mass takes place. Notehthdine is not physically relevant
(the apparent horizon is usually found earlier than;) and simply corresponds to when the
very large amount of rest-mass accumulated in a very few teitumerically dissipated.

Figure[B shows that all models conserve the baryonic masssalperfectly i.e. with
losses of< 10~%) up until the formation of the apparent horizon, after whicbst of the rest
mass disappears in the singularity. One obvious resultwtan be deduced from figure 5 is
that the mass of the resulting accretion disk is larger faalEmvalues of;. However, this
trend is not entirely monotone in the figure as it is also inflea by the initial total baryonic
mass of the binary. The particular values of the tori massespated for all models are
reported in tabl]2. While the equal-mass model produceskaodlibarely10—3 M, models
M3.4g0.80andM3. 490 .70 produce significantly more massive tori with masses of about
0.2 M. A more detailed discussion of the mass in the tori will be enmdsection 4.8.

As the apparent horizon is formed, a substantial part ofélsemass is still outside it,
although it will accrete rapidly onto the BH. This makes therendefinition of what is the
torus and its mass rather arbitrary and we decide therefodefine the torus mas¥,, as
the total rest mass outside the apparent horizon when tkedtsrs a regime of quasi-steady
accretion (QSA), a regime which is found in all models inigeged. More specifically, we
compute the accretion rate as

Mtot = %/pW\/'_yd&'z:

\%4

(®)

and define the onset of the QSA as the point in time when theitixmmd’\ltot/Mtot <
1075(Ge™3 M) ~2 is satisfied for the first time. In other words, we define theebrs



Accurate evolutions of unequal-mass neutron-star birsarie 15

2x10-8 . ‘
N I 1 I
- A 1 1
2®1.5x10*3 a 3 ] 3
~— I I
I I 7 I
3 1073 = I - I
= F i 1 i
R I 7 I
5x1074 | B ‘l
I I
r ' Fr1t I I
I ™ I N
= s ! —~ 0.02 |- ! —
— L ]
£ r | E H | 1
;n 2x10-1 - | | 3 r | ]
= r i < 001 i ]
= F [ = [ ! ]
L i = L 1
I |- -
0
10 15 20
t (ms)

Figure 6. Evolution of the total baryonic magk/it (upper rows) and of the accretion rate
Mot (lower rows) in the regime of QSA for the representative n®es . 6g1.00 (left
panel) and43.4g0.70 (right panel). Indicated with a vertical dashed line is tmset of
the QSA. Note that both\/;., and M. differ by almost two orders of magnitude when
comparing equal and unequal-mass binaries.

the QSA as the time when the accretion has stabilized andaltteinis moving on essentially
circular orbits. This definition is again somewhat arbifréut has the advantage of allowing
for a systematic comparison of the differences in the prtigeof the accretion tori produced
by the several models considered in this work.

Figure[® shows the evolution of the total rest masgg, (upper rows) and the mass
accretion ratel/;.; (lower rows) in the regime of QSA for the two extreme model®of
sampleM3. 6q1. 0 (left panel) and13 . 4q0. 70 (right panel). Also indicated with a vertical
dashed line is the onset of the QSA and it should be noted ttatld, ., and M. differ by
almost two orders of magnitude when comparing equal andualagass binaries. An aspect
of the evolution of the accretion rate which is quite eviderftgure[® is the sharp difference
between equal- and unequal-mass binaries. The equal-@msessic fact, shows an accretion
rate (and indeed the whole evolution of the torus) that igesilo quasi-periodic oscillations
as the torus moves in and out at about the radial epicyclguigacy. The mass flux of the
unequal-mass model, on the other hand, is rather constamhénand this reflects a very
different distribution of angular momentum in the tori. Baif these aspects will be further
discussed in the following sections.

4.3. Density evolution

Once the BH is formed, an effective gravitational potentiell builds up in which the
torus undergoes radial oscillations. In the case of an eaaak binary, the well is
essentially axisymmetric and the dynamics of oscillatielgtivistic tori in equilibrium and
in axisymmetry have been analyzed extensively in a serigmpérs([6B], 28, 30, 26] in the
test-fluid approximation (where the self-gravity of thekdis neglected), with and without
magnetic fields, and for the cases of Schwarzschild and Kids. Bhese papers have shown
that, upon the introduction of perturbations in the toripad-term oscillatory behavior is
found, lasting for tens of orbital periods. These oscitlasi correspond to axisymmetric
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Figure 7. Evolution of the maximum of the rest-mass dengity.x, normalized to its initial
value for the representative models . 6q1 .00 (left panel) and13. 40 .70 (right panel).
The rapid drops take place well after an apparent horizorbbas formed and are caused by
the numerical methods which are no longer able to resolvedhelarge gradients in the very
central grid cells. The two insets provide a magnified viewhefevolution of the density in the
torus and help to contrast the periodic accretion producete case of equal-mass binaries
and the QSA for the unequal-mass binaries.

p-mode oscillations whose lowest-order eigenfrequengigear in the harmonic sequence
2:3.  This harmonic sequence is present with a variance~0f10% for tori with a
constant distribution of specific angular momentum and-o20% for tori with a power-
law distribution of specific angular momentum. More recgnthose studies have been
extended by [64], where systems formed by a BH (in the pupdramework) surrounded by
(marginally stable) self-gravitating disks have beene»din axisymmetry. Even in this case,
the ratio of the fundamental oscillatory mode and the firgrrtmne also shows approximately
the2:3 harmonic relation found in earlier works [28,130] 26].

The dynamics of the BH—torus system produced by the mergapdg&IM3 . 6g1.00 is
considerably more complicated than that considered ing$iefluid studies, for which initial
configurations in stable equilibrium could be found. Howewkespite the fact that these
systems are studieab-initio as the end-products of highly dynamical events, it is reialek
that so much of the phenomenology studied and reportéd B30 26] continues to apply
also here. Unfortunately, although the simulation extdnds 26 ms, the timeseries is much
too short to provide a firm evidence of the presence oRtBéarmonic relation, although the
spectral analysis of the data indicates that excess poweesent at such frequencies.

