
SCUOLA DI DOTTORATO
UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

	
Department	of	

	
Informatica	Sistemistica	e	Comunicazione	

	
	

PhD	program:	Computer	Science	 	 	 	 	 	 	 	 Cycle	XXXI	
	
	
	
	
	
	
	

FIELD TESTING OF SOFTWARE
APPLICATIONS

	
	
	
	
	

	
	

Luca	Gazzola	

Registration	number:	769189		
	
	
	
	
	
	
	

Tutor:					 Alberto	Leporati					

Supervisor:				 Leonardo	Mariani	
	
	

Coordinator:				Stefania	Bandini	
	
	

	 	 	 	 	 	 	 	 ACADEMIC	YEAR		2018/2019	
	

2

Abstract

When interacting with their software systems, users may have to deal with
problems like crashes, failures, and program instability. Faulty software
running in the field is not only the consequence of ineffective in-house ver-
ification and validation techniques, but it is also due to the complexity and
diversity of the interactions between an application and its environment.
Many of these interactions can be hardly predicted at testing time, and
even when they could be predicted, often there are so many cases to be
tested that they cannot be all feasibly addressed before the software is re-
leased.

Field testing aims to tackle the problem of applications failing in the
field by moving the testing phase directly in the field environment. This
makes it possible to exploit different scenarios that would otherwise be
difficult to capture with in-house testing.

In this Ph.D. thesis we explore the area of software field testing, we
present a study that characterizes the problem of applications failing in
the field, a client-server architecture that can be exploited to organize and
control the field testing process and a testing approach that exploits the
field itself as testbed for running the test cases. The presented approach is
empirically evaluated on a popular dataset of software faults demonstrat-
ing that 35% of the faults that were not discovered in-house could have
been revealed with field testing.

3

4

Contents

1 Introduction 13

2 The Field Testing Process 17
2.1 Background . 17

2.1.1 Failure Context . 18
2.2 In-house Testing and its Limits 19
2.3 The Vision of a Field Testing Process 21

2.3.1 Challenges . 21

3 Field Faults Studies and Field Testing Techniques 25
3.1 Studies About Software Faults 25

3.1.1 Fault Types Distribution and Localization 25
3.1.2 Fault Distribution Across Code 26
3.1.3 Fault Root Cause . 27
3.1.4 Fault-Failure Relationship 27
3.1.5 Estimation of remaining faults after testing 28
3.1.6 Discussion . 28

3.2 Field Testing . 28
3.2.1 In-vivo Testing . 29
3.2.2 Ex-vivo Testing . 33

4 A Study About Field Failures 35
4.1 Subjects . 36
4.2 Experimental Procedure . 36
4.3 Results . 40
4.4 Threats to Validity . 51
4.5 Findings . 51
4.6 Discussion . 53

5

CONTENTS

5 An Architecture for Field Testing 55
5.1 Overview . 55
5.2 Client-side Components . 56
5.3 Server-side Components . 57
5.4 Components Interaction . 57
5.5 Implementation of the Architecture 62
5.6 Discussion . 64

6 An Approach to Field Testing 67
6.1 Aspect-Oriented Programming 67
6.2 Moving Test Cases to the Field 69

6.2.1 General Idea . 69
6.2.2 Field Testing Structure 70
6.2.3 How to Write Field Tests 71

6.3 Discussion . 75

7 Empirical Evaluation 77
7.1 Subjects of the Study . 77
7.2 Experimental Procedure . 78
7.3 Results . 79
7.4 Qualitative Analysis . 81

7.4.1 Null Pointer Failure . 82
7.4.2 Value Failure . 85

7.5 Threats to Validity . 88

8 Conclusion 89

6

List of Figures

2.1 General production environment 18

4.1 Reasons why software applications fail in the field 45
4.2 Field elements involved in Field Failures 48
4.3 Field Failure Types . 48
4.4 Field Failure Detectability . 50
4.5 Number of steps required to trigger a field failure 50

5.1 High-level overview of the framework 56
5.2 Sequence diagram illustrating how the framework components

interact when discovering new configurations 58
5.3 Sequence diagram illustrating how the framework components

interact when testing a new configuration 60
5.4 Sequence diagram illustrating how the framework components

interact when testing a new configuration 61
5.5 Sequence diagram illustrating how the framework components

interact when querying the server for changes in the model
and configurations . 63

6.1 Our field testing approach . 70

7.1 failure types observed . 79

7

LIST OF FIGURES

8

List of Tables

3.1 In-vivo techniques attributes 30

4.1 Failure Types . 37
4.2 Failure Detectability . 39

7.1 Failure and Fault types revealed 80

9

LIST OF TABLES

10

Listings

6.1 Simple method that divides a by b . 68
6.2 Join-point for the calls to divide(double a, double b) 68
6.3 Advice that checks the divisor value, and throws exception if it is zero 68
6.4 pointcut . 72
6.5 advice that captures calls to DatasetUtilities.iterateDomainBounds

and runs the corresponding test case 72
6.6 pseudo-code for a field test case . 73
6.7 test case for DatasetUtilities.iterateDomainBounds using the captured object 73
6.8 DatasetUtilitiesTest.testFindDomainBounds() 74
6.9 DatasetUtilitiesTest.createXYDataset1() 74
6.10 XYSeriesTests.testAddOrUpdate3() 75
6.11 XYSeriesTests.testAddOrUpdate3() with relaxed assertions 75
7.1 DatasetUtilitiesTests.testBug2849731_2() 82
7.2 DatasetUtilitiesTests.testFindDomainBounds() 82
7.3 DatasetUtilitiesTests.createXYDataset1() 83
7.4 IterateDomainBoundsTester . 84
7.5 DatasetUtilitiesTestField.testFindDomainBounds() 84
7.6 UsageJFree2.trigger() . 85
7.7 StringUtilsEqualsIndexOfTest.testEquals() 85
7.8 StringUtilsEqualsIndexOfTest.testEqualsOnStrings() 86
7.9 StringUtilsTestField.testCustomCharSequence() 86
7.10 UsageLang14.trigger() . 86
7.11 StringUtilsTester . 87

11

LISTINGS

12

Chapter 1

Introduction

Achieving high quality is mandatory in modern software applications, but,
despite intensive in-house testing sessions, organizations still struggle with
releasing dependable software. Faulty applications running in the field
are the source of several problems, including higher maintenance costs, re-
duced customers satisfaction, and ultimately loss of reputation and profits.

Studying the reason why several faults are not detected with in-house
testing is of crucial importance to mitigate their occurrence in the field. Al-
though the faults present in the field could be the result of a poor in-house
testing process, there are many faults that are objectively hard to detect
in house, even using state of the art methodologies and techniques. This
intuition has been confirmed by an analysis that we performed on multiple
real software failures experienced in the field by the end-users. Our analy-
sis shows that a significant proportion of the faults that cause field failures
have specific characteristics that make them extremely hard to be detected
in house. In particular, out of all the failures that we analyzed, approxi-
mately only 30% of them could be attributed to bad testing practices, while
the remaining 70% should be attributed to an interaction between the soft-
ware under test and the field that is objectively difficult or even impossible
to test in-house.

The problem of software failing in the field can be tackled by trying to
improve the in-house testing phase or by moving part of the testing infras-
tructure to the field, exploiting it as testbed for running the many test cases
that cannot be executed in house, because of both the limited resources
available for testing and the challenge of recreating in house the same en-

13

Introduction

vironment that is available in the field. There are several important ben-
efits related to the capability of exploiting the field as part of the testing
process. If the application to be tested is popular enough to be installed in
many devices and computers (e.g., hundreds or thousands), these many in-
stances would offer unique opportunities in terms of range of situations and
configurations that could be tested in parallel. Moreover, regardless of the
number of installations of a same application that are available, testing an
application in the field gives the unique opportunity of testing the software
when used in its real environment, with real data. Finally, test cases could
be executed perpetually, not only to test an application that has been just
installed, but also to test the software while the environment, the users,
and the data evolve. Successfully deploying the capability of executing test
cases while the software is running in the field, namely the capability of do-
ing field testing, even enables the possibility to identify potential failures
before they are experienced by the end-users.

Testing applications in the field raises new issues that need to be ad-
dressed. Applications that support field testing need a properly designed
test infrastructure that runs field tests systematically, according to some
criteria; the tests must not cause any side effects, or degrade the perfor-
mance of the software under test. The oracle problem, already present
when testing software in-house, is exacerbated when testing software in
the field due to lack of control over the test inputs and thus the impossibil-
ity to precisely assert the outcome of the test cases. These problems make
the development of an effective and efficient approach extremely challeng-
ing.

In this Ph.D. thesis we present a client-server architecture that can be
used to deploy and orchestrate testing capabilities in the field. The client-
server approach allows for the distribution of field testing capabilities on
multiple instances of the same application, and introduces the possibility
to timely identify interesting field configurations that are worth testing.
The client component, deployed with the application, recognizes when new
field configurations are observed, and activates the field testing process ac-
cordingly. The server component keeps the global knowledge about the con-
figurations that have been tested and provides traditional in-house testing
capabilities when field testing cannot be performed.

We also present an approach to write test cases that can be executed
in the field. Field test cases take inputs from the field instead of creating

14

new ones, and exploit them to validate the software with stimuli not tested
before. We empirically evaluated the proposed approach on 91 real faults
that were revealed in the field, and assessed that field tests could have re-
vealed 32 (35%) of these faults, indicating an interesting complementarity
with respect to traditional in-house testing.

The contributions of this Ph.D. thesis are: (1) a study that characterizes
field faults and consequent field failures, (2) a client-server architecture
that allows to deploy and orchestrate testing capabilities in the field and
(3) an approach to write test cases that can be executed in the field.

15

Introduction

16

Chapter 2

The Field Testing Process

In this chapter we introduce and discuss the topic of field testing. In Sec-
tion 2.1 we introduce the terminology that we use throughout the thesis,
in Section 2.2 we explain the limits of an in-house testing process and Sec-
tion 2.3 presents the challenges involved in designing a field testing ap-
proach.

2.1 Background

In this Section, we introduce the key concepts that are relevant in our work.

Software Fault: A software fault is a flaw in a computer application
that may cause the application itself to behave unintendedly.

Software Failure: A software failure is a malfunction that makes an
application behavior deviate from its specification.

Test Input: Test input is used to stimulate a software application to
observe its behavior during testing.

Oracle: An oracle specifies how a software application must behave
given a specific test input.

Field Failure: A field failure is a software failure experienced in a
production environment.

Field Fault: A field fault is a fault that is present in a software program
deployed and running in a production environment.

17

The Field Testing Process

Software in the field (SIF)

pluginsresources networkdrivers &
services

operating
system

Fi
el

d
OutputInput

Figure 2.1: General production environment

Field faults may or may not cause field failures, depending on the exe-
cution conditions in the field.

In-house Faults and Failures: The term in-house refers to the devel-
opment environment. In-house failures indicate failures that occur when
testing the software system in the development environment and in-house
faults indicate the causes of the failures exposed during testing.

Distinguishing between faults that survive the testing due to inade-
quate quality processes and faults that are inherently hard to detect is
important to devise verification and validation strategies. We capture the
different nature of faults with the new concept of field-intrinsic fault.

Field-intrinsic Fault: A field-intrinsic fault is a field fault that is in-
herently hard to detect in-house, either because impossible to activate in-
house or because depending on unknown or uncountable many conditions.

2.1.1 Failure Context

Figure 2.1 shows the different elements that comprise a production envi-
ronment and that play a key role in field-intrinsic faults. The software
in the field (SIF) represents a software application or a software system
running in the field. The SIF receives inputs and produces outputs. The
SIF receives the inputs in the form of data and stimuli from both the SIF
users and other systems interacting with the SIF. The SIF outputs might

18

2.2 In-house Testing and its Limits

be either visualized for the users or dispatched to other systems. While
executing, the SIF may interact with a field that includes several entities
that are not under the control of the SIF: multiple types of resources, such
as files and databases, which might be accessed by the SIF during compu-
tations, and third-party components that provide services to the SIF, such
as plugins that extend the capabilities of the SIF with additional features,
drivers & services that provide a range of services to the SIF, and the oper-
ating system that defines the basic runtime environment of the SIF. Finally,
the SIF may communicate with other applications and services using the
network.

The role of the environment in field failures leads to the concept of fail-
ure context:

Failure Context: A failure context is the execution context of a failure,
that is, the specific state that the elements in the field must have to trig-
ger the failure. For instance, being the operating system part of the SIF
failure context, a failure might only trigger when the SIF runs on a specific
operating system version.

2.2 In-house Testing and its Limits

Software testing [51] is the most common process used to assess the quality
of software, it involves stimulating software applications with input data
and observing how the application reacts, checking that the behavior is the
expected one. Testing is typically performed as part of the software de-
velopment process, before the application is released. We call this activity
in-house testing. We use this terminology to differentiate it from field test-
ing, which is done after the application is released in its operational envi-
ronment (the field). In-house testing has its advantages over field testing:
mainly developers and tester have a greater control over the application
and they do not need to worry of any interaction of the testing process with
the regular application usage. However there are also disadvantages:

• Unknown scenarios: modern testing techniques allow the simulation
of a great deal of different use cases for software applications, but
there still are scenarios that are unknown or impossible to test in-
house. It might be impossible to test a specific scenario either because

19

The Field Testing Process

the cost would be too high, or because the testing would rely on the oc-
currence of unpredictable natural events. An example of the first case
is the testing of a mobile communication software on a full fledged mo-
bile network. If the test objective is assessing the performance of the
network under heavy load for example, the mobile operator cannot
risk deteriorating the network performance, hence it will rely on sim-
ulations. In the second case think of an emergency broadcast in case
of a earthquake, an event impossible (and not advisable) to replicate
on a large scale. It is reasonable to assume that the testing process of
an application also consists of observing how the application works in
differently configured environments. However regardless of the thor-
oughness of this testing phase, there will always be configurations
that are unknown for the application at a certain time (think, for ex-
ample, of new device hardware or operating systems released after
the application)

• Combinatorial explosion of application parameters: previously we pointed
out that there might be configurations that are unknown at the test-
ing time, but even the known configurations number might be too
great to extensively test (think of all the possible combinations of op-
erating system versions, drivers, specific hardware and so on).

If we look at the two main disadvantages of in-house testing that we
pointed out, we can also understand how the field testing can be exploited
to complement the in-house testing phase, mitigating such problems:

• Unknown scenarios: a field testing infrastructure could potentially
make it possible to test irreproducible or hard to simulate scenarios
as they happen, without the need to re-create them in an in-house en-
vironment. Also, field testing might allow to timely observe how the
application reacts to previously unknown configuration (e.g., recently
released hardware or software that interacts with the application it-
self).

