
PH.D. SCHOOL
UNIVERSITY OF MILANO-BICOCCA

Department of Informatics, Systems and Communication
PhD Program in Computer Science - XXXI Cycle

Visual Anomaly Detection
for Automatic Quality Control

Ph.D. Dissertation of: Flavio Piccoli

Supervisor: Prof. Raimondo Schettini
Co-Supervisor: Dr. Paolo Napoletano
Tutor: Prof. Alberto Leporati
Ph.D. Coordinator: Prof.ssa Stefania Bandini

Academic Year 2018-2019

Acknowledgements

This thesis is dedicated to my parents Luciano and Marisa, that always supported me.
To my granparents Adriano, Felicita and Concetta for transmitting me the love for life.
To all my friends, who made me smile in the bad moments. To Irene, my love.

To my supervisor Raimondo Schettini for believing in me also when I didn’t deserve it.
To Paolo Napoletano for his patience and his precious suggestions; to Simone Bianco
and Claudio Cusano for their support.

To my collegues Luigi Celona, Marco Buzzelli and Davide Mazzini for the fraternal
team spirit that makes me feel at home when I am in lab. To the guys from IVL and
other labs with which I shared many joyful moments during lunch time.

To my acquired collegues Fabio, Vincenzo, Marco, Alessandro, Daniele and Matteo
for allowing me to do this PhD, for getting me in contact with the industrial environment
and for the good moments spent around the world.

Abstract

Automatic quality control is one of the key ingredients for the fourth industrial revolution
that will lead to the development of the so called industry 4.0. In this context, a crucial
element is a production-compatible-time detection of defects, anomalies or product
failures. This thesis focuses exactly on this theme: anomaly detection for industrial
quality inspection, ensured through the analysis of images depicting the product under
inspection. This analysis will be done through the use of machine learning, and especially
through the use of convolutional neural networks (CNNs), a powerful instrument used in
image analysis. This thesis starts with an extensive study on the subject to introduce
the reader and to propose a pipeline for automatic anomaly detection. This pipeline is
composed by two steps: 1) the enhancement of the input images for highlighting defects;
2) the detection of the anomalies.

The first step is addressed with the use of a global color transformation able to remove
undesired light effects and to enhance the contrast. This transformation is inferred
through the use of SpliNet, a new CNN-based method here presented, that is able to
enhance the input images by inferring the parameters of a set of splines.

In the context of anomaly detection, two methods are presented. The first one has the
aim of modeling normality by learning a dictionary and using it in test time to determine
the degree of abnormality of an inquiry image. This method is based on deep learning,
which is known to be data-hungry. However, the proposed algorithm is able to work also
on very small trainsets (in the order of five images). The presented method boosts the
performances of 5% with respect to the state-of-the art for the SEM-acquired nanofibers
dataset, achieving an area under curve of 97.4%. The second proposed algorithm is a
generative method able to restore the input, creating an anomaly-free version of the
inquiry image. This method uses a set of local transforms to restore the input images.
Specifically, these transforms are sets of polynomials of degree two, whose parameters
are determined through the use of a convolutional neural network. In this context, the
method can be tuned with a parameter toward accuracy or speed, for matching the needs
of the final user.

To address the lack of data that is suffered in this field, a totally new method for
data augmentation based on deep learning is presented. This method is able to generate
thousands of new synthesized samples starting from a few and thus is particularly suitable
for augmenting long-tail datasets. The quality of the synthesized samples is demonstrated
by showing the increase in performance of machine learning algorithms trained on the
augmented dataset. This method has been employed to enlarge a dataset of defective
asphalts. In this context, the use of the augmented dataset permitted to increase the
average performance on anomaly segmentation of up to 17.5 percentage points. In the
case of classes having a low cardinality, the improvement is up to 54.5 percentage points.
For all the methods here presented I show their effectiveness by analyzing the results
with the respective state-of-the-art and show their ability in outperforming the existing
methods.

iv

Table of contents

List of figures viii

List of tables x

I Background 1

1 Introduction 2
1.1 What is an anomaly? . 5
1.2 The normal signal (background) . 6
1.3 Possible pipeline for anomaly detection 7
1.4 Sources of anomalies . 8
1.5 Human-issues in detecting anomalies . 9
1.6 Implications of adopting an automatic anomaly detection system 11
1.7 Lack of data . 12
1.8 Structure of this thesis . 13

2 Adversarial Training 14
2.1 GANs - Generative Adversarial Networks 15
2.2 DC-GANs - Deep Convolutional Generative Adversarial Networks 18
2.3 cGANs - Conditional Generative Adversarial Networks 18
2.4 wGANs - Wasserstein Generative Adversarial Networks 20
2.5 wGANs-GP - Wasserstein Generative Adversarial Networks with Gradient

Penalty . 23

II Data Augmentation 24

3 Data Generation 25
3.1 Related works . 26

Table of contents

3.2 Proposed method . 27
3.2.1 Semantic layout generation . 27
3.2.2 Image retrieval . 30
3.2.3 Image generation . 32

3.3 Experiments . 34
3.3.1 Dataset . 34
3.3.2 Evaluation . 34
3.3.3 Results . 35

III Image Enhancement 39

4 Image Enhancement 40
4.1 Introduction . 40
4.2 Related work . 42
4.3 Proposed method . 45

4.3.1 Node estimation . 46
4.3.2 Spline interpolation . 47
4.3.3 Color transformation . 49

4.4 Experimental setup . 50
4.4.1 Metrics . 51
4.4.2 Implementation and training . 52

4.5 Single-user modeling . 53
4.5.1 Color distribution . 54
4.5.2 Dependence on the image content 54
4.5.3 Sensitivity analysis . 57
4.5.4 Processing time . 57

4.6 Multi-user modeling . 58
4.6.1 Modeling a new user . 62

IV Anomaly Detection 66

5 Introduction To Anomaly Detection 67

6 Feature-Based Methods For Anomaly Detection 73
6.1 Introduction . 73
6.2 Anomaly detection and localization . 73

vi

Table of contents

6.3 Proposed method . 76
6.3.1 Feature extraction . 76
6.3.2 Dictionary building . 78
6.3.3 Learning to detect anomalies . 79

6.4 Experiments . 81
6.4.1 Performance metrics . 82
6.4.2 Results . 83

7 Generative Methods For Anomaly Removal 87
7.1 Introduction . 87
7.2 Proposed method . 87
7.3 Experimental results . 91

7.3.1 Error metrics . 91
7.3.2 Performance varying the degree and number of polynomials . . . 92
7.3.3 Comparison with the state of the art 93
7.3.4 Filter classification . 97
7.3.5 Semantic classification on Places-205 dataset 101
7.3.6 Analysis of the learned features 101

V Epilogue 103

8 Conclusions 104

References 106

Appendix A Datasets 115
A.1 Artistic Foto Filter Dataset . 115

A.1.1 Photographic filters . 115
A.2 Nanofibers Dataset . 116
A.3 Places205 Dataset . 120
A.4 FiveK Dataset . 120

Appendix B CIELab conversion 122

Appendix C Spline Interpolation 124

vii

List of figures

1.1 Examples of anomalies . 3
1.2 Examples of anomalies on fabric . 4
1.3 Examples of normal samples . 6
1.4 Pipeline for anomaly detection . 7
1.5 The evaluation stage. 13

2.1 General pipeline of a GAN . 15
2.2 Examples of generated images with GANs 16
2.3 Architecture of a DC-GAN’s generator 19
2.4 Synthetic images of bedrooms . 19
2.5 Disjoint distributions . 20
2.6 Cost of moving a box of unary weight . 22
2.7 Two different moving plans. 22

3.1 Pipeline of the proposed method. 28
3.2 Texture synthesis using CNNs . 33
3.3 Random samples of the dataset . 34
3.4 Increase of the performances varying the number of synthetic samples . . 36
3.5 Performances achieved by the system . 37
3.6 Random synthetic samples . 38

4.1 SpliNet image enhancement pipeline . 46
4.2 FiveK dataset sample . 51
4.3 SpliNet vs state-of-the-art examples . 55
4.4 Examples of images processed by SpliNet 56
4.5 Comparison of the Lab color distributions 56
4.6 Accuracies grouped by subject, illumination, location and time 57
4.7 Errors of reproducing images of Expert C varying number of nodes . . . 58
4.8 Processing time . 58

viii

List of figures

4.9 Multi-user version of SpliNet . 59
4.10 Graphical representation of the user space 60
4.11 Examples of image enhancement produce by the multi-user version . . . 61
4.12 Performance on testset using adaptation methods 64

5.1 Topology of anomaly-detection methods. 68
5.2 GAN used for marker discovery . 71

6.1 Location of the proposed feature-based method in topology 74
6.2 SEM images of nanofibrous materials . 75
6.3 Normal and anomalous nanofibers samples 75
6.4 Handling of overlapping windows . 76
6.5 Process of creation of the dictionary . 79
6.6 Dictionaries learned by my method . 80
6.7 Dimension of the feature vectors after PCA reduction 81
6.8 AUC achieved varying the parameters . 84
6.9 Timing of the system . 85
6.10 Comparison with the state of the art . 86
6.11 Closeup of anomalies found by our method 86

7.1 Location of the proposed generative method in topology 88
7.2 Proposed pipeline for spatially distributed anomaly removal 90
7.3 Example of removal of a spatially varying filters 93
7.4 Comparison of the proposed method with the state of the art 95
7.5 Examples of recovery . 96
7.6 Qualitative comparison of the details . 97
7.7 Detailed comparison . 98
7.8 Classification accuracy . 101
7.9 2D visualization of the features through t-SNE 102

A.1 Artistic Photo Filter Dataset . 116
A.2 Examples of photografic filters . 118
A.3 Examples of SEM images of nanofibers. 119
A.4 An anomalous and its ground-truth . 119
A.5 The trainset of the nanofibers dataset . 120
A.6 Places205 dataset samples . 120
A.7 FiveK dataset sample . 121

ix

List of tables

3.1 Structure of the generator network . 29
3.2 Structure of the critic network . 29

4.1 State of the art for image enhancement 43
4.2 Structure of SpliNet neural network . 47
4.3 Accuracy of SpliNet in reproducing retouched images 53
4.4 Performance of the single- and multi-user models 62

5.1 Characterization of statistical approaches 70

6.1 ResNet-18 Architecture . 78

7.1 Network used to estimate the parameters of the color transform 91
7.2 Performance comparison varying parameters 94
7.3 Confusion matrix of the filtered images 99
7.4 Confusion matrix of the images after unfiltering 100

A.1 Summary of the operations used in the filtering process 117

x

Part I

Background

1

Chapter 1

Introduction

“We will be restoring normality just as soon as we are sure what is
normal.”

Douglas Adams,
The Hitchhiker’s Guide to the Galaxy

Industrial quality control is a broad discipline that touches many domains such as
phisics, chemistry, economy, psicology and computer vision. According to the Inter-
national Organization for Standardization (ISO), quality control is a process by which
entities review the quality of all factors involved in production. ISO 9000 [58] defines
quality control as "A part of quality management focused on fulfilling quality require-
ments". This discipline regards many aspects of the industrial environment, from the
design of the production chains to the procedures adopted by all the actors directly and
indirectly involved in the production. In particular, the most important aspect of the
quality control is the direct analysis of the products along the production chain.

Cyber-Physical systems [66], Internet of Things [119], Cloud Computing [21] and
Cognitive Computing [11] are the key ingredients of the fourth industrial revolution that
will lead to development of the so called Industry 4.0 [44, 72]. The industry of future is a
“smart factory” that integrates new hardware, software and communication technologies
to obtain smart production processes that increase productivity and reduce costs in
manufacturing environments. One of the challenges of the Industry 4.0 designers is the
optimization of the manufacturing processes. A key element to this aim is the early, or
production-compatible-time, detection of defects or anomalies and production failures.
This enables the prevention of production errors thus increasing productivity, quality,
and consequently leading to a economic benefit for the factory [44].

Defect or anomaly detection in industry is performed in several ways: 1) manually
by humans that monitor the entire production process; 2) automatically by a computer-

2

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1.1 Examples of anomalies. (a) shows cracs in a marble, (b) holes in an electronic
wafer, (c) a broken fabric, (d) an anomaly in a spectrometer acquisition, (e) a hole in a
wheel, (f) excess of material in a nanofiber, (g) a mine on the bottom of the sea (h) an
unexpected fade on jeans

based system that monitors, mostly with the help of digital cameras or sensors, the
production process; 3) semi-automatically by human that interacts with a computer-based
defect detection system [69, 70, 27, 117]. In all ways, defect detection is performed in
two different moments: during or at the end of the production process. To take the
chance to correct the production process, defect detection should be performed during
the production process in a time that should be less, or at most comparable with, the
production time itself. This time constraint permits to provide feedbacks or alarms that
may be used to correct the production process [69].

With the term anomaly one refers to anything that deviates from normality (see
section 1.1 for further details), therefore one does not define an explicit model for the
anomalies. Differently, with the term defect one indicates a member of a sub-group of
anomalies that share common properties and therefore they can be described with an
explicit model. Figure 1.1 shows some examples of anomalies. A real challenge is exactly
to design and develop methods that will be able to identify deviations from normality
that do not have an explicit model. Methods based on this approach will be more flexible
and more adapt to be used in real contexts, where the alterations that can occur to
the products during the production line are not kown a-priori (or partially known).
An example of this concept can be a production line of fabrics. As it’s possible to see

3

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(l) (m) (n)

Fig. 1.2 Examples of anomalies and defects on fabric. (a) hole, (b)(c) external corps, (d)
extra material, (e)(n) stain, (f)(h) tear, (g) broken fabric, (i) burn, (l) tissue discoloration,
(m) floating woven wire

in figure 1.2, many anomalies and defects can occur during the production process. If
in design-time only holes, stains and tears were expected as a defective class, a defect
detection method will fail to detect extra material or any type of external corp, while
an anomaly detection system will be able to detect everything. This is because a defect
detection system will model the three defective classes, while the anomaly detection
system will model the fabric.

Methods for anomaly detection will be investigated in this thesis. In particular, the
focus will be on detection of anomalies through the analysis of images depicting the
product under inspection. This analysis will be done through the use of machine learning
techniques, in particular through the use of Convolutional Neural Networks (CNNs)
[73], which are a powerful instrument widely used in image analysis. In this context,
anomaly detection is a way more challenging then defect detection, because it resides in

4

1.1 What is an anomaly?

the groups of algorithms of one-class learning. In fact, object detection algorithms learn
the the appearance and the structures of the objects’ classes by analyzing the intra-class
differences, condition that does not hold in one-class learning.

1.1 What is an anomaly?

According to the Oxford dictionary [1], an anomaly is defined as:

"Something that deviates from what is standard, normal, or expected."

In the case of industrial quality inspection (IQI), an anomaly is a phisical, chemical,
mechanical variation from normality that is present on the product under inspection.
The detection of an anomaly sometimes can be really hard or - in some extreme cases -
impossible to detect. In the case of industrial quality inspection ensured through the
analysis of images, an anomaly is defined as a visual discrepancy of a portion or of the
entire product in the corresponding image. Depending from the type of product and
the desired quality level, slight variations in some case are accepted. For example, in
the fabric production, a cloth can be a little bit faded with respect to the forseen colors.
According to the definition, there is no assumption on the structure, shape and on the
visual apperance of an anomaly, therefore is assumed that an anomaly can be anything.

