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Abstract. The accurate modelling of astrophysical scenarios imaglvtompact objects
and magnetic fields, such as the collapse of rotating magmetstars to black holes or
the phenomenology of-ray bursts, requires the solution of the Einstein equatimgyether
with those of general-relativistic magnetohydrodynamié¢e present a new numerical code
developed to solve the full set of general-relativistic metghydrodynamics equations in
a dynamical and arbitrary spacetime with high-resolutibiock-capturing techniques on
domains with adaptive mesh refinements. After a discussidheoequations solved and of
the techniques employed, we present a series of testbetisdcaut to validate the code and
assess its accuracy. Such tests range from the solutiorati/istic Riemann problems in
flat spacetime, over to the stationary accretion onto a Sasehild black hole and up to the
evolution of oscillating magnetized stars in equilibriundaonstructed as consistent solutions
of the coupled Einstein-Maxwell equations.

PACS numbers: 04.25.Dm, 95.30.Qd, 04.40.Dg, 97.60.J8095f

1. Introduction

Magnetic fields are ubiquitous in astrophysical objects aad play an important role,
especially in those scenarios involving compact objeath ss neutron stars and black holes.
An accurate and consistent modelling of these scenarioghwdre extreme both for the
gravitational and the electromagnetic fields, cannot beedamalytically and perturbative
methods are also of limited validity. In the absence of symnie® in fact, no dynamical
and analytic solutions are known and it is only through thié galution of the equations
of general-relativistic magnetohydrodynamics (GRMHDgttbne can hope to improve our
knowledge of these objects under realistic conditions.

As in general-relativistic hydrodynamics, the work in thiga of research has started,
more than 30 years ago with the pioneering work of Wilsan ijlower spatial dimensions
(see[[2] for a review of the technical and scientific proglieseelativistic hydrodynamics).
Unlike general relativistic hydrodynamics, however, whieoth technical issues and scientific
investigations have now reached an advanced stage of Soptits and accuracy, progress in
GRMHD has yet to reach a comparable level of maturity. Indéeehs only over the last few
years that the slow but steady progress in GRMHD has seereaegrburst of activity, with a
number of groups developing a variety of numerical codedsglthe equations of GRMHD
under different approaches and approximations. This idypdue to the considerable added
complexity of the set of equations to be solved in GRMHD aradtlp, to the fact that only
recently sufficient computational resources have becoraadle to tackle this problem in
two or three spatial dimensions and with sufficient resotuti
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It does not come as a surprise, therefore, that most of theericahcodes developed in
the last decade have been based on the same non-consefwatiwation of the GRMHD
equations introduced by Wilson, solving them on a fixed bemlgd to study accretion
disks around black holes. Inl[8] 4], for instance, the effeat a Kerr black hole on
magnetohydrodynamical accretion have been studied, vatticplar attention being paid
to the transfer of energy and angular momentum. Katal. [5], on the other hand, have
developed a numerical code based on the artificial-visgcagiproach proposed by Davis [6]
to perform the first simulations of jet formation in General&ivity [7] and to study the
possibility of extracting the rotational energy from a Kétack hole [8] 9]. Furthermore,
a distinct numerical code has been constructed by De \lligard Hawley[[10] using the
formulation proposed in [11, 12] to carry out a series of &swn accretion flows around
Kerr black holes[[13, 14, 15].

It is only rather recently that different groups have strte recast the system of
GRMHD equations into a conservative form in order to bendfihe use of high-resolution
shock-capturing schemes (HRSC)I[16,[17,/18[ 19, 20]. Sunhrses, we recall, are essential
for a correct representation of shocks, whose presencepiected in several astrophysical
scenarios and in particular in those involving compact cfsje Two mathematical results
corroborate this view, with the first one stating that a staditheme converges to a weak
solution of the hydrodynamical equatiohs][21], and with $keond one showing that a non-
conservative scheme will converge to the wrong weak saiutidhe presence of a shock[22].

All of these newly developed codés [16, 17] 18, 19] that made af HRSC methods
have been so far applied to the study of accretion problertesldack holes, for which the
self-gravity of the accreting material introduces very Broarrections to the spacetime and
fixed spacetime backgrounds can be used satisfactorily.

Approaches alternative to that of constructing GRMHD cdu@g instead been based
on the use of a modified Newtonian gravitational potentialrionic general relativistic
effects without having to solve numerically Einstein eduas (seel[23] for an application
to magnetorotational collapse of stellar cores) or on tleeaiglifferent numerical methods,
such as smoothed particle hydrodynamics and artificiabgisy, to study the merger of binary
neutron star systems as a possible engine for shiay bursts[[24]. Although the use of these
approximations has made it possible to investigate thi®plsysical scenario for the first
time including details about the microphysics, it is cldaattequally important corrections
coming from the dynamical evolution of the spacetime nedattintroduced when trying to
model the phenomenology that is thought to be behindy bursts. As a first step in this
direction, two codes were recently developed to solve tHesé of GRMHD equations on
a dynamical background [25,126]. These codes, in particwlare used to perform the first
study, in two spatial dimensions, of the collapse of mageetiifferentially rotating neutron
stars|[27]_28, 29] which are thought to be good candidatestfort~-ray bursts.

Here, we preserthiskyMHD, a new three-dimensional numerical code in Cartesian
coordinates developed to solve the full set of GRMHD equeabio a dynamical background.
The code is based on the use of high-resolution shock-dagtiachniques on domains with
adaptive mesh refinements, following an approach alreagjeimented with success in the
general-relativistic hydrodynamics codaisky [30], and which has been used in the study
of several astrophysical scenario with particular attento gravitational-wave emission from
compact objects.

The paper is organized as follows: in S&tt. 2 we recall thegous of GRMHD and the
form they assume when recast in a conservative form, whieirt[B we discuss in detail the
numerical methods adopted for their solution. Sedfion 4iichted to the series of testbeds
the code has passed both in special and in general relativistditions. Finally, Sedi]5 offers
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a summary of the results and an overview on our future preject

Throughout the paper we use a spacelike signgtdre-, +, +) and a system of units in
whiche = G = Mg = 1. Greek indices are taken to run from O to 3, Latin indices ffota
3 and we adopt the standard convention for the summationrepeated indices. Finally we
indicate 3-vectors with an arrow and use bold letters to tieevectors and tensors.