• Combinatorial explosion of configurations: if software applications
are released with a field testing infrastructure, the natural hetero-
geneity of the field can be exploited to test the application of many
different configurations, without having to simulate them in-house.
This can be greatly beneficial, for example in the context of mobile

20

2.3 The Vision of a Field Testing Process

android application: it has been calculated that as of 2015 there were
more than 24 thousand different android devices [1], it is clearly un-
feasible to test and application on all of them exhaustively.

2.3 The Vision of a Field Testing Process

In a field testing process the end-user environment could be exploited as
testbed for running the many test cases that cannot be executed in house,
because of both the limited resources available for testing and the chal-
lenges we explained above.

The field testing process offers the advantage of testing software in its
target environment, with real data. Test cases could be executed perpetu-
ally to check how changes in the field impact on the application under test,
possibly identifying potential failures before they are experienced by the
end-users. Unfortunately, this field testing process brings forth a number
of challenges that we explore in the next section.

2.3.1 Challenges

Field testing is inherently different from traditional in-house testing and
poses a new set of challenges, that can be divided into two groups: the
ones about the test strategy, that is, when and how to test the software in
the field, and the ones about the non-intrusiveness of the testing process,
that is, how to run the test cases without affecting the user data and user
processes, with negligible impact on the user experience.

Test Strategy

We identified four key elements that should be part of a well-defined test
strategy.

Test obligation. The test obligation defines which behavior should be
tested in the field. Since field testing is executed after in-house testing, field
testing should focus on complementary aspects, that is, on those cases that
have not been tested in house, or, because of the combinatorial explosion
problem, have not been tested thoroughly. Moreover, field testing should
target those functionalities that cannot be effectively and efficiently tested
in house, such as, functionalities that depend on field entities.

21

The Field Testing Process

Test opportunity. The test opportunity defines when the software appli-
cation running in the field should be tested. When testing is performed in
house, the testing procedures are usually started in accordance with the
development activities (e.g., a change in the source code). The activation
of testing procedures for software running in the field should be based on
different aspects. In particular we identified three potential testing op-
portunities. The first one is the application under test being in a specific
state, which could be recognized as relevant for testing. Another oppor-
tunity is a change in software configuration: applications can be usually
configured with a high number of parameters, a new combination of pa-
rameters observed can be the trigger for a field testing procedure. Similar
to the previous opportunity is the change in the environment configuration:
applications can typically run in different environments, which can be con-
figured in different ways, a new environment configuration can hence be an
interesting opportunity to test the application.

Lastly, we have to address the problem of available resources, which
should be sufficient to run the test cases without impacting the user expe-
rience.

Test generation strategy. The test generation strategy defines how to ob-
tain the test cases that should be executed in the field. We foresee two main
classes of strategies: static and dynamic. Static test generation strategies
consist of implementing and generating in house the test suites specifically
designed to cover potentially interesting situations in the field. In this case
the test suite would not change, unless new test cases are supplied from
the developers, and the test cases that must be executed would be selected
dynamically based on the state of the execution. Dynamic test generation
strategies should instead generate or update test cases directly in the field.
This can be done automatically, for example by mutating the available test
cases or even producing new tests from scratch according to specific criteria.
Dynamic test generation in the field can however be problematic because of
potential overhead issues, and because the test obligation cannot be defined
as clearly as with the static approach.

Test oracle. The test oracle [20] defines what the expected behavior of
the software under test is. This information is necessary to detect failures.
Differently from in-house testing, when performing field testing there are
a number of factors, such as the environment configuration or the input

22

2.3 The Vision of a Field Testing Process

values, that cannot be foreseen, hence the test oracles must be general
enough to include different scenarios, but also precise enough to actually
detect failures.

Non-intrusiveness

We identified two key elements to take into account when designing a non-
intrusive field testing approach.

Isolation. A software application running in the field interacts with the
elements that are available within its environment (e.g., the resources).
Isolating field testing requires the guarantee that the application under
test does not produce any disruptive effect while tested, that is, it cannot
cause any loss of data and any impact on the other processes running in the
field must not be noticeable by the user. This is a fundamental property to
make the field testing technology acceptable by end users.

Performance overhead. Running test cases in the field requires the con-
sumption of additional resources, definitely CPU cycles and memory, but
also I/O and access to the network. The field testing procedure must guar-
antee that any additional resource consumption is rarely and hardly no-
ticeable by the users of the application.

Discussion

In this section we explored the main aspects and the challenges that field
testing poses. In this Ph.D. thesis we define a general framework that en-
ables field testing of software applications, in particular, in Chapter 5, we
define an architecture that uses a client-server structure to gather differ-
ent application and field configurations and test them whenever a new one
is observed. In Chapter 6 we introduce a way to generate static test cases
that can be executed in the field using input from the field itself, and we
explain how to write generalized oracles to be used in such test cases. The
proposed field testing approach is general can be applied to different soft-
ware architectures and domains.

23

The Field Testing Process

24

Chapter 3

Field Faults Studies and
Field Testing Techniques

This section discusses contributions related to this Ph.D. thesis, which can
be organized into two main groups: studies about the characteristics of
software faults, especially the ones detected in the field (presented in Sec-
tion 3.1) and approaches to test the software in the field (presented in Sec-
tion 3.2).

3.1 Studies About Software Faults

The problem of studying software faults has been tackled by different an-
gles, namely the distribution of different fault types in the different soft-
ware development stages, the distribution of faults across the application
components, the root cause of faults and the relationship between faults
and failures. We present representative work for each category in the next
sections.

3.1.1 Fault Types Distribution and Localization

Hamill et al. [34] try to understand the relationship between fault and fail-
ures by focusing on two aspects: the location of faults and the fault types.
Through a rigorous analysis performed on two real-world case studies, the
authors investigated (1) if failures are triggered by faults belonging to the
same unit (file, component, etc.) or spread across different units; and (2) if

25

Field Faults Studies and Field Testing Techniques

some types of faults are more common than others. With respect to fault
locations, authors reported that about 60% of the failures were triggered
by faults spread in two or more files; as for fault types, the conclusion was
that the majority of fault types was due to either coding mistakes (~30%),
requirements problems (~30%) and data problems (~15%). The authors put
particular emphasis on the fact that the results are consistent across the
two case studies they analyzed and the related studies as well.

Fan et al [28] present a study that aims to show the distribution of dif-
ferent types of faults in the context of nuclear power plants software. The
authors make use of two models to perform the analysis: the Failure Mode
and Effect Analysis (FMEA) model, which takes into account both the soft-
ware development and software operation phases, is used to extract infor-
mation related to the fault origination stage; while the Three-Frame Mode
model is used to analyze how the faults cause inconsistencies between the
control software and the hardware components of the power plant (sensors,
actuators, etc.). The study presents statistical data about the development
phases in which the faults were originated, the percentage of fault types,
and about the failures that were triggered as a result. The authors con-
clude that good software engineering practices can drastically reduce the
introduction of faults during software maintenance, in particular simple
design and decoupling of functions.

3.1.2 Fault Distribution Across Code

Ostrand et al. [50] present a study performed on multiple releases (and
multiple lifecycle stages within single releases) of a large industrial system
that aims to understand if particularly fault-prone files exist. The authors
confirmed the well known Pareto distribution of faults (about 80% of the
faults can be found in 20% of the code), but also found out that, as the
software evolves, the faults become increasingly concentrated in increas-
ingly smaller proportions of the code. The authors also tried to understand
if newly written source code files were more or less fault-prone than files
written in older releases, finding that indeed new files are more likely to
contain faults.

26

3.1 Studies About Software Faults

3.1.3 Fault Root Cause

Leszak et al. [44] present a root cause analysis performed on a transmission
system, a peculiarity of this study is that the authors include the possibility
of having more than a root cause for each fault: they consider three possible
root cause areas (human, project and system lifecycle) and assign a value to
each of them, with respect to the studied fault. The results of this analysis
show that the majority of faults are found in the design and coding phase,
the cost of fixing bugs increases linearly with each development phase, and
the major problem for software quality is domain and system knowledge.

3.1.4 Fault-Failure Relationship

Hamill et al. [35] study the relation between fault types, failure detection,
and failure severity. This study is performed on NASA software that is
installed on satellites and specifically targets safety-critical faults. The aim
of the analysis in particular is to understand how the fault type influences
the likelihood of a failure to be triggered, and also to understand how do
different activities influence the type of faults discovered. The study shows
that nearly half of the safety-critical failures were due to coding faults,
the second most likely cause (~25%) were requirement problems. As for
the failure-detecting activities, the authors found out that about half of the
reported failures were discovered during code analysis activities, and about
(~40%) of the remaining ones were detected during testing.

Yuan et al. [56] investigated user-reported failures in distributed soft-
ware applications aiming to discover the relationship between these fail-
ures and one or more underlying faults. They found that generating test
inputs that trigger the failures is not trivial, since multiple input with def-
inite order are needed. The authors also claim that state-of-the-art testing
techniques do not work well on distributed systems because of large size of
the input and state space. To tackle this problem they propose an approach
that scans Java bytecode and, when it identifies an instruction that can
throw an exception, it checks the corresponding catch block for possible
issues. The authors show that using their approach they can trigger most
of the critical failures.

27

Field Faults Studies and Field Testing Techniques

3.1.5 Estimation of remaining faults after testing

Roper et al. [54] compares different estimators of residual faults that use
capture-recapture models, with the aim of determining the accuracy of
their estimates. The authors use the total number of faults that two in-
dependent testers found in multiple datasets as the baseline, and apply the
estimators after different stages of testing, obtaining a predicted number of
faults which can be checked against the total. The results show that the es-
timators can be used to make reasonably accurate estimates of remaining
faults, although the accuracy tends to vary between datasets, and based on
the coverage of the used test suites.

3.1.6 Discussion

Despite the growing interest in field faults and the design of approaches
to address different kinds of faults, there is still no study on the nature
of field problems that indicates whether they can be better addressed in-
house by improving testing techniques and methodologies, or in the field by
exploiting the many instances of a same application running within several
heterogeneous environments. None of the presented studies has focused
on the causes of field failures and the reasons why failures have not been
discovered at testing time, as well as the common characteristics of field
failures, which is the starting point of our research. We aim to provide
an initial characterization of field faults and the consequent failures in the
field, in particular our study differs from previous research it introduces
a set of characteristics that make faults hardly detectable in-house and
discusses the factors that make these failures likely observable only in the
field.

3.2 Field Testing

In this section we discuss research that tackles the problem of testing soft-
ware applications in the field. This section is divided in two parts: Sec-
tion 3.2.1 includes research work about in-vivo testing. In Section 3.2.2 we
surveyed ex-vivo testing, different from field testing because it gathers data
from the field and uses it to test applications in-house.

28

3.2 Field Testing

3.2.1 In-vivo Testing

In-vivo testing techniques aim to test the application while it is being used
for normal operation. Different attributes are relevant when discussing in-
vivo testing techniques, starting from the ones shared with in-house testing
(e.g., oracle, granularity), to attributes that are specific to tests executed in
the field (e.g., isolation, trigger). It follows an overview of the attributes we
used to classify in-vivo testing techniques.

• Objective: defines what the testing technique wants to achieve (e.g.,
revealing faults, assessment of security)

• Target: defines the aim of the testing process (e.g., regression, updated
functionality)

• Granularity: defines the level at which the testing is performed (e.g.,
unit, integration, system).

• Trigger: defines the event that starts the testing process.

• Oracle: defines the expected result of the testing process.

• Isolation: defines how the technique avoids side effects in the field
environment.

It follows the description of the most representative work in the area of
in-vivo testing. Table 3.1 reports how the discussed techniques approach
the challenges presented by in-vivo testing.

In-vivo Testing Techniques

Murphy et al. [46] present an in-vivo testing approach which consists of
deploying unit test cases that are executed with a user-defined probability
while the application is running. The test granularity level is the single
unit, with test code directly written in the source code of the application;
the test code is triggered at specific entry points (usually method calls) with
random probability. The test oracles are specified by the developers (typi-
cally they check invariants that must hold true after the test is executed)
and the test cases do not cause any side effect by construction.

Configuration fuzzing [27] is an in-vivo testing approach which targets
security faults: it mutates the configuration of a software application at

29

Table
3.1:In-vivo

techniques
attributes

Technique
O

bjective
Target

G
ranularity

T
rigger

O
racle

Isolation

M
urphy

et
al.[46]

revealing
faults

regression
unit

execution
of

specific
functions

user
w

ritten
invariants

granted
by

test
case

construction

C
onfiguration

fuzzing
[27]

assessm
ent

of
security

regression
system

execution
of

specific
functions

user
w

ritten
invariants

forked
process

StealthTest
[23]

revealing
faults

regression
unit

random
ly

at
specific

launch
points

user
w

ritten
invariants

achieved
w

ith
transactionalm

em
ory

G
oh

et
al.[31]

revealing
faults

change
of

a
functionality

unit
new

version
ofa

functionality
deployed

user
w

ritten
invariants

lightw
eight

virtualm
achine

G
reiler

et
al.[33]

revealing
faults

change
of

a
functionality

integration
dynam

ic
system

reconfiguration
integration

properties
testing

m
ode

(unpublished
service)

K
ing

et
al.[40]

revealing
faults

change
of

a
functionality

integration
com

ponent
replacem

ent
integration

properties
stubbed

services

Sam
m

odiet
al.[55]

assessm
ent

of
perform

ance
regression

unit
specific

service
calls

perform
ance

thresholds
guaranteed

by
the

testing
process

30

3.2 Field Testing

runtime and checks for the violation of security invariants. It makes use of
the field to observe and mutate application configurations that might not
have been conceived during the in-house testing phase. When the function
that needs to be tested is called, the system uses the fork system call [52]
to spawn another process, mutates the configuration and executes the orig-
inal function, that is eventually checked for security invariants. Isolation
is granted by the fork system call (that is, if the test case does not manip-
ulate external resources).

StealthTest [23] presents a technique that performs system tests of C
programs using transactional memory [42]. The technique tackles the prob-
lem of high performance overhead that results from using the fork-based
testing techniques. This approach uses transactional memory: a mecha-
nism that allows blocks of code to be executed atomically (either execute in
its entirety or not at all). Using transactional memory, changes introduced
by the execution of the test code can be rolled back to prevent side effects,
hence guaranteeing isolation. As for the previous techniques, the tests are
triggered when a specific piece of code is executed and the test oracle is the
specified as invariant properties that must hold true.

Another approach to test isolation in the field is the one used by Goh
et al. [31]: it makes use of the MONO CLI’s application domain to isolate
the execution of program code and the ownership of resources, allowing to
confine the software under test in a simil-virtual machine.

