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Abstract

Some kind of data are defined on unusual mathematical spaces instead of classical
ones as RD. For instance, compositional data belong to the D-dimensional simplex,
defined as:

SD =
{

x = (x1, . . . , xD)ᵀ ∈ RD : xi > 0,
D∑
i=1

xi = 1
}
.

This means that data x are positive vectors subject to unit-sum constraint (i.e.
proportions). Note that compositional data are frequent in many disciplines (e.g.
geology, medicine, economics, psychology, environmetrics, etc.); therefore, their
proper treatment is a relevant issue.
The Dirichlet is one of the most known distribution defined on the simplex. Although
it has several mathematical properties, in many real applications it does not fit
the data well, due to its extreme forms of simplicial independence or stiffness in
modelling cluster structure and the covariance matrix. Moreover, the Dirichlet
distribution allows for only one finite mode. The purpose of this thesis is to compare
some distributions proposed in the literature to overcome these drawbacks. In
particular, the main aspects of Additive Logistic-Normal (ALN, proposed by Aitchison
[3]) and Flexibile Dirichlet (FD, proposed by Ongaro and Migliorati [63, 72])
distributions are recalled. The FD has a particular finite mixture structure (with
Dirichlet components) that allows for multimodality and a more flexibile structure
of the covariance matrix. In particular, the covariance between distinct elements of
a vector with FD density is negative; this is coherent with the unit-sum constraint
imposed by the simplex, however, in some applications, such a covariance may
be positive. For this reason, a new generalization of both the Dirichlet and the
FD distributions has been proposed: the Extended Flexible Dirichlet [8, 61, 71].
This distribution can be obtained normalizing a particular basis Y = (Y1, . . . , YD)ᵀ,
where:

Yr = Wr + Zr · Ur, r = 1, . . . , D,

Wr ∼ Gamma(αr, β) are independent random variables, Ur ∼ Gamma(τr, β) are
independent of each other and independent of each Wr and Z = (Z1, . . . , ZD)ᵀ is a
further independent random variable distributed according to a Multinomial(1,p).
Then X = Y∑D

r=1 Yr
∼ EFD(α, τ ,p).
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The EFD preserves a finite mixture structure as the FD does, but it exhibits some
relevant features when compared to the FD, such as a more flexible cluster structure
and a (even strong) positive dependence for some pairs of variables. This work
completes some theoretical and computational aspects related to this model. In
particular, it is possible to obtain Maximum Likelihood estimates through the EM
algorithm [28], a well known procedure to find maximizers that often suffers from
dependence on the starting point. For this reason, a simulation study aimed at
selecting the best initialization procedure among three different proposal have been
set up.

An important and significant part of this thesis regards the proposal of a new
extension of the Flexible Dirichlet. Both the FD and the EFD distributions allow for
a number k < D of potential modes. Even this new model, called Double Flexible
Dirichlet (DFD), has a finite mixture structure, as we may write:

DFD(x; α, τ,P) =
D∑
i=1

D∑
j=1

pi,jDir(x; α + τ (ei + ej)),

where α = (α1, . . . , αD)ᵀ ∈ R+
D, τ > 0 and P is a D × D symmetric matrix with

generic (i, j)-th element equal to pi,j subject to constraints:
pi,j > 0
D∑
i=1

D∑
j=1

pi,j = 1
.

The DFD allows for k <
D(D + 1)

2 modes (one for each cluster in the mixture).
This model also allows for positive correlation among two distinct elements of the
composition, despite the presence of the unit-sum constraint. Lot of theoretical
properties have been proved and computational aspects have been handled through
the R software. The main drawback of this model is the high number of parameters
to estimate. This penalizes the DFD model when one compares it with other models

through criteria such as AIC and BIC. Moreover, the DFD assumes that the
D(D + 1)

2
cluster are placed in a very rigid scheme.

These models (Dirichlet, ALN, FD, EFD and DFD) have been compared through
simulation studies and analizing two datasets: the olive oil data from the R package
"pdfcluster" and a dataset regarding the results of the Italian general election held
on 4 March 2018. Both the EFD and the DFD have shown interesting features that
produce a good fit to real data. The EFD considers a lower number of clusters than
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the DFD model, but these clusters can be placed almost everywhere in the simplex.
If more clusters than the number of elements of the composition or are present some
clusters are located with a configuration that cannot be recovered by the FD and
the EFD models, the DFD model can be a good solution. Future proposal will be
designed to weak the structure imposed by the Double Flexible Dirichlet.

Furthermore, a new model for multivariate constrained count data have been imple-
mented. It is based on a compound Multinomial distribution. Compound distribu-
tions are probability distributions obtained by a two-steps approach. The first step
consists in assuming that the parameter of the distribution of a random vector X is
not constant but follows a specific distribution itself. Then, this joint distribution is
marginalized, integrating over the parametric space. This approach leads to more
flexible distributions. The Dirichlet-Multinomial is one of the most known compound
distributions for multivariate count data. Let X|π ∼ Multinomial(n,π) and Π ∼
Dirichlet(α), then the marginal distribution of X is the Dirichlet-Multinomial distri-
bution. Because of the severe covariance structure imposed by the Dirichlet prior,
covariance among distinct elements of X assumes only negative values and this could
be unrealistic in some particular scenarios. A new distribution for count data, called
Extended Flexible Dirichlet-Multinomial (EFDM), can be obtained by compounding
the Multinomial model with an EFD prior over the parameters Π. Thanks to the
covariance structure of the EFD, the EFDM allows for positive dependence for some
pairs of counts. Here some theoretical properties of the EFD-Multinomial distribution
are shown, and a preliminary simulation study is performed to evaluate the behavior
of two estimation procedures under several scenarios, including positively correlated
counts.

Purpose of the thesis is to construct distributions that overcome the drawbacks of
simpler distrubutions (Dirichlet, ALN and Multinomial). The reason why this aspect
has been considered is that real data can violate the structure assumed by simpler
models for a variety of aspects, such as:

• Distributions could not be able to model the data dependence structure because
of a poor parametrization (i.e. covariances proportional to the product of the
expectations, as in the Dirichlet and Multinomial cases).

• Although the sum constraint naturally induces a negative dependence, positive
correlations could be found in sample correlation matrices.

• Real data can show multimodality.

Clustering aspects are not aims of the thesis and, therefore, they are not going to be
considered.

ix





Contents

1 Introduction 1

2 Characteristics of Compositional Data 7
2.1 How to plot compositional data . . . . . . . . . . . . . . . . . . . . . 14
2.2 Simplicial Independencies . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Models defined on the simplex 17
3.1 The Dirichlet Distribution . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 The Additive Logistic-Normal . . . . . . . . . . . . . . . . . . . . . . 22
3.3 The Flexible Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Marginals, Subcompositions and Conditional distributions . . 31
3.3.2 An alternative estimation procedure: a Bayesian approach . . 33

3.4 The Extended Flexible Dirichlet . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Estimation procedure . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3 An open problem: how to initialize the EM algorithm? . . . . 56
3.4.4 A Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . 59

4 The Double Flexible Dirichlet 63
4.1 The basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Constructing the basis . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2 Properties of Y . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.3 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 The DFD model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.1 Mixture components and cluster means . . . . . . . . . . . . 79

4.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.1 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.2 Conditional distributions . . . . . . . . . . . . . . . . . . . . . 85
4.3.3 Symmetrized Kullback-Leibler Divergence . . . . . . . . . . . 91

4.4 Computational issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.1 Cluster-code matrix . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 Parameter estimation: the EM algorithm . . . . . . . . . . . . 94
4.4.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Applications 119

xi



5.1 Italian election results . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.1.1 PD Vs Lega . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1.2 PD Vs other parties . . . . . . . . . . . . . . . . . . . . . . . . 123
5.1.3 Lega Vs FDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.1.4 Lega Vs LEU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.5 Lega Vs other parties . . . . . . . . . . . . . . . . . . . . . . . 129
5.1.6 FDI Vs other parties . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 Olive oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2.1 2-part compositions . . . . . . . . . . . . . . . . . . . . . . . 133
5.2.2 3-part compositions . . . . . . . . . . . . . . . . . . . . . . . 137

6 A Flexible distribution for count data 149
6.1 Compound distributions for count data . . . . . . . . . . . . . . . . . 150
6.2 The Dirichlet-Multinomial distribution . . . . . . . . . . . . . . . . . 152
6.3 Changing the distribution of Π: the EFD-Multinomial distribution . . 154
6.4 A simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4.1 First configuration . . . . . . . . . . . . . . . . . . . . . . . . 161
6.4.2 Second configuration . . . . . . . . . . . . . . . . . . . . . . . 164
6.4.3 Third configuration . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4.4 Forth configuration . . . . . . . . . . . . . . . . . . . . . . . . 170

6.5 A Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.5.1 Bayesian - Informative Priors . . . . . . . . . . . . . . . . . . 174
6.5.2 Bayesian - Weakly Informative Priors . . . . . . . . . . . . . . 175

7 Conclusion 177
7.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.1.1 Reducing the number of parameters in the DFD model . . . . 178
7.1.2 Moving the clusters: the Extended Double Flexible Dirichlet . 180
7.1.3 Initialization methods for the EM algorithm in the Extended

Flexible Dirichlet-Multinomial scenario . . . . . . . . . . . . . 183

8 Appendix 185
8.1 Bayesian estimation procedure . . . . . . . . . . . . . . . . . . . . . 185

8.1.1 Other parameter configurations . . . . . . . . . . . . . . . . . 185
8.1.2 Robustness analysis on the prior for φ . . . . . . . . . . . . . 191

8.2 EFD: Conditional expectation . . . . . . . . . . . . . . . . . . . . . . 194
8.3 EFD: MLE performance simulation . . . . . . . . . . . . . . . . . . . 201
8.4 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Bibliography 213

xii



1Introduction

„Thus the battle of the statistical knights who
search for the holy grail of a parametric class
[...] is obviously not over.

— John Aitchison.

Vectors of proportions arise in a great variety of fields: geostatistics, chemistry, eco-
nomics, medicine, biology, psychology, sociology, environmetrics, politics, agricolture
and many others. Supposing that a whole can be split into D mutually exclusive
and exhaustive categories, vectors describing the percentage of the amount of each
category on the total are called compositional data. Let y = (y1, . . . , yD)ᵀ ∈ RD+ be

a vector of D positive elements collected on a statistical unit. If y+ =
D∑
r=1

yr, then

each xr = yr
y+ (r = 1, . . . , D) represents the percentage of characteristic yr among

the whole y+. The vector y is called basis, whereas x = (x1, . . . , xD)ᵀ is defined
composition and lies on the D-part simplex which is defined as follows:

Definition 1. The set SD =
{

x = (x1, . . . , xD)ᵀ : xr > 0, r = 1, . . . , D;
D∑
r=1

xr = 1
}

is a (D − 1)-dimensional subset of RD+ and is called D-part simplex.

An equivalent definition is:

Definition 2. The set SDa =
{

x = (x1, . . . , xD−1)ᵀ : xr > 0, r = 1, . . . , D − 1;
D−1∑
r=1

xr < 1
}

is a (D − 1)-dimensional subset of RD−1
+ and is called D-part simplex.

The latter definition highlights the true dimensionality of the simplex and its asym-
metric form since it excludes the last element of the vector (the so called "fill-up"
value xD = 1 − x1 − · · · − xD−1). Figures 1.1 and 1.2 show 2-parts and 3-parts
simplices (colored in red) using both the symmetric and asymmetric definitions.

Looking at the symmetric version of S2 and S3, it is easy to see that the D-part
simplex is an object with (D− 1) dimensions laying into a D-dimensional space. The
following example is aimed at showinbg the structure of a compositional dataset.
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x1
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Fig. 1.1: Representation of the 2-parts simplex with the asymmetric definitions (left panel)
and the symmetric one (right panel).

x1

x2

0 1

1

x1

x2

x3

Fig. 1.2: Representation of the 3-parts simplex with the asymmetric definitions (left panel)
and the symmetric one (right panel).

Example 1. Data in Table 1.1 are a subset of a dataset proposed by Aitchison [3] and
represent how an academic statistician splits his day into groups of activities over 4
randomly chosen days. Please note that each row satisfies the constraint imposed by the
simplex (i.e. each row belongs to S5).

Day Teaching Administration Research Other Sleep Total
1 0.144 0.179 0.107 0.353 0.217 1
2 0.162 0.107 0.132 0.345 0.254 1
3 0.153 0.131 0.138 0.311 0.267 1
4 0.177 0.140 0.132 0.241 0.310 1

Tab. 1.1: Activity patterns of a statistician during 4 days [3].

Compositional data require a very specific treatment because of their intrinsic depen-
dence structure. Let Y be a random vector with positive and independent elements

2 Chapter 1 Introduction



and Y + =
D∑
r=1

Yr; then the covariance among two arbitrary elements of X = Y/Y +,

say Xr and Xh (r 6= h), is different from 0 in general, although Yr ⊥⊥ Yh. In 1897
Karl Pearson [76] pointed out this phenomenon as "spurious correlation" refering to
the fact that correlation can possibly be observed where no real association exists.
The warning of Pearson has been unheard for many years because of the absence
of a coherent statistical methodology. Only in 1986 Aitchison, in the first edition
of his monograph [3], proposed a complete and rigorous statistical procedure for
analyzing compositional data. The spurious correlation issue can be generalized
saying that compositions do not share the dependence structure of their generating
basis.

Compositions are not necessarily defined as positive values subject to an unit-sum
constraint. This means that a value equal to 0 can appear. Aitchison himself began
his monograph with the informal definition:

"Any vector x with non-negative elements x1, . . . , xD representing proportions of some
whole is subject to the obvious constraint x1 + · · ·+ xD = 1."[3]

In Chapter 2, he specified that when zeros are present in a dataset, some special
adaptations are required. This is the reason why the first formal definition of
compositional data and of the simplex do not include any zero values. Standard
distributions are defined on this definition of the simplex (i.e. they do not put any
mass on the boundary of the simplex).

This work is aimed at presenting some specific distributions defined for composi-
tional data and proposing a new one. Each of these has, of course, advantages and
disadvantages so that a "perfect" parametric model for compositional data does not
exist. In chapter 2 some useful characteristics of compositional data are provided.
Particular emphasis has been put on the definition of subcomposition and amalgama-
tion (i.e. two particular transformations of a composition x), because of their role in
future chapters. Chapter 3 introduces some distributions defined for compositional
data, listing their advantages and their drawbacks. In particular, the Dirichlet and
the Additive Logistic-Normal are likely two of the most known distributions defined
for compositional data. The first one is very simple and characterized by several
mathematical and statistical properties (for example its log-likelihood function is
bounded from above if at least two observations are collected [72] and it is a conju-
gate prior for the Multinomial model [38, 39]) whereas the second one overtakes the
constraint imposed by the support, mapping the simplex into a standard Euclidean
space [3–5]. The latter approach allows to use standard statistical methods for
normally distributed data, but suffers from the limitation of intrinsic unimodality
implied by the multivariate Normal distribution. The Flexible Dirichlet (FD) [63,
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72] and the Extended Flexible Dirichlet (EFD) [61, 71], their properties are also
presented. This chapter contains two works developed during my Ph.D. period: an
alternative Bayesian estimation procedure for the FD (Section 3.3.2, based on [7])
and a simulation study aimed at evaluating the performance of the Maximum Likeli-
hood estimator for the EFD (Section 3.4.4, based on [8]), a distribution introduced
by Ongaro and Migliorati [61, 71].

Chapter 4 is the core of this thesis: it introduces a new distribution, the Double
Flexible Dirichlet (DFD), whose support is the simplex. The chapter shows the
DFD statistical properties and an estimation procedure based on the Expectation-
Maximization algorithm. A particular finite mixture structure[38, 58, 60] can be
obtained for the DFD model, allowing for a great flexibility in the probability density
function (i.e. it can take on several shapes, including multimodality). Thanks to this
flexibility, the DFD model gains two peculiarities: it can consider a large number of
mixture components and it allows for positive covariances among distinct elements
in the composition. These covariances are strictly connected to the covariances of
the corresponding elements of the basis. These aspects make the DFD an interesting
model to consider when a great number of clusters is expected and/or when they
are located in particular ways on the simplex. To evaluate the performance of the
Maximum Likelihood estimator for the parameters of a Double Flexible Dirichlet
model, a simulation study has been conducted.

Chapter 5 presents two applications to real datasets: the italian general election data
(Section 5.1) and the olive oil data (Section 5.2), a compositional dataset presented
by Forina in 1983 [36] and used by several authors for model-based clustering [10,
40, 87]. The aim of these applications is to fit models presented in the previous
chapters and assess their fit through graphical tools and quantitative criterions.

Finally, in Chapter 6 a way to use distributions for compositional data to extend
the well-known Multinomial distribution is discussed. The Multinomial distribution
models discrete vectors of integers subject to a sum-constraint. Even if one could
treat them as compositions (dividing each element by their sum), their support is
not the simplex. Support of the Multinomial distribution is a set of points inside
the simplex; therefore this kind of data (referred as "count data" even if they
are constrained counts) should be modelled with discrete distributions instead of
continuous ones. Particular focus has been put on a new model, the Extended
Flexible Dirichlet-Multinomial (EFDM, Section 6.3), obtained compounding the
Multinomial distribution with the EFD. Thanks to the dependence structure imposed
by the EFD, the EFDM allows for positive covariances among Multinomial counts.

The title refers to a family of flexible distributions, but the term "family" is here not
used as in the "exponential family" context. Here it defines a set of distributions with
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a common "goal" rather than a common general form for the probability density
function. Indeed, these Flexible distributions are constucted in order to obtain a
more flexible modelization for both the covariance matrix and the (possible) cluster
structure of a random vector subject to a sum constraint.
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2Characteristics of Compositional
Data

Compositional data are positive vectors subject to an unit-sum constraint. These
data can be constructed from a basis, that is an unconstrained positive vector
y = (y1, . . . , yD)ᵀ ∈ RD+ . A composition is uniquely identified by a basis through the
constraining/closure operator C(·) : RD+ → SD. The closure operator normalizes its
argument y, as follows:

x = C(y) ≡ y/y+,

where y+ =
D∑
r=1

yr is the size of a the basis y. A particular composition x can be

generated by several bases. Indeed, it is possible to define the set B(x) of all the
possible bases leading to the same composition x:

B(x) = {y : y = γ · x, γ ∈ (0,+∞)} .

The red line in Figure 2.1 represents B(x) where x =
(

1
3 ,

1
3 ,

1
3

)ᵀ
.

x

y

z

●

Fig. 2.1: Relationship between the composition x =
( 1

3 ,
1
3 ,

1
3
)ᵀ

(dot) and the set B(x) (line).
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A basis is uniquely determined by its size and its composition, since y = y+ · x. In
what follows, some useful definitions are provided.

Definition 3. Let y = (y1, . . . , yD)ᵀ be aD-dimensional vector and a = (a0, a1, . . . , aC−1, aC)ᵀ

a vector of non negative integers such that a0 = 0 < a1 < · · · < aC = D. Then the
partition of order C-1 induced by a of the vector y is:

y1, . . . ya1 |ya1+1, . . . , ya2 | , . . . ,
∣∣yaC−1+1, . . . , yaC

Definition 4. Let y = (y1, . . . , yD)ᵀ be aD-dimensional vector and a = (a0, a1, . . . , aC−1, aC)ᵀ

a vector of non negative integers such that a0 = 0 < a1 < · · · < aC = D. Then an
amalgamation based on the partition of order C − 1 induced by a is the vector of
totals of the C subsets:

y+ =
(
y+

1 , . . . , y
+
C

)ᵀ
, where y+

i =
ai∑

j=ai−1+1
yj .

Example 2. Recall data in Example 1. Table 2.1 contains compositions obtained
amalgamating the components "Teaching & Administration" and "Sleep & Other":

Day Teach. + Adm. Research Sleep + Other
1 0.323 0.107 0.570
2 0.269 0.132 0.599
3 0.284 0.138 0.578
4 0.317 0.132 0.551

Tab. 2.1: Activity patterns of a statistician during 4 days (amalgamation)[3].
.

Definition 5. Let C and D be two integers such that 0 < C ≤ D. Then, an amal-
gamation matrix A ∈ M(C,D) is any matrix with D entries equal to 1 and the
remaining equal to 0. The 1s must be allocated one in each column and at least one in
each row.

Example 3. Each row of Table 2.1 can be obtained by the product of the amalgamation
matrix A and the corresponding (transposed) row of Table 1.1, where:

A =


1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

 .
Definition 6. Let b = (b1, . . . , bC−1, bC)ᵀ (C ≤ D) be a vector of non negative
integers such that 0 < b1 < · · · < bC . The vector s = C((xb1 , . . . , xbC )ᵀ) is called
subcomposition.

The subcomposition represents the composition of a subset of components. As
a result, it represents a possible way to define marginals in the compositional
framework.

8 Chapter 2 Characteristics of Compositional Data



Proposition 1. A subcomposition can be obtained in two ways:

• closing a subset of components of a composition, as in Definition 6

• closing the equivalent elements of the basis: s = C((yb1 , . . . , ybC )ᵀ).

Proof. Let y = (y1, . . . , yD)ᵀ be a generic basis and x = C(y) = (x1, . . . , xD)ᵀ its
composition. Let b = (b1, . . . , bC−1, bC)ᵀ a vector of non negative integers and s a
subcomposition as in Definition (6). Then:

s = C((xb1 , . . . , xbC )ᵀ) =
(

xb1∑C
i=1 xbi

, . . . ,
xbC∑C
i=1 xbi

)ᵀ

=
(

yb1/y
+∑C

i=1 ybi/y
+
, . . . ,

ybC/y
+∑C

i=1 ybi/y
+

)ᵀ

=
(

yb1∑C
i=1 ybi

, . . . ,
ybC∑C
i=1 ybi

)ᵀ

= C((yb1 , . . . , ybC )ᵀ).

The selection of the dimensions to keep in the composition can be made through a
selecting matrix, as defined by Aitchison ([3]):

Definition 7. Let C and D be two integers such that 0 < C < D. Then, a selecting
matrix S ∈M(C,D) is any matrix with C entries equal to 1 and the remaining ones
equal to 0. There must be exactly a single 1 in each row and at most one in each
column.

Example 4. Let be D = 6 and suppose that the interest is in the subcomposition
s = C((x1, x3, x5)ᵀ). Then, s = C(S · x), where:

S =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


Example 5. From Table 2.2, it is possible to find subcompositions referred to the
components "Teaching", "Administration" and "Research" of Table 1.1.

Day Teaching Administration Research
1 0.335 0.416 0.249
2 0.404 0.267 0.329
3 0.363 0.310 0.327
4 0.394 0.312 0.294

Tab. 2.2: Activity patterns of a statistician during 4 days (subcomposition)[3].
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Definition 8. Let z = (z1, . . . , zD)ᵀ be a vector with positive elements and x a compo-
sition. It is possible to define the perturbation operator as ⊕ : RD+ × SD → SD such
that:

p = z⊕ x = C((z1x1, . . . , zDxD)ᵀ).

Definition 9. Let x = (x1, . . . , xD)ᵀ be a composition and c be a real number. Then,
the power transformation operator is defined as ⊗ : SD × R→ SD such that:

h = c⊗ x = C ((xc1, . . . , xcD)ᵀ) .

It is worth noting that the simplex allows for a vector space structure, where
perturbation and power play role of addition and scalar multiplication, respectively.
Indeed, for x, z,p ∈ SD and c, d ∈ R the following axioms hold (some of them have
been proved by Billheimer et al. [16]):

• Commutativity of perturbation: x⊕ z = z⊕ x.

x⊕ z = C((x1z1, . . . , xDzD)ᵀ) = C((z1x1, . . . , zDxD)ᵀ) = z⊕ x.

• Associativity of perturbation: (x⊕ z)⊕ p = x⊕ (z⊕ p)

(x⊕ z)⊕ p = x′ ⊕ p = C(
(
x′1p1, . . . , x

′
DpD

)ᵀ)

=
(

x′1p1∑D
r=1 x

′
rpr

, . . . ,
x′DpD∑D
r=1 x

′
rpr

)ᵀ

=
(

x1z1p1∑D
r=1 xrzrpr

, . . . ,
xDzDpD∑D
r=1 xrzrpr

)ᵀ

=
(

x1z1p1∑D
r=1 xrzrpr

·
∑D
h=1 zhph∑D
h=1 zhph

, . . . ,
xDzDpD∑D
r=1 xrzrpr

·
∑D
h=1 zhph∑D
h=1 zhph

)ᵀ

=
(

x1p
′
1∑D

r=1 xrp
′
r

, . . . ,
xDp

′
D∑D

r=1 xrp
′
r

)ᵀ

= C(
(
x1p
′
1, . . . , xDp

′
D

)ᵀ) = x⊕ p′ = x⊕ (z⊕ p),

where x′r = xrzr∑D
h=1 xhzh

and p′r = zrpr∑D
h=1 zhph

.

• Neutral element of perturbation: the D-dimensional vector u =
(

1
D , . . . ,

1
D

)ᵀ
allows for

x⊕ u = x.

x⊕ u = C
((

x1
1
D
, . . . , xD

1
D

)ᵀ)

10 Chapter 2 Characteristics of Compositional Data



=
(

x1
1
D∑D

h=1 xh
1
D

, . . . ,
xD

1
D∑D

h=1 xh
1
D

)ᵀ

=
(

x1
1
D

1
D

∑D
h=1 xh

, . . . ,
xD

1
D

1
D

∑D
h=1 xh

)ᵀ

= C((x1, . . . , xD)ᵀ) = x.

• Inverse element of perturbation: for each x ∈ SD it is possible to define the element
x−1 ≡ C

((
1
x1
, . . . , 1

xD

)ᵀ)
such that x−1 ⊕ x = x⊕ x−1 = u.

x⊕ x−1 = C
((

x1
1
x1
, . . . xD

1
xD

)ᵀ)
= C((1, . . . , 1)ᵀ) =

( 1
D
, . . .

1
D

)ᵀ

= u.

• Associativity of power transformation: c⊗ (d⊗ x) = (c · d)⊗ x.

c⊗ (d⊗ x) = c⊗ C
((
xd1 . . . x

d
D

)ᵀ)
= c⊗

(
xd1∑D
h=1 x

d
h

, . . . ,
xd1∑D
h=1 x

d
h

)ᵀ

= c⊗
(
xd1
L
, . . . ,

xd1
L

)ᵀ

= C
(((

xd1
L

)c
, . . . ,

(
xdD
L

)c)ᵀ)

=
(
xc·d1
Lc

Lc∑D
r=1 x

c·d
r

, . . . ,
xc·dD
Lc

Lc∑D
r=1 x

c·d
r

)ᵀ

=
(

xc·d1∑D
r=1 x

c·d
r

, . . . ,
xc·dD∑D
r=1 x

c·d
r

)ᵀ

= C
((
xc·d1 , . . . , xc·dD

)ᵀ)
= (c · d)⊗ x.

• Distributivity of power transformation w.r.t. perturbation: c⊗ (x⊕ z) = (c⊗ x)⊕ (c⊗ z)

c⊗ (x⊕ z) = c⊗
(

x1z1∑D
h=1 xhzh

, . . . ,
xDzD∑D
h=1 xhzh

)ᵀ

= C
(((

x1z1∑D
h=1 xhzh

)c
, . . . ,

(
xDzD∑D
h=1 xhzh

)c)ᵀ)

=


xc1z

c
1

�������(∑D
h=1 xhzh

)c · 1
D∑
r=1

(
xrzr

������∑D
h=1 xhzh

)c , . . . , xcDz
c
D

�������(∑D
h=1 xhzh

)c · 1
D∑
r=1

(
xrzr

������∑D
h=1 xhzh

)c


ᵀ

=

 xc1z
c
1∑D

r=1 (xrzr)c
·

(
D∑
h=1

xch

)(
D∑
h=1

zch

)
(

D∑
h=1

xch

)(
D∑
h=1

zch

) , . . . , xcDz
c
D∑D

r=1 (xrzr)c
·

(
D∑
h=1

xch

)(
D∑
h=1

zch

)
(

D∑
h=1

xch

)(
D∑
h=1

zch

)


ᵀ

11



=

 xc1z
c
1(

D∑
h=1

xch

)(
D∑
h=1

zch

) ·
(

D∑
h=1

xch

)(
D∑
h=1

zch

)
D∑
r=1

(xrzr)c
, . . . ,

xcDz
c
D(

D∑
h=1

xch

)(
D∑
h=1

zch

) ·
(

D∑
h=1

xch

)(
D∑
h=1

zch

)
D∑
r=1

(xrzr)c


ᵀ

= C


 xc1

D∑
h=1

xch

· zc1
D∑
h=1

zch

, . . . ,
xcD
D∑
h=1

xch

· zcD
D∑
h=1

zch


ᵀ

=

 xc1
D∑
h=1

xch

, . . . ,
xcD
D∑
h=1

xch


ᵀ

⊕

 zc1
D∑
h=1

zch

, . . . ,
zcD
D∑
h=1

zch


ᵀ

= (c⊗ x)⊕ (c⊗ z)

• Distributivity of power transformation with respect to "classical" addition: (c+ d)⊗ x =
(c⊗ x)⊕ (d⊗ x).

(c+ d)⊗ x = C
((
xc+d1 , . . . , xc+dD

)ᵀ)

=

 xc+d1
D∑
h=1

xc+dh

·

(
D∑
r=1

xcr

)(
D∑
r=1

xdr

)
(

D∑
r=1

xcr

)(
D∑
r=1

xdr

) , . . . , xc+dD
D∑
h=1

xc+dh

·

(
D∑
r=1

xcr

)(
D∑
r=1

xdr

)
(

D∑
r=1

xcr

)(
D∑
r=1

xdr

)


ᵀ

=

 xc+d1(
D∑
r=1

xcr

)(
D∑
r=1

xdr

) ·
(

D∑
r=1

xcr

)(
D∑
r=1

xdr

)
D∑
h=1

xc+dh

, . . . ,
xc+dD(

D∑
r=1

xcr

)(
D∑
r=1

xdr

) ·
(

D∑
r=1

xcr

)(
D∑
r=1

xdr

)
D∑
h=1

xc+dh

,


ᵀ

= C

 xc1
D∑
r=1

xcr

· xd1
D∑
r=1

xdr

, . . . ,
xcD
D∑
r=1

xcr

· xdD
D∑
r=1

xdr


ᵀ

=

 xc1
D∑
r=1

xcr

, . . . ,
xcD
D∑
r=1

xcr


ᵀ

⊕

 xd1
D∑
r=1

xdr

, . . . ,
xdD
D∑
r=1

xdr


ᵀ

= (c⊗ x)⊕ (d⊗ x)

• Neutral element of power transformation: 1⊗ x = x.

1⊗ x = C
((
x1

1, . . . , x
1
D

)ᵀ)
= C ((x1, . . . , xD)ᵀ) = x
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The above proofs show that the simplex defines a vector space with basic opera-
tions defined by perturbation and power transformation. This vector space can be
complemented by a distance measure [2]:

dA(x, z) =
{

D∑
k=1

[
log xk

µ0(x) − log zk
µ0(z)

]2
} 1

2

, (2.1)

where x, z are vectors on the simplex. Please note that µ0(x) =
(

D∏
k=1

xk

) 1
D

is the

geometric mean of the components of x. Function (2.1) satisfies the usual conditions
for a metric and has three more properties (proofs can be found in [74]):

• dA(·, ·) does not change if the components of the compositions are permuted.

• dA(·, ·) is perturbation invariant: dA(x, z) = dA(p⊕ x,p⊕ z).

• dA(·, ·) is scale invariant: dA(c⊗ x, c⊗ z) = |c| · dA(x, z).

Since it is possible to define a metric dA(·, ·) that is perturbation invariant, the
simplex is also a metric vector space (usually referred to as the "Aitchison geometry
on the simplex" [74]).
By including also the inner product:

〈 x, z〉 = 1
2D

S∑
i=1

D∑
j=1

log xi
xj

log zi
zj
, (2.2)

it is possible to show that the D-part simplex is a (D − 1)-dimensional Hilbert space
[74, 75].

The analysis of compositional data raises some issues, the more obvious being
"negative bias" problem. Let X be a random vector whose support is the simplex.
Then,

0 = Cov (Xr, 1) = Cov

(
Xr,

D∑
h=1

Xh

)
=

D∑
h=1

Cov (Xr, Xh) , r = 1, . . . , D (2.3)

and then
∑
h6=r Cov (Xr, Xh) = −Var (Xr). Although no assumptions on the distri-

bution of X have been made, as a consequence of the unit-sum constraint at least
one covariance among two distinct components has to be negative. Since equation
2.3 holds for every r = 1, . . . , D, at least one covariance in each row (and column)
of the covariance matrix must be negative and the sum of each row (column) must
equal 0. Since covariances are not truly free to vary neither are correlations. In
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other words, a generic correlation coefficient among components of X can not vary
in the usual range (−1, 1). Then a question raises: is still the zero value a reasonable
threshold for no linear association?

Given a covariance matrix (suffering from the negative bias problem) of composi-
tional data is obtained, it could be of interest to investigate the connection with the
covariance matrix of the corresponding basis. In general, it is known that the closure
operator alters the covariance structure and induces negative correlation.

Example 6. Let Y = (Y1, Y2, Y3)ᵀ be a random vector defining a basis (i.e. Y ∈ R3
+)

with indipendent components. Let Yr ∼ Gamma(αr, 1), Y + =
∑3
r=1 Yr and X = Y/Y +.

Then it can be shown that the covariance matrices of Y and X are:

ΣY =


α1 0 0
0 α2 0
0 0 α3

 , ΣX =


α1(α+−α1)

(α+)2(α++1) − α1α2
(α+)2(α++1) − α1α3

(α+)2(α++1)

− α1α2
(α+)2(α++1)

α2(α+−α2)
(α+)2(α++1) − α2α3

(α+)2(α++1)

− α1α3
(α+)2(α++1) − α2α3

(α+)2(α++1)
α3(α+−α3)

(α+)2(α++1)

 .

Details on ΣX will be given in Section 3.1.

In the previous example, closing a random vector with independent components gen-
erates negative dependence among elements. This is coherent with the observations
made by Pearson [76], in 1897. He noted that ratios with independent numerators
and the same denominator have a non null correlation. In general, closing a random
vector modifies the correlation structure of the vector.

2.1 How to plot compositional data

A problem of compositional data regards visualization. The two main tools to
compositional data visualization with D = 3 are the Harker diagrams and the ternary
diagram. An Harker diagram is simply a scatterplot of two components. Supposing
that D = 3, then 3 scatterplots of the same compositional dataset (with components
called X1, X2 and X3) can be obtained: X1 Vs. X2, X1 Vs. X3 and X2 Vs. X3. Since
each of these represents the relationship between different components, one should
report all the possible scatterplots of component pairs.

Ternary diagrams [50] are intrinsecally connected to the symmetric version of S3.
They are formed by a triangle representing the boundary of the simplex and points

14 Chapter 2 Characteristics of Compositional Data



represent closed compositions. In particular, vertices of this triangle are the 3
compositions e1 = (1, 0, 0)ᵀ, e2 = (0, 1, 0)ᵀ and e3 = (0, 0, 1)ᵀ and the edges are
the sets of compositions with one null component. Gerald van den Boogaart and
Tolosana-Delgado [18] represent in a very clear how a ternary diagram should be
read (Figure 2.2 is Figure 2.2 in their book).

Fig. 2.2: Interpretation of a ternary diagram. Figure taken by Gerald van den Boogaart and
Tolosana-Delgado [18].

Ternary diagrams are a very powerful tool, since they help to represent three variables
into a two dimensional graphic. Of course, this is possible thanks to the unit-sum
constraint imposed by the simplex. In next sections both Harker and ternary diagrams
will be used to describe compositional data.

2.2 Simplicial Independencies

Because of the unit-sum constraint and the resulting "negative bias" issue, the usual
definition of independence can not be used when dealing with compostional data
(i.e. components of a composition always depends on each other). For this reason,
Aitchison and other authors [4, 23–27, 52] proposed several forms of independence
on the simplex.
Let X be a random vector obtained closing a basis Y. Several independence properties
can be described in terms of subcompositions and amalgamation.

Let Y1, . . . Ya1 |Ya1+1, . . . , Ya2 | , . . . ,
∣∣YaC−1+1, . . . , YaC be a partition of order C − 1

induced by the vector a = (a0, a1, . . . , aC)ᵀ as in Definition 3. Then it is possible to
define the subcomposition Sl:

Sl =
(
X1+al−1 , . . . , Xal

)ᵀ
X+
l

, l = 1, . . . , C, (2.4)
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where X+
l =

(
X1+al−1 + · · ·+Xal

)
is an element of the corresponding amalgama-

tion vector X+ = (X+
1 , . . . , X

+
C )ᵀ.

Definition 10 (Compositional Invariance). If a D-part composition X = C(Y) is
independent of the size of its basis Y +, then the basis Y is said to be compositionally
invariant.

While compositional invariance is essentially a property of a basis in relation to the
corresponding composition, next forms of independence are specifically defined for
partitions of order 1. Assuming that a1 = k, it follows that C = 2 and therefore
a = (0, k,D)ᵀ. If a generic form of independence holds for every k = 1, . . . , D − 1,
then that independence property is said to be complete.

Definition 11 (Subcompositional independence). The composition X is said to have
a subcompositional independence property if the two subcompositions S1 and S2 are
independent: S1 ⊥⊥ S2.

Definition 12 (Subcompositional invariance). A D-part composition X is subcompo-
sitional invariant if (S1, S2)ᵀ ⊥⊥ X+.

Definition 13 (Neutrality on the left). A neutrality on the left property means that
S1 ⊥⊥

(
S2,X+)ᵀ. As a result, the subcomposition S1 is not influenced by X2 = S2 ·X+

2 .

Definition 14 (Neutrality on the right). Anagously to Definition 13, a neutrality on
the right property means that S2 ⊥⊥

(
S1,X+)ᵀ.

If a composition has both neutrality properties is said to be neutral.

Definition 15 (Partition independence). A D-part composition X has the partition
independence property if S1 ⊥⊥ S2 ⊥⊥ X+.
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3Models defined on the simplex

In order to apply standard statistical methods (i.e. Maximum Likelihood estima-
tion, computation of confidence intervals, etc.) an assumption on the distribution
generating an observed sample is usually required. In this Section some parametric
distributions defined on the simplex are proposed. It is important to remark that the
D-part simplex is a (D − 1)-dimensional object laying into a D-dimensional space.
This implies that each distribution defined on the simplex must be characterized by
a probability density function that is a density with respect to (D − 1)-dimensional
Lebesgue measure [37]. Then, most of the density functions proposed in this section
are functions of D − 1 variables, being the D-th equal to 1 minus the other. Without

loss of generality, it is possible to define xD = 1−
D−1∑
r=1

xr and write these densities

as function of D elements.

It is possible to distinguish two approaches in modelling compositional data: the
so-called "staying in the simplex" and the transformation approach. The first one
defines distribution whose support is the simplex, whereas the second one looks for
a suitable transformation in order to map each composition into a different (simplier
and unconstrained). The first complete methodology built up for compositional data
is based on the latter approach. It has been developed by Aitchison [3] and it has
given rise to the "leave the simplex" branch of compositional data analysis.

3.1 The Dirichlet Distribution

The most popular distribution defined on the simplex is the Dirichlet distribution.
This is one of the multivariate generalizations of the Beta, that describes data
defined in the interval (0, 1). Let X be a D-dimensional random vector distributed
according to a Dirichlet distribution with parameter vector α = (α1, . . . , αD)ᵀ,
αr > 0, r = 1, . . . , D. Then, X ∼ D(α) and its probability density function is:

fD(x; α) = Γ(α+)∏D
r=1 Γ(αr)

D∏
r=1

xαr−1
r , (3.1)

where x ∈ SD and α+ =
∑
r αr. This distribution is very popular in Bayesian infer-

ence, since it can easily represent prior information on probabilities and because the
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Dirichlet distribution is a conjugate prior for the Multinomial distribution, making
information on the posterior distribution easy to obtain.
Evaluating the form of (3.1) for several configurations of α, some interesting consid-
erations can be made. If α1 = · · · = αD, then the density is symmetric. This setup
can be very useful in Bayesian inference in order to define a non-informative prior
on a probability vector. Another configuration of interest is α1 = · · · = αD = 1, that
corresponds to the uniform distribution on the simplex. If each αr is greater than
1, then the Dirichlet has an unique (finite) mode. On the contrary, if one or more
αr are less than 1, the density has a peak in each vertex associated to those α < 1.
Figure 3.1 illustrates different contour plots with different parameter configurations.
Comparing top-left and top-right panels of Figure 3.1, it is possible to note that as α+

increases, it occurs a shift of the probability mass towards a barycenter. Therefore,
the parameter α+ can be thought as a concentration parameter meaning that the
greater the α+ is, the larger probability mass is concentrated around a point in the
simplex.
Differently, bottom-left panel shows a situation with three peaks, one in each vertex,
due to the fact that all parameters are less than 1. In such a situation, a finite mode
does not exist.

The Dirichlet distribution is connected to the Gamma one, since it can be obtained
by normalizing a vector of independent Gamma elements. The Gammas elements
have a common rate parameter equal to β and can have (possibly) different shape
parameter. More formally, let Y = (Y1, . . . , YD)ᵀ be the vector of Gamma elements,
where Yr ⊥⊥ Yh for every r 6= h and Yr ∼ Gamma(αr, β). Then, Y/Y + ∼ D(α). In
the light of this relationship, observations from a Dirichlet distribution can be drawn
as follows:

1. Draw yr from Yr ∼ Gamma(αr, β), r = 1, . . . , D.

2. Compute y+ =
∑
r

αr.

3. Normalize y = (y1, . . . , yD)ᵀ to get the vector x = C(y) = y/y+, which is
Diriclet-distributed with parameter α.

Example 6 in Section 2 pratically illustrates the relationship among Gamma and
Dirichlet distributions. In particular, it enables the comparison between the covari-
ance matrix of the Dirichlet (provided in the next subsection) and the one connected
to its Gamma-basis. Since the elements of the Gamma basis are independent, the
observed Dirichlet covariances are completely due to the unit-sum constraint and,
consequently, to the closure operator.
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Fig. 3.1: Contour Plots of Dirichlet with different parameters.

Moments and properties

Let X = (X1, . . . , XD)ᵀ ∼ D(α), then the first two order moments can be written in
a simple form as follows. Let r and h be two integers such that r, h = 1, . . . , D and
r 6= h, then:

E [Xr] = αr
α+ (3.2)

Var (Xr) = E [Xr] (1− E [Xr])
α+ + 1 (3.3)

Cov (Xr, Xh) = −E [Xr]E [Xh]
α+ + 1 (3.4)
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From the above moments, some remarks can be made:

• The mean vector µ = (E [X1] , . . . ,E [XD])ᵀ is proportional to the parameter
α.

• If the mean vector is kept fixed, variances and covariances are entirely defined
as functions of α+ only.

• If Xr and Xh have the same expected value, then they are forced to have the
same variance too.

• Covariances among distinct elements of X are always negative and proportional
to the product of their expectations.