To provide additional evidence that the harmonic behavieumot just in the accretion
rate, figuréV shows the evolution of the maximum of the reassrdensity,, .., normalized
to the corresponding initial value, for the two extreme msaé our sampleM3.6g1.00
andM3.4g0.70. The equal-mass modeB . 6g1 . 00 (represented in the left panel of figure
[7) shows the most regular and pronounced oscillatory behas was already evident in the
time evolution of the total rest mass and accretion rate imé{@. The two insets in this figure
magnify these features in the QSA regime and, in the ca®g obq1 . 00, they highlight the
presence of both maxima and minima corresponding to corfliguns when the torus reaches
the point of closest approach to the BH (periapsis or pet&g@nd of farthest excursion
(apoapsis or apocenter), respectively. A similar trendbmhinted also for th®3.490.70
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model on the right panel of Fig 7, although the quality of tlseilblations is smaller in this
case, most likely because in this case the enhanced tidaptien during the merger phase
leads to a more complex dynamics. Interestingly, such laicihs seem to become more
regular during the final stages of the evolutioa,for ¢ 2> 17 ms, as the torus reaches a more
axisymmetric configuration.

A novel technique to analyze the evolution of the tori andamgome insight on their
dynamics is that offered by spacetime diagrams for obsec@moving with the black hole.
This is shown in figurg&l8, which reports the evolution of théoceoded rest-mass density
embedded in a spacetime diagram with the z, ;) coordinate on the horizontal axis, where
x,, IS the position of the apparent horizon, and the coordinae# on the vertical axis. The
color code is indicated to the right of each plot and isodgrn=ntours are shown for the
values ofp = 10%°, 101, 102,103 g /cm?®. Note that while these values are the same for all
the panels, the spatial dimensions vary considerably. &oin enodel, the dotted horizontal
line marks the onset of the regime of QSA.

By comparing the spacetime diagrams for all models it is@vithat only the equal-mass
modelM3. 6g1 .00 shows a global oscillatory movement with respect to thetlonaof the
BH horizon. The movement is indeed global as all the isodgesintours plotted oscillate
simultaneously and the maximum and minimum radial exterssieached by the disk (as
signalled by the location of the!° g/cm3 contour) are~ 25 km and~ 15 km, respectively.

It is these oscillations that produce the periodic increagbe maximum rest-mass density
reported in figur€l7 and it is easy to appreciate that in thée ¢he average density in the disk
is less than abouit)'2 g /cm”.

Scrolling through the different panels in figurk 8 it is pbésito appreciate that the
dynamics of the torus is strongly influenced by the mass ratlore specifically, models
M3.490.80,M3.590.75,M3.4g0. 70, show very rapid expansions corresponding to the
ejection of the large spiral waves discussed in the prevsegtions. As we will comment
later on, most of this matter is still bound but it nevertissleeaches distances which are
several hundreds dém away from the BH, leading to tori that have spatial dimensias
large as~ 80 km. Furthermore, noticeably higher average rest-mass dessite reached in
the three lowg models. As a result, while tidal disruption sweeps away gdéiraction of the
external layers of the less massive star in the binary, theesponding tori are still able to
retain the inner and denser regions; this is particuladydhse for models3 . 40 .80 and
M3.4q0 .70, where the tori reach maximum densities as high-a$'* g/cm”.

We finally note that, because the matter in the spiral armsus8, it will eventually fall
back onto the tori, where it may lead to enhanced accretidncansequently to a new and
delayedgamma-ray emission as the one recently observedIn [65grBéting the dynamics
of the fall-back material is therefore of great importansg@physically and the focus of our
attention in future work.

4.4. Dynamical Instabilities

As mentioned in the Introduction, current models of GRBsiassthat the central engine is a
system consisting of a BH and a thick disk, either formed atake stages of the coalescence
of two NSs or after the gravitational collapse of a massige the energy supply comes from
the energy released by the accretion of disk material ongdtd and from the rotational
energy of the BH itself, which can be extracted, for instanda the Blandford-Znajek
mechanism[[66]. This vast amount of energy (of the ordet@f-10°* erg, depending
on the mass of the disk and on the BH rotation and mass) is ieuffito power a GRB if
the energy released can be converted ipt@ays with an efficiency of about a few percent.
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Figure 8. Evolution of the rest-mass densityalong the positiver axis in a frame comoving
with the BH. The panels show the color-coded rest-mass tyeasibedded in a spacetime
diagram with the(xz — x,,) coordinate on the horizontal axis, being  the position

of the apparent horizon, and the coordinate timen the vertical axis. The color code is
indicated to the right of each plot. Additionally, isodggsiontours are shown for the values
of p = 10%9,10'1,10'2,10'3 g/cm?3. For modelsv3.4q0.80 andM3.4q0.70, where

the horizon could not be tracked, ,; represents a guess for the border of the horizon. For
each model, the dotted horizontal line marks the onset ofetiiene of QSA.
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This scenario requires a stable enough system to surviveflaw seconds. In particular, the
internal-shock mode[[67] implies that the duration of timemyy release by the source has
a duration comparable with the observed duration of the GRB. instability which might
disrupt the system on shorter timescales, such as the leatcahaway instability [68], could
pose a severe problem for the accepted GRB models. The rymastability was first pointed
out in [20] and operates as follows: If the torus is initidiljing its Roche lobe, transfer of
mass onto the BH is possible through the cusp located dt theagrange point. As a result
of accretion, the mass of the BH increases, thus leading kaage in the gravitational field
of the system and ultimately to a change in the position ofciiig. This can move either
inwards (towards the BH) or outwards (away from the BH), arebmvthe latter happens it
leads to an increase in the mass transfer and hence to theayiaacretion of the torus on a
timescale of a few milliseconds.

The runaway instability has been investigated under differassumptions and
approximations (seé [22, 24] and references therein). yEanhplified studies based on
stationary models showed that, on one hand, the self-grafihe disk favours the instability,
and, on the other hand, there are also parameters which niayohgtabilize the disk, such
as the rotation of the BH and the radial distribution of sfie@ngular momentum. The
first time-dependent, general relativistic hydrodynaingcasymmetric simulations of the
runaway instability of tori around BHs were performed byl [Bg,[25/ 23], who treated the
dynamics of the gravitational field in an approximate way ardlected the self-gravity of
the torus. Overall[]22, 25, 23] found that tori with condgteistribution of specific angular
momentum were unstable while non-constant (power-lawlangnomentum disks were
stable. More recently, if [24] the first simulations in fuktreral relativity of marginally-
stable self-gravitating tori in axisymmetry were perforhwéth the purpose of evaluating the
influence of the torus self-gravity on the runaway instapill he results ofi[24] indicate that
the tori are indeed stable irrespective of the angular moameistribution. It is therefore
interesting that the results presented in figure 8, whichnarterestricted to axisymmetry
but are however constrained to much shorter timescalesh ri® same conclusion: Self-
gravitating tori around BHs, as those produced by the mefj@nary NSs, are stable at least
on the dynamical timescales investigated here. Additionakiderations on the stability of
the tori are presented in the following section.

