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Abstract. The accurate modelling of astrophysical scenarios involving compact objects
and magnetic fields, such as the collapse of rotating magnetized stars to black holes or
the phenomenology ofγ-ray bursts, requires the solution of the Einstein equations together
with those of general-relativistic magnetohydrodynamics. We present a new numerical code
developed to solve the full set of general-relativistic magnetohydrodynamics equations in
a dynamical and arbitrary spacetime with high-resolution shock-capturing techniques on
domains with adaptive mesh refinements. After a discussion of the equations solved and of
the techniques employed, we present a series of testbeds carried out to validate the code and
assess its accuracy. Such tests range from the solution of relativistic Riemann problems in
flat spacetime, over to the stationary accretion onto a Schwarzschild black hole and up to the
evolution of oscillating magnetized stars in equilibrium and constructed as consistent solutions
of the coupled Einstein-Maxwell equations.

PACS numbers: 04.25.Dm, 95.30.Qd, 04.40.Dg, 97.60.Jd, 95.30.Sf

1. Introduction

Magnetic fields are ubiquitous in astrophysical objects andcan play an important role,
especially in those scenarios involving compact objects such as neutron stars and black holes.
An accurate and consistent modelling of these scenarios, which are extreme both for the
gravitational and the electromagnetic fields, cannot be done analytically and perturbative
methods are also of limited validity. In the absence of symmetries, in fact, no dynamical
and analytic solutions are known and it is only through the full solution of the equations
of general-relativistic magnetohydrodynamics (GRMHD) that one can hope to improve our
knowledge of these objects under realistic conditions.

As in general-relativistic hydrodynamics, the work in thisarea of research has started,
more than 30 years ago with the pioneering work of Wilson [1] in lower spatial dimensions
(see [2] for a review of the technical and scientific progressin relativistic hydrodynamics).
Unlike general relativistic hydrodynamics, however, where both technical issues and scientific
investigations have now reached an advanced stage of sophistication and accuracy, progress in
GRMHD has yet to reach a comparable level of maturity. Indeed, it was only over the last few
years that the slow but steady progress in GRMHD has seen a renewed burst of activity, with a
number of groups developing a variety of numerical codes solving the equations of GRMHD
under different approaches and approximations. This is partly due to the considerable added
complexity of the set of equations to be solved in GRMHD and, partly, to the fact that only
recently sufficient computational resources have become available to tackle this problem in
two or three spatial dimensions and with sufficient resolution.

http://arxiv.org/abs/gr-qc/0701109v2
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It does not come as a surprise, therefore, that most of the numerical codes developed in
the last decade have been based on the same non-conservativeformulation of the GRMHD
equations introduced by Wilson, solving them on a fixed background to study accretion
disks around black holes. In [3, 4], for instance, the effects of a Kerr black hole on
magnetohydrodynamical accretion have been studied, with particular attention being paid
to the transfer of energy and angular momentum. Koideet al. [5], on the other hand, have
developed a numerical code based on the artificial-viscosity approach proposed by Davis [6]
to perform the first simulations of jet formation in General Relativity [7] and to study the
possibility of extracting the rotational energy from a Kerrblack hole [8, 9]. Furthermore,
a distinct numerical code has been constructed by De Villiers and Hawley [10] using the
formulation proposed in [11, 12] to carry out a series of studies on accretion flows around
Kerr black holes [13, 14, 15].

It is only rather recently that different groups have started to recast the system of
GRMHD equations into a conservative form in order to benefit of the use of high-resolution
shock-capturing schemes (HRSC) [16, 17, 18, 19, 20]. Such schemes, we recall, are essential
for a correct representation of shocks, whose presence is expected in several astrophysical
scenarios and in particular in those involving compact objects. Two mathematical results
corroborate this view, with the first one stating that a stable scheme converges to a weak
solution of the hydrodynamical equations [21], and with thesecond one showing that a non-
conservative scheme will converge to the wrong weak solution in the presence of a shock [22].

All of these newly developed codes [16, 17, 18, 19] that make use of HRSC methods
have been so far applied to the study of accretion problems onto black holes, for which the
self-gravity of the accreting material introduces very small corrections to the spacetime and
fixed spacetime backgrounds can be used satisfactorily.

Approaches alternative to that of constructing GRMHD codeshave instead been based
on the use of a modified Newtonian gravitational potential tomimic general relativistic
effects without having to solve numerically Einstein equations (see [23] for an application
to magnetorotational collapse of stellar cores) or on the use of different numerical methods,
such as smoothed particle hydrodynamics and artificial viscosity, to study the merger of binary
neutron star systems as a possible engine for shortγ-ray bursts [24]. Although the use of these
approximations has made it possible to investigate this astrophysical scenario for the first
time including details about the microphysics, it is clear that equally important corrections
coming from the dynamical evolution of the spacetime need tobe introduced when trying to
model the phenomenology that is thought to be behindγ-ray bursts. As a first step in this
direction, two codes were recently developed to solve the full set of GRMHD equations on
a dynamical background [25, 26]. These codes, in particular, were used to perform the first
study, in two spatial dimensions, of the collapse of magnetized differentially rotating neutron
stars [27, 28, 29] which are thought to be good candidates forshortγ-ray bursts.

Here, we presentWhiskyMHD, a new three-dimensional numerical code in Cartesian
coordinates developed to solve the full set of GRMHD equation on a dynamical background.
The code is based on the use of high-resolution shock-capturing techniques on domains with
adaptive mesh refinements, following an approach already implemented with success in the
general-relativistic hydrodynamics codeWhisky [30], and which has been used in the study
of several astrophysical scenario with particular attention to gravitational-wave emission from
compact objects.

The paper is organized as follows: in Sect. 2 we recall the equations of GRMHD and the
form they assume when recast in a conservative form, while inSect. 3 we discuss in detail the
numerical methods adopted for their solution. Section 4 is dedicated to the series of testbeds
the code has passed both in special and in general relativistic conditions. Finally, Sect. 5 offers
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a summary of the results and an overview on our future projects.
Throughout the paper we use a spacelike signature(−,+,+,+) and a system of units in

which c = G = M⊙ = 1. Greek indices are taken to run from 0 to 3, Latin indices from1 to
3 and we adopt the standard convention for the summation overrepeated indices. Finally we
indicate 3-vectors with an arrow and use bold letters to denote 4-vectors and tensors.