Greiler et al. [33] present a technique that tests a service-oriented ap-
plication whenever it undergoes a reconfiguration. As a first step, the new
service is deployed in parallel to the old version, without the possibility to
be called by other services (unpublished). A service test suite is then exe-
cuted, checking proper communication with other services. If all the tests
pass, the new service can safely publish its functionalities. The testable
version of the service is built in a way that does not let it cause side effects
when it is being tested, hence providing isolation. This technique targets
integration faults and the test oracle is based on expectations about service
communication constraints. The technique objective is to reveal integra-
tion faults but also assess non functional requirements (service response
timing).

King et al. [40] specifically target autonomic software, hence the testing
capabilities are integrated in the autonomic manager, which also functions
as a test oracle by checking test results against system policies. As for the

31

Field Faults Studies and Field Testing Techniques

previous technique the focus of the technique is system reconfigurations,
and the tests work at integration level. After a service is tested this tech-
nique also performs dependency analysis to identify the services that call
it, and tests them as well. The isolation of the tested service from the envi-
ronment is achieved by stubbing the other services.

Sammodi et al. [55] also present a technique that aims to test service
oriented application in the field, with the goal of assessing the quality of
the tested services (performance and availability). In this technique mon-
itoring and testing are intertwined: the monitoring data gathered from
normal use of the application is used to select which test cases to run and
the test case results are used to adapt the monitoring strategies. The tech-
nique assumes no side effects from the testing process (stateless services)
and tests at unit level (single services)

In the context of in-vivo testing, runtime testability [32] is a metric that
aims to estimate the capability of a given software application to be tested
at runtime: the metric takes into account which type of tests can be per-
formed during runtime without affecting the running system, considering
the characteristics of the system itself and the extra infrastructure needed
to run test cases in isolation.

Discussion

From the surveyed techniques we can see that the problem of in-vivo test-
ing has already been tackled in the past, multiple approaches have been
proposed, and we can clearly see, from the domains that the various tech-
niques operate in, that in-vivo testing is a cross-domain challenge and op-
portunity. From our analysis of the area we observed that in-vivo testing
techniques generally lack a proper exploitation of field elements. Testing
performed in the field should focus on revealing faults that are hard to
detect during traditional in-house testing processes, to do this an in-vivo
testing process should focus on actively checking the environment for new
configurations, as well as the application for previously unseen states, and
use this information to assess how the application works. In our work we
gather important elements of the field and dynamically modify and exe-
cute test cases at runtime with the aim of improving the testing scenarios
covered by standard test suites.

32

3.2 Field Testing

3.2.2 Ex-vivo Testing

Ex-vivo testing techniques use data gathered in the field by monitoring
the application and use it to improve in-house testing for future releases.
Ex-vivo testing has the advantage of not needing to build a testing infras-
tructure to deploy with the application in the field. Ex-vivo testing is par-
ticularly useful when testing data-intensive applications (e.g., embedded
systems) where a great amount of data that the application handles must
be simulated according to specific criteria. This simulation step can in-
deed be avoided by collecting data from the field and process it with the
application. Moran et al. [45] present a technique that aims to ex-vivo test
MapReduce applications, this framework uses production data to run the
processing step in-house, and checks that different infrastructure config-
urations produce the same result. Another domain where ex-vivo testing
is used is autonomous veichles: Neves et al. [48, 47] use logs that contain
field data as input to a search-based algorithm that generates new input
to test the application in-house. Work on ex-vivo testing has also inter-
ested the domain of Dynamic Software Product Lines (DSPL), Hansel et
al. [36] present a technique that works by obtaining information from mul-
tiple systems derived from a DSPL, and adjusts the tests to properly cover
the product line configuration space.

Discussion

Ex-vivo testing techniques can be useful when testing data-intensive ap-
plications, and, in general, whenever simulating meaningful field input is
difficult. Also, if an application cannot be tested in a production environ-
ment (due to performance issues or other constraints), ex-vivo testing could
be a viable option. The testing process is performed in-house, hence poten-
tial limitations typical of field testing do not apply to ex-vivo testing. Two of
the discussed ex-vivo testing techniques are indeed used in data-intensive
applications where testing in the field might be problematic, either for per-
formance (map-reduce applications) or safety reasons (autonomous vehi-
cles). The drawbacks of using ex-vivo testing (in particular compared to
in-vivo testing) come from the fact that the field environment must be sim-
ulated when it is meaningful for the test that must be performed, and this
might influence the test result, depending on how good the simulation is.
Also, when testing specific application states, the application must be first

33

Field Faults Studies and Field Testing Techniques

brought in such states, a task that is often non-trivial and costly.

34

Chapter 4

A Study About Field
Failures

Field testing aims to detect faults in the application while it runs in its de-
ployment environment. To better understand the problem of applications
failing in the field, we performed and presented a study that aims to un-
derstand the reasons why applications still fail after they are tested and
deployed [30].

Field Failures can bring consequences on users and organizations, such
as customer dissatisfaction, economic losses and legal issues. They are
caused by faults that escape the in-house testing activities and are not de-
tected and repaired before the software is released in the field. We denote
such faults as field faults.

Field failures may depend on weak testing activities and poor develop-
ment practices. However, they may also derive from factors that prevent
the failures to be detected and the corresponding faults to be removed be-
fore the software is released, such as when the conditions that trigger the
failure are impossible to reproduce in the testing environment and when
the number of combinations to be executed goes beyond any reasonable
limit.

Field faults that cannot be detected with in-house testing approaches
might be more easily addressable in the field where the diversity and com-
plexity of the execution environment could be exploited in the verification
activity, for instance the great number of different android devices makes
it hard to test an application on all of the devices in-house, but field testing

35

A Study About Field Failures

capabilities can address this problem.
The study we design provides an initial characterization of field faults

and the consequent failures in the field: we introduce a set of characteris-
tics that make faults hardly detectable in-house, we study the characteris-
tics of failures reported by the users from three ecosystems, and we discuss
the factors that make these failures likely observable only in the field.

4.1 Subjects

We selected a set of desktop and web applications that are available with
the source code, are widely adopted and are thus good representatives of
well used applications, and give access to publicly available bug reports,
which are needed to study bug reports submitted by end-users.

We thus selected multiple applications from three ecosystems:

• Eclipse and in particular its well-known and widely used plugins: the
Subversive SVN client for Eclipse [8], the EGit Eclipse Team provider
for Git [6] and the EclipseLink plugin for developing code using the
Java persistence API [7]. The bug reports are accessible on the Eclipse
Bugzilla bug tracking system [5].

• OpenOffice is one of the most popular open source office applica-
tions [3]. The bug reports are accessible on the Apache OpenOffice
Bugzilla bug tracking system [4].

• Nuxeo is a Web-based content management system used to develop
many popular Web sites [11]. The Nuxeo issue tracking is Jira [10].

4.2 Experimental Procedure

For our analysis, we identified as faults the bugs labeled as confirmed, veri-
fied or resolved, and we inspected all the bugs reported for the three Eclipse
plugins from January 2015 to December 2015 for a total of 412 analyzed
bug reports, and all the bugs reported for both OpenOffice and Nuxeo from
September 1st 2016 to October 1st 2016, for a total of 99 and 56 bug reports
inspected, respectively. For each bug report, we inspected the information
about the failure, the inputs, the execution conditions and the failure im-
pact. We discarded the bug reports containing only a memory dump and

36

4.2 Experimental Procedure

Table 4.1: Failure Types

Value Failures

Invalid value The SIF produces an incorrect output value,
although still in the domain of the output vari-
able

Out of domain The SIF produces a value outside the domain
of the output variable

Error message The SIF produces an error message

Timing Failures

Early timing The SIF produces an output too early, for in-
stance before an expected waiting time

Late timing The SIF produces a value after a required
deadline, defined either explicitly or implicitly

Omission The SIF never produces an output value in an
asynchronous computation

System Failures

Halting failure The SIF never produces any output value in a
synchronous computation

Crash The SIF crashes and no services is delivered

Unstable behavior The SIF shows an erratic behavior without
receiving any input, for instance, a flashing
blacklight in a smartphone

a stack trace, which might be useful for developers, but are not useful for
the purpose of our investigation, and studied in detail a total of 119 bug
reports: 63 for Eclipse, 26 for OpenOffice, and 30 for Nuxeo.

RQ1: Why software applications fail in the field?
We investigated why faults have not been revealed in house but have

been detected only in the field by examining the conditions that caused the
failures to identify the factors that contribute to the failures and are ex-
tremely hard to be tested in-house. We labeled each fault as bad-testing, if
we could not find any of such factors, field-intrinsic otherwise. We identified
four categories of field-intrinsic faults that we discuss in the next section,
where we characterize the identified classes of faults.

RQ2: Which elements of the field are involved in field failures?
For each bug report, we identified the elements of the field shown in

Figure 2.1 that play an essential role in the failure.

RQ3: What kind of failures can be observed in the field?
We studied the characteristics of field failures to identify their attributes

37

A Study About Field Failures

and classify them. Better understanding the nature of field failures is es-
sential for developing techniques for testing applications in the field with-
out uncontrolled side effects. Some types of failures might be easier to
detect and control than others. For example, exception and error messages
are easy to detect and usually do not cause loss of data because the applica-
tion itself detects and handles these erroneous situations; system crashes
are also easy to detect, but may cause loss of user data; incorrect results
may be hard to detect, and may silently compromise the user data and the
overall computation.

We carefully analyzed the failure taxonomies proposed by Bondavali
and Simoncini [24], Aysan et al. [19], Avizienis et al. [18], Chillarege et
al. [25], and Cinque et al. [26] to identify the candidate attributes for field
failures, and exhaustively inspected the bug reports in our data set to iden-
tify the most relevant attributes for characterising field failures: failure
type and detectability.

Failure Type The failure type characterizes a failure according to the
way it appears to an observer external to the system.

We identified three possible categories of failure types, value, timing and
system failures, and we further detailed each type in three subtypes, for a
total of nine failure types, which we use in the next sections to categorize
bug reports, and which are summarised in Table 4.1.

• Value failures occur when the SIF produces incorrect outputs: an
invalid value, a value out of domain or an error message. For example
in a functionality that returns the ZIP code of a city, a value failure
of type invalid value occurs when the SIF returns the ZIP code asso-
ciated with a city different than the input one, a value failure of type
out of domain occurs when the SIF returns a malformed ZIP code,
a value failure of type error message occurs when the SIF returns a
message the reports an internal error that prevented retrieving a ZIP
code.

• Timing failures occur when the SIF produces some outputs at a
wrong time: too early (early timing), too late (late timing) or never
(omission).

• System failures occur when the SIF is blocked (halting failure) has
stopped running (crash) or does not respond reliably to the input stim-

38

4.2 Experimental Procedure

Table 4.2: Failure Detectability

User SIF
Signaled

√ √

Unhandled
√

×
Silent × ×
Self-healed ×

√

Legend:
√

detected by, × NOT detected by

uli (unstable behavior).

Detectability The detectability attribute characterizes the difficulty of
detecting the failure.

We distinguish four levels of detectability, signaled, unhandled, silent
and self-healed, based on both the ability of the system to detect the failure
and an external observer to observe a misbehavior without specific system
knowledge, as summarized in Table 4.2.

• Signaled failure: a failure that the system detects and reports. A
simple example of a signaled failure is an application that opens a
popup window to inform the user that the application will be unex-
pectedly closed because of a memory problem;

• Unhandled failure: a failure that the system does not handle and
that leads to a crash. The system does not detect the failure, while the
user trivially detects the uncontrolled crash of the application without
requiring any knowledge about the application;

• Silent failure: a failure that the system does not detect letting the
application continue operating without producing any signal that a
user can recognize as a failure without prior knowledge about the
application. A simple example of silent failure is a flight simulator
that simulates the flight conditions imprecisely and that a user cannot
detect without a specific knowledge of the flight simulation system.

• Self-healed failure: a failure that the system detects and overcomes
transparently to the user. The user continues using the application
without noticing any problem. Self-healed failures are common in
systems exploiting redundancy to mask failures, such as Hadoop [9].

39

A Study About Field Failures

RQ4: How many steps are required to trigger a field failure?
For each failure, we identified a sequence of steps that are needed to

cause the failure, aiming to, but not necessarily proved to be, a minimal
sequence. For the interactive subjects, we identify steps with GUI actions
like opening windows, entering data in some fields, clicking on menus and
buttons.

We counted the steps that lead to a failure by considering the sequence
of operations described in the bug reports submitted by users. When creat-
ing a bug report, users intuitively identify a critical state that may lead to
the failure and submit both the information about the critical status, typi-
cally described in a declarative way, and a sequence of operations that lead
to a system failure from the critical state, typically described in an opera-
tional way. For example in the Open Office bug report #126930, the state
to trigger the failure is characterized by the availability of a certain file,
and the steps to reproduce the failure consist of opening the file, scrolling
the document, selecting a frame, and enlarging the frame. We identified
the minimal subset of the actions reported by the user that are needed to
cause the failure from the critical state indicated in the bug report, which
often corresponds to the minimal number of actions needed to reproduce
the failure [53].

The amount of steps needed to reproduce a failure is an important infor-
mation for estimating the complexity of testing techniques that work in the
field and reveal failures by monitoring the status of the application to de-
tect failure-prone states and executing test cases of appropriate complexity
when a failure prone state is detected.

4.3 Results

RQ1: Why software applications fail in the field?

We analyzed the bug reports to distinguish faults that are due to insuffi-
cient testing (bad testing (BT)) from field-intrinsic faults. We further ana-
lyzed the field-intrinsic faults and identified four types of conditions that
lead to field-intrinsic faults and that we use to classify such faults: Ir-
reproducible Execution Condition (IEC), Unknown Application Condition
(UAC), Unknown Environment Condition (UEC), and Combinatorial Ex-
plosion (CE).

40

4.3 Results

The identified classes of faults comprise a complete taxonomy for the
faults in the bug reports that we analyzed, and represent an initial general
framework for classifying field faults. It follows a detailed explanation of
each fault class.

Irreproducible Execution Condition (IEC) Faults

IEC faults are faults that can be revealed only under conditions that cannot
be created in-house. This may depend on the impossibility of reproducing
the complexity of the whole field environment, the inability of creating the
specific failing execution or the evolution of the environment and the inter-
actions with the SIF.

The safety critical routines to be executed in the case of natural disas-
ters are good examples of execution conditions that might be impossible to
reproduce in-house. Although a disaster can be simulated to some extent,
a major natural disaster, for instance an earthquake or a tsunami, cannot
be fully reproduced in-house, and some field-intrinsic faults may depend
on extraordinary combinations of events that can be observed only in real
conditions.