4.5. Specific Angular-Momentum Evolution

Besides the rest-mass density, another quantity whosetevols useful to understand the
dynamics of the tori is the the specific angular momentums Giantity plays an important
role in defining the dynamics of point particles around bldkes and in defining the
equilibrium of non-self gravitating tori around black hslf70]. As mentioned above, we
define the specific angular momentuntas —u4/u;. We also note that a similar but distinct
definition of the specific angular momentum was usedin [linelg j; = hu,. The two
definitions have the same Newtonian limit §f.w: = /Newt = Qr2, Q being the angular
velocity. However, it is important to stress that only théimiéon used here yields the correct
zero radial epicyclic frequency for tori with constant siie@angular momentum [see egs. (43)
and (45) of [28]].

Figure[® shows the evolution of the specific angular momentuhere the different
panels show the color-coded specific angular momentum fookeserver comoving with
the BH. The color code is indicated to the right of each plod &m addition the same
isodensity contours reported in figure 8 are shown here tdaidllow the dynamics of
the matter. The most striking feature to note when scroliimgugh the different panels in
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Figure 9. The same spacetime diagrams as in figdre 8 but for the evolofithe specific
angular momentumi = —u, /u+. Note that the isocontours in this case refer to the ressmas
density and are the same as in figuke 8.

figure[9 is that the radial distribution changes radically ystematically when going from
the equal-mass binaM3 . 6g1 . 00 over to the most extreme unequal-mass binary considered
M3.4g0.70. In particular, while the specific angular momentum is dasir®g outwards
in modelsM3.691.00, M3.790.94, andM3.4g0.91, it is Keplerian and increasing
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Figure 10. Profiles along ther-axis of the specific angular momentum of the tori produced
by the binariea13. 6q1.00 (blue lines extending tgS 20 km) andM3.4g0.70 (red lines
extending up to> 70km). The profiles are computed in a frame comoving with the BH
and for densitiep > 1010 g/cmS. Different line types refer either to the onset of the QSA
(i.e.t ~ 10 ms, thin solid lines) or to the end of the simulatiore(¢ ~ 22 ms, thick dashed
lines). Note the markedly different behaviour and that thecgfic angular momentum for the
unequal-mass case increases outwards.

outwards as~ z!/2 for the remaining models (see also the discussion in thewitg
section). Furthermore, the spacetime plots show that thteniacated in the outer regions
of the disks acquires the largest values of the specific angubmentum. This is particularly
visible in the early evolution of modet3.490.80, in which a large spiral arm develops
extending beyond the computational boundary, and also énldke evolution of model
M3.49g0.70, when the corresponding disk reaches the largest radiahsixin €f. right
panel of figure§13 and 4). Broadly speaking, our simulatidissthat, in agreement with
the results off[L], the smaller the value @fthe more the angular momentum is transported
outwards by a torque from the non-axisymmetric object thaht after the merger.

To better highlight the different behaviour éffor different mass ratios we show in
figure[10 the profiles along theaxis for the tori produced by the binarigs . 6g1 .00 (blue
lines extending to< 20km) andM3.49g0.70 (red lines extending up tg 70km). The
profiles are computed in a frame comoving with the BH and farsiteesp > 10'° g/cmg.
Different line types refer either to the onset of the Q$A&.¢ ~ 10 ms, thin solid lines) or
to the end of the simulation.€. ¢t ~ 22ms, thick dashed lines). Quite clearly, the specific
angular momentum decreases outward at all times for thd-egass binary, while it increases
outward for the unequal-mass one (although it was initiddlgreasing at the innermost parts).
At this pointitis worth remarking that Rayleigh’s criteni@gainst axisymmetric perturbations
of rotating fluids requires that//dx > 0 for a dynamical stability[[71]. While this criterion
is clearly satisfied by modet3.4q0.70, it is equally-clearly violated by3. 64g1.00,
which is nevertheless stable. We believe this differencguis to the fact that Rayleigh’s
criterion assumes that the motion is stationary and pu@tyathal. While this is essentially
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the case for the unequal-mass binary, which does not shoav elddence of epicyclic
oscillations, it does not hold true for the unequal-masatyinwhich shows instead large radial
epicyclic oscillations. The nonlinear stability 8 . 6g1 .00, but also ofM3.7g0.94 and
M3.4g0.91, seems therefore to indicate that Rayleigh’s criterionazahshould be extended
to account for fluids which are subject to large radial exions
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Figure 11. The same spacetime diagrams as in figdre 9 but for the evolofithe angular
velocity 2. Note that the isocontours in this case refer to the ressrdassity and are the
same as in figurgl 8.
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Figure 12. The same as in figufe L0 but for the angular velocity. Showretesence with
a dotted line is the Keplerian angular veloc®.,,, which matches very well the outer
parts of the torus from the unequal-mass binary. Shownadstéth a long-dashed line is an
exponentially decaying profile, which instead reproduced the profile for the equal-mass
binary.

4.6. Angular-velocity Evolution

In analogy with figureEl8 anf] 9, figurel11 shows the spacetimgrain for the evolution of
the angular velocity2 = u?/u! for all models of our sample. It is straightforward to notice
that for all models the angular velocity decreases with #ukal distance from the apparent
horizon. While this is qualitatively in agreement with tressults of [1], it is worth noting that
the radial fall-off is very different as the mass ratio isigdramong the different binaries. This
is shown in figuré12, which reports the profiles(®flong thex-axis for the tori produced
by the binaries13. 61 .00 (blue lines extending tg 20 km) andM3.490.70 (red lines
extending up to> 70km). As before, the profiles are computed in a frame comoving wit
the BH and for densitiep > 10'° g/cm3 and different line types refer either to the onset
of the QSA (.e.t ~ 10 ms, thin solid lines) or to the end of the simulatione( ¢ ~ 22 ms,
thick dashed lines). It is then clear that while the equassniainary has an exponentially
decaying profile¢f. long-dashed line),e. Q « exp[—k(z — x,,,)] ~ exp[—0.07(x — x,,,)],
which does not change significantly with time, the unequatsbinary reaches at the end of
the simulation a profile which is, especially in the outertpagssentially Kepleriamg. with
Qxep ~ x~3/2 (cf. dotted line). This feature, which is also shared by the dtherq binaries,
explains the scaling of the specific angular momentufhas:'/? and provides firm evidence
that the tori produced in this case will be dynamically stabl