From these remarks it is immediate to note that the covariance structure of the
Dirichlet distribution is quite rigid. There are many real applications where such a
rigid structure is not reasonable. For example, considering the unit-sum constraint
imposed by the simplex, the negative linear dependence in (3.4) usually makes sense,
but it would be just as plausisible to allow two components to be positively associated.
As a simple example, suppose a set of data concerning the distribution of a family’s
income divided into four categories: "Food", "Clothes", "Savings" and "Other". If
"Food" and "Clothes" expenditures depend on the number of family members, a
positive (spurious) correlation can be observed among those components.
Moreover, there can be situations where components with the same expected value
do not have equal variances, which is not coherent with the Dirichlet distribution.

Despite its rigid structure, the Dirichlet distribution has several properties that make
it appealing and that motivate its widespread use in compositional data analysis:

Proposition 2 (Closure under Amalgamation). Let X = (X1, . . . , XD)ᵀ ∼ D(α); if
X+ =

(
X+

1 , . . . , X
+
C

)ᵀ
and α+ =

(
α+

1 , . . . , α
+
C

)ᵀ
are the amalgamations of the vectors

X and α, induced by the same partition, then X+ ∼ D(α+).

From Proposition 2 it is possible to derive the distribution of marginals. For examples,
the univariate marginals are:

(Xr, 1−Xr)ᵀ =

Xr,
∑
i 6=r

Xi

ᵀ

∼ D(αr, α+−αr) ≡ Beta(αr, α+−αr), r = 1, . . . , D

(3.5)
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Proposition 3 (Closure under Conditioning). Suppose that X = (X1, . . . , XD)ᵀ ∼
D(α) and let the vector X be split into two subvectors, X = (X1,X2)ᵀ, where X1 =
(X1, . . . , Xk)ᵀ and X2 = (Xk+1, . . . , XD)ᵀ for some k ∈ {1, . . . , D}. Then,(

X1

1− x+
2

∣∣∣∣∣X2 = x2

)
∼ D(α1), (3.6)

where α1 = (α1, . . . , αk)ᵀ and x+
2 is the sum of the elements in x2.

Please note that 3.6 can be written equivalently as:(
X1

1− x+
2

∣∣∣∣∣X2 = x2

)
≡ S1|X2 = x2 ∼ D(α1). (3.7)

Equation (3.7) does not depend on x2, implying that the Dirichlet distribution has
the neutrality on the left property. Since neutrality on the right can be easily obtained
with the same considerations, it is possible to conclude that the Dirichlet has the
neutrality property.

Proposition 4 (Independences). If X is Dirichlet-distributed, then it has all the inde-
pendence forms described in subsection 2.2.

Proposition 4 guarantees that the Dirichlet is tractable from a theoretical (and
computational) point of view but, on the other hand, it can be unrealistic in real
data applications. Indeed, it follows that the Dirichlet can only model extreme
independence among compositions, but a key role of statistics in real life applications
is to investigate the relationship among variables. Real cases where compositions
have every simplicial form of independence are uncommon.

In conclusion, the Dirichlet is a straightforward distribution on the simplex (its sim-
plicity is one of its strong features) that allows for a clear parameter interpretation;
however, it comes with a rigid covariance structure and a strong set of independen-
cies. Furthermore, it allows only for one finite mode, which is a strong limitation
where multimodality occurs. Several authors proposed distibutions aimed at gener-
alizing the Dirichlet [12, 23, 34, 67, 68, 71, 72]. In particular, the Liouville family
plays an important role. Marshall and Olkin [59] introduced the Lioville distribution,
Gupta and Richards [42–46] studied the multivariate Liouville distribution, and
several authors studied variants of this distributions and their properties [41, 78, 83,
85].
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3.2 The Additive Logistic-Normal

Aitchison (1986) developed a complete methodology for compositional data analysis,
which takes advantage of standard results for gaussian data through proper trans-
formation. The main idea here is to mimic the Lognormal approach: apply some
transformation to non-normally distributed data and then analyze the new variable
with a methodology built-up for gaussian data. In particular, Aitchison developed
the Additive-Logistic Normal distribution, ALN, also called simply Logistic Normal
[3, 5], based on the additive log-ratio transformation to compositional vectors.

Definition 16. Given a vector x ∈ SD, the additive log-ratio transformation (alr)
is the application:

yr = ln
(
xr
xh

)
, r = 1, . . . , h− 1, h+ 1, . . . , D, (3.8)

where the component h is the baseline category:

Since it is a 1-to-1 tranformation from SD to RD−1, it is possible to define its inverse
transformation, namely the additive logistic transformation:


xr = exp(yr)

1+
∑
v 6=h

exp(yv) , r = 1, . . . , h− 1, h+ 1, . . . , D

xh = 1
1+
∑
v 6=h

exp(yv)

(3.9)

It is immediate to note that (3.8) and (3.9) depend on the baseline category. A
similar transformation that does not depend on h is the centered log-ration transfor-
mation.

Definition 17. Given a vector x ∈ SD, the centered log-ratio transformation (clr)
is defined by:

wr = ln
(

xr
µ0(x)

)
, r = 1, . . . , D. (3.10)

where µ0(x) denotes the geometric mean of the elements of x.

Let X ∈ SD be a random composition, then by applying the alr transformation, it
holds:

Yr = ln
(
Xr

XD

)
, r = 1, . . . , D − 1. (3.11)

The random vector X is said to follow an Additive-Logistic Normal distribution(
denoted as: X ∼ LD−1(µ,Σ)

)
if the vector Y = (Y1, . . . , YD−1)ᵀ follows a (D −
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1)−dimensional Normal distribution
(
i.e. Y ∼ ND−1 (µ,Σ)

)
. µ is a (D−1)-dimensional

mean vector while Σ is a (D − 1) × (D − 1) covariance matrix also known as the
log-ratio covariance matrix [3], since its generic element σi,j is the covariance of
two log-ratio elements with common denominator:

σi,j = Cov
(

ln Xi

XD
, ln Xj

XD

)
. (3.12)

As the Normal distribution can be thought of as the limit distribution of a phe-
nomenon characterized by additive random errors, the ALN results as the limit
distribution of a compositional event subject to random perturbations [18]. From
the density function of ND−1 (µ,Σ) it is easy to compute the density function of an
ALN distribution:

fL (x; µ,Σ) = 1(∏D
r=1 xr

)√
(2π)D−1 |Σ|

exp
{
−1

2

(
ln

x(−D)
xD

− µ

)ᵀ

Σ−1
(

ln
x(−D)
xD

− µ

)}
,

(3.13)
where x ∈ SD, |Σ| is the determinant of the matrix Σ and x(−D) is the vector
x without the element in the D-th position. This density function depends on
(D + 2)(D − 1)

2 parameters. In Figure 3.2 we report some contour plots referred to
the ALN distribution.

An important feature of the Additive-Logistic Normal distribution is its connection to
the Lognormal distribution [3]:

Proposition 5. Let W be a D-dimensional random vector distributed according to a
multivariate Lognormal [48] with parameters ξ and Ω, W ∼ LogNormD(ξ,Ω). Then,
X = C(W) ∼ LD−1(F ξ, F Ω F ᵀ), where F =

[
I(D−1)| − 1(D)

]
is a (D − 1)×D matrix,

I(D−1) is the identity matrix of order (D − 1) and 1(D) is a vector with D elements
equal to 1.

The most attractive aspect of this transformation approach is the possibility of making
use of every statistical tool based on multivariate normality to analyze compositional
data. For example, a statistician can test if a sample x = (x1, . . . , xn)ᵀ arises from an
ALN distribution in a two-step approach:

1) transform x into y through the additive log-ratio transformation

2) test the assumption of multivariate normality of y [33]

Another example is the possibility to apply hypothesis testing to transformed data
and mapping the inferential conclusions back to the simplex.
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Fig. 3.2: Contour Plots of ALNs with different parameters.

An important limitation of this approach is that the alr transformation depends on
a baseline dimension. One might wonder if the order of the components of the
composition influence the analysis. In this regard, Aitchison showed that the ALN is
closed under permutation of the elements of the compositions [3]:

Proposition 6. Let X ∼ LD−1(µ,Σ) and XP = P ·X the composition ordered according
to a permutation matrix P. Then, XP ∼ LD−1 (µP,ΣP), where:

µP = QP · µ, ΣP = QP ·Σ · Q
ᵀ
P, QP = F · P · Fᵀ ·H−1.

The matrix F is defined as in Proposition 5, whereas the matrix H ∈M(D−1, D−1) =
I(D−1) + J(D−1) and J(D−1) is a unit matrix.
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Furthermore, other log-ratio models can be considered replacing the alr transforma-
tion with a different one. For example, the isometric log-ratio (ilr) transformation
[32] allows to define a new distribution. However, since it is possible to show that
the ilr transformations are linearly associated with the alr and the Normal distribu-
tion is invariant under linear transformations, the ilr model can be expressed as a
re-parametrization of the Additive Logistic-Normal distribution.

This "leave the simplex" approach did not satisfy the whole statistical community.
Indeed, the transformation approach helps use several tools but it makes the in-
terpretation of the results difficult, especially with respect to the original simplex
space. For example, the generic element σi,j in (3.12) is the covariance among the
logarithm of two ratios with common denominator: how should it be interpreted?
In the discussion of an important paper of Aitchison [4], Fisher made the following
statement:

Clearly, the speaker has been very successful in fitting simple models to normal-
transformed data; the counterpart to the simplicity of these models is the complexity of
corresponding relationships amongst the untransfomed components. [...] I still hold
out some hope that simple models of dependence can be found, peculiar to the simplex.
[...] Meanwhile, I shall analyse data with the normal-transform method.

In conclusion, the ALN (and all the log-ratio based approach for compositional data
analysis) takes advantage of a very simple idea (mapping the simplex into RD−1)
and, in such a way, it makes possible to use the standard and powerful statistical
methods for inference and modelling based on normality assumption. Nonetheless,
this approach introduces some ambiguity. This ambiguity of the ALN distribution
does not rely on the particular data transformation, rather than on the interpretation
of the results, meaning how expectations and/or covariances of log-ratios should be
interpreted with respect to the composition.
Let us consider an example: let X = (X1, X2, X3)ᵀ be distributed according to an
ALN(µ,Σ), where:

• µ =
(
E
[
ln X1

X3

]
,E
[
ln X2

X3

])ᵀ
.

• Σ =
[ ]

Var
(
ln X1

X3

)
Cov

(
ln X1

X3
, ln X2

X3

)
Cov

(
ln X2

X3
, ln X1

X3

)
Var

(
ln X2

X3

) .

Σ is the symmetric matrix with generic element σi,j = Cov
(
ln Xi

X3
, ln Xj

X3

)
,

i, j = {1, 2}.
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Do the expectations of the log-ratios provide some information on the mean vector
of the composition X? How is the covariance among two log-ratios connected to
the covariance matrix of X? A "staying in the simplex" approach allows to avoid this
issues.

Furthermore, the ALN distribution does not include the Dirichlet one, althought
every Dirichlet distribution can be approximated by the ALN minimizing the Kullback-
Leibler divergence measure ([54], see section 3.4.1 for a formal definition) [1]. The
alternative approach which will be illustrated in further subsections is built on the
definition of a proper distribution on the simplex (that possibly includes the Dirichlet
as a particular case), thus avoiding any need for transformation.

3.3 The Flexible Dirichlet

The Dirichlet and the ALN distribution do not allow for multimodality. This charac-
teristic can lower the fit of these models to real data, since they are often clustered,
thus showing multimodality. A recent alternative to overcome this issue has been
proposed by Ongaro and Migliorati in 2013 [72]. They have developed a new
distribution on the simplex with a particular finite mixture structure that allows for
a large flexibility both in the density function and in modelling the corresponding
covariance matrix. The distribution they developed, referred to as the Flexible
Dirichlet distribution, is obtained by normalizing a particular basis Y. In order to
define the elements of Y, the following random variables are introduced:

• Wr ∼ Gamma(αr, 1), where Wr ⊥⊥Wh for r 6= h (r, h = 1, . . . , D)

• U ∼ Gamma(τ, 1), independent of each Wr

• Z = (Z1, . . . , ZD)ᵀ ∼ Multinomial(1,p) independent of the Wr ’s and the U .

Therefore, W = (W1, . . . ,WD)ᵀ, U and Z are jointly independent.

Definition 18. Let W1, . . . ,WD, U and Z be random variables defined as above. Then,
the vector Y = (Y1, . . . , YD)ᵀ, where:

Yr = Wr + UZr, r = 1, . . . , D, (3.14)

follows a Flexible Gamma distribution with parameters α, τ and p, denoted as
FG(α, τ,p).

26 Chapter 3 Models defined on the simplex



Due to Definition 18, it is easy to show that Y is a random vector with positive and
dependent elements, whose support is RD+ . In [72] it is possible to find several
properties of this distribution, some are reported below:

• The Flexible Gamma distribution has a finite mixture structure, whose compo-
nents are vector with independent Gamma elements.

• Closure under Amalgamation. Amalgamations of a Flexible Gamma-distributed
vector follow a FG distribution themselves. That is, let Y ∼ FG(α, τ,p);
then Y+ = (Y +

1 , . . . , Y +
C )ᵀ ∼ FG(α+, τ,p+), where α+ = (α+

1 , . . . , α
+
C)ᵀ and

p+ = (p+
1 , . . . , p

+
C)ᵀ are the equivalent amalgamation of the vectors α and p.

• A FG basis is compositionally invariant: C(Y) ⊥⊥ Y +.

It is worth noting that the presence of the Multinomial vector in (3.14) allows for a
flexible dependence among elements of the basis. This is a small but significant gain
compared with the basis characterizing the Dirichlet distribution, whose elements
are independent. In particular, under the Flexible Gamma distribution,

Cov (Yr, Yh) = −prphτ2, r 6= h. (3.15)

By construction, these covariances are all negative, so that this model does not allow
for positive linear dependence among elements of the basis.
Closing the Flexible Gamma basis leads to the distribution defined on the simplex:

Definition 19. Let Y ∼ FG(α, τ,p); then its closed version X = C(Y) is said to be
distributed according to a Flexible Dirichlet distribution, denoted by FD(α, τ,p).

Due to the nature of the previously defined random variables, the parametric space
of this new simplex distribution is:

ΘFD =
{

(α, τ,p) : α ∈ RD+ , τ ∈ R+,p ∈ SD
}
.

The crucial characteristic of the Flexible Dirichlet distribution is that, conditioning
on Z, it can be represented as a finite mixture model with Dirichlet components. It
follows that:

fFD(x; α, τ,p) =
D∑
i=1

pifD(x; α + τ ei)
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= Γ(α+ + τ)
D∏
r=1

Γ(αr)

(
D∏
r=1

xαr−1
r

)
D∑
i=1

pi
Γ(αi)

Γ(αi + τ)x
τ
i (3.16)

for x ∈ SD. The vector ei is the i-th element of the usual canonical basis with
elements equal to 0 except for the i-th that is equal to 1. It is easy to see that this
density coincides with the Dirichlet if and only if τ = 1 and pi = αi

α+ , i = 1, . . . , D.
Thanks to this special case, the FD distribution allows for a severe scheme of
independences.
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Fig. 3.3: Contour Plots of FD with different parameters.

The density function (3.16), thanks to parameters introduced, can assume several
shapes, but, most importantly, it allows for multimodality, as depicted in contour
plots in Figure 3.3. This feature is due to the underlying finite mixture structure, that
enables to model data collected among several unknown subpopulations [38]. The
FD can represent a good model for clustering, since it is a "structured" mixture with
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links among the parameters of the components, as each component is parametrized
by α + τei. From the finite mixture theory, it is well known that each mixture
component may be interpreted as a cluster; in the FD context, each cluster has the
following vector mean:

µFD
i = α + τei

α+ + τ
=
(

α+

α+ + τ

)
α

α+ +
(

τ

α+ + τ

)
ei, i = 1, . . . , D. (3.17)

These cluster means deserve a very clear and simple geometric interpretation, as
they are linear convex combinations of a common "barycenter" ᾱ = α/α+ and the
i-th simplex vertex ei. Thus, the i-th element of µFD

i is higher than the i-th element
of µFD

j , for every j 6= i. The parameter τ
α++τ measures the distance between each

cluster mean µFD
i and the common barycenter ᾱ in the direction of ei.

To better illustrate the cluster structure imposed by this distribution, one can consider
the case with D = 3. Looking at Figure 3.4 one can see that the i-th cluster mean
(blue triangle) is situated on the line connecting ᾱ (green triangle) to the i-th
vertex. Thus, connecting the cluster means one can obtain an equilateral triangle
that can be thought of as a re-scaled simplex with the i-th vertex equal to µFD

i . This
"mini-simplex" has edges proportional to the ones of S3.

Unlike general mixture models, the FD distribution does not have identifiability issues
thanks to the particular parameter of each mixture component [63]. Furthermore,
thanks to the definition of the Flexible Gamma elements and to its closure under
amalgamation, the following propositions hold:

Proposition 7 (Closure under Permutation). Let X ∼ FD(α, τ,p) and let X̃ be any
permutation of the elements of X. Then, X̃ ∼ FD(α̃, τ, p̃), where α̃ and p̃ are the
corresponding permutation of the vectors α and p.

Proposition 8 (Closure under Amalgamation). Let X ∼ FD(α, τ,p). Then the amal-
gamation X+ = (X1, . . . , XC)ᵀ ∼ FD(α+, τ,p+).

Let X be distributed according to a FD(α, τ,p) distribution and let γ = (γ1, . . . , γD)ᵀ

be a vector of non-negative integers. Then the joint moments of any order are:

E
[
D∏
r=1

Xγr
r

]
= 1

(α+ + τ)[γ+]

D∏
r=1

α[γr]
r

D∑
i=1

(αi + τ)[γi]

α
[γi]
i

pi, (3.18)

where γ+ =
∑D
r=1 γr and z[γ] = z(z + 1) . . . (z + γ − 1) is the rising factorial (it is

important to recall that z[0] = 1).
In particular, the first two order moments are:
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Fig. 3.4: FD cluster means structure. Top-Left: α = (3, 3, 3)ᵀ, τ = 5. Top-Right: α =
(3, 3, 3)ᵀ, τ = 10. Bottom-Left: α = (3, 10, 5)ᵀ, τ = 15. Bottom-Right: α =
(3, 10, 5)ᵀ, τ = 5.

E [Xr] = αr + prτ

α+ + τ
= αr
α+

(
α+

α+ + τ

)
+ pr

(
τ

α+ + τ

)
(3.19)

Var (Xr) = E [Xr] (1− E [Xr])
α+ + τ + 1 + τ2pr(1− pr)

(α+ + τ)(α+ + τ + 1) (3.20)

Cov (Xr, Xh) = −E [Xr]E [Xh]
α+ + τ + 1 −

τ2prph
(α+ + τ)(α+ + τ + 1) , r 6= h (3.21)

Comparing (3.19 - 3.21) to the corresponding moments of the Dirichlet distribution,
it is easy to note that the new parameters entail a more flexible model for the
covariance matrix. In particular, the parameters τ and p allow components with
the same mean to have different variances and covariances which are not strictly
proportional to the product of expected values. The properties of the Flexible
Dirichlet make it a suitable solution for compositional data.
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3.3.1 Marginals, Subcompositions and Conditional distributions

Let k be an integer number such that 1 ≤ k < D. Then it is possible to split
the vector X into two subvectors with distinct elements: X1 = (X1, . . . , Xk)ᵀ and
X2 = (Xk+1, . . . , XD)ᵀ. Let X+

1 and X+
2 denote the totals of these two subvectors.

The quantities αl,pl, α
+
l and p+

l (l = 1, 2) are defined in the same way. Finally, S1

and S2 are two particular subcompositions: S1 = C (X1) and S2 = C (X2).

Proposition 9 (Marginal distributions). Let X be a random vector distributed accord-
ing to a FD distribution with parameters α, τ and p. Then,

(X1, 1−X+
1 )ᵀ ∼ FD

((
α1, α

+ − α+
1

)ᵀ
, τ,
(
p1, 1− p+

1

)ᵀ)
(3.22)

The property of closeness under marginalization is due to the same property of the
Flexible Gamma distribution. From (3.24) it is easy to derive the one-dimensional
marginals:

(Xr, 1−Xr)ᵀ ∼ prBeta
(
αr + τ, α+ − αr

)
+ (1− pr)Beta

(
αr, α

+ − αr + τ
)
.

(3.23)

Proposition 10 (Distribution of subcompositions). Let X ∼ FD(α, τ,p). Then:

S1 ∼ p+
1 FD

(
α1, τ,

p1
p+

1

)
+ (1− p+

1 )D(α1) (3.24)

Proposition 11 (Conditional distributions). Let X ∼ FD(α, τ,p). Then:

S1|X2 = x2 ∼ w(x2)FD
(

α1, τ,
p1
p+

1

)
+ (1− w(x2))D(α1), (3.25)

where w(x2) = p+
1

p+
1 + q(x2)

and q(x2) = Γ(α+
1 + τ)

Γ(α+
1 )(1− x+

2 )τ
D∑

i=k+1
pi

Γ(αi)
Γ(αi + τ)x

τ
i .

The above proposition means that the conditional distribution of S1 given the
remaining elements of the composition coincide with a finite mixture of a Dirichlet
and a FD distributions. If one of the following holds, then the weights of this finite
mixture do not depend on x2 :

• p1 = · · · = pk = 0.

• pk+1 = · · · = pD = 0.

• τ = 1 and
p1
α1

= · · · = pk
αk

.

3.3 The Flexible Dirichlet 31



Thanks to this special mixture structure, it is easy to derive the conditional moments.
For example, the conditional expectation is:

E [S1|X2 = x2] = α1

α+
1

+
(

τ

τ + α+
1

)(
p1
p+

1
− α1

α+
1

)
w(x2). (3.26)

It is possible to note that the conditional expectation (3.26) does not depend on
x2 if and only if p+

1 = 0 or α1/α
+
1 = p1/p

+
1 . Otherwise, it can capture several

forms of dependence. For example, let S1 = (S1,1, S1,2, S1,3)ᵀ = (X1, X2, X3)ᵀ

X1 +X2 +X3
,

then Figure (3.5) shows how the expectation E [S1|X4 = x4] varies as a function of
x4, given α = (3, 17, 10, 5)ᵀ, τ = 10 and p = (0.4, 0.1, 0.25, 0.25)ᵀ. In top panels, it is
possible to observe an (increasing or decreasing) S-shape behavior of the conditional
expectation, whereas in the bottom panel the regression line is constant. The reason

why E [S1,3|X4 = x4] does not change as x4 varies is that
α3

α+
1

= 10
30 = 0.25

0.75 = p3

p+
1

,

that is one of the condition listed above.
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Fig. 3.5: FD’s Conditional Expectation with α = (3, 17, 10, 5)ᵀ, τ = 10 and p =
(0.4, 0.1, 0.25, 0.25)ᵀ - Simulated data. Each color represents a subpopulation.
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It is important to note that, thanks to the property of closure under permutation,
all the properties previously reported hold not only for subcompositions based on
the first k elements of X but they hold for every subcomposition based on the first k
components of any permutation of the elements of X.

Finally, an estimation procedure based on the EM algorithm [28] has been developed
to provide Maximum Likelihood Estimates (MLes) for the parameters of a FD distri-
bution [63]. As it is well known that EM algorithm depends on inital values [15, 29,
70], the proposed procedure combines several variants of the EM algorithm and dif-
ferent initialization strategies. The finite mixture structure of the FD justifies the use
of the EM algorithm, since it makes possible to treat the estimation procedure as an
incomplete data problem. Let x = (x1, . . . , xn)ᵀ be an i.i.d. sample generated from a
FD(α, τ,p). Since the FD(·) can be described by a finite mixture, each observation
xs (s = 1, . . . , n) can be thought of as generated from a particular component of
that mixture; therefore we may define a latent vector z = (z1, . . . , zn)ᵀ, where zs,i is
equal to 1 if the s-th observation has arisen from the i-th cluster of the mixture (i.e.
Ss = i) and 0 otherwise. The vector z can be considered as the missing component
vector. Then, it is possible to define the complete-data log-likelihood function:

LC(x,S; α, τ,p) =
n∏
s=1

D∏
i=1

piΓ(α+ + τ)Γ(αi)
Γ(αi + τ) xτs,i

D∏
h=1

xαh−1
s,h

Γ(αh)


zs,i

. (3.27)

This function is the one that will be maximized by the EM algorithm [38]. More
details about this estimation procedure can be found in [63].

3.3.2 An alternative estimation procedure: a Bayesian approach

Although there already exists an EM based estimation procedure, a Bayesian ap-
proach has been considered and compared to the classical one. The reason why such
approach has been considered is that bringing prior information in the analysis (e.g.
information on the clusters size p) could be crucial. Furthermore, the interest is
also in comparing the results of the two procedures in some challenging scenarios.
This work has been presented at the meeting of the CLAssification and Data Anal-
ysis Group (CLADAG 2017) [7] and accepted for publication in the CLADAG2017
Springer Book. Bayesian estimation of mixture models often suffers of the label
switching problem. Nevertheless, strong identifiability of the FD ensures that the
model does not show invariance under permutation of the mixture components.
Therefore, no label switching problems arise in the estimation process. Thanks to
the already mentioned missing data structure, the Bayesian procedure can rely on a
Gibbs sampling algorithm to draw from the posterior distribution [38, 39].
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To implement a Bayesian estimation procedure, one needs to define the likelihood
function and the priors. The likelihood function suitable for a Gibb sampling
algorithm is the complete-data likelihood already defined in (3.27). To simplify
prior elicitation, it is useful to assume that p and (α, τ)ᵀ have independent prior
distributions. In this scenario, a reasonable choice for the prior distribution of p is
D(e0, . . . , e0), e0 ∈ R+. The latter is a common choice in the statistical literaure [30,
38, 39], since the Dirichlet with equal hyperparameters (as the one in the top-left
panel in Figure 3.1) is the standard prior for weigths of a finite mixture model
and it treats all the components alike ([38]). Another simple choice is to impose
independence among τ and each αi (i.e. π(α, τ) = π(τ)

∏D
i=1 π(αi)) and select

a reparametrized exponential prior distribution for each element of the random
vector (α1, . . . , αD, τ)ᵀ, which greatly simplifies computation of the full conditionals.
Thus:

π(αi) ∝ aαii , i = 1, . . . , D

π(τ) ∝ bτ
=⇒ π(α, τ) ∝ bτ

D∏
i=1

aαii , (3.28)

where (a1, . . . , aD, b)ᵀ is a vector of hyperparameters and ai, b ∈ (0, 1).

Then, the Gibbs sampling algorithm can be described as follows. Let S denote the
vector of missing group labels (i.e. Sj = i means that the j-th observation has arisen
from group i). Then, the algorithm is composed by the following steps:

1. Obtain an initial classification S(0) of data into D groups. Repeat steps 2 and 3
for m = 1, . . . , B, . . . , B +N .

2. Given S(m−1), sample parameters from their full conditionals:

• Sample p(m) from π
(
p|S(m−1), x

)

• Sample (α(m), τ (m))ᵀ from π
(
α, τ |S(m−1), x

)

3. Given the new parameters
(
α(m), τ (m),p(m)

)ᵀ
, sample a new partition S(m)

from π
(
S|α(m), τ (m),p(m)

)

Choosing a Dirichlet prior for p implies that the full conditional π
(
p|S(m−1), x

)
is

a Dirichlet distribution with updated hyperparameters (e1, . . . , eD)ᵀ, where ei =
e0 +Ni

(
S(m−1)

)
and Ni

(
S(m−1)

)
is the number of data points assigned to group i

in partition S(m−1). Step 3. needs new data partitions S(m): these can be obtained
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by drawing a vector from a Multinomial(1,p∗s) and assigning to S(m)
s (s = 1, . . . , n)

the position in which the 1 occurs, where p∗s = (p∗s,1, . . . , p∗s,D) and:

p∗s,i = Pr
(
Ss = i|α(m), τ (m),p(m)

)
=

p
(m)
i fD

(
xs; α(m) + τ (m)ei

)
∑D
k=1 p

(m)
k fD

(
xs; α(m) + τ (m)ek

) , (3.29)

(i = 1, . . . , D).

The main issue with this Gibbs sampling algorithm is the generation of values from
the full conditional π(α, τ |S(m−1), x). It is possible to show that the latter represents
a distribution which results difficult to generate from whatever prior is chosen for
(α, τ)ᵀ. Given the joint prior (3.28), the full conditionals are the following:


π
(
αl|α(−l), τ,S, x

)
∝
[

Γ(α+ + τ)
Γ(αl)

]n [ Γ(αl)
Γ(αl + τ)

]Nl(S)
aαll

D∏
i=1

∏
s:Ss=i

xαls,l, l = 1, . . . , D

π (τ |α,S, x) ∝
[
Γ(α+ + τ)

]n D∏
i=1

[Γ(αi + τ)]−Ni(S) bτ
D∏
i=1

∏
s:Ss=i

xτs,i.

where α(−l) =
(
α1, . . . , α(l−1), α(l+1), . . . , αD

)ᵀ
. Unfortunately, these density func-

tions do not characterize any known distribution, so an Inverse Transform Method
(ITM, [79]) has been implemented to obtain exact values from these distributions.
This method requires the numerical evaluation of D + 1 integrals in order to com-
pute the normalization constants for the full conditionals and one more numerical
integration to obtain the distribution function of each one of the full conditionals.
Finally, the procedure have to numerically find the percentile of order q, where q
is drawn from an Uniform distribution on (0, 1). This involves a time-consuming
algorithm (i.e. slow convergence of the Gibbs sampler) though, as it has emerged
from an exploratory simulation study implemented in R ([77]). This issue can be
overcome by considering a new parametrization similar to the one proposed by
Migliorati, Di Brisco and Ongaro [62]:


µ = α

φ
+ w̃p

φ = α+ + τ


w̃ = τ

φ

p = p
(3.30)

This parametrization allows for an interesting and straightforward interpretation
of parameters: the vector p contains the usual weights of the mixture model, µ

represents the overall mean vector (i.e. E [X] = µ), φ is a precision parameter and w̃
measures the distance of each cluster mean from the common barycenter µ. It is
easy to check that µ,p ∈ SD and φ ∈ R+.
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Proposition 12. The new parameter w̃ belongs to the interval
(
0,min

{
1,minj

{
µj
pj

}})
.

Proof. It is possible to rewrite αj and α+ with respect to the new parametrization:

αj = φ(µj − w̃pj), j = 1, . . . , D α+ = φ(1− w̃). (3.31)

Since 0 <
αj
α+ < 1, it follows that 0 <

φ(µj − w̃pj)
φ(1− w̃) < 1. Then, for every j =

1, . . . , D:

0 <
φ(µj − w̃pj)
φ(1− w̃)

⇒ 0 < µj − w̃pj
⇒ w̃ <

µj
pj

(3.32)

φ(µj − w̃pj)
φ(1− w̃) < 1

⇒ µj − w̃pj < 1− w̃

⇒ w̃ <
1− µj
1− pj

(3.33)

Since (3.32) holds for every j = 1, . . . , D, the following hold:

w̃pj < µj

⇒
∑
h6=j

phw̃ <
∑
h6=j

µh

⇒ w̃(1− pj) < (1− µj)

⇒ w̃ <
1− µj
1− pj

Thus, (3.32) implies (3.33). Since that w̃ = τ

φ
< 1, it follows that w̃ < min

{
1,minj

{
µj
pj

}}
.

Thanks to Proposition 12, it is possible to define a normalized version of w̃: w =
w̃

min
{

1,minj
{
µj
pj

}} . In this way the parameter space is variation independent, so that

the prior elicitation can rely on independent priors:

µ ∼ D(e0, . . . , e0)

w ∼ Unif(0, 1)

φ ∼ Gamma(g1, g2)

p ∼ D(d0, . . . , d0)
(3.34)
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where e0, d0, g1 and g2 are positive hyperparameters. This set of priors ensures
noninformativity or vagueness, in the estimation procedure. Indeed, the Dirichlet
distribution with equal hyperparameters treats all the components alike. Moreover,
the Gamma distribution is a common choice for the prior of a precision parameter,
and, by choosing small values for the rate hyperparameter g2, vague priors are
obtained. By setting g1 = g2, the prior expectation is equal to 1 and the prior
variance is g−1

2 . Then a large prior probability is given to observed values all close to
zero or one (and this implies that the αi’s in the original parametrization would be
less than 1). If some prior information is available and one expects that the precision
parameter should be greater than one, then he/she might choose prior distributions
for φ with higher mean, though still keeping a large variance (i.e. g1 = k · g2).

A Gibbs sampling algorithm was implemented in the BUGS environment ([57, 69])
to sample from the joint posterior distribution. The likelihood function used in this
model is the complete-data likelihood function given by (3.27) according to new
parametrization in (3.30).
In order to evaluate the performance of this Gibbs sampling algorithm, samples from
a Flexible Dirichlet with D = 3 have been simultated considering several parametric
configurations. Priors as in (3.34) have been chosen with hyperparameters e0 = d0 =
1 and g1 = g2 = 0.0001. The results of two representative parameter configurations
are reported below: one characterized by well separated clusters and one with
overlapping clusters. The latter is a challenging scenario for every cluster-based
approach, due to the difficulties in identifying groups of homogeneous observations.
Figure 3.6 shows a simulated dataset for each of these scenarios; data points are
colored according to their cluster membership. The left panel is characterized by
the parameters µ = (0.333, 0.333, 0.333)ᵀ, p = (0.333, 0.333, 0.333)ᵀ, φ = 47 and
w = 0.362 whereas the right panel is characterized by µ = (0.271, 0.339, 0.390)ᵀ,
p = (0.333, 0.333, 0.333)ᵀ, φ = 58.5 and w = 0.116.
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Fig. 3.6: Two datasets simulated from FD with: Each color defines a cluster.
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In Appendix 8.1 the interested reader may find the results of the simulation study
and all the five configurations of parameters considered.

The simulation consists in generating 200 samples of size 150 for each parameter
configuration and, for each of them, initializing an MCMC chain of length 25000
with B = 10000 burn-in iteration. To properly treat autocorrelation derived by the
use of a MCMC method, a thinning value equal to 10 has been set. Graphical tools
(i.e. trace plots and mean plots) have been used to verify the convergence of the
chain to the stationary distribution. Tables 3.1 and 3.2 show the mean of the 200
posterior means, the mean of the 200 posterior Standard Deviations (SD), the mean
of the Maximum Likelihood estimates (MLe) and the corresponding Standard Errors
(SE).

Parameter True Post. Mean Post. SD MLe MLe SE
µ1 0.333 0.334 0.015 0.334 0.015
µ2 0.333 0.335 0.015 0.335 0.015
µ3 0.333 0.331 0.015 0.331 0.015
p1 0.333 0.334 0.038 0.334 0.039
p2 0.333 0.337 0.039 0.337 0.039
p3 0.333 0.329 0.038 0.329 0.039
φ 47 47.237 3.872 47.824 3.827
w 0.3617 0.361 0.009 0.390 0.018

Tab. 3.1: Simulation results for a well separated clusters scenario.

Parameter True Post. Mean Post. SD MLe MLe SE
µ1 0.271 0.271 0.006 0.271 0.006
µ2 0.339 0.340 0.006 0.340 0.006
µ3 0.390 0.389 0.006 0.389 0.006
p1 0.333 0.366 0.206 0.337 0.155
p2 0.333 0.335 0.203 0.344 0.162
p3 0.333 0.299 0.198 0.319 0.171
φ 58.5 48.684 8.720 59.332 9.950
w 0.1158 0.066 0.031 0.152 0.050

Tab. 3.2: Simulation results for overlapped clusters.

From Table 3.1 it emerges that, when clusters are well separated, the Bayesian
procedure produces more accurate and less variable estimates than the E-M based
ones. Nonetheless, if clusters are too closed (Table 3.2), both approaches do not
provide unbiased estimation of the parameters, as expected due to the unclear data
structure. Though, in this scenario the classical procedure is preferable: the precision
parameter φ and w are heavily underestimated with the Bayesian approach, while
the ML procedure overestimates them only slightly.

One last consideration about the new Bayesian procedure is that it is robust with
respect to the choice of the hyperparameters. Even with different values of e0, d0, g1
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and g2, results are similar to the ones reported in Tables 3.1 and 3.2 (in appendix
8.1.2 it is possible to find the results associated to different values of g1 and g2).
Furthermore, it is also robust with respect to the choice of the loss function: due
to the approximate symmetry of each marginal posterior distribution, the posterior
means are very close to the posterior medians and posterior modes (see appendix
8.1.1).

In conclusion, the Bayesian approach is very precise when data show well sepa-
rated clusters, but it does not work as well as the EM algorithm when clusters are
overlapping.

3.4 The Extended Flexible Dirichlet

The Flexible Dirichlet can fit real data better than the Dirichlet and the Additive
Logistic-Normal distributions in a variety of scenarios. However, it assumes a
symmetric structure of the cluster means, as it can be noted by Figure 3.4. This
means that the great advantage of using this distribution, with respect the Dirichlet
and the ALN ones, depends on a less flexible structure of subpopulation distributions.
In order to overcome this aspect, the generating basis can be generalized. Let the
generic r-th element of the basis Y be:

Yr = Wr + UrZr, r = 1, . . . , D. (3.35)

The vectors W = (W1, . . . ,WD)ᵀ, U = (U1, . . . , UD)ᵀ and Z = (Z1, . . . , ZD)ᵀ are
jointly independent. Furthermore, W and U have independent elements and
Wr ∼ Gamma(αr, β), Ur ∼ Gamma(τr, β) and Z ∼ Multinomial(1,p). This ba-
sis is parametrized by the vectors α = (α1, . . . , αD)ᵀ, τ = (τ1, . . . , τD)ᵀ and p =
(p1, . . . , pD)ᵀ and it can be viewed as a finite mixture of random vectors with in-
dependent Gamma components. This allows an easy expression for its density
function:

fY(y; α, τ ,p, β) =
D∑
i=1

pi

D∏
r=1

fG(yr;αr + τreir , β) (3.36)

= βα
+∏D

r=1 Γ(αr)
e−βy

+
(

D∏
r=1

yαr−1
r

)
D∑
i=1

(β · yr)τi
Γ(αi)

Γ(αi + τi)
pi.
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where fG(·; ·) denotes the probability density function of a Gamma random variable.
Furthermore,

E
[
D∏
i=1

Y γi
i

]
= β−γ

+
(

D∏
r=1

α[γr]
r

)
D∑
i=1

(αi + τi)[γi]

α
[γi]
i

pi, (3.37)

where γ+ =
D∑
r=1

γr, γr (r = 1, . . . , D) are non-negative integers and z[γ] = z(z +

1) . . . (z + γ − 1) is the rising factorial (please note that z[0] = 1).

Definition 20. Let Y = (Y1, . . . , YD)ᵀ be a basis obtained according to 3.35 and Y +

its size. Then, the distribution of the random vector X = Y/Y + is called Extended
Flexible Dirichlet and it is denoted by EFD(α, τ ,p).

Because of the particular mixture structure (3.36), it is possible to show that
X/Y +|Z = ei ∼ D(α + τiei). Because of the compositional invariance of the
Dirichlet distribution, X|Z = ei is independent of Y +|Z = ei for every i = 1, . . . , D.
Thus it is possible to derive the density function of

(
X, Y +)ᵀ as:

f(X,Y +)(x, y+; α, τ ,p, β) =
D∑
i=1

pifD(x; α + τiei)fG(y+;α+ + τi, β) (3.38)

From (3.38) it is easy to compute the marginals of X and the size Y +. Specifically:

fY +(y+) =
D∑
i=1

pifG(y+;α+ + τi, β) (3.39)

fX(x; α, τ ,p) = fEFD(x; α, τ ,p) =
D∑
i=1

pifD(x; α + τiei)

= 1∏D
r=1 Γ(αr)

(
D∏
r=1

xαr−1
r

)
D∑
i=1

pi
Γ(αi)Γ(α+ + τi)

Γ(αi + τi)
xτii (3.40)

The parametric space of the EFD distribution derives from the definition of the basis
in Equation (3.35):

ΘEFD =
{

(α, τ ,p) : α ∈ RD+ , τ ∈ RD+ ,p ∈ SD
}
.

From (3.40) it is easy to see that the EFD coincides with the FD distribution if and
only if τ1 = · · · = τD = τ . In Figure 3.7 is possible to find some examples of how its
density function varies according to the parameter vectors.
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Fig. 3.7: Contour Plots of EFD with different parameters.

The Extendend Flexible Dirichlet has D − 1 more parameters than the Flexible
Dirichlet: these additional parameters allow to introduce more flexibility in the
cluster position on the ternary diagram. In particular, each cluster mean can have a
different distance from the common barycenter ᾱ = α/α+:

µEFD
i = α + τi ei

α+ + τi
=
(

α+

α+ + τi

)
α

α+ +
(

τi
α+ + τi

)
ei (3.41)

From Equation (3.41) it is easy to see that µEFD
i is a weighted average of two

quantities: ᾱ and ei. The higher τi is, the further away the i-th cluster is from ᾱ,
without depending on τ1, . . . , τi−1, τi+1, . . . , τD. Thanks to this structure, element i
of µEFD

i is greater than element i of µEFD
r for every r 6= i.
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Considering the case with D = 3, in the FD model the cluster means form an
equilateral triangle with edges parallel to the simplex ones. Introducing several τi’s,
such constraint does not hold anymore: connecting the µEFD

i ’s one can obtain any
triangle with vertices located on the lines connecting the barycenter ᾱ to each vertex
ei. Figure 3.8 shows some examples of this cluster pattern.

x1

x3

x2 x1

x3

x2

x1

x3

x2 x1

x3

x2

Fig. 3.8: EFD cluster means structure. Top-Left: α = (3, 3, 3)ᵀ, τ = (2, 15, 5)ᵀ. Top-Right:
α = (3, 3, 3)ᵀ, τ = (30, 2, 30)ᵀ. Bottom-Left: α = (5, 13, 5)ᵀ, τ = (15, 15, 5)ᵀ.
Bottom-Right: α = (10, 5, 30)ᵀ, τ = (5, 8, 32)ᵀ.

An important feature of the EFD distribution is that it is not compositionally invariant,
in general:

Proposition 13. Let X ∼ EFD(α, τ ,p). Then, it is compositionally invariant if and
only if τr = τ ∀ r ∈ {1, . . . , D} (i.e. if it coincides with the FD).

Proof. First of all, the conditional distribution of X|Y + = y+ is required. Thanks to
equations (3.38) and (3.39) it is possible to compute fX|Y +(x):
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fX|Y +(x) =
fX,Y +(x, y+)
fY +(y+) =

∑D
i=1 pifD(x; α + τiei)fG(y+;α+ + τi, β)∑D

r=1 prfG(y+;α+ + τr, β)

=
D∑
i=1

fD(x; α + τiei) ·
pi

β(α++τi)

Γ(α+ + τi)
(
y+
)(α++τi−1)

e−(β(y+))

D∑
r=1

pr
β(α++τr)

Γ(α+ + τr)
(
y+
)(α++τr−1)

e−(β(y+))

=
D∑
i=1

fD(x; α + τiei) ·
pi

(
y+)τi

Γ(α+ + τi)( 1
β

)τi D∑
r=1

pr

(
βy+)τr

Γ(α+ + τr)

Defining:

p′i(y+) = pifG(y+;α+ + τi, β)
D∑
r=1

prfG(y+;α+ + τr, β)

=
pi

(
y+)τi

Γ(α+ + τi)( 1
β

)τi D∑
r=1

pr

(
βy+)τr

Γ(α+ + τr)

,

(3.42)

the density function fX|Y +(x) defines an EFD
(
α, τ ,p′(y+)

)
distribution. It is worth

to noting that the only quantity influenced by y+ is the vector p′(y+). It is easy
to see that if τi = τ ∀ i, then p′i(y+) coincides with pi, i = 1, . . . , D and then the
distribution is compositionally invariant. On the other hand, if the compositional
invariance property holds, then p′i(y+) does not depend on the size and so does not
the ratio p′i(y+)/p′r(y+) ∝

(
y+)τi−τr . Then τi = τr for every i 6= r .