Similarly, the behavior of a system for an increasing number of users
who interact with the application according to patterns that are not entirely
predictable is often hard to test, especially for extreme situations, such as
the extraordinary online streaming services workload experienced in the
Super Bowl night [2].

The evolving varieties of configurations, for instance versions of the op-
erating systems, drivers and plugins, are good examples of unpredictable
changes to interactions between the SIF and the environment (hereafter
SIF-environment interactions). New versions or entirely new plugins or
drivers distributed after the most recent SIF release might generate faults
impossible to reveal in-house before the release itself.

An example of such situation is the fault described in the EclipseLink
bug report #429992. EclipseLink is an Eclipse plugin for developing Java
applications that uses JPA to map objects into databases. The bug report
indicates that EclipseLink silently ignores classes that contain lambda ex-
pressions: even if an object should be persisted in the database because its
class includes the @Entity annotation, no table for persisting the object is
generated in the database. Since lambda expressions have been introduced

41

A Study About Field Failures

only in Java 8, it was impossible to test the combination of lambda expres-
sions with JPA annotations when the EclipseLink plugin was developed,
before the release of Java 8. EclipseLink should not have been affected by
the presence of lambda expressions and should have supported the persis-
tency of the classes regardless of the presence of lambda expressions. How-
ever due to an unforeseen compatibility issue, EclipseLink stopped working
correctly when processing classes with lambda expressions.

Unknown Application Condition (UAC) Faults

UAC faults are faults that can be revealed only with input sequences that
although executable in-house depend on conditions about the application
that are ignored before the field execution and thus cannot be captured in
in-house test suites.

An example of field failure that derives from unknown conditions is the
Eclipse Subversive report #459010, which indicates that Subversive fails
when retrieving folders whose name terminates with a blank character.
This corner case is not documented in the specifications, and is hard to
reveal with in-house testing because of the lack of information that may
suggest to design test cases covering this specific situation. Structural test
suites do not address this problem either, since many problems of this type
are due to missed code, as in the case of this fault.

Another example of a UAC fault is the Eclipse #440413 bug report,
which describes a fault in method convertObjectToString of class
XMLConversionManager that converts any object to a proper string rep-
resentation. The method works properly except when used to convert a
BigDecimal representing a number in scientific notation, since it returns
a string that still encodes the number in scientific notation and not a plain
number as expected. We verified that this case is not mentioned either in
the XMLConversionManager specification or in the API documentation,
and is thus hidden to the testers who did not reveal the bug during testing
and discovered it in the field after the software has been released.

In our experimental analysis, we did not have always access to the spec-
ification of the software. When this happened, we classified a fault as UAC
when the inputs that lead to the failure are largely unrelated with the
purpose of the functionality that fails, assuming that such cases were not
defined in the specifications. Thus our classification may not be perfectly

42

4.3 Results

accurate.

Unknown Environment Condition (UEC) Faults

UEC faults are faults that can be revealed only with information about
the environment that is not available before field execution. UEC faults
are hardly detectable with in-house test cases designed without a complete
description of the constraints on the SIF-environment interactions.

The full range of behaviors of third-party services that the SIF accesses
through the network is a good example of information rarely completely
available at design time, and thus possible source of UEC faults.

An example of UEC fault is the Eclipse bug report #394400 that indi-
cates that EclipseLink may fail with a NullPointerException when ex-
ecuted under heavy load on the Oracle JRockit VM. The issue depends on
the behavior of the Just In Time compilation feature of the JRockit VM that
may reorder the operations executed within method isOverriddenEvent

so that it returns an incomplete result. This undocumented behavior is
responsible for the EclipseLink exception.

Combinatorial Explosion (CE) Faults

Even when the behavior of both the application and the environment are
fully specified and can be replicated in-house, the combination of the cases
to be tested may increase to a magnitude of cases that cannot be fully tested
in-house. There are many sources of combinatorial explosion in software
applications, such as the many possible configurations and preferences, the
combinations of inputs and states, the many environments, for instance
operative systems and hardware devices, that can be used to run an ap-
plication, and so on. A well known example of combinatorial explosion of
combinations are the sets of hardware devices, operating systems and con-
figurations that comprise the execution conditions of smartphone applica-
tions that can almost never be fully tested in-house.

An example of a CE fault is the fault described in the Eclipse bug report
#484494, which indicates that the diff feature of the Subversive plugin does
not work when comparing a file to a symlink of a file that has been moved.
Changing the location of a file referred by a symlink and using the symlink
as part of a comparison is a legal combination of operations among the huge
set of combinations that comprise to the sequence: 〈change the status of a

43

A Study About Field Failures

resource, use the changed resource as part of a computation〉. Systemati-
cally testing all these combinations commonly exceed any reasonable albeit
impressively large testing budget, because of the many ways resources can
be changed independently from each other.

In our analysis, we observed that only a small percentage of CE cases
are due to specific inputs (18% of the cases), while the rest of the CE cases
are due to field elements.

Bad Testing (BT) Faults

We conclude our taxonomy with a discussion of BT faults, which we classify
in our experimental analysis as field but not field-intrinsic faults. BT faults
are faults that are not detected in-house due to weaknesses of the testing
process. We include in this class all the faults in the field that do not belong
to any of the previously described classes.

An example of BT fault is the fault reported in the Subversive bug report
#326694, which indicates that Subversive erroneously reports as conflicting
two identical files that have accumulated the same set of changes on two
different branches. Since detecting conflicts is a primary feature of this
plugin, developers should have tested a basic case like the presence of the
same changes in two distinct branches.

Quantitative Analysis

Figure 4.1 summarizes the quantitative results of our empirical investi-
gation. The bar chart indicates the number of faults classified in the five
categories discussed above, and shows that field-intrinsic faults (the sum
of the IEC, UAC, UEC and CE columns) are the majority of the field faults
in our data set. Field-intrinsic faults represent 70% of the analyzed bug
reports, thus confirming that field faults cannot be addressed by simply
enhancing the testing process, but calls for specific approaches.

The bar chart indicates that combinatorial explosion (CE) is the most
frequent cause of field-intrinsic faults, while Irreproducible Execution Con-
dition (IEC) is the least common source of faults. Unknown execution con-
ditions of either the application or the environment (UAC and UEC faults)
are also relatively frequent cases. The dominance of CE faults is not sur-
prising: The behavior of SIFs is influenced by many factors that can be
never exhaustively tested in house. The many combinations that are hard

44

4.3 Results

Figure 4.1: Reasons why software applications fail in the field

to design, foresee and test in house, can be order of magnitudes easier to
address in the field, where such a diversity is spontaneously and implicitly
available.

Our analysis identified few Irreproducible Execution Condition (IEC)
faults, all caused by evolution of the SIF-environment interactions that
emerged after the deployment of plugins not available at the time of test-
ing, before the deployment of the SIF in the field. The scarce presence of
IEC faults may depend on the nature of the applications that we analyzed.
In other domains the presence of IEC faults might be higher. Consider for
instance the domain of embedded software, where the interactions with the
physical world might be sometime extremely hard to test. We observed a
similar trend for the three subjects: a predominance of CE faults (openof-
fice being the highest at 73%) and a total of 10 - 20 % faults falling into the
UEC/UAC category. It is worth noting that the two IEC faults we identified
were both on the Eclipse platform.

RQ2: Which elements of the field are involved in field
failures?

We analyzed the bug reports to study the role of field elements in field fail-
ures, and validate the intuitive hypothesis that many field-intrinsic faults
may be hard to reveal in-house because their activation may depend on one
or more elements that should be present in the field and should be in the
right status to produce the failure. Below, we discuss the role played by the
field elements that we introduced in Figure 2.1, provide concrete examples,
and discuss the quantitative data from the experimental data sets.

45

A Study About Field Failures

Resources Software applications typically interact with many resources
during the computation. For instance, many applications read from and
write to persistent units, such as files and databases. Causes of field fail-
ures may involve resources in many ways. In our investigation, we ob-
served two main cases: interactions between SIF and resources (hereafter
SIF-resource interactions) that lead to performance problems and SIF-resource
interactions leading to functional problems. The unbearable amount of
time for SIFs to process some large resources and SIFs incorrectly handling
resources of a particular type are examples of performance and functional
problems triggered by SIF-resource interactions, respectively.

An example of SIF-resource interaction that triggers a performance prob-
lem is described in the OpenOffice bug report #95974. The OpenOffice
writer crashes when trying to open a .odt document longer than 375 pages.
The failure causes the CPU usage and the disk access rate to increase to
100%, and the application window simply crashes after one minute of unre-
sponsiveness, activating the recovery wizard.

Plugins The plugin mechanism is a common solution to extend applica-
tions with new functionality in the field. In the presence of plugins, appli-
cations work as operating systems that embed the plugin executions, and
interact with the plugins to access specific functionalities. Applications and
plugins are developed and maintained independently. Evolution at either
sides may trigger failures due to unforeseen interactions.

For example, the EGit bug report #383376 indicates that the repository
search does not work on Github due to an unforeseen interaction with the
Mylin Github connector plugin.

Operating system Many applications can be executed on different ver-
sions of different operating systems. The interactions of a SIF with a spe-
cific version of an operating system may trigger failures otherwise unexpe-
rienced.

An example of a problem involving the operating system is the failure
documented in the OpenOffice bug report #126622 that describes how the
OpenOffice writer does not correctly handle functionalities involving tables
and queries under OSX. The failure prevents OpenOffice from closing, and
forces the users to restart the operating system.

46

4.3 Results

Drivers and services Applications often interact with third party drivers
and services, whose availability depend on the production environment.
During in-house development specific combinations might remain untested
and failures unrevealed.

For example, the fault documented in the Eclipse Egit bug report #435866
indicates that the Eclipse Egit version control system fails to open the re-
quired network connections due to some unexpected changes of the authen-
tication methods implemented in the Eclipse connection service.

Network Many software applications use the network to access resources
or functionalities that are not available locally. With a plethora of different
network protocols available, failures might be triggered when an applica-
tion uses a specific protocol.

For instance, the fault described in the Nuxeo bug report #20481 de-
scribes a failure caused by a connection timeout that occurs when users
download big zip files. Nuxeo does not handle connection timeouts properly
and does not clean up temporary files, which leads to resources exhaustion.

None In a few cases the field-intrinsic faults do not depend on any inter-
action between the field elements and the SIF. Although not depending on
any field element, these faults are still extremely hard to reveal at testing
time, for instance because they can be revealed only by selecting a specific
input out of a combinatorial number of cases.

This is the case of the OpenOffice bug report #126953, which indicates
that when changing the format of a paragraph wrIECen with the Verdana
font to italics bold, OpenOffice incorrectly adds blank lines before each oc-
currence of the brackets ’(’ and ’)’, and the text within the brackets disap-
pears. This failure can be triggered only with a specific combination out of
millions of input combinations: the use of Verdana font, and the presence of
brackets when changing fonts to italics bold, out of the many combinations
of font types, characters and font properties.

Quantitative Analysis

Figure 4.2 quantifies the impact of the different field elements on faults,
by indicating the amount of faults affected by each type of field element.
The causes are not exclusive, since a same fault may involve multiple field

47

A Study About Field Failures

Figure 4.2: Field elements involved in Field Failures

Figure 4.3: Field Failure Types

elements. In Figure 4.2, bar none reports the number of bug reports that
describe failures that do not involve any field element.

Our analysis shows that interactions with the resources are the main
cause of field-intrinsic faults (49% of the cases). Interactions with the op-
erating systems are also a relevant cause of field-intrinsic faults (20% of
the cases). Network, drivers & services, and plugins have been all observed
as causes of field-intrinsic faults at least once, but they are collectively ob-
served in a small proportion of the cases (10% of the cases in total). In total,
78% of the field-intrinsic faults interact with a field element.

Although the data reported in Figure 4.2 may be biased by the experi-
mental setting, they already provide important information to define a re-
search road map in the study of techniques to reveal and fix field-intrinsic
faults.

RQ3: What kind of failures can be observed in the field?

We analyzed the distribution of failure types, and investigated the issues
related to detectability. Figure 4.3 plots the distribution of the failure types
presented in Table 4.1.

48

4.3 Results

Most failures (51 out of 83 failures corresponding to 61% of the ana-
lyzed failures) are value failures, that is, executions that produce incorrect
results. The most frequent case of value failures is the generation of invalid
outputs, followed by the generation of error messages and the production of
values out of domain (OOD in Figure 4.3). System failures are also frequent
(28 out of 83 failures corresponding to 34% of the analyzed failures). They
mostly lead to system crashes, and only occasionally to either unstable be-
haviors or system halt. Only a small set of the failures that we analyzed
are due to the timing aspect (4 out of 83 failures corresponding to 5% of the
analyzed failures). We observed few late timing and omission failures, and
no early timing failures.

The results indicate that the generation of incorrect values (either in-
valid values, values out of domain or error messages) and systems crashes
are the main classes of field failures (they represent 74 out of 83 failures
corresponding to 89% of the analyzed failures). These results, and in par-
ticular the low frequency of timing failures, might depend on the domain
that we investigated (desktop applications extensible with plugins and Web
applications). We expect different frequencies of failure types in other do-
mains: In particular, we expect an increasing frequency of timing failures
in embedded systems, where the synchronization among the software com-
ponents plays a relevant role.

Figure 4.4 plots the distribution of failures by detectability according
to the classes presented in Table 4.2. A relatively high portion of failures
are detected because the failures are either signaled by the application it-
self (14 out of 83 failures corresponding to 17% of the analyzed failures)
or unhandled (25 out of 83 failures corresponding to 30% of the analyzed
failures) causing a system crash. Such failures can be easily detected, on
the contrary, silent failures (44 out of 83 failures corresponding to 53% of
the analyzed failures) are hard to detect without some specific knowledge
about the expected behavior of the application in response to certain stim-
uli, pointing to the well known oracle problem [21].

These results suggest that testing strategies working in the field with-
out exploiting domain specific oracles could hardly reveal more than half of
the field-intrinsic faults.

The considered subjects do not include mechanisms to automatically
overcome from failures at runtime, and thus we have not observed any
occurrence of self-healed failure.

49

A Study About Field Failures

Figure 4.4: Field Failure Detectability

Figure 4.5: Number of steps required to trigger a field failure

RQ4: How many steps are required to trigger a field fail-
ure?

As discussed in Section 4.2, we computed the number of user actions neces-
sary to trigger the failures by considering the operations that are described
in the bug reports limiting to the ones essential for reproducing the failure.