4.7. Matter Ejection

As a final but nevertheless important aspect of the formadiwh evolution of the tori, we
consider whether or not a part of the rest-mass of the systegjected during the merger
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Figure 13. The same spacetime diagrams as in figdre 9 but for the evolofidocal fluid
energyu:. Note that the isocontours in this case refer to the ressrdassity and are the
same as in figurigl 8.

and the subsequent evolution. To determine whether a fluittjgais bound or unbound we
use the covariant time component of the 4-veloeityand recall that, in an axisymmetric and
stationary spacetime, the valuewgffor a particle moving along a geodesic is conserved. If the
particle is unbound, it moves outwards and; = W > 1 at infinity, whereax = 1, 8; = 0.
The local condition:; > —1 thus provides a necessary although not sufficient, comditio
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a fluid element to be bound; stated differently, if a partidaches infinity it is because it
hasu; < —1. Furthermore, this condition is exact only in an axisymicednd stationary
spacetime, and our spacetimes attain these propertiegahly final stages of the evolution.
Nevertheless, this is a useful condition for a first estindtéhe amount of matter ejected
and a in-depth discussion on the assumptions implicit im ¢hiterion and on how it applies
if one accounts for external forces are presented ih [72btéNhat the alternative criterion
for bound flows, namelyu; > —1, would yield similar results since in the relevant regions
h~1.)

Figure[I3 shows the evolution af embedded in a spacetime diagram much like the
ones presented before for the rest-mass density, the gpenijular momentum and the
angular velocity. For all models under consideration, tliteigon v, > —1 is well fulfilled,
namely all the matter in the tori is bounded, except for matel 490 .80 which clearly
shows in the early stages of its evolution, that a certaintarhof unbound matter is ejected
before reaching the regime of QSA. Only for the outermosty {@v-density regions of the
tori (which are not shown in the spacetime diagrams of figievhlues ofu; < —1 are
encountered in the other models and are probably the méatifas of an outflowing wind
caused by the very large temperatures of those regions. Asahrémark we note that
although the total amount of matter ejected in this way iseasmall and only of the order
of ~ 10~* My, it can nevertheless act as the site for the production afi¢ugron-rich heavy
elements that are formed by rapid neutron captieetbie r-process) (seg [73] and references
therein). Performing such calculations and thus detergitd what extent binary NS mergers
contribute to the whole observed r-process material in talexd requires a fully developed
reaction network and is outside the scope of this study, blitoe the focus of our future
research.

4.8. A phenomenological expression for the mass in the torus

As mentioned above, determining the amount of rest-mas$eitorus may be one of the most
important aspects of this research for the impact it has emtbdelling of the emission in
SGRBs. Tabl&]2 also reports the mass of the torus and sindattéeslightly decreases in
time, we have arbitrarily chosen the timetof~ 17 ms as a reference (it is about the latest
time for which we have data from all the simulations). Beeaobthe importance of the
information and because of the scarcity of the numerical daailable, it would be valuable
to derive a phenomenological expression for the mass inottus twhich can be constructed
on basic expectations and that can be constrained by usngitherical data.

Following this spirit, we first search for a phenomenolog&epression for the torus
mass which will depend only on the mass ratio and on the tcaakmof the binary,e. Mor =
J\A/fmr(q, M;ot). Next, we exclude the trivial case in which the total massigér than the
maximum mass of the binary systeW,.x (based on the maximum allowed mass for isolated
stars with the given EOS); in practice we impose Mgr(Q, Mot > Mmax) = 0 for any
value ofq. Finally we impose the expectation that the mass of the &imtosld depend, at least
at lowest order, on the mass ratio (this was already noted]pyfd yield the torus with the
smallest possible mass for an equal-mass binary. Coltgetirthese constraints, oansatz
is

Mtor(qv Mtot) = Cl(l - q)(Mmax - ]\/[tot> + C2(]\411'130( - ]\/[tot>
= [es(1 + @) My — Miot) [e1(1 — q) + o] , (6)

where in the second expression we have written the maximuss wfghe binary in terms of
the maximum mas3/. of an isolated nonrotating staw. M,.x = ¢3(1 + ¢) M.
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Note that as introduced in expressibh (6), the coefficiengdc; have a direct physical
interpretation:c, is proportional to the mass of the torus for equal-mass Esawhilecs
parametrises the excess of maximum mass that can be suppottee binary because of
the stabilizing effect produced by the nonzero spin of tteessand of the tidal potential
(i.e. c3 is expected to be slightly larger than. The three coefficients;;, ¢, andcs can
then be computed by comparing expressidn (6) with the nualediata reported in tablg 2
as well as the one computed id [3] for equal-mass binaries.fiting procedure then yields
c1 = 1.11541.090, ¢ = 0.03940.023, c3 = 1.139£0.149, with a reduced® ~ 2 x 1073,
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Figure 14. Different symbols show the torus mass.,, measured either in the simulations
reported here (red crosses) or in those reported_lin [3] fgsepiares). Also shown in
the parameter spacdgy, M:ot) considered here is the phenomenological modelM&,r
suggested by expressiofi] (6). Note that to highlight the tfanal behaviour of the
phenomenological expression, the- and y—axes are shown as decreasing when moving
to the right and to the left, respectively.

Figure[14 shows the torus makk,, either as measured in the simulations reported here
(red crosses) or in those presented_in [3] (green squaresagainst the phenomenological
modelling]\AitOr suggested by expressidn (6) in the region whelkg, < M,,... Note that to
highlight the functional behaviour of the phenomenolob&aression, thee— andy—axes
are shown as decreasing when moving to the right and to thedspectively. Overall, the
figure shows rather generically that: 1) The mass of the tioareases with the asymmetry in
the mass ratio; 2) Such an increase is not monotonic and fiicisatly small mass ratios the
tidal disruption leads to tori that have a smaller mass faabées with the same total mass;
3) Tori with massesS 0.21 Mg have been measured and even more massive beasijth
masses up te- 0.35 M, are possible for mass ratigs~ 0.75 — 0.85.

We note that somewhat similar considerations about the ofélss torus were made also
in [I], where a different phenomenological expressionffiermnass of the torus was proposed.
When applied to the data computed here, the expression stiegge [1] does not reproduce
well the data and yields rather large errors. There are a pupflreasons that could justify
these differences and that are related to the differeritiirdata chosen (ref[]1] has only
two initial total masses which are smaller than those carmsidihere), to the different EOSs
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employed (ref.[[lL] uses cold but realistic EOSs in contrashé ideal-fluid chosen here), and
to the different numerical techniques adopted (fef. [1useniform grid with rather coarse
resolution in place of the mesh-refined grid employed hed)these differences make the
comparison between the two calculations rather difficlthcaigh they also motivate a closer
comparison using at least the same initial data and the sad8sEand which will be the
subject of our future work. However, common conclusionsathtralculations are that: The
mass of the torus can be as large-a8.1 M, and larger; It increases with the mass asymmetry
in the binary; It is larger for systems with smaller total ma%Ve believe these features are
robust and will be also present when different initial datd EOSs are considered.