There are two different types of anomalies. The first ones are called highly localized
anomalies while the second one are the spatially distributed anomalies. In the first group
fall all the anomalies that affect a portion of the product under inspection that are highly
localized. For instance, it’s possible to determine if this type of anomaly is present in
the product by just looking a sub-portion of the corresponding image. In the spatially
distributed anomalies fall all those anomalies that can be found only by looking at the
entire picture at the same time. To better understand the difference between these two
classes of anomalies, see figure 1.1. The anomalies present in the examples from (a)
to (g) can be easily detected and marked with a red pen, while the unexpected fade
in example (h) cannot be separated from the jeans fabric on which it appears. This
hintrinsic difference among the two types of anomalies is reflected in the way anomalies
are represented in machine learning. Highly localized anomalies are indicated through
the use of a binary class where the white pixels indicate the anomalous area (while the
black the normal one). Differently, samples containing spatially distributed anomalies are
paired to anomaly-free images of the same product. Some researchers can wrongly think
that bounding boxes can be used to describe Highly localized anomalies. However, since
in anomaly detection we do not explicitly model the anomalies and thus we do not make

5

1.2 The normal signal (background)

Marble Wafer Textile Mammography

Wheel Nanofibers Sea Wood

Fig. 1.3 Examples of normal signals (anomaly-free samples).

any assumption on their apperance (like it would occur in a task of object detection),
this will result in a wrong choice.

1.2 The normal signal (background)

With the term normal signal [38], we indicate the images corresponding to the products
in analysis that do not present anomalies. These images represent the normality and
depend of course from the type and the nature of the product under investigation. In a
context of anomaly detection, the normal signal is also called background, because it’s the
part of the signal that we want to detect and discard during the analysis. What remains
then, is the forground, i.e. the anomalies that we want to detect. The anomaly-free
images that compose the normality, can be homogeneous or heterogeneous. In the case of
homogeneous samples, the pattern of the background is always the same, except for slight
allowed variations. In this case, we have repetitive patterns that compose the aspect of
the product. If these patterns have a specific frequency (or reside in a frequency range)
and can be easily identified in the frequency domain, they are called frequency separable.
In contrast, in the case of heterogeneous samples, the background can be composed by
structures that are spatially varying and there isn’t repetitivity among the different
portions of the signal. This last type of normal signal is harder to detect because it’s not
repetitive and therefore each sample is different from the others. Figure 1.3 shows some

6

1.3 Possible pipeline for anomaly detection

Product under
inspection

3D

2D

DATACENTER

EVALUATION
STAGE

ACCEPTED

TO BE FIXED

DISCARDER

SENSORING AREA
ACCEPT LINE

DISCARD LINE

M
EC

H
A

N
IC

A
L

CO
N

TR
O

L

MAXIMUM TIME FOR TAKING DECISION

Fig. 1.4 Pipeline for anomaly detection in an industrial production chain.

examples of anomaly-free samples. The nature of the background affects the choice of
the anomaly detection algorithm (for further details, see chapter 5).

1.3 Possible pipeline for anomaly detection

A possible pipeline to detect anomalies is the one depicted in figure 1.4. The product
under inspection that is coming out from an intermediate or the final processing stage
goes into a sensing area through a conveyor belt (black line on the bottom). In this place
a set of mechanical, chemical and/or phisical threatments are applied to the product
with the aim of highlighting possible defects and anomalies that otherwise wouldn’t be
visible. The sensing area is equipped with a set of acquisition devices that produce a set
of images that will be later analyzed by the evaluation stage. The types of devices depend
from the dimension of the product and the level of analysis. For instance, if the material
under inspection is of nanometric size, it can be adopted a Scanning Electron Microscope
(SEM), while if it’s required to control the quality of fabrics, it’s possible to adopt a
high-definition camera. The acquisition technology (2D, 2.5D, 3D, visible light, mono,
stereo, laser, x-ray, eco, thermocamera) depends from the characteristics that we want to
observe. For example, the use of a thermocamera will highlight thermal properties of the

7

1.4 Sources of anomalies

product under inspection and so on. Sometimes is necessary to adopt multiple devices of
the same type to cover the entire product area and then match the corresponding images.
Once the product is acquired, the produced images are transmitted to a datacenter,
usually redundant, and are later read by the evaluation stage. This last stage accesses to
the images stored in the datacenter and processes them with the aim to define weather
the product under inspection has to be accepted, must be discarded or it just needs to be
fixed. The evaluation stage is connected to a mechanical switch acting on the conveyor
belt. In this way, if a product does not pass the quality control, it will be dispached in
the discard line. A decision on the product must take place in a short time. Specifically,
this time depends from the distance d between the sensing area and the mechanical
dispatcher controlled by the evaluation stage (see figure 1.4). Let s be the speed to which
the product is moving inside the production chain. Then, the maximum time for taking
a decision is:

tmax = s

d
(1.1)

This thesis proposes a pipeline and different algorithms that can be adopted in the
evaluation stage in order to address the task of anomaly detection.

1.4 Sources of anomalies

An anomaly detection system does not take care only of the anomalies that can occur to
the products during the product chain. It has to take into account all possible anomalies
that can happen during the acquisition and transmission process. This is because in
most of the cases, there are no mechanisms and feedbacks to track down and identify the
source of the anomaly. Therefore, the evaluation stage must signal the anomaly in any
way, since there are no guarantees that the product is normal. There are multiple issues,
related or not to the quality of the product, that can occur during the decision chain.
Specifically:

• Product Issues. They can be a product dissimilarity from the orginal design or the
can come from an external interference, such as an external corp that gets stuck or
lie on the product.

• Acquisition Issues. Even though the acquisition is usually done in a closed environ-
ment, it can happen that a unwanted light spot shows up ruining the acquisition
conditions. This can also happen if some liquid contaminates the product, making
it more shiny. In this step, also a light failure or an unmodelled noise sensor can
produce anomalies.

8

1.5 Human-issues in detecting anomalies

• Transmission Issues. Transmission cables are subject to electromagnetic interference
(EMI), also called radio-frequency interference (RFI) and/or power surges that can
alter the data transmitted. High usages of the transmission pipelines can overflow
the throughput of the cables and mess up the passing data. These issues are usually
the ones that can be detected by using error detection techniques such as parity
bits, repetition codes, checksums, cyclic redundancy checks, cryphographic has
functions and error-correcting codes.

• Storage Issues. Storage failures or lossy data compression can also alter the
produced images.

• Evaluation Issues. The model complexity can be such that the system is overfitted
or underfitted. Furthermore, the model can work better for some products and
worse for others, allowing some anomalies to go through without being detected.
In safe-critical productions, the models are recall-oriented to avoid the placing on
market of defective products that can cause death or injuries of the clients. A
recall-oriented method however, can produce a lot of false positives that can make
the second operator under-estimate the reporting of the anomaly detection system
and thus making it unuseful.

1.5 Human-issues in detecting anomalies

Anomaly detection operated by a human operator can be affected by one or more factors
that can change the final outcome of the evaluation [113]. This can determine the miss
detection of an important anomaly or the detection of false positives, depending from
the status of the operator. These factors can be time- or space-varing. The time-varing
factors can loop in a time range or not, and they can interest a long or a short time range.
These issues can be cathegorized depending from their nature. In particular, there are:

• Intra-personal factors. Experts that evaluate the quality of the products are usually
subject to changes in their detection accuracy and evaluation criteria; for example
at the end of the day are more tired and have a decrease in the performances
or during time their experience increases making their ability more robust and
accurate.

• Inter-personal factors. Humans encharged to perform quality control usually
exchange their experience. This fact contributes to make the quality level quite

9

1.5 Human-issues in detecting anomalies

similar among experts, however it makes the outcome of the analysis different day
by day, and in some cases introduces wrong knowledge to the evaluators.

• Boundary-uncertainty factor. A quality operator is usually very good in doing its
job and spot anomalies in the product; however she/he becomes less accurate when
the task slightly changes and she/he is required to segment the found anomaly. This
is not because the operator is not good but because finding boundaries between the
anomalous part and the normal region is intrinsically hard. Imagine a scratch that
is very soft at the beginning and little by little goes deeper until it becomes a cut.
Suppose that in this case the scratches are allowed but the cuts no. It becomes
really hard to define a boundary after which this scratch becomes an anomaly
without further information except the visual inspection.

• Multiple-detection factor. When the person encharged to control detects an anomaly,
for him the product it’s discarded. Therefore she/he does not proceed in the analysis
of the product. This can be a problem when the found anomaly is fixable but there
are other anomalies that weren’t found. Another problem is the relativity between
the found anomalies. The degree of severity associated by the expert to the found
anomalies changes when the anomalies are found together because unavoidably the
human perception makes comparisons between objects in the field of view.

• Point-of-view factors. The analysis of a product is affected by the position of the
observer with respect to the product under analysis. In particular, the distance of
the observer changes its perception of the gravity of a possible anomaly. If the case
of a direct analysis on the product, this effect is usually discounted by changing the
viewing position. At the countrary, if the analysis is indirect and it’s done through
the analysis of images, the distance in this case corresponds to the zoom. This is a
problem because evaluation at different scales gives different outcomes.

• Product manipulation. Phisical manipulations are in some cases very useful to
highlight possible defects, however some products require a big effort for the quality
inspector and when she/he get tired, these manipulations become less useful. This is
a problem because it means that by the end of the day the number of miss-detections
increases.

10

1.6 Implications of adopting an automatic anomaly detection system

1.6 Implications of adopting an automatic anomaly
detection system

A company that inserts in its production chain an automatic detection system has some
implications that affect different aspects of the industrial ecosystem [88][64][72][106].

• Better job quality. The life of a quality inspector it’s really hard, because usually
the spots where she/he has to stay in order to accomplish this task are inside the
production chain and therefore they are small and confined places in cramped
conditions. The sobstitution with an automatic system would cause a change of
their work job inside the company, increasing the resources in another task in the
production and therefore the increase of their job and life quality.

• Lower prices. Quality control made by experts is expansive in terms of time (and
therefore money). The analysis of the quality in some contexts is considered a
bottleneck because the production chain in that part has to slow down the process.
An automatic system can save a lot of time and money removing this bottleneck
and therefore lower the price of the final product. Some companies do not check
the quality of all the products but only a subset to avoid this waste of time. Here
again, there is a loss of money because if a stock of products goes out in the market
with some problems, there are many costs that the company has to afford. The
more a product can affect the security of the persons and the more will be the cost
of an anomaly on a product that goes in the market. Another problem of doing
quality control only on a subset is that if a problem affects the production chain
(for example a machinery has a problem and causes anomalies on the products), the
signaling of this event is not immediate and therefore a big waste of raw material
occurs, increasing the final price of the single product.

• Higher product quality. An automatic system never gets tired and performs better
than the human quality control. Therefore the quality of the produced products
increases.

• Definition of a standard. Many factors of a human-based quality control such as
experience, the worker status, the culture, etc. make the decisions uneven. The
same product, presented to different experts (or to the same expert in different
times), will be judged differently. The adoption of an automatic system gets rid of
all those ambiguities and de facto creates a quality standard.

11

1.7 Lack of data

• Easyness of broadcasting new quality standards. An update of the quality standard
in an automatic system means a transmission of the software encharged to evaluate
the products. A software release it’s quick and inexpansive. Without the automatic
ADS, a new way to evaluate the products must be broadcasted between quality
control workers, therefore it’s required to make meetings and tutorials for the
updates. If it’s a worldwide company, this means removing experts from the
production chain and send them to around the world to update other teams.

1.7 Lack of data

The acquisition technology (2D, 2.5D, 3D, visible light, mono, stereo, laser, x-ray, eco,
thermocamera), the acquisition setup (mechanical, electrical or chemical treatments
to highlight defects) and the acquisition conditions (position of the camera, type of
light, acquisition environment) that characterize the sensing area are some of the most
important characteristic of an industrial quality inspection system and depend from the
type of manufact produced, the location and the structure of the production plant and
finally from the quality level that it’s required. Those aspects, in combination with the
anomaly detection methods, are kept secret from the companies because their study and
developement is very expensive and gives a lot of advantage on the market. For this
reason, for the task of industrial quality inspection in computer vision, there is a huge
lack of publicy available datasets. This is because if a competitor takes possession of
a company’s dataset, is able to determine the stages monitored along the production
process, the acquisition technology, setup and conditions. Furthermore they can compare
their quality with the company’s obtained quality. This operation is called reverse
engineering [40][39].

In this thesis, it will be proposed a method for data augmentation that will help
researchers and engineers to create robust and accurate anomaly detection systems
starting from a very small set of images. It will be shown that standard methods for
data augmentation are not sufficient in the case of long-tail datasets. The majority of
datasets for anomaly detection have a long-tail, because defects and anomalies occur
more then others. For example, a machinery with a known issue will create a way more
anomalies than external corps falling in the production line.

12

1.8 Structure of this thesis

EVALUATION STAGE

IMAGE
ENHANCEMENT

ANOMALY
DETECTIONSAMPLE ANOMALY MAP

Fig. 1.5 The evaluation stage is composed by two main steps: the enhancement of the
input images, which has the aim of highlighting anomalies and the anomaly detection
step, which is encharged to find highly localized and spatially distributed anomalies.

1.8 Structure of this thesis

In this thesis we will talk about the evaluation stage (see section 1.3 for further details).
A possible composition of the evaluation stage is the one depicted in figure 1.5. The
steps of which is composed the evaluation stage are two: the preprocessing of the input
images, here called image enhancement and the detection of the spatially distributed
and highly localized anomalies. Each one of these steps has a different ground-truth
type (see section 1.1) and different evaluation metrics. For this reason, these steps are
treated and benchmarked separately. The thesis is organized as follows: firstly it will be
introduced in section 2 the adversarial training, used later for the generation of synthetic
data. This part composes the background needed to understand the following chapters.
Afterwards, the problem of the lack of public data that affects the field of anomaly
detection is addressed in part II by introducing a novel method for data augmentation.
Then, there are two parts: part III that addresses the issue of enhancing the images
and part IV, containing the proposed methods for detecting anomalies. This last part
is divided in three chapters. The first one will give an introduction to the state of the
art regarding anomaly detection. The second will talk about feature-based methods for
anomaly detection (section 6), that are useful to detect the highly-localized anomalies;
while the last one (section 7) will talk about generative methods, which are used to
detect spatially-distributed anomalies.

13

Chapter 2

Adversarial Training

“You must not fight too often with one enemy, or you will teach him all
your art of war.”