2. Formulation of the equations

We adopt the usual 3-dimensional foliation of the spacetimeso that the line element reads

ds2 = −(α2 − βiβi)dt
2 + 2βidx

idt+ γijdx
idxj , (1)

whereβi is theshift vector,α is thelapsefunction andγij are the spatial components of the
four-metricgµν .

As its predecessorWhisky [30], the WhiskyMHD code benefits of theCactus
computational toolkit [31] which provides an infrastructure for the parallelization and the
I/O of the code, together with several methods for the solution of the Einstein equations. As
a result, at each timestep our new code solves the MHD equations while Cactus provides the
evolution of the metric quantities. The evolution of the field components is done using the
NOK formulation [32, 33, 34] and details about its numericalimplementation can be found
in [35, 36, 37].

Here too we make use of the so-called “Valencia formulation”[38, 39] which was
originally developed as a3 + 1 conservative Eulerian formulation of the general relativistic
hydrodynamic equations, but which has been recently extended to the case of GRMHD [18].
Following [18] we define the Eulerian observer as the one moving with four velocityn
perpendicular to the hypersurfaces of constantt at each event in the spacetime. This observer
measures the following three-velocity of the fluid

vi =
hi
µu

µ

−uµnµ

=
ui

W
+

βi

α
, (2)

wherehµν ≡ gµν + nµnν is the projector orthogonal ton, u is the four-velocity of the
fluid and −uµnµ = αu0 = W is the Lorentz factor which satisfies the usual relation
W = 1/

√
1− v2, wherev2 ≡ γijv

ivj . The covariant components of the three-velocity
are simply given byvi = ui/W .

2.1. Maxwell equations

The electromagnetic field is completely described by the Faraday electromagnetic tensor field
Fµν obeying Maxwell equations (cfr [40])

∇ν
∗Fµν = 0 , (3)

∇νF
µν = 4πJ µ , (4)

where∇ is the covariant derivative with respect to the four-metricg, J is the charge current
four-vector and∗F is the dual of the electromagnetic tensor defined as

∗Fµν =
1

2
ηµνλδFλδ , (5)

ηµνλδ being the Levi-Civita pseudo-tensor. A generic observer with four-velocityU will
measure a magnetic fieldB and an electric fieldE given by

Eα ≡ FαβUβ , (6)

Bα ≡ ∗FαβUβ , (7)
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and the charge current four-vectorJ can be in general expressed as

J µ = quµ + σFµνuν , (8)

whereq is the proper charge density andσ is the electric conductivity.
Hereafter we will assume that our fluid is a perfect conductor(ideal MHD limit) and so

thatσ → ∞ andFµνuν = 0 (i.e. the electric field measured by the comoving observer is
zero) in order to keep the current finite. In this limit, the electromagnetic tensor and its dual
can be written exclusively in terms of the magnetic fieldb measured in the comoving frame

F νσ = ηαµνσbαuµ , ∗Fµν = bµuν − bνuµ . (9)

with the Maxwell equations taking the simple form

∇ν
∗Fµν =

1√−g
∂ν

(√−g (bµuν − bνuµ)
)

= 0 , (10)

In order to express these equations in terms of quantities measured by an Eulerian observer,
we need to compute the relation between the magnetic field measured by the comoving and by
the Eulerian observers, respectivelyb andB. To do that we introduce the projection operator
Pµν ≡ gµν +uµuν orthogonal tou. If we apply this operator to the definition of the magnetic
field B measured by an Eulerian observer, we can easily derive the following relations

b0 =
WBivi

α
, bi =

Bi + αb0ui

W
, b2 ≡ bµbµ =

B2 + α2(b0)2

W 2
, (11)

whereB2 ≡ BiBi. The time component of equations (10) provides the divergence-free
condition

∂iB̃
i = 0 , (12)

whereB̃i ≡ √
γBi andγ is the determinant ofγij . The spatial components of equations (10),

on the other hand, yield the induction equations for the evolution of the magnetic field

∂t(B̃
i) = ∂j(ṽ

iB̃j − ṽjB̃i) , (13)

whereṽi ≡ αvi − βi.

2.2. Conservation equations

The evolution equations for the rest-mass densityρ, the specific internal energyǫ and for
the three-velocityvi can be computed, as done in relativistic hydrodynamics, from the
conservation of the baryon number

∇ν(ρu
ν) = 0 , (14)

from the conservation of the energy-momentum

∇νT
µν = 0 , (15)

and from an equation of state (EOS) relating the gas pressurep to the rest-mass densityρ
and to the specific internal energyǫ. We also assume that the fluid is perfect so that the total
energy momentum tensor, including the contribution from the magnetic field, is given by

T µν =
(

ρh+ b2
)

uµuν +

(

p+
b2

2

)

gµν − bµbν , (16)

whereh = 1 + ǫ+ p/ρ is the specific relativistic enthalpy.



WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics 5

Following [18] and in order to make use of HRSC methods, we rewrite equations (14),
(15) and (13) in the following conservative form

1√−g

[

∂t(
√
γF0) + ∂i(

√−gFi)
]

= S , (17)

whereF0 ≡ (D,Sj , τ, B
k)T is the vector of the conserved variables measured by the Eulerian

observer,Fi are the fluxes

F
i =





















Dṽi/α

Sj ṽ
i/α+

(

p+ b2/2
)

δij − bjB
i/W

τṽi/α+
(

p+ b2/2
)

vi − αb0Bi/W

Bkṽi/α−Biṽk/α





















, (18)

andS are the source terms

S =





















0

T µν
(

∂µgνj − Γδ
νµgδj

)

α
(

T µ0∂µ lnα− T µνΓ0
νµ

)

0k





















, (19)

where

D ≡ ρW , (20)

Sj ≡ (ρh+ b2)W 2vj − αb0bj , (21)

τ ≡ (ρh+ b2)W 2 − (p+
b2

2
)− α2(b0)2 −D , (22)

and 0k = (0, 0, 0)T. While ready to make use of arbitrary EOS, the ones presently
implemented in the code have a rather simple form and are given by either the polytropic
EOS

p = KρΓ , (23)

ǫ =
p

ρ(Γ− 1)
, (24)

or by the ideal-fluid EOS

p = (Γ− 1)ρ ǫ , (25)

whereK is the polytropic constant andΓ is the adiabatic exponent. In the case of the
polytropic EOS (23),Γ = 1 + 1/N , whereN is the polytropic index.