2. Formulation of the equations

We adopt the usual 3-dimensional foliation of the spacemthat the line element reads

ds? = —(a® — B'B;)dt? + 2B;dz'dt + ;;dr'da’ | (1)
wheref’ is theshift vector,« is thelapsefunction andy;; are the spatial components of the
four-metricg,,, .

As its predecessowhisky [30], the whiskyMHD code benefits of thecactus
computational toolkit[[3[1] which provides an infrastruefor the parallelization and the
I/O of the code, together with several methods for the sofutif the Einstein equations. As
a result, at each timestep our new code solves the MHD eansatibile Cactus provides the
evolution of the metric quantities. The evolution of thediebmponents is done using the
NOK formulation [32] 33| 34] and details about its numericaplementation can be found
in [35,/36,37].

Here too we make use of the so-called “Valencia formulatif88, [39] which was
originally developed as & + 1 conservative Eulerian formulation of the general relatigi
hydrodynamic equations, but which has been recently eegttmthe case of GRMHD [18].
Following [18] we define the Eulerian observer as the one mpwiith four velocityn
perpendicular to the hypersurfaces of constaatteach event in the spacetime. This observer
measures the following three-velocity of the fluid

hi,u i 7
2 @

N —utny, W a
whereh,, = g,u + n,n, is the projector orthogonal te, u is the four-velocity of the
fluid and —u*n, = au’ = W is the Lorentz factor which satisfies the usual relation
W = 1/v/1 -2, wherev? = ;0. The covariant components of the three-velocity
are simply given by,; = u; /W.

’Ui

2.1. Maxwell equations
The electromagnetic field is completely described by thadiy electromagnetic tensor field
F* obeying Maxwell equations (cfr [40])

V., F*¥ =0, 3

V,F¥ =A4gJ" | (4)
whereV is the covariant derivative with respect to the four-megti¢7 is the charge current
four-vector andF' is the dual of the electromagnetic tensor defined as

1

T = SN g 5)
n*29 peing the Levi-Civita pseudo-tensor. A generic observeh our-velocity U will
measure a magnetic fiel® and an electric field given by

E* = F%Ug , (6)

B = "FePyy (7)
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and the charge current four-vectd@rcan be in general expressed as
JH = qut + o F"*u,, , (8)

wheregq is the proper charge density ands the electric conductivity.

Hereafter we will assume that our fluid is a perfect condu@tieal MHD limit) and so
thato — oo and F*“u,, = 0 (i.e. the electric field measured by the comoving observer is
zero) in order to keep the current finite. In this limit, theatomagnetic tensor and its dual
can be written exclusively in terms of the magnetic fielsheasured in the comoving frame

FY7 =n*"bou,, , TR =P — b ut . 9
with the Maxwell equations taking the simple form
1
V, "W = —0, (v/—g (b"u” — b"u")) =0, (10)

In order to express these equations in terms of quantitiesuared by an Eulerian observer,
we need to compute the relation between the magnetic fielduned by the comoving and by
the Eulerian observers, respectivélgnd B. To do that we introduce the projection operator
P, = g +uuu, orthogonal tau. If we apply this operator to the definition of the magnetic
field B measured by an Eulerian observer, we can easily derive tlog/fog relations

_ WBY; b — B + ab®u’ B? + a?(bY)?
- «a ) - W W2 ’
where B2 = B'B;. The time component of equatioris{10) provides the divargdree
condition

b b2 = b, = (11)

9,B"=0, (12)

whereB’ = /7B andy is the determinant of;;. The spatial components of equations (10),
on the other hand, yield the induction equations for thewgiar of the magnetic field

(B") = 0;(#'B? — /B , (13)

whered? = avt — S

2.2. Conservation equations

The evolution equations for the rest-mass dengjtyhe specific internal energyand for
the three-velocityy’ can be computed, as done in relativistic hydrodynamicanfthe
conservation of the baryon number

Vu(pu”) =0, (14)
from the conservation of the energy-momentum
V., T =0, (15)

and from an equation of state (EOS) relating the gas pregstoahe rest-mass densigy
and to the specific internal energyWe also assume that the fluid is perfect so that the total
energy momentum tensor, including the contribution fromragnetic field, is given by

b2
T = (ph + b2) ubu? + <p + 3> gtv — oY, (16)

whereh = 1 + € + p/p is the specific relativistic enthalpy.
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Following [1€] and in order to make use of HRSC methods, weitevequations[(14),
(@5) and[(IB) in the following conservative form

JL__g [0, (7F°) + O(v=gF")] =S, (17)

whereF? = (D, S;, 7, B¥)T is the vector of the conserved variables measured by thei&ule
observerF? are the fluxes

Dt /o
_ S;o' o+ (p+b?/2) 6 — b; B /W
F' = , (18)
70" Jac+ (p+b%/2) v' — b’ BY /W
B4 /o — B'o* Ja
andS are the source terms
0
T (Bugvj — T0,.965)
S — , (19)
o (T8, Ina — THT9 )
Ok’
where
D = pW , (20)
S; = (ph + b*)W?v; — ab’b; | (21)
b2
T = (ph + )W = (p+ ) —a*(0")* = D, (22)

and 0 = (0,0,0)T. While ready to make use of arbitrary EOS, the ones presently
implemented in the code have a rather simple form and arendiyeeither the polytropic
EOS

p=Kp", (23)
p
€= ——r, 24
o —1) (24)
or by the ideal-fluid EOS
p=(—1)pe, (25)

where K is the polytropic constant andl is the adiabatic exponent. In the case of the
polytropic EOS[(ZB)I" = 1 + 1/N, whereN is the polytropic index.