Napoleon Bonaparte

Adversarial training is a special training configuration used to train a generative model.
In this setup, during training time, a further neural network called discriminator or
critic, is used to evaluate and improve the goodness of the generated results. The use of a
neural network as a training loss for another network generates better results with respect
to pointwise or local-operator-based losses such L1, L2 or SSIM [55]. Sometimes this
loss is also called perceptual loss [75] because it keeps into account higher level features
that are learned during training that promote better results. This loss, in contrast with
pointwise losses, generates more realistic and sharp contents. Pointwise losses in fact,
promote blurriness [124]. The two networks, the generator and the discriminator compete
against each other. Namely, at each step, the generator tries to fool the discriminator
by creating always more realistic content, while the discriminator has to find useful
features to distinguish between a real sample and a fake sample. The features found
by the discriminator are used by the generator to promote the quality of the synthetic
results. Figure 2.1 shows this particular training setup. Generators trained with this
particular setup are called Generative Adversarial Networks (GANs). Formally, GANs
are semi-supervised algorithms [93], because they don’t require paired samples. In
fact, the task of the generator is to project the input into the manifold of the desired
outputs and this is obtained by matching the features in the latent space given by the
discriminator. Depending from the loss adopted in this context and from the structure of
the discriminator, there are several variations of the GANs, in the next sub-chapters we
will present the most important GANs that represent the state of the art. This chapter

14

2.1 GANs - Generative Adversarial Networks

Fig. 2.1 General pipeline for training a generator of images in an adversarial fashion.
In training phase, a further network called discriminator or critic is used to improve
the quality of the synthetic images. The two networks are put in competition with each
other. The discriminator has to learn useful features to distinguish among real and
synthetic (fake) images. At each iteration, the generator tries to fool the discriminator
by exploiting the characteristics seen by the discriminator and improving the quality of
the synthetic images. In turn, the discriminator evolves and finds more complex features
to distinguish among real and fake images. The generator shown in this picture maps
random noise into the manifold of images depicting numbers (the MNIST dataset [74]).

has the aim to introduce the base techniques used later in this thesis to generate synthetic
data (see chapter 3).

2.1 GANs - Generative Adversarial Networks

To learn the distribution of the generator pg over the data x, Goodfellow et al. [46] define
a prior pz(z) on the input variables z. Then, they represent a mapping G (z, θg) from the
input space toward the desired manifold, here represented from the set of images x ∈ X,
where G is a differentiable function represented by a neural network with learnable
parameters θg. They also define a discriminator D (x, θd) as a multi-layer perceptron
that outputs a single scalar. In this case, D (x,) represents the probability that x comes
from the data rather then from the distribution of the generator pg. They train D to
maximize the probability of assigning the right label to both the training examples x and
the synthetic examples generated with G (z). Simultaneously, they train the generator
G in such a way that it has to minimize log (1−D(G(z))). The loss used in both cases
is the log loss. G and D in this context are playing a two-players min-max game with

15

2.1 GANs - Generative Adversarial Networks

(a) (b)

(c) (d)

Fig. 2.2 Examples of generated images with Generative Adversarial Networks (GANs). To
prove that the network does not overfit, in the last column is shown the closest real sample
in the feature space. The four versions have been trained to map noise respectively in the
(a) MNIST (b) TFD (c) CIFAR-10 - fully connected model (d) CIFAR-10 - convolutional
generator/discriminator manifolds.

16

2.1 GANs - Generative Adversarial Networks

value function V (G, D):

min
G

max
D

V (D, G) = Ex∼pdata(x) [log D(x)] + Ez∼pz(z) [log (1−D(G(z)))] (2.1)

This is equivalent of minimizing the Jensen-Shannon divergence which is a smoothed
and symmetric version of the Kullback divergence:

JSD[P∥Q] = JSD[P∥Q] = 1
2KL

[
P

∥∥∥∥P + Q

2

]
+ 1

2KL
[
Q

∥∥∥∥P + Q

2

]
. (2.2)

where P and Q here represent for shortness the synthetic and the real distribution.
Figure 2.2 shows synthetic samples generated with this method, starting from random
noise.

The training of a GAN corresponds to find the Nash equilibrium [87] in a non-convex
game. Using Gradient descent to seek for a Nash equilibrium may fail: the solution may
not converge. Furthermore, the solution oscillates rather than converges to a point. To
illustrate the situation with an example, suppose that two agents, namely A and B, have
respectively to minimize and maximize the parametric function f = xy. The two agents
can only manipulate respectively the parameters x and y. The Nash equilibrium in this
case occur when x = y = 0. When x = 0, agent A does not change the value, regardless
of what agent B sets as a value of its control parameter y (and viceversa). If x = 1, agent
A will change the sign of its parameter making it negative to win. The value function is
defined as:

V (x, y) = xy (2.3)

Applying gradient descent, the change in parameter x at each step is:

∂x

∂t
= −∂V

∂x
= −∂xy

∂x
= −y(t) (2.4)

Similarly, for agent B that operates on paramter y, the update with gradient descent is:

∂y

∂t
= −∂V

∂y
= −∂xy

∂y
= x(t) (2.5)

where t is the number of the iteration. If we combine the two equations, we get:

∂y

∂t
= x(t) (2.6)

∂2y

∂t2 = ∂x

∂t
(2.7)

17

2.2 DC-GANs - Deep Convolutional Generative Adversarial Networks

∂2y

∂t2 = −y(t) (2.8)

The solution will be:

x(t) = x(0)cos(t) + y(0)sin(t)
y(t) = x(0)sin(t) + y(0)cos(t)

(2.9)

From this simple example, we can understand two important things: the initial values
of the two parameters are foundamental for the quality of the generation and that the
system, rather then converging, oscillates.

2.2 DC-GANs - Deep Convolutional Generative Ad-
versarial Networks

Deep Convolutional GANs, introduced by Redford et al. [93], are similar to GANs
(section 2.1), with some differences. First of all, both generator and discriminator are
fully convolutional, therefore they replaced the fully connected layers present in the GANs.
Second, they constraint the output of the generator with a TanH function, because they
observed that using a bounded activation allowed the model to learn more quickly to
saturate and cover the color space of the training distribution. They also replaced pooling
layers with strided convolutions in the discriminator and fractional-strided convolutions
in the generator. Finally, they replaced ReLUs in the discriminator with Leaky ReLUs.
Figure 2.3 shows the architecture adopted for the generator. As it’s possible to see in
figure 2.4, these adjustments increase a lot the quality of the generated images, however
the DC-GANs are not suitable to generate high resolution images.

2.3 cGANs - Conditional Generative Adversarial Net-
works

One of the main problems with GANs, is that the task of the generator is a lot harder
with respect to the one of the discriminator. What happens sometimes is that, especially
at the beginning, the distribution of the generated samples is far from the real samples
(figure 2.5). Therefore, there are many sub-optimal discriminators that can separate the
two distributions, each one of them unable to give useful information on the appearance
and shape of the contents depicted in the real samples. This occurs because, since the
discriminator is evaluating unuseful features, the generator will try to enhance those

18

2.3 cGANs - Conditional Generative Adversarial Networks

Fig. 2.3 Architecture of the generator network.

Fig. 2.4 Images of bedrooms generated with the DC-GANs [93].

19

2.4 wGANs - Wasserstein Generative Adversarial Networks

Fig. 2.5 When the distribution of the generated samples is too far from the distribution
of the real samples, there are many sub-optimal discriminators (here highlighted in light
blue). When this happens, the discriminator is not compelled to learn useful features
to discern among the two distributions. Consequently, the generator does not have a
beneficial feedback able to increase the quality of the generated output.

features in the synthetic examples. If this happens, the system will not converge. Starting
from the analysis of this problem, Mirza et al. [83] improved the stability of the system
by introducing a new constraint. Specifically, they force the discriminator to distinguish
not only from real or fake examples but also to make a classification task between other
classes. For instance, by introducing a new classification task in the discriminator’s duty,
it has to define and evaluate features also in the real samples. Those features result very
useful for the generator since now with this new constraint represent real characteristics
of the original manifold that must be considered in order to create engaging synthetic
contents. This operation is called conditioning. Of course this operation is not always
possible to apply, maybe because there aren’t classes to distinguish from in the original
manifold, or maybe because the ground-truth associated to this new classification task is
not available. The conditioning solves in part the problems of the DC-GAN, however
more steps must be done in order to have an adversarial scheme able to converge in any
case.

2.4 wGANs - Wasserstein Generative Adversarial
Networks

In the work of Arjovsky et al. [7], they adopt a more general formulation of adversarial
training. Specifically, they see it as a training system guided by a distance measure

20

2.4 wGANs - Wasserstein Generative Adversarial Networks

d(pr, pg) between the distributions of the real (pr) and the generated (pg) samples. In
this conception, instead of using the log loss as a distance measure like it happens in
GANs (see section 2.1), they investigate different losses such as the total variation (TV)
distance and the Jensen-Shannon (JS) divergence and finally they adopt the earth-mover
(EM) [76] or Wasserstein distance [97]. Let π (Pr, Pg) be the set of all joint distributions
γ whose marginal distributions are Pr and Pg. Then:

W (Pr, Pg) = inf
γ∈π(Pr,Pg)

E(x,y)∼γ [∥x− y∥] (2.10)

where inf is the infimum (also known as greatest lower bound).
The earth-mover distance is not so simple to understand. First of all let’s talk about

the goal of the EM distance. Probability distributions are defined by how much mass
they put on each point. Imagine we started with distribution Pr and wanted to move
mass around to change the distribution into Pg. Moving mass m by distance d costs m · d
effort. The earth mover distance is the minimal effort we need to spend to move one
distribution toward the other. So now the question is, why do we need to use the infimum
to calculate the minimum effort? If we see each γ ∈ E as a transport plan, in order to
execute it we need to move γ (x, y) mass from x to y for each x,y. Two properties must
be respected in order to transform Pr into Pg:

• The amount of mass that leaves x is
∫

y γ(x, y)dy. This must equal the amount of
mass originally at x.

• The amount of mass that leaves y is
∫

x γ(x, y)dx. This must equal the amount of
mass originally at y.

This shows why the marginals of γ ∈ π must be Pr and Pg. For scoring, the effort spent
is
∫

x

∫
y γ(x, y). To enforce the Lipschitz constraint [36] on the critic’s model, Arjovsky et

al. propose to clip the weights.
To better understand the earth-mover distance, let’s consider the example shown in

figure 2.6. We have 6 boxes of equal unary weight and we want to move them from the
left to the right in the placeholders marked by dashed squares. The moving cost of each
box is equal to its weight times the distance. As it’s possible to see in figure 2.6, the
cost of moving the box number 1 from position 1 to position 7 (for a total distance of 6
positions) is (7− 1)× 1 = 6. Figure 2.7 shows two different moving plans, γ1 and γ2. For
example, in the first plan γ1, we move 2 boxes from location 1 to location 10 and the
entry γ(1, 10) is therefore set to 2. Both plans have a cost of 42. Of course not all plans
have the same cost.

21

2.4 wGANs - Wasserstein Generative Adversarial Networks

Fig. 2.6 The cost of moving a box of weight w from posstart to posend is equal to its
weight w times the distance d = posend − posstart. Moving block number 1 with unary
weight from position 1 to 7 will therefore cost (7− 1)× 1 = 6.

Fig. 2.7 γ1 and γ2 are two different plans. Each plan is composed by the number of
movements from a starting position to the ending position, for example γ(1, 10) = 2
means that two boxes have been moved from location 1 to location 10. γ1 and γ2 have
the same overall cost, however not all possible plans have the same cost.

22

2.5 wGANs-GP - Wasserstein Generative Adversarial Networks with
Gradient Penalty

2.5 wGANs-GP - Wasserstein Generative Adversar-
ial Networks with Gradient Penalty

Gulrajani et al. [48] state that the weight clipping strategy proposed by Arjovsky et al.
[7], is not the best way to enforce a Lipschitz constraint. This is because if the clipping
parameter is large, it can take a long time for any weight to reach their limit, making
it harder to train the critic until optimal. At the contrary, if the clipping is small, this
can easily lead to vanishing gradients when the number of layers is high. To overcome
this problem, the propose a mechanism called gradient penalty. This mechanism, instead
of clipping the weights, penalizes the model if the gradient norm moves away from its
target normal value of 1. The final loss becomes then:

L = Ex∼Pg [d(x̃)]− Ex∼Pr [d(x)] + λEx̃∼Px̃

[
(∥∇x̃D(x̃)∥2 − 1)2

]
(2.11)

where:
Lwass = Ex∼Pg [d(x̃)]− Ex∼Pr [d(x)] (2.12)

is the original Wasserstein loss, while the second part:

P = λEx̃∼Px̃

[
(∥∇x̃D(x̃)∥2 − 1)2

]
(2.13)

is the gradient penality term used to ensure Lipschitzness. Batch normalization is not
used in the critic to avoid correlation between samples, and therefore breaking the
just-described constraint.

wGANs-GPs represent de facto the most stable technique to create accurate generators.
In the next chapter I will propose a method for data augmentation that partially exploits
this technology to create new synthetic samples.

23

Part II

Data Augmentation

24

Chapter 3

Data Generation

“Fantasy is hardly an escape from reality. It’s a way of understanding
it.”

Lloyd Alexander

In this chapter, a novel deep-learning based method for data augmentation is proposed.
This method is suited for texturized images and is able to create new synthetic samples
for per-pixel classification tasks such as semantic segmentation or anomaly detection.
The output is composed by a set of completely new RGB images together with their
associated semantic layouts.

The generation process is carried out in three main steps described in Section 3.2: In
the first step the system creates new semantic layouts that will represent the generated
ground-truth. This step exploits adversarial training (see chapter 2 for further details).
In the second step a similarity search is performed among semantic layouts in the input
dataset to find similar associated texture as source for the last step. In the third step new
images are created by synthesizing new images conditioned on the generated semantic
layouts. The new pairs composed by images and layouts can be used to increase existing
datasets without any further processing steps.

The effectiveness of the proposed method will be shown by training three architectures
for semantic segmentation on the generated synthetic dataset and testing on real images.
It will be shown that the networks increase their performances if trained only on synthetic
images in contrast to the performances obtained with real data. In some cases the relative
improvement is above the 90%. Moreover we carried out a comparison with classical
data-augmentation approaches. It has been noticed that the proposed data augmentation
outperforms its counterpart and can be used together with it in order to further improve
models’ generalization capabilities. Finally it has been observed that, models trained with

25

3.1 Related works

this data augmentation, tend to improve particularly on classes with lower cardinality.
This suggests its effectiveness in dealing with the well known long-tail problem.

In Section 3.2 it’s disclosed the proposed method in details by exposing every single
step from the generation of the semantic layout to the generation of the RGB images. In
3.3 it has been measured the effectiveness of the proposed method by using the generated
synthetic images to train different neural network architectures and testing them on real
data.

3.1 Related works

Data augmentation was firstly introduced by Krizhevsky et al. [68]. Their work showed
how the synthetization of new examples starting from the trainset, helps to reduce
overfitting and makes a classification system more accurate in prediction with never-seen
data. Specifically, from a real sample, they created a set of new synthetic samples
through the application of simple transformations such as translation and horizontal
reflection. This work inspired many researchers to explore and exploit data augmentation.
In particular, Cubuk et al. [30] defined a simple mechanism called AutoAugment of
data augmentation that, differently from Krizhevsky et al. [68], which applies the
transformations blindly, is able to determine the best data augmentation policy by
creating a search space of data augmentation policies and evaluating the quality of each
policy as the overall accuracy of the system. A policy consists in the set of transformations
introduced by Krizhevsky et al. [68], extended with the operations of rotation and shearing.
Furthermore, the frequency of each operation is determined during the search of the
best policy. Always in the context of object detection, Schwartz et al. [101] designed a
method for integrating a new unseen class in a trained system (operation called few-shots
learning). This algorithm uses a modified autoencoder, namely a ∆-encoder, both to
extract transferable intra-class deformations (∆s) between same-class pairs and to apply
those deltas to the few samples of the new introduced class. Buslaev et al. [23] extended
the set of transformations and focused their work on increasing the speed of application of
the proposed transforms. With the focus moving on data generation through adversarial
learning, many researchers adopted generative adversarial networks (GANs) [46] for
learning a mapping between a desired input and the manifold of class examples. For
example, Antoniou et al. [6] train a generator that learns to modify an existing sample
starting from random noise. [9] use a model conditioned on the object images from
their marginal distributions to generate a realistic image from their joint distribution
by explicitly learning the possible interactions. Relative Appearance Flow Network

26

3.2 Proposed method

(RAFN) is used to generate new viewpoints of a specific object. Zhou et al. [126] learn
to synthetize novel viewpoints of an object by predicting the appearance flows. In the
context of anomaly detection, Lim et al. [77] use adversarial auto-encoders (AAE) to
generate samples from a single class.