3. Numerical methods

As in theWhisky code, the evolution equations are integrated in time using the method of
lines [41], which reduces the partial differential equations (17) to a set of ordinary differential
equations that can be evolved using standard numerical methods, such as Runge-Kutta or the
iterative Cranck-Nicholson schemes [42, 43].
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3.1. Approximate Riemann solver

As mentioned in the Introduction,WhiskyMHD makes use of HRSC schemes based on
the use of Riemann solvers to compute the fluxes between the numerical cells. More
specifically, we have implemented the Harten-Lax-van Leer-Einfeldt (HLLE) approximate
Riemann solver [44] which is simply based on the calculationof the eigenvalues of eqs. (17)
and it does not require a basis of eigenvectors. In the HLLE formulation the flux at the
interface between two numerical cells is therefore computed as

F
i =

cminF
i
r + cmaxF

i
l − cmaxcmin

(

F
0
r − F

0
l

)

cmax + cmin

, (26)

whereFµ
r andFµ

l are computed from the values of the primitive variables reconstructed at
the right and left side of the interfaceP r andP l, respectively. The coefficientscmax ≡
max(0, c+,r, c+,l), cmin ≡ −min(0, c−,r, c−,l) andc±,r, c±,l are instead the maximum left-
and right-going wave speeds computed fromP r andP l. In our implementationP r and
P l are computed using a second order TVD slope limited method which can be used with
different limiters such as minmod, Van Leer and MC [41].

An alternative to the use of anapproximateRiemann solver could have been the use
of the exactRiemann solver recently developed in GRMHD. We recall that in relativistic
hydrodynamics the exact solution is found after expressingall of the quantities behind each
wave as functions of the value of the unknown gas pressurep at the contact discontinuity.
In this way, the problem is reduced to the search for the valueof the pressure that satisfies
the jump conditions at the contact discontinuity (see [45, 46, 47, 48] for the details). The
procedure for the exact solution of the Riemann problem in relativistic MHD is based instead
on the use of an hybrid approach that makes use of different set of unknowns depending on the
wave. In the case of fast-magnetosonic waves, both shocks orrarefactions, all the variables
behind the waves are rewritten as functions of the total pressure,i.e. p + b2/2, while behind
slow magnetosonic shocks or rarefactions the components ofthe magnetic field tangential to
the discontinuity are used to compute all the other variables. The use of this strategy was
essential in order to reduce the problem to the solution of a closed system of equations that
can be solved with standard numerical routines such as Newton-Raphson schemes (see [49]
for the details). The numerical code computing the exact solution is freely available from the
authors upon request and it is now becoming a standard tool inthe testing of both special and
general relativistic MHD codes.

While the use of an exact Riemann solver could provide the solution of the discontinuous
flow at each cell interface with arbitrary accuracy, the exact solver presented in [49] is still
computationally too expensive to be used in ordinary multidimensional codes and we have
found the HLLE algorithm to be sufficiently accurate for the resolution used in our tests.

3.1.1. Calculation of the eigenvalues An important difference with respect to relativistic-
hydrodynamic codes is that in GRMHD the calculation of the eigenvalues required by
the HLLE solver is made more complicated by the solution of a quartic equation. The
characteristic structure of GRMHD equations is analyzed indetail in [40] and we simply
report here the expressions for the calculation of the sevenwave speeds associated with the
entropic, the Alfvén, the fast and slow magnetosonic waves.

More specifically, the characteristic speedλ of the entropic waves is simply given by
ṽ = αvi − βi, while the values for the left- and right-going Alfvén waves are

λi
1,2 =

bi ±
√

(ρh+ b2)ui

b0 ±
√

(ρh+ b2)u0
. (27)
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Similarly, the four speeds that are associated with the fastand slow magnetosonic waves,
and that are required in the calculation of the fluxes, can be obtained by the solution of the
following quartic equation in each directioni for the unknownλ

ρh

(

1

c2s
− 1

)

a4 −
(

ρh+
b2

c2s

)

a2G+ B2G = 0 , (28)

where

a ≡ W

α

(

−λ+ αvi − βi
)

, (29)

B ≡ bi − b0λ , (30)

G ≡ 1

α2

[

−(λ+ βi)2 + α2γii
]

, (31)

andcs is the sound speed (Note that the convention on repeated indices should not be used
for the last term in the expression forG, i.e. γii). In the degenerate case in whichBi = 0,
eq. (28) can be reduced to a simple quadratic equation that issolved analytically. In the more
general case, however, eq. (28) cannot be reduced to the product of two quadratic equations
as in Newtonian MHD and different methods are implemented inthe code in order to solve
it. The first one simply makes use of the analytic expression for a quartic equation [50], while
the other two search the solution numerically either through an eigenvalue method or through
a Newton-Raphson iteration [51]. The latter has shown to be the most accurate and robust and
it is the one used by default.

We have also implemented an approximate method for the calculation of the eigenvalues
associated with the fast magnetosonic waves (which are the only two roots needed by HLLE)
which was introduced in [52] and which reduces the original quartic to a quadratic equation,
that can be solved analytically, by imposingBi = 0 andBjvj = 0 in equation (28). The
values computed in this way differ by less than1% with respect to the exact values and we
have used them in those situations in which the solution of the quartic can be complicated by
the presence of degeneracies or when two of the roots are veryclose to each other.

3.2. Constrained-Transport Scheme

Although an exact solution of eqs. (13) would guarantee thatthe constraint condition (12) is
also satisfied identically and all times, any numerical solution of the induction equations (13)
will inevitably produce a violation of the divergence-freecondition which, in turn, may lead
to unphysical results or even to the development of instabilities [53]. To avoid this problem
several numerical methods were developed in the past starting from the so-called “staggered
mesh magnetic field transport algorithm” first proposed by Yee [54] and then implemented in
an artificial-viscosity scheme with the name of “constrained-transport” scheme (CT) by Evans
& Hawley [55].

A modified version of the CT scheme [55] which is based on the use of the fluxes
computed with HRSC methods has been proposed by Balsara & Spicer [56] (“flux-CT”) and
is the one implemented in our code because of its simplicity and computational efficiency. An
interested reader is referred to [57] for other possible methods to enforce the divergence-free
condition with HRSC schemes.