3. Numerical methods

As in thewhisky code, the evolution equations are integrated in time udiergniethod of
lines [41], which reduces the partial differential equai¢1T) to a set of ordinary differential
equations that can be evolved using standard nhumericabmgtluch as Runge-Kutta or the
iterative Cranck-Nicholson schemes|[42] 43].
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3.1. Approximate Riemann solver

As mentioned in the IntroductiorwhiskyMHD makes use of HRSC schemes based on
the use of Riemann solvers to compute the fluxes between theenal cells. More
specifically, we have implemented the Harten-Lax-van LEefeldt (HLLE) approximate
Riemann solver [44] which is simply based on the calculatibthe eigenvalues of eq$. (17)
and it does not require a basis of eigenvectors. In the HLUdation the flux at the
interface between two numerical cells is therefore congpate

. . 0 0
Fi _ lenF: + CmaxF; — CmaxzCmin (F7 - Fl)

Cmaz + Cmin , (26)
whereF# andF}" are computed from the values of the primitive variables nstruicted at
the right and left side of the interfad®,. and P;, respectively. The coefficients,,.., =
max (0, ¢4+ r, C1 1), Cmin = —min(0, c_ »,c_ ;) andcy -, cx ; are instead the maximum left-
and right-going wave speeds computed frétn and P;. In our implementationP,. and
P, are computed using a second order TVD slope limited methadhwdan be used with
different limiters such as minmod, Van Leer and MCI[41].

An alternative to the use of aspproximateRiemann solver could have been the use
of the exactRiemann solver recently developed in GRMHD. We recall tinatdlativistic
hydrodynamics the exact solution is found after expresalhgf the quantities behind each
wave as functions of the value of the unknown gas pressuatthe contact discontinuity.
In this way, the problem is reduced to the search for the vafube pressure that satisfies
the jump conditions at the contact discontinuity (e€ [45,4%, 48] for the details). The
procedure for the exact solution of the Riemann problemlativéstic MHD is based instead
on the use of an hybrid approach that makes use of differenf seknowns depending on the
wave. In the case of fast-magnetosonic waves, both shodlkes&factions, all the variables
behind the waves are rewritten as functions of the totalgoresi.e. p + b%/2, while behind
slow magnetosonic shocks or rarefactions the componetiteohagnetic field tangential to
the discontinuity are used to compute all the other varg@ablehe use of this strategy was
essential in order to reduce the problem to the solution dbsed system of equations that
can be solved with standard numerical routines such as MeRé&phson schemes (séel[49]
for the details). The numerical code computing the exacitimi is freely available from the
authors upon request and it is now becoming a standard toloéitesting of both special and
general relativistic MHD codes.

While the use of an exact Riemann solver could provide theiswl of the discontinuous
flow at each cell interface with arbitrary accuracy, the ¢xsmtver presented in_[49] is still
computationally too expensive to be used in ordinary mmit@hsional codes and we have
found the HLLE algorithm to be sufficiently accurate for tleselution used in our tests.

3.1.1. Calculation of the eigenvalues An important difference with respect to relativistic-
hydrodynamic codes is that in GRMHD the calculation of thgeaeivalues required by
the HLLE solver is made more complicated by the solution ofuartic equation. The
characteristic structure of GRMHD equations is analyzedetail in [40] and we simply
report here the expressions for the calculation of the sexsa®e speeds associated with the
entropic, the Alfvén, the fast and slow magnetosonic waves

More specifically, the characteristic spekdf the entropic waves is simply given by
¥ = av’ — 8%, while the values for the left- and right-going Alfvén wavare

. bk /(ph + b2)ul

Y200+ Sph+ 02l

(27)
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Similarly, the four speeds that are associated with thegfiagislow magnetosonic waves,
and that are required in the calculation of the fluxes, cantiiaimed by the solution of the
following quartic equation in each directiarior the unknowm

1 b2
ph (—21) at — (ph+—2) a’G+B*G =0, (28)
CS CS
where
a = w (—)\ + av’ — Bi) , (29)
(6%
B=0b -\, (30)
1 ) .
= [ +8)2+ "], (31)
(6%

andc, is the sound speed (Note that the convention on repeatecemdhould not be used
for the last term in the expression f6f, i.e. 7). In the degenerate case in whiéh = 0,
eq. [28) can be reduced to a simple quadratic equation teahied analytically. In the more
general case, however, e0.](28) cannot be reduced to thegirotitwo quadratic equations
as in Newtonian MHD and different methods are implementetthiéncode in order to solve
it. The first one simply makes use of the analytic expressioa fjuartic equation [50], while
the other two search the solution numerically either thioaig eigenvalue method or through
a Newton-Raphson iteration [51]. The latter has shown tébertost accurate and robust and
it is the one used by default.

We have also implemented an approximate method for thelegilwo of the eigenvalues
associated with the fast magnetosonic waves (which arentlygwo roots needed by HLLE)
which was introduced in [52] and which reduces the originartjc to a quadratic equation,
that can be solved analytically, by imposiitj = 0 and B/v; = 0 in equation[(2B). The
values computed in this way differ by less thHk with respect to the exact values and we
have used them in those situations in which the solutionefjthartic can be complicated by
the presence of degeneracies or when two of the roots arelesgy to each other.

3.2. Constrained-Transport Scheme

Although an exact solution of eq$. (13) would guaranteetti®tonstraint conditiod (12) is
also satisfied identically and all times, any numerical sotuof the induction equationg (1L3)
will inevitably produce a violation of the divergence-freendition which, in turn, may lead
to unphysical results or even to the development of indtegsl[53]. To avoid this problem
several numerical methods were developed in the pastregdrm the so-called “staggered
mesh magnetic field transport algorithm” first proposed by [&!] and then implemented in
an artificial-viscosity scheme with the name of “constrditeansport” scheme (CT) by Evans
& Hawley [55].

A modified version of the CT schemeg_|55] which is based on the afsthe fluxes
computed with HRSC methods has been proposed by BalsaraceiSpb] (“flux-CT”) and
is the one implemented in our code because of its simplicity@mputational efficiency. An
interested reader is referred to [57] for other possiblenmgs to enforce the divergence-free
condition with HRSC schemes.