3.2 Proposed method

In the current section it is exposed in details this data-augmentation method. The
proposed system is composed by three main steps:

• Semantic layout generation: A new synthetic semantic layout is generated by
means of a Generative Adversarial Network. The network is trained to produce
layouts with a similar structure to the original groundtruth layouts of the real set.

• Image retrieval: The synthetic layout of the previous step is used to search for
similar layouts in the real set. One or more layouts with the corresponding images
are selected to be used in the next step.

• Image generation: the retrieved layout and the corresponding image are used,
together with the synthetic layout, to generate a new image to augment the real
dataset.

Figure 3.1 shows the overall pipeline. In the next three subsections we will describe in
detail these three steps. As it will be shown in 3.3, the performances of three neural
network architectures, trained on synthetized data, is boosted by a large margin. This
method is particularly suitable with texturized images, when the amount of data is really
low and the dataset distribution has a long-tail form.

3.2.1 Semantic layout generation

The generation of a synthetic semantic layout is achieved by learning a mapping between
random noise z and the manifold of semantic layouts T that compose the ground-
truth of the trainset. The synthetization process is entrusted to a convolutional neural
network trained through an adversarial training schema. Specifically, it has been adopted
Wasserstain GANs with gradient penalty (WGAN-GP) [48], for their stability enforced
through gradient penalty and for showing great performances in generating content. The
training loss is:

L = Ex∼Pg [d(x̃)]− Ex∼Pr [d(x)] + λEx̃∼Px̃

[
(∥∇x̃D(x̃)∥2 − 1)2

]
(3.1)

27

3.2 Proposed method

Fig. 3.1 Pipeline of the proposed method.

The network of the generator is inspired by [48] and is composed by a first layer that
maps a noise-map of size 4× 4 in a set of 16N activation maps of the same size, where N

is the number of filters desired in the last layer. Afterwards, a set of 4 blocks iteratively
upsamples the featuremaps to reach the final size of (64× 64). Each block is composed
by three sub-blocks: the first increases the number of feature-maps as a preprocessing for
sub-pixel upsampling and is composed by a convolution layer with kernel size 3× 3 and
padding 1, batch normalization and ReLU. Afterwards, the featuremaps are upsampled
of a factor 2 using PixelShuffle [102] layer. The block terminates with a final processing
composed by a convolution of 3× 3 with padding 1, a batch normalization and a ReLU.
Each i− th block transforms 24−i+1N feature maps into a set of 24−iN and extends the
spatial extend of a factor 2. Table 3.1 shows in detail the composition of the generator.

Similarly, the critic used in this step is composed by a set of downsizing blocks
composed by a convolutive layer of kernel 3 × 3 and padding 1 followed by batch
normalization and a max pooling of size and stride 2. A final convolution with kernel
size 4, projects the last featurmap having size 8N × 4 × 4 into a single number, that
will be the output of the critic. Table 3.2 shows in detail the composition of the critic.
For both networks, the batch normalization has a momentum of 0.01. The output is
upsampled with a nearest neighbour strategy to a scaling factor 4, reaching a spatial
dimension of (224× 224). The generation of a smaller output and the later upsampling,
allows us to have a system able to work on very small datasets. This technique cannot
be used on RGB images, since the scaling of the pixels would lead to blurry images that
would not present small local structures.

28

3.2 Proposed method

Table 3.1 Structure of the convolutional neural network of the generator. All convolutional
layers have a kernel size of 3 and a padding of 1, except for the last one that has a kernel
size of 1 and stride 1.

Stage Operation Output size
Pre-processing Input 1× 4× 4

Conv + B.N. + ReLU 16N × 4× 4
Conv. Network Conv + B.N. + ReLU 64N × 4× 4

PixelShuffle 16N × 8× 8
Conv + B.N. + ReLU 8N × 8× 8
Conv + B.N. + ReLU 32N × 8× 8
PixelShuffle 8N × 16× 16
Conv + B.N. + ReLU 4N × 16× 16
Conv + B.N. + ReLU 16N × 16× 16
PixelShuffle 4N × 32× 32
Conv + B.N. + ReLU 2N × 32× 32
Conv + B.N. + ReLU 8N × 32× 32
PixelShuffle 2N × 64× 64
Conv + B.N. + ReLU N × 64× 64

Post-processing Conv C × 64× 64

Table 3.2 Structure of the convolutional neural network of the critic. All convolutional
layers have a kernel size of 3 and a padding of 1, except for the last one that has a kernel
size of 4 and stride 1.

Stage Operation Output size
Pre-processing Input C × 64× 64
Conv. Network Conv + ReLU + MaxPool N × 32× 32

Conv + ReLU + MaxPool 2N × 16× 16
Conv + ReLU + MaxPool 4N × 8× 8
Conv + ReLU + MaxPool 8N × 4× 4

Post-processing Conv 1× 1× 1
View 1

29

3.2 Proposed method

3.2.2 Image retrieval

It has been observed that the quality of the final RGB image synthesized in the last step
depends heavily on the choice of the samples of the trainset used for the generation. As
it’s described later in fact, for rendering a semantic portion as realistic RGB content, it’s
required to pick a sample from the trainset containing the same semantic content. It has
been noticed that the similar is the size of this real semantic portion with respect to the
synthetic semantic zone, the better will be the results in the RGB generation process.
Furthermore, since there is a visual consistency by adjacent semantic portions, the more
classes are matched in one sample, the more realistic will appear the final image. Two
metrics compose the consistency score, the intersection, which represents the number
of common semantic classes between the synthetic Ss and the real St sample, and the
coverage factor, which indicates the average ratio between the two corresponding areas.
Let Hs and Ht be respectively the histograms of Ss and St representing the number of
pixels for each semantic zone. The intersection is defined as:

intersection(Ss, St) =
C∑

i=0
[(Hs(i) > 0)(Ht(i) > 0)] (3.2)

where C is the number of classes. The coverage factor is defined as:

converagefactor = Hs

Ht

(3.3)

Defined I as the set of real samples having the maximum intersection with Ss, the
final sample S∗

t that will be associated to the synthetic map will be chosen from the
subset of samples having the maximum intersection:

S∗
t =Si∈I [intersection(Ss, Si)] (3.4)

This process is repeated until all classes have been matched with a ground-truth
sample. At the end of each iteration, the pixels corresponding to the matched classes are
zeroed and the process is repeated. The output of this operation, is a set ground-truth
samples and, for each sample, the classes that will be rendered from that sample. For
example, it’s possible to see in figure 3.1 the output of this operation. To the generated
semantic layout are associated two real semantic layouts. The first one is used to match
the white and the yellow region, while the second one only to generate the blue portion.
Algorithm 1 defines more in detail the just-described image retrieval system.

30

3.2 Proposed method

Algorithm 1: Procedure for finding ground-truths in the trainset with similar
areas with respect to the generated one.

Input: H ×W gen. sem. image Ss ∈ {0, . . . , C − 1}
Input: ground-truths T
Input: min coverage allowed pmin in perc.
Input: max coverage allowed pmax in perc.
Output: Collection of similar layouts S
Output: Collection F of class ids to get from each layout in S
S ← [];
F ← [];
while true do

intersectbest ← 0;
coveragefactorbest ← 0;
Sbest

t ← null;
T← random sort T;
Hs ← class histogram of Ss;
for St in T do

Ht ← class histogram of St;
coveragefactorcur ← Hs/Ht;
intersectcur ←

∑C
i=0 [(Hs(i) > 0)(Ht(i) > 0)];

if intersectcur >= intersectbest then
if coveragefactorcur >= coveragefactorbest then

intersectbest ← intersectcur;
coveragefactorbest ← coveragefactorcur;
Sbest

t = St;
end

end
end
S ← S ∪ Sbest

t ;
Hbest

t ← class histogram of Sbest
t ;

foundclasses ← argwhere
[
(Hs > 0)(Hbest

t > 0)
]
;

F ← F ∪ foundclasses;
for c in foundclasses do

Ss[Ss = c]← 0
end
if
∑

r

∑
c Ss(r, c) = 0 then

break
end

end
return S,F

31

3.2 Proposed method

3.2.3 Image generation

This part of the pipeline concerns the production of new synthetic images. First, a brief
recap of the overall method: the first step consists in generating a new synthetic layout
as presented in Section 3.2.3. As a second step the synthetic layout is used to retrieve a
similar layout from the real set together with the associated real image. Finally the third
step, described in the current section, consists in the generation of a new synthetic image
conditioned on the synthetic layout. Our image generation method produces, in the
majority of cases, synthetic samples that are almost indistinguishable from the real ones.
Despite that, for our application, we actually do not care if the images are perceptually
similar to the real one as long as the model benefits from training on the synthetized
data.

Texture Synthesis using CNNs: Gatys et al. presented in [42] a work on texture
synthesis using Convolutional Neural Networks. The idea is to use a pretrained Neural
Network to shape a random initialized image to match the feature distribution of a real
input image. Given a source texture image, first features are extracted from this image,
then a summary statistics is computed on the features to obtain a stationary description
of the source image. Finally, a white noise image is shaped to have the same stationary
description by performing gradient descent from the feature extractors layers to the white
noise image.

Our method for texture synthesis: It is heavily inspired by [42] but we enhanced
it by adding the capability to synthesize different textures from a single image and
even from multiple images. As in [42] we characterize a texture by passing it through a
pretrained convolutional neural network (i.e. the VGG-19 model [103]). We obtain a
list of activation maps for each layer in the network and store each of them in a matrix
F l ∈ RNl×Nl where F l

jk is the activation of the jth filter at position k in layer l. Then we
compute a masked Gram matrix Glc ∈ RNl×Nl on each F l to obtain a stationary summary
discarding spatial information. This representation will be used to generate the synthetic
image. The Gram matrix Glc

ij is computed as

Glc
ij =

∑
k

F l
ikδ(Mik = c)F l

jkδ(Mjk = c) (3.5)

where Glc
ij is the inner product between the feature maps i and j in layer l and class c.

M is a spatial mask that codifies information about the spatial layout of the texture. In
each position Mik it is stored the class index (in our case the texture type). Then δ(·) is
a simple dirac function that output 1 in correspondence to the correct class index and 0
otherwise. A Gram matrix Glc

ij is computed for each class in the layout mask and for

32

3.2 Proposed method

Fig. 3.2 Texture synthesis using CNNs. White noise image is modified by backpropagation
in order to obtain the synthetic image.

each network activation layer we intend to use in the optimization process. The new
synthetic image is generated by gradient-based optimization. We initialize the new image
with white noise. The loss function is a mean-squared distance between the Gram matrix
of the real image and the Gram matrix of the image being generated. The partial loss
Llc for a specific layer l and a specific class c can be expressed as:

Llc = 1
4N2

lcM
2
lc

∑
i,j

(Glc
ij − Ĝlc

ij)2 (3.6)

and finally the total loss between the real image x⃗ and the image being generated ˆ⃗x is
expressed as:

L(x⃗,̂⃗ x) =
L∑

l=0

C∑
c=0

wlcLlc (3.7)

where wl are weighting factors for each layer and each class. Notice that, since we
optimize only the part of the target image with a specific class index, we can optimize
using different source images containing different classes. Thus in our image generation
process, after retrieving the image with the largest coverage factor and optimizing the
corresponding classes, if there are some classes in the target image not yet optimized,
we run the optimization process twice masking out the image regions already optimized.
Figure 3.2 shows in details this generation process.

33

3.3 Experiments

Fig. 3.3 Random samples thrown from the dataset collected and used in this work.

3.3 Experiments

3.3.1 Dataset

The dataset used in this work is composed by 448 images of asphalt acquired in the
city of Milan (Italy) and ground-truthed by the author. The dataset is splitted in 314
images of train and 134 images of test. Each sample is composed by an RGB image
of size 585× 1040 and a corresponding semantic layout that defines, for each pixel, to
which semantic class it belongs. Figure 3.3 shows some examples of the collected dataset.
The semantic classes here considered are 8: asphalt, lane mark, raw asphalt, crack, dirt,
terrain and gravel.

3.3.2 Evaluation

To evaluate the effectiveness of our data augmentation technique we trained three
different neural networks. For the purpose of this work we are not interested in absolute
performance values. Instead we want to assess the relative improvements that our data
agumentation technique can bring compared to training models on real data. We chose
three quite efficient network architectures because they can be trained and evaluated
very fast. Moreover we observed significant differences in performances due to different
random initialization of network weights. Thus, for each experiment in this work, we
trained/tested at least five times each network to improve the statistical significance
of our results. The use of efficient architectures allowed us to carry on a feasible set of
experiments with reasonable computational time.

ENet [89] is one of the most efficient architectures for semantic segmentation. It
adopts an encoder-decoder design with 28 stacked bottleneck layers. It’s efficiency is
due to different factors, mainly the use of asymmetric convolutions. Different works
investigated the use of asymmetric convolutions both from a theoretical point-of-view
[105, 3] and in a practical setting [109, 107]. The main idea is to spatially decompose

34

3.3 Experiments

3× 3 convolutional filters into 3× 1 followed by 1× 3 filters. The resulting block is 33%
more efficient in terms of FLOPs and allows to insert a further non-linearity in between
the convolutions. This theoretically increases the representational power of the whole
convolution block [3].

ERFNet [95] can be located in the middle between an efficiency oriented architecture
and an accuracy oriented one. It adopts an encoder-decoder structure inspired by ENet
where the main building block is modified to increase model accuracy. It employs a
new block called Non-Bottleneck-1D and a fast downsampling strategy where the inner
activations are spatially downsampled in the earlier part of the network to keep the
majority of the computational burden for the latest stages.

GUNet [82] adopts a multi-resolution encoder to exploit at the same time low-
resolution structures and high-resolution details. The two resolutions are processed
by different branches of the network which shares the same weights. Multi-resolution
features are fused by means of a Fusion Module. The decoder part consists of a Guided
Upsampling Module to efficiently output the prediction map at full resolution.

3.3.3 Results

To show the effectiveness of our data augmentation method, we trained the three different
network architectures described in subsection 3.3.2 on different types of data (real and/or
synthetic), with our without geometrical data augmentation. Two experiments have
been done. The first one has the aim to study the increase of the performances by using
only synthetic samples, in function of the number of used synthetic samples. As it’s
possible to observe from figure 3.4, less than 1300 synthetic samples are required to have
a system trained only on generated data that outperforms the same system trained only
on real data. To make this experiment statistically relevant, each point in the graph is
the average of the performance scores obtained in 10 runs.