Figure 4.5 plots the distribution of the field-intrinsic faults by the num-
ber of steps required to reproduce the failure. We were not able to deter-
mine the number of steps required to produce the failure in 13 out of the
83 analyzed failures (16% cases corresponding to bar no info), while we de-
termined the number of steps required to reproduce the failure in 70 out of
the 83 analyzed failures (84%), and observed that a large amount of failures
can be reproduced with no more than three steps (54 out of 70 reproducible
failures corresponding to 77% of the reproducible failures.)

These results provide useful information when designing field-testing
approaches, since they suggest that only few actions are necessary to re-
produce a failure once reached a failure prone state, and indicate that field
testing strategies should focus more on detecting failure-prone states than
on generating long action sequences to reproduce the failures.

50

4.4 Threats to Validity

4.4 Threats to Validity

We collected our experimental data from the bug reports of desktop appli-
cations extensible with plugins (Eclipse and OpenOffice) and Web applica-
tions (Nuxeo) by examining a limited although reasonable amount of bug
reports. The results give early evidence of the nature of the failures that
can be experienced in plugins and Web applications, and need further stud-
ies to be generalized to other kinds of applications and to be quantitatively
assessed.

We defined the classification schema, and analyzed the bug reports man-
ually. The author of this thesis and another researcher have independently
analyzed the bug reports and discussed the conflicting cases until reaching
a consensus. Although the process we followed should mitigate the risk of
misinterpretation of the cases, we cannot fully exclude clerical errors in our
analysis. The data and the detailed material that we refer to in this study
are publicly available for independent inspections and further uses.

The bug reports that we examined might be inaccurate some times.
They may for example include partial information about the failures. Al-
though we cannot fully eliminate this potential issue, we believe that pos-
sibly incomplete bug reports considered in the experiments may have re-
duced the number of field-intrinsic faults that we identified, thus only pes-
simistically affecting the results. In particular, the lack of information
about a failure may have increased the chance of a fault to be erroneously
classified as irreproducible execution condition, while the unknown con-
ditions about the application or the environment may have reduced the
amount of faults classified as combinatorial explosion faults. We assume
that our results that indicate a density of 70% of field-intrinsic faults among
the analyzed bug reports is a conservative under approximation of the field-
intrinsic faults that are present in the examined applications.

4.5 Findings

The experimental data that we collected lead to some interesting findings:
Most of the failures that can be observed in the field are caused by field-

intrinsic faults: Our experimental data indicate that about 70% of the field
failures that we analyzed are caused by field-intrinsic faults, that is, are
caused by faults that might be hardly revealed in house. These faults are

51

A Study About Field Failures

caused by four challenges: combinatorial explosion, unknown environment
or application condition, and situations impossible to reproduce. This result
calls for approaches that can deal with these classes of failures in the field.

Combinatorial explosion is a relevant cause of undetected field-intrinsic
faults: Combinatorial explosions are notably hard to address in testing and
analysis techniques. Our experimental investigation indicates that, de-
spite numerous techniques developed to tackle the problem of generating
test cases that adequately cover interactions of parameters in a software
application [43, 49], combinatorial explosion still plays a prominent role
in preventing the detection of field-intrinsic faults. Differently from other
contexts, in the case of field-intrinsic faults, the source of combinatorial ex-
plosion is not the user input (only 18% of the failures are caused by specific
combinations of inputs) but the status of the field elements.

The interaction with the environment is almost always a relevant factor
in field-intrinsic faults: The vast majority of the field-intrinsic faults (78%
in our study) requires some forms of interactions with the environment to
be activated. Resources and operating systems are the most relevant field
elements involved in field-failures, but also drivers, plugins and the net-
work are often important. This result indicates that techniques to reveal
field-intrinsic faults must take into consideration the production environ-
ment in which the system is executed.

Value and system field-faults are more frequent than timing field-faults:
The ability to analyze the output produced by a system, including the abil-
ity to detect crashes, is sufficient to detect most of the field-intrinsic fail-
ures, with a rate of timing field failures as low as 5% of the cases.

The oracle problem affects about half of the field-intrinsic faults: Our
experimental analysis indicates that 43% of the failures can be detected
by intercepting unhandled events, for example system crashes, and error
messages. Domain specific oracles are necessary to address the remaining
57% of the cases. This calls for techniques and methods to derive strong
automatic oracles for field testing.

Field failures can be commonly revealed with short sequences of actions:
Our experimental analysis provides evidence that few steps (three or fewer
actions in 77% of the cases) are usually needed to make the SIF fail from
a failure-prone state. This suggests that detecting states that offer oppor-
tunities for running test and analysis routines might be more important
than studying techniques for generating tests composed of long sequences

52

4.6 Discussion

of actions.

4.6 Discussion

The taxonomy that we proposed in this paper opens new scenarios of in-
creasing complexity. BT faults simply substantiate the need of improving
the in-house testing process and do not introduce new challenges for the
software testing community. UAC, UEC and CE faults call for new tech-
niques to enrich well designed test suites with test cases identified in the
field while experiencing faults caused by unpredictable (UAC and UEC) or
impossible-to-exhaustively-test (CE) conditions. The main challenge that
has been only partially addressed so far is to record execution sequences
that lead to failures in the field, and reproduce them either in the field or
in house to identify and remove the faults. Being not executable in house,
IEC faults further challenge the software testing community with the prob-
lem of executing failing test cases in the field. The main challenges are to
both reveal failures by executing test cases in the field, which requires to
control the execution of the test cases in the usually complex field context,
and prevent any side-effect for the users.

Motivated by the results of this study, we present a client-server archi-
tecture that allows to deploy and orchestrate testing capabilities in the field
and an approach to write test cases that can be executed in the field.

53

A Study About Field Failures

54

Chapter 5

An Architecture for Field
Testing

This chapter presents a client-server architecture designed to effectively
test applications in the field.

5.1 Overview

The architecture is composed of a client and a server, the client is deployed
as a background service running on the target platform, while the server
is on the developer side, communicating with the client side components
by means of remote communication. This architecture is designed for the
purpose of executing test cases in the field (whenever possible), and sending
the results back to the server side. The client service continuously monitors
the field environment for changes in configuration (hardware components,
operating system updates, application setting, etc.), when such changes are
observed the new configuration is tested. If there are tests that cannot be
executed client side, a testing environment with the same configuration ob-
served in the field is simulated server side, and the tests are executed there.
Both the server and the client maintain a configuration model that allows
the system to understand when a new untested configuration is observed.
This architectural design is meant to be general, and, while the server im-
plementation should be installed on a machine with good computing power
and network availability, the client side can be implemented in any device

55

An Architecture for Field Testing

Figure 5.1: High-level overview of the framework

with an operating system that supports a programming language that can
be used to implement the described components.

5.2 Client-side Components

The Client Service is the main service that runs in the background and
carries out the main activities of the framework by orchestrating the other
components of the framework. Also, it handles the remote communication
with the server side.

The Configuration Manager manages the configuration model and is re-
sponsible for querying the application to discover runtime configuration
changes.

The Test Manager manages the retrieval and execution of test cases
whenever the Client Service deems it necessary to execute tests on the cur-
rent configuration of the application. This component is also responsible
for ensuring isolation of test executions.

The Storage Manager manages the access to local persistent data stored
in the application’s local storage area. Such data include the configuration
model implementation and field test cases.

The Configuration Interface needs to be implemented by the applica-
tion for the purpose of retrieving the current configuration. The client-side

56

5.3 Server-side Components

Configuration Manager can poll the interface to scan for changes in config-
uration.

The Test Interface needs to be implemented by the application for the
purpose of creating a (partially) isolated instance of the application and
launching test cases at runtime. The client-side Test Manager can use the
interface to launch the testing process.

5.3 Server-side Components

The Server Service is the main service that runs in the background and
carries out the main activities of the framework by orchestrating the other
components. Also, it handles the remote communication with the client
side. The Test Manager manages the execution of test cases whenever a test
request comes from the client, the objective of the server-side test manager
is to run test cases that cannot be executed in the field. The Storage Man-
ager manages the access to local persistent data stored in the application’s
local storage area. Such data include configuration models, configuration
instances, test cases, etc.

5.4 Components Interaction

In this section we describe how the components interact to achieve the goal
of testing the application when new configurations are observed. The inter-
actions are divided into three main streams: checking the application for
new configurations, test a new configuration and checking the server for
updates.

Check the application for new configurations

Figure 5.2 illustrates the interaction between components when a new con-
figuration check is performed. This check is periodically initiated by the
Client Service in order to mantain an updated configuration model and re-
act to new untested or unknown configurations. First the Client Service
asks the Configuration Manager to get the current configuration of the ap-
plication, once the configuration is obtained, a request is sent to the Storage
Manager to check if the configuration is new or already present in the Con-

57

58 An Architecture for Field Testing

Figure 5.2: Sequence diagram illustrating how the framework components interact
when discovering new configurations

5.4 Components Interaction

figuration Model (this procedure can be intermediated by a caching mech-
anism).

An observed configuration can be tested, untested or unknown. If the
configuration is tested, it has already been observed earlier and tests have
already been performed on the application in such configuration. An untested
configuration has never been observed and tested before. An unknown con-
figuration contains at least an element that does not fit the configuration
model used.

If the observed configuration is not present in the database (untested
locally), the Storage Manager adds it and then returns the control to the
Client Service. The Client Service at this point asks the list of the configu-
rations tested so far to the remote Server Service, once the list of configu-
rations is returned to the Client Service, this last component checks if the
configuration that was identified as untested locally is also untested glob-
ally; if this is the case the new configuration is sent to the Server Service
to be added in the server Configuration model. The other alternative is
that the newly observed configuration does not fit the model (it is hence
unknown), in this case the unknown configuration is sent to the Server Ser-
vice that asks for human intervention to possibly update the configuration
model.

Test a new configuration

Figure 5.3 and 5.4 illustrate the interaction between components when a
previously untested configuration is tested by the framework. First (Fig-
ure 5.3) the Client Service delegates the control of the testing procedure
to the Test Manager (Client), then the Test Manager (Client) retrieves the
test cases from the storage manager, and executes them on the Mobile App
(Client), but only if an isolation step is successful. The isolation process
starts from the test case itself that, depending on the actions it performs
has specific isolation requirements. The test case asks the test interface
implementation in the application if the isolation requirements can be met,
then, if so, the application instantiates the necessary level of isolation, the
test case body executes and the control returns to the Test Manager (Client),
which collects the result of the executed tests and the list of test cases that
could not be executed, and then returns them to the Client Service. The
Client Service then calls the Server Service (Figure 5.4) asking it to perform

59

60 An Architecture for Field Testing

Figure 5.3: Sequence diagram illustrating how the framework components interact
when testing a new configuration

5.4 Components Interaction 61

Figure 5.4: Sequence diagram illustrating how the framework components interact
when testing a new configuration

An Architecture for Field Testing

the tests that could not be performed in the field. The tests are executed in
the same way as the client size (Without the need for isolation). The test
results are then returned to the Client Service that can continue to update
the tested configurations.

Check the server for updates

Figure 5.5 illustrates the interaction between components when clients
query the server to obtain an updated configuration model or new tests.
The procedure starts with a Client Service asking the Server Service for
the updated configuration model and new tests. The Client Service then
checks if the received model matches the local one and, if not, it updates
it through the Storage Manager. The textboxes in the diagram (for exam-
ple update configurations) refer to activities which are already illustrated
in Figure 5.2 and 5.5. This update activity is common to all the clients
installed on different instances of the target application, hence the server
must be able to efficiently and effectively deal with multiple requests that
might occur at the same time.

5.5 Implementation of the Architecture

This architecture can be realized in different application domains, although
the difficulty in the implementation might depend on the capability of the
target technical domain to provide isolation in the field. Testing the appli-
cation in the field in isolation is a relevant challenge, as we discussed in
Section 3.2, some approaches can be used by the Test Interface Implemen-
tation to obtain the correct level of isolation.

Android, for example, offers the possibility of defining different user
profiles [12], which can contain copies of the applications installed on the
system; a testing profile can be thus used to isolate the application under
test and its data.

In the domain of cloud-based service-oriented applications the isolation
problem can be tackled at the service level by using a new instance of the
service under test, in this case the system has to implement stub services
that can interact with the one that is being tested.

Isolation can be achieved in Unix-based operating systems by using the
fork system call, which spawns a copy process with a separate address

62

5.5 Implementation of the Architecture 63

Figure 5.5: Sequence diagram illustrating how the framework components interact
when querying the server for changes in the model and configurations

An Architecture for Field Testing

space. In this case the application under test must not support multi-
threading (the fork system call only copies a single thread).

Virtual machines are a possible approach to achieve isolation, but in
general it is computationally expensive to run them. Containers are in
general more lightweight, and could be a valid alternative.

A relevant challenge that is related to isolation is handling the interac-
tion of the software application with external resources. There are multi-
ple resources the application can interact with in the field (e.g., files and
databases) and testing these interactions without causing any side effects
requires the field testing framework to implement counter measures such
as using a virtual file system or a database mock-up.

Executing the test cases at runtime is another relevant technical chal-
lenge. Java test cases that work at unit level can be executed in the field us-
ing the JUnit framework [17] runners, using the same approach we present
in Chapter 6, however system tests, especially if they involve the use of a
graphical user interface, might require stubbed system components.

The configuration model mantained by the Storage Manager is another
component of the architecture that can be implemented in different ways.
We believe that a valid implementation is a tree feature model [22], which
represents the configuration space in a tree structure, where leaves are
single features. With a hierarchical structure and the possibility to express
constraints on combinations of features, this solution can be used to effec-
tively represent the configuration space.

In Android for instance the model can be constructed with the informa-
tion present in the application preferences files and in the
android.os.Build class, which contains information about the device
and operating system configuration. The Configuration Interface Imple-
mentation, which is charged by retrieving configuration information, can
extract information from the shared preferences files and the Build class
at runtime.

5.6 Discussion

We presented an overview of an architecture that can be used to effectively
perform field testing. This architecture uses field configuration updates as
a trigger for the testing process, and introduces the possibility of perform-

64

5.6 Discussion

ing traditional in-house testing for the functionalities that cannot be tested
in the field.

We understand that whenever data can be collected from the field, pri-
vacy issues can arise. In this case the problem is mitigated by the fact that
when testing the application in the field the data can be manipulated, but
only the test result is sent to the developers. The problem however could be
observed if the configuration model includes sensitive information, in this
case a data anonymization process is needed to preserve user privacy.

65

An Architecture for Field Testing

66

Chapter 6

An Approach to Field
Testing

In this chapter we present a novel approach to write tests that can be ex-
ecuted in the field, either from scratch, or starting from a standard pro-
gram test suite. In this chapter we first present background information
on aspect-oriented programming (specifically AspectJ), which is a key en-
abler of our approach. We then overview how the proposed field testing
approach works at a high level and finally we discuss details about its im-
plementation.