We recall that the flux-CT method is based on the relation thatexists in ideal MHD
between the fluxes of the magnetic field~B and the value of the electric field~E ≡ −~̃v× ~̃B. In
particular, if we definẽFi ≡ α

√
γFi then the following relations hold

Ex = F̃ z
(

B̃y
)

= −F̃ y
(

B̃z
)

, (32)
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Ey = −F̃ z
(

B̃x
)

= F̃ x
(

B̃z
)

, (33)

Ez = F̃ y
(

B̃x
)

= −F̃ x
(

B̃y
)

, (34)

whereF̃ i
(

B̃j
)

≡ ṽiB̃j − ṽjB̃i. The induction equation (13) can then be written as

∂t
~̃B + ~∇× ~E = 0 . (35)

Taking the surface integral of (35) across a surfaceΣ between two numerical cells, Stokes’
theorem yields

∂t

∫

Σ

~̃B · d~Σ+

∫

∂Σ

~E ·~l = 0 , (36)

where~l is the unit vector parallel to the surface boundary∂Σ. Considering for simplicity the
x-direction, with the surfaceΣ as located at(i+ 1

2
, j, k) and the integers(i, j, k) denoting the

cell centers on our discrete grid (see figure 1), we can define

B̃x
i+ 1

2
,j,k

≡ 1

∆y∆z

∫

Σ

~̃B · d~Σ , (37)

and use the finite-difference expression of eq. (36) to obtain

∂tB̃
x
i+ 1

2
,j,k

= −
(

Ey

i+ 1

2
,j,k− 1

2

− Ey

i+ 1

2
,j,k+ 1

2

)

/∆z −
(

Ez
i+ 1

2
,j+ 1

2
,k
− Ez

i+ 1

2
,j− 1

2
,k

)

/∆y ,

(38)

where the values of the electric field on the edges of the surface are simply computed taking
the arithmetic mean of the fluxes across the surfaces that have that edge in common [cf (32)–
(34)], e.g.

Ey

i+ 1

2
,j,k+ 1

2

=
1

4

(

F̃ x
i+ 1

2
,j,k

+ F̃ x
i+ 1

2
,j,k+1

− F̃ z
i,j,k+ 1

2

− F̃ z
i+1,j,k+ 1

2

)

, (39)

where the fluxes̃F i are those computed with the approximate Riemann solver.
Since we are using HRSC methods, all the quantities are located at cells centers but in

equation (38) we are effectively evolving the magnetic fieldat the surfaces between the cells.
The relation between these two different values of the magnetic field is given by a simple
average

B̃x
i,j,k =

1

2

(

B̃x
i+ 1

2
,j,k

+ B̃x
i− 1

2
,j,k

)

, (40)

B̃y
i,j,k =

1

2

(

B̃y

i,j+ 1

2
,k
+ B̃y

i,j− 1

2
,k

)

, (41)

B̃z
i,j,k =

1

2

(

B̃z
i,j,k+ 1

2

+ B̃z
i,j,k− 1

2

)

. (42)

To demonstrate that this method guarantees that∇ · ~̃B = 0 and will not grow in time,
we can integrate over the volume of a numerical cell this constraint and then using the Gauss
theorem we obtain

∫

∆V

∇ · ~̃BdV =

6
∑

i=1

∫

Σi

~̃B · d~Σ , (43)

where the sum is taken over all the six facesΣi that surround the cell. Taking now the time
derivative of this expression and using eq. (36) we obtain

∂t

∫

∆V

∇ · ~̃BdV = −
6

∑

i=1

∫

∂Σi

~E ·~l , (44)
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i,j,kB
x

z

i+1/2,j−1/2,k
E

x

z

y

E
y
i+1/2,j,k+1/2

E
y

E
z

i+1/2,j+1/2,k
B i+1/2,j,k

x

Σ

i+1/2,j,k−1/2

Figure 1. Schematic diagram of the data needed for the CT scheme. The evolution of
B̃x

i+1/2,j,k
is determined by the values of the electric field~E at the edges of the surface

Σ located at(i+ 1/2, j, k).

and the sum on the right-hand side gives exactly zero since the value of~E ·~l for the common
edge of two adjacent faces has a different sign.

3.3. Primitive-variables recovery

Because the fluxesFi depend on the primitive variablesP and not on the evolved conservative
variablesF0, the values for the primitive variables need to be recoveredafter each timestep
and at each gridpoint. With the exception of the magnetic field variablesBi, the complexity
of the system of equations to be solved prevents from an analytic solution relating the
primitive to the conservative variables through simple algebraic relations and thus the system
of equations (20)–(22) needs to be solved numerically. Several methods are available for
this, the most obvious (and expensive) one consisting of solving the full set of 5 equations
given by the expressions for(D,Sj , τ) in the 5 unknowns(ρ, vi, ǫ); we refer to this as to
the 5D method. Alternatively, and under certain conditions, it is possible to reduce the set of
equations to be solved to a couple of nonlinear equations (2Dmethod) or even to a single one
(1D method). We review them briefly in the following Sectionsbut a more detailed discussion
can be found in [58].

3.3.1. 2D method The following procedure is the same used in [18] and it is an extension to
full General Relativity of the method developed in [59] in special relativity. The idea is to take
the modulusS2 = SjSj of the momentum instead of the expression for its three components
reducing the total number of equations that one has to solve.Using the relations (11) it is
possible to writeS2 as

S2 = (Z +B2)2
W 2 − 1

W 2
− (2Z +B2)

(BiSi)
2

Z2
, (45)
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whereZ ≡ ρhW 2. It is also possible to rewrite the equation for the total energy in a similar
way

τ = Z +B2 − p− B2

2W 2
− (BiSi)

2

2Z2
−D . (46)

Using then the definition ofD = ρW , eqs. (45) and (46) form a closed system for the two
unknownsp andW , assuming the functionh = h(ρ, p) is provided. When using a polytropic
EOS [i.e. eq. (23)], the integration of the total energy equation is not necessary (the energy
density can be computed algebraically from other quantities) and the system reduces to the
numerical solution of the equation (45). Once the roots forW , p andρ = D/W are found, it
is possible to compute the values ofvi using the definition of the momentumSi

vi =
Bi(B

jSj) + SiZ

Z(B2 + Z)
. (47)

3.3.2. 1D method The basic idea of this method is to consider also the gas pressurep as a
function ofW reducing the total number of equations that must be solved numerically. When
using an ideal-fluid [i.e. eq. (25)],Z can in fact be rewritten as

Z = DW +
Γ

Γ− 1
p(W )W 2 . (48)

Using equation (48) it is possible to rewrite (46) as a cubic equation forp(W ) which admits
only one physical solution. So at the end we need only to solveequation (45) for the only
unknownW . Having obtainedW , we can then computep = p(W ) and the other quantities
in the same way as done in the 2D method.