Inspecting (3.42) it is possible to study the dependence among X|Y + = y+ and y+:
increasing the size, the weigth associated to the larger τi increases. This means
that the size does not affect the parameters α and τ (and, consequently, the cluster
means), but it modifies the structure of the weights. In order to illustrate this
influence on the weights, the following example is proposed:

Example 7. Let β = 1, α = (5, 5, 5)ᵀ and τ = (10, 12, 8)ᵀ. Figure 3.9 shows how the
vector p′(y+) changes as a function of the size y+ in two different situations: the first
with p =

(
1
3 ,

1
3 ,

1
3

)ᵀ
and the second with p = (0.2, 0.3, 0.5)ᵀ.
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Fig. 3.9: Elements of p′(y+) for increasing values of y+ with α = (5, 5, 5)ᵀ, τ = (10, 12, 8)ᵀ
and p = (1/3, 1/3, 1/3)ᵀ (left) or p = (0.2, 0.3, 0.5)ᵀ (right).

In both scenarios, low values of y+ lead the weight associated to the lower τi to be close
to 1. Increasing the size, this weight goes to zero, whereas the one connected to the
highest τi approaches 1.
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3.4.1 Moments

From (3.40) it is possible to note that the EFD distribution is a finite mixture where
the i-th component is distributed according to a D(α + τiei). This fact makes the
joint moments easy to compute:

E
[
D∏
i=1

Xγi
i

]
=

D∏
i=1

α
[γi]
i

D∑
r=1

(αr + τr)[γr]

α
[γr]
r (α+ + τr)[γ+]

pr. (3.43)

In particular, the first two moments of the EFD take the form:

E [Xr] = αr k1 + τr
pr

α+ + τr
, (3.44)

Var (Xr) = α2
r(k2 − k2

1) + prτr(2αr + τr + 1)
(α+ + τr)(α+ + τr + 1)+

+ αrk2 −
p2
rτ

2
r

(α+ + τr)2 − k1
2αrprτr
α+ + τr

,

(3.45)

Cov (Xh, Xr) = αrphτh
α+ + τh

( 1
α+ + τh + 1 − k1

)
+

+ αhprτr
α+ + τr

( 1
α+ + τr + 1 − k1

)
+

− phprτhτr
(α+ + τh)(α+ + τr)

+ αhαr(k2 − k2
1),

(3.46)

(h, r = 1, . . . , D; h 6= r) where:

k1 =
D∑
r=1

pr
α+ + τr

, and k2 =
D∑
r=1

pr
(α+ + τr)(α+ + τr + 1) .

The EFD distribution allows for positive covariances. For example, considering the
parameters α = (4, 6, 19)ᵀ, τ = (5, 1, 42)ᵀ and p = (0.23, 0.12, 0.64)ᵀ the covariance
and correlation matrices (denoted as Σ and R) are:

Σ =


0.00972 0.00320 −0.01180
0.00320 0.00555 −0.00753
−0.01180 −0.00753 0.02687

 , R =


1 0.43547 −0.72975

0.43547 1 −0.61621
−0.72975 −0.61621 1



Equation (3.46) is very complicated and its analytical study is particulary heavy.
Since the term αhαr(k2 − k2

1) can assume both positive and negative values, it plays
a key role in determining the sign of the covariance. In particular, let T be a discrete
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random variable that can assume values τ1, . . . , τD with probabilities p1, . . . , pD.
Then:

k2 − k2
1 =

D∑
r=1

pr
(α+ + τr)(α+ + τr + 1) −

(
D∑
r=1

pr
α+ + τr

)2

±
D∑
r=1

( 1
(α+ + τr)2

)
pr

= Var
( 1
α+ + T

)
+

D∑
r=1

pr
(α+ + τr)(α+ + τr + 1) −

D∑
r=1

( 1
(α+ + τr)2

)
pr

= Var
( 1
α+ + T

)
+

D∑
r=1

pr(α+ + τr)− pr(α+ + τr + 1)
(α+ + τr)2(α+ + τr + 1)

= Var
( 1
α+ + T

)
− E

[ 1
(α+ + T )2(α+ + T + 1)

]

This formulation helps to understand that positive values of k2 − k2
1 can be obtained

inducing a large variability of T .

It is worthwhile to recall some notation from the previous sections. The compo-
sitional vector X can be split into two subvectors X1 = (X1, . . . , Xk)ᵀ and X2 =
(Xk+1, . . . , XD)ᵀ for some integer k ≥ 1. X+

1 and X+
2 are the totals of X1 and X2;

with the same notation it is possible to define the quantities αl, τ l,pl, α
+
l , τ

+
l and p+

l

(l = 1, 2). Finally, S1 = C (X1) and S2 = C (X2) are the subcompositions originated
by X1 and X2.

Proposition 14 (Marginal distributions). Let X ∼ EFD(α, τ ,p), then:

(
X1, 1−X+

1

)
∼ p+

1 EFD

(
(α1, α2)ᵀ, τ 1,

(
p1
p+

1
, 0
)ᵀ)

+

+ (1− p+
1 )

D∑
i=k+1

(
pi

p+
2

)
D
(
(α1, α

+
2 + τi)ᵀ

) (3.47)

In a compositional data analysis framework, the distribution of X1|X2 = x2 coincides,
up to a scale transformation, with the one of S1|X2 = x2 (as shown in Equation
(3.7)). The latter is more interesting because it helps study the neutrality on the
left.

Proposition 15 (Distribution of conditionals). Let X be a random vector distributed
as EFD(α, τ ,p), then:

S1|X2 = x2 ∼ w(x2) EFD(α1, τ 1, p̄′1(x2)) + (1− w(x2))D(α1), (3.48)

where:

w(x2) =
∑
i≤k p

′
i(x2)∑

i≤D p
′
i(x2) , (3.49)
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p′i(x2) =


pi

Γ(α+ + τi)
Γ(α+

1 + τi)
(1− x+

2 )τi , i = 1, . . . , k

pi
Γ(α+ + τi)

Γ(α+
1 )

Γ(αi)
Γ(αi + τi)

xτii , i = k + 1, . . . , D
(3.50)

and
p̄′i(x2) = p′i(x2)∑

i≤k p
′
i(x2) , i = 1, . . . , k. (3.51)

In order to keep the notation as simple as possible, let p′i = p′i(x2) and p̄′i = p̄′i(x2).
In order to have left neutrality (i.e. S1 ⊥⊥ X2), at leat one of the following must hold
(see Proposition 17):

• τ1 = · · · = τk = 1 and
p1
α1

= · · · = pk
αk

• p1 = · · · = pk = 0

• τ1 = · · · = τk = τ and pk+1 = · · · = pD = 0

From Proposition 15 it is possible to compute the conditional expectation E [S1i|X2 = x2].

Let c1 =
k∑
r=1

p̄′1r
α+

1 + τr
; then:

E [S1i|X2 = x2] = w(x2)
(
α1i c1 + τ1i p̄

′
1i

α+
1 + τ1i

)
+ (1− w(x2)) α1i

α+
1

= α1i

α+
1

+ w(x2) τ1i

α+
1 + τ1i︸ ︷︷ ︸
Li

(
α1i c1
τ1i

(α+
1 + τ1i) + p̄′1i

)
− w(x2) α1i

α+
1

(∗) = α1i

α+
1

+ w(x2)Li

(
− c1 α1i

α+
1 Li

(Li − 1)(α+
1 + τ1i) + p̄′1i

)
− w(x2) α1i

α+
1

= α1i

α+
1

+ w(x2)Li

(
p̄′1i −

c1 α1i

α+
1

(α+
1 + τ1i)

(
1− 1

Li

))
− w(x2) α1i

α+
1

= α1i

α+
1

+ w(x2)Li

(
p̄′1i −

c1 α1i

α+
1

(α+
1 + τ1i) + c1

α+
1
α1i(α+

1 + τ1i)
1
Li

)
− w(x2) α1i

α+
1

= α1i

α+
1

+ w(x2)Li

(
p̄′1i −

c1 α1i

α+
1

(α+
1 + τ1i)

)
+ w(x2)��Li

c1 α1i

α+
1

(α+
1 + τ1i)

��Li
− w(x2) α

+
1i
α+

1

= α1i

α+
1

+ w(x2)Li

(
p̄′1i −

α1i c1

α+
1

(α+
1 + τ1i)

)
+ α1i

α+
1
w(x2)

(
(c1 (α+

1 + τ1i))− 1
)

Step (∗) is obtained thanks to the fact that τ1i = −α
+
1 Li

Li − 1 .
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Figure 3.10 shows that the conditional expectation of the EFD model allows for
regression lines that are different from the S-shaped typical to the FD. These lines
are not forced to be monotonic: they have more flexibility and therefore they can
better fit the data points.
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Fig. 3.10: EFD Conditional Expectation - α = (2, 2, 2, 2)ᵀ, τ = (1, 4, 70, 3)ᵀ and p =
(0.1, 0.5, 0.05, 0.35)ᵀ. Simulated data; each color defines a subpopulation (mix-
ture component).

This expectation does not depend on x2 when the following jointly hold:


c1 (α+

1 + τ1i) = 1

p̄′i = αi

α+
1

i = 1, . . . , k
(3.52)

If at least one of the following holds, the constraint 3.52 holds:

• p1 = · · · = pk = 0 (it removes the dependence on x2 but it is not an acceptable
set of values because it brings to p̄′i = 0

0)

• τ1 = · · · = τk and pk+1 = · · · = pD = 0

• τ1 = · · · = τk and
α1
p1

= · · · = αk
pk
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Proposition 16 (Identifiability). Let X ∼ EFD(θ) and X′ ∼ EFD(θ′), where θ =
(α,p, τ )ᵀ and θ′ = (α′,p′, τ ′)ᵀ. Then X ∼ X′ if and only if θ = θ′.

Proof. It is obvious that if θ = θ′, then X ∼ X′. In order to show the converse, one
can focus on the marginal distribution of Xi. Let g(xi; θ) be its density function,
then:

g(xi; θ) = xαi−1
i (1− xi)α

+−αi−1 ·
{
pi

Γ(α+ + τi)xτii
Γ(αi + τi)Γ(α+ − αi)

+

+
∑
l 6=i

pl
Γ(α+ + τl)(1− xi)τl
Γ(αi)Γ(α+ − αi + τl)

 .
(3.53)

If X ∼ X′, then Xi ∼ X ′i and therefore g(xi; θ) = g(xi; θ′) ∀ xi ∈ (0, 1). Then,

lim
x→0+

g(xi; θ)
xαi−1
i

= lim
x→0+

g(xi; θ′)
xαi−1
i

.

• lim
xi→0+

g(xi; θ)
xαi−1
i

=
∑
l 6=i

pl
Γ(α+ + τl)

Γ(αi)Γ(α+ − αi + τl)

• lim
xi→0+

g(xi; θ′)
xαi−1
i

=

 lim
xi→0+

x
α′i−1
i

xαi−1
i

∑
l 6=i

p′l
Γ(α′+ + τ ′l )

Γ(α′i)Γ(α′+ − α′i + τ ′l )

In order to satisfy the equality of these two limits, the quantity

 lim
xi→0+

x
α′i−1
i

xαi−1

 must

be finite and different from 0:

(
lim
x→0+

xα
′
k−1

xαk−1

)
=


0, if α′k > αk

1, if α′k = αk

+∞, if α′k < αk

(3.54)
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Then, it follows that α = α′. This means that the equality g(xi; θ) = g(xi; θ′) can be
re-written as:

piΓ(α+ + τi)xτii
Γ(αi + τi)Γ(α+ − αi)

+
∑
l 6=i

plΓ(α+ + τl)(1− xi)τl
Γ(αi)Γ(α+ − αi + τl)

=

= p′iΓ(α+ + τ ′i)x
τ ′i
i

Γ(αi + τ ′i)Γ(α+ − αi)
+
∑
l 6=i

p′lΓ(α+ + τ ′l )(1− xi)τ
′
l

Γ(αi)Γ(α+ − αi + τ ′l )
.

(3.55)

By taking the limits as xi → 1− on both sides, one can obtain:

pi
Γ(α+ + τi)

Γ(αi + τi)Γ(α+ − αi)
= p′i

Γ(α+ + τ ′i)
Γ(αi + τ ′i)Γ(α+ − αi)

. (3.56)

Plugging it into the equality (3.55) and deriving both sides; the following equality
must hold ∀ xi ∈ (0, 1):

piτiΓ(α+ + τi)xτi−1
i

Γ(αi + τi)Γ(α+ − αi)
−
∑
l 6=i

plτlΓ(α+ + τl)(1− xi)τl−1

Γ(αi)Γ(α+ − αi + τl)
=

= piτ
′
iΓ(α+ + τi)x

τ ′i−1
i

Γ(αi + τi)Γ(α+ − αi)
−
∑
l 6=i

p′lτ
′
lΓ(α+ + τ ′l )(1− xi)τ

′
l−1

Γ(αi)Γ(α+ − αi + τ ′l )

(3.57)

Taking the limits as xi → 1− on both sides:

piτi
Γ(α+ + τi)

Γ(αi + τi)Γ(α+ − αi)
= piτ

′
i

Γ(α+ + τi)
Γ(αi + τi)Γ(α+ − αi)

. (3.58)

It follows that τi = τ ′i ∀ i =⇒ τ = τ ′. Finally, substituting this constraint in (3.56),
it is possible to conclude that p = p′.

Proposition 17. The EFD distribution allows for a variety of simplicial forms of
independence. Let X ∼ EFD(α,p, τ), then:
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• X has left neutrality if at least one of the following holds:

• τ1 = · · · = τk = 1 and
p1
α1

= · · · = pk
αk

• p1 = · · · = pk = 0

• τ1 = · · · = τk = τ and pk+1 = · · · = pD = 0

• X has right neutrality if at least one of the following holds:

• τk+1 = · · · = τD = 1 and
pk+1
αk+1

= · · · = pD
αD

• pk+1 = · · · = pD = 0

• τk+1 = · · · = τD = τ and p1 = · · · = pk = 0

• X has subcompositional independence if X has right or left neutrality.

• X has complete left neutrality if at least one of the following holds:

• τ1 = · · · = τD−1 = 1 and
p1
α1

= · · · = pD−1
αD−1

• p1 = · · · = pD−1 = 0

• X has complete right neutrality if at least one among the following is satisfied:

• τ2 = · · · = τD = 1 and
p2
α2

= · · · = pD
αD

• p2 = · · · = pD = 0

These results can be obtained noting that the EFD distribution can be expressed
in term of a Generalized Liouville distribution of the second kind. According to
Smith and Rayens [85], this distribution is characterized by the following density
function:

g(x; α, β1, . . . , βD, q1, . . . , qD) = A
D∏
r=1

xαr−1
r f

(
D∑
r=1

(
xr
qr

)βr)
, (3.59)
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where αr > 0, βr > 0 and qr > 0 for every r = 1, . . . , D, f(x) = x and A is the
normalization constant. Imposing

βr = τr

qr = Γ(αr + τr)
prΓ(αr)Γ(α+ + τr

one obtains the EFD density function and, therefore, take advantage of the indepen-
dence properties listed in Smith and Rayens [85].

It has already been said that the Extended Flexible Dirichlet distribution allows for
a finite mixture structure. This means that it is possible to study the behaviour
of its components. A simple way is to compute some measures able to capture
the degree of overlap among the mixture components. This can be done through
the Kullback-Leibler divergence measure [38, 54, 60], that quantifies how much
two probability distributions differ from one another. In particular, let f1(x; θ) and
f2(x; θ′) be two probability density functions and, in order to make notation clearer,
let f1 ≡ f1(x; θ) and f2 ≡ f2(x; θ′). Then,

dKL(f1, f2) =
∫
f1(x; θ) ln f1(x; θ)

f2(x; θ′)dx. (3.60)

Looking at (3.60) it is easy to show that the Kullback-Leibler divergence is not
symmetric with respect to its arguments f1 and f2, since dKL(f1, f2) 6= dKL(f2, f1).
In their work, Kullback and Leibler defined "divergence" between f1 and f2 the
sum of dKL(f1, f2) and dKL(f2, f1). Nowadays, this quantity is called "symmetrized
Kullback-Leibler divergence":

dSKL (f1, f2) = dKL (f1, f2) + dKL (f2, f1) (3.61)

When this measure approaches the value 0, the densities f1 and f2 are very similar.
Indeed, if f1 = f2 almost everywhere, then dSKL(f1, f2) is exactly equal to 0. In
order to compute this measure of divergence in the EFD context, it is useful to
remember that:

• The i-th mixture component follows a Dirichlet distribution: fi ≡ fi(x; α, τ) =
fD(x; α + τi ei).

• If X ∼ D(α) =⇒ E [lnXr] = ψ(αr) − ψ(α+), where ψ(x) = ∂
∂x ln Γ(x) is the

digamma function.
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In order to compute dSKL(fi, fh), it is convenient to compute the following fraction
for every i 6= h (i, h = 1, . . . , D):

fi
fh

= fD(x; α + τi ei)
fD(x; α + τh eh)

=

Γ(α+ + τi)∏
k 6=i Γ(αk)

xαi+τi−1
i

Γ(αi + τi)
∏
k 6=i

xαk−1
k

Γ(α+ + τh)∏
k 6=h Γ(αk)

xαh+τh−1
h

Γ(αh + τh)
∏
k 6=h

xαk−1
k

=
(

Γ(α+ + τi)Γ(αi)Γ(αh + τh)
Γ(α+ + τh)Γ(αh)Γ(αi + τi)

)
︸ ︷︷ ︸

Ci,h

xτii
xτhh

= Ci,h
xτii
xτhh

Then, the logarithm of the ratio (3.62) is:

ln fi
fh

= lnCi,h + τi ln xi − τh ln xh. (3.62)

Note that lnCi,h = − lnCh,i.

dKL(fi, fh) =
∫
fD(x; αi) ln fD(x; αi)

fD(x; αh)dx

=
∫
fi (lnCi,h + τi ln xi − τh ln xh) dx

= lnCi,h + τiE [lnXi]− τhE [lnXh]

= lnCi,h + τi
[
ψ(αi + τi)− ψ(α+ + τi)

]
− τh

[
ψ(αh)− ψ(α+ + τi)

]
where E [·] is with respect to D(x; α + τi ei).

dSKL(fi, fh) = dKL(fi, fh) + dKL(fh, fi)

= ����lnCi,h + τi
[
ψ(αi + τi)− ψ(α+ + τi)

]
− τh

[
ψ(αh)− ψ(α+ + τi)

]
+

+����lnCh,i + τh
[
ψ(αh + τh)− ψ(α+ + τh)

]
− τi

[
ψ(αi)− ψ(α+ + τh)

]
= τiψ(αi + τi)− τiψ(α+ + τi)− τhψ(αh) + τhψ(α+ + τi) +
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+τhψ(αh + τh)− τhψ(α+ + τh)− τiψ(αi) + τiψ(α+ + τh)

= τi [ψ(αi + τi)− ψ(αi)] + τh [ψ(αh + τh)− ψ(αh)] + (3.63)

+(τi − τh)
[
ψ(α+ + τh)− ψ(α+ + τi)

]

Thanks to a graphical investigation of various EFD’s contour plots, it is possible to
say that values of dSKL greater than 15 entail well-separated clusters.

3.4.2 Estimation procedure

Given the mixture structure of the EFD model, it is possible to propose an EM
algorithm for maximizing the corresponding likelihood function [28]. Let us suppose
to have a sample of n independent observations x = (x1, . . . , xn)ᵀ from an EFD
distribution; the observed log-likelihood can be thought of as originated from the
following complete-data log-likelihood:

logLC(α, τ ,p) =
n∑
s=1

D∑
i=1

zs,i {log pi + log fD(xs; α + τi ei)} , (3.64)

where zs,i is equal to 1 if the s-th observation has arisen from the i-th component of
the mixture and 0 otherwise. We may apply the EM algorithm if one thinks of the
vector zj = (zs,1, . . . , zs,D)ᵀ, s = 1, . . . , n, as the missing component.

The EM algorithm is an iterative method whose generic (m + 1)-th step can be
described as follows:

• E-step: Given the parameter estimates obtained at step m,
(
α(m), τ (m),p(m)

)ᵀ
,

compute the conditional expectation of the complete-data log-likelihood given
x as:

D∑
i=1

n∑
s=1

πi
(
xs; α(m), τ (m),p(m)

){
log p(m)

i + log fD
(
xs; α(m) + τ

(m)
i ei

)}
,

(3.65)
where

πi
(
xs; α(m), τ (m),p(k)

)
=

p
(m)
i fD

(
xs; α(m) + τ

(m)
i ei

)
∑D
h=1 p

(m)
h fD

(
xs; α(m) + τ

(m)
h eh

) , i = 1, . . . , D,

(3.66)
is the "posterior" probability that xs belongs to the i-th component of the
mixture given

(
α(m), τ (m),p(m)

)ᵀ
.
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• M-step: Maximize the conditional expectation (3.65) to update the parameter
estimates. In order to obtain new values of α̂(m+1) and τ̂ (m+1) a numeric
maximization method (e.g. Newton-Raphson) is required, whereas a closed-
form expression for p̂i(m+1) exists:

p̂i
(m+1) = 1

n

n∑
s=1

πi
(
xs; α(m), τ (m),p(m)

)
, i = 1, . . . , D − 1. (3.67)

E and M steps are alternated until a convergence criterion is reached (e.g. when
there is a small difference between the log-likelihood of two consecutive steps and
the distance between the estimates of parameters in two consecutive iterations
is lower than a fixed threshold. Unfortunately, the EM algorithm typically leads
to solutions that are highly dependent on the starting point; this means that the
algorithm may get trapped in a local maxima close to the starting point. In order
to weaken this dependence, a Stochastic EM (SEM) algorithm has been used [15,
21, 22]. SEM is a modified version of the classic EM which is likely to explore
a wider region of the parametric space. The final estimation algorithm therefore
implements a SEM phase followed by an EM one: the results of the SEM algorithm
are used as starting points of a proper EM algorithm, which is very precise in finding
maxima close to initial values. In SEM, after the E step, a new partition of data into
D groups {G1, . . . ,GD} is generated, with a draw from a Multinomial distribution
with parameters equal to the current estimates of the conditional probabilities πi (·),
i = 1, . . . , D, given by (3.66). In this way, the algorithm has a chance to escape
from a path of convergence to a local maximizer instead of a global one. Finally,
the M step of the SEM consists in updating the weights p as the relative number
of observations in each group. Updatings of α and τ are obtained maximizing the
classified likelihood (i.e. the likelihood computed by assuming knowledge of the
mixture component each observation comes from):

D∏
i=1

∏
s∈Ai

fD(xs; α + τi ei),

where Ai = {s : xs ∈ Gi}. This maximization problem can be approached numeri-
cally (i.e. with Quasi-Newton optimization algorithms [20]).

Once an estimate forθ = (α, τ ,p)ᵀ is obtained, it must be supplemented by the
information on its sample variability. A well known result from statistical theory
is that, under regularity conditions, the asymptotic covariance matrix of the ML
Estimator θ̂ can be approximated by the inverse of the observed information matrix
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I(θ̂; x). In order to compute the observed counterpart for this matrix, the second-
order derivatives of the mixture log-likelihood, defined as:

lnLM (α, τ ,p) = ln
(

n∏
s=1

fEFD(xs; θ)
)
, (3.68)

are required. Unfortunately, the evaluation is quite complicated, especially in this
scenario. The method adopted by Migliorati, Ongaro and Monti [63] based on
the work of Louis [56] can be adapted to the EFD: an evaluation of I(θ̂; x) can be
obtained via decomposition of complete-data into observed and missing ones, so
that the observed information matrix can be written as:

I(θ̂; x) = {Eθ [Ic(θ; Xc)|x]}θ=θ̂ − {Eθ [Sc(θ; Xc)Sᵀ
c(θ; Xc)|x]}θ=θ̂ (3.69)

where Xc = (X,Z)ᵀ, Sc(θ; Xc) is the complete-data score statistics and Ic(θ; Xc) is
the negative Hessian matrix of the complete-data log-likelihood (3.64). Evaluation
of the conditional expected value in (3.69) can be based on conditional bootstrap
[29], noting that, conditionally on x, the random vectors Zs, s = 1, . . . , n are
distributed as independent multinomials with parameters (p∗s,1, . . . , p∗s,D)ᵀ, where
p∗s,i = πi(xs; θ̂) is given by (3.66). Consequently, the conditional expectations can be
approximated the average of draws z(b)

s ∼ Zs, over B independent bootstrap samples
(s = 1, . . . , n; b = 1, . . . , B) for a sufficiently high value of B.

3.4.3 An open problem: how to initialize the EM algorithm?

The convergence of the EM algorithm can be influenced by initial values required for
the first steps of the algorithm. In general, this choice can even influence the ability
to locate the global maximum of the log-likelihood function. To address these critical
issues, some suitable ad hoc initialization strategies have been developed. Usually,
the first step of the initialization consists in obtaining a partition of the n observations
into D groups by means of a clustering method. The clustering algorithm proposed
in this work is called "barycenter method", and it is based on the peculiar cluster
structure of the EFD: observation xs is assigned to group i if xs,i/xs,h > Bi/Bh, ∀
h = 1, . . . , D, h 6= i, where B = (B1, . . . , BD)ᵀ is a data barycenter (e.g. mean or
median). Since any clustering algorithm assigns the group labels randomly, the
groups have been relabelled on the basis of the structure imposed by the EFD model
illustrated in section 3.4: group i will have the largest mean in component i. In the
case a single group shows two or more components with maximum sample mean,
the labelling procedure considers the permutations of labels compatible with the
largest sample mean positions and choose the one that maximizes the corresponding
likelihood. Then, given this partition, a possible initial value for pi is the proportion
of observations that are assigned to cluster i. The initialization of α and τ is a more
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challenging problem. The initialization method used for the FD model [63] and two
new ad hoc strategies have been considered here:

1) The procedure used for the FD in [63]. Initialization values for α and τ

(namely α∗ and τ∗) are obtained using the method of moments: in the EFD
context an initialization for the vector τ can be obtained imposing that each
element τi is equal to τ∗: τ = (τ, τ, . . . , τ)ᵀ. This method assumes the FD’s
structure of the cluster means and, therefore, can be expected to produce
inaccurate results if data do not show equal distance between the barycenter
ᾱ and each cluster means.

2) Given a partition, one can compute the sample mean for each cluster: x̄h =
(x̄h,1, . . . , x̄h,D)ᵀ, h = 1, . . . , D, where x̄h,i =

∑n
s=1 zh,sxs,i. Initial values of

α and τ can then be obtained by minimizing the distance between x̄ =
(x̄1, . . . , x̄D)ᵀ and µ = (µ1, . . . ,µD)ᵀ:

arg min
α,τ

D∑
h=1

δh(µh − x̄h)ᵀ(µh − x̄h), (3.70)

where δh are suitable weights (e.g. the size of each group) and µh is defined
as in (3.41). Let ᾱ = α/α+ and τ̃ = τ/α+ be the "relative" counterparts of α

and τ , then:

µh = ᾱ

1 + τ̃h
+ τ̃h

1 + τ̃h
eh.

Since the constraints
∑D
h=1 ᾱh = 1, ᾱh > 0, τ̃h > 0, h = 1. . . . , D hold, this is a

constrained minimization problem and it can be fulfilled numerically with a
Quasi-Newton algorithm [20]. Since this approach requires a starting point,
the FD’s initialization method can be used assuming τ = (τ, . . . , τ)ᵀ.

3) The above constrained minimization can also be approached analytically. Set-
ting the partial derivatives of the target function (with respect to α̃h and τ̃h)
equal to zero, one obtains:

α̃h

[
D∑
l=1

δl
(1 + τ̃l)2

]
=

D∑
l=1

x̄h,l
δl

(1 + τ̃l)
− τ̃hδh

(1 + τ̃l)2 , (3.71)

x̄h,l is the l-th element of x̄h and

τ̃h =


bh
ch

if bh > 0

0 otherwise
(3.72)
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where bh = (x̄h − ᾱ)ᵀ(eh − ᾱ) and ch =
D∑
r=1

ᾱrx̄h,r + 1− ᾱh − x̄h,h (note that

ch is always positive). It can be immediately observed that solutions for ᾱh’s
depend on τ̃h’s and viceversa. The final algorithm is:

1. initialize the ᾱh’s (i.e. initializing α∗ with the FD method and computing
ᾱ = α∗/

∑D
k=1 α

∗
k)

2. calculate the τ̃h’s on the basis of (3.72)

3. calculate the ᾱh’s on the basis of (3.71)

4. repeat step 2 and 3 until a convergence criterion is satisfied.

Methods 2 and 3 have some technical issues: whereas the constraint
∑D
h=1 ᾱh = 1 is

automatically satisfied, other constraints could be violated:

• τ̃h could be equal to 0. In this case τ̃h is set equal to a very small positive
quantity (e.g. 0.00001).

• ᾱh could be negative: if this happens, α̃h is set equal to a very small positive
quantity and the remaining α̃h’s are re-normalized.

Another issue with methods 2 and 3 is that they only allow for initialization of the
relative quantities ᾱ and τ̃ : in order to initialize α+ one can resort to the variances:

Var (Xk|Z = eh) = σ2
h,k = µh,k(1− µh,k)

α+ + τh + 1 , (3.73)

where µh,k is the k-th element of µh and and h (h = 1, . . . , D) indices clusters. The
estimate of each σ2

h,k is s2
h,k, the sample variance of component k among group h.

With some algebra, one can obtain:

̂α+ + τh =
1−

∑D
k=1 x̄

2
h,k∑D

k=1 s
2
h,k

− 1, h = 1, . . . , D.

The sum of variances in the denominator permits to have stable estimates whenever
some s2

h,k is close to zero. These estimates can be used to obtain several estimates of
α+:

α̂+(h) =
̂α+ + τh
1 + τ̃h

, h = 1, . . . , D,

where τ̃h was obtained with one of the methods above. Finally, one can aggregate
the α̂+(h)’s using a weighted mean.
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3.4.4 A Simulation Study

Two simulation studies have been set up. The first one is aimed at investigating
the behavior of the initialization procedures proposed in section 3.4.3, whereas
the second one is aimed at evaluating the performance of the EM algorithm and
the variance estimator (section 3.4.2). In order to implement these studies, 21
parameter configurations have been investigated. In this section it is possible to find
the results for five of them; in Table 8.8 (appendix 8.3) it is possible to find all the
configurations. The chosen parametric configurations allow to cover a great variety
of cases, including well-separated as well as overlapping clusters, according to the
Symmetrized Kullback-Leibler divergence.

ID α1 α2 α3 τ1 τ2 τ3 p1 p2 p3 dSKL(f1, f2) dSKL(f1, f3) dSKL(f2, f3)
1 15 15 15 20 20 20 1/3 1/3 1/3 34.666 34.666 34.666
11 10 40 80 5 30 25 1/3 1/3 1/3 14.801 6.176 23.627
13 50 50 50 5 30 25 0.2 0.6 0.2 10.945 8.267 24.292
20 15 15 15 10 20 15 1/3 1/3 1/3 20.892 15.456 27.581
21 5 30 70 10 25 15 0.1 0.75 0.15 25.180 14.400 17.472

Tab. 3.3: A subset of parameter configurations. See Table 8.8 for the complete list.

On the choice of the initialization method

This simulation study considers only the five configurations in Table 3.3. To eval-
uate which of the three methods described in subsection 3.4.3 provides the best
initialization, K = 100 datasets have been simulated for each configuration and the
clustering methods described in subection 3.4.3 have been applied to them. The
one that provided the best performance has been selected. Given the resulting data
partition, an initial estimate for p is obtained as in (3.67). Then, the three methods
built for initializing α and τ have been applied to each dataset. These initializations
stand for the starting point of a SEM+EM procedure that provides the final estimates
for α and τ . Table 3.4 shows the results of these simulations for each initialization
method (rows):

• the first column "%" reports the proportion of simulations where the EFD
likelihood evaluated at the initial values is the highest one; the second column
"%" reports the proportion of simulations where the final estimates maximize
the likelihood function

• columns "Mean l̂" represent the mean of the likelihoods evaluated at the initial
values and at the final estimates
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• columns "Mean d2" represent the mean of the euclidean distances between the
initial values (or the final estimates) and the true parameter values.

ID 1: α = (15, 15, 15)ᵀ, τ = (20, 20, 20)ᵀ, p = (1/3, 1/3, 1/3)ᵀ
Initial Values Final Estimates

Meth. % Mean l̂ Mean d2 % Mean l̂ Mean d2
1 0.02 209.76901 5.1489 0.32 211.06737 5.6106
2 0.38 210.86665 6.1022 0.35 211.06731 5.6159
3 0.60 210.90500 5.5194 0.33 211.06734 5.6110

ID 11: α = (10, 40, 80)ᵀ, τ = (5, 30, 25)ᵀ, p = (1/3, 1/3, 1/3)ᵀ
Initial Values Final Estimates

Meth. % Mean l̂ Mean d2 % Mean l̂ Mean d2
1 0.00 285.82046 23.3435 0.38 349.49176 13.4146
2 0.61 347.33590 12.4744 0.33 349.49008 13.1921
3 0.39 347.26455 11.9301 0.29 349.49127 13.0897

ID 13: α = (50, 50, 50)ᵀ, τ = (5, 30, 25)ᵀ, p = (0.2, 0.6, 0.2)ᵀ
Initial Values Final Estimates

Meth. % Mean l̂ Mean d2 % Mean l̂ Mean d2
1 0.00 300.47035 27.2624 0.34 325.76015 11.9057
2 0.00 316.19300 19.0152 0.38 325.76017 11.9268
3 1.00 316.81200 15.5242 0.28 325.76004 11.7613

ID 20: α = (15, 15, 15)ᵀ, τ = (10, 20, 15)ᵀ, p = (1/3, 1/3, 1/3)ᵀ
Initial Values Final Estimates

Meth. % Mean l̂ Mean d2 % Mean l̂ Mean d2
1 0.00 194.93455 9.0557 0.34 204.83934 5.1533
2 0.11 204.18551 5.8822 0.35 204.83930 5.1493
3 0.89 204.29076 5.3072 0.31 204.83936 5.1125

ID 21: α = (5, 30, 70)ᵀ, τ = (10, 25, 15)ᵀ, p = (0.1, 0.75, 0.15)ᵀ
Initial Values Final Estimates

Meth. % Mean l̂ Mean d2 % Mean l̂ Mean d2
1 0 323.9595 23.9439 0.25 376.7433 11.6179
2 0.05 337.6969 23.4810 0.37 376.7447 11.4295
3 0.95 339.0964 21.7384 0.38 376.7442 11.5162

Tab. 3.4: Simulation results: initialization.

Method 3 generally provides the best starting points, with method 2 displaying
only slightly worse performances. On the contrary, method 1 behaves rather poorly
compared to the other two, except in the symmetric scenario 1, as expected. Re-
markably, after the SEM+EM step, the differences between the three methods are
not significant. This evidentiates a strong robustness of the SEM phase with respect
to the choice of the initial value. In the following, method 3 will be considered, since
it is also the one with the fastest convergence.
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EM algorithm performance

The aim of the second simulation study is the evaluation of the performance of
the EM algorithm and of the estimated variance. For each of the 21 parameter
configurations used in subsection 3.4.4, K = 1000 samples of size n = 100 have
been generated. After every estimation procedure, a conditional bootstrap algorithm
has been launched (with B = 3000 bootstrap samples), to produce an estimate
of the standard errors that can be used to compute confidence intervals as well
(based on the asymptotic normal distribution of the ML estimator). Table 3.5 shows
the results of the simulations for the configurations reported in Table 3.3 ; results
for all the configurations can be found in appendix 8.3. Rows "MLE mean" and
"MLE sd" represent the simulated mean and standard deviation of the ML estimator
(namely, the Monte Carlo approximation of its expected value and standard error).
The quantity "SE mean" shows the mean of the bootstrap based simulated standard
errors and the row "arb" represents its absolute relative bias (i.e. the mean of
the absolute deviations between such standard errors’ estimates and the simulated
standard deviation - row "MLE sd" - divided by this last quantity). Lastly, "Coverage"
reports the simulated coverage levels of confidence intervals for a nominal level
1− α = 0.95.

Despite the mixture nature of the EFD model and the relatively small sample size,
the performance of the MLE appears rather satisfactory: in most of the scenarios we
have considered, small bias and standard deviation are obtained. Furthermore, the
bootstrap estimates of the standard errors are remarkably close to the Monte Carlo
approximations (here considered as the gold standard) and the coverage levels of
the confidence intervals are fairly precise. It is also worth noting that the results
relative to the other parameter configurations included in appendix are similar to
the reported ones. As a consequence, it is possible to conclude that the proposed
estimation procedure appears to be both accurate and reliable.
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Case 1 p1 p2 α1 α2 α3 τ1 τ2 τ3
True 1/3 1/3 15 15 15 20 20 20

MLE Mean 0.333 0.332 15.561 15.549 15.6 20.757 20.841 20.828
MLE sd 0.047 0.047 1.655 1.674 1.673 2.793 2.784 2.798

SE mean 0.047 0.047 1.618 1.617 1.623 2.744 2.753 2.749
arb 0.028 0.029 0.080 0.083 0.083 0.080 0.079 0.080

Coverage 0.951 0.952 0.946 0.943 0.942 0.944 0.947 0.951

Case 2 p1 p2 α1 α2 α3 τ1 τ2 τ3
True 1/3 1/3 10 40 80 5 30 25

MLE Mean 0.336 0.331 10.491 41.982 83.890 5.388 31.506 26.901
MLE sd 0.073 0.051 1.259 5.166 10.007 1.461 4.545 6.742

SE mean 0.07 0.05 1.228 5.006 9.834 1.376 4.500 6.491
arb 0.168 0.048 0.083 0.080 0.078 0.135 0.075 0.105

Coverage 0.919 0.936 0.939 0.942 0.950 0.935 0.947 0.931

Case 3 p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.2 0.6 50 50 50 5 30 25

MLE Mean 0.201 0.595 52.496 52.643 52.555 5.808 31.499 26.607
MLE sd 0.058 0.057 6.091 6.458 6.211 3.814 4.539 5.080

SE mean 0.056 0.054 5.900 6.155 5.907 3.750 4.437 4.966
arb 0.166 0.076 0.085 0.088 0.088 0.198 0.087 0.112

Coverage 0.922 0.933 0.946 0.943 0.937 0.962 0.941 0.930

Case 4 p1 p2 α1 α2 α3 τ1 τ2 τ3
True 1/3 1/3 15 15 15 10 20 15

MLE Mean 0.333 0.333 15.626 15.624 15.626 10.408 20.935 15.700
MLE sd 0.050 0.047 1.702 1.695 1.718 1.991 2.914 2.454

SE mean 0.050 0.048 1.691 1.700 1.694 1.941 2.876 2.411
arb 0.044 0.038 0.078 0.075 0.079 0.078 0.077 0.076

Coverage 0.950 0.944 0.958 0.949 0.943 0.952 0.950 0.95

Case 5 p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.1 0.75 5 30 70 10 25 15

MLE Mean 0.100 0.750 5.212 31.598 73.177 10.531 25.942 16.764
MLE sd 0.031 0.045 0.582 4.021 8.177 2.193 3.820 8.670

SE mean 0.032 0.045 0.555 3.827 7.878 2.048 3.761 8.232
arb 0.132 0.059 0.090 0.098 0.086 0.164 0.086 0.147

Coverage 0.936 0.936 0.943 0.940 0.945 0.928 0.957 0.941
Tab. 3.5: Simulation results: performance of parameter estimates and confidence intervals.
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4The Double Flexible Dirichlet

In Section 3 several models suitable for compositional data have been illustrated.
Among them, the more promising is the Extended Flexible Dirichlet, thanks to
its flexibility in clusters’ location on the simplex. A common drawback of all the
models illustrated regards the number of clusters available: indeed, the Dirichlet
and the Additive Logistic-Normal distributions do not consider that a sample can be
generated by several subpopulations, whereas both the FD and the EFD distributions
allow for up to D clusters (and, consequently, modes). These clusters must have
their barycenter placed in a triangle shape on the simplex. This means that it is not
possible either to consider more components than the length of the composition X or
to place the cluster means in a more elaborated configuration. To overcome such an
issue, in this section a new generalization of the Flexible Dirichlet is proposed: the
Double Flexible Dirichlet (DFD). Thanks to its particular mixture structure it allows

for
D(D + 1)

2 clusters, located in a very precise way in the simplex. Furthermore,
it allows for a more general covariance structure than the one induced by the
FD, thanks to the larger number of mixture components. Indeed, the number of

parameters of this model is (D + 1) + D(D + 1)
2 , it is strictly connected to the

number of distinct elements in the covariance matrix. This makes the model for the
dependence structure more flexible. Some theoretical properties are reported and
an estimation procedure is also proposed. To test the reliability of this estimation
algorithm, a simulation study has been conducted.

4.1 The basis

4.1.1 Constructing the basis

Let us assume that the vectors W = (W1, . . . ,WD)ᵀ, U = (U1, U2)ᵀ and Z = (Z1,Z2)ᵀ

are jointly independent and that:

• the vector W has independent Gamma components with scale parameter equal
to 1: Wr ∼ Gamma(αr, 1), αr > 0, r = 1, . . . , D
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• U1 and U2 are independent and they have the same Gamma distribution:
Ul ∼ Gamma(τ, 1), τ > 0, l = 1, 2

• Z1 ∼ Multinomial(1,p)

• Z2 ∼ Multinomial(1,η)

where p = (p1·, p2·, . . . , pD·)ᵀ and η = (p·1, p·2, . . . , p·D)ᵀ are two vectors belonging
to the D-part simplex. Supposing that P is the matrix with generic element P(i,j) =
pi,j = P (Z1 = ei,Z2 = ej), where ei is the i-th element of the usual canonical basis
(a vector with elements equal to 0 except for the i-th that is equal to 1), then it is
possible to compute the vectors p and η as the row sum and the column sum of P:

P =




p1,1 p1,2 . . . p1,D p1·

p2,1 p2,2 . . . p2,D p2·
...

...
. . .