We recall that the flux-CT method is based on the relation éxéts in ideal MHD
between the fluxes of the magnetic figkand the value of the electric fiel = —7 x B. In
particular, if we defind = a,/7F" then the following relations hold

g () = (B @
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BY = —F* (B7) = F* (B°) , (33)
B =P (B7) =P (BY) . (34)

whereF" (Bj) = ¢'!BJ — ¢/ B'. The induction equatiofi.{13) can then be written as

OB+VxE=0. (35)

Taking the surface integral df (B5) across a surfadeetween two numerical cells, Stokes’
theorem yields

é%/aé-di+- E-T=0, (36)
3 )3

wherel is the unit vector parallel to the surface bound@Fy. Considering for simplicity the
x-direction, with the surfack as located ati + %,j, k) and the integer§, j, k) denoting the
cell centers on our discrete grid (see figure 1), we can define

~ . 1 =2 -
BH%_’M = m/EB -dX, (37)
and use the finite-difference expression of Egl (36) to obtai
T _ Y Y z z
atBiJr%Jk - (Ei+§,j,k—§ - Ei+§,j,k+§) Az~ (EiJr%.,jJr%,k - EiJr%.,jf%,k) /Ay,

(38)

where the values of the electric field on the edges of the caiidiae simply computed taking
the arithmetic mean of the fluxes across the surfaces thatthavedge in common [df(B2)—
@4 e.9.

v Fly o+ FF F? F?

1
Ez'+%,j,k+% 1 ( i+t3 i+3.5k+1 T TG kg z+1,j,k+§) ) (39)

where the fluxeg™ are those computed with the approximate Riemann solver.
Since we are using HRSC methods, all the quantities areddatcells centers but in
equation[(3B) we are effectively evolving the magnetic fatithe surfaces between the cells.

The relation between these two different values of the mégfield is given by a simple
average

RT 1 R DT
Bk = B} (Bi-ﬁ-%,j,k + Bi—%,j,k) ; (40)
- 1 /. .

Yy _ Yy Yy
B = 92 (Bi.,jJr%.,k +Bi,j7%,k) ’ (41)
Rz 1 Rz Dz
Bijx= 3 (Bz',j,k+% + Bi,j,k—%) : (42)

To demonstrate that this method guarantees¥hai3 = 0 and will not grow in time,
we can integrate over the volume of a numerical cell this tairg and then using the Gauss
theorem we obtain

6
V- BdV = L/ B-d¥, (43)
AV ; bl

where the sum is taken over all the six faégsthat surround the cell. Taking now the time
derivative of this expression and using €q.(36) we obtain

6
a/ V- BdV = — / E-T, (44)
' AV ; 9%
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Figure 1. Schematic diagram of the data needed for the CT scheme. Tdletien of
Bz.“'_H/2 jk is determined by the values of the electric figidat the edges of the surface

Y located at(s + 1/2, j, k).

and the sum on the right-hand side gives exactly zero sircedlue ofE - I for the common
edge of two adjacent faces has a different sign.

3.3. Primitive-variables recovery

Because the fluxdg’ depend on the primitive variabl@3 and not on the evolved conservative
variablesF?, the values for the primitive variables need to be recovaftat each timestep
and at each gridpoint. With the exception of the magnetid fieriablesB?, the complexity
of the system of equations to be solved prevents from an &naglution relating the
primitive to the conservative variables through simpleshlgic relations and thus the system
of equations[(20)E(22) needs to be solved numerically. 1Géveethods are available for
this, the most obvious (and expensive) one consisting ofirgplthe full set of 5 equations
given by the expressions fg¢iD, S;, 7) in the 5 unknowngp, v*, ¢); we refer to this as to
the 5D method. Alternatively, and under certain conditjaiis possible to reduce the set of
equations to be solved to a couple of nonlinear equationsr{ihod) or even to a single one
(1D method). We review them briefly in the following Sectidng a more detailed discussion
can be found in[[58].

3.3.1. 2D method The following procedure is the same usedin [18] and it is daresion to
full General Relativity of the method developediin[59] iresjal relativity. The idea is to take
the modulusS? = $75; of the momentum instead of the expression for its three compis
reducing the total number of equations that one has to sdlgng the relationd(11) it is
possible to writeS? as

(B'S;)?

52:(Z+BQ) Z2 ’

- (2Z+ B?)

w2 -1
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whereZ = phW?2. It is also possible to rewrite the equation for the totalrggén a similar
way

r=Z+B*-p-— "YU _p. (46)

Using then the definition oD = pW, egs. [4b) and{46) form a closed system for the two
unknownsp andW, assuming the functioh = h(p, p) is provided. When using a polytropic
EOS [i.e. eq.[{Z3)], the integration of the total energy eiqueais not necessary (the energy
density can be computed algebraically from other quasjited the system reduces to the
numerical solution of the equatidn {45). Once the rootdfgrp andp = D/W are found, it
is possible to compute the valuesgfusing the definition of the momentuff
B;(B’S;)+ S:iZ

YT T3 1 2) (47)
3.3.2. 1D method The basic idea of this method is to consider also the gasymesss a
function of W reducing the total number of equations that must be solvetknigally. When
using an ideal-fluid [i.e. eq_(25)F can in fact be rewritten as

r
Z = DW + mp(W)W2 : (48)

Using equation(48) it is possible to rewrife(46) as a culgigation forp(W) which admits
only one physical solution. So at the end we need only to setyetion[(4b) for the only
unknownW. Having obtainedV, we can then compute = p(W) and the other quantities
in the same way as done in the 2D method.

3.4. Atmosphere treatment

As already done in th@hisky code and in other full GRMHD codes [26,125] we avoid
the presence of vacuum regions in our domain by imposing & flalue to the rest-mass
density. This is necessary because the routines that nett@v@rimitive variables from the
conservative ones may fail to find a physical solution if tastimass density is too small.
The floor value used for the tests reported heygis, = 107 x max(po), with po being the
value of the rest-mass densitytat 0, but a floor which is two orders of magnitude smaller
works equally well. In practice, for all of the numericallseht whichp < patm, We simply
setp = pasm, v7 = 0, and do not modify the magnetic field. This is different frothavdone

in other codesd.g.,[26,[25]), which set to zero the initial value of the magnédigtd in the
low density regions.