3.4. Atmosphere treatment

As already done in theWhisky code and in other full GRMHD codes [26, 25] we avoid
the presence of vacuum regions in our domain by imposing a floor value to the rest-mass
density. This is necessary because the routines that recover the primitive variables from the
conservative ones may fail to find a physical solution if the rest-mass density is too small.
The floor value used for the tests reported here isρatm = 10−7 ×max(ρ0), with ρ0 being the
value of the rest-mass density att = 0, but a floor which is two orders of magnitude smaller
works equally well. In practice, for all of the numerical cells at whichρ ≤ ρatm, we simply
setρ = ρatm, vj = 0, and do not modify the magnetic field. This is different from what done
in other codes (e.g.,[26, 25]), which set to zero the initial value of the magneticfield in the
low density regions.

3.5. Excision

Many interesting astrophysical scenarios involve the presence of black holes and so of regions
of spacetime where singularities are present. These regions are causally disconnected from
the rest of the physical domain and the values of the fields inside should not affect the zone
outside the event horizon. This is not true in numerical codes where it can happen that some
information from inside the event horizon is used to computethe values of the variables
outside. In order to avoid this, excision algorithms were developed in general relativistic
hydrodynamics and they are based on the use of some kind of boundary condition applied
to the boundary between the excised zone, where the equations are no more solved, and the
domain outside. As already done in theWhisky code we apply a zeroth-order extrapolation
to all the variables at the boundary, i.e. a simple copy of theMHD variables across the
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Table 1. Initial conditions for the Riemann problems used to test thecode.

Test type State ρ p vx vy vz Bx By Bz

Balsara Test 1
(Γ = 2) left 1.000 1.0 0.0 0.0 0.0 0.5 1.0 0.0

right 0.125 0.1 0.0 0.0 0.0 0.5 -1.0 0.0

Balsara Test 2
(Γ = 5/3) left 1.0 30.0 0.0 0.0 0.0 5.0 6.0 6.0

right 1.0 1.0 0.0 0.0 0.0 5.0 0.7 0.7

Balsara Test 3
(Γ = 5/3) left 1.0 1000.0 0.0 0.0 0.0 10.0 7.0 7.0

right 1.0 0.1 0.0 0.0 0.0 10.0 0.7 0.7

Balsara Test 4
(Γ = 5/3) left 1.0 0.1 0.999 0.0 0.0 10.0 7.0 7.0

right 1.0 0.1 -0.999 0.0 0.0 10.0 -7.0 -7.0

Balsara Test 5
(Γ = 5/3) left 1.08 0.95 0.40 0.3 0.2 2.0 0.3 0.3

right 1.00 1.0 -0.45 -0.2 0.2 2.0 -0.7 0.5

excision boundary. A different method, based on the use of a linear extrapolation, has instead
been implemented in [25] and although it can lead to improvedaccuracy for smooth flows
(and especially when the MHD variables change rapidly near the excision boundary), it also
leads to significantly incorrect results when shocks are present (see Sect. 4.2). Great care
must therefore be paid at the properties of the flow near the excision boundary and the code
presently includes both algorithms.

It is important also to note that other methods, not based on excision techniques, are
being developed to improve the stability of numerical codeswhen black hole are present in
the domain. One of these approaches is based on the use of a Kreiss-Oliger dissipation for the
field variables inside the apparent horizon [60] and it can bestraightforwardly extended also
to the MHD case.

3.6. Mesh Refinement

The developments made inWhisky for handling non-uniform grids have been extended also
to WhiskyMHD which can therefore use a “box-in-box” mesh refinement strategy [61]. This
allows to reduces the influence of inaccurate boundary conditions at the outer boundaries and
for the wave-zone to be included in the computational domain. In practice, we have adopted
a Berger-Oliger prescription for the refinement of meshes ondifferent levels [62] and used
the numerical infrastructure described in [61],i.e., theCarpet mesh refinement driver for
Cactus (see [63] for details). In addition to this, a simplified formof adaptivity is also
in place and which allows for new refined levels to be added at predefined positions during
the evolution or for refinement boxes to be moved across the domain to follow, for instance,
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regions where higher resolution is needed.

4. Tests

Code-testing represents an important aspect of the development of any newly developed
and multidimensional code because it validates that all of the algorithms are implemented
correctly and represent a faithful and discretized representation of the continuum equations
they are solving. In what follows we report the results for a series of testbeds ranging from
the solution of relativistic Riemann problems in flat spacetime, over to the stationary accretion
onto a Schwarzschild black hole and up to the evolution of isolated and oscillating magnetized
stars. We note that in the tests involving a polytropic EOS the recovery of the primitive
variables has been made using the “2D-method” (see Sect. 3.3.1), while a “1D-method” has
been used when adopting an ideal-fluid EOS (see Sect. 3.3.2).

4.1. Riemann problems

As customary in the testing of hydrodynamics and magnetohydrodynamics codes we have
first validatedWhiskyMHD against a set of Riemann problems in a Minkowski spacetime
following the series of initial conditions proposed by Balsara [64]. All these tests were run on
a grid of unit length with 1600 grid points with the initial discontinuity located at the center
of the grid. An ideal equation of state withΓ = 5/3 was used with the exception of the first
test withΓ = 2 and the initial conditions for all the tests are reported in Table 1.

In all of the tests presented here the numerical solution forthe different MHD variables
has been compared with the exact one computed with the exact Riemann solver discussed
in [49]. This represents an important difference with what done in the past by similar codes
as it allows, for the first time, for a quantitative assessment of the code’s ability to evolve
correctly all the different waves that can form in relativistic MHD. In figures 2 and 3 the exact
solution is represented with a solid line, while the numerical one with different symbols.

In figure 2, in particular, we show the comparison between thenumerical and the exact
solution att = 0.4 for several MHD variables as computed for the relativistic analogue of the
classical Brio-Wu shock tube problem [65, 66]. The initial discontinuity develops a left-going
fast rarefaction, a left-going slow compound wave, a contact discontinuity, a right-going slow
shock and fast rarefaction. Note that besides presenting the solution withα = 1 andβx = 0,
we have exploited the freedom in choosing these gauges and validated the code also for less
trivial values of the lapse and shift [18]. More specifically, shown with different symbols
in figure 2 are the numerical solutions withα = 2 at timet = 0.2 and withβx = 0.4 after
the latter has been shifted in space byβxt. Clearly, all the symbols overlap extremely well,
coinciding with the exact solution also in the presence of strong discontinuities. Note that
only 160 of the 1600 data points used in the simulation are shown and that the difference
between the numerical solution and the exact one at the compound wave is due to the fact
that, by construction, our exact solver assumes compound waves never form. We have indeed
adopted the same standpoint of Ryu and Jones [67] in the development of their exact Riemann
solver in nonrelativistic magnetohydrodynamics. We also remark that it is not yet clear
whether compound waves have to be considered acceptable physical solutions of the ideal
MHD equations and a debate on this is still ongoing (see, for instance, [68, 69, 70, 71]).