...
...

pD,1 pD,2 . . . pD,D pD·

p·1 p·2 · · · p·D 1

Since each pi,j represents a probability, the following constraints must hold:

D∑
i=1

D∑
j=1

pi,j = 1, pi,j > 0. (4.1)

It is now possible to construct a basis whose elements are:

Yr = Wr + Z1,r U1 + Z2,r U2, r = 1, . . . , D. (4.2)

The basis Y = (Y1, . . . , YD)ᵀ has a distribution called Double Flexible Gamma (DFG),
because it duplicates the constructing scheme of the FD basis in (3.14). This
distribution is parametrized by α, τ and P. By conditioning on (Z1,Z2)ᵀ it is possible
to derive a finite mixture representation. It follows that its density function can be
expressed as:

fDFG(y; α, τ,P) =
D∑
i=1

D∑
j=1

pi,jfG(y; α + τ (ei + ej)), (4.3)

where fG(y; α) is the density function of a random vector with independent gamma
components with shape parameter αh and common rate parameter equal to 1.
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Proposition 18. (Non-identifiability) Let P∗ be a D ×D matrix with generic element

pi,j such that 0 ≤ pi,j < 1 and
D∑
i=1

D∑
j=1

pi,j = 1. Then the DFG model with P = P∗ is

non-identifiable.

Proof. Let us assume that the model is identifiable. If we suppose, for simplicity, that
D = 2, then the density function of Y is:

fDFG(y; α, τ,P) =
2∑
i=1

2∑
j=1

pi,jfG(y; α + τ (ei + ej))

= p1,1fG(y; α + τ (e1 + e1)) + p1,2fG(y; α + τ (e1 + e2)) +

+ p2,1fG(y; α + τ (e2 + e1)) + p2,2fG(y; α + τ (e2 + e2))

= p1,1fG(y; α + τ (e1 + e1)) + p2,2fG(y; α + τ (e2 + e2)) +

+ [p1,2 + p2,1] fG(y; α + τ (e1 + e2))

The distribution is identified by α, τ , p1,1, p2,2 and by the sum (p1,2 + p2,1). It is
obvious that the same value of (p1,2 + p2,1) can be obtained with different values
of (p1,2, p2,1)ᵀ. This issue can hold also for D 6= 2 and thus the model cannot be
identifiable.

In order to make the model identifiable, a possibility is to impose the symmetry of
P. Imposing P symmetric implies also p = η. Note that, even if P is assumed to be
symmetric, it does not imply that Z1 ⊥⊥ Z2, since pi,j 6= pi·p·j , in general.

4.1.2 Properties of Y

This new basis has more interesting properties compared to the Flexible Gamma
defined in 3.3. In order to explore them, it can be useful to remember that if
Y ∼ Gamma(α, β = 1) then E [Y ] = α, E

[
Y 2] = α(α+ 1) and Var (Y ) = α.

Proposition 19 (Moments of the basis). Let Y ∼ DFG(α, τ,P) where P is a symmetric
matrix. Then the first two moments are:

E [Yr] = αr + 2τ pr·, r = 1, . . . , D. (4.4)

Var (Yr) = αr + 2τpr· + 2τ2
(
pr· − 2p2

r· + pr,r
)
, r = 1, . . . , D. (4.5)
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Cov (Yr, Yh) = 2τ2(pr,h − 2pr·ph·), r, h = 1, . . . , D, r 6= h. (4.6)

Proof.

E [Yr] = E [Wr] + E [Z1,r U1] + E [Z2,r U2]

= αr + τ (pr· + p·r)

= αr + 2τ pr·

where the last equality holds if P is symmetric.

Var (Yr) = Var (Wr) + Var (Z1,r U1) + Var (Z2,r U2) + 2Cov (Z1,r U1, Z2,r U2)

= αr + E
[
Z1,r U

2
1

]
− (E [Z1,r U1])2 + E

[
Z2,r U

2
2

]
− (E [Z2,r U2])2 +

+2 {E [Z1,rZ2,rU1U2]− E [Z1,rU1]E [Z2,rU2]}

= αr + E [Z1,r]E
[
U2

1

]
− (E [Z1,r]E [U1])2 + E [Z2,r]E

[
U2

2

]
− (E [Z2,r]E [U2])2 +

+ 2 {E [Z1,rZ2,r]E [U1]E [U2]− E [Z1,r]E [Z2,r]E [U1]E [U2]}

= αr + pr·τ(τ + 1)− p2
r·τ

2 + p·rτ(τ + 1)− p2
·rτ

2 + 2
{
pr,rτ

2 − pr·p·rτ2
}

= αr︸︷︷︸
Original Gamma

+ pr·τ + pr·(1− pr·)τ2︸ ︷︷ ︸
1st Gamma

+ p·rτ + p·r(1− p·r)τ2︸ ︷︷ ︸
2nd Gamma

+ 2τ2(pr,r − pr·p·r)︸ ︷︷ ︸
Gammas’ dependence

= αr + 2τpr· + 2τ2pr·(1− pr·) + 2τ2(pr,r − p2
r·)

= αr + 2τpr· + 2τ2
(
pr· − 2p2

r· + pr,r
)

The above result has been obtained considering that E [Z1,rZ2,r] = 1 · P (Z1 =
er,Z2 = er) + 0 · [1− P (Z1 = er,Z2 = er)] = pr,r.

Cov (Yr, Yh)r 6=h = Cov (Wr + Z1,r U1 + Z2,r U2,Wh + Z1,h U1 + Z2,h U2)

= Cov (Z1,r U1 + Z2,r U2, Z1,h U1) + Cov (Z1,r U1 + Z2,r U2, Z2,h U2)

= Cov (Z1,r U1, Z1,h U1) + Cov (Z2,r U2, Z1,h U1) +

+Cov (Z1,r U1, Z2,h U2) + Cov (Z2,r U2, Z2,h U2)

= E
[
Z1,rZ1,hU

2
1

]
− E [Z1,rU1]E [Z1,hU1] + E [Z2,rZ1,hU1U2] +

−E [Z2,rU2]E [Z1,hU1] + E [Z1,rU1Z2,hU2] +

−E [Z1,rU1]E [Z2,hU2] + E [Z2,rU2Z2,hU2]− E [Z2,rU2]E [Z2,hU2]
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=
[
������0 · τ(τ + 1)− pr·τ · ph·τ

]
+ [ph,rτ · τ − p·rτ · ph·τ ] +

+ [pr,hτ · τ − pr·τ · p·hτ ] +
[
������0 · τ(τ + 1)− p·rτ · p·hτ

]
= −τ2pr·ph·︸ ︷︷ ︸

1stGamma

+τ2 (ph,r − ph·p·r) + τ2 (pr,h − pr·p·h)︸ ︷︷ ︸
Gammas’ dependence

−τ2p·rp·h︸ ︷︷ ︸
2ndGamma

= −τ2pr·ph· + 2τ2(ph,r − ph·pr·)

= 2τ2(pr,h − 2pr·ph·) (4.7)

Proposition 20. (Positivity of Covariance) Let Y ∼ DFG(α, τ,P) and P be a D ×D
symmetric matrix; then the covariance between two components Yr and Yh (r 6= h) can
assume positive values.

Proof. Remember from (4.6) that Cov (Yr, Yh) = 2τ2(pr,h − 2pr·ph·). Then:

Cov (Yr, Yh) ≥ 0 ⇐⇒ 2τ2(pr,h − 2pr·ph·) ≥ 0

⇐⇒ 4τ2pr·ph· ≤ 2τ2pr,h

⇐⇒ pr·p·h
pr,h

≤ 2τ2

(2τ)2

⇐⇒ pr·p·h
pr,h

≤ 1
2

With similar steps, it is easy to derive the more general condition:

Cov (Yr, Yh) ≥ c ⇐⇒ 2pr·ph· − pr,h ≤ −
c

2τ2

Proposition 21. (Covariance’s infimum and supremum) Let P be a symmetric matrix.
Then, given α and τ , the infimum over P of the covariance is −τ2 and the supremum is
τ2

4 .

Proof. From equation (4.6) it is easy to see that Cov (Yr, Yh) is minimum when pr,h =
0 and (pr·ph·) is maximum, under the obvious constraint pr· + ph· ≤ 1. This means
that minimizing the covariance is equivalent to maximize the function f(x, y) = x · y
with the constraint x + y ≤ 1. In order to solve this maximization problem it is
necessary to define the Lagrangian function: L(x, y, λ) = xy − λ(x+ y − 1). Then
the optimality conditions are:
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

∂L(x, y, λ)
∂x

= 0
∂L(x, y, λ)

∂y
= 0

∂L(x, y, λ)
∂λ

≥ 0 ∧ λ
∂L(x, y, λ)

∂λ
= 0

λ ≥ 0

=⇒



y − λ = 0

x− λ = 0

−(x+ y − 1) ≥ 0 ∧ −λ(x+ y − 1) = 0

λ ≥ 0

=⇒



y = λ

x = λ

−2λ+ 1 ≥ 0 ∧ −λ(2λ− 1) = 0

λ ≥ 0

Considering the two cases λ = 0 and λ 6= 0 separately:

• λ = 0 =⇒

x = 0

y = 0
=⇒ f(0, 0) = 0

• λ 6= 0 =⇒ −λ(2λ− 1) = 0 =⇒ λ = 1
2

=⇒

x = 1
2

y = 1
2

=⇒ f

(1
2 ,

1
2

)
= 1

4

It follows that the maximizer of (pr·ph·) under the constraint pr· + ph· ≤ 1 is
(pr·, ph·)ᵀ =

(
1
2 ,

1
2

)ᵀ
. It is possible to find this solution also studying the contour plot

of the function g(x, y) = x · y in the region {0 ≤ x < 1; 0 ≤ y ≤ 1− x} (Figure 4.1).

It follows that (pr·ph·) is maximum when pr· = ph· = 0.5. In conclusion, having
pr,h = 0 and pr· = ph· = 0.5 implies that:

min [Cov (Yr, Yh)] = min
[
−pr·ph·(2τ)2 + 0

]
= −0.5 · 0.5(2τ)2

= −(2τ)2

4 = −τ2
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Fig. 4.1: Contour plot of g(x, y) = x · y.

It is remarkable to note that, due to the symmetry of P, the conditions

pr,h = ph,r = 0

pr· = ph· = 0.5
imply that P has only two elements different from 0: pr,r = ph,h = 0.5.

Inspecting (4.6), it is possible to note that the highest covariance is obtained when
(pr·ph·) reaches its lowest value and pr,h reaches its highest one, under the following
constraints: 

pr· ≥ pr,h
ph· ≥ pr,h
pr· + ph· ≤ 1

Assuming that pr,h is fixed, the product (pr·ph·) is minimum when pr· and ph· are
minimum. Then pr· = ph· = pr,h = ph,r (and this implies that pr,r = ph,h = 0). Now
it is easy to find the maxima, since the covariance assumes the following form:

Cov (Yr, Yh) = −pr·ph·(2τ)2 + 2τ2pr,h

= −4pr,hpr,hτ2 + 2τ2pr,h

= −4p2
r,hτ

2 + 2τ2pr,h

Applying the usual maximization approach based on derivative, one obtains:

4.1 The basis 69



∂

∂pr,h

{
−4p2

r,hτ
2 + 2τ2pr,h

}
= 0

−2pr,h4τ2 + 2τ2 = 0

p∗r,h = 1
4 (4.8)

In order to check if the stationary point (4.8) is a maximizer, the second-order
derivative is computed:

∂2

∂p2
r,h

{
−2pr,h4τ2 + 2τ2

}
= −8τ2 < 0. (4.9)

It follows that p∗r,h = p∗r· = p∗h· =
1
4 is a maxima.

max [Cov (Yr, Yh)] = −4p∗r·p∗h·τ2 + 2τ2p∗r,h

= −
(1

4

)2
4τ2 + 2τ2 1

4

= −τ
2

4 + 2τ
2

4

= τ2

4

In conclusion, the parameter configuration of P leading to the minimum value of
Cov (Yr, Yh) given the values of α and τ is:


pr,h = ph,r = 0

pr· = ph· = 0.5

pr,r = ph,h = 0.5

(4.10)
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and the one that leads to the maximum value of Cov (Yr, Yh) is:


pr,h = ph,r = 1

4

pr· = ph· = 1
4

pr,r = ph,h = 0

(4.11)

The following definition introduces a matrix that will be used in some of the following
properties:

Definition 21. Let a = (a0, a1, . . . , aC−1, aC)ᵀ be a vector of non negative integers
such that 0 = a0 < a1 < · · · < aC−1 < aC = D, a double collapser matrix Ma is the
unique C ×D amalgamation matrix such that in the r-th row (r = 1, . . . , C) there are
(ar − ar−1) 1’s and they are in position (ar−1 + 1, . . . , ar).

Proposition 22. Let Ma be a double collapser matrix. If B = Ma · D · Mᵀ
a, then

bi,j =
ai∑

r=ai−1+1

aj∑
l=aj−1+1

dr,l, where bi,j and dr,l are the generic element of B and D,

respectively. In particular, this means that B is equal to the matrix D with blocks of
rows and columns summed over.

Example 8. Let D be the following 6× 6 matrix:

D =



1 0 2 1 3 7
0 5 3 1 0 1
4 1 1 3 4 0
3 1 0 1 3 2
0 2 0 2 0 3
1 0 2 1 0 1


.

Supposing that a statistician wants to obtain a new matrix with rows and columns 2
and 3 and rows/columns 5 and 6 summed up. This means that the desired matrix is
formed by the sum of the elements belonging to each block of the following matrix:

1 0 2 1 3 7
0 5 3 1 0 1
4 1 1 3 4 0
3 1 0 1 3 2
0 2 0 2 0 3
1 0 2 1 0 1


.
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In order to obtain this matrix, he defines the vector a = (0, 1, 3, 4, 6)ᵀ and the corre-
sponding double collapser matrix:

Ma =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1

 .

Then, computing the matrix multiplication Ma · D ·Mᵀ
a, he obtains the matrix

B =


1 2 1 10
4 10 4 5
3 1 1 5
1 4 3 4

 ,

that is the desired matrix.

Proposition 23 (Closure under Amalgamation). Let Y ∼ DFG(α, τ,P) and let C
be a positive integer such that C ≤ D. Then, Y+ =

(
Y +

1 , . . . , Y +
C

)ᵀ
, namely the

amalgamation induced by the C-dimensional vector a, follows a DFG(α+, τ,P+) distri-

bution, where α+ =

 a1∑
i=a0+1

αi, . . . ,
aC∑

i=aC−1+1
αi

ᵀ

, P+ is a C × C matrix such that:

P+ = Ma · P ·Mᵀ
a and Ma is a double collapser matrix.

Proof. Given the basis defined in (4.2), elements of Y+ = (Y +
1 , Y +

2 , . . . , Y +
C )ᵀ = a1∑

i=a0+1
Yi,

a2∑
i=a1+1

Yi, . . . ,
aC∑

i=aC−1+1
Yi

ᵀ

can be defined as:

Y +
h =

ah∑
i=ah−1+1

Yi =
ah∑

i=ah−1+1
Wi + U1

 ah∑
i=ah−1+1

Z1,i

+ U2

 ah∑
i=ah−1+1

Z2,i


=

ah∑
i=ah−1+1

Wi + U1 · Z∗1,h + U2 · Z∗2,h

Thanks to well-known properties of Gamma and Multinomial distributions, the
following results are immediately obtained:

•

 ah∑
i=ah−1+1

Wi

 ∼ Gamma

 ah∑
i=ah−1+1

αi, 1


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• Z∗1 =
(
Z∗1,1, . . . , Z

∗
1,C

)ᵀ
∼ Multinomial(1,p+)

• Z∗2 =
(
Z∗2,1, . . . , Z

∗
2,C

)ᵀ
∼ Multinomial(1,p+)

where p+ = (p+
1 , . . . , p

+
C)ᵀ and p+

h =

 ah∑
i=ah−1+1

pi·

.

In order to show that P+ = Ma · P ·Mᵀ
a one can rely on the following algebra:

P (Z∗1 = ei,Z∗2 = ej) = P (Z∗1 = ei|Z∗2 = ej)P (Z∗2 = ej)

= P
(
Z1 ∈ {e1+ai−1 , . . . , eai}|Z2 ∈ {e1+aj−1 , . . . , eaj}

)
·

·P
(
Z2 ∈ {eaj−1 , . . . , eaj}

)

=

ai∑
r=1+ai−1

aj∑
l=1+aj−1

pr,l

aj∑
l=1+aj−1

pj·

aj∑
l=1+aj−1

pj·

=
ai∑

r=1+ai−1

aj∑
l=1+aj−1

pr,l = (Ma · P ·Mᵀ
a)i,j

With these random elements it is possible to define the new basis Y+ = (Y +
1 , . . . , Y +

C )ᵀ

as in (4.2). Then, Y+ ∼ DFG(α∗, τ,P∗).

Proposition 24 (Compositional Invariance). The basis defined in (4.2) is composi-
tionally invariant (this means that X = Y/Y + ⊥⊥ Y +).

Proof. Thanks to the mixture structure of the DFG distribution, it is easy to show
that X|(Z1 = ei,Z2 = ej) ∼ Dir(α + τ (ei + ej)). Due to the compositional invari-
ance property of the Dirichlet distribution, X|(Z1 = ei,Z2 = ej) is independent of
Y +|(Z1 = z1,Z2 = z2) ∼ Gamma(α+ + 2τ). Then it is possible to write:

FX,Y +(x, y+) =
D∑
i=1

D∑
j=1

FX,Y +|(Z1=ei,Z2=ej)(x, y
+) · P (Z1 = ei,Z2 = ej)

=
D∑
i=1

D∑
j=1

FX,Y +|(Z1=ei,Z2=ej)(x, y
+) · pi,j

=
D∑
i=1

D∑
j=1

pi,jFX|(Z1=ei,Z2=ej)(x) · FY +|(Z1=ei,Z2=ej)(y
+)
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=
D∑
i=1

D∑
j=1

pi,jFX|(Z1=ei,Z2=ej)(x) · FY +(y+)

= Gamma(y+;α+ + 2τ, 1)
D∑
i=1

D∑
j=1

pi,jDir(x; α + τ (ei + ej))(4.12)

From this result it is immediate to obtain also the marginal distribution of Y + and X
(the latter can be saw as a finite mixture of a Dirichlet components with the same
parametric configurations of the components in (4.3)).

4.1.3 Correlation

Let Y ∼ DFG(α, τ,P). Then the correlation coefficient of Yr and Yh (r 6= h) is:

ρYr,Yh = Cov (Yr, Yh)√
Var (Yr) Var (Yh)

= −2τ2 (2pr·ph· − pr,h)√
(αr + 2τpr· + 2τ2 (pr· − 2p2

r· + pr,r)) ·
(
αh + 2τph· + 2τ2 (ph· − 2p2

h· + ph,h
))

(4.13)

The DFG model allows for even strong positive linear relationships (that means high
positive correlation coefficients) between its components.

Example 9. A way to obtain high values of ρYr,Yh given α and τ ,is to maximize
Cov (Yr, Yh) and setting the remaining parameters in order to minimize both Var (Yr)
and Var (Yh). From Proposition (21) it follows that Cov (Yr, Yh) is maximized if
pr· = ph· = pr,h = ph,r = 1

4 . This choice of parameters implies that:

Var (Yr) = αr + 2τpr· + 2τ2pr·(1− pr·) + 2τ2
(
pr,r − p2

r·

)
= αr + 2τ 1

4 + 2τ2 1
4 ·

3
4 + 2τ2

(
pr,r −

1
16

)
= αr + 1

2τ + τ2
(3

8 + 2pr,r −
1
8

)
= αr + 1

2τ + τ2
(

2pr,r + 1
4

)
.

With the same arguments one can show that Var (Yh) = αh + 1
2τ + τ2

(
2ph,h + 1

4

)
.

These variances are minimized if pr,r = 0 and ph,h = 0. Then:
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ρYr,Yh = τ2

4 ·
√(

αr + τ
2 + τ2

4

)
·
(
αh + τ

2 + τ2

4

)
= τ2

4 ·
√
τ2
(
αr
τ2 + 1

2τ + 1
4

)
· τ2

(
αh
τ2 + 1

2τ + 1
4

)
= 1

4 ·
√(

αr
τ2 + 1

2τ + 1
4

)
·
(
αh
τ2 + 1

2τ + 1
4

) −→τ→+∞
1

Suppose, without loss of generality, that D = 3; in order to fulfill the above conditions,

the matrix P can be set equal to P =


0 0 1

4
0 1

2 0
1
4 0 0

. Figure 4.2 shows how the

correlation coefficient among Y1 and Y3 changes in function of α and τ .
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Fig. 4.2: Correlation between Y1 and Y3.
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Of course, the correlation coefficient among Yr and Yh can assume also extreme
negative values. An example consists in using the configuration of parameters leading

to the minimum covariance (Equation 4.10)

pr,h = ph,r = 0

pr· = ph· = pr,r = ph,h = 0.5
, the

following computations can be derived:

ρYr,Yh = −τ2√
(αr + τ + τ2) · (αh + τ + τ2)

= −τ2√
τ2
(
αr
τ2 + 1

τ + 1
)
· τ2

(
αh
τ2 + 1

τ + 1
)

= −1√(
αr
τ2 + 1

τ + 1
) (

αh
τ2 + 1

τ + 1
) −→τ→+∞

−1.

4.2 The DFD model

Let Y ∼ DFG(α, τ,P), then the composition obtained closing Y, X = C(Y), follows
a new distribution, called Double Flexible Dirichlet and denoted by DFD(α, τ,P).
Due to the DFG’s generation mechanism (4.2), the parametric space of this random
vector is:

ΘDFD =

(α, τ,P) : α ∈ RD+ , τ ∈ R+, 0 ≤ pi,j < 1, i, j = 1, . . . , D,
D∑
i=1

D∑
j=1

pi,j = 1

 .

Thanks to the well-know relationship between Gamma and Dirichlet random vari-
ables, by conditioning on Z1 and Z2 each component follows a particular Dirichlet
distribution. This allows to derive a mixture representation of the DFD model,
already noted in (4.12):

DFD(x; α, τ,P) =
D∑
i=1

D∑
j=1

pi,jD(x; α + τ (ei + ej)),

where x ∈ SD and D(x; α) denotes the distribution function of a Dirichlet random
vector. Given this representation, it is easy to write the density function characteriz-
ing the DFD:
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fDFD(x; α, τ,P) =
D∑
i=1

D∑
j=1

pi,jfD(x; α + τ (ei + ej))

=
D∑
i=1

D∑
j=1

pi,j
Γ(α+ + 2τ)∏D

r=1 Γ(αr + τ (eir + ejr))

D∏
r=1

x
αr+τ (eir+ ejr )−1
r

=
D∑
i=1

D∑
j=1

pi,j
Γ(α+ + 2τ)∏D

r=1 Γ(αr + τ (eir + ejr))
∏
r 6=i,j

(
xαr−1
r

)
xαi+τ−1
i x

αj+τ−1
j

=
D∑
i=1

D∑
j=1

pi,j
Γ(α+ + 2τ)∏D

r=1 Γ(αr + τ (eir + ejr))

D∏
r=1

(
xαr−1
r

)
(xixj)τ

=
D∑
i=1

D∑
j=1

pi,j
Γ(α+ + 2τ)

(∏D
r=1 x

αr−1
r

)
(xixj)τ

Γ(αi + τ)Γ(αj + τ)
∏
r 6=i,j

Γ(αr)
+

+
D∑
i=1

pi,i

Γ(α+ + 2τ)
(

D∏
r=1

xαr−1
r

)
Γ(αi + 2τ)

∏
r 6=i

Γ(αr)
x2τ
i

= Γ(α+ + 2τ)
D∏
r=1

Γ(αr)

(
D∏
r=1

xαr−1
r

)
D∑
i=1

D∑
j=1

i 6=j

pi,j
Γ(αi)Γ(αj)(xixj)τ

Γ(αi + τ)Γ(αj + τ) +
D∑
i=1

pi,i
Γ(αi)x2τ

i

Γ(αi + 2τ)



Proposition 25 (Closure under Amalgamation). Let X = (X1, . . . , XD)ᵀ ∼ DFD(α, τ,P),
a = (a0, a1, . . . , aC−1, aC)ᵀ be a vector of non negative integers such that 0 = a0 <

a1 < · · · < aC−1 < aC = D and X+ =
(
X+

1 , . . . , X
+
C

)ᵀ
=

 a1∑
j=a0+1

Xj , . . . ,
aC∑

j=aC−1+1
Xj

ᵀ

.

Then X+ ∼ DFD(α+, τ,Ma · P ·Mᵀ
a), where α+ =

 a1∑
j=a0+1

αj , . . . ,
aC∑

j=aC−1+1
αj

ᵀ

and

Ma is the double collapser matrix associated to a.

Proof.
(
X+

1 , . . . , X
+
C

)ᵀ
=

(
Y +

1 , . . . , Y +
C

)ᵀ
Y + . Thanks to Proposition 23, it is possible

to show that the numerator is DFG-distributed with parameters α+, τ and Ma ·P ·Mᵀ
a.

This means that X+ is the composition obtained closing a DFG basis and then:

X+ ∼ DFD(α+, τ,Ma · P ·Mᵀ
a).

4.2 The DFD model 77



Proposition 26 (Marginals). As a consequence of Proposition 25, by setting a =
(0, 1, . . . , k − 1, k,D)ᵀ, for any 1 ≤ k < D, it is possible to get the distribution of(

X1, 1−X+
1

)ᵀ
, where X1 = (X1, . . . , Xk)ᵀ:

(
X1, 1−X+

1

)ᵀ
∼ DFD (α1, τ,Ma · P ·Mᵀ

a) , (4.14)

where α1 =

α1, α2, . . . , αk,
D∑

h=k+1
αh

ᵀ

. In particular, the one-dimensional marginals

can be expressed in the following finite mixture structure:

Xr ∼ pr,rBeta
(
αr + 2τ, α+ − αr

)
+ 2

∑
i 6=r

pr,i

Beta
(
αr + τ, α+ − αr + τ

)
+

+

∑
i 6=r

∑
j 6=r

pi,j

Beta
(
αk, α

+ − αr + 2τ
)
(4.15)

Note that if P is a diagonal matrix such as:

P =


p1,1 0 . . . 0
0 p2,2 . . . 0
...

...
. . .

...
0 0 . . . pD,D

 ,

the DFD reduces to a FD with pFD = diag(PDFD) and τFD = 2τDFD. Allowing for this
scenario an identification issue arises: for example, the following two parametric
configurations provide the same distribution (the Dirichlet one):


τ = 0.5

pi,j =


αi
α+ , i = j

0, i 6= j


τ = 1

pi,j =


αiαj

α+(α+ + 1) , i 6= j

αi(αi + 1)
α+(α+ + 1) , i = j

Theorem 1 (Identifiability of the DFD model). Let X ∼ DFD(θ), θ = (α, τ,P)ᵀ

and X′ ∼ DFD(θ′), θ′ = (α′, τ ′,P′)ᵀ. Then, if P and P′ are not diagonal matricies,
f(x|θ) = f(x|θ′) if and only if θ = θ′.

The proof of the above theorem is quite long and, therefore, it is reported in Appendix
8.4.
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Note that a diagonal matrix P∗ can be obtained amalgamating a DFD-distributed
vector characterized by a non-diagonal matrix P, as showed in 10.

Example 10. Supposing that X ∼ DFD(α, τ,P), with P =


p1,1 0 0 0
0 p2,2 p2,3 0
0 p3,2 p3,3 0
0 0 0 p4,4

 .
Then, from Proposition 25, the vector (X1, X2 + X3, X4)ᵀ is distributed according
to an Extended Flexible Dirichlet with parameters α∗ = (α1, α2 + α3, α4)ᵀ, τ and
P∗ = Ma · P · Mᵀ

a, where Ma is the double-collapser matrix associated to the vector
a = (0, 1, 3, 4)ᵀ. Then:

P∗ =


1 0 0 0
0 1 1 0
0 0 0 0

 ·

p1,1 0 0 0
0 p2,2 p2,3 0
0 p3,2 p3,3 0
0 0 0 p4,4

 ·


1 0 0 0
0 1 1 0
0 0 0 0


ᵀ

.

=


p1,1 0 0
0 p2,2 + 2p2,3 + p3,3 0
0 0 p4,4



4.2.1 Mixture components and cluster means

An advantage of the Double Flexible Dirichlet is the high number of potential clusters
and their position on the simplex. Indeed, if the matrix P is symmetric and with
each pi,j > 0, D(D+1)

2 clusters are potentially present. These clusters have a rigid
allocation scheme on the simplex. From Equation (4.12) it is easy to see that the
generic component is distributed according to D(α + τ (ei + ej)), i, j = 1, . . . , D.
Then, the mean vectors of these components are:

µDFD
i,j = α + τ (ei + ej)

α+ + 2τ

=
(

α+

α+ + 2 τ

)
ᾱ +

(
τ

α+ + 2 τ

)
ei +

(
τ

α+ + 2 τ

)
ej ,

(4.16)

where i, j = 1, . . . , D, i ≤ j and ᾱ = α/α+. The constraint i ≤ j is due to the
symmetry of P.

Please note that µDFD
i,j does not represent the generic element of a matrix (indeed

µDFD
i,j is a vector!): it is rather associated to the realizations of the random vector
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Z1 and Z2 (Z1 = ei and Z2 = ej). These cluster means (and, consequently, the
corresponding mixture components) are located in a very rigid scheme on the
simplex, as can be seen in Figure 4.3, where the blue triangles represent the cluster
means and the green one represents ᾱ in a scenario with D = 3. It is possible to
compare Figures 3.4 and 4.3. They are very similar: if we connect the cluster means,
we obtain a "mini-simplex" with edges parallel to the simplex ones is formed. In the
FD case, the vertices of this scaled simplex are µFD

1 , µFD
2 and µFD

3 whereas in the
DFD case they are µDFD

1,1 , µDFD
2,2 and µDFD

3,3 . Vectors µDFD
i,j with i 6= j are situated

at the midpoint of the segment joining µDFD
i,i and µDFD

j,j .

x1

x3

x2 x1

x3

x2

x1

x3

x2 x1

x3

x2

Fig. 4.3: DFD cluster means structure. Top-Left: α = (3, 3, 3)ᵀ, τ = 5. Top-Right: α =
(3, 3, 3)ᵀ, τ = 15. Bottom-Left: α = (5, 13, 5)ᵀ, τ = 5. Bottom-Right: α =
(5, 13, 5)ᵀ, τ = 15.

While this structure is quite rigid, it is similar to the one of the FD distribution but
allowing for more clusters. Furthermore, thanks to the fact that some pi,j can be
equal to 0, this model allows for a variety of cluster that cannot be defined by the
FD and the EFD models. For example, in Figure 4.4 it is possible to see some cluster
configurations that can not be reached by simpler models. Note that joining the
cluster means in the top-left and top-right panels produces a diamond and an inverse
triangle, respectively.
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x1

x3

x2 x1

x3

x2

x1

x3

x2 x1

x3

x2

Fig. 4.4: Particular DFD cluster means with alphav = (5, 5, 5)ᵀ and τ = 10. Top-Left:
p1,1 = p2,2 = 0. Top-Right: p1,1 = p2,2 = p3,3 = 0. Bottom-Left: p1,1 = p1,2 = 0.
Bottom-Right: p2,2 = p2,3 = 0.

4.3 Properties

4.3.1 Moments

Thanks to the mixture representation, it is also easy computing joint moments:

Proposition 27 (Joint Moments). The joint moments of X ∼ DFD(α, τ,P) can be
expressed in the following form:

E
[
D∏
r=1

Xγr
r

]
=

D∑
i=1

D∑
j=1

pi,j

[
Γ(α+ + 2τ)

Γ(α+ + 2τ + γ+)

D∏
r=1

Γ(αr + τ(eir + ejr) + γr)
Γ(αr + τ(eir + ejr))

]

= Γ(α+ + 2τ)
Γ(α+ + 2τ + γ+)

 D∑
i=1

D∑
j=1
i 6=j

pi,j

D∏
r=1

Γ(αr + τ(eir + ejr) + γr)
Γ(αr + τ(eir + ejr))

+
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+
D∑
i=1

pi,i

D∏
r=1

Γ(αr + 2τ eir + γr)
Γ(αr + 2τ eir)

]

where γr ≥ 0 are non-negative integer and γ+ =
D∑
r=1

γr.

In particular, the first two orders moments are:

E [X] =
∫
SD

x

 D∑
i=1

D∑
j=1

pi,jfD(x; α + τ (ei + ej))

 dx
=

∫
SD

D∑
i=1

D∑
j=1

pi,jxfD(x; α + τ (ei + ej))dx

(∗) =
D∑
i=1

D∑
j=1

pi,j

∫
SD

xfD(x; α + τ (ei + ej))dx

=
D∑
i=1

D∑
j=1

pi,j
α + τ (ei + ej)

α+ + 2τ

=
D∑
i=1

D∑
j=1

pi,j
α

α+ + 2τ +
D∑
i=1

D∑
j=1

pi,j
τ ei

α+ + 2τ +
D∑
i=1

D∑
j=1

pi,j
τ ej

α+ + 2τ

= α

α+ + 2τ +
D∑
i=1

pi·
τ ei

α+ + 2τ +
D∑
j=1

p·j
τ ej

α+ + 2τ

= α

α+ + 2τ + τ p
α+ + 2τ + τ p

α+ + 2τ

= α + 2τ p
α+ + 2τ (4.17)

where the integral in (∗) is the expectation of D(α + τ(ei + ej)). One can note

that
α + 2τp
α+ + 2τ coincides with the expected value of a Flexible Dirichlet model with

τFD = 2τDFD.

From Proposition 27 it follows that:

E [Xr ·Xh] = αr αh + 2τ(αrph· + αhpr·) + 2τ2prh
(α+ + 2τ + 1)(α+ + 2τ) . (4.18)

E
[
X2
r

]
= α2

r + αr + 4ταhpr· + 2τ2pr· + 2τ2pr,r + 2τpr·
(α+ + 2τ + 1)(α+ + 2τ) . (4.19)
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Var (Xr) = E
[
X2
r

]
− (E [Xr])2

= α2
r + αr + 4ταhpr· + 2τ2pr· + 2τ2pr,r + 2τpr·

(α+ + 2τ + 1)(α+ + 2τ) −
(
αr + 2τpr·
α+ + 2τ

)2

= E [Xr] (1− E [Xr])
α+ + 2τ + 1 + 2τ2 (pr·(1− 2pr·) + pr,r)

(α+ + 2τ + 1)(α+ + 2τ)

(4.20)

Cov (Xr, Xh)r 6=h = E [Xr ·Xh]− (E [Xr]E [Xh])

= αr αh + 2τ(αrph· + αhpr·) + 2τ2pr,h
(α+ + 2τ + 1)(α+ + 2τ) −

(
αr + 2τpr·
α+ + 2τ

)(
αh + 2τph·
α+ + 2τ

)
= −E [Xr]E [Xh]

α+ + 2τ + 1 + 2τ2(pr,h − 2pr·ph·)
(α+ + 2τ + 1)(α+ + 2τ)

(4.21)

In general, closing a basis leads to unclear covariance structure, due to the sum-to-1
constraint. In other words, the covariance matrix of a basis is rarely connected
to the covariance matrix of a composition in a simple way. The most simple but
effective example to show is the closure of a basis formed by independent Gamma
random variables, as in Example 6. Therefore, no automatic relation between basis
and composition dependence structure exists; rather it depends on the underlying
distribution. An interesting feature of the DFD model is that the dependence induced
in the basis appears in the composition. Indeed, the covariance among two elements
of a DFD-distributed vector can be written as:

Cov (Xr, Xh) = −E [Xr]E [Xh]
α+ + 2τ + 1 + Cov (Yr, Yh)

(α+ + 2τ + 1)(α+ + 2τ) . (4.22)

The first element (always negative) is due to the closure of a Gamma-related basis,
whereas the second is exactly the covariance of the corresponding basis’ elements
multiplied by a constant. Since this last part can assume both positive and negative
values, according to the difference (pr,h − 2pr·ph·), it influences the negative linear
dependence which is typical to the Dirichlet. In particular, thanks to this new term,
the covariance among two components can assume values greater than zero, allowing
for positive dependence. This is a noteworthy aspect, because most distributions on
the simplex do not have such a coherent dependence structure between the basis
and the composition. Nonetheless, the FD has a similar structure, as it can be seen
by looking at Equations (3.15) and (3.21).
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The analytical expression for the correlation coefficient of two arbitrary components
Xr and Xh (r, h = 1, . . . , D, r 6= h) of X

ρr,h = Cov (Xr, Xh)√
Var (Xr) · Var (Xh)

.

is heavy and hardly tractable; however it is easy to show that it may take high
positive values. For example, setting the matrix P as in (4.11) leads to the following
quantities:

E [Xh] =
αh + τ

2
α+ + 2τ −→

τ→+∞

1
4

Var (Xh) = E [Xr] (1− E [Xr])
α+ + 2τ + 1 +

2τ2 1
8

(α+ + 2τ + 1)(α+ + 2τ) −→τ→+∞

1
16

Cov (Xr, Xh) = −E [Xr]E [Xh]
α+ + 2τ + 1 +

2τ2 1
8

(α+ + 2τ + 1)(α+ + 2τ) −→τ→+∞
−0 + 1

16 = 1
16

=⇒ ρr,h = Cov (Xr, Xh)√
Var (Xh) · Var (Xr)

−→
τ→+∞

1
16√
1
16 ·

1
16

= 1

It can also be shown that the DFD model allows for negative dependence. This is not
surprising, since the unit-sum constraint naturally induces a negative dependence.
Setting the elements of the matrix P as in (4.10) and taking limits as τ → +∞:

E [Xh] = αh + τ

α+ + 2τ −→
τ→+∞

1
2

Var (Xh) = E [Xh] (1− E [Xh])
α+ + 2τ + 1 + τ2

(α+ + 2τ + 1)(α+ + 2τ) −→τ→+∞
0 + 1

4 = 1
4

Cov (Xr, Xh) = −E [Xr]E [Xh]
α+ + 2τ + 1 + −τ2

(α+ + 2τ + 1)(α+ + 2τ) −→τ→+∞
0− 1

4 = −1
4

=⇒ ρr,h = Cov (Xr, Xh)√
Var (Xh) · Var (Xr)

−→
τ→+∞

−
1
4√
1
4 ·

1
4

= −1

Example 11. Let P be a symmetric matrix equal to the one defined in Example (9).
Figure (4.5) shows how the correlation coefficient among X1 and X3 changes according
to α and τ .
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Fig. 4.5: Correlation between X1 and X3.

4.3.2 Conditional distributions

Let S1 = (Y1, . . . , Yk)ᵀ/Y +
1 be a k−dimensional subcomposition. It could be of

interest to compute the distribution of S1 |X2 = x2 . Let Z+
1 and Z+

2 be two random
variables such that Z+

1 =
∑k
h=1 Z1,h and Z+

2 =
∑k
h=1 Z2,h.

• Condition on Z+
1 = 1, Z+

2 = 1:

S1
∣∣∣(Z+

1 = 1, Z+
2 = 1) ∼ DFDk

(
α1, τ,

P∗11
P ∗+11

)
,

where P∗11 = Ma · P ·Mᵀ
a and Ma is the double-collapser matrix associated to

a = (0, k,D). By compositional invariance of the DFD model, S1 is independent
of Y +

1

∣∣∣(Z+
1 = 1, Z+

2 = 1) . Given Z+
1 = 1, Z+

2 = 1, Y1 = (Y1, . . . , Yk)ᵀ ∼

DFG

(
α1, τ,

P∗11
P ∗+11

)
, Y2 = (Yk+1, . . . , YD)ᵀ is a random vector with independent

gamma components and Y1 ⊥⊥ Y2. Due to compositional invariance of both
Dirichlet and DFD, (S1,S2, Y

+
1 , Y +

2 )ᵀ is a vector with independent components:
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then S1 ⊥⊥ g(S2, Y
+

1 , Y +
2 ). Since X2 = g(S2, Y

+
1 , Y +

2 ) = S2 · Y +
2

Y +
1 + Y +

2
, S1 ⊥⊥

X2
∣∣∣(Z+

1 = 1, Z+
2 = 1) .

• Condition on Z+
1 = 1, Z+

2 = 0:

S1
∣∣∣(Z+

1 = 1, Z+
2 = 0) ∼ FDk

α1, τ,

(
D∑

j=k+1
p1j ,

D∑
j=k+1

p2j , . . . ,
D∑

j=k+1
pkj

)ᵀ

P ∗+12

 .

With similat arguments it is possible to show that S1 ⊥⊥ X2
∣∣∣(Z+

1 = 1, Z+
2 = 0) .

• Let us condition on Z+
1 = 0, Z+

2 = 1.

S1
∣∣∣(Z+

1 = 0, Z+
2 = 1) ∼ FDk

α1, τ,

(
D∑

i=k+1
pi1,

D∑
i=k+1

pi2, . . . ,
D∑

i=k+1
pik

)ᵀ

P ∗+21

 .

Also in this case S1 ⊥⊥ X2
∣∣∣(Z+

1 = 0, Z+
2 = 1) (same arguments).

Thanks to the symmetry of P, S1
∣∣∣(Z+

1 = 1, Z+
2 = 0) ∼ S1

∣∣∣(Z+
1 = 0, Z+

2 = 1) .
Then it is possible to write:

S1
∣∣∣(Z+

1 = 0, Z+
2 = 1) ∼ FDk

α1, τ,

(
D∑

j=k+1
p1j ,

D∑
j=k+1

p2j , . . . ,
D∑

j=k+1
pkj

)ᵀ

P ∗+12

 .

• Condition on Z+
1 = 0, Z+

2 = 0:

S1
∣∣∣(Z+

1 = 0, Z+
2 = 0) ∼ Dirk (α1) .