3.5. Excision

Many interesting astrophysical scenarios involve thegaes of black holes and so of regions
of spacetime where singularities are present. These regiacausally disconnected from
the rest of the physical domain and the values of the fielddénshould not affect the zone
outside the event horizon. This is not true in numerical sosleere it can happen that some
information from inside the event horizon is used to comphte values of the variables
outside. In order to avoid this, excision algorithms wergeali@ped in general relativistic
hydrodynamics and they are based on the use of some kind ofdaoy condition applied
to the boundary between the excised zone, where the eqsi@iemo more solved, and the
domain outside. As already done in theisky code we apply a zeroth-order extrapolation
to all the variables at the boundary, i.e. a simple copy ofNti¢D variables across the
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Table 1. Initial conditions for the Riemann problems used to testcibae.

Test type State P P ¥ v v* B* BY B

BalsaraTest 1

Tr=2) left 1.000 1.0 0.0 0.0 00 05 1.0 0.0
right 0.125 0.1 0.0 0.0 00 05 -1.0 0.0

Balsara Test 2

(T'=5/3) left 1.0 30.0 0.0 0.0 00 50 6.0 6.0
right 1.0 1.0 0.0 0.0 00 50 07 o0

Balsara Test 3

(I'=5/3) left 1.0 1000.0 0.0 0.0 00 100 70 7)0
right 1.0 0.1 0.0 0.0 00 100 0.7 oO.7

Balsara Test 4

(I'=5/3) left 1.0 0.1 0999 00 00 100 70 70
right 1.0 0.1 -0.999 0.0 0.0 100 -7.0 -7/0

BalsaraTest 5

(T'=5/3) left 1.08 0.95 0.40 0.3 02 20 03 0]

right 1.00 1.0 -045 -02 02 20 -0.7 0p

excision boundary. A different method, based on the useiokat extrapolation, has instead
been implemented in [25] and although it can lead to impraazlracy for smooth flows
(and especially when the MHD variables change rapidly neaekcision boundary), it also
leads to significantly incorrect results when shocks arsgne(see Sedi. 4.2). Great care
must therefore be paid at the properties of the flow near thisiex boundary and the code
presently includes both algorithms.

It is important also to note that other methods, not basedxeisien techniques, are
being developed to improve the stability of numerical codaen black hole are present in
the domain. One of these approaches is based on the use déa-Ri@er dissipation for the
field variables inside the apparent horizbnl[60] and it castkeghtforwardly extended also
to the MHD case.

3.6. Mesh Refinement

The developments madewnhisky for handling non-uniform grids have been extended also
to whiskyMHD which can therefore use a “box-in-box” mesh refinementegyi61]. This
allows to reduces the influence of inaccurate boundary tiongiat the outer boundaries and
for the wave-zone to be included in the computational domiaimpractice, we have adopted
a Berger-Oliger prescription for the refinement of meshesliffarent levels[[62] and used
the numerical infrastructure described inl[6ilé., the Carpet mesh refinement driver for
Cactus (see [63] for details). In addition to this, a simplified fowh adaptivity is also

in place and which allows for new refined levels to be addededegfined positions during
the evolution or for refinement boxes to be moved across theadoto follow, for instance,
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regions where higher resolution is needed.

4., Tests

Code-testing represents an important aspect of the dewelopof any newly developed
and multidimensional code because it validates that alhefalgorithms are implemented
correctly and represent a faithful and discretized repradion of the continuum equations
they are solving. In what follows we report the results foedes of testbeds ranging from
the solution of relativistic Riemann problems in flat spa&mnet over to the stationary accretion
onto a Schwarzschild black hole and up to the evolution dated and oscillating magnetized
stars. We note that in the tests involving a polytropic EOS racovery of the primitive
variables has been made using the “2D-method” (see [Seddl) 3while a “1D-method” has
been used when adopting an ideal-fluid EOS (see Seci] 3.3.2).

4.1. Riemann problems

As customary in the testing of hydrodynamics and magnetatdyshamics codes we have
first validatedWwhiskyMHD against a set of Riemann problems in a Minkowski spacetime
following the series of initial conditions proposed by Baks[64]. All these tests were run on
a grid of unit length with 1600 grid points with the initialstiontinuity located at the center
of the grid. An ideal equation of state with= 5/3 was used with the exception of the first
test withI" = 2 and the initial conditions for all the tests are reportedab/1.

In all of the tests presented here the numerical solutiothf@different MHD variables
has been compared with the exact one computed with the exawctaRn solver discussed
in [49]. This represents an important difference with whaelin the past by similar codes
as it allows, for the first time, for a quantitative assesanudérihe code’s ability to evolve
correctly all the different waves that can form in relatiidMHD. In figured2 andI3 the exact
solution is represented with a solid line, while the nunmedrane with different symbols.

In figurel2, in particular, we show the comparison betweemtimaerical and the exact
solution att = 0.4 for several MHD variables as computed for the relativistialague of the
classical Brio-Wu shock tube problem [65] 66]. The initisabntinuity develops a left-going
fast rarefaction, a left-going slow compound wave, a cdrdscontinuity, a right-going slow
shock and fast rarefaction. Note that besides presentigatution witha = 1 ands* = 0,
we have exploited the freedom in choosing these gauges diddteal the code also for less
trivial values of the lapse and shift [18]. More specificalpown with different symbols
in figure[2 are the numerical solutions with= 2 at time¢ = 0.2 and with3* = 0.4 after
the latter has been shifted in space®sit. Clearly, all the symbols overlap extremely well,
coinciding with the exact solution also in the presence airgg discontinuities. Note that
only 160 of the 1600 data points used in the simulation arevehend that the difference
between the numerical solution and the exact one at the contbwave is due to the fact
that, by construction, our exact solver assumes compouwnesneever form. We have indeed
adopted the same standpoint of Ryu and Jdnes [67] in theamweint of their exact Riemann
solver in nonrelativistic magnetohydrodynamics. We alsmark that it is not yet clear
whether compound waves have to be considered acceptaldéecphgolutions of the ideal
MHD equations and a debate on this is still ongoing (see rfstiance,[[68, 69, 70, 71]).