Similarly, shown in figure 3 are the comparisons between the numerical solution for the
rest-mass density and they-component of the magnetic field for the tests number 2 (first row),
3 (second row), 4 (third row) and 5 (fourth row) of Balsara. The first 3 are computed at a
time t = 0.4 while the test number 5 is computed att = 0.55. Clearly, our code is able
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Figure 2. Numerical solution of the test number 1 of Balsara with different values for the lapse
α and the shiftβx. The solid line represents the exact solution, the crosses the numerical one
at timet = 0.4, the open triangle at timet = 0.2 but with α = 2 and the open squares at
t = 0.4 but withβx = 0.4, in this last case the solution is shifted on thex-axis by the amount
βxt. Note that only 160 of the 1600 data points used in the numerical solution are shown.
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Figure 3. Numerical solution of the tests number 2 (first row), 3 (second row), 4 (third row)
and 5 (fourth row) of Balsara. The first 3 are computed at a timet = 0.4 while the test number
5 is computed att = 0.55. The solid line represent the exact solution while the open squares
the numerical one. Note that only 160 of the 1600 data points used in the numerical solution
are shown.
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Figure 4. Numerical solution of the test number 2 of Balsara at a timet = 0.4 with an excision
boundary (dashed vertical line) located atx = 0.25; the region at the right of this boundary is
not evolved. In the two left panels a zeroth-order extrapolation, i.e. a simple copy, was used,
while in the two right panels the values of the different variables at the excision boundary
were obtained with a linear extrapolation. The solid line represents the exact solution while
the open squares the numerical one. The solution is composedof two left-going fast and slow
rarefactions, of a contact discontinuity and of two right-going fast and slow shocks. Only 160
of the 1600 data points used in the numerical solution are shown.

to resolve all the different waves present in MHD, showing a very good agreement with the
exact solution. Other Riemann problems have been carried out in different directions (either
along coordinate axes or along main diagonals) and they all provide the same level of accuracy
discussed in figures 2 and 3.

4.2. Excision tests on a flat background

We next show the code’s ability to accurately evolve shocks also when an excised region is
present in the domain. To this scope, we have used the test number 2 of Balsara excising
the regionxi ∈ [0.25, 0.5] and using the zeroth-order extrapolation scheme. In this case
the fast and slow shocks moving to the right go inside the excised region and the solution
outside is not affected. This is shown in the left panels of figure 4 which report with small
squares the numerical solution forρ andBy of the test number 2 of Balsara with an excision
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boundary (dashed vertical line) located atx = 0.25. The data refers to timet = 0.4, when the
right-going waves have already gone through the excision boundary as indicated by the exact
solution (continuous line).

As a comparison, and to underline its incorrectness in the case of non-smooth flows,
we have also considered boundary conditions involving a linear extrapolation of the MHD
variables across of the excision boundary as suggested in [25]. This is illustrated in the right
panels of figure 4 which are the same as the left ones but for thedifferent boundary condition
at the excision boundary. Clearly, in this case the solutionoutside the excision region is badly
affected and a left-going wave is produced which rapidly spoils the solution. Because this
happens only when the discontinuity crosses the excision boundary, it is clear that a linear
extrapolation is not adequate in this case as it provides an incorrect information on the causal
structure of the flow near the boundary. As we will discuss in the following Section, however,
a linear extrapolation remains a good, and sometimes preferable, choice in the case of smooth
flows.

4.3. Magnetized spherical accretion

This second test proves the ability of the code to evolve accurately stationary accretion
solution in a curved but fixed spacetime. In particular, we consider the spherical accretion of
a perfect fluid with a radial magnetic field onto a Schwarzschild black hole (this is sometimes
referred to as a relativistic Bondi flow). The solution to this problem is already known for the
unmagnetized case, but it is simple to show that its form is not affected if a radial magnetic
field is added [10]. The initial setup for this test is the sameused in [10, 16, 25, 18] and
consists of a perfect fluid obeying a polytropic EOS withΓ = 4/3. The critical radius of
the solution is located atrc = 8M and the rest-mass density atrc is ρc = 6.25 × 10−2.
These parameters are sufficient to provide the full description of the accretion onto a solar
mass Schwarzschild black hole as described in [72]. We solvethe problem on a Cartesian
grid going fromxi = 0 to xi = 11M .

To avoid problems at the horizon, located atr = 2M , the metric is written in terms of
ingoing Eddington-Finkelstein coordinates. The excisionboundary has the shape of a cubical
box of lengthM so that the domain[0,M ]× [0,M ]× [0,M ] is excluded from the evolution.
Furthermore, as a boundary condition across the excised cube we have considered both a
zero-th and a first-order extrapolation, finding the latter to yield sligthly more accurate results
(e.g., the overall error is smaller of≈ 3% for a test case withb2/ρ = 25, whereb2/ρ is the
dimensionless magnetic field strength as measured atr = 2M ). As discussed earlier, this is
indeed to be expected for smooth flows as the ones considered here for the relativistic Bondi
flow.