Once again, with the same arguments it is possible to show that S1 ⊥⊥
X2
∣∣∣(Z+

1 = 0, Z+
2 = 0) .
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One can show that:

z+
1 z+

2 P
(
Z+

1 = z+
1 , Z

+
2 = z+

2

)
1 1 P ∗+11
1 0 P ∗+12
0 1 P ∗+21
0 0 P ∗+22

Since P is symmetric, P ∗+12 = P ∗+21 . Finally, from (S1 ⊥⊥ X2)|(Z+
1 , Z

+
2 ), the distribution

function of S1 |X2 = x2 is easily obtained with basic probability theory:

FS1|X2=x2 (s1) =
1∑

z+
1 =0

1∑
z+

2 =0

FS1|X2=x2,Z
+
1 =z+

1 ,Z
+
2 =z+

2
(s1) · P (Z+

1 = z+
1 , Z

+
2 = z+

2 |X2 = x2)

=
1∑

z+
1 =0

1∑
z+

2 =0

Fs1|Z+
1 =z+

1 ,Z
+
2 =z+

2
(S1) · P (Z+

1 = z+
1 , Z

+
2 = z+

2 |X2 = x2)

= DFDk
(

α1, τ,
P∗11
P ∗+11

)
· P

(
Z+

1 = 1, Z+
2 = 1|X2 = x2

)
+

+ FDk

α1, τ,

(
D∑

j=k+1
p1j ,

D∑
j=k+1

p2j , . . . ,
D∑

j=k+1
pkj

)ᵀ

P ∗+12

 · P
(
Z+

1 = 1, Z+
2 = 0|X2 = x2

)
+

+ FDk

α1, τ,

(
D∑

j=k+1
p1j ,

D∑
j=k+1

p2j , . . . ,
D∑

j=k+1
pkj

)ᵀ

P ∗+12

 · P
(
Z+

1 = 0, Z+
2 = 1|X2 = x2

)
+

+ Dirk (α1) · P
(
Z+

1 = 0, Z+
2 = 0|X2 = x2

)

This means that the conditional distribution of S1 given X2 = x2 can be expressed as
a finite mixture with Dirichlet, FD and EFD components and weights that depend on
the value of x2 and that can be computed by the following formula:

P
(
Z+

1 = z+
1 , Z

+
2 = z+

2 |X2 = x2
)

=
P
(
Z+

1 = z+
1 , Z

+
2 = z+

2

)
fX2|Z+

1 =z+
1 ,Z

+
2 =z+

2
(x2)

fX2(x2)
(4.23)
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Thanks to the result on marginals, the denominator fX2(x2) is equal to the density
function of:

(1−X+
2 ,X2)ᵀ ∼ DFD1+D−k


(α+ − α+

2 ,α2)ᵀ, τ,



P ∗+11
k∑
i=1

pi,k+1
k∑
i=1

pi,k+2 . . .
k∑
i=1

pi,D

k∑
j=1

pk+1,j

k∑
j=1

pk+2,j

... P∗

22
k∑
j=1

pD,j




,

(4.24)
where P∗22 = Ma · P ·Mᵀ

a is the result of a matrix multiplication involving a double
collapser matrix. In order to compute fX2|Z+

1 =z+
1 ,Z

+
2 =z+

2
(x2), it is necessary to note

that:(
1−X+

2 ,X2
)ᵀ ∣∣∣(Z+

1 = 1, Z+
2 = 1) ∼ Dir1+D−k

((
α+ − α+

2 + 2τ,α2
)ᵀ)

(4.25)

(
1−X+

2 ,X2
)ᵀ ∣∣∣(Z+

1 = 1, Z+
2 = 0) ∼

∼ FD1+D−k

(α+ − α+
2 + τ,α2)ᵀ, τ,

0,

k∑
i=1

pi,k+1,
k∑
i=1

pi,k+2, . . . ,
k∑
i=1

pi,D

P ∗+12


ᵀ

(4.26)

(
1−X+

2 ,X2
)ᵀ ∣∣∣(Z+

1 = 0, Z+
2 = 1) ∼

∼ FD1+D−k

(α+ − α+
2 + τ,α2)ᵀ, τ,

0,

k∑
j=1

pk+1,j ,
k∑
j=1

pk+2,j , . . . ,
k∑
j=1

pD,j

P ∗+21


ᵀ

(4.27)
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Thanks to the symmetry of P, it can be shown that:

(
1−X+

2 ,X2
)ᵀ ∣∣∣(Z+

1 = 0, Z+
2 = 1) ∼

∼ FD1+D−k

(α+ − α+
2 + τ,α2)ᵀ, τ,

0,

k∑
i=1

pi,k+1,
k∑
i=1

pi,k+2, . . . ,
k∑
i=1

pi,D

P ∗+12


ᵀ .

(4.28)

The above result means that:(
1−X+

2 ,X2
)ᵀ ∣∣∣(Z+

1 = 1, Z+
2 = 0) ∼

(
1−X+

2 ,X2
)ᵀ ∣∣∣(Z+

1 = 0, Z+
2 = 1)

The last conditional distribution needed is:

(
1−X+

2 ,X2
)ᵀ ∣∣∣(Z+

1 = 0, Z+
2 = 0) ∼ DFD1+D−k

(α+ − α+
2 ,α2)ᵀ, τ,

 0
1×1

0
1×(D−k)

0
(D−k)×1

P∗22/P
∗+
22

(D−k)×(D−k)




(4.29)

In order to simplify future notation, it is possible to introduce the following func-
tions:

• γ(x2;φ, ϕ) =
D∑

i=k+1

D∑
j=k+1

i 6=j

pi,jΓ(αi)Γ(αj)(xixj)φ

Γ(αi + τ)Γ(αj + τ)(1− x+
2 )ϕ

• δ(x2;φ, ϕ) =
D∑

i=k+1

pi,iΓ(αi)xφi
Γ(αi + 2τ)(1− x+

2 )ϕ

• ν(x2;φ, ϕ) =
D∑

h=k+1

(
∑k
r=1 ph,r)Γ(α+

1 )Γ(αh)xφh
Γ(α+

1 + τ)Γ(αh + τ)(1− x+
2 )ϕ

Then it is possible to write:

fX2(x2) =
Γ(α+ + 2τ)

(
D∏

r=k+1
xαr−1
r

)
(1− x+

2 )α
+
1 −1

Γ(α+
1 )

D∏
r=k+1

Γ(αr)
· [γ(x2; τ, 0) + δ(x2; 2τ, 0)+

+ P ∗+11 Γ(α+
1 )(1− x+

2 )2τ

Γ(α+
1 + 2τ)

+ 2ν(x2; τ, 0)
]
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Finally, thanks to Equation (4.23) it is possible to compute the weights of the mixture:

P
(
Z+

1 = 1, Z+
2 = 1 |X2 = x2

)
=
P
(
Z+

1 = 1, Z+
2 = 1

)
fX2|Z+

1 =1,Z+
2 =1(x2)

fX2(x2)

= P ∗+11

P ∗+11 + Γ(α+
1 + 2τ)

Γ(α+
1 )

[γ(x2; τ, 2τ) + δ(x2; 2τ, 2τ) + 2ν(x2; τ, τ)]

P
(
Z+

1 = 0, Z+
2 = 0 |X2 = x2

)
=
P
(
Z+

1 = 0, Z+
2 = 0

)
fX2|Z+

1 =0,Z+
2 =0(x2)

fX2(x2)

= 1

1 + 1
q(x2)

[
P ∗+11

Γ(α+
1 )(1− x+

2 )2τ

Γ(α+
1 + 2τ)

+ 2ν(x2; τ,−τ)
]

where q(x2) = γ(x2; τ, 0) + δ(x2; 2τ, 0).

P
(
Z+

1 = 1, Z+
2 = 0 |X2 = x2

)
= P

(
Z+

1 = 0, Z+
2 = 1 |X2 = x2

)
=
P
(
Z+

1 = 1, Z+
2 = 0

)
fX2|Z+

1 =1,Z+
2 =0(x2)

fX2(x2)

= 1

2 + 1
ν(x2; τ, 0)

[
γ(x2; τ, τ) + δ(x2; 2τ, τ) + P ∗+11 · Γ(α+

1 )(1− x+
2 )τ

Γ(α+
1 + 2τ)

]
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4.3.3 Symmetrized Kullback-Leibler Divergence

In order to compute the symmetrized Kullback-Leibler divergence, it is useful to
remember that:

• Each mixture component follows a Dirichlet distribution: fi,j ≡ fi,j(x; α, τ) =
fD(x; α + τ (ei + ej)).

• If X ∼ Dir(α) =⇒ E [lnXr] = ψ(αr)− ψ(α+), where ψ(x) = ∂
∂x ln Γ(x) is the

digamma function.

Let i 6= j 6= r 6= h be four generic indices assuming value in {1, 2, . . . , D} and
fi,j(x; α, τ) is the density function of a Dirichlet with parameters (α + τ(ei + ej)).
Then, the following quantities are of interest:

• fi,j(x; α, τ) = Γ(α+ + 2τ)Γ(αi)Γ(αj)[∏D
r=1 Γ(αr)

]
Γ(αi + τ)Γ(αj + τ)

xτi x
τ
j

D∏
r=1

xαr−1
r

• fi,i(x; α, τ) = Γ(α+ + 2τ)Γ(αi)[∏D
r=1 Γ(αr)

]
Γ(αi + 2τ)

x2τ
i

D∏
r=1

xαr−1
r

•
fi,j
fi,i

=
(
xj
xi

)τ Γ(αj)Γ(αi + 2τ)
Γ(αj + τ)Γ(αi + τ) =

(
xj
xi

)τ
Ci,j;i,i

•
fi,j
fr,r

=
(
xixj
xr

)τ Γ(αi)Γ(αj)Γ(αr + 2τ)
Γ(αi + τ)Γ(αj + τ)Γ(αr)

=
(
xixj
xr

)τ
Ci,j;r,r

•
fi,j
fr,j

=
(
xixj
xrxh

)τ Γ(αi)Γ(αj)Γ(αr + τ)Γ(αh + τ)
Γ(αi + τ)Γ(αj + τ)Γ(αr)Γ(αh) =

(
xixj
xrxh

)τ
Ci,j;r,h

•
fi,i
fr,r

=
(
xi
xr

)τ Γ(αi)Γ(αr + 2τ)
Γ(αi + 2τ)Γ(αr)

=
(
xi
xr

)τ
Ci,i;r,r

•
fi,j
fi,h

=
(
xj
xr

)τ Γ(αj)Γ(αr + τ)
Γ(αj + τ)Γ(αr)

=
(
xj
xr

)τ
Ci,j;i,h

•
fi,i
fi,j

=
(
fi,j
fi,i

)−1

;
fr,r
fi,j

=
(
fi,j
fr,r

)−1

;
fr,h
fi,j

=
(
fi,j
fr,h

)−1

;
fr,r
fi,i

=
(
fi,i
fr,r

)−1

;

fi,h
fi,j

=
(
fi,j
fi,h

)−1
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dKL(fi,j , fi,i) =
∫
fi,j · ln

fi,j
fi,i

dx =
∫
fi,j · [lnCi,j;i,i + τ ln xj − τ ln xi] dx

= lnCi,j;i,i + τ E [lnXj ]− τ E [lnXi]

= lnCi,j;i,i + τ
{
ψ(αj + τ)− ψ(α+ + 2 τ)−

[
ψ(αi + τ)− ψ(α+ + 2 τ)

]}
= lnCi,j;i,i + τ {ψ(αj + τ)− ψ(αi + τ)}

where E [ · ] is with respect to D(α + τ(ei + ej)).

dKL(fi,i, fi,j) =
∫
fi,i · ln

fi,i
fi,j

dx = −
∫
fi,i · ln

fi,j
fi,i

dx = −
∫
fi,i · [lnCi,j;i,i + τ ln xj − τ ln xi] dx

= −{lnCi,j;i,i + τ E [lnXj ]− τ E [lnXi]}

= − lnCi,j;i,i − τ
{
ψ(αj)− ψ(α+ + 2 τ)−

[
ψ(αi + 2 τ)− ψ(α+ + 2 τ)

]}
= − lnCi,j;i,i − τ {ψ(αj)− ψ(αi + 2 τ)}

where E [ · ] is with respect to D(α + 2 τ ei).

dSKL(fi,j , fi,i) = dKL(fi,j , fi,i) + dKL(fi,i, fi,j)

= �����lnCi,j;i,i + τ (ψ(αj + τ)− ψ(αi + τ))−�����lnCi,j;i,i − τ (ψ(αj)− ψ(αi + 2 τ))

= τ [ψ(αj + τ)− ψ(αi + τ)− ψ(αj) + ψ(αi + 2 τ)]

With the same arguments it is easy to show that:

• dSKL(fi,j , fi,i) = τ [ψ(αj + τ)− ψ(αj) + ψ(αi + 2 τ)− ψ(αi + τ)]

• dSKL(fi,j , fr,r) = τ [ψ(αi + τ)− ψ(αi) + ψ(αj + τ)− ψ(αj) + ψ(αr + 2 τ)− ψ(αr)]

• dSKL(fi,j , fi,h) = τ [ψ(αj + τ)− ψ(αj) + ψ(αh + τ)− ψ(αh)]

• dSKL(fi,i, fr,r) = τ [ψ(αi + 2 τ)− ψ(αi) + ψ(αr + 2 τ)− ψ(αr)]

• dSKL(fi,j , fr,h) = τ [ψ(αi + τ)− ψ(αi) + ψ(αj + τ)− ψ(αj)+
+ ψ(αr + τ)− ψ(αr) + ψ(αh + τ)− ψ(αh)]

A graphical investigation of several ternary plots of different scenarios shows that
values of dSKL(·, ·) greater than 20 characterize two well separated clusters.
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4.4 Computational issues

In the previous sections the DFD distribution has been introduced and some the-
oretical properties have been listed. In this section the interest is in providing an
estimation procedure for the parameters α, τ and P.

4.4.1 Cluster-code matrix

During this work, the necessity of finding a way to identify clusters has arisen. In the
previous Flexible models (Sections 3.3 and 3.4) clusters are identified thanks to a
precise cluster means structure. Let µk be the mean vector of the k-th mixture com-
ponent (k = 1, . . . , D). Then, in both FD and EFD models, cluster k is characterized
by a value of the k-th element of µk greater than the corresponding element of µk′ ,
k′ 6= k. This peculiarity does not hold anymore for the DFD distributions, since the
number of clusters is greater than the dimension of each µk. Indeed, the number of
mixture components in a DFD model is D∗ = D(D+1)

2 and this quantity is a quadratic
function of D. The next definition provides a matrix useful in identifying clusters:

Definition 22. A cluster-code matrix of order D, CD ∈M(D,D) is an upper trian-
gular matrix such that:

• the main diagonal is composed by the first (ordered) D integers:

C5 =



1 · · · ·
2 · · ·

3 · ·
4 ·

5



• the remaining elements are equal to the (ordered) integers from D + 1 to
D(D + 1)

2 allocated by row:

C5 =



1 6 7 8 9
2 · · ·

3 · ·
4 ·

5


⇒



1 6 7 8 9
2 10 11 12

3 · ·
4 ·

5


⇒



1 6 7 8 9
2 10 11 12

3 13 14
4 15

5


Example 12. The following are cluster-code matrices of order D = 2, 3, 4 and 5 (0
entries below the main diagonal are omitted):
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C2 =
[
1 3

2

]
C3 =

1 4 5
2 6

3



C4 =


1 5 6 7

2 8 9
3 10

4

 C5 =


1 6 7 8 9

2 10 11 12
3 13 14

4 15
5



Given a particular value of D, a cluster-code matrix allows us to identify a particular
cluster uniquely. Let k

(
k = 1, 2, . . . , D(D+1)

2

)
be the cluster label; if ci,j = k, then

cluster k is the one with parameters α + τ(ei + ej) (of course i can be equal to j).

With this cluster structure, it is possibe to rewrite the DFD model as:

DFD(x; α, τ,π) =
D∗∑
k=1

πkDir(x; α + τ · e(k)),

where D∗ = D(D+1)
2 , π = (π1, . . . , πD∗), e(k) =

D∑
i=1

∑
j≥i

(ei + ej) · I(ci,j = k) and

πk =

pk,k if k = 1, . . . , D

2 · p{i,j : cij=k} if k = D + 1, . . . , D∗
.

This new notation makes the definition of µk easy:

µk = α

α+ + 2 τ + 1
α+ + 2 τ · τe(k), (k = 1, . . . , D∗). (4.30)

4.4.2 Parameter estimation: the EM algorithm

Let us assume that a random sample x = (x1, x2, . . . , xn)ᵀ of size n has been collected,
where each xs (s = 1, . . . , n) is a realization of X ∼ DFD(α, τ,π). To compute the
ML estimates of θ = (α, τ,π)ᵀ we may use the Expectation-Maximization (EM)
algorithm, formalized by Dempster et al. in 1977 [28]. In this context, the EM
algorithm is defined to maximize the conditional expectation of the Complete-data
log Likelihood function:

logLC(α, τ,π|x) =
n∑
s=1

D∗∑
k=1

zs,k {log πk + log fD(xs; α + τ · e(k)} , (4.31)

where) zs,k is a component indicator that is equal to 1 if observation xs has arisen
from the cluster k.
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• E-Step: m-th iteration

EZ [logLc|X = (x1, . . . , xn)ᵀ] =
∫

logLC · fZ|Xdz

=
D∗∑
k=1

n∑
s=1

πk
(
xs; θ(m)

)
·
{

log π(m)
k + log fD

(
xs; α(m) + τ (m) · e(k)

)}

In the above expression, the quantity:

πk (xs; θ) = πk · fD(xs; α + τ · e(k))∑D∗
h=1 πh · fD(xs; α + τ · e(h))

, k = 1, . . . , D∗ (4.32)

represents the posterior probabilities for observation xs in component k.

• M-Step: m-th iteration

It consists in maximizing EZ [logLc|X = (x1, . . . , xn)ᵀ]. It can be shown that

π̂
(m+1)
k = 1

n

n∑
s=1

πk
(
xs; θ(m)

)
. Values of α̂(m+1) and τ̂ (m+1) can be found maxi-

mizing the classification likelihood with a Newton-Raphson method.

It is well known that the EM algorithm is not robust with respect to the choice of the
initial values (in this case w.r.t the choice of α(0), τ (0) and π(0)) [15, 29, 70]. For
this reason, two initialization procedures have been implemented and compared.
Both require a partition of the sample x = (x1, . . . , xn)ᵀ into D(D+1)

2 groups and thus
a clustering method. The following algorithms have been compared:

1. k-means clustering based on the entire composition (D components)

2. k-means clustering based on D− 1 components, varying the left-out dimension

3. k-means clustering based on additive log-ratio tranformation, varying the
baseline dimension

4. k-means clustering based on centered log-ratio tranformation

5. hierarchical clustering based on the Aitchison metric defined in section 2.

An exploratory simulation study has highlighted that method 1. works better in most
parameter configurations. Although in the DFD context there exist a clear cluster
structure, the k-means algorithm (as any clustering method) labels clusters in a
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random way. Then, a labelling scheme has been constructed ad hoc to assign the
"correct" label to each cluster. Suppose, without loss of generality, that D = 3 so that
D∗ = 6. Remembering that the component specific distribution is a Dir(α + τ · e(k)),
then the mean vector for each cluster can be expressed as in Table 4.1:

Component
Cluster k µk,1 µk,2 µk,3

1
α1 + 2τ
α+ + 2τ

α2
α+ + 2τ

α3
α+ + 2τ

2
α1

α+ + 2τ
α2 + 2τ
α+ + 2τ

α3
α+ + 2τ

3
α1

α+ + 2τ
α2

α+ + 2τ
α3 + 2τ
α+ + 2τ

4
α1 + τ

α+ + 2τ
α2 + τ

α+ + 2τ
α3

α+ + 2τ

5
α1 + τ

α+ + 2τ
α2

α+ + 2τ
α3 + τ

α+ + 2τ

6
α1

α+ + 2τ
α2 + τ

α+ + 2τ
α3 + τ

α+ + 2τ
Tab. 4.1: Mean Vectors stratified by cluster.

It is easy to note that the highest value of µk,i is reached when k = i. Hence, the
cluster associated to the greatest sample mean x̄k can be labelled as cluster k. In
order to label the remaining clusters, two methods have been proposed. The first
one resorts on the stratified covariances (Table 4.2).

Covariance
Cluster k Cov (X1, X2) Cov (X1, X3) Cov (X2, X3)

1
−(α1 + 2τ)α2

(α+ + 2τ)2(α+ + 2τ + 1)
−(α1 + 2τ)α3

(α+ + 2τ)2(α+ + 2τ + 1)
−α2α3

(α+ + 2τ)2(α+ + 2τ + 1)

2
−α1(α2 + 2τ)

(α+ + 2τ)2(α+ + 2τ + 1)
−α1α3

(α+ + 2τ)2(α+ + 2τ + 1)
−(α2 + 2τ)α3

(α+ + 2τ)2(α+ + 2τ + 1)

3
−α1α2

(α+ + 2τ)2(α+ + 2τ + 1)
−α1(α3 + 2τ)

(α+ + 2τ)2(α+ + 2τ + 1)
−α2(α3 + 2τ)

(α+ + 2τ)2(α+ + 2τ + 1)

4
−(α1 + τ)(α2 + τ)

(α+ + 2τ)2(α+ + 2τ + 1)
−(α1 + τ)α3

(α+ + 2τ)2(α+ + 2τ + 1)
−(α2 + τ)α3

(α+ + 2τ)2(α+ + 2τ + 1)

5
−(α1 + τ)α2

(α+ + 2τ)2(α+ + 2τ + 1)
−(α1 + τ)(α3 + τ)

(α+ + 2τ)2(α+ + 2τ + 1)
−α2(α3 + τ)

(α+ + 2τ)2(α+ + 2τ + 1)

6
−α1(α2 + τ)

(α+ + 2τ)2(α+ + 2τ + 1)
−α1(α3 + τ)

(α+ + 2τ)2(α+ + 2τ + 1)
−(α2 + τ)(α3 + τ)

(α+ + 2τ)2(α+ + 2τ + 1)
Tab. 4.2: Covariances stratified by cluster.

The focus here is in clusters 4, 5 and 6 (k = D + 1, . . . , D∗): cluster k minimizes
the covariance between Xi and Xj , where i, j : ci,j = k. Hence, excluding
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clusters 1, . . . , D already labelled, it is sufficient to label the group associated with
the minimum sample covariance between Xi and Xj as k = ci,j .

If a cluster maximizes 2 or more sample means or minimizes 2 or more sample
covariance, all label permutations compatible with the observed structure will be
considered. This labelling scheme can be generalized also for D 6= 3.

This method has a very clear shortcoming: if a cluster contains few observations, the
group-specific covariances can be unstable and unreliable. This can be avoided with
the second method to provide labels for clusters D + 1, . . . , D∗ based entirely on the
mean vectors. Let Ui be the following set of indices:

Ui = {k : cj,i = k, j = 1, . . . , i & k : ci,j = k, j = i+ 1, . . . , D} . (4.33)

If k ∈ Ui then index k is on the i-th row or the i-th column of the cluster code matrix
CD.

Conditioning on cluster k > D, it is easy to note that µk,i is maximized by those
k ∈ Ui \ {i}.

Component
Cluster k µk,1 µk,2 µk,3

...
...

...
...

4
α1 + τ

α+ + 2τ
α2 + τ

α+ + 2τ
α3

α+ + 2τ

5
α1 + τ

α+ + 2τ
α2

α+ + 2τ
α3 + τ

α+ + 2τ

6
α1

α+ + 2τ
α2 + τ

α+ + 2τ
α3 + τ

α+ + 2τ
Tab. 4.3: Mean Vectors stratified by cluster (clusters D + 1, . . . , D∗).

Then, the cluster that maximizes µ·,i and µ·,j is labelled as k = ci,j . Once again, if
multiple labelled schemes occour, the estimation procedure is applied to every single
label permutation compatible with the observed structure. Also when each cluster
has lot of observations, the two approaches provide very similar results. Then the
one entirely based on the means has been chosen, due to its simplicity and reliability
in a few observations-scenario.
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Given a data partition obtained with the above method, an initialization for π is the
percentage of data points allocated in each cluster:

π(0) =
(
π

(0)
1 , . . . , π

(0)
D∗

)ᵀ
, where π(0)

k = 1
n

n∑
s=1

zs,k.

In order to obtain α(0) and τ (0) the method of moments based on the first D clusters
or based on all D∗ clusters can be used. Let x̄h,i and s2

h,i be the sample mean and
the sample variance of component i among cluster h:

1. D clusters: Each component is characterized by a Dirichlet density. Compo-
nents 1, . . . , D have a similar parametric structure (α + 2τ ek for some k). Let
Xh,i be the i−th component of cluster h. Then:

E [Xh,i] = αi + 2τ eih
α+ + 2τ =⇒

̂(
αi

α+ + 2τ

)
=

∑D
h=1
h6=i

x̄h,i · π̂h∑D
h=1
h6=i

π̂h
.

Since
2τ

α+ + 2τ = E [Xh,h]− αh
α+ + 2τ , then

2̂τ
α+ + 2τ can be computed as the

weighted mean of the D estimates:

x̄i,i −

∑D
h=1
h6=i

x̄h,iπ̂h∑D
h=1
h6=i

π̂h
, i = 1, . . . , D.

Finally, remembering that Var (Xh,i) = E [Xh,i] (1− E [Xh,i])
α+ + 2τ + 1 , initialization of

the common denominator
(
α+ + 2τ

)
can be obtained as the weighted mean

of:

1−
D∑
i=1

x̄2
h,i

D∑
i=1

s2
h,i

− 1, h = 1, . . . , D.

This approach uses only data points assigned to D groups instead of D(D+1)
2 :

the lack of information can be huge! It is possible to modify this algorithm in
order to consider all the data points.

2. D∗ clusters:
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Remembering that D∗ = D(D + 1)
2 , then the algorithm can be expressed as:

a) Initialize
̂(
αi

α+ + 2τ

)
=

∑D∗
h=1
h �∈Ui

x̄h,i · π̂h∑D∗
h=1
h �∈Ui

π̂h
, where Ui is defined in (4.33)

b) Given that

( 2τ
α+ + 2τ

)
=


(
αh + 2τ
α+ + 2τ

)
−
(

αh
α+ + 2τ

)
, if h = 1, . . . , D(

αl + τ

α+ + 2τ

)
−
(

αl
α+ + 2τ

)
+
(
αw + τ

α+ + 2τ

)
−
(

αw
α+ + 2τ

)
, if h = D + 1, . . . , D∗

where l and w are two indices such that cl,w = h or cw,l = h, then

the inizialization
̂( 2τ
α+ + 2τ

)
is the weighted mean of the

D(D + 1)
2

quantities:
x̄h,h −

̂(
αh

α+ + 2τ

)
, if h = 1, . . . , D

x̄h,l −
̂(
αl

α+ + 2τ

)
+ x̄h,w −

̂(
αw

α+ + 2τ

)
, if h = D + 1, . . . , D∗

c) The quantity
(
α+ + 2τ

)
can be estimated as the weighted mean of:

1−
D∑
i=1

x̄2
h,i

D∑
i=1

s2
h,i

− 1, h = 1, . . . , D(D + 1)
2 .

This second method is preferred, since it uses all the collected data. Table 4.4 reports
the means of 500 initializations for α and τ . These initializations have been obtained
with samples of size 300 generated from the parameters configuration represented
by column ID (see Table 4.5).

4.4.3 Simulation study

In order to study the characteristics of the DFD and the performances of the proposed
EM algorithm estimation procedure, three simulation studies have been implemented.
Each of these simulations refers to the nine parametric configurations reported in
Table 4.5:
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α1 α2 α3 τ

True 10 10 10 10
Init. 9.427 9.286 9.526 9.703
True 10 10 10 40
Init. 9.706 9.397 9.874 37.745
True 2 23 12 17
Init. 1.888 20.615 10.861 15.836
True 100 40 40 15
Init. 92.450 37.019 37.261 13.209
True 10 100 14 8
Init. 10.034 98.212 13.570 7.800
True 12 0.900 30 20
Init. 12.478 0.892 32.036 21.476

Tab. 4.4: Mean of 500 initialializations for α and τ in different configurations of parameters.

ID α1 α2 α3 τ π1 π2 π3 π4 π5 π6
1 10 10 10 15 0.11 0.11 0.11 0.22 0.22 0.22
2 10 10 10 40 0.11 0.11 0.11 0.22 0.22 0.22
3 2 23 12 17 0.08 0.16 0.18 0.10 0.40 0.08
4 40 20 30 25 0.00 0.16 0.26 0.40 0.00 0.18
5 40 20 30 50 0.00 0.16 0.26 0.40 0.00 0.18
6 100 40 40 15 0.22 0.17 0.15 0.15 0.10 0.20
7 40 20 30 18 0.00 0.00 0.00 0.30 0.19 0.51
8 10 100 14 8 0.10 0.15 0.15 0.10 0.40 0.10
9 12 0.90 30 20 0.08 0.16 0.18 0.10 0.40 0.08

Tab. 4.5: Parameter configurations for all the DFD simulations.

These configurations allow to cover several scenarios: well separated as well as
overlapping clusters, clusters very closed to one edge of the simplex, positive and
negative correlations and configurations where not all the components are present.
Some of these features can be inspected graphically by looking at Figures 4.6 -
4.14.

Alternative EM methods

The EM algorithm is one of the most popular algorithm used to obtain Maximum
Likelihood estimates in a missing data scenario. It is very popular but it has an
important disadvantage: it is very sensitive to initial values. For this reason several
authors proposed alternative versions of the EM algorithm [15, 21, 22]: two of
them are the Classification EM (CEM) and the Stochastic EM (SEM). The CEM has a
further classification step: at step m, each observation is allocated to the group k
maximizing π̂(m)

k (xs; θ). The SEM algorithm has a similar approach: at each step,
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new partition for observation xs is generated according to a Multinomial distribution
with probabilities (π̂1 (xs; θ) , . . . , π̂D∗ (xs; θ))ᵀ, defined in (4.32).

The simulation study is composed by the following steps:

• For each configuration of parameters, 100 samples of size 100 have been
generated.

• For each sample, initialization of the parameters have been obtained according
to the method described previously.

• ML estimates have been obtained with these algorithms:

1) EM

2) CEM

3) SEM

4) CEM + EM

5) SEM + EM

Table 4.6 reports the proportion of simulations where each method provided the
highest log-likelihood and the mean of the log-likelihoods evaluated at the obtained
initial parameters. From these results one can conclude that the SEM + EM combi-
nation is the one providing the best values in most cases. The presence of a EM step
is fundamental: the CEM and the SEM are not able to find the global maximizer by
themselves (look at columns "%" for the CEM and SEM methods).

EM CEM SEM CEM+EM SEM+EM
ID % Mean l̂ % Mean l̂ % Mean l̂ % Mean l̂ % Mean l̂
1 0.287 128.6434 0 104.5987 0 104.5987 0.330 128.6434 0.383 129.5926
2 0.005 191.0407 0 189.1948 0 189.1948 0.000 191.0407 0.995 191.0408
3 0.285 169.1768 0 166.2929 0 166.2929 0.278 169.1768 0.437 169.1559
4 0.280 220.7419 0 211.3169 0 211.3169 0.330 220.7419 0.390 220.7137
5 0.018 261.2633 0 251.4802 0 251.4802 0.028 261.2633 0.953 261.2633
6 0.358 307.6959 0 279.7145 0 279.7145 0.325 307.6959 0.317 307.6959
7 0.337 216.5530 0 184.9596 0 184.9596 0.447 218.6098 0.217 216.2881
8 0.318 344.0424 0 305.5102 0 305.5102 0.330 344.0424 0.352 344.0383
9 0.295 260.0346 0 258.3536 0 258.3536 0.270 260.0346 0.435 260.0347

Tab. 4.6: DFD initialization simulation results.
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Models fitting

The Double Flexible Dirichlet has a very particular clusters structure. This simulation
study is aimed at evaluating if features of the DFD model can be catched by simpler
models. For this reason, for each of the nine configurations showed in Table 4.5, 50
samples of size 150 have been generated and, for each of them, the Dirichlet, ALN,
FD, EFD and the DFD’s parameters have been estimated.
Table 4.7 shows the mean of the resulting AIC (Akaike Information Criterion) [6]
and BIC (Bayesian Information Criterion)[82]. In 7 scenarios out of 9 the DFD
results the best model (i.e. the one with the best penalized fit to simulated data).
Configurations 6 and 8 seem to favor simpler models. The reason why this happens
relies in the cluster structure: looking at Figures 4.11 and 4.13 it is possible to note
that these configurations are characterized by very closed and overlapped clusters.
Increasing the sample size to 500 (Table 4.8), the superiority of the DFD model is
confirmed in every scenario.

ID Crit. Dir ALN FD EFD DFD
1 AIC -382.322 -392.230 -393.002 -389.306 -414.572

BIC -373.289 -377.177 -374.938 -365.221 -387.476
2 AIC -206.711 -236.967 -215.968 -220.995 -665.674

BIC -197.679 -221.914 -197.904 -196.910 -638.579
3 AIC -364.447 -371.644 -442.615 -490.375 -607.278

BIC -355.415 -356.591 -424.551 -466.290 -580.183
4 AIC -463.938 -541.371 -553.536 -604.246 -746.003

BIC -454.906 -526.318 -535.472 -580.161 -718.907
5 AIC -295.221 -396.091 -400.039 -473.547 -862.729

BIC -286.189 -381.038 -381.975 -449.462 -835.634
6 AIC -887.023 -889.846 -916.720 -918.477 -908.828

BIC -877.992 -874.793 -898.656 -894.392 -881.732
7 AIC -720.475 -707.645 -718.769 -715.057 -801.165

BIC -711.443 -692.592 -700.706 -690.972 -774.069
8 AIC -1032.602 -1023.258 -1027.488 -1030.226 -1013.702

BIC -1023.570 -1008.205 -1009.424 -1006.141 -986.606
9 AIC -621.435 -715.025 -747.292 -790.366 -905.478

BIC -612.404 -699.972 -729.228 -766.281 -878.382
Tab. 4.7: Mean of the AIC and BIC for the simulation with n = 150.

The proposed models have also been compared in situations where the data gen-
erating process is not the DFD one. In particular, we have chosen four parameter
configurations for the ALN distribution (Table 4.9) and four configurations for the
EFD (Table 4.11). We have generated 50 samples of size n = 500 from each parame-
ter configuration and fitted the models. Tables 4.10 and 4.12 show the mean of the
corresponding 50 AICs and BICs.
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ID Crit. Dir ALN FD EFD DFD
1 AIC -742.961 -825.490 -793.643 -790.542 -1978.257

BIC -730.317 -804.417 -768.355 -756.825 -1940.325
2 AIC -740.776 -820.231 -781.488 -779.348 -2021.253

BIC -728.132 -799.158 -756.201 -745.632 -1983.322
3 AIC -727.551 -820.167 -785.455 -783.864 -1998.404

BIC -714.907 -799.094 -760.167 -750.147 -1960.472
4 AIC -734.673 -819.060 -783.541 -780.214 -2002.786

BIC -722.029 -797.986 -758.253 -746.497 -1964.854
5 AIC -745.689 -828.971 -788.784 -787.272 -2071.198

BIC -733.045 -807.898 -763.496 -753.555 -2033.267
6 AIC -734.744 -821.813 -784.915 -781.759 -2052.858

BIC -722.100 -800.740 -759.628 -748.043 -2014.927
7 AIC -735.851 -827.519 -792.128 -791.333 -2059.012

BIC -723.207 -806.446 -766.840 -757.616 -2021.081
8 AIC -741.654 -821.791 -786.221 -782.484 -2031.823

BIC -729.010 -800.718 -760.934 -748.767 -1993.892
9 AIC -728.757 -823.881 -790.891 -789.905 -1956.915

BIC -716.113 -802.808 -765.603 -756.188 -1918.983
Tab. 4.8: Mean of the AIC and BIC for the simulation with n = 500.

Please note that, despite the DFD does not perform well, the FD and the EFD models
allow for a good fit to the data. The DFD is penalized by the high number of
parameters it involves and by the data structure (data generated from an ALN do
not show a cluster structure, therefore the DFD is an unnecessarily complicated
model).

Scenario µ1 µ2 σ2
1 σ2

2 σ1,2
1 0 0 1.3 1.3 0.65
2 0 0 0.21 0.21 0.11
3 1 1.22 7.27 6.83 4.93
4 -1.89 0 2.73 0.79 0.39

Tab. 4.9: Parameter configurations for the ALN simulations.

ID Crit. Dir ALN FD EFD DFD
1 AIC -892.941 -919.299 -908.689 -908.160 -902.692

BIC -880.297 -898.226 -883.401 -874.443 -864.761
2 AIC -2259.928 -2263.117 -2260.895 -2259.757 -2254.908

BIC -2247.284 -2242.044 -2235.607 -2226.040 -2216.977
3 AIC -1114.436 -1216.120 -1161.433 -1169.229 -1155.437

BIC -1101.792 -1195.047 -1136.146 -1135.512 -1117.506
4 AIC -1445.646 -1538.721 -1479.798 -1502.585 -1473.805

BIC -1433.002 -1517.648 -1454.511 -1468.868 -1435.874
Tab. 4.10: Mean of the AIC and the BIC for simulation with n = 500. Data generated from

ALN distributions.
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Scenario α1 α2 α3 τ τ τ p1 p2 p3
1 10 10 10 30 2 20 0.3 0.2 0.5
2 10 5 30 5 8 32 0.25 0.4 0.35
3 5 13 5 15 15 5 0.25 0.4 0.35
4 20 20 3 10 10 2 1/3 1/3 1/3

Tab. 4.11: Parameter configurations for the EFD simulations.

ID Crit. Dir ALN FD EFD DFD
1 AIC -884.118 -1208.446 -1317.289 -1584.484 -1450.301

BIC -871.474 -1188.489 -1293.340 -1552.553 -1414.378
2 AIC -1734.925 -1817.169 -1864.653 -1990.095 -1858.658

BIC -1722.281 -1797.211 -1840.705 -1958.163 -1822.735
3 AIC -1077.630 -1180.338 -1271.071 -1400.606 -1265.074

BIC -1064.987 -1160.381 -1247.122 -1368.674 -1229.150
4 AIC -2136.472 -2141.494 -2155.695 -2172.745 -2149.697

BIC -2123.828 -2121.536 -2131.746 -2140.814 -2113.774
Tab. 4.12: Mean of the AIC and BIC for the simulation with n = 500. Data generated from

EFD distributions.

EM algorithm performance evaluation

The last simulation study regards the evaluation of the performance of the ML
estimator. For each configuration reported in Table 4.5, 1000 samples of size n = 150
have been generated. For each of them, the parameters of the DFD model have
been estimated according to the estimation and initialization procedures described
in Section 4.4.2. In the following part it is possible to find:

1. The ternary diagram (and its zoomed version) with the true density function
(represented as isodensity contour plot).

2. A table reporting the symmetrized Kullback-Leibler divergence measure among
clusters.

3. The DFD’s correlation matrix, evaluated at the true parameters.

4. A table reporting the results of the simulation for that particular scenario. This
table contains:

a) The true value of the parameters.

b) The mean of the 1000 estimates for each parameter.

c) The median of the 1000 estimates for each parameter.
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d) The Absolute Relative Bias (Arb), defined as:

Arb = 1
1000

1000∑
i=1

∣∣∣θ̂i − θ∣∣∣
θ

, (4.34)

where θ̂i is the estimates of θ obtained from the i−th sample.

e) The Mean Squared Error (MSE), defined as:

MSE = 1
1000

1000∑
i=1

(
θ̂i − θ

)2
. (4.35)

f) The standard deviation of the 1000 estimates for each parameter. This
quantity can be viewed as the boostrap approximation of the Standard
Error of the estimator and, therefore, it is called "Boot. SE".

g) The coverage of the approximated 95% confidence intervals (CI), that is
the percentage of times that the approximated 95% CI cointains the true
value of the parameter. An approximated (1− α)% confidence interval is
computed as: θ̂ ± z1−α/2 · SEBoot..

In general, it is reported that estimating parameters of a finite mixture model through
the EM algorithm can encounter several issues, particularly when the sample size
is small [38, 60]. In the considered simulations, the relatively small sample size
(fixed and equal to n = 150) seems to be large enough to produce very good results.
In most of scenarios, the covarage level of approximated confidence intervals is
very close to the 95% nominal one. Furthermore, the similarity between MLEs
mean and MLEs median can be interpreted as an evidence of convergence of the
Maximum Likelihood estimator to the Normal distribution, since it is a necessary but
not sufficient condition.
It is important to note that scenario 7 represents a configuration of clusters’ barycen-
ters that both the FD and the EFD are not capable to recognize (i.e. they form
an inverse triangle). Also scenarios 4 and 5 are characterized by a typically DFD
configuration of clusters: with two weights equal to zero (π1 = π5 = 0), joining the
cluster’s means produces an oblique and rotate "L". Scenario 9 has 3 clusters very
close to one of the edges of the simplex; this means that part of the data have at least
one component close to 0. This can be a problem in compositional data analysis,
since most density functions are not defined at the boundary of the simplex. The
results confirm that scenarios 6 and 8 are quite challenging, since the EM algorithm
is not capable of recognize the true number of clusters. Of course, the reason why
the EM algorithm fails in providing good estimates of almost all the parameters is
entirely due to the overlapping of clusters.
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Fig. 4.6: DFD simulation - 1st configuration.

1 2
1 dSKL(f1,1, f1,2) 21.3686
2 dSKL(f1,1, f1,3) 21.3686
3 dSKL(f1,1, f2,2) 42.7372
4 dSKL(f1,1, f2,3) 49.7783
5 dSKL(f1,1, f3,3) 42.7372
6 dSKL(f1,2, f1,3) 28.4097
7 dSKL(f1,2, f2,2) 21.3686
8 dSKL(f1,2, f2,3) 28.4097
9 dSKL(f1,2, f3,3) 49.7783

10 dSKL(f1,3, f2,2) 49.7783
11 dSKL(f1,3, f2,3) 28.4097
12 dSKL(f1,3, f3,3) 21.3686
13 dSKL(f2,2, f2,3) 21.3686
14 dSKL(f2,2, f3,3) 42.7372
15 dSKL(f2,3, f3,3) 21.3686

Tab. 4.13: SKL divergence measures.

X1 X2 X3
X1 1.00 -0.50 -0.50
X2 -0.50 1.00 -0.50
X3 -0.50 -0.50 1.00

Tab. 4.14: Correlation Matrix.

α1 α2 α3 τ π1 π2 π3 π4 π5 π6
True 10 10 10 15 0.111 0.111 0.111 0.222 0.222 0.222

MLE Mean 10.194 10.202 10.196 15.071 0.116 0.117 0.117 0.219 0.215 0.217
MLE Median 10.128 10.137 10.159 15.010 0.114 0.116 0.115 0.218 0.215 0.217

Arb 0.019 0.020 0.020 0.005 0.046 0.049 0.050 0.016 0.033 0.023
MSE 0.870 0.875 0.897 2.026 0.001 0.001 0.001 0.001 0.001 0.001

Boot. SE 0.913 0.914 0.927 1.422 0.028 0.028 0.028 0.035 0.033 0.036
Coverage 0.937 0.934 0.942 0.948 0.945 0.944 0.940 0.949 0.945 0.942

Tab. 4.15: Simulation results.

106 Chapter 4 The Double Flexible Dirichlet



2nd Scenario 2
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Fig. 4.7: DFD simulation - 2nd configuration.

1 2
1 dSKL(f1,1, f1,2) 89.6996
2 dSKL(f1,1, f1,3) 89.6996
3 dSKL(f1,1, f2,2) 179.3993
4 dSKL(f1,1, f2,3) 221.7186
5 dSKL(f1,1, f3,3) 179.3993
6 dSKL(f1,2, f1,3) 132.019
7 dSKL(f1,2, f2,2) 89.6996
8 dSKL(f1,2, f2,3) 132.019
9 dSKL(f1,2, f3,3) 221.7186

10 dSKL(f1,3, f2,2) 221.7186
11 dSKL(f1,3, f2,3) 132.019
12 dSKL(f1,3, f3,3) 89.6996
13 dSKL(f2,2, f2,3) 89.6996
14 dSKL(f2,2, f3,3) 179.3993
15 dSKL(f2,3, f3,3) 89.6996

Tab. 4.16: SKL divergence measures.

X1 X2 X3
X1 1.00 -0.50 -0.50
X2 -0.50 1.00 -0.50
X3 -0.50 -0.50 1.00

Tab. 4.17: Correlation Matrix.