The second experiment shows the performances achieved by the three semantic
segmentation architectures using real and/or synthetic data proposed by our method
with or without geometrical data augmentation. This experiment shows clearly that the
use of synthetic data significantly improves the performances of the three systems. This
gain in performances is a lot more accentuated on classes with low-cardinality, such as
Dirt, Terrain and Gravel. These classes in fact, score 0 if the system is trained with real
data only.

35

3.3 Experiments

Fig. 3.4 Increase of the performances varying the number of synthetic samples. In this
case the systems never saw real data during training. As it’s possible to observe, with
less then 1300 synthetic samples, all the methods outperform the results achieved with
real data only.

36

3.3 Experiments

R R+DA S S+DA R+S R+S+DA
Asphalt 63.2 71.8 47.0 66.1 53.2 55.3

Lane mark 79.2 86.1 90.0 85.0 82.9 81.8
Raw asphalt 0.0 0.0 14.0 22.0 21.1 17.7

Crack 0.1 0.0 17.7 21.7 17.0 22.2
Dirt 2.4 0.3 30.9 21.8 47.8 56.9

Terrain 0.1 0.0 12.4 18.4 8.9 14.5
Gravel 13.2 5.5 18.3 26.2 21.9 30.7

AVG 22.6 23.4 32.9 37.3 36.1 39.9

(a) GUNet
R R+DA S S+DA R+S R+S+DA

Asphalt 69.8 66.2 49.2 62.1 60.9 55.6
Lane mark 84.6 84.5 76.8 75.5 77.9 90.3

Raw asphalt 0.0 0.0 14.4 15.9 22.6 30.0
Crack 0.0 0.0 16.8 21.4 20.7 29.8

Dirt 0.1 0.0 29.0 18.6 37.7 33.9
Terrain 0.0 0.0 7.0 14.5 10.4 18.6
Gravel 9.8 9.9 18.7 26.6 24.3 28.9

AVG 23.5 22.9 30.3 33.5 36.4 41.0

(b) ENet
R R+DA S S+DA R+S R+S+DA

Asphalt 67.1 70.2 55.2 57.1 39.1 55.4
Lane mark 83.3 84.5 85.6 84.2 81.0 79.6

Raw asphalt 0.0 0.0 18.3 19.7 12.7 21.8
Crack 0.0 0.1 18.6 25.8 18.1 27.0

Dirt 0.1 3.9 26.1 50.3 34.3 47.2
Terrain 0.0 0.0 9.7 19.7 18.9 17.4
Gravel 16.8 7.9 18.0 21.4 22.5 24.1

AVG 23.9 23.8 33.1 39.8 32.4 38.9

(c) ERFNet

Fig. 3.5 Performances achieved by the three semantic segmentation architectures using
real (R) and/or synthetic data (S) proposed by our method with or without geometrical
data augmentation (DA). As it’s possible to see, all networks have a increase of the
performances when trained also with synthetic samples, which is highly accentuated in
long-tail classes such as Dirt, Terrain and Gravel, where the use of only real data is not
sufficient.

37

3.3 Experiments

Fig. 3.6 Random synthetic samples.

38

Part III

Image Enhancement

39

Chapter 4

Image Enhancement

“Natural beauty takes at least two hours in front of a mirror.”

Pamela Anderson

4.1 Introduction

Image enhancement is a foundamental step for anomaly detection. Input images in fact,
can be affected by undesired light effects or present very poor contrast. All those factors
can decrease the performances of the system, either by creating a huge amount of false
positives that will be sent in the discard line or by making anomalies less visible and
thus, harder to detect. In the context of this chapter, we address the task of image
enhancement on photos depicting man-made subjects like the products under inspection
as well as on other types of subjects, such as natural landscapes. This relaxation allows
us to compare the proposed method with the relative state of the art. In this conception,
we present an automatic retouching system that can rival with the ability of an expert
human retoucher.

The study of image enhancement algorithms has a long tradition in the field of image
processing and a large variety of method have been proposed in the literature [115].
Recently, the problem has been tackled as an application of machine learning. In its con-
ceptually simplest form, the problem is formulated as an image-to-image translation [59]
between the raw input images and their versions post-processed by expert photographers.
This approach led to remarkable results, but it is not computationally feasible to apply
it to the high resolution images produced by modern acquisition devices. Image-to-image
translation systems are usually run on low resolution thumbnails. Since these systems

40

4.1 Introduction

need to learn to reproduce the whole content of the images from scratch,they often
produce photographs with some visible artifacts or some loss of the original details.

As noticed by Gharbi et al. the limitations of image-to-image translation can be
avoided if, instead of estimating pixelwise the whole retouched image, only the transfor-
mation between raw and retouched images is computed [43]. In this way it is possible
to perform the estimation on a small resolution thumbnail and to apply the resulting
transformation on the original high-resolution photograph. Moreover, fine image details
can be preserved and image artifacts can be avoided by just restricting the transformation
to belong to a suitable family of transformations.

In this preprocessing stage it has been followed the latter approach. It has been
designed SpliNet, a method based on a convolutional neural network (CNN) that analyses
raw image to select an image transformation. The transformations considered here are
global channel-by-channel transfer functions that resemble those used by the “color
curves” feature provided by most photo-editing programs. Color curves are a powerful
tool that allows expert retouchers to obtain a variety of effects including brightness and
contrast adjustment, color balancing, gamma correction, and many others. The curves
are typically defined as the interpolation of a set of reference points that the retoucher
places on a plot. Once defined, the curves are globally applied to the pixels of the input
image. The curves produced by the proposed neural network are natural cubic splines.
Splines have been chosen because they can effectively approximate arbitrarily complex
functions.

Moreover, splines are easy to interpret and they would make it possible to design a
semi-automatic system, where the automatically estimated color curves could be manually
refined by the photographer.

For an automated photo editing system, being able to learn to reproduce the retouching
style of a single photographer often is not enough. In fact, there is not a single optimal
way of retouching photographs. Each person may prefer a different level of saturation,
brightness, contrast, etc. and these preferences may vary with the semantic content of
the images. On the basis of these considerations, we extended the neural network to
make it able to reproduce the different styles of the users with a single model.

As a further extension, we devised two different strategies that allow,without retraining
the network, to model new users on the basis of their retouching preferences on a very
small set of images.

To verify the effectiveness of our approach we used the MIT-Adobe FiveK dataset [24].
This dataset consists of 5000 photographs, each one retouched by five photo-editing

41

4.2 Related work

experts. The results we obtained demonstrate that the proposed method allows to
accurately model both single and multiple users.

4.2 Related work

Image enhancement is a classic problem in image processing which consists in altering an
input image to improve its quality. The literature on image enhancement presents three
main approaches: interactive enhancement methods [78, 5] exploit the interaction with
the users to help them in modifying the images to meet their needs; learning enhancement
methods [63] model the users’ preferences and use them to guide the processing steps;
automatic enhancement methods model the whole enhancement procedure, usually with
the help of a training set of reference images that the system learns to reproduce [43].

In this work we focus on automatic enhancement which, over the other approaches,
has the advantage of being applicable in a broad set of scenarios including those where
the users lack any skill in photo editing or image processing. Methods of this kind can be
naturally divided in two categories, namely the paired [59] and the unpaired [127] ones.
The former uses a set of input/output pairs and learns how to reproduce the relationship
between them. Methods in the unpaired category, instead, use two unrelated sets of
input and output images. Learning from unpaired images is clearly more difficult, since
it requires to abstract the concept of enhanced image and to capture the elements that
make an image pleasant to the human observer.

The semantic content can significantly influence the perceived quality of images. To
take this into account some methods, that we call semantic aware, exploit additional
information extracted by specialized detectors. Among potentially valuable cues there
are semantic segmentation [79], saliency maps [122], illumination maps [49] etc.

Another important aspect of enhancement methods is the performance criteria which
guided their design. Some of them are accuracy-oriented and have the main goal of
achieving a small difference between the actual and the desired output images; other
methods are speed-oriented because they have been designed to reduce the processing
time; there are also versatile methods that can be tuned in one or the opposite direction
by modifying a suitable parameter [15].

The literature on image enhancement is very rich and includes a large variety of
methods. Table 4.1 lists a selection of recent methods characterized in terms of the
criteria described above. In the following we will describe those that are especially
relevant for our work.

42

4.2 Related work

Table 4.1 Image enhancement methods in the state of the art. Each method is categorized
according to its approach (interactive, learning-based or automatic), the modeling strategy
(with paired or unpaired training samples), its use of additional information (semantic
aware or unaware), and the main performance goal (optimized for accuracy, speed or
tunable).

Enhanc. Info Sem. Goal

Method

in
te

ra
ct

iv
e

lea
rn

in
g

au
to

m
at

ic
pa

ire
d

un
pa

ire
d

aw
ar

e
un

aw
ar

e
ac

cu
ra

cy
sp

ee
d

tu
na

bl
e

Bae et al. [10] ✓ ✓ ✓ ✓
Cohen-Or et al. [28] ✓ ✓ ✓ ✓
Lischinski et al. [78] ✓ ✓ ✓ ✓
An and Pellacini [5] ✓ ✓ ✓ ✓
Kang et al. [63] ✓ ✓ ✓ ✓
Kaufman et al. [65] ✓ ✓ ✓ ✓
Bianco et al. [16] ✓ ✓ ✓ ✓
Yan et al. [121] ✓ ✓ ✓ ✓
Bianco et al. [17] ✓ ✓ ✓ ✓
Bianco et al. [15] ✓ ✓ ✓ ✓
Gharbi et al. [43] ✓ ✓ ✓ ✓
Guo et al. [49] ✓ ✓ ✓ ✓
Isola et al. [59] ✓ ✓ ✓ ✓
Zhu et al. [127] ✓ ✓ ✓ ✓
Bianco et al. [13] ✓ ✓ ✓ ✓
Hu et al. [54] ✓ ✓ ✓ ✓

SpliNet (single user) ✓ ✓ ✓ ✓
SpliNet (multi user) ✓ ✓ ✓ ✓

43

4.2 Related work

Gharbi et al. presented a supervised method for image enhancement that focuses
on computational efficiency to achieve real-time processing on smartphones [43]. The
workload is split in a low-resolution stream and a high-resolution stream. The low-
resolution stream, which carries the highest payload, is composed of a convolutional
neural network with two terminal branches that respectively estimate local and global
features. The outputs of the two branches are later combined together. In turn, the
high-resolution stream learns a guidance map used to upsample the features inferred in
the low-resolution stream and finally those per-pixel transformations are applied to the
input at its full-resolution.

To allow a more precise local enhancement, Yan et al. introduced an image descriptor
that accounts for the local semantics of the input image [121]. This method applies a color
transformation to each pixel of the input image. Specifically, the color transformation
used in this case is a polynomial of degree two, therefore each input pixel must be firstly
projected into a monomial basis containing the 10 terms of the polynomial expansion.
To improve accuracy from a perceptual point of view, the input image is firstly converted
in the CIELab color space.

Bianco et al., relax the constraint of inferring a per-pixel transform by capturing local
and global variations with a set of per-patch color transformations [15]. The dimension
of the patch is a parameter that adjusts the algorithm toward accuracy of reconstruction
or toward speed, depending on the needs of the user. The smaller the patch size, the
higher the accuracy but also the processing time. Artifacts are prevented by constraining
to a smooth transition between adjacent transformations. Here, the color transformation
is a polynomial of degree three whose parameters are estimated by a neural network.

In contrast to previous methods, Hu et al. apply a sequence of simple image ma-
nipulations. An adversarial training scheme allows training from unpaired image data
[54]. Reinforcement learning is used to make the system able to iteratively choose which
operation (if any) need to be applied.

The method proposed by Isola et al. also uses adversarial training to perform an
image-to-image translation [59]. In this case, the output of the neural network is the
final enhanced image. The neural network acts as a regressor, and the price to pay
to have such a powerful regressor is that the number of parameters is very high and,
therefore, is also high the number of training examples required to make it work properly.
Furthermore, since there are no constraints that explicitly preserve the content of the
images, this method can introduce undesired local patterns that corrupt the structure of
the input image.

44

4.3 Proposed method

The method proposed by Zhu et al. exploits cycle redundancy to constrain the type
of transformation between a source manifold and a target manifold [127]. Given two
unpaired sets of images two convolutional networks are trained to transform images
of one kind into images of the other, and vice-versa. Adversarial losses are used to
make sure that the concatenation of the two transformations produces consistent results.
The approach is similar to that of Isola et al. but, since the unpaired training is more
challenging, the results it obtains are usually worse.

4.3 Proposed method

In this work we propose a novel CNN-based method that estimates a global color
transform for the enhancement of raw images. This method is designed to improve the
perceived quality of the images by reproducing the ability of an expert in the field of
photo editing. The transformation that is applied to the input image is found by a
convolutional neural network that has been specifically trained for this purpose. More
precisely, the network takes as input a raw image and produces as output three sets
of control points (also called nodes), one set for each color channel. Then, the control
points are interpolated and the resulting functions are globally applied to the values of
the input pixels.

As interpolating functions we chose to use natural cubic splines, since they can
approximate arbitrarily complex functions (provided that enough nodes are specified)
while remaining as smooth as possible (among all interpolating functions natural splines
are those with minimal average curvature). The smoothness of splines introduces an
implicit form of regularization that prevents the abrupt changes and the artifacts that can
be often observed for methods based on look-up tables or on image-to-image translation.
An important property of this approach is that, being both smooth and global, the
transformation preserve the content of the input images. Moreover, as we will show,
spline interpolation can be computed very effectively within a deep learning framework,
allowing for a rapid training of the neural network.

The proposed network architecture is end-to-end trainable. This is possible because
splines are continuous and differentiable functions. To speed up the computation and to
make the method suitable for real-time processing, the estimation of the nodes of the
spline is calculated on a downsampled version of the input image of size 256× 256, and
the enhancement is applied to the original image at full resolution.

We called the proposed method SpliNet; its overall architecture is shown in Figure 4.1.
The processing pipeline consists of three major steps: the estimation of the nodes, their

45

4.3 Proposed method

Fig. 4.1 Processing pipeline of the SpliNet image enhancement method. The input image
is resized to 256×256. Then the nodes of the spline are computed through a convolutional
neural network. Finally, for each color channel a natural cubic spline interpolates the
nodes found and the resulting color transformation is applied to the pixels of the input
image.

interpolation with splines and, finally, the color transformation of each color channel
with the corresponding spline. The next sections describe these steps in detail.

4.3.1 Node estimation

Splines are parametric, piecewise polynomial curves widely used for data interpolation [34].
In this work we considered natural splines that are formed by a set of cubic polynomials.
A spline s(x) that is used to interpolate a set of N nodes (x1, y1), . . . , (xN , yN) is defined
as the combination of N − 1 polynomials p1, p2, . . . , pN−1:

s(x) =
(

N−2∑
i=1

pi(x)χ[xi,xi+1)(x)
)

+ pN−1(x)χ[xN−1,xN](x), (4.1)

where [xi, xi+1), is the interval assigned to the polynomial pi, and where χA(·) is the
indicator function of set A. Each cubic polynomial is usually expressed in the canonical
form where it depends on four parameters ai, bi, ci, di:

(4.2)pi(x) = ai (x− xi)3 + bi (x− xi)2 + ci (x− xi) + di.