Similarly, shown in figur&€l3 are the comparisons between timearical solution for the
rest-mass density and thecomponent of the magnetic field for the tests number 2 (firs) r
3 (second row), 4 (third row) and 5 (fourth row) of Balsara.eTfrst 3 are computed at a
time ¢ = 0.4 while the test number 5 is computedtat= 0.55. Clearly, our code is able
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Figure 2. Numerical solution of the test number 1 of Balsara with défe values for the lapse
« and the shiff3”. The solid line represents the exact solution, the cro$sesumerical one
at timet = 0.4, the open triangle at timeé = 0.2 but with « = 2 and the open squares at
t = 0.4 but with 3 = 0.4, in this last case the solution is shifted on thexis by the amount
B*t. Note that only 160 of the 1600 data points used in the numles@ution are shown.
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Figure 3. Numerical solution of the tests number 2 (first row), 3 (secmow), 4 (third row)
and 5 (fourth row) of Balsara. The first 3 are computed at a timse€0.4 while the test number
5is computed at = 0.55. The solid line represent the exact solution while the opprages
the numerical one. Note that only 160 of the 1600 data pois¢sl un the numerical solution
are shown.
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Figure4. Numerical solution of the test number 2 of Balsara at a tirre0.4 with an excision
boundary (dashed vertical line) locatedrat= 0.25; the region at the right of this boundary is
not evolved. In the two left panels a zeroth-order extramiai.e. a simple copy, was used,
while in the two right panels the values of the different ahtés at the excision boundary
were obtained with a linear extrapolation. The solid linpresents the exact solution while
the open squares the numerical one. The solution is commudsea left-going fast and slow
rarefactions, of a contact discontinuity and of two rigbtrg fast and slow shocks. Only 160
of the 1600 data points used in the numerical solution are/sho

to resolve all the different waves present in MHD, showingeay\good agreement with the
exact solution. Other Riemann problems have been carrienh aifferent directions (either
along coordinate axes or along main diagonals) and theyallge the same level of accuracy
discussed in figurés 2 ahd 3.

4.2. Excision tests on a flat background

We next show the code’s ability to accurately evolve shodt&s when an excised region is
present in the domain. To this scope, we have used the tedterudnof Balsara excising
the regionz® € [0.25,0.5] and using the zeroth-order extrapolation scheme. In thée ca
the fast and slow shocks moving to the right go inside thesextregion and the solution
outside is not affected. This is shown in the left panels afrfif§d which report with small
squares the numerical solution feend B,, of the test number 2 of Balsara with an excision
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boundary (dashed vertical line) locatedrat 0.25. The data refers to time= 0.4, when the
right-going waves have already gone through the excisiemdary as indicated by the exact
solution (continuous line).

As a comparison, and to underline its incorrectness in tise © non-smooth flows,
we have also considered boundary conditions involving @alirextrapolation of the MHD
variables across of the excision boundary as suggestedh TRis is illustrated in the right
panels of figur&l4 which are the same as the left ones but fatiffeeent boundary condition
at the excision boundary. Clearly, in this case the solutiatside the excision region is badly
affected and a left-going wave is produced which rapidlyilspibe solution. Because this
happens only when the discontinuity crosses the excisiomdbary, it is clear that a linear
extrapolation is not adequate in this case as it provides@oriiect information on the causal
structure of the flow near the boundary. As we will discushiafbllowing Section, however,
a linear extrapolation remains a good, and sometimes atdfsrchoice in the case of smooth
flows.

4.3. Magnetized spherical accretion

This second test proves the ability of the code to evolve rately stationary accretion
solution in a curved but fixed spacetime. In particular, wesider the spherical accretion of
a perfect fluid with a radial magnetic field onto a Schwarzsdbiack hole (this is sometimes
referred to as a relativistic Bondi flow). The solution tcstproblem is already known for the
unmagnetized case, but it is simple to show that its form tsaffected if a radial magnetic
field is added[[10]. The initial setup for this test is the samsed in [10/ 166, 25, 18] and
consists of a perfect fluid obeying a polytropic EOS with= 4/3. The critical radius of
the solution is located at. = 8M and the rest-mass densityatis p. = 6.25 x 1072
These parameters are sufficient to provide the full desoripif the accretion onto a solar
mass Schwarzschild black hole as described in [72]. We gblwgroblem on a Cartesian
grid going fromz? = 0to 2’ = 11M.

To avoid problems at the horizon, located-at 2M, the metric is written in terms of
ingoing Eddington-Finkelstein coordinates. The excidionndary has the shape of a cubical
box of lengthM so that the domaifd, M| x [0, M] x [0, M] is excluded from the evolution.
Furthermore, as a boundary condition across the excisee webhave considered both a
zero-th and a first-order extrapolation, finding the latbeyield sligthly more accurate results
(e.g., the overall error is smaller ef 3% for a test case with? /p = 25, whereb?/p is the
dimensionless magnetic field strength as measured=a M). As discussed earlier, this is
indeed to be expected for smooth flows as the ones considereddr the relativistic Bondi
flow.

We measure the order of accuracy of the code by usind theorm of the relative error
on the rest-mass density

||5P||1 . Zi,j,k |pi7j,k - pexact(wia Yj, Zk)'

= . (49)

||P||1 Zi,j,k pexact(wivijzk)
We plot this quantity in the left panel of figulé 5 as a functadrihe magnetic-field strength
and as computed at timte= 100 for two different resolutions 0f00? and150? gridpoints,
respectively. In addition, the error from the high-resimotsimulation is multiplied byt .52
so that the two curves should overlap if the code were seootder convergent. Clearly, the
code does not show the expected convergence rate but ftiveblaveak magnetizations,
i.e.b?/p < 4 (we recall that these corresponds nevertheless to rattyer taagnetic fields of
~ 10'° G). This behaviour is indeed similar to what found by De¢al.[25] and has a rather
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Figureb5. Left panel: L1 norm of the relative error in the rest-mass density for thgme#ized
spherical accretion test, shown for different values ofrtiagnetic field. Results from003
and 1503 runs are compared at time = 100M, with the high-resolution curve being
multiplied by 1.52 so that with a second-order convergence the two lines wodldap. Right
panel: Relative error computed at poimt= 4M, y = 0, z = 0; also in this case the high-
resolution line is scaled to produce an overlap in the caseaind-order convergence. In both
cases the insets offer a magnification for small values ofrtagnetic field.

simple explanation. It is due to the rather large error idgoints near the excision boundary,
i.e.,for 2* € [M,2M], which spoil the overall behaviour of the; norm (admittedly not a
good measure of the convergence for a solution which is Sdlyaygarying near the excision
boundary). To clarify this, we show in the right panel of figil the same as in the left panel
but for the relative error computed at a single gridpdiet,atz = 4M,y = 0, z = 0. Clearly
the convergence is much closer to second-order in this thsefecise order being 1.8)
and for much larger range in magnetizations.