α1 α2 α3 τ π1 π2 π3 π4 π5 π6
True 10 10 10 40 0.111 0.111 0.111 0.222 0.222 0.222

MLE Mean 10.153 10.163 10.156 40.575 0.112 0.112 0.112 0.223 0.219 0.222
MLE Median 10.104 10.113 10.116 40.414 0.107 0.113 0.107 0.220 0.220 0.220

Arb 0.015 0.016 0.016 0.014 0.004 0.008 0.006 0.005 0.014 0.001
MSE 0.747 0.749 0.770 11.093 0.001 0.001 0.001 0.001 0.001 0.001

Boot. SE 0.851 0.850 0.864 3.282 0.026 0.026 0.027 0.034 0.032 0.035
Coverage 0.934 0.936 0.949 0.942 0.959 0.960 0.955 0.955 0.951 0.942

Tab. 4.18: Simulation results.
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3rd Scenario
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Fig. 4.8: DFD simulation - 3rd configuration.

1 2
1 dSKL(f1,1, f1,2) 20.6449
2 dSKL(f1,1, f1,3) 26.5024
3 dSKL(f1,1, f2,2) 69.1464
4 dSKL(f1,1, f2,3) 78.4857
5 dSKL(f1,1, f3,3) 76.8715
6 dSKL(f1,2, f1,3) 24.9904
7 dSKL(f1,2, f2,2) 48.5016
8 dSKL(f1,2, f2,3) 57.8408
9 dSKL(f1,2, f3,3) 75.3594

10 dSKL(f1,3, f2,2) 73.492
11 dSKL(f1,3, f2,3) 51.9832
12 dSKL(f1,3, f3,3) 50.369
13 dSKL(f2,2, f2,3) 21.5087
14 dSKL(f2,2, f3,3) 39.0274
15 dSKL(f2,3, f3,3) 17.5186

Tab. 4.19: SKL divergence measures.

X1 X2 X3
X1 1.00 -0.49 -0.36
X2 -0.49 1.00 -0.64
X3 -0.36 -0.64 1.00

Tab. 4.20: Correlation Matrix.

α1 α2 α3 τ π1 π2 π3 π4 π5 π6
True 2 23 12 17 0.080 0.160 0.180 0.100 0.400 0.080

MLE Mean 2.019 23.269 12.151 17.083 0.083 0.163 0.184 0.098 0.397 0.076
MLE Median 2.003 23.142 12.111 17.001 0.083 0.162 0.182 0.098 0.399 0.077

Arb 0.010 0.012 0.013 0.005 0.032 0.016 0.020 0.020 0.008 0.044
MSE 0.043 4.156 1.213 2.461 0.001 0.001 0.001 0.001 0.002 0.0004

Boot. SE 0.206 2.022 1.091 1.567 0.024 0.030 0.033 0.025 0.040 0.022
Coverage 0.946 0.944 0.947 0.946 0.962 0.948 0.941 0.945 0.945 0.948

Tab. 4.21: Simulation results.
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4th Scenario
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Fig. 4.9: DFD simulation - 4th configuration.

1 2
1 dSKL(f1,1, f1,2) 28.8139
2 dSKL(f1,1, f1,3) 23.5336
3 dSKL(f1,1, f2,2) 52.2182
4 dSKL(f1,1, f2,3) 56.417
5 dSKL(f1,1, f3,3) 45.231
6 dSKL(f1,2, f1,3) 35.9691
7 dSKL(f1,2, f2,2) 23.4043
8 dSKL(f1,2, f2,3) 27.6031
9 dSKL(f1,2, f3,3) 57.6665

10 dSKL(f1,3, f2,2) 59.3734
11 dSKL(f1,3, f2,3) 32.8834
12 dSKL(f1,3, f3,3) 21.6974
13 dSKL(f2,2, f2,3) 26.49
14 dSKL(f2,2, f3,3) 56.5534
15 dSKL(f2,3, f3,3) 30.0634

Tab. 4.22: SKL divergence measures.

X1 X2 X3
X1 1.00 0.04 -0.64
X2 0.04 1.00 -0.79
X3 -0.64 -0.79 1.00

Tab. 4.23: Correlation Matrix.

α1 α2 α3 τ π1 π2 π3 π4 π5 π6
True 40 20 30 25 0 0.160 0.260 0.400 0 0.180

MLE Mean 40.802 20.380 30.587 25.385 0 0.162 0.261 0.397 0 0.180
MLE Median 40.678 20.273 30.513 25.267 0 0.162 0.262 0.397 0 0.178

Arb 0.020 0.019 0.020 0.015 - 0.015 0.004 0.007 - 0.003
MSE 11.163 3.088 6.472 4.612 0 0.001 0.001 0.002 0 0.001

Boot. SE 3.245 1.717 2.477 2.114 0 0.031 0.036 0.041 0.001 0.032
Coverage 0.935 0.930 0.935 0.943 0.996 0.956 0.947 0.953 0.994 0.954

Tab. 4.24: Simulation results.
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5th Scenario
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Fig. 4.10: DFD simulation - 5th configuration.

1 2
1 dSKL(f1,1, f1,2) 85.7317
2 dSKL(f1,1, f1,3) 71.7574
3 dSKL(f1,1, f2,2) 153.7267
4 dSKL(f1,1, f2,3) 176.1938
5 dSKL(f1,1, f3,3) 137.0492
6 dSKL(f1,2, f1,3) 113.1068
7 dSKL(f1,2, f2,2) 67.995
8 dSKL(f1,2, f2,3) 90.4621
9 dSKL(f1,2, f3,3) 178.3987

10 dSKL(f1,3, f2,2) 181.1019
11 dSKL(f1,3, f2,3) 104.4364
12 dSKL(f1,3, f3,3) 65.2918
13 dSKL(f2,2, f2,3) 76.6655
14 dSKL(f2,2, f3,3) 164.602
15 dSKL(f2,3, f3,3) 87.9366

Tab. 4.25: SKL divergence measures.

X1 X2 X3
X1 1.00 0.10 -0.66
X2 0.10 1.00 -0.81
X3 -0.66 -0.81 1.00

Tab. 4.26: Correlation Matrix.

α1 α2 α3 τ π1 π2 π3 π4 π5 π6
True 40 20 30 50 0 0.160 0.260 0.400 0 0.180

MLE Mean 40.689 20.387 30.529 50.837 0 0.159 0.260 0.400 0 0.181
MLE Median 40.500 20.293 30.385 50.634 0 0.160 0.260 0.400 0 0.180

Arb 0.017 0.019 0.018 0.017 - 0.008 0 0.001 - 0.008
MSE 10.399 2.998 6.142 16.966 0 0.001 0.001 0.002 0 0.001

Boot. SE 3.152 1.689 2.423 4.035 0 0.030 0.036 0.041 0 0.032
Coverage 0.951 0.945 0.938 0.943 1 0.951 0.945 0.970 1 0.949

Tab. 4.27: Simulation results.
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6th Scenario
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Fig. 4.11: DFD simulation - 6th configuration.

1 2
1 dSKL(f1,1, f1,2) 6.6749
2 dSKL(f1,1, f1,3) 6.6749
3 dSKL(f1,1, f2,2) 12.4279
4 dSKL(f1,1, f2,3) 13.6094
5 dSKL(f1,1, f3,3) 12.4279
6 dSKL(f1,2, f1,3) 9.6566
7 dSKL(f1,2, f2,2) 5.7531
8 dSKL(f1,2, f2,3) 6.9346
9 dSKL(f1,2, f3,3) 15.4097

10 dSKL(f1,3, f2,2) 15.4097
11 dSKL(f1,3, f2,3) 6.9346
12 dSKL(f1,3, f3,3) 5.7531
13 dSKL(f2,2, f2,3) 8.4751
14 dSKL(f2,2, f3,3) 16.9502
15 dSKL(f2,3, f3,3) 8.4751

Tab. 4.28: SKL divergence measures.

X1 X2 X3
X1 1.00 -0.56 -0.55
X2 -0.56 1.00 -0.39
X3 -0.55 -0.39 1.00

Tab. 4.29: Correlation Matrix.

α1 α2 α3 τ π1 π2 π3 π4 π5 π6
True 100 40 40 15 0.220 0.175 0.155 0.150 0.100 0.200

MLE Mean 64.396 26.888 26.664 6.769 0.344 0.353 0.303 0 0 0
MLE Median 64.170 26.854 26.590 6.735 0.344 0.354 0.301 0 0 0

Arb 0.356 0.328 0.333 0.549 0.565 1.017 0.953 1 1 1
MSE 1301.877 177.863 183.370 68.403 0.018 0.035 0.024 0.022 0.010 0.040

Boot. SE 5.854 2.438 2.349 0.805 0.052 0.060 0.052 0 0 0
Coverage 0 0.001 0.001 0 0.327 0.146 0.193 0 0 0

Tab. 4.30: Simulation results.
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7th Scenario
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Fig. 4.12: DFD simulation - 7th configuration.

1 2
1 dSKL(f1,1, f1,2) 16.6714
2 dSKL(f1,1, f1,3) 13.4757
3 dSKL(f1,1, f2,2) 30.4863
4 dSKL(f1,1, f2,3) 32.0034
5 dSKL(f1,1, f3,3) 26.0178
6 dSKL(f1,2, f1,3) 20.3428
7 dSKL(f1,2, f2,2) 13.8149
8 dSKL(f1,2, f2,3) 15.332
9 dSKL(f1,2, f3,3) 32.8849

10 dSKL(f1,3, f2,2) 34.1577
11 dSKL(f1,3, f2,3) 18.5277
12 dSKL(f1,3, f3,3) 12.5421
13 dSKL(f2,2, f2,3) 15.63
14 dSKL(f2,2, f3,3) 33.1829
15 dSKL(f2,3, f3,3) 17.5528

Tab. 4.31: SKL divergence measures.

X1 X2 X3
X1 1.00 -0.49 -0.64
X2 -0.49 1.00 -0.36
X3 -0.64 -0.36 1.00

Tab. 4.32: Correlation Matrix.

α1 α2 α3 τ π1 π2 π3 π4 π5 π6
True 40 20 30 18 0 0 0 0.300 0.190 0.510

MLE Mean 38.082 19.645 28.604 16.443 0.043 0.014 0.082 0.255 0.168 0.437
MLE Median 40.455 20.175 30.365 18.198 0 0 0 0.287 0.186 0.497

Arb 0.048 0.018 0.047 0.087 - - - 0.149 0.118 0.143
MSE 83.515 10.784 45.855 34.529 0.015 0.011 0.055 0.014 0.006 0.037

Boot. SE 8.940 3.266 6.630 5.669 0.115 0.102 0.221 0.108 0.073 0.179
Coverage 0.867 0.925 0.866 0.863 0.885 0.984 0.881 0.863 0.863 0.863

Tab. 4.33: Simulation results.
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8th Scenario
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Fig. 4.13: DFD simulation - 8th configuration.

1 2
1 dSKL(f1,1, f1,2) 3.6299
2 dSKL(f1,1, f1,3) 6.733
3 dSKL(f1,1, f2,2) 9.0888
4 dSKL(f1,1, f2,3) 12.2364
5 dSKL(f1,1, f3,3) 14.1481
6 dSKL(f1,2, f1,3) 4.3405
7 dSKL(f1,2, f2,2) 5.4589
8 dSKL(f1,2, f2,3) 8.6065
9 dSKL(f1,2, f3,3) 11.7555

10 dSKL(f1,3, f2,2) 9.7994
11 dSKL(f1,3, f2,3) 5.5033
12 dSKL(f1,3, f3,3) 7.415
13 dSKL(f2,2, f2,3) 4.296
14 dSKL(f2,2, f3,3) 7.4451
15 dSKL(f2,3, f3,3) 3.149

Tab. 4.34: SKL divergence measures.

X1 X2 X3
X1 1.00 -0.55 -0.29
X2 -0.55 1.00 -0.64
X3 -0.29 -0.64 1.00

Tab. 4.35: Correlation Matrix.

α1 α2 α3 τ π1 π2 π3 π4 π5 π6
True 10 100 14 8 0.100 0.150 0.150 0.100 0.400 0.100

MLE Mean 7.334 62.061 10.574 2.784 0.396 0.270 0.334 0 0 0
MLE Median 7.297 61.563 10.484 2.746 0.398 0.267 0.325 0 0 0

Arb 0.267 0.379 0.245 0.652 2.963 0.797 1.227 1 1 1
MSE 7.912 1493.676 13.769 27.477 0.104 0.019 0.048 0.010 0.160 0.010

Boot. SE 0.896 7.373 1.427 0.518 0.126 0.072 0.120 0 0 0
Coverage 0.137 0.001 0.307 0 0.342 0.615 0.700 0 0 0

Tab. 4.36: Simulation results.
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9th Scenario
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Fig. 4.14: DFD simulation - 9th configuration.

1 2
1 dSKL(f1,1, f1,2) 85.2426
2 dSKL(f1,1, f1,3) 20.1824
3 dSKL(f1,1, f2,2) 119.0544
4 dSKL(f1,1, f2,3) 115.741
5 dSKL(f1,1, f3,3) 47.1167
6 dSKL(f1,2, f1,3) 85.7623
7 dSKL(f1,2, f2,2) 33.8118
8 dSKL(f1,2, f2,3) 30.4984
9 dSKL(f1,2, f3,3) 112.6965

10 dSKL(f1,3, f2,2) 119.574
11 dSKL(f1,3, f2,3) 95.5586
12 dSKL(f1,3, f3,3) 26.9343
13 dSKL(f2,2, f2,3) 24.0154
14 dSKL(f2,2, f3,3) 106.2136
15 dSKL(f2,3, f3,3) 82.1982

Tab. 4.37: SKL divergence measures.

X1 X2 X3
X1 1.00 -0.47 -0.39
X2 -0.47 1.00 -0.62
X3 -0.39 -0.62 1.00

Tab. 4.38: Correlation Matrix.

α1 α2 α3 τ π1 π2 π3 π4 π5 π6
True 12 0.900 30 20 0.080 0.160 0.180 0.100 0.400 0.080

MLE Mean 12.264 0.915 30.663 20.317 0.083 0.162 0.182 0.099 0.393 0.080
MLE Median 12.167 0.910 30.393 20.211 0.082 0.161 0.181 0.100 0.395 0.080

Arb 0.022 0.016 0.022 0.016 0.036 0.014 0.014 0.010 0.016 0.001
MSE 1.205 0.008 7.609 3.399 0.001 0.001 0.001 0.001 0.002 0.0004

Boot. SE 1.066 0.088 2.679 1.817 0.024 0.030 0.033 0.024 0.040 0.021
Coverage 0.941 0.955 0.940 0.945 0.955 0.950 0.941 0.946 0.944 0.958

Tab. 4.39: Simulation results.
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4-part compositions scenario

In this subsection, results of a simulation study similar to the previous one are results.
Data are generated from a DFD distribution with D = 4 and three configigurations
of parameter are considered. For each scenario we generated 100 samples of size
n = 150 and evaluated the indices previously described. Results suggest that the EM
algorithm works quite well also with 4-part compositions, since the Arbs are small
and the coverage levels are close to the nominal one 1− α = 0.95.

First Scenario:

X1 X2 X3 X4
X1 1.00 -0.33 -0.33 -0.33
X2 -0.33 1.00 -0.33 -0.33
X3 -0.33 -0.33 1.00 -0.33
X4 -0.33 -0.33 -0.33 1.00

Tab. 4.40: Correlation Matrix.

True MLE Mean MLE Median Arb MSE Boot. SE Coverage
α1 10.000 9.938 9.878 0.006 0.675 0.823 0.980
α2 10.000 10.021 10.083 0.002 0.618 0.790 0.990
α3 10.000 9.975 9.982 0.003 0.655 0.813 0.970
α4 10.000 9.952 9.979 0.005 0.580 0.764 0.990
τ 15.000 14.874 14.731 0.008 1.491 1.221 0.970
π1 0.100 0.106 0.104 0.063 0.001 0.026 0.960
π2 0.100 0.101 0.101 0.008 0.001 0.026 0.970
π3 0.100 0.105 0.103 0.049 0.001 0.026 0.940
π4 0.100 0.104 0.104 0.037 0.001 0.025 0.950
π5 0.100 0.101 0.099 0.013 0.001 0.027 0.950
π6 0.100 0.096 0.095 0.039 0.001 0.022 0.950
π7 0.100 0.097 0.099 0.028 0.001 0.027 0.970
π8 0.100 0.098 0.097 0.021 0.001 0.023 0.960
π9 0.100 0.099 0.098 0.011 0.001 0.027 0.960
π10 0.100 0.093 0.094 0.070 0.001 0.027 0.940

Tab. 4.41: Simulation results.
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Second Scenario:

X1 X2 X3 X4
X1 1.00 -0.08 -0.42 -0.33
X2 -0.08 1.00 -0.30 -0.36
X3 -0.42 -0.35 1.00 -0.46
X4 -0.28 -0.36 -0.46 1.00

Tab. 4.42: Correlation Matrix.

True MLE Mean MLE Median Arb MSE Boot. SE Coverage
α1 10.000 10.019 9.872 0.002 0.507 0.715 0.960
α2 17.000 17.095 16.991 0.006 1.570 1.256 0.940
α3 22.000 22.132 22.016 0.006 2.817 1.682 0.960
α4 13.000 12.949 12.877 0.004 0.907 0.956 0.970
τ 20.000 19.904 19.781 0.005 2.206 1.490 0.950
π1 0.051 0.053 0.052 0.042 0.000 0.020 0.950
π2 0.021 0.022 0.021 0.058 0.000 0.012 0.970
π3 0.158 0.157 0.154 0.007 0.001 0.026 0.930
π4 0.151 0.155 0.153 0.022 0.001 0.026 0.940
π5 0.151 0.154 0.155 0.021 0.001 0.028 0.970
π6 0.078 0.078 0.078 0.001 0.001 0.022 0.950
π7 0.141 0.143 0.141 0.012 0.001 0.029 0.940
π8 0.087 0.084 0.085 0.037 0.001 0.024 0.950
π9 0.077 0.074 0.070 0.044 0.001 0.023 0.960
π10 0.084 0.081 0.081 0.043 0.000 0.022 0.950

Tab. 4.43: Simulation results.
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Third Scenario:

X1 X2 X3 X4
X1 1.00 -0.30 -0.17 -0.28
X2 -0.30 1.00 -0.37 -0.40
X3 -0.17 -0.23 1.00 -0.44
X4 -0.45 -0.40 -0.44 1.00

Tab. 4.44: Correlation Matrix.

True MLE Mean MLE Median Arb MSE Boot. SE Coverage
α1 20.000 20.003 19.940 0.000 1.984 1.416 0.950
α2 0.900 0.902 0.897 0.002 0.006 0.079 0.990
α3 13.000 12.932 12.859 0.005 1.112 1.057 0.950
α4 15.000 15.001 14.956 0.000 1.394 1.187 0.970
τ 22.000 21.919 21.756 0.004 2.704 1.651 0.970
π1 0.019 0.019 0.020 0.043 0.000 0.012 0.960
π2 0.143 0.145 0.140 0.013 0.001 0.027 0.970
π3 0.110 0.111 0.113 0.012 0.001 0.023 0.940
π4 0.172 0.172 0.173 0.001 0.001 0.033 0.960
π5 0.042 0.040 0.034 0.038 0.000 0.017 0.980
π6 0.138 0.139 0.133 0.003 0.001 0.030 0.930
π7 0.158 0.160 0.159 0.007 0.001 0.030 0.940
π8 0.024 0.024 0.022 0.019 0.000 0.013 0.950
π9 0.069 0.069 0.067 0.001 0.000 0.020 0.980
π10 0.126 0.121 0.121 0.036 0.001 0.027 0.930

Tab. 4.45: Simulation results.
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5Applications

5.1 Italian election results

Compositional data can arise in different field, a good example is in politics. The
number of votes collected by each party in a particular constituency can form an
interesting basis to study. On 4th March 2018, italian population voted for the two
Chambers of Parliament and data regarding the results can be downloaded from the
web (from now on, this dataset will be referred to as "election data"). Election data
consist of 231 single-member constituencies (out of 232, because data for the Aosta
constituency are not available) and of D = 7 components (parties): Movimento 5
Stelle (M5S), Partito Democratico (PD), Forza Italia (FI), Lega (L), Fratelli D’Italia
(FDI), Liberi e Uguali (LeU) and Other parties. Figure 5.1 shows which party won
in each constituency.

This dataset is of interest because votes gained by some parties seem to be positively
correlated, as it can be evinced by Table 5.1.

M5S PD FI L FDI LeU Other
M5S 1.000 -0.609 0.601 -0.783 -0.173 -0.185 -0.309
PD -0.609 1.000 -0.596 0.295 0.137 0.553 -0.065
FI 0.601 -0.596 1.000 -0.505 -0.084 -0.353 -0.312
L -0.783 0.295 -0.505 1.000 0.024 -0.255 -0.098

FDI -0.173 0.137 -0.084 0.024 1.000 0.066 -0.065
LeU -0.185 0.553 -0.353 -0.255 0.066 1.000 0.268

Other -0.309 -0.065 -0.312 -0.098 -0.065 0.268 1.000
Tab. 5.1: Election data: correlation matrix.

In the following subsections, results of some interesting compositions are shown.
The focus is on 3-part compositions, obtained considering two elements and amal-
gamating the remaining ones. Points in the ternary diagrams are colored by the
geographical area of the constituency: north-west, north-east, south, center and
islands.

In most cases, the preferred model is the EFD (14 cases out of
7 · 6

2 = 21). This is
due to the very general flexibility allowed by this distribution in cluster modelling,
with respectively few additional parameters (with respect to the FD). In all the other
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Fig. 5.1: Election results maps for the Chamber of Deputies.

seven cases, the preferred one is the ALN, because data do not show clusters and then
the particular structure of the ALN is more suitable. Comparing only the Flexible
models, the EFD usually has a better fit than the FD, suggesting some superiority of
the Extended model. Since election data do not show a particular cluster structure,
the DFD can not show its advantages over the FD. Nonetheless, in four cases the DFD
outperforms the FD (look at subsections 5.1.1, 5.1.2,5.1.5 and 5.1.6) and in two
more cases it has also a better fit than the Extended Flexible Dirichlet. This is due
to the particular configuration of this two scenarios: inspecting plots in subsections
5.1.3 and 5.1.4 it is possible to note that three clusters are located on a straight line,
that is a configuration not considered by other Flexible models.
This application confirms that the Flexible family of distribution on the simplex
provides some useful distributions to describe compositional data. The best model
among this family seems to be the EFD, but in some situations it fails in identifying
some clusters.
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5.1.1 PD Vs Lega
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Fig. 5.2: Ternary plot and Dirichlet isodensity contour plot: PD Vs Lega. Each color refers
to different geographical areas.
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Fig. 5.3: ALN and FD isodensity contour plots: PD Vs Lega. Red triangles represent cluster
means.
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Fig. 5.4: EFD and DFD isodensity contour plots: PD Vs Lega. Red triangles represent cluster
means.

Dir ALN FD EFD DFD
AIC -976.76 -1178.80 -1116.96 -1251.54 -1179.72
BIC -979.46 -1161.59 -1096.31 -1224.00 -1148.74

Tab. 5.2: AIC and BIC for several models.
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5.1.2 PD Vs other parties

Other parties DP
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Fig. 5.5: Ternary plot and Dirichlet isodensity contour plot: PD Vs Other parties. Each color
refers to different geographical areas.
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Fig. 5.6: ALN and FD isodensity contour plots: PD Vs Other parties. Red triangles represent
cluster means.
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Fig. 5.7: EFD and DFD isodensity contour plots: PD Vs Other parties. Red triangles represent
cluster means.

Dir ALN FD EFD DFD
AIC -1474.21 -1593.67 -1577.04 -1693.00 -1591.49
BIC -1476.92 -1576.46 -1556.38 -1665.46 -1560.51

Tab. 5.3: AIC and BIC for several models.
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5.1.3 Lega Vs FDI

FDI League

Complementary
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Fig. 5.8: Ternary plot and Dirichlet isodensity contour plot: Lega Vs FDI. Each color refers
to different geographical areas.
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Fig. 5.9: ALN and FD isodensity contour plots: Lega Vs FDI. Red triangles represent cluster
means.
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Fig. 5.10: EFD and DFD isodensity contour plots: Lega Vs FDI. Red triangles represent
cluster means.

Dir ALN FD EFD DFD
AIC -1397.38 -1758.81 -1630.63 -1675.22 -1739.61
BIC -1400.09 -1741.59 -1609.97 -1647.68 -1708.63

Tab. 5.4: AIC and BIC for several models.
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5.1.4 Lega Vs LEU
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Fig. 5.11: Ternary plot and Dirichlet isodensity contour plot: Lega Vs LeU. Each color refers
to different geographical areas.
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Fig. 5.12: ALN and FD isodensity contour plots: Lega Vs LeU. Red triangles represent cluster
means.
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Fig. 5.13: EFD and DFD isodensity contour plots: Lega Vs LeU. Red triangles represent
cluster means.

Dir ALN FD EFD DFD
AIC -1479.38 -1919.20 -1734.91 -1762.14 -1860.91
BIC -1482.09 -1901.99 -1714.26 -1734.60 -1829.92

Tab. 5.5: AIC and BIC for several models.
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5.1.5 Lega Vs other parties
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Fig. 5.14: Ternary plot and Dirichlet isodensity contour plot: Lega Vs Other parties. Each
color refers to different geographical areas.
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Fig. 5.15: ALN and FD isodensity contour plots: Lega Vs Other parties. Red triangles
represent cluster means.
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Fig. 5.16: EFD and DFD isodensity contour plots: Lega Vs Other parties. Red triangles
represent cluster means.

Dir ALN FD EFD DFD
AIC -1156.02 -1364.50 -1329.95 -1405.60 -1399.53
BIC -1158.72 -1347.28 -1309.30 -1378.06 -1368.55

Tab. 5.6: AIC and BIC for several models.
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5.1.6 FDI Vs other parties
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Fig. 5.17: Ternary plot and Dirichlet isodensity contour plot: FDI Vs Other parties. Each
color refers to different geographical areas.
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Fig. 5.18: ALN and FD isodensity contour plots: FDI Vs Other parties. Red triangles
represent cluster means.
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Fig. 5.19: EFD and DFD isodensity contour plots: FDI Vs Other parties. Red triangles
represent cluster means.

Dir ALN FD EFD DFD
AIC -2101.86 -2427.62 -2447.84 -2529.58 -2495.19
BIC -2104.57 -2410.41 -2427.19 -2502.04 -2464.20

Tab. 5.7: AIC and BIC for several models.
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5.2 Olive oils

The Olive oil data have been discussed, for the first time, in a work by Forina et
al. [36] and it has been made available in the R package pdfCluster [11]. These
data have been largely analyzed in the literature with clustering aims [10, 87] as
well to compare models [63]. This dataset is composed by 572 rows representing a
different specimen of olive oil produced in Italy, whereas the 10 columns represent
some characteristics of a specific oil. In particular, the first two variables correspond
to the macro-area and the region of origin of each oil; the other 8 columns represent
measurements regarding the fatty acid composition: Palmitic, Palmitoleic, Stearic,
Oleic, Linoleic, Linolenic, Arachidic and Eicosenoic.

Linolenic and Arachidic variables presented some zero values: since the proposed
distributions are not defined on the border of the simplex, in order to keep all the
elements of the basis, the oils connected to the zero values have been removed by the
sample. The final sample is then composed by 535 oils, and the relative composition
has been obtained, closing each row of the dataset.

Acid Palmitic Palmitoleic Stearic Oleic Linoleic Linolenic Arachidic Eicosenoic
Mean 12.467 1.281 2.273 72.973 9.873 0.340 0.620 0.173

Tab. 5.8: Mean of the components (in percentages).

These data show some positive (and high) correlation. For example, the correlation
among Palmitic and Palmitoleic is 0.85, as it can be seen in Table 5.9.

Palmitic Palmitoleic Stearic Oleic Linoleic Linolenic Arachidic Eicosenoic
Palmitic 1.00 0.85 -0.12 -0.82 0.47 0.20 0.05 0.47

Palmitoleic 0.85 1.00 -0.21 -0.86 0.62 0.02 0.00 0.40
Stearic -0.12 -0.21 1.00 0.09 -0.20 0.19 0.14 0.22

Oleic -0.82 -0.86 0.09 1.00 -0.88 -0.08 -0.22 -0.37
Linoleic 0.47 0.62 -0.20 -0.88 1.00 -0.14 0.21 0.07

Linolenic 0.20 0.02 0.19 -0.08 -0.14 1.00 0.38 0.55
Arachidic 0.05 0.00 0.14 -0.22 0.21 0.38 1.00 0.22

Eicosenoic 0.47 0.40 0.22 -0.37 0.07 0.55 0.22 1.00

Tab. 5.9: Olive Oil data: correlation coefficients.

5.2.1 2-part compositions

The first part of this application regards the eight 2-part compositions (i.e. the
one-dimensional marginals). These marginals allow us to compare distributions in
a variety of scenarios regarding symmetry (asymmetric and symmetric cases) and
cluster structure (perfect unimodality and bimodality). Table 5.10 shows AIC and
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BIC values for the each marginal and eache estimated model. The FD and the EFD
distributions are the one with the best fit; this means that univariate marginals of the
Olive data exhibit a cluster and/or a covariance structure that neither the Dirichlet
nor the ALN can cover. Moreover, these structures do not require a more complex
model (the DFD) than the FD and the EFD that, with their flexibility can fit data in a
good way (look at Table 5.10 and Figures 5.20 and 5.21). Please not that the DFD
generally performs better than the Dirichlet and the ALN.

Component Crit. Dir FD ALN EFD DFD
X1 = Palmitic AIC -2884.73 -2937.41 -2888.62 -2942.85 -2927.33

BIC -2876.17 -2920.28 -2880.05 -2921.44 -2888.79
X2 = Palmitoleic AIC -4101.42 -4147.60 -4072.50 -4145.86 -4135.82

BIC -4092.86 -4130.47 -4063.94 -4124.45 -4097.28
X3 = Stearic AIC -4555.94 -4581.79 -4568.91 -4579.67 -4570.91

BIC -4547.38 -4564.66 -4560.34 -4558.26 -4532.37
X4 = Oleic AIC -1904.75 -1970.07 -1900.14 -1976.37 -1960.06

BIC -1896.19 -1952.94 -1891.58 -1954.95 -1921.52
X5 = Linoleic AIC -2415.18 -2607.50 -2396.43 -2607.56 -2597.46

BIC -2406.62 -2590.37 -2387.87 -2586.15 -2558.92
X6 = Linolenic AIC -5746.04 -5828.12 -5676.07 -5848.01 -5766.32

BIC -5737.48 -5810.99 -5667.51 -5826.60 -5727.78
X7 = Arachidic AIC -5127.11 -5355.77 -4989.70 -5353.76 -5328.67

BIC -5118.55 -5338.64 -4981.14 -5332.35 -5290.13
X8 = Eicosenoic AIC -5735.89 -6182.78 -5652.57 -6384.73 -6212.04

BIC -5727.32 -6165.65 -5644.00 -6363.32 -6173.50
Tab. 5.10: AIC and BIC for the 2-part compositions - Olive data. Values in red are the

maxima of each row.
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Fig. 5.20: Histograms and estimated densities of 2-part compositions.
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Fig. 5.21: Histograms and estimated densities of 2-part compositions.
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5.2.2 3-part compositions

Due to the high number of 3-components compositions available (two components
versus the amalgamation of the not considered components), only the results of
some interesting and representative scenarios are reported.
The results of this application are not so different by the ones of the Election Data:

• Palmitic Vs Palmitoleic (Section 5.2.2): despite the correlation coefficient
among two components is very elevated (0.85), data do not show a particular
cluster structure. Then, the cluster structure assumed by the DFD is not
supported by data.

• Stearic Vs Oleic (Section 5.2.2): three clusters are located on a straight
line. The Flexible model that better recognize this configuration is the DFD,
indicating that allowing for a more complex model (with respect to the EFD)
helps in fitting data. Despite this advantage, the best model is the ALN: this
means that the cluster structure can be ignored.

• Stearic Vs Linoleic (Section 5.2.2): both the EFD and the DFD recognize
three cluster along the boundary of the simplex. These three clusters are not
perfectly located on a straight line and for this reason the EFD has a better fit
than the DFD’s one. Nonetheless, the FD does not provide good AIC and BIC
as the DFD’s ones.

• Oleic vs Linoleic (Section 5.2.2): despite inspecting the contour plots, the
DFD seems to be the best model (i.e. it catches a third clusters in the bottom
area), the criterions point at the EFD as the best model. This is a very clear
way to see that the great number of parameters considered heavily penalize
the DFD model.

• Linolenic Vs Eicosenoic (Section 5.2.2): in this scenario, looking at contour
plots, the DFD seems to be the best model, since it dedicates a cluster to some
isolated observations. Nonetheless, both the AIC and the BIC point at the EFD
as the best model. Comparing the criterions of the DFD and of the FD models
and looking at the correspondent contour plots, one can conclude that the
DFD is preferred: the criterions are very similar whereas the cluster structure
is better recognized by the DFD model.
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Fig. 5.22: Ternary plot and Dirichlet isodensity contour plot: Palmitic Vs Palmitoleic.
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Fig. 5.23: ALN and FD isodensity contour plots: Palmitic Vs Palmitoleic. Red triangles
represent cluster means.
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Fig. 5.24: EFD and DFD isodensity contour plots: Palmitic Vs Palmitoleic. Red triangles
represent cluster means.

Dir ALN FD EFD DFD
AIC -6949.5 -7505.3 -6946.1 -7534.6 -6450.01
BIC -6936.7 -7483.69 -6920.4 -7500.3 -6411.47

Tab. 5.11: AIC and BIC for several models.
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Fig. 5.25: Ternary plot and Dirichlet isodensity contour plot: Stearic Vs Oleic.
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Fig. 5.26: ALN and FD isodensity contour plots: Stearic Vs Oleic. Red triangles represent
cluster means.
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Fig. 5.27: EFD and DFD isodensity contour plots: Stearic Vs Oleic. Red triangles represent
cluster means.

Dir ALN FD EFD DFD
AIC -5618 -6478.3 -6190.4 -6388.8 -6458.2
BIC -5605.4 -6456.8 -6164.7 -6354.5 -6419.7

Tab. 5.12: AIC and BIC for several models.
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Fig. 5.28: Ternary plot and Dirichlet isodensity contour plot: Stearic Vs Linoleic.
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Fig. 5.29: ALN and FD isodensity contour plots: Stearic Vs Linoleic. Red triangles represent
cluster means.
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Fig. 5.30: EFD and DFD isodensity contour plots: Stearic Vs Linoleic. Red triangles represent
cluster means.

Dir ALN FD EFD DFD
AIC -6237.0 -6982.7 -7022.0 -7153.4 -7022.7
BIC -6224.2 -6961.3 -6996.3 -7119.1 -6984.2

Tab. 5.13: AIC and BIC for several models.
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Fig. 5.31: Ternary plot and Dirichlet isodensity contour plot: Oleic Vs Linoleic.
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Fig. 5.32: ALN and FD isodensity contour plots: Oleic Vs Linoleic. Red triangles represent
cluster means.
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Fig. 5.33: EFD and DFD isodensity contour plots: Oleic Vs Linoleic. Red triangles represent
cluster means.

Dir ALN FD EFD DFD
AIC -4822.5 -5120.0 -5060.1 -5280.6 -5224.1
BIC -4809.6 -5098.6 -5034.4 -5246.3 -5185.5

Tab. 5.14: AIC and BIC for several models.
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Fig. 5.34: Ternary plot and Dirichlet isodensity contour plot: Linolenic Vs Eicosenoic.
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Fig. 5.35: ALN and FD isodensity contour plots: Linolenic Vs Eicosenoic. Red triangles
represent cluster means.
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Fig. 5.36: EFD and DFD isodensity contour plots: Linolenic Vs Eicosenoic. Red triangles
represent cluster means.

Dir ALN FD EFD DFD
AIC -11208.2 -11499.2 -11847.5 -12091.7 - 11835.4
BIC -11195.4 -11477.8 -11821.8 -12057.4 -11797.4

Tab. 5.15: AIC and BIC for several models.
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6
A Flexible distribution for count
data

An important kind of data is represented by counts (i.e. non-negative integers).
According to their support and to the nature of the phenomenon, univariate count
data are usually treated as Poisson, Binomial or Negative Binomial random variables.
The Binomial is the distribution of the number of successes in n independent experi-
ments. These experiments can lead to a dichotomous outcome (success or failure)
and the parameter π represents the probability of a single success. If the outcome of
the experiment can assume more than two values, then the Binomial distribution is
generalized by the Multinomial distribution:



X ∼ Multinomial(n,π), n ∈ N, π ∈ SD,

SX = SDn ,

E [Xr] = nπr, r = 1, . . . , D,

Var (Xr) = nπr(1− πr), r = 1, . . . , D,

Cov (Xr, Xh) = −nπrπh, r, h = 1, . . . , D, r 6= h.

(6.1)

where SX denotes the support of the random vector X. The support for the Multino-
mial distribution is the {n,D}-simplex [81]:

SDn =
{

x = (x1, . . . , xD)ᵀ : xk ∈ N ∪ {0}, k = 1, . . . , D,
D∑
k=1

xk = n

}
. (6.2)

This means that the support SDn shares the same problems as the unitary simplex
in Definition 1, since each element in SDn must have components summing to n.
From (6.1) it is possible to see that also the covariance matrix of the Multinomial
distribution suffers of the same problems of the Dirichlet’s covariance matrix listed
in section 3.1. In order to obtain a more flexible distribution for multivariate count
data with the same structure of Multinomial data (i.e. subject to a sum constraint),
compound distributions are often used [9, 17, 19, 49, 55, 64, 84, 88, 89].
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6.1 Compound distributions for count data

Compound distributions are probability distributions obtained by a two-step ap-
proach. The first step consists in assuming that the parameter θ of the distribution
of a random vector X is not constant but follow a specific distribution. Then, the
resulting joint distribution is marginalized, integrating over θ. More formally, let
X|θ and θ be two random vectors with probability density function fX(x|θ) and g(θ),
respectively. Then, the marginal distribution of X is identified by the probability
density function f(x) =

∫
Θ
fX(x|θ)g(θ)dθ, where Θ is the support of θ.

This approach leads to more flexible distributions and has been used in several fields,
such as epidemiology [51], text analysis [90], marketing [80], biometrics [49, 88],
information retrieval [89], psychology [9] and species composition [17]. Particular
interest has been regarded in compound distributions for modelling multivariate
count data; In this area, a popular choice is to assume that X|π ∼ Multinomial(n,π)
and then impose a distribution F on Π (Π is the random vector that assumes
value π). The support of Π is the D-part simplex SD. Recalling now that, if
X|π ∼ Multinomial(n,π), then:

• E [Xr|Π = π] = nπr

• Var (Xr|Π = π) = nπr(1− πr)

• Cov (Xr, Xh|Π = π) = −nπrπh

Thanks to the well-known laws of total expectation, total variance and total covari-
ance, it is easy to define the first two orders moments of X whatever F is:

E [X] = E [E [X|Π = π]] = E [nΠ] = nE [Π] (6.3)

Var (Xr) = E [Var (Xr|Π = π)] + Var (E [Xr|Π = π])

= E [nΠr(1−Πr)] + Var (nΠr)

= (n2 − n)Var (Πr) + nE [Πr] (1− E [Πr]) (6.4)

= n
(
nVar (Πr) + E [Πr]− E

[
Π2
r

])
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Cov (Xr, Xh) = E [Cov (Xr, Xh|Π = π)] + Cov (E [Xr|Π = π] ,E [Xh|Π = π])

= E [−nΠrΠh] + Cov (nΠr, nΠh)

= (n2 − n)Cov (Πr,Πh)− nE [Πr]E [Πh] (6.5)

= n (nCov (Πr,Πh)− E [Πr ·Πh])

It is also possible to define the correlation coefficient among two distinct components
of X:

ρXr,Xh = (n− 1)Cov (Πr,Πh)− E [Πr]E [Πh]√
[(n− 1)Var (Πr) + E [Πr] (1− E [Πr])] · [(n− 1)Var (Πh) + E [Πh] (1− E [Πh])]

(6.6)

These results are extremely general and does not depend on the specific distribution
imposed on Π. Evaluating (6.6) for n = 1, the resulting correlation in always
negative:

ρXr,Xh |n=1 = −
√

E [Πr]E [Πh]
(1− E [Πr])(1− E [Πh]) < 0. (6.7)

This fact is not surprising: if n = 1 then only one element of X can be different from
0 and, therefore, negative dependence should exist. Moreover, if D = 2, (6.7) is
equal to -1, since that is a situation of perfect (negative) linear dependence among
the two distinct elements of X = (X1, X2)ᵀ. It is also easy to show that:

lim
n→+∞

ρXr,Xh = nCov (Πr,Πh)√
nVar (Πr)nVar (Πh)

= Cov (Πr,Πh)√
Var (Πr) Var (Πh)

= ρΠr,Πh . (6.8)

With n = 1, correlation among counts in distinct categories has negative value.
Increasing the value of n, this correlation tends to the correlation among the un-
derling probabilities. This means that the choice of F is decisive: if F allows
for Cov (Πr,Πh) > 0, then ρXr,Xh > 0 for large enough values of n, otherwise
correlation are always negative.
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6.2 The Dirichlet-Multinomial distribution

A very popular choice for F is the Dirichlet distribution. As recalled in Section 3.1,
the random vector Π is Dirichlet distributed if and only if its probability density
function can be written as:

g(π; α) = Γ(α+)∏D
r=1 Γ(αr)

D∏
r=1

παr−1
r ,

where α = (α1, . . . , αD)ᵀ is a vector of positive real numbers and α+ =
∑D
r=1 αr.

Then its moments are: E [Πr] = αr
α+ , Var (Πr) = αr

α+

(
1− αr

α+

) 1
(α+ + 1) and

Cov (Πr,Πh) = − αr
α+

αh
α+

1
(α+ + 1) for every r, h = 1, . . . , D (r 6= h). Covariances

(and correlations) among any two distinct components of a Dirichlet distribution are
negative.

Let X|π ∼ Multinomial(n,π) and Π ∼ Dir(α). Then the probability mass function
of X can be obtained in the following way:

fDM (x; α) = P (X = x)

=
∫
SD

n!
x1! . . . xD!

D∏
r=1

πxrr ·
Γ(α+)∏D
r=1 Γ(αr)

D∏
r=1

παr−1
r dπ

= n! Γ(α+)
Γ(n+ α+)

D∏
r=1

Γ(xr + αr)
xr! Γ(αr)

(6.9)

This probability function defines the so-called Dirichlet-Multinomial (DM) distribu-
tion (also known as Polya-Eggenberger distribution) with parameter n and α. It is
more flexible than the Multinomial: they have the same number of parameters but
the vector α is not constrained to belong to the simplex as π does. Figure 6.1 shows
the heat map of the DM probability function in some parametric configurations with
n = 50.

The principal moments of a Dirichlet-Multinomial distribution are:

E [Xr] = n · αr
α+ (6.10)

Var (Xr) = E [Xr] (n− E [Xr])
[
n+ α+

n(α+ + 1)

]
(6.11)

Cov (Xr, Xh) = −n · αr
α+

αh
α+

(
n+ α+

α+ + 1

)
(6.12)
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Fig. 6.1: Heat maps of DM probability function with n = 50.