A final note of caution must be mentioned: Although figliré 1didates a very good
match between the data and expressidn (6), it also showghédatter is inaccurate for
q ~ 1, where the tori masses are much smaller and the predictals i® small but negative
values; luckily, the regime wherEl(6) is less accurate is tis least interesting one from an
astrophysical point of view. Most importantly, howeveisitclear that the attempt to produce
a phenomenological description for the mass of the torwe &fving investigated only a
small portion of the space of the parameters (especially kgispect to the total mass of the
binary) and after using as support oslgimulations is a very demanding task and potentially
a flawed one. However, because we believe that expregsiimdGrasonable description of
the expected results, we foresee that it will reveal its sthess as additional simulations are
performed and the coefficients will be further improved. sTWill indeed be the subject of
our future work.

5. Gravitational-Wave Emission

Figure[ 15 shows the waveforms in the two polarizations ofgfzitational-wave amplitude
(h4)a2 (upper panels) andhy)q2 (lower panels) for all the models considered and as
computed from the gauge-invariant perturbations of a Scrsehild spacetime. As predicted
by the post-Newtonian approximatidn [74], the inspiral ghés characterized by harmonic
oscillations at roughly twice the orbital frequency butttblaow an increase both in amplitude
and frequency as the merger approaches. We note that tted jpatt of the inspiral of the
binaryM3.490.80 shows a comparatively larger contamination from the ih&urious
burst of radiation. This is simply due to the fact that sucliraty has been constructed with
a comparatively larger initial violation of the constrairgte. the violation of thel., norm of
the Hamiltonian constraintis 3 x 10~¢ and abous0% larger than the violation measured in
other binaries). We believe that this larger initial eralso the one responsible for a longer
time spent by this binary before the merger.

As already discussed before, because of the very high todak rof the systems no
transient HMNS forms, whose dynamics would have been diaaligtimprinted on the
waveforms €f. the detailed comparison of the HMNS dynamics for differe@iSs presented
in [3]). As a result, the post-merger waveform is essentidle one corresponding to the
collapse of the HMNS to a BH. Indeed, as noted above, in thegloasev3 . 5q0. 75 and
M3.4qg0. 70, for which a common apparent horizon is found almost sinmaltausly with the
merger, the part of the waveform produced by the newly forBiddtarts essentially together
with the end of the one coming from the inspiral.

The ringdown part of the waveform starts increasingly eéolybinaries with smaller
mass ratios and its signature in the waveform is also lesterti More specifically, while
the ringdown of the BH created after the merger can be cledéstified in the waveform
of the equal-mass model3. 6g1 .00, it becomes much less clear as one scrolls down in
the different panels of figufe 15 and it seems almost absemibigelM3 . 4g0.70. Indeed
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Figure 15. Gravitational waveforms in the two polarizatiohs. (upper panels) ankly (lower
panels) as computed from the lowést m = 2 multipole for all the binaries considered. For
those models where it was found, the vertical dashed linek tha time of the first detection
of the apparent horizon. Note that as the mass ratitecreases, the ringdown part of the
signal starts earlier but it is also less evident becauskeoiricreasingly large accretion after
the formation of the apparent horizon. Finally, shown asidrt@comparison, the panel of
the binaryMm3 . 4070 also reports with dotted lines the waveforms for the equassrbinary
M3.6qgl.00.

it is necessary to examine3.4q0.70 on a logarithmic scale in order to appreciate the
presence of an exponential ringdown. We believe that thiatieur is mostly likely due to the
copious mass accretion after the formation of the appam@izdn that becomes increasingly
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Figure 16. Scaled power spectral densitié$(f)f1/2, for all the binaries considered when
placed at a distance @ 0Mpc. Shown also are the noise curves of the Virgo detector (dotte
magenta), of the advanced LIGO detector (short-dashed hiue of the planned Einstein
Telescope (long-dashed red).

large as the mass ratio decreases. We recall, in fact, thah#ss accretion rate following
the BH formation is highly sensitive on the mass ratio anatieely proportional to it (see
figure[3 where this is very apparent). Under these conditidwery intense mass accretion,
the BH is continuously “hit” by generically nonsphericalvile of matter which prevent its
natural ringdown, essentially “chocking” it. A detailedadysis on the role played by mass
accretion on the properties of the ringdown has already lmestigated in[[75], where
however the BH ringdown was always observed because of thiesically perturbative
nature of the approach. The rather different accretionmegieached in these simulations
suggests therefore that the dynamics observed in flgdrefiestsea nonlinear response of
the BH that was not accessible in the work[of|[75]. Additiowalrk is needed to clarify the
relation between hypercritical accretion and BH ringdowd avill be the subject of future
investigations.

A more systematic analysis of the waveforms as a functioh®fitass ratio is beyond
the scope of this paper and will be considered elsewherg usare realistic or parametrised
EOSs. Here, however, as an aid to comparison, the panéVesiathe binarn3.4g070 in
figure[I5 also reports with dotted lines the waveforms foettpgal-mass binang3 . 6g1 .00
and highlights that besides the different amplitude evotythe mass asymmetry also results
into a different phase evolution which is likely to provigeportant information on the EOS.

In addition, we show with black continuous lines in figliré 06 scaled power spectral
densities (PSD) ofy, i.e. i~L+(f)fl/2, for all the binaries considered when placed at a
distance ofl00Mpc (see[[33] for a definition ok (f)). Shown also here are the noise curves
of the Virgo detector (dotted magenta), of the advanced Life€ctor [756] (short-dashed
blue), and of the planned Einstein Telescope (ET) [77] ((daghed red). Since the number
of cycles computed is very small, the peak emission is thecorresponding to the last stages
of the inspiral, around.6 — 0.7 kHz for all models considered. The amplitude, however,
depends sensitively on the mass ratio, being maximal fohitjle-; binaries and above the
noise curve for Virgo in these cases. As the mass ratio isedsed, in fact, the peak values
of the PSD decrease and the binaries at the distances catsltecome then undetectable by
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an interferometer like Virgo (we recall that the binafg . 490 . 80 has an extended inspiral
induced by the larger initial violation of the constrairtisnce its PSD amplitude is spuriously
increased in figurleZ16). New-generation detectors suchwashadd LIGO will instead be able
to reveal the inspiral signal in the frequency inteal.3 — 2.0 kHz, while essentially all of
the late-inspiral and merger signal would be measured bEitistein Telescope (see ref. [78]
for an introduction to the science reach of third-generatgietectors such as ET, and ref][79]
for a detailed discussion of the impact that gravitational@s from NSs may have on such
detectors). TablE]3 summarizes this by reporting the sigmabise ratios (SNRs) for the
different detectors and clearly highlights that preseneders are unlikely to detect any of
the binaries considered here if at a distancé@fMpc and observed only during the final
part of the inspiral. On the other hand, advanced detectitirisenable to reveal these sources
even at such large distances (the only ones that can pronigideaesting event rate) and, in
the case of third-generation detectors such as ET, everunesthem with significant SNRs.