We measure the order of accuracy of the code by using theL1-norm of the relative error
on the rest-mass density

||δρ||1
||ρ||1

≡
∑

i,j,k |ρi,j,k − ρexact(xi, yj , zk)|
∑

i,j,k ρexact(xi, yj, zk)
. (49)

We plot this quantity in the left panel of figure 5 as a functionof the magnetic-field strength
and as computed at timet = 100M for two different resolutions of1003 and1503 gridpoints,
respectively. In addition, the error from the high-resolution simulation is multiplied by1.52

so that the two curves should overlap if the code were second-order convergent. Clearly, the
code does not show the expected convergence rate but for relatively weak magnetizations,
i.e. b2/ρ . 4 (we recall that these corresponds nevertheless to rather large magnetic fields of
≈ 1019 G). This behaviour is indeed similar to what found by Duezet al.[25] and has a rather
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Figure 5. Left panel:L1 norm of the relative error in the rest-mass density for the magnetized
spherical accretion test, shown for different values of themagnetic field. Results from1003

and 1503 runs are compared at timet = 100M , with the high-resolution curve being
multiplied by1.52 so that with a second-order convergence the two lines would overlap.Right
panel: Relative error computed at pointx = 4M, y = 0, z = 0; also in this case the high-
resolution line is scaled to produce an overlap in the case ofsecond-order convergence. In both
cases the insets offer a magnification for small values of themagnetic field.

simple explanation. It is due to the rather large error in gridpoints near the excision boundary,
i.e., for xi ∈ [M, 2M ], which spoil the overall behaviour of theL1 norm (admittedly not a
good measure of the convergence for a solution which is so rapidly varying near the excision
boundary). To clarify this, we show in the right panel of figure 5 the same as in the left panel
but for the relative error computed at a single gridpoint,i.e.,atx = 4M, y = 0, z = 0. Clearly
the convergence is much closer to second-order in this case (the precise order being≈ 1.8)
and for much larger range in magnetizations.

A closer look at the behaviour of the relative error is offered in figure 6, where it
is shown as measured along thex-direction for a magnetization ofb2/ρ = 25 (i.e., with
pmag/pgas = 97) and at timet = 100M . Also in this case, the high-resolution relative error
is multiplied by1.52 so that the two lines overlap if second-order convergent. Clearly this
does not happen but also only for a small number of gridpointsnear the excision boundary
located atx = M .

As a final remark, we point out that the simulations of spherical-accretion flows
performed here span a range of magnetizations well beyond what considered in the past with
codes using Cartesian coordinates (the results reported in[25], for instance, were limited to
b2/ρ . 30). Indeed, no sign of instability has been found and only a moderate loss of accuracy
has been measured for magnetic fields as large asb2/ρ . 160.

4.4. Evolution of a stable magnetized neutron star

As a final test validating the code in a fully dynamical evolution of both the MHD variables
and of the spacetime, we now consider the evolution of a stable magnetized neutron star.
Although this initial data represents a stationary solution, small oscillations can be triggered
by the small but nonzero truncation error. Such oscillations are sometimes considered a
nuisance and even suppressed through the introduction of artificial-viscosity terms. On the
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Figure 6. Relative error of the rest-mass density for the magnetized spherical-accretion flow
with b2/ρ = 25 (i.e., with pmag/pgas = 97) along thex-axis att = 100M . The high-
resolution error is multiplied by1.52 so that the two lines would overlap with a second-order
convergence. Clearly, this does not happen near the excision boundary located atx = M .

contrary, since they represent the consistent response of the star to small perturbations, they
should considered as extremely useful. The eigenfunctionsand eigenfrequencies of these
oscillations, in fact, can serve both as a test of the code, when compared with the expectations
coming from perturbation theory (see Appendix B of [37] for arepresentative example), or
to extract information on the properties of the star, when considering regimes which are not
yet accessible to perturbative studies (e.g., in the case ofnonlinear oscillations or very rapidly
rotating stars).

Two options are possible for the construction of the initialdata. A first and simpler
one was employed extensively in [27, 28, 29] and consists of considering a background
purely-hydrodynamical solution in stable dynamical equilibrium and of “adding” a poloidal
magnetic field in terms of a purely toroidal vector potential. Besides being essentially
arbitrary, the vector potential is chosen to be proportional to the pressure so as to lead to
a magnetic field entirely confined within the star. While straightforward, this approach does
not construct a magnetized stellar model which is consistent solution of the Einstein equations
and thus inevitably introduces violations of the Hamiltonian and momentum constraints. Such
violations, however, are in general negligible for reasonably small magnetic fields.

A second option, and the one employed here, consists of computing the initial conditions
as a consistent and accurate solution of the Einstein equations for a stationary, axisymmetric
and magnetized star. We have done this by using the spectral code developed by Bocquet
et al. [73], which solves the full set of Einstein and Maxwell equations to high precision.
Assuming an axisymmetric model with a poloidal magnetic field having the dipole moment
aligned along the rotation axis, the code is used to build initial configurations of uniformly
rotating magnetized neutron stars with different angular velocities and magnetic field
strengths.
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Figure 7. Magnetic field lines of the oscillating magnetized and nonrotating neutron star
considered in this paper. The solid thick line represents the star surface.

For simplicity we here consider a nonrotating magnetized neutron star with massM =
1.3M⊙ endowed with a poloidal magnetic field with magnetic dipole along thez-axis and a
central magnetic fieldBc = 2.4 × 1014 G, corresponding toβ = pmag/pgas = 10−6 (this
β, which should not be confused with the shift vectorβi, is always monotonically decreasing
inside the initial equilibrium model, and is much larger in the atmosphere, where it reaches
values∼ 106). A polytropic equation of state withΓ = 2 andK = 372 was used both for
the calculation of the initial model and during the evolution. A representative image of the
initial model is presented in figure 7, which shows the magnetic field lines together with the
stellar surface (thick solid line). Note that although the star is nonrotating, the presence of a
magnetic field replaces the spherical symmetry for an axisymmetrical one.

As a first test, we consider the evolution of the star within the so-called “Cowling
approximation”,i.e. by holding the metric fixed to its initial value and by evolving the
MHD variables onto this background spacetime (the evolution is not made only at the outer
boundaries, where we use Dirichlet-type boundary conditions). The results of these evolutions
are summarized in figure 8, with the left panel showing the evolution of the maximum
of the rest-mass densityρ when normalized to its initial value. The three different lines
(dotted, dashed and continuous) refer to the three resolutions used ofN = 603, 903, and
1203, respectively. The coordinate time on the horizontal axis is expressed in terms of the
characteristic “dynamical timescale”τ ≡

√

R3/M , whereR is the coordinate radius of the
star.