6.1 Aspect-Oriented Programming

AspectJ [14] is an aspect-oriented programming (AOP) [38, 39, 29] exten-
sion for the Java programming language. AOP is a programming paradigm
that aims to increase modularity by allowing the separation of cross-cutting
concerns. It does so by adding behaviors to existing code without modifying
the code itself. Instead, using AOP, the programmer can declare separately
which code is to modify and how. AspectJ uses Java-like syntax, and it lets
programmers define special constructs called aspects. Aspects can contain
several entities unavailable to standard classes, allowing the programmer
to alter the regular execution flow of the program that is being executed.
This is done through the join-point / advice construct: a programmer can
specify join-points (well-defined places in the execution of a program, like

67

An Approach to Field Testing

method call, object instantiation, or variable access), and advices which de-
fine code to run at a matched join point. We present a simple example to
explain how AspectJ works.

We can see in Listing 6.1 a simple Java method that divides a double

a by a double b. Now, suppose that we want to add a guard that checks
that the double b is not zero, but we want to do this without modifying the
code of the method. What we can do is first define a join-point that captures
every call to the method divide(double a, double b), as we can see
in Listing 6.2. This join-point captures all method calls that match the sig-
nature double Math.divide(double, double), note that AspectJ also
allows wildcards in the method signature: for example * Math.*(double,

double) captures any method from the Math class with any return type
and two double variables as argument. In Listing 6.3 we can see how the
control flow of the original method can be modified: the around construct
allows to shortcut the advised method execution by returning its own re-
turn value or throwing an exception. In this case, if b, the divisor, is zero,
the advice throws an IllegalArgumentException, if not, the control is
given back to the original method with the proceed statement.

1 public double divide(double a, double b) {

2 return a/b;

3 }

Listing 6.1: Simple method that divides a by b

1 pointcut callDivide(double a, double b) :

2 call(double Math.divide(double, double)) && args(a, b);

Listing 6.2: Join-point for the calls to divide(double a, double b)

1 boolean around(double a, double b) :

2 callDivide(a, b) {

3 if (b == 0) {

4 throw new IllegalArgumentException("Divisor cannot be

zero!");

5 }

6 return proceed(a, b);

7 }

Listing 6.3: Advice that checks the divisor value, and throws exception if it is zero

68

6.2 Moving Test Cases to the Field

6.2 Moving Test Cases to the Field

6.2.1 General Idea

Software applications behavior in the field is difficult to predict, because
users can stimulate applications with a great number of different inputs
and also the field environment can be configured in many different ways.
Testing software applications in-house for all possible combinations of user
inputs and field configurations is practically impossible.

As we saw in Chapter 4, our study suggests that combinatorial explosion
is one of the most prominent causes of software failures in the field. Hence
the idea of exploiting the field configuration and the user input that comes
from the field as a test case parameter.

This testing process requires test cases specifically written to run in
the field. In particular, given the fact that the tester has not the complete
control over the test inputs, specific assumptions are needed to manipulate
the inputs consistently. Also, the oracle problem, which already exists for
in-house testing, is magnified by field testing, since the test oracle is no
longer referred to a specific input case, but has to be general enough to work
with different test inputs that can be found in the field, hence properties
checked after the execution of the tests could be less strict.

A different approach could be inserting the assertions directly in the
application source code. While this would allow us to check properties that
we deem interesting at runtime, a drawback is the fact that this would
require the modification of the original application source code. Another
drawback is the fact that assertions represent invariant properties that
must always hold, while test cases allow us to specify properties that differ
depending on the test inputs used.

The key elements that characterize our field test cases are:

• aspects, which allow the modification of an application behavior with-
out modifying its code, and can be used to trigger the field test cases
when specific conditions hold.

• parameterized test cases, which exploit the input extracted from the
field to test the software instead of using predefined values and con-
figurations.

• test input checks, which filter out input values and configurations that

69

An Approach to Field Testing

Figure 6.1: Our field testing approach

cannot be used by the field test case.

• generalized oracles, which are assertions that can be checked on the
test result produced in the field.

6.2.2 Field Testing Structure

Figure 6.1 shows the structure of a field test case. Specific events in the
application (e.g., a method call that matches a join-point) trigger the testing
process: first the Test Executor extracts relevant inputs from the object
that triggered the testing process, then the Field Test Case itself is executed
with the captured input. In the test case structure we can see that in a
first phase the field input is checked cor consistency (Check Pre-conditions
for Test Execution), then exploited by the body of the test (Test Stimuli),
and finally the test oracle defines the outcome of the testing process (Field
Oracle). In the end the control returns to the Test Executor which logs the
test results (Log Results).

70

6.2 Moving Test Cases to the Field

6.2.3 How to Write Field Tests

This section explains how to write test cases that use inputs captured at
runtime instead of statically generated. Note that we choose to work with
Java and AspectJ because of the popularity of the Java programming lan-
guage, but the general approach can be applied to programs written in
other programming languages.

The first operation is identifying the events that should trigger the field
testing process (e.g., method call), then an aspect that captures the event
and the involved data can be implemented. The aspect must pass the data
that will be used as input to the field test case. The test case must be im-
plemented in a way that it can exploit the data produced by the aspect. The
aspect will call the test when it is triggered and then log the test results.

An example faulty version of the JFreeChart project (fault number 2)
in the Defects4J dataset [37] is used to explain the procedure. In the code
snippets in Listing 6.4 and 6.5 we highlight the parts which are specific
to the example and that must be changed when considering different test
cases (the definition of the pointcut and the test class name), note that the
majority of the code does not change.

Input Extraction

Suppose we want to test the method iterateDomainBounds, and instead
of creating a new XYDataset object, we want to use the one that is ac-
tually created in the field as argument of a field test case. To do so we
need to intercept the method call and save a reference to the calling object.
Listing 6.4 shows the instructions that can be used to achieve such goal:
with the pointcut instruction we define a join-point that captures every
method call with the signature matched by the regular expression in the
call method. The instrumentation also gives us the possibility to read
and manipulate the object that called the captured method (target) and
the method arguments (args). In this case we are interested in intercept-
ing a method call, in other cases it might be more meaningful to capture
the creation of an object (i.e. constructor) and test the newly created object;
in general each test case requires a specific entry-point to capture its input.

71

An Approach to Field Testing

1 pointcut

callIterateDomainBounds(XYDataset dataset, boolean includeInterval):

call(* DatasetUtilities.iterateDomainBounds(XYDataset, boolean))

&& args (dataset, includeInterval) && if(!TestFlags.testing);

Listing 6.4: pointcut

Once a pointcut is defined we can write some code that executes before
the captured method, this is done by defining an advice (Listing 6.5). First
we set a flag in line 3 which prevents the advice to trigger also on the test
case code, then at line 4 we save a reference to any interesting item that
we want to use as input in the test case to be executed, the references are
saved in a simple static field of the class TestStorage. Line 8 launches the
test case using the standard JUnit runner, and in line 18 the test failures
(if any) are collected and logged.

1 before(XYDataset dataset, boolean includeInterval):

callIterateDomainBounds(dataset, includeInterval){

2
3 TestFlag.testing = true;

4 TestStorage.dataset = dataset;

5 Logger logger = SingletonLogger.getInstance();

6
7 JUnitCore jUnitCore = new JUnitCore();

8 Result result = jUnitCore.run(DatasetUtilitiesTestField.class);

9
10 logger.info("test class: DatasetUtilitiesTestField ");

11 logger.info("ran: " + result.getRunCount() + " failed: " +

result.getFailureCount());

12 List<Failure> failures = result.getFailures();

13 if(!failures.isEmpty()) {

14 for(Failure f : failures) {

15 logger.info(f.getTrace());

16 }

17 }

18
19 TestFlag.testing = false;

20
21 }

Listing 6.5: advice that captures calls to DatasetUtilities.iterateDomainBounds and
runs the corresponding test case

72

6.2 Moving Test Cases to the Field

Test Case

We can see the general field test case structure in Listing 6.6. There is a
first phase of pre-condition checking, then the test manipulates the input
data and in the end the test oracle checks post-conditions on the test data.

1 public void fieldTest() {

2 <<check input pre-conditions>>

3 <<perform test stimuli>>

4 <<check post-conditions>>

5 }

Listing 6.6: pseudo-code for a field test case

Check pre-conditions Now we can look at the code of the field test code
for the JFreeChart iterateDomainBounds method. We can see in List-
ing 6.7, Line 3 that the test case does not statically create the XYDataset
instance, but it obtains the object from the advice. Note that, having no
control over the object used in the test case, we have to check that the ob-
ject meets the requirements to be used in the test case, in this case the
user might have called the iterateDomainBounds method with an empty
dataset, so we avoid this possibility by aborting the testing process if this
is the case (Line 2), because in this case it would not be meaningful to test
a null object.

1 public void testFindDomainBounds() {

2 assumeTrue(TestStorage.dataset.getSeriesCount() >= 1);

3 XYDataset dataset = TestStorage.dataset;

4 Range r = DatasetUtilities.iterateDomainBounds(dataset);

5 assertNotNull(r.getLowerBound());

6 assertNotNull(r.getUpperBound());

7 }

Listing 6.7: test case for DatasetUtilities.iterateDomainBounds using the captured object

Test stimuli As in a traditional testing process, the method under test
is called. In this case the test input is the input extracted from the field
(Line 4). The test stimuli must not modify the state of the objects the ap-
plication is using, hence any manipulation on the test input must be done
taking this under consideration. To write this test case we used the test
case DatasetUtilitiesTests.testFindDomainBounds in the original
JFreeChart test suite as a starting point.

73

An Approach to Field Testing

Check post-conditions (Oracle) After the body of the method has exe-
cuted, the oracle checks if the test has been successful (Lines 5,6). Oracles
for field tests are weaker than regular oracles because the tester does not
have complete control over the test inputs. In this example we can see that
the test result is checked for non nullness. If we look at the original test
case code in Listing 6.8 we can see that the assertions instead check that
the method getLowerBound returns a specific value, because the dataset
values are known, since it is statically created by
createXYDataset1() (Listing 7.3).

In other cases the oracle can be tighter, depending how complex the
application domain is. Take for example the test case in Listing 6.10: this
test case has a static object initialization and hence the assertions at lines
6, 7, 8, 9 are very specific and cannot be used in the field, since we cannot
know in advance the state of the object used in the field to run the test
cases. Instead, in the field version of this test case, we have to weaken
these assertions, as we can see in Listing 6.11, Line 6.

1 public void testFindDomainBounds() {

2 XYDataset dataset = createXYDataset1();

3 Range r = DatasetUtilities.findDomainBounds(dataset);

4 assertEquals(1.0, r.getLowerBound(), EPSILON);

5 assertEquals(3.0, r.getUpperBound(), EPSILON);

6 }

Listing 6.8: DatasetUtilitiesTest.testFindDomainBounds()

1 private XYDataset createXYDataset1() {

2 XYSeries series1 = new XYSeries("S1");

3 series1.add(1.0, 100.0);

4 series1.add(2.0, 101.0);

5 series1.add(3.0, 102.0);

6 XYSeries series2 = new XYSeries("S2");

7 series2.add(1.0, 103.0);

8 series2.add(2.0, null);

9 series2.add(3.0, 105.0);

10 XYSeriesCollection result = new XYSeriesCollection();

11 result.addSeries(series1);

12 result.addSeries(series2);

13 result.setIntervalWidth(0.0);

14 return result;

15 }

Listing 6.9: DatasetUtilitiesTest.createXYDataset1()

74

6.3 Discussion

1 public void testAddOrUpdate3() {

2 XYSeries series = new XYSeries("Series", false, true);

3 series.addOrUpdate(1.0, 1.0);

4 series.addOrUpdate(1.0, 2.0);

5 series.addOrUpdate(1.0, 3.0);

6 assertEquals(new Double(1.0), series.getY(0));

7 assertEquals(new Double(2.0), series.getY(1));

8 assertEquals(new Double(3.0), series.getY(2));

9 assertEquals(3, series.getItemCount());

10 }

Listing 6.10: XYSeriesTests.testAddOrUpdate3()

1 public void testAddOrUpdate3() {

2 XYSeries series = (XYSeries) TestStorage.series.clone();

3 series.addOrUpdate(1.0, 1.0);

4 series.addOrUpdate(1.0, 2.0);

5 series.addOrUpdate(1.0, 3.0);

6 assertTrue(series.getItemCount() >= 3);

7 }

Listing 6.11: XYSeriesTests.testAddOrUpdate3() with relaxed assertions

6.3 Discussion

In this Chapter we presented how to implement field test cases that use
field data to test the software. Field test cases share common elements
with in-house test cases, such as test stimuli and a test oracle, but we can
observe substantial differences:

• field test cases use input extracted from field executions.

• the test input needs to be checked for consistency before being manip-
ulated by the test case.

• field test cases have to use weaker oracles in order to check test re-
sults.

75

An Approach to Field Testing

76

Chapter 7

Empirical Evaluation

This chapter describes the empirical evaluation of the field testing ap-
proach described in Chapter 6. We decided to assess how field testing com-
pares to traditional in-house testing by measuring the number of additional
faults that can be revealed by our approach compared to in-house testing.

In Section 7.1 we present the dataset we decided to evaluate our ap-
proach with, Section 7.2 introduces the experimental procedure we fol-
lowed, in Section 7.3 we present the quantitative results we obtained and
in Section 7.4 we further explain the field testing procedure by analyzing
two concrete field testing cases.

7.1 Subjects of the Study

We decided to validate our approach using the Defects4J dataset [37], a
dataset that includes 395 real faults spread across six Java projects. This
is one of the most used datasets for the evaluation of testing approaches of
Java programs. For each bug the dataset stores the faulty program version,
with at least one test case that exposes the fault, and the fixed version that
passes all the test cases, with a minimal fix that does not introduce any
irrelevant changes: this allows the users to study each bug in isolation. We
used two of the six java projects that the dataset includes: JFreeChart [16],
and Apache Commons Lang [13], the first is a Java chart library and the
second a library that consists of utilities for Java core classes. Both projects
are popular in the Java ecosystem and they are reasonably mature and
well tested. The first project includes 26 versions of the program, and the

77

Empirical Evaluation

second one 65; each one with its own test suite. Each version contains
a real fault, reported on fault reporting platforms and confirmed by the
developers. Each of these faults is exposed by one or more test cases. For
each buggy version of the program, the dataset also includes a fixed version,
where the corresponding fault has been fixed. We chose not to use the same
software we performed our failure study on because of the ease of use and
documentation that the Defects4J dataset provides, and because part of
software analyzed for the study is not written in java.