Model SNR for Virgo  SNR for adLIGO SNR for ET
M3.691.00 0.41 2.56 47.47
M3.7q0.94 0.41 2.59 48.33
M3.49g0.91 0.38 2.48 45.40
M3.4g0.80 0.46 3.29 55.68
M3.590.75 0.36 2.38 42.56
M3.49g0.70 0.34 2.29 40.48

Table 3. SNR for the different binaries considered as computed whered at a distance of
100Mpc for a presently operating detector such as Virgo, as welbaslétectors of second
and third generation, such as advanced LIGO and ET.

6. Conclusions

Numerical-relativity simulations of non-vacuum spacetrhave now reached a sufficient
stability and accuracy to be able to describe in a completeneraall of the stages of the
inspiral, merger and post-merger of binary NSs. Deterngittie properties of the black-hole—
torus system produced by the merger represents a key aspéet inodelling of the central
engine of SGRBs. Of the many different properties char&iterthe torus, the total rest-mass
clearly represents the most important one, since it is thestdinding energy which can be
tapped to extract the large energies necessary to powerGRB®mission. However, the
rest-mass density and angular momentum distributionsarndfus also represent important
elements which determine its secular evolution and nee@ twomputed equally accurately
for any satisfactory modelling of SGRB engine.

As a first step towards modellingb-initio the central engine of SGRBs, we have
here presented new results from accurate and fully genelativistic simulations of the
coalescence of unmagnetized binary NSs with unequal masgbsse are the ones expected
to yield the largest tori. The evolution of the stars has biedlowed through the inspiral
phase, the merger and prompt collapse to a BH, up until theaappce of a thick accretion
disk, which was studied as it enters and remains in a regimguasi-steady accretion.
Although we have employed a simple ideal-fluid equation afestwe have performed a
systematic study of the properties of the black-hole—tohtaining a number of results that
can be summarized as follows:
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e The mass of the torus increases considerably with the mgemastry and equal-mass
binaries do not produce significant tori if they have a totatylonic massMi.; =

3.7 M. Those produced have masses,, ~ 1072 M, and a radial extension of
~ 30 km.

e Tori with masses as large as 0.2 M, have been measured with binaries having
Mo ~ 3.4 Mg and mass ratiog ~ 0.75 — 0.85. The tori in these cases are much
more extended with typical sizes 120 km.

e The mass of the torus can be described accurately by the esirappression
Mor(q, Miot) = [es(1 4+ )My — Miot) [e1(1 — q) + ¢2], involving the maximum mass
for the binaries and some coefficients, both of which can hasttained from the
simulations.

e Using the phenomenological expression we conclude thawitt masses as large as
Mior ~ 0.35 Mg can be produced for binaries with total masaég; ~ 2.8 M and
g~ 0.75— 0.85.

e Tori from equal-mass binaries exhibigaasi-periodidorm of accretion associated with
the radial epicyclic oscillations of the tori, while thoserh equal-mass binaries exhibit
aquasi-steadyorm of accretion.

e When analyzing the evolution of the angular-momentumithistion in the tori, we find
no evidence for the onset of non-axisymmetric instabditignat angular momentum is
transported outwards more efficiently for smaller valueg dfius yielding Keplerian
angular-velocity distributions, and that very little oktimass of the tori is unbound.

e Present gravitational-wave detectors are unlikely toatetry of the binaries considered
here if at a distance dfd0 Mpc and observed only during the final part of the inspiral.

e Advanced detectors will be able to reveal these sources at/darge distances and
measure them with significant SNRs in the case of third-geier detectors such as
ET.

Overall, these results indicate that large-scale tori Vaithe masses and quasi-stationary
evolutions can be produced as the result of the inspiral aarden of binary NSs with unequal
masses. Hence, they may provide the energy reservoir néegeder short GRBs. Although
complete and accurate, our results are also far from beaiggtie. Much remains to be done
to improve them either by considering physically-motieBEEOSs, or by including the effect
of magnetic fields, or by taking into account the modificasioriroduced by a self-consistent
treatment of the radiation transfer. All and each of thegeravements will be the subject of
our future research.

Acknowledgments

Itis a pleasure to thank the group in Meudon (Paris) for peattpand making available the
initial data used in these calculations and also in padictd Dorota Gondek-Rosifiska for
essential help in building some of the initial models. We also grateful to E. Schnetter
and all thecarpet/Cactus developers. We finally thank Gian Mario Manca for help in
producing some of the figures. The computations were peddrom the Damiana cluster
at the AEI, on the MareNostrum cluster at the Barcelona Sueputing Center and on
the Ranger cluster at the Texas Advanced Computing Centargh TERAGRID allocation
TG-MCAO02NO014. This work was supported in part by the DFG ¢&RB/Transregio 7, by
“CompStar”, a Research Networking Programme of the Eunofegéence Foundation, by the



Accurate evolutions of unequal-mass neutron-star birsarie 32

JSPS Postdoctoral Fellowship For Foreign Researcheraf-@r#\id for Scientific Research
(19-07803), and by the Spanish Ministerio de Educaciéngn€ia (AYA 2007-67626-C03-
01).

Appendix A. On our accuracy: conservation of mass and angulamomentum

In a recent work([b] we have discussed in detail the converg@noperties of our numerical
simulations and, in particular, the deterioration of thenarygence rate at the merger and
during the survival of the merged object, when strong shaoksformed and turbulence
develops. In particular, in figurg of that work we have shown a very stringent measure
of the overall conservation properties of our simulatiopsdporting the time evolution of the
energy and angular momentum which are partially radiateshdthe simulation. In order to
reduce the computational costs associated with the meaents made iri 5], we had limited
ourselves to a single configuration and in particular ong tiecause of the rather high mass,
formed a BH soon after the merger. In particular, we had damsd an equal-mass binary
with a total baryonic mass dif;, = 3.56 M and a total ADM mass a#/, ,,, = 3.23 M as
evolved from an initial (coordinate) separation-ofl5 km. As a result, we were able to show
an overall conservation of both mass and angular momentwarptecision of~ 1% over a
timescale of~ 10ms.
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Figure Al. Left panel: Evolution of the maximum rest-mass density radized to its initial
value. Shown with different colours are the different paftthe evolution which are then also
magnified in the three insetsf(the timescale to associate the insets to the different pérts
the evolution). Right panel: The same as in the left paneirbigrms of the/ = m = 2 mode
of the h4 polarization amplitude.