It is interesting to note that, despite the DM provides several advantages with respect
to the Multinomial distribution (i.e. more flexible covariance structure and ability of
capture burstiness in text document classification, that is the phenomenon that most
words never appear in any document, but in the moment they appear once, they are
likely to appear several times [65]), it allows only for negative correlations. Indeed,
covariances are negative and, furthermore, the correlation coefficient ρXr,Xh is not
function of n and it is equal to ρΠr,Πh:

ρXr,Xh =
−n · αr

α+
αh
α+

(
n+ α+

1 + α+

)
√√√√n · αr

α+

(
1− αr

α+

)(
n+ α+

1 + α+

)
n · αh

α+

(
1− αh

α+

)(
n+ α+

1 + α+

)

= −
√

αrαh
(α+ − αr)(α+ − αh)

= ρΠr,Πh .

(6.13)
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The R package MGLM [91] is based on the work of Zhang et al. [92] and allows to
fit several kind of distributions to count data. One of these model is the Dirichlet-
Multinomial model; hence it is possible to obtain an estimate for the parameter
vector α.

6.3 Changing the distribution of Π: the
EFD-Multinomial distribution

The Multinomial and the Dirichlet-Multinomial distributions share the assumption
that counts can be only negatively correlated. This is a strong restriction to data
analysis and the necessity for a more flexible proposal arose [17, 92]. In this Section,
a new proposal is provided, relying on a compound distribution we obtain by
assuming that Π ∼ EFD(α, τ ,p). The EFD has been chosen because the possibility
of having positive covariances among Πr and Πh will make possible a positive
association between categories of counts.

Definition 23. Let X|Π = π ∼ Multinomial(n,π) and Π ∼ EFD(α, τ ,p). Then the
marginal distribution of X is called Extended Flexible Dirichlet-Multinomial with
parameters α, τ and p (i.e. X ∼ EFDM(α, τ ,p)).

The probability function of the EFDM distribution is complicated; it is much more
interesting to note that it can me expressed as finite mixture of particular Dirichlet-
Multinomial components:

fX(x) =
∫
SD

fX,Π(x,π)dπ

= n!
x1! . . . xD!

D∑
i=1

pi
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∏D
r=1 Γ(αr)

∫
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παr−1
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D∑
i=1

pi
Γ(α+ + τi)Γ(αi)

Γ(αi + τi)
∏D
r=1 Γ(αr)

Γ(αi + τi + xi)
∏D
r=1 Γ(αr + xr)

Γ(α+ + τi + n)Γ(αi + xi)

=
D∑
i=1

pi
n! Γ(α+ + τi)

Γ(n+ α+ + τi)

(
D∏
r=1

Γ(αr + xr)
xr! Γ(αr)

)
Γ(αi)

Γ(αi + τi)
Γ(αi + τi + xi)

Γ(αi + xi)

=
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pifDM (x; α + τi ei),

(6.14)
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where ei is the canonical vector with all entries equal to zero and the i-th equal to 1.
Figure 6.2 shows the heat map of the EFDM probability function in some parametric
configurations.
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Fig. 6.2: Heat maps of EFDM probability function with n = 50.

Recall from (3.44)-(3.46) that, if Π ∼ EFD(α, τ ,p), then:

E [Πr] = αr k1 + prτr
α+ + τr

Var (Πr) = α2
r(k2−k2

1)+αrk2 +pr
τr(2αr + τr + 1)

(α+ + τr)(α+ + τr + 1)−
p2
rτ

2
r

(α+ + τr)2 −k1
2αrprτr
α+ + τr
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Cov (Πr,Πh) = αrαh(k2 − k2
1) + αhprτr

α+ + τr

( 1
α+ + τr + 1 − k1

)
+

+ αrphτh
α+ + τh

( 1
α+ + τh + 1 − k1

)
− prphτrτh

(α+ + τr)(α+ + τh)

where k1 =
D∑
r=1

pr
α+ + τr

and k2 =
D∑
r=1

pr
(α+ + τr)(α+ + τr + 1) .

From these moments and thanks to the rules (6.3)-(6.5), it is possible to derive the
first two orders moments of the EFD-Multinomial distribution:

E [Xr] = n ·
[
αr k1 + prτr

α+ + τr

]
(6.15)

Var (Xr) = E [Xr] (1− E [Xr])+(n2−n)
{
αrk2 (αr + 1) + prτr(2αr + τr + 1)

(α+ + τr)(α+ + τr + 1)

}
(6.16)

Cov (Xr, Xh) = αrαh
[
n2(k2 − k2

1)− nk2
]

+

− n2k1

(
αrphτh
α+ + τh

+ αhprτr
α+ + τr

)
− n2prphτrτh

(α+ + τr)(α+ + τh)+

+ (n2 − n)
[

αrphτh
(α+ + τh)(α+ + τh + 1) + αhprτr

(α+ + τr)(α+ + τr + 1)

]
(6.17)

Covariance (6.3) is complicated to study, but it is possible to see that some parametric
configurations allow for positive covariance, as in Example 13

Example 13. Let α = (4, 6, 19)ᵀ, τ = (5, 1, 42)ᵀ and p = (0.23, 0.12, 0.65)ᵀ. Then the
correlation matrices of X ∼ EFDM(n,α, τ ,p) for n = 50, n = 500 and n→ +∞ are:

n = 50 X1 X2 X3
X1 1.000 0.296 -0.849
X2 0.296 1.000 -0.756
X3 -0.849 -0.756 1.000

−→

n = 500 X1 X2 X3
X1 1.000 0.410 -0.885
X2 0.410 1.000 -0.788
X3 -0.885 -0.788 1.000

−→

n→ +∞ X1 X2 X3
X1 1.000 0.426 -0.889
X2 0.426 1.000 -0.793
X3 -0.889 -0.793 1.000

Note that, because of (6.8), the Table associated to n → +∞ coincides with the
correlation matrix of an EFD distribution with the same values for α, τ and p.
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In order to get Maximum Likelihood estimates of α, τ and p, one can, once again,
rely on the EM algorithm, as showed in the previous sections. Suppose that a sample
of size N has been collected: x = (x1, . . . , xN )ᵀ. It is extremely important to note
that the notation has changed with respect to previous sections: now the sample
size is denoted with N , whereas n represents the sum of each unit. Let zs,i be an
indicator such that:

zs,i =

1 if the s-th subject comes from the i-th component of the mixture

0 otherwise

i = 1, . . . , D and s = 1, . . . , N . This indicator represents the unobserved component
label; then it is possible to define the complete-data log likelihood function:

lnLC(α, τ ,p) =
N∑
s=1

D∑
i=1

zs,i {ln pi + ln fDM (xs; α + τi ei)} . (6.18)

In order to evaluate the performance of the EM algorithm, a simulation study has
been conducted.

6.4 A simulation study

In this Sections, we present results from a simulation study aimed at investigating
the behaviour of the EM algorithm. Four configurations for the vector (α, τ ,p)ᵀ

(Table 6.1) and four different values for the parameter n (50, 100, 250 and 500) have
been considered.

Config. α1 α2 α3 τ1 τ2 τ3 p1 p2 p3
1 15 15 15 20 20 20 0.3333 0.3333 0.3333
2 40 40 40 5 30 25 0.2 0.6 0.2
3 5 30 70 10 25 15 0.1 0.75 0.15
4 4 6 19 5 1 42 0.23 0.12 0.65

Tab. 6.1: Configurations of the vector (α, τ ,p)ᵀ for the EFDM simulation study.

For each combination of (α, τ ,p)ᵀ and n, 300 samples of size N = 150 have been
generated and the EM algorithm has been applied to each. Higher sample size has
been considered (N = 300) just for n = 50 and 250. The EM uses as initial values
the real ones, in order to look at the performance in the best case scenario. In the
following subsections it is possible to find:
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1. A ternary plot (the triangle represents now the {n,D}-simplex instead of the
unitary one) and the scatterplots of component pairs (data are simulated
considering n = 250 and N = 150).

2. The correlation matrix for n = 50, n = 500 and n→ +∞.

3. A table reporting the results of the simulation for that particular scenario. This
table contains:

a) The true value of the parameters.

b) The mean of the 300 estimates for each parameter.

c) The median of the 300 estimates for each parameter.

d) The Absolute Relative Bias (Arb), defined as in (4.34)

e) The square root of the Mean Squared Error (MSE), defined as in (4.35).
The square root has been considered because of the magnitude of the
MSEs.

f) The standard deviation of the 300 estimates for each parameter ("Boot.
SE").

g) The coverage of the approximated 95% confidence intervals.

For each configuration, the results are quite unsatisfactory. The Arbs are too high
and the coverage levels are too far from nominal value 1− α = 0.95. Furthermore,
not always increasing the sample size leads to a better results. Inspecting the results
of the simulations more carefully, it is possible to note that, despite the EM uses
the true parameters as starting point, the final estimates are quite far from the true
values.

As a practical example, let us focus on a dataset generated according to the first
configuration with n = 50. Table 6.2 compares the true parameters and their
estimates:

α1 α2 α3 τ1 τ2 τ3 p1 p2 p3
True 15 15 15 20 20 20 0.333 0.333 0.333

Estimate 29.02 28.63 29.26 43.28 40.75 43.20 0.376 0.312 0.312
Tab. 6.2: Comparison between true parameters and final estimates. Simulated data from the

first configuration and n = 50.
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It is well-known that the EM algorithm maximizes the complete-data log-likelihood
function. Figure 6.3 illustrates that the complete-data log-likelihood function
increases at each iteration of the algorithm, as expected. Nonetheless, the log-
likelihood that one should maximize is the mixture one, defined as:

lnLM (α, τ ,p) = ln
(

N∏
s=1

fEFDM (xs; α, τ ,p)
)
. (6.19)

The mixture log-likelihood increases in the early steps of the algorithm but then it
decreases, converging to a point that is not a maxima.
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Fig. 6.3: Mixture and Complete-data log-likelihoods as function of the EM’s iteration.

Evaluating both the complete-data log-likelihood and the mixture log-likelihood at
the true and estimated parameters, one obtains the values reported in Table 6.3:

Param.
log-lik.

Mixture Complete-data

True -959.5013 -974.3026
Estimates -957.4180 -966.1317

Tab. 6.3: Mixture and complete-data log-likelihoods evaluated at the original and estimated
parameters.

The final estimates lead to an higher value of the complete-data log-likelihood as
well as to a lower value of the mixture likelihood. Since the EFDM can be expressed
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as a finite mixture of particular DM components and these have at most a finite mode,
it is clear that the issue is in the estimation procedure and not in the distribution (i.e.
if the components have more than one mode, the log-likelihood could have several
maximizers).
Two possible ways to deal with this issue are:

• Define a different estimation approach not involving the complete-data log-
likelihood.

• Define a Bayesian procedure.

The latter approach is going to be considered in next section.
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6.4.1 First configuration
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Fig. 6.4: First Configuration plots - n = 250.

n = 50 X1 X2 X3
X1 1.000 -0.500 -0.500
X2 -0.500 1.000 -0.500
X3 -0.500 -0.500 1.000

−→

n = 500 X1 X2 X3
X1 1.000 -0.500 -0.500
X2 -0.500 1.000 -0.500
X3 -0.500 -0.500 1.000

−→

n→ +∞ X1 X2 X3
X1 1.000 -0.500 -0.500
X2 -0.500 1.000 -0.500
X3 -0.500 -0.500 1.000

Tab. 6.4: Correlation matrix for n = 50, n = 500 and n→ +∞ (EFD).
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Sample size 150

n = 50 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3
True 15 15 15 20 20 20 0.333 0.333 0.333

MLE mean 23.767 23.761 23.783 33.316 33.214 33.535 0.333 0.335 0.332
MLE median 23.255 22.990 23.139 32.349 32.111 32.353 0.332 0.333 0.332

Arb 0.584 0.584 0.586 0.666 0.661 0.677 0.002 0.005 0.004√
MSE 10.243 10.339 10.382 15.593 15.369 15.559 0.039 0.041 0.041

Boot. SE 5.288 5.481 5.525 8.099 7.835 7.660 0.039 0.041 0.041
Coverage 0.653 0.693 0.683 0.69 0.647 0.640 0.95 0.94 0.95
n = 100 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 15 15 15 20 20 20 0.333 0.333 0.333
MLE mean 17.866 17.821 17.818 24.321 24.361 24.384 0.333 0.335 0.332

MLE median 17.642 17.592 17.593 24.331 23.944 23.878 0.334 0.332 0.332
Arb 0.191 0.188 0.188 0.216 0.218 0.219 0.0001 0.004 0.003√
MSE 3.757 3.734 3.688 5.650 5.667 5.711 0.040 0.041 0.038

Boot. SE 2.425 2.443 2.376 3.635 3.613 3.654 0.040 0.041 0.038
Coverage 0.810 0.823 0.800 0.823 0.797 0.827 0.957 0.957 0.953
n = 250 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 15 15 15 20 20 20 0.333 0.333 0.333
MLE mean 16.025 16.058 16.050 21.677 21.571 21.495 0.334 0.335 0.331

MLE median 16.039 15.968 16.043 21.474 21.485 21.477 0.333 0.333 0.334
Arb 0.068 0.071 0.070 0.084 0.079 0.075 0.003 0.004 0.006√
MSE 1.796 1.885 1.895 3.045 2.925 2.826 0.040 0.038 0.038

Boot. SE 1.472 1.558 1.574 2.538 2.463 2.395 0.040 0.037 0.038
Coverage 0.903 0.907 0.907 0.877 0.897 0.893 0.953 0.943 0.950
n = 500 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 15 15 15 20 20 20 0.333 0.333 0.333
MLE mean 15.814 15.785 15.832 21.253 21.109 21.077 0.331 0.333 0.336

MLE median 15.663 15.670 15.738 21.080 21.131 20.911 0.332 0.329 0.336
Arb 0.054 0.052 0.055 0.063 0.055 0.054 0.006 0.002 0.007√
MSE 1.628 1.724 1.675 2.729 2.480 2.612 0.040 0.035 0.038

Boot. SE 1.408 1.532 1.452 2.420 2.215 2.376 0.039 0.035 0.038
Coverage 0.897 0.913 0.907 0.903 0.923 0.910 0.937 0.973 0.950

Tab. 6.5: Simulation results for the first configuration - N = 150.
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Sample size 300

n = 50 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3
True 15 15 15 20 20 20 0.333 0.333 0.333

MLE mean 22.921 22.916 22.955 32.065 31.944 31.947 0.332 0.334 0.334
MLE median 22.787 22.987 22.940 31.858 31.739 31.702 0.331 0.334 0.335

Arb 0.528 0.528 0.530 0.603 0.597 0.597 0.004 0.002 0.002√
MSE 8.397 8.384 8.416 12.696 12.563 12.619 0.025 0.023 0.022

Boot. SE 2.782 2.758 2.744 3.948 3.889 4.055 0.025 0.023 0.022
Coverage 0.203 0.200 0.183 0.133 0.127 0.157 0.943 0.947 0.957
n = 250 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 15 15 15 20 20 20 0.333 0.333 0.333
MLE mean 15.986 16.014 15.990 21.470 21.382 21.401 0.333 0.334 0.334

MLE median 15.945 15.987 15.970 21.336 21.217 21.471 0.332 0.333 0.333
Arb 0.066 0.068 0.066 0.073 0.069 0.070 0.002 0.001 0.001√
MSE 1.431 1.455 1.459 2.346 2.216 2.100 0.028 0.027 0.029

Boot. SE 1.036 1.041 1.070 1.825 1.729 1.561 0.028 0.027 0.028
Coverage 0.850 0.853 0.850 0.857 0.880 0.857 0.953 0.963 0.953

Tab. 6.6: Simulation results for the first configuration - N = 300.
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6.4.2 Second configuration
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Fig. 6.5: Second Configuration plots - n = 250.

n = 50 X1 X2 X3
X1 1.000 -0.498 -0.243
X2 -0.498 1.000 -0.720
X3 -0.243 -0.720 1.000

−→

n = 500 X1 X2 X3
X1 1.000 -0.506 -0.096
X2 -0.506 1.000 -0.810
X3 -0.096 -0.810 1.000

−→

n→ +∞ X1 X2 X3
X1 1.000 -0.510 -0.064
X2 -0.510 1.000 -0.826
X3 -0.064 -0.826 1.000

Tab. 6.7: Correlation matrix for n = 50, n = 500 and n→ +∞ (EFD).
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Sample size 150

n = 50 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3
True 40 40 40 5 30 25 0.200 0.600 0.200

MLE mean 30.166 22.458 30.295 46.919 24.821 38.371 0.009 0.923 0.068
MLE median 13.906 9.250 14.916 37.129 14.197 32.627 0 0.993 0.000

Arb 0.246 0.439 0.243 8.384 0.174 0.535 0.956 0.538 0.658√
MSE 49.162 49.371 49.206 59.151 41.322 42.242 0.196 0.343 0.169

Boot. SE 48.088 46.073 48.159 41.664 40.928 40.003 0.041 0.114 0.106
Coverage 0.977 0.980 0.977 0.913 0.970 0.980 0.013 0.213 0.987
n = 100 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 40 40 40 5 30 25 0.200 0.600 0.200
MLE mean 64.151 60.684 63.620 45.635 49.334 40.292 0.057 0.694 0.249

MLE median 51.507 46.597 49.524 43.573 40.121 28.167 0.013 0.687 0.246
Arb 0.604 0.517 0.590 8.127 0.644 0.612 0.714 0.156 0.246√
MSE 54.894 55.341 55.474 44.342 44.934 41.366 0.169 0.135 0.103

Boot. SE 49.214 51.244 50.111 17.717 40.495 38.371 0.091 0.098 0.090
Coverage 0.950 0.950 0.950 0.37 0.950 0.940 0.433 0.830 0.913
n = 250 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 40 40 40 5 30 25 0.200 0.600 0.200
MLE mean 55.684 55.177 55.860 17.483 42.280 36.426 0.158 0.620 0.222

MLE median 54.582 53.813 55.026 16.533 41.926 36.290 0.161 0.618 0.220
Arb 0.392 0.379 0.396 2.497 0.409 0.457 0.211 0.033 0.111√
MSE 19.709 19.782 20.010 15.144 16.079 16.797 0.092 0.059 0.067

Boot. SE 11.916 12.666 12.181 8.559 10.363 12.291 0.081 0.056 0.063
Coverage 0.787 0.820 0.783 0.727 0.803 0.870 0.887 0.940 0.930
n = 500 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 40 40 40 5 30 25 0.200 0.600 0.200
MLE mean 50.135 50.093 50.229 12.103 37.660 32.817 0.180 0.612 0.208

MLE median 49.854 50.867 50.517 11.953 37.585 32.840 0.178 0.613 0.205
Arb 0.253 0.252 0.256 1.421 0.255 0.313 0.100 0.021 0.038√
MSE 11.857 12.075 11.970 8.596 9.413 10.336 0.066 0.050 0.049

Boot. SE 6.145 6.618 6.206 4.833 5.462 6.751 0.062 0.048 0.049
Coverage 0.613 0.667 0.607 0.760 0.693 0.783 0.933 0.940 0.937

Tab. 6.8: Simulation results for the second configuration - N = 150.
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Sample size 300

n = 50 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3
True 40 40 40 5 30 25 0.200 0.600 0.200

MLE mean 20.594 13.046 21.023 51.129 18 31.671 0.001 0.955 0.043
MLE median 11.685 5.282 12.525 43.956 11.942 30.646 0 1 0.000

Arb 0.485 0.674 0.474 9.226 0.400 0.267 0.994 0.592 0.783√
MSE 31.718 35.279 30.611 53.948 23.689 13.175 0.199 0.368 0.182

Boot. SE 25.047 22.724 23.979 27.926 20.391 11.343 0.007 0.096 0.093
Coverage 0.977 0.983 0.977 0.867 0.960 0.970 0 0.113 0.207
n = 250 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 40 40 40 5 30 25 0.200 0.600 0.200
MLE mean 56.567 56.132 56.758 15.675 42.588 35.952 0.166 0.616 0.217

MLE median 55.922 55.391 56.040 15.683 42.019 36.101 0.163 0.617 0.215
Arb 0.414 0.403 0.419 2.135 0.420 0.438 0.169 0.027 0.087√
MSE 18.345 18.177 18.577 11.811 14.320 13.320 0.065 0.041 0.045

Boot. SE 7.865 8.363 8.004 5.046 6.815 7.569 0.055 0.037 0.041
Coverage 0.47 0.557 0.480 0.417 0.573 0.723 0.910 0.937 0.927

Tab. 6.9: Simulation results for the second configuration - N = 300.
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6.4.3 Third configuration
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Fig. 6.6: Third Configuration plots - n = 250.

n = 50 X1 X2 X3
X1 1.000 -0.339 -0.080
X2 -0.339 1.000 -0.911
X3 -0.080 -0.911 1.000

−→

n = 500 X1 X2 X3
X1 1.000 -0.442 0.049
X2 -0.442 1.000 -0.918
X3 0.049 -0.918 1.000

−→

n→ +∞ X1 X2 X3
X1 1.000 -0.462 0.076
X2 -0.462 1.000 -0.919
X3 0.076 -0.919 1.000

Tab. 6.10: Correlation matrix for n = 50, n = 500 and n→ +∞ (EFD).
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Sample size 150

n = 50 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3
True 5 30 70 10 25 15 0.100 0.750 0.150

MLE mean 3.612 13.781 47.126 16.405 20.250 52.698 0.024 0.961 0.015
MLE median 2.319 7.223 27.261 13.941 13.378 42.633 0.007 0.989 0.000

Arb 0.278 0.541 0.327 0.640 0.190 2.513 0.761 0.281 0.898√
MSE 4.798 30.852 71.494 16.581 29.237 54.627 0.084 0.219 0.140

Boot. SE 4.585 26.201 67.624 15.268 28.801 39.469 0.036 0.059 0.038
Coverage 0.970 0.977 0.977 0.960 0.967 0.897 0.283 0.100 0.053
n = 100 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 5 30 70 10 25 15 0.100 0.750 0.150
MLE mean 6.844 38.989 95.268 18.651 34.805 46.171 0.081 0.818 0.101

MLE median 6.160 34.718 86.695 17.118 31.472 45.624 0.081 0.807 0.106
Arb 0.369 0.300 0.361 0.865 0.392 2.078 0.191 0.090 0.324√
MSE 4.015 25.973 58.066 12.073 22.137 37.522 0.048 0.106 0.080

Boot. SE 3.561 24.327 52.193 8.407 19.814 20.853 0.044 0.082 0.063
Coverage 0.923 0.937 0.937 0.843 0.940 0.770 0.923 0.857 0.830
n = 250 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 5 30 70 10 25 15 0.100 0.750 0.150
MLE mean 6.123 36.933 86.361 14.081 30.658 27.453 0.100 0.757 0.142

MLE median 6.029 36.601 85.676 13.795 30.231 27.398 0.099 0.755 0.142
Arb 0.225 0.231 0.234 0.408 0.226 0.830 0.004 0.010 0.050√
MSE 1.436 9.104 20.524 4.834 7.979 15.814 0.031 0.044 0.041

Boot. SE 0.894 5.890 12.371 2.586 5.617 9.730 0.031 0.043 0.041
Coverage 0.770 0.797 0.740 0.670 0.850 0.773 0.963 0.963 0.953
n = 500 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 5 30 70 10 25 15 0.100 0.750 0.150
MLE mean 5.705 34.859 80.314 12.404 28.114 24.502 0.100 0.757 0.143

MLE median 5.715 34.730 80.079 12.355 28.356 24.334 0.100 0.756 0.141
Arb 0.141 0.162 0.147 0.240 0.125 0.633 0.003 0.009 0.049√
MSE 0.950 6.496 13.546 3.094 5.109 11.928 0.027 0.042 0.039

Boot. SE 0.635 4.305 8.767 1.945 4.044 7.198 0.027 0.041 0.038
Coverage 0.803 0.783 0.783 0.787 0.880 0.767 0.940 0.927 0.937

Tab. 6.11: Simulation results for the third configuration - N = 150.
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Sample size 300

n = 50 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3
True 5 30 70 10 25 15 0.100 0.750 0.150

MLE mean 4.998 21.402 66.956 20.756 28.674 62.178 0.024 0.952 0.025
MLE median 2.142 5.584 25.531 15.133 13.373 48.203 0.003 0.996 0.000

Arb 0.0001 0.287 0.043 1.076 0.147 3.145 0.764 0.269 0.835√
MSE 7.969 47.441 115.110 23.678 46.338 71.272 0.085 0.216 0.134

Boot. SE 7.955 46.577 114.878 21.059 46.115 53.333 0.037 0.076 0.048
Coverage 0.957 0.960 0.960 0.943 0.953 0.927 0.283 0.223 0.180
n = 250 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 5 30 70 10 25 15 0.100 0.750 0.150
MLE mean 6.124 36.675 85.735 13.644 30.436 27.744 0.098 0.760 0.141

MLE median 6.100 36.597 84.983 13.532 30.114 27.426 0.099 0.760 0.143
Arb 0.225 0.222 0.225 0.364 0.217 0.850 0.015 0.014 0.060√
MSE 1.300 7.946 18.207 4.108 6.750 14.374 0.022 0.031 0.031

Boot. SE 0.652 4.303 9.145 1.893 3.996 6.636 0.022 0.029 0.029
Coverage 0.607 0.677 0.613 0.530 0.750 0.540 0.963 0.927 0.943

Tab. 6.12: Simulation results for the third configuration - N = 300.
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6.4.4 Forth configuration
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Fig. 6.7: Forth Configuration plots - n = 250.

n = 50 X1 X2 X3
X1 1.000 0.296 -0.849
X2 0.296 1.000 -0.756
X3 -0.849 -0.756 1.000

−→

n = 500 X1 X2 X3
X1 1.000 0.410 -0.885
X2 0.410 1.000 -0.788
X3 -0.885 -0.788 1.000

−→

n→ +∞ X1 X2 X3
X1 1.000 0.426 -0.889
X2 0.426 1.000 -0.793
X3 -0.889 -0.793 1.000

Tab. 6.13: Correlation matrix for n = 50, n = 500 and n→ +∞ (EFD).
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Sample size 150

n = 50 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3
True 4 6 19 5 1 42 0.230 0.120 0.650

MLE mean 5.991 9.187 28.908 8.504 15.614 61.184 0.278 0.038 0.684
MLE median 5.301 8.204 24.764 6.290 14.195 57.154 0.279 0.010 0.676

Arb 0.498 0.531 0.521 0.701 14.614 0.457 0.208 0.682 0.052√
MSE 3.370 4.860 17.374 7.358 16.004 32.519 0.086 0.100 0.064

Boot. SE 2.714 3.663 14.248 6.460 6.512 26.213 0.072 0.057 0.054
Coverage 0.920 0.897 0.917 0.927 0.477 0.930 0.913 0.497 0.880
n = 100 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 4 6 19 5 1 42 0.230 0.120 0.650
MLE mean 4.823 7.403 23.431 6.489 10.769 49.961 0.284 0.047 0.669

MLE median 4.617 7.149 22.178 5.586 10.253 47.965 0.293 0.018 0.668
Arb 0.369 0.300 0.361 0.865 0.392 2.078 0.191 0.090 0.324√
MSE 1.360 2.041 7.677 4.163 10.857 14.061 0.091 0.098 0.048

Boot. SE 1.081 1.480 6.259 3.881 4.728 11.570 0.073 0.066 0.044
Coverage 0.873 0.857 0.867 0.920 0.503 0.883 0.897 0.983 0.933
n = 250 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 4 6 19 5 1 42 0.230 0.120 0.650
MLE mean 4.436 6.760 21.947 6.205 7.732 45.436 0.268 0.067 0.665

MLE median 4.364 6.706 21.842 5.834 7.432 44.562 0.276 0.048 0.669
Arb 0.109 0.127 0.155 0.241 6.732 0.082 0.163 0.441 0.024√
MSE 0.779 1.176 5.109 3.218 7.805 8.203 0.085 0.091 0.045

Boot. SE 0.645 0.895 4.167 2.979 3.943 7.437 0.076 0.073 0.042
Coverage 0.890 0.877 0.880 0.943 0.653 0.927 0.947 0.963 0.963
n = 500 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 4 6 19 5 1 42 0.230 0.120 0.650
MLE mean 4.332 6.626 21.625 5.915 7.092 44.861 0.268 0.074 0.657

MLE median 4.281 6.578 21.720 5.729 6.413 44.345 0.268 0.070 0.658
Arb 0.083 0.104 0.138 0.183 6.092 0.068 0.167 0.380 0.011√
MSE 0.650 0.971 4.583 2.865 7.185 6.750 0.080 0.084 0.042

Boot. SE 0.557 0.741 3.751 2.710 3.804 6.104 0.070 0.071 0.041
Coverage 0.897 0.853 0.883 0.973 0.700 0.910 0.907 0.977 0.950

Tab. 6.14: Simulation results for the forth configuration - N = 150.
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Sample size 300

n = 50 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3
True 4 6 19 5 1 42 0.230 0.120 0.650

MLE mean 5.371 8.397 25.114 6.366 17.761 56.455 0.297 0.020 0.682
MLE median 5.133 8.017 22.868 5.271 16.713 54.967 0.304 0.004 0.685

Arb 0.343 0.400 0.322 0.273 16.761 0.344 0.293 0.832 0.050√
MSE 1.873 3.006 9.936 3.677 17.847 18.646 0.085 0.105 0.049

Boot. SE 1.274 1.810 7.819 3.408 6.121 11.758 0.051 0.033 0.036
Coverage 0.863 0.800 0.880 0.923 0.253 0.817 0.730 0.147 0.860
n = 250 α1 α2 α3 τ1 τ2 τ3 p1 p2 p3

True 4 6 19 5 1 42 0.230 0.120 0.650
MLE mean 4.305 6.611 21.018 5.194 9.007 44.379 0.287 0.047 0.665

MLE median 4.225 6.522 20.985 5.079 8.339 43.677 0.290 0.034 0.667
Arb 0.076 0.102 0.106 0.039 8.007 0.057 0.249 0.606 0.024√
MSE 0.600 0.960 4.283 2.251 8.931 5.685 0.079 0.089 0.034

Boot. SE 0.515 0.739 3.771 2.239 3.948 5.155 0.054 0.051 0.030
Coverage 0.900 0.847 0.917 0.970 0.543 0.917 0.803 0.580 0.923

Tab. 6.15: Simulation results for the forth configuration - N = 300.

6.5 A Bayesian approach

A Bayesian approach has been proposed to produce estimates of the EFDM parame-
ters. This procedure is based on Hamiltonian Monte Carlo (HMC) [14, 31, 66], that
is a generalization of the Metropolis algorithm which incorporates both deterministic
and MCMC simulation methods. The HMC has been implemented through the Stan
modeling language [86]. To sample from the posterior distribution, Stan requires
the probability density function (as in 6.14) and the prior distibutions for p, α and
τ . An interesting feature of Stan is that it makes possible to define prior also for
transformed version of the parameters. We took advantage of this aspect and defined
the following priors:

• p ∼ D(d0, . . . , d0)

• α+ =
D∑
r=1

αr ∼ Gamma(g1, g2)

• τ+ =
D∑
r=1

τr ∼ Gamma(h1, h2)

• ᾱ = α

α+ ∼ D(e0, . . . , e0)
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• τ̄ = τ

τ+ ∼ D(f0, . . . , f0)

We set d0 = e0 = f0 = 1 in order to have uniform priors on the simplex.

A small simulation study has been conducted. It refers to two hyperparameters
configurations for the priors of α+ and τ+:

• Gamma priors with mean the true parameter and variance equal to 1 (infor-
mative priors)

• Gamma priors with mean the true parameter and variance equal to 500 (weakly
informative priors).

In this simulation study, 200 samples of size 150 have been generated from the
EFDM for four different parameter configurations:

1. n = 50, α = (15, 15, 15)ᵀ, τ = (20, 20, 20)ᵀ and p =
(

1
3 ,

1
3 ,

1
3

)ᵀ
2. n = 250, α = (15, 15, 15)ᵀ, τ = (20, 20, 20)ᵀ and p =

(
1
3 ,

1
3 ,

1
3

)ᵀ
3. n = 50, α = (4, 6, 19)ᵀ, τ = (5, 1, 42)ᵀ and p = (0.23, 0.12, 0.65)ᵀ

4. n = 250, α = (4, 6, 19)ᵀ, τ = (5, 1, 42)ᵀ and p = (0.23, 0.12, 0.65)ᵀ

Scenarios 1 and 2 refer to configuration 1 in Table 6.1 with n = 50 and n = 250
respectively, whereas scenarios 3 and 4 refer to configuration 4. We have chosen
these configurations because we wanted to test our Bayesian procedure both in a
scenario characterized by well-separated components and in a scenario characterized
by positive correlations among counts.

The results encourage to prefer the Bayesian approach instead of the classical one.
Indeed, the Arbs are smaller than the ones obtained with the EM algorithm (Tables
6.5 and 6.14). Estimates are close to the real values also using the weakly infor-
mative priors and this suggests that the Bayesian procedure is robust with respect
to the choice of the hyperparameters of the Gamma priors of α+ and τ+. More
intensive simulation studies need to be conducted, inspecting different parameter
configurations and changing the priors for the unknown parameters.
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6.5.1 Bayesian - Informative Priors

Scenarios 1 and 2:

n = 50 p1 p2 p3 α1 α2 α3 τ1 τ2 τ3
True 0.333 0.333 0.333 15 15 15 20 20 20

Mean Post. Means 0.333 0.338 0.329 14.946 14.986 15.027 20.196 20.013 19.816
Mean Post. Medians 0.332 0.337 0.328 14.939 14.979 15.021 20.181 19.997 19.796

Arb 0.108 0.099 0.093 0.031 0.030 0.029 0.090 0.082 0.089√
MSE 0.043 0.041 0.039 0.560 0.557 0.537 2.254 2.065 2.186

Coverage 0.940 0.960 0.965 0.985 0.980 0.985 0.935 0.965 0.965
n = 250 p1 p2 p3 α1 α2 α3 τ1 τ2 τ3

True 0.333 0.333 0.333 15 15 15 20 20 20
Mean Post. Means 0.334 0.337 0.329 14.967 15.002 14.966 19.967 20.143 19.921

Mean Post. Medians 0.333 0.336 0.328 14.963 14.998 14.962 19.960 20.136 19.913
Arb 0.100 0.094 0.091 0.023 0.023 0.022 0.061 0.060 0.060√

MSE 0.040 0.039 0.038 0.428 0.430 0.405 1.509 1.487 1.495
Coverage 0.950 0.945 0.950 0.985 0.975 0.995 0.945 0.945 0.960

Tab. 6.16: Simulation results for scenarios 1 and 2 with informative priors.

Scenarios 3 and 4:

n = 50 p1 p2 p3 α1 α2 α3 τ1 τ2 τ3
True 0.23 0.12 0.65 4 6 19 5 1 42

Mean Post. Means 0.245 0.112 0.643 3.978 5.877 19.135 5.125 3.059 39.824
Mean Post. Medians 0.244 0.102 0.645 3.972 5.875 19.128 5.023 2.470 40.113

Arb 0.185 0.329 0.058 0.067 0.048 0.022 0.192 2.063 0.054√
MSE 0.054 0.049 0.045 0.328 0.363 0.543 1.236 2.500 2.760

Coverage 0.955 0.985 0.965 0.965 0.945 0.995 0.970 0.995 0.965
n = 250 p1 p2 p3 α1 α2 α3 τ1 τ2 τ3

True 0.23 0.12 0.65 4 6 19 5 1 42
Mean Post. Means 0.246 0.111 0.643 3.987 5.922 19.047 4.964 2.330 40.733

Mean Post. Medians 0.245 0.106 0.644 3.985 5.921 19.039 4.921 1.990 40.864
Arb 0.187 0.305 0.052 0.046 0.033 0.020 0.181 1.346 0.036√

MSE 0.054 0.045 0.041 0.231 0.256 0.470 1.154 1.896 1.993
Coverage 0.930 0.960 0.950 0.965 0.955 1.000 0.940 0.990 0.975

Tab. 6.17: Simulation results for scenarios 3 and 4 with informative priors.
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6.5.2 Bayesian - Weakly Informative Priors

Scenarios 1 and 2:

n = 50 p1 p2 p3 α1 α2 α3 τ1 τ2 τ3
True 0.333 0.333 0.333 15 15 15 20 20 20

Mean Post. Means 0.333 0.338 0.329 15.180 15.235 15.280 20.570 20.380 20.215
Mean Post. Medians 0.332 0.337 0.328 14.921 14.971 15.016 20.185 19.992 19.823

Arb 0.108 0.099 0.093 0.105 0.110 0.110 0.143 0.136 0.139√
MSE 0.043 0.041 0.040 1.950 2.057 2.074 3.624 3.402 3.418

Coverage 0.940 0.960 0.960 0.990 0.990 0.995 0.990 0.990 0.990
n = 250 p1 p2 p3 α1 α2 α3 τ1 τ2 τ3

True 0.333 0.333 0.333 15 15 15 20 20 20
Mean Post. Means 0.334 0.337 0.329 14.936 14.975 14.941 19.972 20.163 19.951

Mean Post. Medians 0.333 0.336 0.328 14.868 14.904 14.872 19.867 20.054 19.845
Arb 0.100 0.094 0.090 0.069 0.073 0.072 0.098 0.091 0.091√

MSE 0.040 0.039 0.038 1.307 1.361 1.360 2.393 2.295 2.320
Coverage 0.950 0.940 0.950 0.970 0.975 0.975 0.970 0.980 0.965

Tab. 6.18: Simulation results for scenarios 1 and 2 with weakly informative priors.

Scenarios 3 and 4:

n = 50 p1 p2 p3 α1 α2 α3 τ1 τ2 τ3
True 0.23 0.12 0.65 4 6 19 5 1 42

Mean Post. Means 0.248 0.108 0.644 4.124 6.113 20.054 5.461 3.987 41.357
Mean Post. Medians 0.248 0.098 0.645 4.030 5.975 19.557 5.177 2.644 40.389

Arb 0.189 0.323 0.057 0.138 0.144 0.163 0.284 2.987 0.149√
MSE 0.055 0.047 0.045 0.706 1.071 3.887 1.847 3.504 7.776

Coverage 0.975 0.985 0.965 0.985 0.995 0.990 0.990 0.990 0.995
n = 250 p1 p2 p3 α1 α2 α3 τ1 τ2 τ3

True 0.23 0.12 0.65 4 6 19 5 1 42
Mean Post. Means 0.249 0.108 0.643 4.024 5.975 19.189 5.025 2.863 41.364

Mean Post. Medians 0.248 0.103 0.644 4.000 5.941 19.064 4.943 2.039 41.094
Arb 0.196 0.323 0.052 0.084 0.081 0.102 0.237 1.873 0.096√

MSE 0.056 0.047 0.041 0.418 0.626 2.474 1.561 2.447 5.168
Coverage 0.910 0.960 0.950 0.975 0.965 0.960 0.915 0.990 0.960

Tab. 6.19: Simulation results for scenarios 3 and 4 with weakly informative priors.
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7Conclusion

This thesis was aimed at presenting several distributions for compositional data, in
order to overcome the main drawbacks of the Dirichlet distribution: rigid dependence
structure, severe scheme of simplicial independences and unimodality. The first
proposal to deal with these issues is the Additive Logistic-Normal proposed by
Aitchison and based on a log-ratio transformation to compositional data. In such
a way it is possible to map the D-dimensional simplex into RD−1. This approach
allows to use all the standard statistical methods defined for multivariate Normal
data. Despite this advantage, the ALN is an unimodal distribution and does not allow
for positive covariances among components of the compositions.
A group of finite mixture models (each one including the Dirichlet as an inner point)
have been then introduced: the Flexible Dirichlet, the Extended Flexible Dirichlet
and the Double Flexible Dirichlet. These distributions are obtained closing different
basis, obtained combining Gamma and Multinomial random variables. Both the
FD and the EFD allow for at most D modes, whereas the DFD allows for at most
D(D + 1)

2 clusters. The EFD generalizes the FD, moving the cluster means along
the lines joining each vertex of the simplex to a common barycenter (Section 3.4),
whereas the DFD allows for an higher number of mixture components, increasing
the number of clusters and varying their location on the simplex (Figures 4.3 and
4.4). If a subset of weights of the mixture assume value zero, then interesting cluster
configurations are considered.

In this thesis, two works involving the FD and the EFD models, presented at two
conferences, have been included: a new Bayesian estimation procedure for the
parameters of a FD distribution and an intensive simulation study aimed at assessing
the reliability of the EM algorithm implemented for the EFD. The core of this thesis
regards the introduction of the DFD model. Several statistical properties have been
derived for this new model. The DFD, as well as the EFD, allows for covariances that
can assume also positive values. Since real compositions can present positive linear
dependence (look at correlation matrices 5.1 and 5.9), this is a reasonable demand
to a distribution defined on the simplex.

The EFD and the DFD resulted as the more interesting models for real data features,
because of the flexibility they allow in the modelization of the covariance matrix and
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clusters’ position on the simplex. Simulation studies and applications to real data
confirm the existence of cases where such cluster configurations make sense.

This family of "Flexible" distribution can be used also to generate new models. In
Section 6 the Extended Flexible Dirichlet-Multinomial has been introduced com-
pounding the Multinomial distribution with the EFD one. In this work, study of
the EFDM distribution has begun, showing that it overcomes the rigidity of the
Multinomial and Dirichlet-multinomial distributions. Since the EM algorithm does
not provide satisfactory estimate of parameters, a better estimation procedure needs
to be implemented. In future works, a Bayesian procedure will be defined and
tested.

7.1 Future Works

7.1.1 Reducing the number of parameters in the DFD model

It has already been said that the number of parameters that the Double Flexible
Dirichlet needs to estimate is very high. This fact penalizes the DFD fit to real data
(as in Table 4.7). Indeed, as shown by Figure 7.1, the number of parameters grows
quadratically with D, whereas most of the other models (expecpt for the ALN) is a
linear function of D.

It is very easy to note that the number of parameters is strongly influenced by the
matrix P: even if it is assumed to be symmetric, it has D(D+1)

2 distinct elements to
be estimated. In order to reduce this number of parameters, one can make some
assumption on the matrix P. The simpler assumption possible is to assume that
the vectors Z1 and Z2 are independent. In this way one can obtain the following
relationship:

pi,j = P (Z1 = ei,Z2 = ej) = P (Z1 = ei) · P (Z2 = ej) = pi· · p·j . (7.1)

This assumption does not affect the number of clusters (components of the mixture),
neither their position in the simplex. It alters only the "size" of each subpopulation.
Moreover, with this assumption it is sufficient to estimate the vector p (recall from 4
that it is the probability vector of Z1 and Z2) in order to obtain an estimate of the
entire matrix P. It follows that the number of parameters of a DFD model coincides
with the FD’s one. This assumption brings three problems:
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Fig. 7.1: Number of parameters of several models for compositional data.

• The EM algorithm needs to be modified. In general, the EM algorithm estimate
the complete weights vector of a finite mixture model, so a different approach
must to be implemented.

• The DFD model does not allow for positive covariances anymore. Indeed, from
Equation 4.21 it is possible to see that Cov (Xr, Xh) > 0 =⇒ (pr,h−2pr· ·p·h) >
0. But if (7.1) holds, then pr,h − 2pr· · p·h = pr· · p·h − 2pr· · p·h = −pr· · p·h < 0.