7.2 Experimental Procedure

The objective of our experiment is to assess whether the field test cases
can reveal faults that were not been revealed by the original test suite. The
faults reported in the dataset were found after the application was released
with a passing test suite, hence they were not revealed by in-house testing.
We defined a research question to drive this evaluation:

RQ: What percentage of faults missed by in-house testing can be revealed
by field testing?

We wrote field test cases starting from the original test suite of the pro-
grams under test, to avoid any bias we started from the original test suite
and adapted the test cases so that they could work in the field. We define
a rigorous procedure to transform a test case into one that can be executed
in the field and we assess if it can reveal a fault that was missed by the
original test suite.

We studied if any of the passing test cases could have exposed the fault,
that is, if any of the passing test cases adapted to run in the field failed. We
then took the original test suite, eliminated the failing test cases added to
reveal the bug and adapted the passing test cases to run in the field. Re-
vealing additional faults is not obvious because the existing test cases may
cover cases that are unrelated with the fault. The procedure to validate our
testing approach (for each fault in the dataset) is:

1. Eliminate the failing test cases from the test suite.

2. Modify the test case that executes the faulty method to take test in-
puts from the field.

78

7.3 Results

Figure 7.1: failure types observed

3. Write a join-point that intercepts calls to the tested method (or con-
structor).

4. Write an advice that supplies the test case with field input and runs
it.

5. Run the test cases with different inputs to check if the fault can be
revealed.

7.3 Results

To answer RQ we applied the procedure explained in Section 6 to the 26
versions of JFreeChart and the 65 versions of Apache Commons Lang in
the Defects4J dataset. We were able to successfully reveal the fault in the
version in 12 out of 26 cases (46%) for JFreeChart and in 20 out of 65 cases
(30%) for Apache Commons Lang. In total, out of the 91 faults considered,
32 (35%) were revealed by our approach.

Table 7.1 shows the fault and failure types revealed for each of the
dataset item where our testing approach was successful. We used the fail-
ure classification we proposed in Chapter 4 to identify the reason why the

79

80 Empirical Evaluation

Table 7.1: Failure and Fault types revealed

Fault n. Fault type Failure type Failure classification
Chart 2 Missing field setup NullPointerException Unknown Application Condition
Chart 4 Missing null check NullPointerException Bad Testing
Chart 5 Missing bounds check IndexOutOfBoundsException Bad Testing
Chart 9 Missing value consistency check IllegalArgumentException Combinatorial Explosion
Chart 11 Wrong variable use Assertion violation Combinatorial Explosion
Chart 13 Wrong argument used IllegalArgumentException Combinatorial Explosion
Chart 14 Missing null check NullPointerException Bad Testing
Chart 15 Missing null check NullPointerException Bad Testing
Chart 16 Missing field setup NullPointerException Bad Testing
Chart 17 Missing value consistency check IllegalArgumentException Bad Testing
Chart 25 Missing null check NullPointerException Bad Testing
Chart 26 Missing null check NullPointerException Bad Testing
Lang 1 Missing input consistency check NumberFormatException Combinatorial Explosion
Lang 3 Missing input consistency check Assertion violation Combinatorial Explosion
Lang 7 Missing input consistency check Assertion violation Combinatorial Explosion
Lang 12 Missing bounds check ArrayIndexOutOfBoundsException Combinatorial Explosion
Lang 14 Missing input consistency check Assertion violation Unknown Application Condition
Lang 16 Missing input consistency check NumberFormatException Unknown Application Condition
Lang 17 Wrong loop instantiation Assertion violation Combinatorial Explosion
Lang 19 Missing bounds check StringIndexOutOfBoundsException Combinatorial Explosion
Lang 20 Missing null check NullPointerException Bad Testing
Lang 24 Missing input consistency check Assertion violation Combinatorial Explosion
Lang 27 Missing bounds check StringIndexOutOfBoundsException Combinatorial Explosion
Lang 36 Missing input consistency check NumberFormatException Bad Testing
Lang 39 Missing null check NullPointerException Unknown Application Condition
Lang 43 Missing loop advancement operator OutOfMemoryError Combinatorial Explosion
Lang 44 Missing input consistency check StringIndexOutOfBoundsException Bad Testing
Lang 47 Missing null check NullPointerException Combinatorial Explosion
Lang 51 Missing return statement StringIndexOutOfBoundsException Combinatorial Explosion
Lang 58 Missing input consistency check NumberFormatException Unknown Application Condition
Lang 59 Wrong variable use ArrayIndexOutOfBoundsException Bad Testing
Lang 61 Wrong variable use ArrayIndexOutOfBoundsException Bad Testing

7.4 Qualitative Analysis

faults were not discovered during the in-house testing phase. We observe
that combinatorial explosion is the most common reason behind failures in
the cases where our approach was successful (44% of the cases), bad testing
also plays a prominent role (40%), we also observe a few instances where
unknown application conditions were the cause of the failures (16%).

These results suggest that field tests are a powerful tool that allows to
detect field-intrinsic faults (faults in the Combinatorial Explosion and Un-
known Application Conditions categories are inherently difficult to detect
with in-house testing) and to integrate the in-house testing activity (Bad
Testing faults should ideally not be present if in-house testing has been
properly performed, by we understand that in practice this is not always
the case).

From the chart in Figure 7.1 we can see the percentage of failures that
can be revealed with the proposed field testing approach for each failure
type, compared to the total number of failures in the dataset. The results
show that on the considered datasets field testing reveals 83% of faults that
cause null pointer failures, 62% of faults that cause out of bounds failures,
44% of faults that cause input format failures and 12% of faults that fail
with a wrong output value. Finally the only memory error failure in the
two datasets was also revealed by our field testing approach.

The distribution of the failures somehow reflects their difficulty to be re-
vealed by a testing procedure: while null pointer exceptions do not require
a specific oracle, value failures do, in particular more knowledge about the
tested functionality is required to understand if it returns a correct or a
wrong value. Field oracles suffer from the mandatory weakening that field
testing implies, hence the low result on detection of value failures.

7.4 Qualitative Analysis

In this section we analyze two concrete applications of the proposed field
testing approach, in Section 7.4.1 the adapted test case uses a general or-
acle to check the result correctness, while in Section 7.4.2 we can see an
example of stronger oracle that captures a fault that results in a wrong
return value.

81

Empirical Evaluation

7.4.1 Null Pointer Failure

This section explains how we applied our field testing approach to
JFreeChart to detect the fault number 2 in the Defects4J dataset. In the
test suite available with Defects4J there are two failing test cases for this
fault:

• DatasetUtilitiesTests.testBug2849731_2

• DatasetUtilitiesTests.testBug2849731_3

these two test cases fail with a NullPointerException when the
method getLowerBound of the class DatasetUtilities is called. The
problem here is that the method does not handle properly Double.NaN val-
ues when calculating lower and upper bounds of an interval. These two test
cases are written ad hoc to reveal this fault, we can see one in Listing 7.1. In
this case the dataset contains a series that has some Double.NaN that need
to be processed when calling DatasetUtilities.iterateDomainBounds,
triggering the failure.

1 public void testBug2849731_2() {

2 XYIntervalSeriesCollection d = new

XYIntervalSeriesCollection();

3 XYIntervalSeries s = new XYIntervalSeries("S1");

4 s.add(1.0, Double.NaN, Double.NaN, Double.NaN, 1.5,

Double.NaN);

5 d.addSeries(s);

6 Range r = DatasetUtilities.iterateDomainBounds(d);

7 assertEquals(1.0, r.getLowerBound(), EPSILON);

8 assertEquals(1.0, r.getUpperBound(), EPSILON);

9 . . .

10 }

Listing 7.1: DatasetUtilitiesTests.testBug2849731_2()

1 public void testFindDomainBounds() {

2 XYDataset dataset = createXYDataset1();

3 Range r = DatasetUtilities.findDomainBounds(dataset);

4 assertEquals(1.0, r.getLowerBound(), EPSILON);

5 assertEquals(3.0, r.getUpperBound(), EPSILON);

6 }

Listing 7.2: DatasetUtilitiesTests.testFindDomainBounds()

82

7.4 Qualitative Analysis

1 private XYDataset createXYDataset1() {

2 XYSeries series1 = new XYSeries("S1");

3 series1.add(1.0, 100.0);

4 series1.add(2.0, 101.0);

5 series1.add(3.0, 102.0);

6 XYSeries series2 = new XYSeries("S2");

7 series2.add(1.0, 103.0);

8 series2.add(2.0, null);

9 series2.add(3.0, 105.0);

10 XYSeriesCollection result = new XYSeriesCollection();

11 result.addSeries(series1);

12 result.addSeries(series2);

13 result.setIntervalWidth(0.0);

14 return result;

15 }

Listing 7.3: DatasetUtilitiesTests.createXYDataset1()

The two test cases that expose the fault are not the only two that call
the faulty method, for example the test case in Listing 7.2 also calls it.
This test case does not expose the fault because the XYDataset object that
it uses (created by createXYDataset1(), shown in Listing 7.3) does not
cover the faulty code present in the getLowerBound method. The prob-
lems is that the value Double.NaN, that makes the program fail with a
NullPointerException, is never used when initializing the XYSeries

objects.

In our approach, instead of statically creating objects at testing time
the field test gets the input object from regular application usage. In this
case the test needs the XYDataset object which is the argument of the
DatasetUtilities.iterateDomainBounds method. The idea is to ex-
tract this object from a normal use of the JFreeChart library, and use it in
the field test case.

Listing 7.4 shows the complete code of the aspect that intercepts any call
to
DatasetUtilities.iterateDomainBounds, allowing the use of its
XYDataset argument in the adapted test case. Listing 7.5 shows the adapted
test case.

83

Empirical Evaluation

1 public aspect IterateDomainBoundsTester {

2
3 pointcut callIterateDomainBounds(XYDataset dataset, boolean

includeInterval): call(*

DatasetUtilities.iterateDomainBounds(XYDataset, boolean)) && args

(dataset, includeInterval) && if(!TestFlags.testing);

4
5 before(XYDataset dataset, boolean includeInterval):

callIterateDomainBounds(dataset, includeInterval){

6
7 TestFlags.testing = true;

8
9 TestStorage.dataset = dataset;

10
11 Logger logger = SingletonLogger.getInstance();

12
13 JUnitCore jUnitCore = new JUnitCore();

14 Result result = jUnitCore.run(DatasetUtilitiesTestField.class);

15
16 logger.info("test class: DatasetUtilitiesTestField");

17 logger.info("ran: " + result.getRunCount() + " failed: " +

result.getFailureCount());

18 List<Failure> failures = result.getFailures();

19 if(!failures.isEmpty()) {

20 for(Failure f : failures) {

21 logger.info(f.getTrace());

22 }

23 }

24
25 TestFlags.testing = false;

26
27 }

Listing 7.4: IterateDomainBoundsTester

1 public void testFindDomainBounds() {

2 assumeTrue(TestStorage.dataset.getSeriesCount() >= 1);

3 XYDataset dataset = TestStorage.dataset;

4 Range r = DatasetUtilities.iterateDomainBounds(dataset);

5 assertNotNull(r.getLowerBound());

6 assertNotNull(r.getUpperBound());

7 }

Listing 7.5: DatasetUtilitiesTestField.testFindDomainBounds()

To test that the approach works and indeed reveals the fault when a
specific XYDataset instance is observed, we used the input data from the

84

7.4 Qualitative Analysis

failing test case from the original test suite in a simple application to trig-
ger the field testing process. Listing 7.10 shows a simple method that can
be used to trigger the field testing process.

1 public void trigger() {

2 XYIntervalSeriesCollection d = new

XYIntervalSeriesCollection();

3 XYIntervalSeries s = new XYIntervalSeries("S1");

4 s.add(1.0, Double.NaN, Double.NaN, Double.NaN, 1.5,

Double.NaN);

5 d.addSeries(s);

6 Range r = DatasetUtilities.iterateDomainBounds(d);

7 }

Listing 7.6: UsageJFree2.trigger()

7.4.2 Value Failure

This section explains how we applied our field testing approach to
apache.commons.lang to detect the fault number 14 in the Defects4J
dataset. In the original test suite the following test case fails:

• StringUtilsEqualsIndexOfTest.testEqualsOnStrings

this test case fails with an AssertionFailedError. The assertion
that fails checks that the StringUtils.equalsmethod returns true when
comparing a CharSequence object and a StringBuilder object casted to
CharSequence, both containing the string foo. The problem here is that
the equalsmethod does not discriminate between instances of String and
CharSequence when checking for equality, hence it returns false where
the correct return value is true. This is due to the StringUtils.equals
method not checking if the objects to be compared are instances of the
String class. We can see in Listing 7.7 the assertion that reveals the fault.

1 public void testEquals() {

2 final CharSequence fooCs = "foo";

3 ...

4 assertTrue(StringUtils.equals(fooCs, (CharSequence) new

StringBuilder("foo")));

5 ...

6 }

Listing 7.7: StringUtilsEqualsIndexOfTest.testEquals()

85

Empirical Evaluation

1 public void testEqualsOnStrings() {

2 assertTrue(StringUtils.equals(null, null));

3 assertTrue(StringUtils.equals(FOO, FOO));

4 assertTrue(StringUtils.equals(FOO, new String(new char[] {

'f', 'o', 'o' })));

5 assertFalse(StringUtils.equals(FOO, new String(new char[] {

'f', 'O', 'O' })));

6 assertFalse(StringUtils.equals(FOO, BAR));

7 assertFalse(StringUtils.equals(FOO, null));

8 assertFalse(StringUtils.equals(null, FOO));

9 assertFalse(StringUtils.equals(FOO, FOOBAR));

10 assertFalse(StringUtils.equals(FOOBAR, FOO));

11 }

Listing 7.8: StringUtilsEqualsIndexOfTest.testEqualsOnStrings()

The test case that exposes the fault, however, is not the only one that
calls the faulty method (StringUtils.equals), for example the test case
in Listing 7.8 also calls it. This test case does not expose the fault because
the StringUtils.equals method never uses a CharSequence object as
input.

1 public void testCustomCharSequence() {

2 CharSequence cs1 = TestStorage.cs1;

3 assertTrue(StringUtils.equals(cs1, new StringBuilder(cs1)));

4 }

Listing 7.9: StringUtilsTestField.testCustomCharSequence()

1 public void trigger() {

2 StringUtils.equals("foo","foo");

3 }

Listing 7.10: UsageLang14.trigger()

Listing 7.11 shows the complete code of the aspect that intercepts any
call to StringUtils.equals, extracts the CharSequence argument and
starts the adapted test case.