We here reconsider the same assessment of the conservaipantges but for a far more
challenging case of a binary with a small total mass and fockvthe HMNS survives a
considerably larger time before collapsing to a BH. In maittr, we examine the evolution
of an equal-mass binary with a total baryonic mass\hf = 2.912 M., and a total ADM
mass ofM, ., = 2.694 M, as evolved from an initial (coordinate) separatiomofl5 km;
this same binary was indicated as 1.46-45-1Fin [3] and exalhere only up t@5ms. As
representative information about the binary inspiral aretgar we report in the left panel
of figure[A] the evolution of the maximum rest-mass densitymadized to its initial value
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(cf. figure15 in [3])). Shown with different colours are the different Eaof the evolution and
which are also magnified in the different insat§ the timescale to associate the insets to the
three parts of the evolution). They refer to the immediatenttion of the HMNS (red line),

to the secular evolution of the HMNS as a contracting baociaeéd object (green line) and
to the exponential growth when the threshold to black-hotenfition has been crossed (blue
line). The right panel of the same figure shows instead thesaages of the evolution but in
terms of the/ = m = 2 amplitude of thet polarization. Note that the timescale over which
the evolution is reported is© 140 ms and thus a factorr 5 larger than the one discussed
in [3]. (As for the evolutions in[[5], here too we have used &@tional symmetry around the
z-axis to reduce computational costs.)
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Figure A2. Left panel: conservation of energy. The continuous blaock Is the ADM mass
computed as an integral over the whole grid, while the loaghéd blue line is the energy
carried from gravitational waves outside the grid and miggphiby a factor of10; the short-
dashed red line is the sum of the two and it should be conserveeé numerical violation
is at mostl1.5% (cf. dot-dashed line). Right panel: the same as in the left paneido the
conservation of the angular momentum. Also in this case ithlation is at mostl %.

In analogy with figure3 of [5], we show in the left panel of figufe’A2 the evolution of
the total mass as normalized to the initial valaé keft panel of figure3 of [5]). Indicated
with different lines are the volume-integrated values & ADM mass (solid black line), of
the energy lost to gravitational waves magnified of a fattoflong-dashed blue line), and of
their sum (short-dashed red line). The last quantity shbaldtrictly constant and this is the
case to a precision ef 0.5% during the inspiral, but with a secular decrease that brihgs
total error to be- 1.5% at the end of the simulation (as an aid to comparison the llé15
is shown with a dot-dashed line). Similar considerationdyaplso to the conservation of the
angular momentum as shown in the right panel of fifurk &2ight panel of figure of [5])
which uses the same conventions as the left panel (igras computed with the integral
(15) in [3]). In this case the radiative losses are much latgknost15% of the available
angular momentum is lost to gravitational waves) but theal/eonservation is still accurate
to ~ 1%. Once again it is worth nothing that the timescale over wiietcan show accurate
conservation of mass and angular momentum is a factod larger than the one discussed
in [5] and provides us with great confidence over the numksceuracy of our results. Of
course this does not provide us with any measure of whetloerrasults are indeed realistic.



Accurate evolutions of unequal-mass neutron-star birsarie 34

References

(1]
[2]
(3]
(4]

(5]

(6]

[7]

(8]

9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]
(32]

(33]
(34]

(35]

[36]
[37]
(38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]
[46]
[47]
(48]
[49]
[50]
[51]
[52]
(53]
(54]

Shibata M and Taniguchi K 200Bhys. Rev. Y3 064027

Anderson Met al. 2008Phys. RevD77 024006

Baiotti L, Giacomazzo B and Rezzolla L 2088ys. Rev. Y8 084033

Anderson M, Hirschmann E W, Lehner L, Liebling S L, Motl P,Meilsen D, Palenzuela C and Tohline J E
2008Phys. Rev. Lettt00191101

Baiotti L, Giacomazzo B and Rezzolla L 20@ass. Quantum Gra26 114005

Liu Y T, Shapiro S L, Etienne Z B and Taniguchi K 20881ys. Rev. ¥8024012

Giacomazzo B, Rezzolla L and Baiotti L 2008on. Not. R. Astron. So899L.164-L.168

Kiuchi K, Sekiguchi Y, Shibata M and Taniguchi K 20@ys. Rev. 30 064037

Shibata M and Uryu K 200Bhys. Rev. 1 064001

Belczynski K, Taam R E, Kalogera V, Rasio F and Bulik T Z@Gstrophysical Journab62504

Narayan R, Paczynski B and Piran T 199&rophys. J395L83

Zhang B and Meszaros P 200%. J. Mod. Phys. A 92385

Piran T 2004Rev. Mod. Phys761143-1210

Shibata M, Taniguchi K and Ury u K 20@3ys. Rev. 068 084020

Stairs | 2004Science304547-552

Pinsonneault M H and Stanek K Z 208&trophysical Journa39L67

Lee C H, Park H J and Brown G E 20@&trophysical Journa70741

Bulik T, Gondek-Rosinska D and Belczynski K 200%n. Not. R. Astron. So8521372-1380

Gondek-Rosifska D, Bulik T and Belczynski K 200&morie della Societa Astronomica Italiad&513

Abramowicz M A, Calvani M and Nobili L 198Blature302597-599

Papaloizou J C B and Pringle J E 198én. Not. R. Astron. So208721-750

Font J A and Daigne F 2009on. Not. R. Astron. So834383-400

Daigne F and Font J A 2004lon. Not. R. Astron. So849841-868

Montero P J, Font J A and Shibata M 208@mitted

Zanotti O, Rezzolla L and Font J A 2008on. Not. Roy. So841832

Montero P J, Zanotti O, Font J A and Rezzolla L 20@0@n. Not. R. Astron. So8781101-1110

Rezzolla L, Yoshida S, Maccarone T J and Zanotti O 20@3. Not. R. Astron. So844L37-L41