Beside the passage through each node (s(xi) = yi), cubic splines are also required
to have continuous first and second derivatives. Natural splines impose the additional
smoothness constraint that the second derivative is null at the endpoints (s′′(x1) =
s′′(xN) = 0).

A convolutional neural network is used to find the nodes of the splines (one for each
color channel) that are the most suitable to enhance the input image. More precisely, we
take the x coordinates to equally divide the [0, 1] range (therefore xi = (i− 1)/(N − 1)),
while the y coordinates are computed by the network.

The architecture of the CNN is inspired by the work of [15], since it provided
good performances on a similar problem. More popular and larger architectures would

46

4.3 Proposed method

Table 4.2 Structure of the convolutional neural network used to estimate the coordinates
of the nodes of the splines. N denotes the number of nodes of the spline and H ×W the
size of the input image.

Stage Operation Output size
Pre-processing Input H ×W × 3

Bilinear resizing 256× 256× 3
Conv. Network Conv. + ReLU 63× 63× 8

Conv. + ReLU + B.N. 31× 31× 16
Conv. + ReLU + B.N. 15× 15× 32
Conv. + ReLU + B.N. 7× 7× 64
Avg. Pooling 1 ×1× 64
Linear + ReLU 64
Linear 3N
Reshape N × 3

Post-processing Identity Sum N × 3

probably be unsuitable for this task, due to the limited amount of training data. The
downsampled version of the input image having size 256× 256, is firstly processed by a
set of convolutional layers followed by ReLUs. With the exception of the first block, all
the activations are normalized through a Batch Normalization layer with a momentum
of 0.01. After four of these blocks, we apply an average pooling with size 7× 7 to reduce
the feature map to a single feature vector. The last part of the architecture includes two
fully connected layers separated by a ReLU that projects the activations into the splines
node space. As a final step, we add the node positions xi = (i− 1)/(N − 1) to the output
of the last fully connected layer. This last operation is inspired by the success of residual
networks [51] and has the effect, when the parameters of the network are close to zero,
to produce splines close to the identity function. This allows for a quicker training of the
network and for an easier initialization of its parameters.

The output is a vector containing the N nodes of the 3 splines, therefore it’s composed
by N × 3 elements. The architecture is summarized in Table 4.2.

4.3.2 Spline interpolation

For each color channel, we need to find the spline which interpolates the nodes estimated
by the CNN. In other words we have to compute the coefficients ai, bi, ci and di of
each polynomial. Since there are N − 1 polynomials we need 4N − 4 constraints to

47

4.3 Proposed method

determine all the coefficients. The interpolation constraints require that the polynomials
pass through the nodes at their endpoints:

pi(xi) = yi,

pi(xi+1) = yi+1, i ∈ {1, . . . , N − 1},
(4.3)

and the continuity of the derivatives imposes that:

p′
i(xi+1) = p′

i+1(xi+1),
p′′

i (xi+1) = p′′
i+1(xi+1), i ∈ {1, . . . , N − 2}.

(4.4)

Finally, natural splines require a null curvature at the extremities:

p′′
1(x1) = p′′

N−1(XN) = 0, (4.5)

for a total of 4N − 4 constraints.
Following Bartels et al. we may express the constraints as a system of linear equa-

tions [12]. To this aim, it is useful to consider the expressions of the derivatives of the
polynomials:

p′
i(x) = 3ai (x− xi)2 + 2bi (x− xi) + ci,

p′′
i (x) = 6ai (x− xi) + 2bi.

(4.6)

By substituting equations (4.2) and (4.6) in the constraints (4.3) and (4.4) we obtain

ai = mi+1 −mi

6h
,

bi = mi

2 ,

ci = yi+1 − yi

h
−
(

mi+1 + 2mi

6

)
h,

di = yi,

(4.7)

where mi = s′′(xi) is the second derivative of the spline at the nodes, and where h =
xi+1−xi = 1/(N−1) is the distance between two consecutive nodes (the expressions would
be significantly more complex if the nodes were not equally spaced). Beside m1 = mN = 0
that is an obvious consequence of (4.5), the other values m⃗ = (m2, m3, . . . , mN−1)T can
be obtained by solving the following system:

Am⃗ = 6
h2 V y⃗, (4.8)

48

4.3 Proposed method

defined in terms of the vector y⃗ = (y2, y3, . . . , yN−1)T and of the tridiagonal matrices

A =

4 1 0 · · · 0
1 4 1 · · · 0
0 1 4 · · · 0
...
0 0 0 · · · 4

, V =

−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...
0 0 0 · · · −2

. (4.9)

After the computation of the matrix

B = 6
h2 A−1V, (4.10)

the solution for m⃗ is given by the linear expression

m⃗ = By⃗. (4.11)

Note that under the assumption that nodes are equispaced between 0 and 1 the matrix
B depends only on the number of nodes N . Therefore, it can be computed in advance
once this value has been set.

4.3.3 Color transformation

Once the nodes have been estimated upon a downsampled version of the input image and
the three splines have been interpolated, we apply the color transformation to each pixel
of the high resolution image. Given a value x̂ ∈ [0, 1] for one of the three color components
the transformed value is computed by applying the spline s(x̂) for the corresponding
color channel. This is done in two steps: first the index ı̂ of the polynomial is computed
as

ı̂ = min {1 + ⌊x̂× (N − 1)⌋ , N − 1} , (4.12)

then the value ŷ is obtained by applying the selected polynomial

ŷ = pı̂(x̂). (4.13)

The whole image enhancement procedure is summarized by Algorithm 2. Note that all
operations are differentiable, and that they can be easily parallelized. Therefore the
algorithm is suitable for an efficient implementation capable of running on the modern
GPUs commonly used for deep learning applications.

49

4.4 Experimental setup

Algorithm 2: The SpliNet image enhancement procedure.
Input: H ×W color image I
Input: Number of nodes N
Output: H ×W color image O
begin

Compute B by following Equation (4.10);
Ĩ ← Donwsample(I);
(y⃗(r), y⃗(g), y⃗(b))← CNN(Ĩ); // Forward pass of the network
for c ∈ {r, g, b} do

m⃗← By⃗(c); // Eq. (4.11)
for i = 1 to N − 1 do

Compute ai, bi, ci, di according to (4.7)
end
for k = 1 to H do

for l = 1 to W do
ı̂← 1 +

⌊
I

(c)
kl × (N − 1)

⌋
; // Eq. (4.12)

if ı̂ > N − 1 then
ı̂← N − 1

end
O

(c)
kl ← pı̂(I(c)

kl); // Eq. (4.2)
end

end
end

end

4.4 Experimental setup

Measuring the performance of image enhancement methods is a challenging task. Beside
the subjective human judgment, objective assessment procedures are limited by the
amount of reference data available. The most common approach consists in measuring
the difference between the images produced by the algorithms and the images retouched
by human operators (hopefully chosen among experts in the field). The evaluation
procedures reported in the literature differ in the sets of images used for training and
test, in the performance metrics etc. Since there is not a commonly recognized standard
for the evaluation of enhancement methods, we devised our own setup that is described
in detail by the following sections. The dataset used in this work is the FiveK datset
(see appendix A.4 for further datails).

50

4.4 Experimental setup

Raw Expert A Expert B

Expert C Expert D Expert E

Fig. 4.2 A sample from the FiveK dataset. For each raw image the dataset includes five
different versions retouched by five expert photographers.

4.4.1 Metrics

Following [43], the first performance criterion considered is based on the difference in
color appearance as perceived by a human observer. To this end, the ground truth and
output images are converted in the perceptually uniform color space CIELab. Close
attention should be paid to the conversion step of images into CIELab color space [41],
since using the wrong transformations could easily bias the error calculation. In this
work, since both the experts’ ground truth images and the enhanced output images are
in the sRGB color space, the standard equations from sRGB to CIELab as defined by
International Electrotechnical Commission (IEC) [57] are used (see Appendix B).

The first color difference metric used is the ∆E76(CIE76) that is calculated as l2

distance in CIELab color space:

∆E76 =
√

(L1 − L2)2 + (a1 − a2)2 + (b1 − b2)2 =
√

∆L2 + ∆a2 + ∆b2, (4.14)

The second color difference metric used is the ∆E94(CIE94) [29], that is a refinement
of the first one and is computed as weighted l2 distance in CIELab color space:

∆E94 =

√√√√(∆L

KLSL

)2

+
(

∆C

KCSC

)2

+
(

∆H

KHSH

)2

, (4.15)

51

4.4 Experimental setup

where ∆C = C1 − C2 =
√

a2
1 − b2

1 −
√

a2
2 − b2

2, ∆H =
√

∆a2 + ∆b2 −∆C2, KL = KC =
KH = 1, SL = 1, SC = 1 + K1C1, SH = 1 + K2C1 with K1 = 0.045 and K2 = 0.015.

The third error metric used is the ∆L, that only considers the difference in luminance,
thus discarding the color information. This is used to better understand how the
luminance and color components contribute to the final ∆E error.

The last metric considered is the structural similarity index (SSIM) [116], that is
a perception-based model that considers image degradation as perceived change in
structural information. The SSIM is calculated on 11× 11 sliding windows to produce a
local distortion map, which is then averaged to obtain the final global SSIM index. Given
the two sliding windows x and y respectively belonging to the luminance components of
the input and ground truth images, the local SSIM index is computed as follows:

SSIM(x, y) = (2µxµy + c1) (2σxy + c2)(
µ2

x + µ2
y + c1

) (
σ2

x + σ2
y + c2

) , (4.16)

where µx and µy are respectively the average of x and y, σ2
x and σ2

x respectively the
variance of x and y, σxy the covariance of x and y; c1 = (k1L)2,c2 = (k2L)2 two variables
to stabilize the division; L the dynamic range, k1 = 0.01 and k2 = 0.03.

4.4.2 Implementation and training

SpliNet has been implemented in the Python programming language using the Pytorch
deep learning framework [90]. All the operations, including image preprocessing, down-
sampling, color space conversions, node estimation and spline interpolation have been
integrated into an end-to-end deep learning module. Except where differently specified,
we set the neural network to estimate ten nodes per spline.

The training procedure consisted of 40 000 iterations of the Adam learning algo-
rithm [67] set to minimize the average ∆E76 between the output and the ground truth
images. The learning rate was set to 10−4, the weight decay was 0.1 and each mini-batch
consisted of 20 images. The whole training procedure requires about 220 minutes of
computation on a NVIDIA Titan Xp GPU.

The source code, the trained models and the data are publicly available in the github
repository https://github.com/dros1986/neural_spline_enhancement.

52

https://github.com/dros1986/neural_spline_enhancement

4.5 Single-user modeling

Table 4.3 Accuracy in reproducing the test images retouched by expert C (for ∆E76,
∆E94 and ∆L the lower the better, for SSIM the higher the better).

Method ∆E76 ∆E94 ∆L SSIM
Optimal gamma correction 17.05 12.31 9.14 0.793
Exposure [54] 16.98 13.42 9.54 0.872
CycleGAN [127] 16.23 12.30 9.20 0.835
Unfiltering [15] 13.17 10.42 6.76 0.922
HDRNet [43] 12.14 9.63 6.27 0.930
Pix2pix [59] 11.13 8.53 5.55 0.915
SpliNet 10.70 8.17 5.52 0.942

4.5 Single-user modeling

In the first experiment assessed how well the proposed method is able to learn to reproduce
the retouching style of a single photographer. As commonly done in the state of the art
we considered the images from expert C in the FiveK dataset.

In Table 4.3 we report the results obtained by our method measured in terms of ∆E76,
∆E94, ∆L, and SSIM. The table also reports the results obtained by recent methods in
the state of the art retrained on our version of the training set by using the source code
provided by their authors. As a further reference, we also add the errors obtained by a
gamma correction where the gamma is chosen for each image with a grid search that
minimizes the ∆E76.

The first thing that can be noticed from the results reported in Table 4.3 is that the
worst results are obtained by the optimal gamma correction; this means that learning just
a gamma correction, even if optimal, is not enough to learn to reproduce the retouching
style of a photographer; on the other side, this also means that all the considered methods
learn a transformation that is more complex than a simple gamma correction. From the
comparison with the state of the art it can be seen that the proposed method obtains
the best results in terms of all the error metrics considered. The second best method,
i.e. Pix2Pix [59], is very close in terms of ∆L luminance error but makes larger ∆E76

and ∆E94 colorimetric errors. Moreover, thanks to the smoothness and the globality of
the spline-based transformation used, the proposed method has the largest SSIM index.
This means that our method is the one that introduces the less amount of structural
artifacts, which is the main drawback of GAN-based methods such as CycleGAN [127]
and Pix2Pix [59]. The second best method in terms of SSIM index is HDRNet [43], that
is the third one in terms of colorimetric error.

53

4.5 Single-user modeling

In Figure 4.3 we report some sample images processed by our method and by the
state-of-the-art methods considered; for all of them the original raw image and the
ground truth image retouched by expert C are also reported. It is possible to notice how
Exposure [54] and CycleGAN [127] tend to produce visual results that are very different
from the ground truth, while our method, HDRNet [43] and Pix2pix [59] are much closer.
This shows how difficult is to learn from unpaired examples.

In order to show what is the typical shape of the splines learned by our method, some
further examples of images processed by our method together with the corresponding
learned splines are reported in Figure 4.4. It is possible to notice how the transformation
is different for each image, and how for some images the splines are almost the same for
each color channel, while for others are different.

4.5.1 Color distribution

In Table 4.5 we report the average histograms in CIELab color space for the images
processed with our method and the ground truth images retouched by expert C. Three
different histograms are reported, one for each color channel, all computed with bin
size equal to five. To better show the differences between the two histograms they are
reported using a logarithmic scale. From the plots it is possible to notice how our method
does a pretty good job in predicting the luminance channel L, while it tends to produce
images with a and b distributions more dense towards zero, resulting more conservative
in terms of color saturation.

4.5.2 Dependence on the image content

The best enhancement for an image may depends on its semantic content. To identify
the type of images that favor our method and those where the worst errors occur, we
computed the performance metrics on homogeneous subsets of the test set. To do so we
used the categorization provided with the FiveK dataset which divides images by subject,
illumination, time of the day and location. The results in terms of average ∆E76 are
reported in Figure 4.6. Low errors are obtained on outdoor images taken by day under
a natural illumination. This kind of images usually do not present severe distortions
such as strong color casts, exaggerated contrasts, over- or under-exposition, etc. Colors
tend to be natural, and their distribution does not require a sophisticated adjustment.
Moreover, these images are quite common so that it is relatively easy for the model to
learn to reproduce a pleasant dynamic range using easily identifiable elements, such as
the sky, as a reference.

54

4.5 Single-user modeling

Raw ExpertC SpliNet HDRNet Exposure Unfiltering Pix2Pix Cycle-GAN

1

Fig. 4.3 Examples of test images enhanced by SpliNet and by other methods in the
state of the art. The first column contains the input raw images, the second shows the
target images retouched by expert C and the remaining columns report the results of the
enhancement methods considered.

55

4.5 Single-user modeling

Raw

Splines

SpliNet

ExpertC

1

Fig. 4.4 Examples of images processed by SpliNet. From top to bottom the rows contain:
input raw images, inferred splines color curves, SpliNet outputs and the ground-truth
images retouched by expert C.