86

7.4 Qualitative Analysis

1 public aspect StringUtilsTester {

2
3 pointcut callEquals(CharSequence cs1, CharSequence cs2): call(*

StringUtils.equals(CharSequence, CharSequence)) && args(cs1, cs2)

&& if(!TestFlags.testing)

4
5 before(CharSequence cs1, CharSequence cs2): callEquals(cs1, cs2){

6
7 TestFlags.testing = true;

8
9 TestStorage.cs1 = cs1;

10 TestStorage.cs2 = cs2;

11
12 Logger logger = SingletonLogger.getInstance();

13
14 JUnitCore jUnitCore = new JUnitCore();

15 Result result =

jUnitCore.run(StringUtilsEqualsIndexOfTestField.class);

16
17 logger.info("test class: StringUtilsEqualsIndexOfTestField");

18 logger.info("ran: " + result.getRunCount() + " failed: " +

result.getFailureCount());

19 List<Failure> failures = result.getFailures();

20 if(!failures.isEmpty()) {

21 for(Failure f : failures) {

22 logger.info(f.getTrace());

23 }

24 }

25
26 TestFlags.testing = false;

27
28 }

Listing 7.11: StringUtilsTester

As we can see from the field test case in Listing 7.9, Line 3, the test case
uses the first argument of the captured StringUtils.equals call and
compares it to itself, so that the StringUtils.equals method in the test
case must return true. To test that the approach works and indeed reveals
the fault when a specific CharSequence instance is observed, we used the
input data from the failing test case in a simple application to trigger the
field testing process. Listing 7.10 shows a simple method that can be used
to trigger the field testing process.

87

Empirical Evaluation

7.5 Threats to Validity

We applied our field testing approach to two widely used Java libraries. Al-
though this gives an initial estimate of the effectiveness of the approach,
its application to other domains is needed to generalize the results. Effi-
ciency also needs to be evaluated, trying to understand how impactful is
the approach on the application performance; this evaluation might be also
helpful to understand when field tests can be safely run without causing
noticeable overhead (e.g. exploit idle cpu time to run tests).

Isolation is another part of the approach that needs further work. The
isolation of the test cases is now granted by construction, but the imple-
mentation of a completely isolated test layer would allow the approach to
further exploit the field environment for testing. Several techniques can
be exploited to achieve test isolation: process forking [27, 52], snapshot-
ing [15], rollback mechanisms [23, 42], and the implementation of test in-
terfaces [41]. Each isolation technique targets a specific system and has
advantages and disadvantages, so it is important to asses which one inte-
grates best with the proposed approach.

To test our approach and check if it can reveal the failures in the dataset,
we used the test input from the faulty test cases that we excluded from the
original test suite. It is not clear how likely it would be to encounter such
inputs in the field, a potential way to assess this likelihood could be de-
ploying the proposed testing approach in multiple real usage scenarios and
observe the results after a given amount of time.

88

Chapter 8

Conclusion

In this Ph.D. thesis work we focus on the problem of testing applications
in the field. We performed a study to characterize field failures and the
reasons why they are hard to detect with traditional in-house testing. The
study led to the definition of the concept of field-intrinsic faults as faults
inherently hard to detect in-house and more effectively detectable in the
field. We report our findings about the high frequency of field-intrinsic
faults in the analyzed bug reports (field-intrinsic faults represent 70% of
the analyzed field faults), obtaining initial evidence that there is a relevant
number of faults that cannot be effectively addressed in-house and should
be addressed directly in the field. This analysis could be extended with a
larger fault base and replicated in different domains, to further understand
the problem of applications failing in the field.

To tackle the problem of testing applications in the field, we designed
an architecture that orchestrates the field testing process and an approach
to write and execute field test cases.

The proposed architecture has a client-server structure that can be ap-
plied to different software domains, it allows to keep track of different field
configurations and can use them to understand when to trigger the field
testing process. The client instances can execute test cases directly in the
field, on different instances of the same application, and can rely on the
server when field testing cannot be performed.

Finally, we studied how to write test cases that take input data from the
field, check it for consistency, exploit it to interact with the target software
system and use a general test oracle to check the results. We built the

89

Conclusion

framework that allows to execute these test cases at runtime and evaluate
the testing approach on 91 real software faults that were discovered in the
field. The results show that 31 (35%) of the faults could have been revealed
using the proposed technique.

The proposed field testing approach and the obtained results open the
possibility for further research in the context of field testing, that should
aim to tackle the different challenges that this area presents and to better
define how the testing process of software applications should continue in
the field. Future directions for this work include extending the field testing
approach by implementing a framework that deals with the test isolation,
that is now granted by construction, and by further improving the test or-
acles, that need to be precise enough to detect failures, being at the same
time general enough to work with inputs from the field.

90

Bibliography

[1] Number of different android devices. https://opensignal.com/reports/2015/08/android-
fragmentation/, 2015.

[2] The cbs app for streaming the super bowl is crashing and burning.
http://uk.businessinsider.com/cbs-app-streaming-super-bowl-is-not-working-
2016-2, 2016.

[3] Apache open office. https://www.openoffice.org/, 2017.

[4] Apache openoffice bugzilla. https://bz.apache.org/ooo/, 2017.

[5] Eclipse bugzilla. https://bugs.eclipse.org, 2017.

[6] Eclipse git plugin. eclipse.org/egit/, 2017.

[7] Eclipse java persistence plugin. http://www.eclipse.org/eclipselink/, 2017.

[8] Eclipse subversive svn plugin. http://www.eclipse.org/subversive/, 2017.

[9] Hadoop. http://hadoop.apache.org, 2017.

[10] Jira. https://www.atlassian.com/software/jira, 2017.

[11] Nuxeo. https://www.nuxeo.com/, 2017.

[12] Android managed profiles. https://source.android.com/devices/tech/admin/managed-
profiles, 2018.

[13] Apache commons lang. https://commons.apache.org/proper/commons-lang/,
2018.

[14] The aspectj project. https://www.eclipse.org/aspectj/, 2018.

[15] Checkpoint-restore in userspace (CRIU). https://criu.org/Main_Page, 2018.

[16] Jfreechart. http://www.jfree.org/jfreechart/, 2018.

[17] Junit. https://junit.org/junit5/, 2018.

[18] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33, 2004.

91

BIBLIOGRAPHY

[19] H. Aysan, S. Punnekkat, and R. Dobrin. Error modeling in dependable
component-based systems. In Computer Software and Applications, pages
1309–1314. IEEE, 2008.

[20] E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem
in software testing: A survey. IEEE Transactions on Software Engineering
(TSE), 41(5):507–525, 2015.

[21] E. T. Barr, M. Harman, P. McMinn, and M. Shahbaz. The oracle problem in
software testing: A survey. IEEE Transactions on Software Engineering (TSE),
41(5):507–525, 2015.

[22] D. Batory. Feature models, grammars, and propositional formulas. In Interna-
tional Conference on Software Product Lines, pages 7–20. Springer, 2005.

[23] J. Bobba, W. Xiong, L. Yen, M. Hill, and D. Wood. Stealthtest: Low overhead on-
line software testing using transactional memory. In International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 146–155.
IEEE, 2009.

[24] A. Bondavalli and L. Simoncini. Failure classification with respect to detection.
In Workshop on Future Trends of Distributed Computing Systems, pages 47–
53, 1990.

[25] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus,
B. K. Ray, and M. Wong. Orthogonal defect classification-a concept for in-
process measurements. IEEE Transactions on Software Engineering (TSE),
18(11):943–956, 1992.

[26] M. Cinque, D. Cotroneo, Z. Kalbarczyk, and R. Iyer. How do mobile phones
fail? a failure data analysis of symbian os smart phones. In International
Conference on Dependable Systems and Networks, pages 585–594, 2007.

[27] H. Dai, C. Murphy, and G. Kaiser. Configuration fuzzing for software vulner-
ability detection. In International Conference on Availability, Reliability, and
Security (ARES), pages 525–530. IEEE, 2010.

[28] C. F. Fan, S. Yih, W. H. Tseng, and W. C. Chen. Empirical analysis of software-
induced failure events in the nuclear industry. Safety Science, 57:118 – 128,
2013.

[29] R. Filman, T. Elrad, S. Clarke, and M. Akşit. Aspect-oriented software develop-
ment. Addison-Wesley Professional, 2004.

[30] L. Gazzola, L. Mariani, F. Pastore, and M. Pezzé. An exploratory study of
field failures. In International Symposium on Software Reliability Engineering
(ISSRE), pages 67–77. IEEE, 2017.

92

BIBLIOGRAPHY

[31] O. Goh and Y. Lee. Schedulable online testing framework for real-time embed-
ded applications in vm. In International Conference on Embedded and Ubiq-
uitous Computing, pages 730–741. Springer, 2007.

[32] A. Gonzalez-Sanchez, E. Piel, H. Gross, and A. van Gemund. Runtime testa-
bility in dynamic high-availability component-based systems. In International
Conference on Advances in System Testing and Validation Lifecycle, pages 37–
42. IEEE, 2010.

[33] M. Greiler, H. Gross, and A. van Deursen. Evaluation of online testing for
services: a case study. In International Workshop on Principles of Engineering
Service-Oriented Systems, pages 36–42. ACM, 2010.

[34] M. Hamill and K. Goseva-Popstojanova. Common trends in software fault and
failure data. IEEE Transactions on Software Engineering (TSE), 35(4):484–
496, 2009.

[35] M. Hamill and K. Goseva-Popstojanova. Exploring fault types, detection activ-
ities, and failure severity in an evolving safety-critical software system. Soft-
ware Quality Journal, 23(2):229–265, 2014.

[36] J. Hänsel and H. Giese. Towards collective online and offline testing for dy-
namic software product line systems. In International Workshop on Variability
and Complexity in Software Design (VACE), pages 9–12. IEEE, 2017.

[37] R. Just, D. Jalali, and M. Ernst. Defects4j: A database of existing faults to en-
able controlled testing studies for java programs. In International Symposium
on Software Testing and Analysis (ISSTA), pages 437–440. ACM, 2014.

[38] G. Kiczales. Aspect-oriented programming. ACM Computing Surveys (CSUR),
28(4es):154, 1996.

[39] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and
J. Irwin. Aspect-oriented programming. In European conference on object-
oriented programming, pages 220–242. Springer, 1997.

[40] T. King, , A. Allen, R. Cruz, and P. Clarke. Safe runtime validation of be-
havioral adaptations in autonomic software. In International Conference on
Autonomic and Trusted Computing, pages 31–46. Springer, 2011.

[41] M. Lahami, M. Krichen, and M. Jmaiel. Safe and efficient runtime testing
framework applied in dynamic and distributed systems. Science of Computer
Programming, 122:1–28, 2016.

[42] J. R. Larus and R. Rajwar. Transactional memory. Synthesis Lectures on Com-
puter Architecture, 1(1):1–226, 2007.

[43] Y. Lei, R. Kacker, D. Kuhn, V. Okun, and J. Lawrence. Ipog/ipog-d: efficient
test generation for multi-way combinatorial testing. International Conference
on Software Testing, Verification and Reliability (STVR), 18(3):125–148, 2008.

93

BIBLIOGRAPHY

[44] M. Leszak, D. E. Perry, and D. Stoll. Classification and evaluation of defects
in a project retrospective. Journal of Systems and Software, 61(3):173 – 187,
2002.

[45] J. Morán, A. Bertolino, C. de la Riva, and J. Tuya. Towards ex vivo testing
of mapreduce applications. In International Conference on Software Quality,
Reliability and Security (QRS), pages 73–80. IEEE, 2017.

[46] C. Murphy, G. Kaiser, I. Vo, and M. Chu. Quality assurance of software ap-
plications using the in vivo testing approach. In International Conference on
Software Testing Verification and Validation (ICST), pages 111–120, 2009.

[47] V. Neves, M. Delamaro, and P. Masiero. An environment to support struc-
tural testing of autonomous vehicles. In Brazilian Symposium on Computing
Systems Engineering (SBESC), pages 19–24. IEEE, 2014.

[48] V. Neves, M. Delamaro, and P. Masiero. Combination and mutation strategies
to support test data generation in the context of autonomous vehicles. Inter-
national Journal of Embedded Systems, 8(5-6):464–482, 2016.

[49] C. Nie and H. Leung. A survey of combinatorial testing. ACM Computing
Surveys (CSUR), 43(2):11, 2011.

[50] T. J. Ostrand and E. J. Weyuker. The distribution of faults in a large indus-
trial software system. In International Symposium on Software Testing and
Analysis (ISSTA), pages 55–64, 2002.

[51] M. Pezzé and M. Young. Software testing and analysis: Process, principles and
techniques. 2008.

[52] D. M. Ritchie and K. Thompson. The unix time-sharing system. Bell System
Technical Journal, 57(6):1905–1929, 1978.

[53] T. Roehm, S. Nosovic, and B. Bruegge. Automated extraction of failure repro-
duction steps from user interaction traces. In International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), pages 121–130, 2015.

[54] M. Roper. Estimating fault numbers remaining after testing. In International
Conference on Software Testing, Verification and Validation (ICST), pages 272–
281. IEEE, 2013.

[55] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl. Usage-
based online testing for proactive adaptation of service-based applications. In
Computer Software and Applications Conference (COMPSAC), pages 582–587.
IEEE, 2011.

[56] D. Yuan, Y. Luo, X. Zhuang, G. Rodrigues, X. Zhao, Y. Zhang, P. Jain, and
M. Stumm. Simple testing can prevent most critical failures: An analysis
of production failures in distributed data-intensive systems. In OSDI, pages
249–265, 2014.

94

	Introduction
	The Field Testing Process
	Background
	Failure Context

	In-house Testing and its Limits
	The Vision of a Field Testing Process
	Challenges

	Field Faults Studies and Field Testing Techniques
	Studies About Software Faults
	Fault Types Distribution and Localization
	Fault Distribution Across Code
	Fault Root Cause
	Fault-Failure Relationship
	Estimation of remaining faults after testing
	Discussion

	Field Testing
	In-vivo Testing
	Ex-vivo Testing

	A Study About Field Failures
	Subjects
	Experimental Procedure
	Results
	Threats to Validity
	Findings
	Discussion

	An Architecture for Field Testing
	Overview
	Client-side Components
	Server-side Components
	Components Interaction
	Implementation of the Architecture
	Discussion

	An Approach to Field Testing
	Aspect-Oriented Programming
	Moving Test Cases to the Field
	General Idea
	Field Testing Structure
	How to Write Field Tests

	Discussion

	Empirical Evaluation
	Subjects of the Study
	Experimental Procedure
	Results
	Qualitative Analysis
	Null Pointer Failure
	Value Failure

	Threats to Validity

	Conclusion