Rezzolla L, Yoshida S and Zanotti O 200®n. Not. R. Astron. So844978-992

Schnittman J D and Rezzolla L 20@&trophysical Journab37L113-L116

Zanotti O, Font J A, Rezzolla L and Montero P J 20@8n. Not. R. Astron. So856 1371-1382

Nagar A, Zanotti O, Font J A and Rezzolla L 20Pfysical Review 5 044016

Pollney D, Reisswig C, Rezzolla L, Szilagyi B, Ansorg Bleris B, Diener P, Dorband E N, Koppitz M, Nagar
A and Schnetter E 200FPhys. RevD76 124002

Baiotti L, Hawke | and Rezzolla L 200Class. Quantum Gra4 S187-S206

Baiotti L, Hawke |, Montero P and Rezzolla L 20@mputational Astrophysics in Italy: Methods and Tools
vol 1 ed Capuzzo-Dolcetta R (Trieste: MSAIS) p 210

Baiotti L, Hawke |, Montero P J, Loffler F, Rezzolla L,e8gioulas N, Font J A and Seidel E 20B8ys. Rev. D
71024035

Banyuls F, Font J A, Ibafiez J M, Marti J M and Miralled 1997 Astrophys. J476221

Harten A, Engquist B, Osher S and Chakrabarty S R 1p&bmput. Phys71231

Colella P and Woodward P R 1984Comput. Phy$4 174

Harten A, Lax P D and van Leer B 198AM Rev25 35

Roe P L 1981. Comput. PhysA3357

Aloy M A, Ibafiez J M, Marti J M and Miller E 1998strophys. J. Supi22151

Donat R and Marquina A 199& Comput. Physl2542

Oechslin R and Janka H T 20@hys.Rev.Let©9121102

Bejger M, Gondek-Rosinska D, Gourgoulhon E, Haens&aRiguchi K and Zdunik J L 2008stron. Astrophys.
431297-306

Teukolsky S A 197Astrophys. J185635-647

Abrahams A M, Rezzolla L, Rupright M E and et al 199Bys. Rev. Let801812-1815

Rupright M E, Abrahams A M and Rezzolla L 1988ys. Rev. 38 044005

Rezzolla L, Abrahams A M, Matzner R A, Rupright M E and Bina S L 1999Phys. Rev. 59064001

Nagar A and Rezzolla L 2006lass. Quantum Gra22 R167-R192

Schnetter E, Hawley S H and Hawke | 200#ass. Quantum Gra21 1465-1488

Gourgoulhon E, Grandcléement P, Taniguchi K, Marck Jn&l 8onazzola S 200Rhys. Rev. 53 064029

URLhttp://www.lorene.obspm. fr

Bildsten L and Cutler C 1992strophys. J400175

Lee C H, Park H J and Brown G E 200 he Astrophysical Journ&70741


http://www.lorene.obspm.fr

Accurate evolutions of unequal-mass neutron-star birsarie 35

[55]
[56]

[57]
(58]
[59]

[60]
[61]
(62]
(63]
(64]
(65]
[66]
(67]
(68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]
[78]
[79]

Thornburg J 200£Llass. Quantum Gra21 743-766

Ashtekar A and Krishnan B 2004 Living Rev. Relativ. 7 10 URL
http://www.livingreviews.org/lrr-2004-10

Dreyer O, Krishnan B, Shoemaker D and Schnetter E RI)a. Rev. 057 024018

Szilagyi B, Pollney D, Rezzolla L, Thornburg J and Wiour J 2007Class. Quant. Gra24 S275-S293

Koppitz M, Poliney D, Reisswig C, Rezzolla L, ThornbutgDiener P and Schnetter E 20BRys. Rev. Lett.
99041102

Rezzolla L 200Class. Quant. Gra\26 094023

Webbink R F 198®ynamics of Star ClusterdAU Symposiunvol 113) ed J Goodman & P Hut pp 541-577

Gonzalez J A, Sperhake U and Brugmann B 2B09s. RevD79 124006

Rezzolla L, Zanotti O and Font J A 20@&tron. Astrophys412603-613

Montero P J, Font J A and Shibata M 20PBys. Rev. Y8 064037

Giuliani A and others 2018strophys. J708L84—-L88

Blandford R D and Znajek R L 197¥lon. Not. Roy. Astron. Sot79433-456

Rees M J and Meszaros P 1984trophysical Journal, Letter$30L93-L96

Nishida S, Lanza A, Eriguchi Y and Abramowicz M A 198&n. Not. R. Astron. So278L41-L45

Font J A and Daigne F 200&strophys.581L23-L26

Abramowicz M, Jaroszynski M and Sikora M 19A8tron. Astrophys63 221224

Tassoul J L 1978 heory of Rotating Star@®rinceton University Press)

Ansorg M 1998Journal of Mathematical Physic9 5984-6000

Freiburghaus C, Rosswog S and Thielemann F 1®&#ophysical Journal, Letters251L.121-L124

Blanchet L 2004.iving Rev. Relativs 3 URLhttp://www.livingreviews.org/lrr—-2002-3

Papadapoulos P and Font J A 20®Hys. Rev. 53 044016

Advanced LIGO URlhttps://www.lsc—group.phys.uwm.edu/daswg/projects/lal/nightly/docs/html/LALAdVLIGOPsd.

Einstein Telescope URLttp://www.et—gw.eu

Michele Pet al. 2010Class. Quantum Gran press

Andersson N, Ferrari V, Jones D |, Kokkotas K D, KrishnBn Read J, Rezzolla L and Zink B 2009
arXiv:0912.0384


http://www.livingreviews.org/lrr-2004-10
http://www.livingreviews.org/lrr-2002-3
https://www.lsc-group.phys.uwm.edu/daswg/projects/lal/nightly/docs/html/LALAdvLIGOPsd_8c-source.html
http://www.et-gw.eu

	1 Introduction
	2 Mathematical and Numerical Setup
	2.1 Einstein and Hydrodynamics equations
	2.2 Adaptive Mesh Refinements and Grid setup
	2.3 Initial data

	3 Dynamics of the coalescence and merger
	3.1 General dynamics
	3.2 Properties of the black hole

	4 Torus Formation and Properties
	4.1 General Dynamics
	4.2 Rest-mass Evolution
	4.3 Density evolution
	4.4 Dynamical Instabilities
	4.5 Specific Angular-Momentum Evolution
	4.6 Angular-velocity Evolution
	4.7 Matter Ejection
	4.8 A phenomenological expression for the mass in the torus

	5 Gravitational-Wave Emission
	6 Conclusions
	Appendix A On our accuracy: conservation of mass and angular momentum