10-3

10-2

10-1

 0 20 40 60 80 100

P
(L

)

L

10-7

10-5

10-3

10-1

-120 -60 0 60 120

P
(a

)

a

10-5

10-3

10-1

-120 -60 0 60 120

P
(b

)

b

Expert C
Processed

Fig. 4.5 Comparison of the distributions of the Lab color channels for the whole test set
retouched by expert C and processed by the proposed method.

56

4.5 Single-user modeling

 9

 11

 13

 15

 17

a
b
st

ra
ct

a
n
im

a
l(

s)
m

a
n
-m

a
d

e
n
a
tu

re
p

e
rs

o
n
(s

)
u
n
kn

o
w

n

a
rt

ifi
ci

a
l

m
ix

e
d

su
n
 o

r
sk

y

in
d
o
o
rs

o
u
td

o
o
rs

u
n
kn

o
w

n

d
a
w

n
 o

r
d
u
sk

d
a
y

n
ig

h
t

u
n
kn

o
w

n

Subject Illum. Location Daytime

Δ
E
7
6

Fig. 4.6 Detail of the accuracy (average ∆E76) in reproducing the test images retouched
by expert C, measured on different subsets of the test set. Images are divided by subject,
type of illumination, location and time of the day.

The most difficult images to enhance are those with an unusual content (e.g. abstract
subject) or imaging conditions (e.g. taken by night). Beside being inherently more
difficult to process, these kind of images have also few occurrences in the training set,
making them even harder to enhance for a learning-based method.

4.5.3 Sensitivity analysis

We performed a sensitivity analysis of our method with respect to the number of spline
nodes to be estimated. We plot in Figure 4.7 the ∆E76, ∆E94, and ∆L error values
obtained by our method varying the number of spline nodes in the range [5, 20] by steps
of five. From the plot it can be seen that using a low number of spline nodes results
in the worst performance, and then the performance starts to flatten when using ten
nodes. Therefore in the experiments we used ten spline nodes, since it represents the
best trade-off between accuracy and model complexity.

4.5.4 Processing time

One of the advantages of our method is that it allows to quickly process high-resolution
images. The more complex operations are carried out on a low-resolution thumbnail
and the final application of the splines scales linearly with the number of pixels in the
input image. Figure 4.8 reports the actual processing time as a function of the size
of the input image obtained by executing our method on a computer equipped with
a NVIDIA Titan Xp GPU. The plot shows how for small images the processing time
grows slowly. In this case, in fact, the most expensive operation is represented by the
forward step of the convolutional neural network, which is executed on thumbnails of

57

4.6 Multi-user modeling

 5

 6

 7

 8

 9

 10

 11

 5 10 15 20

E
rr

o
r

Number of nodes

ΔE76
ΔE94
ΔL

Fig. 4.7 Errors in reproducing the images retouched by expert C varying the number of
nodes defining the splines.

 1

 10

 100

 1000

32×32
64×64

128×128

256×256

512×512

1024×1024

2048×2048

4096×4096

P
ro

ce
ss

in
g

 t
im

e
 (

m
s)

Image size

Fig. 4.8 Processing time (in milliseconds) taken to enhance images of various sizes. Each
data point is the average over 100 runs.

256× 256 pixels. For larger images, the total time is dominated by the application of
splines. Even large images can be processed in reasonable times. For instance, it takes
about 185 milliseconds to enhance a 2048× 2048 image.

4.6 Multi-user modeling

For a completely automatic system, being able to accurately reproduce the retouching
abilities of a professional photographer is certainly a remarkable result. However, in
practice it doesn’t matter how accurate the reproduction and how good the photographer
are, such a system would leave many users unsatisfied. In fact retouching is not only a
technical issue, but it is also a form of art, where subjective aesthetic judgments can be of
cardinal importance. A very colorful style could be perceived as stunning by some users

58

4.6 Multi-user modeling

Fig. 4.9 Multi-user version of SpliNet. The input image is processed by taking into
account the identity of the user, provided as a signature, and his preferences, encoded in
a numerical profile.

and as exaggerated by others; similarly, a conservative style could be judged by different
viewers as realistic and natural looking, or as too bland and dull. An ideal system for
automatic image enhancement should be able to adapt its style to the taste of the user.

In order to make our system adaptive, we modified the model described in Section 4.3
to support the reproduction of the styles of multiple retouchers. In addition to the image
to process, the neural network now takes as input a signature that uniquely represents
a user. The signature is transormed in a profile of that user, consisting of a tuple of
coordinates in a suitable user space. The profile is then injected in the network that will
use it to adjust its output accordingly. More in details, a linear projection U maps the
signature vector s⃗ into the user profile p⃗ = Us⃗ which is then concatenated to the feature
vector produced by the convolutional layers of the network, after the spatial average and
before the fully-connected layers. The coefficients of the projection matrix U are learned
together with the other parameters of the network.

The training process is performed by feeding to the network pairs of images and
signatures and by requiring (via the loss function) that the output images match those
retouched by the users identified by the signatures. By optimizing U , the training process
places users in suitable positions in the user space. For instance, users with a similar
retouching style are expected to be located near each other (i.e. they will have similar
profiles). A low-dimensional user space forces the network to model the style of the users
by identifying their common preferences and by highlighting their main stylistic traits.
A scheme of the multi-user version of the system is reported in Figure 4.9.

We trained the modified model on the training set of the FiveK dataset by using the
4000 training images retouched by all the five available experts. We used five-dimensional
one-hot vectors as signatures (the signature of expert A was s⃗A = ⟨1, 0, 0, 0, 0⟩, and so
on), and we set the user space to be two-dimensional (to increase its dimensionality we

59

4.6 Multi-user modeling

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

pA

pB

pC

pD

pE

Fig. 4.10 Graphical representation of the user space. The points represent the profiles of
the five experts, while the dashed lines represent the two principal components (the first
goes approximately int the pA–pE direction, while the second is in the pB– pC direction).

would probably need more experts). The number of training iterations was five times
that used to train the single expert version.

As a result of the learning process we obtained, together with the trained model,
a definition of the user space. Figure 4.10 shows the positions in that space of the
profiles of the five experts. To better understand the user space we performed a principal
component analysis of the five profiles and we observed how moving along the two principal
components changes the output of the network. Figure 4.11 reports the outcome of this
experiment on a small sample of test images. It is evident that by moving in the direction
of the first principal component it is possible to adjust the brightness of the image. For
the second component, instead, we observe images with warmer tones on one side and a
prevalence of cold colors on the other. Therefore we can say that the second component
captures the chromatic element of the retouching style. By combining these directions
(i.e. by moving in the user space) it is possible to obtain a variety of retouching styles
including, but not limited to, those of the five experts used during the training.

We evaluated the learned model on the 1000 test images repeating the evaluation five
times, each time selecting the profile of a different expert. Table 4.4 reports the results
obtained. By comparing the performance of the single- and the multi-user models we
notice how this latter does not incur in any loss in performance. On the contrary, the
multi-user version slightly outperforms the single-user version. This is not too surprising,
if we consider that, like in multitask learning [26], the multi-user model is encouraged to
learn more robust intermediate features in order to be able to reproduce different styles.

60

4.6 Multi-user modeling

(a)

(b)

Fig. 4.11 Examples of image enhancement performed by the multi-user model by moving
the user profile along the first (a) and the second (b) principal components in the user
space. For each principal component the pictures span a range of ±10 standard deviations
from the center of the user space.

61

4.6 Multi-user modeling

Table 4.4 Performance of the single- and multi-user models.

Model User ∆E76 ∆E94 ∆L

Single-user Expert A 11.32 9.48 7.40
Expert B 9.01 7.27 4.87
Expert C 10.70 8.17 5.52
Expert D 10.93 9.16 7.03
Expert E 10.78 8.44 5.73

Multi-user Expert A 10.91 9.09 7.16
Expert B 8.69 7.01 4.88
Expert C 10.50 7.97 5.61
Expert D 10.63 8.93 6.97
Expert E 10.33 8.03 5.52

From the computational point of view the difference between the multi- and the single-
user versions is negligible: the multi-user model includes just 138 additional parameters:
10 in the projection matrix U and 128 extra coefficients in the first fully-connected layer.

4.6.1 Modeling a new user

Given a new user it would be desirable to be able to adapt the system to his style without
asking him to provide a whole new training set of retouched photographs. Instead, it
would be very convenient to reproduce his retouching style just by choosing a suitable
profile for him in the user space. To this end, we devised two strategies: the voting
strategy and the fitting strategy.

In the voting strategy multiple retouched versions of the same image are shown to
the new user and he is asked to choose the one he likes most. This is repeated multiple
times with different images keeping track of the answers. Let K be the number of users
on which the multi-user model has been trained and let p⃗i be their profiles in the user
space i = 1, . . . , K. The profile p⃗(V) for the new user is computed from the number Ni of
times in which he chose an image retouched by user i:

p⃗(V) =
∑K

i=1 p⃗iNi∑K
i=1 Ni

. (4.17)

In practice the new profile is a convex combination of the known ones, where the
coefficients are the fractions of votes expressed by the new user.

62

4.6 Multi-user modeling

In the fitting strategy the new user is given a set of m images I1, . . . , Im and is asked
to retouch them according to his preferences, producing the images Î1, . . . , Îm. Then his
profile p⃗(F) is chosen by minimizing the average dissimilarity between the output of the
network and the retouched images:

p⃗(F) = arg min
p⃗∈R2

1
m

m∑
i=1

d(Îi, SpliNet(Ii, p⃗)), (4.18)

where d(·, ·) is a dissimilarity measure and SpliNet(Ii, p⃗) is the output of the method
when fed with the input image Ii and when injected with the user profile p⃗. To find a
solution to this optimization problem we initialize p⃗ with random values and we perform
several iterations of the gradient descent algorithm by keeping all the parameters of the
network fixed and by updating each time only the profile p⃗.

To assess the two modeling strategies we performed several simulations in which one
of the experts in the FiveK dataset plays the role of the new user, and the other four act
as the known users. To do so, we retrained the multi-user model five times, each one by
excluding from the training set the images retouched by one of the experts. Then, in
each simulation we selected a given number m of training images and applied the voting
or the fitting strategy to obtain the user profile of the expert whose images were excluded
from training. In the case of the voting strategy for each image the vote was assigned
to the expert whose retouched version was less dissimilar from that retouched by the
target expert. In the case of the fitting strategy we simply used in (4.18) the images
retouched by the target expert. We tried with different number m of images and for
each value of m ∈ {1, 3, 10, 30, 100, 300, 1000} we carried out ten simulations for both the
strategies. As a dissimilarity measure we used the average ∆E76. For the fitting strategy
we performed 100 iterations of gradient descent with a learning rate of 0.1.

The outcome of the simulations is summarized in Figure 4.12. With the voting
strategy we obtained promising performance, never far from those obtained by the model
trained on all the five experts (i.e. those in Table 4.4). Its behavior is very stable as
the worst case is relatively close to the average one. The voting strategy presents one
major weakness: the estimated user profile is restricted to be within the convex hull of
the profiles of the known users. This means that when the optimal profile lies outside
the convex hull we cannot obtain a good approximation. For instance, if we refer to
Figure 4.10 this happens for expert A, since it cannot be expressed as a combination of
the other four. In other words, the voting strategy cannot extrapolate the style of the
new user outside the range of styles seen during training. This weakness is reflected in the

63

4.6 Multi-user modeling

 10

 12

 14

 16

 18

 1 10 100 1000

Δ
E
7
6

Number of images

Expert A

 8

 10

 12

 14

 16

 18

 1 10 100 1000

Δ
E
7
6

Number of images

Expert B

 10

 12

 14

 16

 18

 1 10 100 1000
Δ

E
7
6

Number of images

Expert C

 10

 12

 14

 16

 18

 20

 1 10 100 1000

Δ
E
7
6

Number of images

Expert D

 10

 12

 14

 16

 18

 20

 1 10 100 1000

Δ
E
7
6

Number of images

Expert E
Voting
Fitting
Training

Fig. 4.12 Performance obtained on the test set by modeling each expert with the voting
and the fitting strategies. Each plot reports the mean ∆E76 over ten simulations,
varying the number of images used to model the user. The boundaries of the shaded
areas represents the best and the worse simulations, while the dashed line reports the
performance obtained for the target expert with the multi-user model trained on all the
experts.

64

4.6 Multi-user modeling

plots: only for experts B, C and D the voting strategy allows to match the performance
of the fully trained model.

The fitting strategy, instead, poses no restrictions to the placement of the new profile
in the user space. In fact, in all the cases it allowed to obtain performance that are equal
or even slightly better than those obtained by the trained model, provided that at least
ten images are used to fit the user profile. However, the lack of restrictions makes this
strategy unreliable when a small number of images are used. In the worst case the fitting
strategy can perform very poorly if less than ten images are used.

In terms of performance, the outcome of the simulations provided a clear recom-
mendation: the voting strategy should be preferred when three or less images are used,
otherwise the choice should fall on the fitting strategy. Beside that, the voting strategy
has a couple of advantages over the fitting strategy: it is computationally less intensive,
and it does not require the new user to actually retouch the images since he is just asked
to choose among those already retouched by other users.

65

Part IV

Anomaly Detection

66

Chapter 5

Introduction To Anomaly Detection

“Science is the systematic classification of experience.”
George Henry Lewes

The state of the art for anomaly detection is composed by several methods, each one
of them searching anomalies in different target products. The design of the methods
depends of course from the structure and the appearance of the types of products under
inspection, however, some of those methods can be used on different domains with similar
properties without problems. Figure 5.1 shows a possible topology for cathegorizing
anomaly-detection methods upon the assumpion they make on the normal signal (here
also called background). If the background is homogeneous (see section 1.2 for reference)
and it’s frequency-separable, a solution based on the analysis in the frequency domain
through the Fourier transform is preferred. Tsai and Hsieh [112] for example, assume
that anomalies are separated in the frequency domain with respect to the background.
Therefore they propose a method based on background removal obtained through a
frequency cutoff. Similarly, Perng et al. [91] propose a method for internal thread anomaly
detection. An internal thread is a spiral screw pattern cut into the inner surface of a
hollow cylinder. The inside of the threads can be considered as a repetitive pattern,
therefore it can be easily removed by deactivating the corrispondent harmonics in the
frequency domain. The remaining part of the image will be the defects (if any) present
in the inside of the thread. Tout et al. [111] relax the constraint of having the normal
signal at a specific frequency by finding specific spots of the wheels under analysis in the
frequency domain and fitting the model (rotation and scaling) to the input wheel image.
In contrast to previous frequency-based methods, Aiger and Talbot [2] do not assume
that the normal signal has a specific frequency. They just assume that the background is
totally regular and therefore can be detected through the Phase Only Transform (PHOT)

67

which correspond to the Discrete Fourier Transform (DFT), normalized by the magnitude.
The PHOT removes any regularities (the background), leaving only the anomalies.

Background

Homogeneous

Heterogeneous

StatisticalFreq. sep. Feature b.

Cluster Analysis Generative

GMM b.Fourier b. Handcr. feat. b. CNN b.

Sparsity b. CNN b.

Fig. 5.1 Topology of anomaly-detection methods. In dashed boxes the hypotesis made
on the normal class (here referred as background), in boxes the abstract families of
algorithms and finally, in baloons the real families of algorithms. Dashed arrows indicate
extensions of the previous concept, full gray arrow the trailing family of algorithms.