A closer look at the behaviour of the relative error is ofteia figure[6, where it
is shown as measured along thelirection for a magnetization df?/p = 25 (i.e., with
DPmag/Pgas = 97) @nd at time = 100M. Also in this case, the high-resolution relative error
is multiplied by1.52 so that the two lines overlap if second-order convergeneardy this
does not happen but also only for a small number of gridpaiets the excision boundary
located atr = M.

As a final remark, we point out that the simulations of splataccretion flows
performed here span a range of magnetizations well beyoatl @gmsidered in the past with
codes using Cartesian coordinates (the results reporf@&jnfor instance, were limited to
b?/p < 30). Indeed, no sign of instability has been found and only aenaie loss of accuracy
has been measured for magnetic fields as largeé /as< 160.

4.4. Evolution of a stable magnetized neutron star

As a final test validating the code in a fully dynamical evilntof both the MHD variables
and of the spacetime, we now consider the evolution of aetatzignetized neutron star.
Although this initial data represents a stationary sotytemall oscillations can be triggered
by the small but nonzero truncation error. Such oscillatiare sometimes considered a
nuisance and even suppressed through the introductiortifiial-viscosity terms. On the
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Figure 6. Relative error of the rest-mass density for the magnetipbgrgcal-accretion flow
with b2 /p = 25 (i.e., With pimag/Pgas = 97) along thez-axis att = 100M. The high-
resolution error is multiplied by.52 so that the two lines would overlap with a second-order
convergence. Clearly, this does not happen near the endisiondary located at = M.

contrary, since they represent the consistent response aftar to small perturbations, they
should considered as extremely useful. The eigenfunctmaseigenfrequencies of these
oscillations, in fact, can serve both as a test of the codenvelompared with the expectations
coming from perturbation theory (see Appendix B [ofl[37] forepresentative example), or
to extract information on the properties of the star, whemstering regimes which are not
yet accessible to perturbative studies (e.g., in the caserdinear oscillations or very rapidly

rotating stars).

Two options are possible for the construction of the initlata. A first and simpler
one was employed extensively in [27,]1 28] 29] and consistsookidering a background
purely-hydrodynamical solution in stable dynamical eitpuilm and of “adding” a poloidal
magnetic field in terms of a purely toroidal vector potentidBesides being essentially
arbitrary, the vector potential is chosen to be proportie@ahe pressure so as to lead to
a magnetic field entirely confined within the star. While gfhéforward, this approach does
not construct a magnetized stellar model which is condistgntion of the Einstein equations
and thus inevitably introduces violations of the Hamileomand momentum constraints. Such
violations, however, are in general negligible for reasypamall magnetic fields.

A second option, and the one employed here, consists of ciimggthe initial conditions
as a consistent and accurate solution of the Einstein emnsaftbr a stationary, axisymmetric
and magnetized star. We have done this by using the speoctial developed by Bocquet
et al. [73], which solves the full set of Einstein and Maxwell eqaas to high precision.
Assuming an axisymmetric model with a poloidal magnetiafighving the dipole moment
aligned along the rotation axis, the code is used to builiaintonfigurations of uniformly
rotating magnetized neutron stars with different angulalogities and magnetic field
strengths.
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Figure 7. Magnetic field lines of the oscillating magnetized and ntating neutron star
considered in this paper. The solid thick line represergssthr surface.

For simplicity we here consider a nonrotating magnetizadnoa star with masa/ =
1.3M, endowed with a poloidal magnetic field with magnetic dipdtng thez-axis and a
central magnetic field3. = 2.4 x 10'* G, corresponding t@ = prag/Peas = 107° (this
3, which should not be confused with the shift vegtéris always monotonically decreasing
inside the initial equilibrium model, and is much larger lretatmosphere, where it reaches
values~ 106). A polytropic equation of state with = 2 and K = 372 was used both for
the calculation of the initial model and during the evolaticA representative image of the
initial model is presented in figufé 7, which shows the maigrfietid lines together with the
stellar surface (thick solid line). Note that although tker $s nonrotating, the presence of a
magnetic field replaces the spherical symmetry for an axisgtrical one.

As a first test, we consider the evolution of the star withie #o-called “Cowling
approximation”,i.e. by holding the metric fixed to its initial value and by evolgirthe
MHD variables onto this background spacetime (the evatuigsonot made only at the outer
boundaries, where we use Dirichlet-type boundary conui)ioT he results of these evolutions
are summarized in figurgl 8, with the left panel showing thelwian of the maximum
of the rest-mass density when normalized to its initial value. The three differemtels
(dotted, dashed and continuous) refer to the three resokitised ofV = 602, 903, and
1203, respectively. The coordinate time on the horizontal axiexpressed in terms of the
characteristic “dynamical timescale”= /R3/M, whereR is the coordinate radius of the
star.

In analogy with what observed in the purely hydrodynamiealed[37], the magnetized
star is set into oscillation by the small truncation errotraduced by the mapping
onto a Cartesian coordinate system of the stationary soluibund in spherical polar
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Figure 8. Left panel: Maximum of the rest-mass densitynormalized to its initial value and
expressed in terms of the dynamical timeseate \/ R3 /M. The magnetized star is evolved
within the Cowling approximation, with different lines egfing to different resolutions:
N = 60° (dotted), N = 903 (dashed line) andv = 1203 (solid line). Right panel: The
same as in the left one but for a longer timescale.

coordinates [73] (no perturbation coming from the outerrmtaries was seen to influence the
dynamics of the oscillations). Because of its stochastigneathe initial perturbation triggers
a variety of modes, most of which however decay rather rgdedving, aftert ~ 257,
an essentially harmonic oscillation in the fundamental enodly. This is shown in the right
panel of figur&B which shows the evolution over a longer ttats Furthermore, in the linear
regime considered here, the amplitude of the oscillatisqmsaportional to the magnitude of
the truncation error and one expects the former to decreabe aesolution is increased. This
is clearly the case for the oscillations shown in figure 8, tiedvery good overlap among the
different timeseries is an indication that the oscillati@mdeed correspond to eigenmodes and
that the code is tracking them correctly at these resolstion