In analogy with what observed in the purely hydrodynamical case [37], the magnetized
star is set into oscillation by the small truncation error introduced by the mapping
onto a Cartesian coordinate system of the stationary solution found in spherical polar
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Figure 8. Left panel:Maximum of the rest-mass densityρ normalized to its initial value and
expressed in terms of the dynamical timescaleτ ≡

p

R3/M . The magnetized star is evolved
within the Cowling approximation, with different lines referring to different resolutions:
N = 603 (dotted),N = 903 (dashed line) andN = 1203 (solid line). Right panel:The
same as in the left one but for a longer timescale.

coordinates [73] (no perturbation coming from the outer boundaries was seen to influence the
dynamics of the oscillations). Because of its stochastic nature, the initial perturbation triggers
a variety of modes, most of which however decay rather rapidly leaving, aftert ≃ 25τ ,
an essentially harmonic oscillation in the fundamental mode only. This is shown in the right
panel of figure 8 which shows the evolution over a longer timescale. Furthermore, in the linear
regime considered here, the amplitude of the oscillations is proportional to the magnitude of
the truncation error and one expects the former to decrease as the resolution is increased. This
is clearly the case for the oscillations shown in figure 8, andthe very good overlap among the
different timeseries is an indication that the oscillations indeed correspond to eigenmodes and
that the code is tracking them correctly at these resolutions.

Next, we consider the evolution of the same initial model discussed above but including
also the solution of the Einstein equations so as to make the system fully dynamical (Dirichlet-
type boundary conditions are used at the outer boundaries for the MHD variables and radiative
ones for the fields). Also in this case, oscillations are triggered by the truncation error, with
an amplitude that converges to zero with the increase of the resolution and with an harmonic
content that becomes more evident after the initial transient (also in this case, no perturbation
coming from the outer boundaries was seen to influence the dynamics of the oscillations). In
addition, and in analogy with what observed in the purely hydrodynamical case [74, 75, 37],
the oscillations are accompanied by a secular growth which also converges away at the correct
rate with increasing grid resolution and that does not influence the long-term evolutions. This
is shown in figure 9 which reports the same quantities as in figure 8 but for a fully dynamical
evolution. Note also that the secular evolution of the central rest-mass density varies according
to the EOS adopted: when using the ideal-fluid EOS, in fact, the secular drift of the central
rest-mass density is towards lower densities. However, if the adiabatic condition is enforced,
the opposite is true and central rest-mass density evolves towards larger values. Both the
evolutions in the Cowling approximation and in dynamical spacetimes, have not shown signs
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Figure 9. Left panel:Maximum of the rest-mass densityρ normalized to its initial value and
expressed in terms of the dynamical timescaleτ ≡

p

R3/M . The magnetized star is evolved
together with the spacetime, with different lines referring to different resolutions:N = 603

(dotted),N = 903 (dashed line) andN = 1203 (solid line). Right panel:The same as in the
left one but for a longer timescale.

of instability at all resolutions considered and up to several tens of dynamical timescales.
As a final remark we underline that the convergence rate is notexactly second-order

but slightly smaller, (i.e., 1.7-1.8), because the reconstruction schemes are only first-order
accurate at local extrema (i.e. at the centre and at the surface of the star) thus increasing the
overall truncation error. Similar estimates were obtainedalso in the purely hydrodynamical
case [37].

5. Conclusions

We have presented a new three-dimensional numerical code inCartesian coordinates
developed to solve the full set of GRMHD equation on a dynamical background. The
code is based on high-resolution shock-capturing techniques as implemented on domains
with adaptive mesh refinements. This code represents the extension to MHD of the
approach already implemented with success in the general-relativistic hydrodynamics code
Whisky [30].

The code has been validated through an extensive series of testbeds both in special and in
general relativity scenarios. In particular, we have first considered a set of Riemann problems
in a Minkowski spacetime following a variety of initial conditions. In all of the tests presented,
the numerical solution has been compared with the exact one [49], providing, for the first
time, a quantitative assessment of the code’s ability to evolve correctly and accurately all
of the different waves that can form in relativistic MHD. Furthermore, as a demonstration
of the proper handling of continuous and discontinuous flowsin the presence of an excision
region, we have extended the Riemann-problems tests acrossan excised boundary. In doing
so we have revealed the importance of correct boundary conditions and pointed out that those
recently proposed in [25] can lead to incorrect solutions for non-smooth flows.

Next, to investigate magnetized fluids in a curved but fixed spacetime, we have
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considered the spherical accretion of a perfect fluid with a radial magnetic field onto a
Schwarzschild black hole (relativistic Bondi flow). Also inthis case, the code has been shown
to accurately reproduce the stationary solution and to be convergent at the correct rate for
small and large magnetizations. For very large magnetizations, however, the very rapidly
varying behaviour of the MHD variables near the excision region prevents from a correct
convergence near the horizon, although the code remains second-convergent away from the
horizon and is convergent overall. Also for these extremely-high values of the magnetic field,
the code has shown to be robust and accurate at regimes where other codes were reported to
fail [25].

Finally, we have considered the evolution of magnetized neutron stars in equilibrium and
constructed as a consistent solutions of the coupled Einstein-Maxwell equations. Such initial
models represent an important difference from those considered by other authors, which were
not consistent solution of the Einstein equations initially and whose magnetic field is totally
confined within the star [25]. In analogy with what observed in the purely hydrodynamical
case [37], these magnetized stars are set into oscillation by the small truncation error. These
pulsations, which have been studied both in fixed (Cowling approximation) and in dynamical
spacetimes, have been shown to have the correct behaviour under changes of spatial resolution
and to correspond to the eigenmodes of relativistic and magnetized stars. Both evolutions in
the Cowling approximation and in dynamical spacetimes havenot shown signs of instability
at all resolutions considered and up to several tens of dynamical timescales.

A number of projects are expected to be carried out with the new code. Firstly, we plan
to extend the study on the oscillations of rotating and nonrotating neutron stars with a detailed
analysis of the effect of magnetic fields on the frequency of oscillations. It is important to note
that only recently some results were obtained in perturbation theory and within the Cowling
approximation [76]. Our code will be a complementary tool tothe perturbative approaches,
using the latter as testbeds and carrying them beyond the regimes of slow rotation and weak
magnetizations. Such a study, and the comparison with the frequencies observed in objects
such as the soft gamma-repeaters, will provide useful information on the mass and magnetic-
field strength of magnetars.

Secondly, we plan to useWhiskyMHD to study the collapse of uniformly and
differentially rotating magnetized neutron stars with theaim of extending further the work
done in [37, 77, 60] and to highlight the role that this process may have in the phenomenology
of shortγ-ray bursts. We are especially interested in the calculation of the gravitational-wave
signal emitted by these sources and on the influence that magnetic fields may have on it.

Finally, and in view of the total generality with which it hasbeen developed, the code will
be used to study the dynamics of binary systems of neutron stars and mixed binaries, with the
aim of extending the work carried out in [78] and of considering in a fully general-relativistic
context the Newtonian results obtained in [24].
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