• It is well-known that, if Z1 ⊥⊥ Z2, then pi,j = P (Z1 = ei,Z2 = ej) can not take
the value zero. This means that this assumption prevent the possibility of
having empty clusters.

An alternative could be adding to this assumption some parameters that regulate
the dependence among Z1 and Z2. The number of these new parameters should not
be too high, otherwise the simplification imposed to the parametric space would be
pointless.
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In conclusion, the parametrization of the DFD can be relaxed. This brings some
drawbacks with respect to the properties showed in Section 4. Nonetheless, since
the simplified version of the DFD model has the same number of parameters of the
Flexible Dirichlet, it remain an interesting alternative to use when data show more
than D clusters or when one looks for parametric forms of dependence.

7.1.2 Moving the clusters: the Extended Double Flexible Dirichlet

Looking at Figure 4.3, it is clear that the cluster structure imposed by the Double

Flexible Dirichlet distribution is very rigid. For example, if all the
D(D + 1)

2 are
present, the two following hold:

• Joining the cluster means µ1,µ2 and µ3 (with respect to (4.30)), one obtains
an equilateral triangle (as happens in the FD case).

• Clusters 4, 5 and 6 are forced to have mean vector at the midpoint of two out
of the three vectors µ1,µ2 and µ3.

In order to relax this structure, one can combine pecularities of the DFD and
EFD models. In particular, the basis (4.2) can be extended in the following way.
Let W = (W1, . . . ,WD)ᵀ, U1 = (U1,1, . . . , U1,D)ᵀ, U2 = (U2,1, . . . , U2,D)ᵀ and Z =
(Z1,Z2)ᵀ be jointly independent and Wr ∼ Gamma(αr, 1), U1,r, U2,r ∼ Gamma(τr, 1)
(r = 1, . . . , D) and Z1,Z2 ∼ Multinomial(1,p). Assuming also that:

• the Wr ’s are independent on each other,

• U1 and U2 have independent elements

then it is possible to construct the r-th element of the new basis Y:

Yr = Wr + U1,rZ1,r + U2,rZ2,r, r = 1, . . . , D. (7.2)

Note that Z1��⊥⊥Z2, in general. Indeed, the only assumption made on the matrix P (i.e.
the matrix whose generic element is pi,j = P (Z1 = ei,Z2 = ej)) is that it must be
symmetric. Closing this basis, a new distribution called Extended Double Flexible
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Dirichlet (EDFD) is obtained. It is not surprising that the EDFD allows for a finite
mixture structure:

EDFD(x; α, τ ,P) =
D∑
i=1

D∑
j=1

pi,jD (x; α + τi ei + τj ej) . (7.3)

Imposing the matrix P symmetric, as in the DFD case, this mixture has
D(D + 1)

2
components. The additional τr ’s allow to break both the constraint above described,
as can be seen in Figure 7.2.

x1

x3

x2 x1

x3

x2

x1

x3

x2 x1

x3

x2

Fig. 7.2: EDFD cluster means structure. Top-Left: α = (3, 3, 3)ᵀ, τ = (2, 15, 5)ᵀ. Top-Right:
α = (3, 3, 3)ᵀ, τ = (2, 15, 20)ᵀ. Bottom-Left: α = (10, 5, 30)ᵀ, τ = (5, 8, 32)ᵀ.
Bottom-Right: α = (10, 5, 30)ᵀ, τ = (100, 8, 32)ᵀ.
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The new cluster mean vectors can be expressed as weighted mean of three points:
ᾱ, ei and ej:

µEDFD
i,j = α + τi ei + τj ej

α+ + τi + τj

=
(

α+

α+ + τi + τj

)
ᾱ +

(
τi

α+ + τi + τj

)
ei +

(
τj

α+ + τi + τj

)
ej

(7.4)

In this way the vector µi,j , i 6= j, is not forced to be at the midpoint of µi,i and µj,j:
it is still located on the segment joining these two vectors but its position on this line
depends on τi and τj . In order to fit this model to real data, one must estimate D
αr ’s, D τr ’s and D(D+1)

2 − 1’s pi,j , that is a very high number. It is important to note
that this number is equal to the number of parameters of a DFD model plus (D − 1)
(that is the number of new τr ’s).

The major flexibility of the EDFD over the DFD can be seen even in the univariate
case (Figure 7.3). It shows the density function of the DFD and the EDFD in different
parametric configurations. Blue lines represent the position of the first element of

cluster means. The matrix P is fixed for the four scenarios: P =
[

0.2 0.15
0.15 0.5

]
.

In the DFD’s panels, the distance between the first two cluster means’ position (µ1,1
and µ1,2) is the same as the distance between the second and the third’s ones (µ1,2
and µ2,2). This does not hold anymore for the EDFD model, where the first two
green lines are closer than the second and the third ones.

EDFD as a starting point for regression models

Several proposals have been made in order to model proportions as function of
a set of covariates [53]. The first attemp was in the Beta regression [35, 73],
that is a good model for a large class of phenomena, excluding heavy tailed and
multimodality ones. In order to overcome these limitations, the Beta Rectangular
has been proposed [47]. This distribution is defined as a finite mixture an Uniform
and a Beta components and therefore it fit data better than the Beta: thanks to the
Uniform component, it allows for heavy tails. The Beta Rectanuglar can be used to
define a regression model (BR regression model [13]). More recently, Migliorati et
al [62] took advtantage of the univariate version of the Flexible Dirichlet (named
"Flexible Beta", FB) and developed a regression model on it: the FB regression. The
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Fig. 7.3: DFD (Top) and EDFD (Bottom) univariate density functions. The matrix P has
elements p1,1 = 0.2, p1,2 = p2,1 = 0.15 and p2,2 = 0.5. Blue lines indicate cluster
means’ position.

advantage of the FB with respect to the BR is that the first allows for bimodality
forms, as well as asymmetric and heavy tails ones.

The univariate version of the EDFD could bring some advantage compared also to
the FB: with just one more parameter (p1,2), it allows for the presence of a third
cluster and then the model (as well as the regression) have more flexibility.

7.1.3 Initialization methods for the EM algorithm in the Extended
Flexible Dirichlet-Multinomial scenario

It has already been said that the choice of a good starting point is a crucial aspect
for the EM algorithm. It holds also in the EFDM context. As in Section 3.4.3, some
ad hoc initialization procedures should be developed. A very simple idea is to rely
on the initialization obtained for the EFD distribution, with the same algorithm:
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• Transform every 0 data in some small positive integers, according to the
order of magnitude of data. This is necessary because the EFD (as most of
simplex distribution) is not defined on the boundary of the simplex, that can
be expressed as the set of compositions with at least one null component.

• Treat the transformed data as a basis and close it.

• Apply the initialization procedure described in 3.4.3 to this composition.

This is a very naif proposal that does not consider the count nature of the data,
but it leads to good starting values for the EM algorithm. New and more reliable
algorithms should be found.
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8Appendix

8.1 Bayesian estimation procedure

8.1.1 Other parameter configurations

The simulation study developed in Section 3.3.2 regards five parameters config-
urations, with different structure of the clusters. These configurations are the
following:

α1 α2 α3 τ p1 p2 p3
ID 1 10 10 10 17 1/3 1/3 1/3
ID 2 7 26 15 17 1/3 1/3 1/3
ID 3 14 18 21 5.5 1/3 1/3 1/3
ID 4 10 10 10 12 0.2 0.45 0.35
ID 5 8 20 35 23 0.2 0.45 0.35

Tab. 8.1: Parameter configurations - old parameterization.

µ1 µ2 µ3 p1 p2 p3 φ w

ID 1 1/3 1/3 1/3 1/3 1/3 1/3 47 0.3617
ID 2 0.1949 0.4872 0.3179 1/3 1/3 1/3 65 0.4474
ID 3 0.271 0.339 0.390 1/3 1/3 1/3 58.5 0.1158
ID 4 0.295 0.367 0.338 0.2 0.45 0.35 42 0.3506
ID 5 0.1465 0.3529 0.5005 0.2 0.45 0.35 86 0.3651

Tab. 8.2: Parameter configurations - new parameterization.
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ID 1: Well-separated clusters
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Fig. 8.1: Ternary Plot ID 1.

True Post. Mean Post. Median Post. Mode Post. SD MLE Exp. MLE SE
µ1 0.333 0.3338 0.3336 0.3329 0.0146 0.3337 0.0145
µ2 0.333 0.3352 0.3350 0.3349 0.0147 0.3353 0.0150
µ3 0.333 0.3310 0.3307 0.3304 0.0145 0.3310 0.0146
p1 0.333 0.3341 0.3334 0.3319 0.0384 0.3340 0.0388
p2 0.333 0.3373 0.3365 0.3344 0.0385 0.3374 0.0388
p3 0.333 0.3286 0.3278 0.3262 0.0381 0.3286 0.0392
φ 47 47.2354 47.1335 46.9404 3.8691 47.8244 3.8269
w 0.3617 0.3612 0.3613 0.3614 0.0088 0.3897 0.0175

Tab. 8.3: Simulation results - ID 1.
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ID 2: Well-separated but closer clusters
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Fig. 8.2: Ternary Plot ID 2.

True Post. Mean Post. Median Post. Mode Post. SD MLE Exp. MLE SE
µ1 0.1949 0.1953 0.1951 0.1947 0.01 0.1950 0.0109
µ2 0.4872 0.4883 0.4882 0.4879 0.01 0.4885 0.0111
µ3 0.3179 0.3164 0.3162 0.3157 0.01 0.3166 0.0108
p1 0.333 0.3350 0.3342 0.3333 0.0374 0.3336 0.0410
p2 0.333 0.3367 0.3360 0.3361 0.0387 0.3371 0.0395
p3 0.333 0.3284 0.3276 0.3251 0.0387 0.3293 0.0381
φ 65 65.0841 64.9359 64.8278 5.4555 65.8584 5.1893
w 0.4474 0.2610 0.2610 0.2613 0.01 0.4456 0.0352

Tab. 8.4: Simulation results - ID 2.
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ID 3: Overlapped clusters
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Fig. 8.3: Ternary Plot ID 3.

True Post. Mean Post. Median Post. Mode Post. SD MLE Exp. MLE SE
µ1 0.271 0.2705 0.2705 0.2705 0.0058 0.2706 0.0058
µ2 0.339 0.3402 0.3402 0.3403 0.0061 0.3402 0.0061
µ3 0.390 0.3892 0.3892 0.3891 0.0063 0.3891 0.0062
p1 0.333 0.3681 0.3413 0.3232 0.2054 0.3368 0.1549
p2 0.333 0.3307 0.3013 0.2748 0.1990 0.3444 0.1624
p3 0.333 0.3012 0.2692 0.2442 0.1975 0.3187 0.1712
φ 58.5 48.7262 47.5953 45.1559 8.7155 59.3322 9.9501
w 0.1158 0.0659 0.0692 0.0932 0.0305 0.1523 0.0496

Tab. 8.5: Simulation results - ID 3.
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ID 4: Closed clusters and different weights
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Fig. 8.4: Ternary Plot ID 4.

True Post. Mean Post. Median Post. Mode Post. SD MLE Exp. MLE SE
µ1 0.295 0.2966 0.2963 0.2957 0.01 0.2961 0.0108
µ2 0.367 0.3656 0.3656 0.3656 0.0141 0.3658 0.0123
µ3 0.338 0.3377 0.3376 0.3379 0.0141 0.3381 0.0119
p1 0.2 0.2035 0.2021 0.1987 0.0332 0.2019 0.0339
p2 0.45 0.4467 0.4465 0.4477 0.0424 0.4470 0.0426
p3 0.35 0.3498 0.3490 0.3464 0.04 0.3511 0.0392
φ 42 42.0453 41.9520 41.6533 3.6528 42.6291 3.0885
w 0.3506 0.2848 0.2849 0.2850 0.01 0.3508 0.0237

Tab. 8.6: Simulation results - ID 4.
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ID 5: Well-separated clusters and different weights
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Fig. 8.5: Ternary Plot ID 5.

True Post. Mean Post. Median Post. Mode Post. SD MLE Exp. MLE SE
µ1 0.1465 0.1483 0.1480 0.1473 0.01 0.1475 0.0098
µ2 0.3529 0.3515 0.3514 0.3511 0.01 0.3520 0.0113
µ3 0.5005 0.5002 0.5001 0.4997 0.01 0.5005 0.0106
p1 0.2 0.2053 0.2040 0.2012 0.0332 0.2023 0.0340
p2 0.45 0.4451 0.4448 0.4438 0.04 0.4471 0.0410
p3 0.35 0.3496 0.3490 0.3473 0.0387 0.3506 0.0374
φ 86 86.4743 86.2843 89.5219 7.1449 87.6166 6.2640
w 0.3651 0.2671 0.2671 0.2670 0.01 0.3753 0.0301

Tab. 8.7: Simulation results - ID 5.

190 Chapter 8 Appendix



8.1.2 Robustness analysis on the prior for φ

In this section two cluster structure are considered: one with well-separated clusters
and one with overlapped clusters. They correspond to ID 1 and 3 of Table 8.1.

First prior

φ ∼ Gamma(g2, g2), with g2 = 0.0001.

• Well-separated clusters:

Parameter True Post. Mean Post. Median Post. Mode Post. SD MLE Exp. MLE SE
µ1 0.333 0.334 0.333 0.333 0.015 0.334 0.015
µ2 0.333 0.335 0.335 0.335 0.015 0.335 0.015
µ3 0.333 0.331 0.331 0.330 0.015 0.331 0.015
p1 0.333 0.334 0.333 0.332 0.038 0.334 0.039
p2 0.333 0.337 0.337 0.336 0.039 0.337 0.039
p3 0.333 0.329 0.328 0.326 0.038 0.329 0.039
φ 47 47.237 47.135 47.072 3.872 47.824 3.827
w 0.3617 0.361 0.361 0.361 0.009 0.390 0.018

• Overlapped clusters:

Parameter True Post. Mean Post. Median Post. Mode Post. SD MLE Exp. MLE SE
µ1 0.271 0.271 0.270 0.271 0.006 0.271 0.006
µ2 0.339 0.340 0.340 0.340 0.006 0.340 0.006
µ3 0.390 0.389 0.389 0.389 0.006 0.389 0.006
p1 0.333 0.366 0.339 0.298 0.206 0.337 0.155
p2 0.333 0.335 0.304 0.271 0.203 0.344 0.162
p3 0.333 0.299 0.267 0.244 0.198 0.319 0.171
φ 58.5 48.684 47.526 44.997 8.720 59.332 9.950
w 0.1158 0.066 0.069 0.097 0.031 0.152 0.050
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Second prior

φ ∼ Gamma(k · g2, g2), with k = 40 and g2 = 0.0001.

• Well-separated clusters:

Parameter True Post. Mean Post. Median Post. Mode Post. SD MLE Exp. MLE SE
µ1 0.333 0.334 0.333 0.333 0.015 0.334 0.015
µ2 0.333 0.335 0.335 0.334 0.015 0.335 0.015
µ3 0.333 0.331 0.331 0.331 0.015 0.331 0.015
p1 0.333 0.334 0.333 0.331 0.038 0.334 0.039
p2 0.333 0.338 0.337 0.336 0.039 0.337 0.039
p3 0.333 0.329 0.328 0.326 0.038 0.329 0.039
φ 47 47.239 47.135 46.974 3.872 47.824 3.827
w 0.3617 0.361 0.361 0.362 0.009 0.390 0.018

• Overlapped clusters:

Parameter True Post. Mean Post. Median Post. Mode Post. SD MLE Exp. MLE SE
µ1 0.271 0.271 0.270 0.270 0.006 0.271 0.006
µ2 0.339 0.340 0.340 0.340 0.006 0.340 0.006
µ3 0.390 0.389 0.389 0.389 0.006 0.389 0.006
p1 0.333 0.367 0.341 0.305 0.208 0.337 0.155
p2 0.333 0.332 0.301 0.274 0.203 0.344 0.162
p3 0.333 0.300 0.268 0.244 0.199 0.319 0.171
φ 58.5 48.664 47.489 45.216 8.718 59.332 9.950
w 0.1158 0.066 0.069 0.095 0.031 0.152 0.050
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Third prior

φ ∼ Gamma(g2, g2), with k = 200000 and g2 = 0.0001. This is a very extreme
scenario: both the prior expectation and the prior variance are very large. This is a
vague prior, with a (little) mass peak in φ = k.

• Well-separated clusters:

Parameter True Post. Mean Post. Median Post. Mode Post. SD MLE Exp. MLE SE
µ1 0.333 0.334 0.334 0.333 0.015 0.334 0.015
µ2 0.333 0.335 0.335 0.335 0.015 0.335 0.015
µ3 0.333 0.331 0.331 0.331 0.015 0.331 0.015
p1 0.333 0.334 0.333 0.331 0.038 0.334 0.039
p2 0.333 0.337 0.337 0.334 0.039 0.337 0.039
p3 0.333 0.329 0.328 0.328 0.038 0.329 0.039
φ 47 53.583 53.479 53.274 4.122 47.824 3.827
w 0.3617 0.363 0.363 0.363 0.008 0.390 0.018

• Overlapped clusters:

Parameter True Post. Mean Post. Median Post. Mode Post. SD MLE Exp. MLE SE
µ1 0.271 0.271 0.271 0.270 0.006 0.271 0.006
µ2 0.339 0.340 0.340 0.340 0.006 0.340 0.006
µ3 0.390 0.389 0.389 0.389 0.006 0.389 0.006
p1 0.333 0.346 0.343 0.338 0.081 0.337 0.155
p2 0.333 0.336 0.332 0.324 0.083 0.344 0.162
p3 0.333 0.318 0.314 0.309 0.082 0.319 0.171
φ 58.5 77.339 77.265 80.071 8.870 59.332 9.950
w 0.1158 0.108 0.109 0.111 0.010 0.152 0.050
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8.2 EFD: Conditional expectation

In this section will be shown the conditional expectation E [S1|X4 = x4], varying
the value of x4. S1 is the 3-dimensional subcomposition originated by the first 3
elements of the 4-part compositions X = (X1, X2, X3, X4)ᵀ.


α = (2, 2, 2, 2)ᵀ

τ = (4, 4, 4, 4)ᵀ

p =
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Fig. 8.6: EFD Conditional Expectation - First Scenario.
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
α = (2, 10, 1, 6)ᵀ

τ = (10, 10, 10, 10)ᵀ

p =
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Fig. 8.7: EFD Conditional Expectation - Second Scenario.
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α = (2, 2, 2, 2)ᵀ
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Fig. 8.8: EFD Conditional Expectation - Third Scenario.
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
α = (2, 2, 2, 2)ᵀ

τ = (1, 4, 70, 3)ᵀ

p = (0.1, 0.5, 0.05, 0.35)ᵀ
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Fig. 8.9: EFD Conditional Expectation - Forth Scenario.
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Fig. 8.10: EFD Conditional Expectation - Fifth Scenario.
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Fig. 8.11: EFD Conditional Expectation - Sixth Scenario.
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
α = (2, 10, 1, 6)ᵀ

τ = (5, 5, 5, 3)ᵀ

p =
(

1
3 ,

1
3 ,

1
3 , 0
)ᵀ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x4

S
1

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
4

0.
6

0.
8

1.
0

x4

S
2

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x4

S
3

Fig. 8.12: EFD Conditional Expectation - Seventh Scenario.
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8.3 EFD: MLE performance simulation

The following parameter configurations have been investigated:

ID α1 α2 α3 τ1 τ2 τ3 p1 p2 p3 dSKL(f1, f2) dSKL(f1, f3) dSKL(f2, f3)
1 15 15 15 20 20 20 1/3 1/3 1/3 34.666 34.666 34.666
2 15 15 15 20 20 20 0.05 0.65 0.3 34.666 34.666 34.666
3 15 15 15 10 40 80 1/3 1/3 1/3 45.042 97.358 187.393
4 15 15 15 10 40 80 0.05 0.65 0.3 45.042 97.358 187.393
5 10 20 30 20 20 20 1/3 1/3 1/3 36.770 33.005 24.467
6 10 20 30 20 20 20 0.05 0.65 0.3 36.770 33.005 24.467
7 10 20 30 10 40 80 1/3 1/3 1/3 41.041 63.336 136.022
8 10 20 30 10 40 80 0.05 0.65 0.3 41.041 63.336 136.022
9 15 15 15 10 30 100 1/3 1/3 1/3 32.627 124.111 193.885
10 10 40 80 20 20 20 0.2 0.6 0.2 30.847 27.142 12.681
11 10 40 80 5 30 25 1/3 1/3 1/3 14.801 6.176 23.627
12 50 50 50 5 30 25 1/3 1/3 1/3 10.945 8.267 24.292
13 50 50 50 5 30 25 0.2 0.6 0.2 10.945 8.267 24.292
14 5 30 70 20 45 15 0.1 0.75 0.15 70.964 36.579 37.899
15 5 30 70 20 45 15 0.75 0.1 0.15 70.964 36.579 37.899
16 5 30 70 20 45 15 0.1 0.15 0.75 70.964 36.579 37.899
17 5 30 70 20 15 45 0.1 0.75 0.15 39.814 51.744 21.913
18 5 30 70 45 20 15 0.1 0.75 0.15 113.591 104.026 13.077
19 5 30 70 15 45 20 0.1 0.75 0.15 56.933 26.819 42.170
20 15 15 15 10 20 15 1/3 1/3 1/3 20.892 15.456 27.581
21 5 30 70 10 25 15 0.1 0.75 0.15 25.180 14.400 17.472

Tab. 8.8: Parameter configurations considered in the EFD’s simulation studies.
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• MLE Results ID = 1:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.333 0.333 15 15 15 20 20 20

MLE Mean 0.333 0.332 15.561 15.549 15.6 20.757 20.841 20.828
MLE sd 0.047 0.047 1.655 1.674 1.673 2.793 2.784 2.798

SE mean 0.047 0.047 1.618 1.617 1.623 2.744 2.753 2.749
arb 0.028 0.029 0.080 0.083 0.083 0.080 0.079 0.080

Coverage 0.951 0.952 0.946 0.943 0.942 0.944 0.947 0.951
Tab. 8.9: MLE Results for ID = 1.

• MLE Results ID = 2:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.05 0.65 15 15 15 20 20 20

MLE Mean 0.048 0.621 15.561 15.644 15.565 21.071 20.700 20.877
MLE sd 0.022 0.050 1.591 1.723 1.639 5.743 2.684 2.844

SE mean 0.021 0.048 1.581 1.734 1.622 5.214 2.600 2.846
arb 0.177 0.032 0.078 0.080 0.079 0.220 0.080 0.082

Coverage 0.862 0.902 0.953 0.956 0.951 0.941 0.948 0.947
Tab. 8.10: MLE Results for ID = 2.

• MLE Results ID = 3:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.333 0.333 15 15 15 10 40 80

MLE Mean 0.335 0.331 15.574 15.553 15.575 10.386 41.524 83.164
MLE sd 0.047 0.048 1.643 1.642 1.651 1.866 4.942 9.222

SE mean 0.047 0.047 1.608 1.605 1.608 1.749 4.808 9.115
arb 0.028 0.033 0.083 0.083 0.084 0.094 0.084 0.081

Coverage 0.948 0.951 0.945 0.949 0.948 0.943 0.954 0.953
Tab. 8.11: MLE Results for ID = 3.

• MLE Results ID = 4:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.05 0.65 15 15 15 10 40 80

MLE Mean 0.048 0.619 15.519 15.551 15.552 10.752 41.503 82.855
MLE sd 0.021 0.047 1.634 1.781 1.639 4.107 4.716 9.754

SE mean 0.021 0.048 1.565 1.708 1.609 3.722 4.597 9.242
arb 0.173 0.034 0.089 0.090 0.081 0.231 0.083 0.094

Coverage 0.870 0.909 0.949 0.937 0.949 0.945 0.958 0.936
Tab. 8.12: MLE Results for ID = 4.
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• MLE Results ID = 5:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.333 0.333 10 20 30 20 20 20

MLE Mean 0.336 0.330 10.420 20.806 31.269 20.855 20.899 20.850
MLE sd 0.047 0.048 1.131 2.210 3.399 2.574 3.028 3.436

SE mean 0.047 0.047 1.095 2.168 3.255 2.525 2.889 3.336
arb 0.030 0.031 0.084 0.080 0.088 0.081 0.087 0.078

Coverage 0.953 0.946 0.954 0.947 0.941 0.952 0.944 0.947
Tab. 8.13: MLE Results for ID = 5.

• MLE Results ID = 6:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.05 0.65 10 20 30 20 20 20

MLE Mean 0.050 0.618 10.419 20.949 31.314 20.919 20.753 21.085
MLE sd 0.022 0.049 1.057 2.351 3.208 4.614 2.850 4.029

SE mean 0.022 0.049 1.071 2.343 3.293 4.271 2.899 3.765
arb 0.173 0.022 0.078 0.081 0.080 0.197 0.073 0.098

Coverage 0.882 0.907 0.950 0.951 0.961 0.957 0.965 0.931
Tab. 8.14: MLE Results for ID = 6.

• MLE Results ID = 7:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.333 0.333 10 20 30 10 40 80

MLE Mean 0.334 0.336 10.395 20.762 31.142 10.393 41.530 83.101
MLE sd 0.047 0.046 1.130 2.208 3.313 1.549 5.022 9.838

SE mean 0.047 0.047 1.076 2.133 3.194 1.488 4.837 9.431
arb 0.029 0.035 0.091 0.086 0.086 0.088 0.087 0.089

Coverage 0.955 0.966 0.940 0.941 0.937 0.937 0.946 0.950
Tab. 8.15: MLE Results for ID = 7.

• MLE Results ID = 8:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.05 0.65 10 20 30 10 40 80

MLE Mean 0.048 0.619 10.300 20.629 30.966 10.664 41.303 82.738
MLE sd 0.021 0.048 1.062 2.322 3.306 3.281 4.943 10.389

SE mean 0.021 0.048 1.039 2.268 3.198 2.951 4.780 9.927
arb 0.175 0.022 0.082 0.086 0.085 0.228 0.084 0.095

Coverage 0.867 0.915 0.950 0.944 0.949 0.941 0.951 0.951
Tab. 8.16: MLE Results for ID = 8.
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• MLE Results ID = 9:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.333 0.333 15 15 15 10 30 100

MLE Mean 0.333 0.336 15.542 15.554 15.572 10.384 31.254 103.673
MLE sd 0.046 0.046 1.649 1.592 1.650 1.743 3.992 11.289

SE mean 0.047 0.047 1.609 1.610 1.613 1.761 3.776 11.292
arb 0.036 0.038 0.083 0.077 0.081 0.075 0.092 0.080

Coverage 0.949 0.961 0.943 0.956 0.941 0.961 0.948 0.953
Tab. 8.17: MLE Results for ID = 9.

• MLE Results ID = 10:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.2 0.6 10 40 80 20 20 20

MLE Mean 0.200 0.598 10.404 41.719 83.406 20.929 20.885 20.843
MLE sd 0.041 0.053 1.120 4.624 9.091 2.736 3.416 6.445

SE mean 0.040 0.053 1.115 4.565 8.926 2.701 3.402 6.503
arb 0.068 0.051 0.079 0.081 0.090 0.088 0.127 0.107

Coverage 0.933 0.944 0.954 0.945 0.956 0.955 0.960 0.948
Tab. 8.18: MLE Results for ID = 10.

• MLE Results ID = 11:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.333 0.333 10 40 80 5 30 25

MLE Mean 0.336 0.331 10.491 41.982 83.890 5.388 31.506 26.901
MLE sd 0.073 0.051 1.259 5.166 10.007 1.461 4.545 6.742

SE mean 0.07 0.05 1.228 5.006 9.834 1.376 4.500 6.491
arb 0.168 0.048 0.083 0.080 0.078 0.135 0.075 0.105

Coverage 0.919 0.936 0.939 0.942 0.950 0.935 0.947 0.931
Tab. 8.19: MLE Results for ID = 11.

• MLE Results ID = 12:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.333 0.333 50 50 50 5 30 25

MLE Mean 0.330 0.335 52.293 52.308 52.224 5.419 31.377 26.394
MLE sd 0.064 0.053 6.134 6.254 6.141 2.802 4.769 4.459

SE mean 0.065 0.053 6.050 6.117 6.081 2.896 4.696 4.377
arb 0.116 0.060 0.077 0.078 0.076 0.105 0.075 0.081

Coverage 0.932 0.940 0.940 0.942 0.942 0.964 0.951 0.937
Tab. 8.20: MLE Results for ID = 12.
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• MLE Results ID = 13:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.2 0.6 50 50 50 5 30 25

MLE Mean 0.201 0.595 52.496 52.643 52.555 5.808 31.499 26.607
MLE sd 0.058 0.057 6.091 6.458 6.211 3.814 4.539 5.080

SE mean 0.056 0.054 5.900 6.155 5.907 3.750 4.437 4.966
arb 0.166 0.076 0.085 0.088 0.088 0.198 0.087 0.112

Coverage 0.922 0.933 0.946 0.943 0.937 0.962 0.941 0.930
Tab. 8.21: MLE Results for ID = 13.

• MLE Results ID = 14:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.1 0.75 5 30 70 20 45 15

MLE Mean 0.099 0.752 5.186 31.225 72.773 20.843 46.683 15.981
MLE sd 0.029 0.044 0.554 3.598 7.662 2.911 5.596 6.723

SE mean 0.030 0.043 0.529 3.524 7.419 2.859 5.427 6.842
arb 0.109 0.049 0.089 0.086 0.085 0.100 0.084 0.099

Coverage 0.932 0.958 0.944 0.951 0.948 0.955 0.951 0.955
Tab. 8.22: MLE Results for ID = 14.

• MLE Results ID = 15:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.75 0.1 5 30 70 20 45 15

MLE Mean 0.752 0.100 5.205 31.247 72.925 20.863 47.031 15.571
MLE sd 0.043 0.030 0.671 3.113 7.290 2.210 6.224 5.511

SE mean 0.043 0.030 0.664 3.161 7.388 2.256 6.385 5.364
arb 0.092 0.079 0.078 0.047 0.108 0.079 0.098 0.106

Coverage 0.950 0.935 0.957 0.955 0.949 0.951 0.967 0.950
Tab. 8.23: MLE Results for ID = 15.

• MLE Results ID = 16:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.1 0.15 5 30 70 20 45 15

MLE Mean 0.101 0.149 5.174 31.084 72.827 20.889 46.997 15.217
MLE sd 0.029 0.035 0.531 3.203 8.159 3.140 6.815 5.270

SE mean 0.030 0.035 0.530 3.188 8.224 2.977 6.987 5.168
arb 0.114 0.082 0.080 0.079 0.084 0.113 0.098 0.084

Coverage 0.941 0.940 0.948 0.944 0.950 0.943 0.960 0.953
Tab. 8.24: MLE Results for ID = 16.
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• MLE Results ID = 17:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.1 0.75 5 30 70 20 15 45

MLE Mean 0.100 0.749 5.225 31.440 73.180 20.996 15.628 47.191
MLE sd 0.030 0.044 0.540 3.654 7.709 3.178 2.981 10.636

SE mean 0.030 0.044 0.543 3.611 7.622 2.909 2.821 10.171
arb 0.108 0.050 0.080 0.087 0.079 0.127 0.092 0.111

Coverage 0.935 0.933 0.952 0.952 0.951 0.949 0.941 0.948
Tab. 8.25: MLE Results for ID = 17.

• MLE Results ID = 18:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.1 0.75 5 30 70 45 20 15

MLE Mean 0.099 0.747 5.205 31.374 72.992 47.142 20.813 16.354
MLE sd 0.030 0.048 0.585 3.932 8.185 6.185 3.480 8.429

SE mean 0.029 0.048 0.554 3.698 7.840 5.848 3.363 7.886
arb 0.107 0.079 0.092 0.102 0.090 0.106 0.096 0.142

Coverage 0.928 0.944 0.942 0.943 0.939 0.944 0.938 0.936
Tab. 8.26: MLE Results for ID = 18.

• MLE Results ID = 19:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.1 0.75 5 30 70 15 45 20

MLE Mean 0.100 0.751 5.156 31.097 72.474 15.601 46.520 20.921
MLE sd 0.031 0.042 0.525 3.462 7.403 2.433 5.492 7.087

SE mean 0.030 0.043 0.528 3.530 7.419 2.354 5.421 7.318
arb 0.111 0.053 0.080 0.087 0.080 0.117 0.082 0.104

Coverage 0.922 0.955 0.953 0.961 0.958 0.955 0.951 0.967
Tab. 8.27: MLE Results for ID = 19.

• MLE Results ID = 20:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.333 0.333 15 15 15 10 20 15

MLE Mean 0.333 0.333 15.626 15.624 15.626 10.408 20.935 15.700
MLE sd 0.050 0.047 1.702 1.695 1.718 1.991 2.914 2.454

SE mean 0.050 0.048 1.691 1.700 1.694 1.941 2.876 2.411
arb 0.044 0.038 0.078 0.075 0.079 0.078 0.077 0.076

Coverage 0.950 0.944 0.958 0.949 0.943 0.952 0.950 0.95
Tab. 8.28: MLE Results for ID = 20.
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• MLE Results ID = 21:

p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.1 0.75 5 30 70 10 25 15

MLE Mean 0.100 0.750 5.212 31.598 73.177 10.531 25.942 16.764
MLE sd 0.031 0.045 0.582 4.021 8.177 2.193 3.820 8.670

SE mean 0.032 0.045 0.555 3.827 7.878 2.048 3.761 8.232
arb 0.132 0.059 0.090 0.098 0.086 0.164 0.086 0.147

Coverage 0.936 0.936 0.943 0.940 0.945 0.928 0.957 0.941
Tab. 8.29: MLE Results for ID = 21.

8.4 Proof of Theorem 1

Theorem (Identifiability of the DFD model). Let X ∼ DFD(θ), θ = (α, τ,P)ᵀ and
X′ ∼ DFD(θ′), θ′ = (α′, τ ′,P′)ᵀ. Then, if P and P′ are not diagonal matricies, X ∼ X′

if and only if θ = θ′.

Proof. It is obvious that if θ = θ′ then X ∼ X′. Focusing on the converse, if X ∼ X′,
then the marginals have the same distribution: Xk ∼ X ′k, k = 1, . . . , D. Thanks to
the closure under amalgamation property, the probability density function of Xk can
be obtained as:

gk(x; θ) = xαk−1(1− x)α+−αk−1 ·

pk,k ak(α, τ)x2τ +

+

∑
i 6=k

∑
j 6=k

pi,j

 bk(α, τ)(1− x)2τ + 2

∑
i 6=k

pi,k

 ck(α, τ) · [xτ (1− x)τ ]

 ,
(8.1)

where x ∈ (0, 1) and:

• ak(α, τ) = Γ(α+ + 2τ)
Γ(αk + 2τ)Γ(α+ − αk)

• bk(α, τ) = Γ(α+ + 2τ)
Γ(αk)Γ(α+ − αk + 2τ)

• ck(α, τ) = Γ(α+ + 2τ)
Γ(αk + τ)Γ(α+ − αk + τ)
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If Xk ∼ X ′k, then gk(x; θ) = gk(x; θ′) a.s., k = 1, . . . , D. As gk(x; θ) and gk(x; θ′) are
two continuous density functions on the interval (0, 1), the previous equality must

hold identically for any x ∈ (0, 1). In particular, lim
x→0+

gx(x; θ)
xαk−1 = lim

x→0+

gx(x; θ′)
xαk−1 .

lim
x→0+

gx(x; θ)
xαk−1 =

∑
i 6=k

∑
j 6=k

pi,j

 bk(α, τ)

lim
x→0+

gx(x; θ′)
xαk−1 =

(
lim
x→0+

xα
′
k−1

xαk−1

)∑
i 6=k

∑
j 6=k

p′i,j

 bk(α′, τ ′)

In order to satisfy the equality, the quantity

(
lim
x→0+

xα
′
k−1

xαk−1

)
must be finite and

positive.

(
lim
x→0+

xα
′
k−1

xαk−1

)
=


0, if α′k > αk

1, if α′k = αk

+∞, if α′k < αk

Then, 
αk = α′k ∀ k ⇒ α = α′∑
i 6=k

∑
j 6=k

pi,j

 bk(α, τ) =

∑
i 6=k

∑
j 6=k

p′i,j

 bk(α′, τ ′) (8.2)

The equality
gk(x; θ)
gk(x; θ′) = 1 can be written for any x ∈ (0, 1) with α = α′ and (8.2):

pk,k ak(α, τ)x2τ +

∑
i 6=k

∑
j 6=k

pi,j

 bk(α, τ)(1− x)2τ + 2

∑
i 6=k

pi,k

 ck(α, τ) · [xτ (1− x)τ ]

p′k,k ak(α, τ ′)x2τ ′ +

∑
i 6=k

∑
j 6=k

pi,j

 bk(α, τ)(1− x)2τ ′ + 2

∑
i 6=k

p′i,k

 ck(α, τ ′) · [xτ ′(1− x)τ ′
] = 1

The lim
x→1−

of the above fraction must be equal to 1 for the a.s. equality. It follows

that:
pk,k ak(α, τ) = p′k,k ak(α, τ ′) (8.3)

The equality
gk(x; θ)
gk(x; θ′) = 1 for any x ∈ (0, 1) now appears like:
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pk,k ak(α, τ)x2τ +

∑
i 6=k

∑
j 6=k

pi,j

 bk(α, τ)(1− x)2τ + 2

∑
i 6=k

pi,k

 ck(α, τ) [xτ (1− x)τ ]

pk,k ak(α, τ)x2τ ′ +

∑
i 6=k

∑
j 6=k

pi,j

 bk(α, τ)(1− x)2τ ′ + 2

∑
i 6=k

p′i,k

 ck(α, τ ′) [xτ ′(1− x)τ ′
] = 1

Deriving both the numerator and the denominator with respect to x and dividing
them:

2τpk,k ak(α, τ)x2τ−1 − 2τ

∑
i 6=k

∑
j 6=k

pi,j

 bk(α, τ)(1− x)2τ−1 + 2

∑
i 6=k

pi,k

 ck(α, τ)τxτ (1− x)τ
[
x−1 − (1− x)−1

]

2τ ′pk,k ak(α, τ)x2τ ′−1 − 2τ ′
∑
i 6=k

∑
j 6=k

pi,j

 bk(α, τ)(1− x)2τ ′−1 + 2

∑
i 6=k

p′i,k

 ck(α, τ ′)τ ′xτ ′(1− x)τ ′
[
x−1 − (1− x)−1

] = 1

(8.4)

Since the above equality must hold for any x ∈ (0, 1), Equation (8.4) can be evaluated
in x = 0.5:

2τ0.52τ−1

2τ ′0.52τ ′−1 = 1 =⇒ τ

4τ = τ ′

4τ ′ . (8.5)

This means that if X ∼ X′ with τ 6= τ ′, then τ and τ ′ must satify the equality (8.5).
Studying the function f(τ) = τ

4τ , with τ > 0, one can conclude that:

• f(τ) = τ

4τ > 0⇐⇒ τ > 0

• lim
τ→0+

τ

4τ = 0; lim
τ→+∞

τ

4τ = 0

• f ′(τ) = ∂

∂τ

τ

4τ = 1− τ · ln 4
4τ ≥ 0⇐⇒ τ ≤ 1

ln 4

• f ′′(τ) = ∂

∂τ
f ′(τ) = ln 4 (τ ln 4− 2)

4τ

• f ′′
( 1

ln 4

)
= − ln 4

4
1

ln 4
< 0

Then τ = 1
ln 4 is the maximum of f(τ); in Figure (8.13) it is possible to see its plot.

It is easy to see that the same value of τ
4τ can be reached at most with two different

values of τ .
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τ

τ
4τ

Fig. 8.13: Plot of τ
4τ .

Thus, two different scenarios arise: one with τ = τ ′ and one with τ 6= τ ′. If τ = τ ′,
one can show, from equations (8.2) and (8.3), that the equality of the distributions
is possibile only if P = P′ and this means that θ = θ′.

The case τ 6= τ ′ needs to be studied. Looking at equation (8.4), lim
x→0+

of both sides

can be computed, considering if τ�∈
{

1, 1
2

}
and τ ′�∈

{
1, 1

2

}
:

lim
x→0+

(8.4) =

−2τ

∑
i 6=k

∑
j 6=k

pi,j

 bk(α, τ)

−2τ ′
∑
i 6=k

∑
j 6=k

pi,j

 bk(α, τ)

= 1 =⇒ τ = τ ′

It is interesting to note that τ = 1 and τ ′ = 1
2 are "connected" with respect to

constraint (8.5):
τ

4τ −
τ ′

4τ ′ = 1
4 −

1
2
√

4
= 0. This means that studying only this

scenario is enough: the case where only one between τ and τ ′ belongs to
{

1, 1
2

}
can be avoided.

Evaluating (8.4) with τ = 1 and τ ′ = 1
2 brings to the equality:

2pk,k ak(α, 1)x1 − 2

∑
i 6=k

∑
j 6=k

pi,j

 bk(α, 1)(1− x)1 + 2

∑
i 6=k

pi,k

 ck(α, 1) [1− 2x]

pk,k ak(α, 1)−

∑
i 6=k

∑
j 6=k

pi,j

 bk(α, 1) + 2

∑
i 6=k

p′i,k

 ck(α, 0.5)
[

1
2

(1− x
x

)0.5
− 1

2

(
x

1− x

)0.5
] = 1

(8.6)

lim
x→0+

Num = −2

∑
i 6=k

∑
j 6=k

pi,j

 bk(α, 1) + 2

∑
i 6=k

pi,k

 ck(α, 1) (8.7)
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lim
x→0+

Den = pk,k ak(α, 1)−

∑
i 6=k

∑
j 6=k

pi,j

 bk(α, 1)+

+ 2

∑
i 6=k

p′i,k

 ck(α, 0.5) · lim
x→0+

[
1
2

(1− x
x

)0.5
− 1

2

(
x

1− x

)0.5
] (8.8)

Note that lim
x→0+

[
1
2

(1− x
x

)0.5
− 1

2

(
x

1− x

)0.5
]

= +∞. Since lim
x→0+

Num is finite and

it must be equal to lim
x→0+

Den,

∑
i 6=k

p′i,k

 must be equal to 0 for any k = 1, . . . , D. It

follows that P′ must be a diagonal matrix.

Combining these conclusions with constraint (8.3) brings that:

pk,k ak(α, 1) = p′k,k ak(α, 0.5) =⇒ p′k,k = pk,k
α+ + 1
αk + 1 ,

where ak(α, 1) = (α+ + 1)α+Γ(α+)
(αk + 1)αkΓ(αk)Γ(α+ − αk)

and ak(α, 0.5) = α+Γ(α+)
αkΓ(αk)Γ(α+ − αk)

.

Finally, if P′ is diagonal, then:

D∑
k=1

p′k,k = 1 =⇒
D∑
k=1

pk,k
α+ + 1
αk + 1 = 1 =⇒

D∑
k=1

pk,k
αk + 1 = 1

α+ + 1 .

(8.9)

It is easy to see that pk,k = αk(αk + 1)
α+(α+ + 1) satisfies this constraint. Showing that this

is the only pk,k satisfying (8.9) is much more complicated and in order to have
an identifiable model, it is sufficient to exclude every diagonal matrix P from the
parametric space.
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