Next, we consider the evolution of the same initial modetdésed above but including
also the solution of the Einstein equations so as to makeytiers fully dynamical (Dirichlet-
type boundary conditions are used at the outer boundarigsfdIHD variables and radiative
ones for the fields). Also in this case, oscillations aregeigd by the truncation error, with
an amplitude that converges to zero with the increase ofabaution and with an harmonic
content that becomes more evident after the initial tramiggdso in this case, no perturbation
coming from the outer boundaries was seen to influence thandigs of the oscillations). In
addition, and in analogy with what observed in the purelyrbgginamical case [74, 75, 137],
the oscillations are accompanied by a secular growth whsthanverges away at the correct
rate with increasing grid resolution and that does not imitégthe long-term evolutions. This
is shown in figur&B which reports the same quantities as imefguut for a fully dynamical
evolution. Note also that the secular evolution of the @mést-mass density varies according
to the EOS adopted: when using the ideal-fluid EOS, in faetsdécular drift of the central
rest-mass density is towards lower densities. Howevdngifadiabatic condition is enforced,
the opposite is true and central rest-mass density evobweartls larger values. Both the
evolutions in the Cowling approximation and in dynamicaagtimes, have not shown signs
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Figure 9. Left panel: Maximum of the rest-mass densitynormalized to its initial value and
expressed in terms of the dynamical timeseate / R3 /M. The magnetized star is evolved
together with the spacetime, with different lines refegrio different resolutionsN = 603
(dotted), N = 903 (dashed line) an&v = 1203 (solid line). Right panel:-The same as in the
left one but for a longer timescale.

of instability at all resolutions considered and up to sel&ms of dynamical timescales.

As a final remark we underline that the convergence rate ixattly second-order
but slightly smaller, (i.e., 1.7-1.8), because the reaoietipn schemes are only first-order
accurate at local extremasd. at the centre and at the surface of the star) thus increasing t
overall truncation error. Similar estimates were obtaials® in the purely hydrodynamical
casel[37].

5. Conclusions

We have presented a new three-dimensional numerical cod@atesian coordinates
developed to solve the full set of GRMHD equation on a dynaiimckground. The
code is based on high-resolution shock-capturing teclasiqas implemented on domains
with adaptive mesh refinements. This code represents trensggh to MHD of the
approach already implemented with success in the gengedlvistic hydrodynamics code
Whisky [30].

The code has been validated through an extensive seriegtloétis both in special and in
general relativity scenarios. In particular, we have fimsisidered a set of Riemann problems
in a Minkowski spacetime following a variety of initial coitidns. In all of the tests presented,
the numerical solution has been compared with the exact4@ie providing, for the first
time, a quantitative assessment of the code’s ability tdvevoorrectly and accurately all
of the different waves that can form in relativistic MHD. Fuermore, as a demonstration
of the proper handling of continuous and discontinuous flmthe presence of an excision
region, we have extended the Riemann-problems tests samosecised boundary. In doing
so we have revealed the importance of correct boundary ttonsliand pointed out that those
recently proposed in [25] can lead to incorrect solutiomsfin-smooth flows.

Next, to investigate magnetized fluids in a curved but fixedcsfime, we have
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considered the spherical accretion of a perfect fluid witradial magnetic field onto a
Schwarzschild black hole (relativistic Bondi flow). Alsotins case, the code has been shown
to accurately reproduce the stationary solution and to lnwergent at the correct rate for
small and large magnetizations. For very large magnedizatihowever, the very rapidly
varying behaviour of the MHD variables near the excisionaegrevents from a correct
convergence near the horizon, although the code remaiosdemnvergent away from the
horizon and is convergent overall. Also for these extrermigjh values of the magnetic field,
the code has shown to be robust and accurate at regimes wherecodes were reported to
fail [25].

Finally, we have considered the evolution of magnetizedmoaistars in equilibrium and
constructed as a consistent solutions of the coupled Einstaxwell equations. Such initial
models represent an important difference from those censitby other authors, which were
not consistent solution of the Einstein equations inifialhd whose magnetic field is totally
confined within the stai [25]. In analogy with what observedhe purely hydrodynamical
case[[3V], these magnetized stars are set into oscillajidhebsmall truncation error. These
pulsations, which have been studied both in fixed (Cowlingragimation) and in dynamical
spacetimes, have been shown to have the correct behavider cimanges of spatial resolution
and to correspond to the eigenmodes of relativistic and etégd stars. Both evolutions in
the Cowling approximation and in dynamical spacetimes mateshown signs of instability
at all resolutions considered and up to several tens of dicetimescales.

A number of projects are expected to be carried out with threcozle. Firstly, we plan
to extend the study on the oscillations of rotating and ntatitog neutron stars with a detailed
analysis of the effect of magnetic fields on the frequencysefifations. It is important to note
that only recently some results were obtained in pertushatieory and within the Cowling
approximation[[76]. Our code will be a complementary toottte perturbative approaches,
using the latter as testbeds and carrying them beyond tiraesgf slow rotation and weak
magnetizations. Such a study, and the comparison with #tpiéncies observed in objects
such as the soft gamma-repeaters, will provide useful iméion on the mass and magnetic-
field strength of magnetars.

Secondly, we plan to us&hiskyMHD to study the collapse of uniformly and
differentially rotating magnetized neutron stars with g of extending further the work
done in[37| 77, 60] and to highlight the role that this precesy have in the phenomenology
of shorty-ray bursts. We are especially interested in the calculatfdhe gravitational-wave
signal emitted by these sources and on the influence thatetiadields may have on it.

Finally, and in view of the total generality with which it hbeen developed, the code will
be used to study the dynamics of binary systems of neutrom @tal mixed binaries, with the
aim of extending the work carried out in [78] and of considgiin a fully general-relativistic
context the Newtonian results obtained[ini[24].
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