If the background is homogeneous but it’s not frequency-separable, two types of
strategies are adopted in the state of the art, the feature-based and the statistical-based
methods. Among the feature-based methods there is the one proposed by Honda and
Nayar [53]. They find anomalies in arbitrary images, with the assumption that images
under inspection have regular patterns. In this context, an anomaly is defined as a
disruption of these patterns. The basic idea is to compute a probability density for
sub-regions in an image, conditioned upon the areas surrounding the sub-regions. Pseudo
non-parametric correlation is used to group sets of similar surrounding patterns, from
which a probability for the occurrence of a given sub-region is derived. This method
cannot be applied as-is in a industrial quality inspection system, because it makes
the assumption that the good (normal) signal is always present in the image under
inspection and that it covers the majority of the image. This assumption cannot be held
in a production chain, where can occur huge disasters that totally affect the products.

68

Margolin et al. [81], adopt a similar approach for saliency in the context of object
detection. They investigate a system based on Principal Component Analysis (PCA) for
emerging the distinctive patches in an image. In a context of anomaly detection this
system can be used to make emerge small portions of the signal that are not compliant
with the rest of the image. Here again there is the same problem of Honda and Nayar
[53]: this system in fact, is based on the assumption that the normal signal covers the
majority of the image. Furthermore, there is no knowledge of how the normal signal is
done. In fact, this method does not make any type of learning or training of what is
considered normal. Among the statistical-based algorithms, there is the one proposed by
Du and Zhang [37] that uses a gaussian background model from 2× 2 image patches in
hyperspectral image. Once the background model (µ,

∑) is fitted, the anomalous patches
are detected using a threshold on the Mahalanobis distance:

d(pi) =
√

(pi − µ)
∑−1(pi − µ) (5.1)

Goldman and Cohen [45] propose a method for sea-mine detection. This method
proposes an iterative schema to gradually reducing the false alarm rate while maintaining a
high probability of detection. It performs a background estimation in a local feature space
of principal components. Anomalous pixels are detected evaluating their Mahalanobis
distance with the Gaussian. Methods such as [37] and [45] that directly use pixels values
are limited and can be used only when the background composition is simple. Tarassenko
et al. [110] perform mass identification in mammograms by modelling normal images with
five types of features (standard deviation, texture correlation measure, edge gradient,
ratio volume/area, contrast between contour and surrounding areas normalized to have
equal weight) and assuming that abnormalities are uniformly distributed outside the
boudaries of normality, defined using a gaussian mixture model. By clustering they define
different areas of normality, each one with its own gaussian mixture model. Here again
Mahalanobis distance is used as a distace metric. Xie and Mirmehdi [120] learn a texture
model based on texton theory [61]. They assume that image patches follow a Gaussian
model. They firstly cluster the various patches and then model each cluster through a
density mixture model, characterized by the mean and the covariance of each cluster.
In this context, each cluster model is called textural examplars. Grosjean and Moisan
[47], instead of using directly the pixels values as features, it performs feature extraction
through a convolution of white Gaussian noise with an arbitrary kernel (coloured noise)
and then model the background as a Gaussian stationary process. Table 5.1 highlights
the characteristics of the just decribed statistical approaches.

69

Table 5.1 Characterization of statistical approaches

Feat. Clust. Pyr Dist.

Method

pi
xe

ls
ha

nd
cr

af
te

d

cl
us

te
r

an
al

.

py
ra

m
.

M
ah

al
an

ob
is

ot
he

r

Du and Zhang [37] ✓ ✓
Goldman and Cohen [45] ✓ ✓ ✓
Tarassenko et al. [110] ✓ ✓ ✓
Xie and Mirmehdi [120] ✓ ✓ ✓
Grosjean and Moisan [47] ✓ ✓

If the background is more complex and is heterogeneous, some researchers try also
different techniques, such as the generative approach. This type of approach is very
interesting and has the aim to create a generator that is able to create an anomaly-free
version of the input image (operation called restoration) and later compare the result with
the original image, that can contain anomalies. Basically these methods try to project
an inquiry input image and the manifold of normal samples. Two different technologies
are used in this context: the ones based on sparse coding and the ones based on neural
networks. Boracchi et al. [20] exploit sparse coding to restore the input image. In their
method, the background model is a learned dictionary of patches from an anomaly-free
dataset. In test phase the inquiry image is reconstructed through a linear combination
of the words of the dictionary. This dictionary is built through sparse coding. The
degree of abnormality of an inquiry patch is determined by the reconstruction error
and the L1 distance between the weighting coefficients used to weight the words in the
linear sovraimposition with respect to the ones belonging to the train set. This method,
however, cannot work with medium to big patches because of the reconstruction routine
adopted. It becomes extremely hard to find base-patches that, combined together with
a weighted sum, are able to represent the variation of a bigger patch. Hawkins et al.
[50] instead, use a Replicator Neural Network (an fully-connected autoencoder with
tanh activations between hidden layers) to regenerate the input image and getting rid of
eventual anomalies. The degree of abnormality, here called Outlier Factor, is calculated
as the average reconstruction error for each pixel, calculated through the L2-distance.
An and Cho [4] use a variational autoencoder rather than a plain autoencoder. The main
difference between using a straight autoencoder versus the use of a variational autoencoder
is that in the first case, what the network learns is a compact representation of the input

70

Fig. 5.2 (a) Deep convolutional generative adversarial network (DC-GAN) adopted for
training the generator used in Schlegl et al. [99] for marker discovery. (b) t-Distributed
Stochastic Neighbor Embedding (t-SNE) of the images in the feature space given by
the last convolutional layer of the discriminator (highlighted in orange in subfigure (a)).
Note that this space is easily separable since normal and anomalous samples (respectively
depicted in blue and red) reside on different clusters.

instance, while in the second case the autoencoder learns the parameters of a probability
distribution representing the data. To measure the degree of abnormality, instead of
the reconstruction error, they use the reconstruction probability, which has a theoretical
background (in constrast to plain autoencoder, which is just deterministic). Schlegl et al.
[99] use a Generative Adversarial Network (specifically a DCGAN, see section 2.2 for
more details) to create a CNN-based generator that, once trained, it learns the mapping
G(z) = z → x from latent space representations z to realistic (normal) images x. Since
the latent space has smooth transitions [93], the sampling from two points close in the
latent space generates two visually similar images. They key idea of this method is, given
a query image x, to find its representation z in the latent space that corresponds to an
image G(z) that is the visually similar to the query image and that is located in the
manifold of normal images. Image 5.2 (b) shows this concept. An anomalous image
is back-projected in the latent space and the closest latent representation of a normal
sample is chosen as the most similar non-anomalous sample. This last sample in the
form of image is then compared with the anomalous image to segment the non-compliant
parts. Note that the back-projection of anomalous samples generates a cluster of latent
representations that forms a separate cluster with respect to the ones corresponding to
normal samples. In the figure, the latent space is showed in two dimensions through
the use of t-Distributed Stochastic Neighbor Embedding (t-SNE), a technique created
by Maaten and Hinton [80] for dimensionality reduction useful for the visualization of
high-dimensional datasets. The problem is that GANs do not automatically yield the
inverse mapping µ(x) = x→ z. To solve this problem, they use an optimization process

71

that, starting from a random initialization of the latent representation z0, it uses gradient
descent to find the latent representation z that generates an image G(z) that is the closest
to the query image, but is anomaly-free. The loss function used to generate this image
is composed by two losses, the residual loss R that ensures that the image is visually
similar to the query image and the discriminator loss D, which ensures that g(z) is in
the manifold of normal images. The residual loss is an L1 loss. The anomaly score of
the inquiry image will be a linear combination of these two losses at their last iteration
in the optimization process, therefore:

A(x) = (1− λ) R(x) + λD(x) (5.2)

72

Chapter 6

Feature-Based Methods For
Anomaly Detection

“No good is ever done to society by the pictorial representation of its
diseases.”

John Ruskin

6.1 Introduction

Among all families of anomaly-detection algorithms, we present a new feature-based
method based on cluster analysis that is able to adapt to all kinds of background
(homogeneous or heterogeneous, see figure 6.1 for more details) and is able to work
with just few images of normal samples (less then 10). This is because methods based
on the assumption that the background is heterogeneous are able to work also on
homogeneous backgrounds. In fact, the homogeneous ones, because of their simplicity, are
straightforward to detect and can be seen as an heterogeneous background where there
is only one pattern. In practice, for algorithms based on cluster analysis, this means
that homogeneous backgrounds can be modeled with one single cluster. The presented
method is based on deep learning and represents the state-of-the-art for the detection of
highly localized anomalies in nanofibrous materials [86].

6.2 Anomaly detection and localization

Let us define an image I as a matrix of size w × h× c of values ∈ N. The variable h is
the height, w is the width and c is the number of color channels which is equal to 3 in

73

6.2 Anomaly detection and localization

Background

Homogeneous

Heterogeneous

StatisticalFreq. sep. Feature b.

Cluster Analysis Generative

GMM b.Fourier b. Handcr. feat. b. CNN b.

Sparsity b. CNN b.

Fig. 6.1 The method presented in this chapter is able to work with homogeneous as well
as heterogeneous backgrounds.

the case of Red, Green and Blue (RGB) images. Each element or pixel of the image I(p)
at position p within the matrix of size w × h, is a triplet of RGB values ∈ N. Let us
define ΩI as the binary mask of anomalies for the image I. ΩI is a matrix of size w × h

and each element at position p is such that:

ΩI(p) =

0 if I(p) is not an anomalous element of the image I

1 if I(p) is an anomalous element of the image I
(6.1)

Given an image I and its mask of anomalies ΩI, the anomaly detection problem is defined
as the problem of automatically finding the binary mask Ω̃I which best approximates the
reference mask of anomalies ΩI. The aim is thus twofold: a) to identify the largest number
of anomaly pixels in I; b) to cover all the anomalous regions in I. An example of an
image I containing anomalous elements, a binary mask of anomalies ΩI, an approximated
mask of anomalies Ω̃I are represented in Fig. 6.3.

The basic assumption for an automatic method for anomaly detection is that the
method is trained with normal (i.e., anomaly free, see Figs. 6.2(a) and (b)) images
while it is tested with normal and anomalous images (see last Figs. 6.2(c) and (d)).

74

6.2 Anomaly detection and localization

(a) (b)

(c) (d)

Fig. 6.2 SEM images of nanofibrous materials. (a) and (b) samples without anomalies.
(c) and (d) samples containing fine- and coarse-grained anomalies.

(a) (b) (c) (d)

Fig. 6.3 (a) The input image I. (b) The binary mask of anomalies ΩI. White pixels
represent anomalies. (c) Estimated mask of anomalies Ω̃I. White pixels represent
anomalies. (d) Difference between ΩI and Ω̃I overlaid on the test image. Green pixels
represent true positives, red pixels represent false positives, blue pixels represent false
negatives, no color pixels represent true negatives.

Hereinafter, we denote the set of normal images used for training the method as Itrain,
the set of normal images used for validating the method as Ival, while we denote the set of
anomalous images used for testing the method as Itest. A method for anomaly detection
learns a model of normality M(θ) from the training images Itrain, where θ represents the
free parameters of the model. The model M is inferred and used to assign an anomaly
score z(x) to previously unseen test data x. Larger anomaly scores z(x) correspond to
a higher abnormality with respect to the model of normality. The final classification
of the test pattern is obtained by defining a threshold th such that the test pattern x
is classified “abnormal” if z(x) > th, or “normal” otherwise. The equation z(x) = th

defines a decision boundary for the anomaly detection method [92]. The threshold th is
found by exploiting the set Ival that contains only images without anomalies.

75

6.3 Proposed method

Fig. 6.4 Simulated example of the map ΘI and corresponding binary mask of anomalies
Ω̃I. Here wt = ht = 5 and stride s = 3 and the variable d represents the value of the
average visual similarity between the local patch and the most similar subregions of the
dictionary W .

6.3 Proposed method

The proposed anomaly detection method is region-based. The input image I is divided
in a set of T subregions (or patches) of size wt × ht by following a regular grid sampling
strategy with a stride s. The method takes each patch as input and it firstly computes its
degree of abnormality and later it combines the response achieved on each subregion in
order to have a map of anomalies ΘI that is then thresholded to obtain the binary map
Ω̃I. The degree of abnormality of a patch is obtained by computing the visual similarity
between the given patch and a reference dictionary W of normal subregions taken from
normal images belonging to Itrain. The visual similarity is obtained by averaging the
euclidean distances between the feature vector extracted from a given subregion and the
feature vectors extracted from the m most visually similar subregions of the dictionary.
Each subregion is selected with a stride s, so each pixel of the image I may belong to
different partially overlapping subregions. In this case, the degree of abnormality of
each pixel is obtained by averaging the degree of abnormality of each corresponding
subregion. Finally, the mask of anomalies Ω̃I is obtained by thresholding ΘI with th.
Fig. 6.4 shows an example of the map ΘI obtained for wt = ht = 5 and stride s = 3 and
the corresponding binary mask of anomalies Ω̃I.

6.3.1 Feature extraction

A huge variety of features have been proposed in literature for describing image visual
content. They are often divided into hand-crafted features and learned features. Hand-
crafted descriptors are features extracted using a manually predefined algorithm based
on the expert knowledge. Learned descriptors are features extracted using Convolutional
Neural Networks (CNNs) [31, 84].

76

6.3 Proposed method

CNNs are a class of learnable architectures used in many domains such as image
recognition, image annotation, image retrieval etc. [100]. CNNs are usually composed of
several layers of processing, each involving linear as well as non-linear operators, that
are learned jointly, in an end-to-end manner, to solve a particular tasks. A typical CNN
architecture for image classification contains several convolutional layers followed by one
or more fully connected layers. The result of the last fully connected layer is the CNN
output. The number of output nodes is equal to the number of image classes [68].

A CNN that has been trained for solving a given task can be also adapted to solve a
different task. In practice, very few people train an entire CNN from scratch, because
it is relatively rare to have a dataset of sufficient size. Instead, it is common to take
a CNN that is pre-trained on a very large dataset (e.g. ImageNet, which contains 1.2
million images with 1000 categories [35]), and then use it either as an initialization or
as a fixed feature extractor for the task of interest [94, 114]. In the latter case, given
an input image, the pre-trained CNN performs all the multilayered operations and the
corresponding feature vector is the output of one of the last network layers [114]. The
use of CNNs as feature extraction method has demonstrated to be very effective in many
pattern recognition applications [94, 85, 14, 32].

The first notably CNN architecture that has showed very good performance upon
previous methods on the image classification task is the AlexNet by Krizhevsky et
al. [68] After the success of AlexNet, many other deeper architectures have been proposed
such as: VGGNet [104], GoogleNet [108] and Residual Networks (ResNet) [51]. ResNet
architectures demonstrated to be very effective on the ILSVRC 2015 (ImageNet Large
Scale Visual Recognition Challenge) validation set with a top 1- recognition accuracy of
about 80% [51].

In this chapter I use CNN-based features obtained by exploiting a deep residual
architecture. Residual Network architectures are based on the idea that each layer of the
network learns residual functions with reference to the layer inputs instead of learning
unreferenced functions. Such architectures demonstrated to be easier to optimize and
to gain accuracy by considerably increasing the depth [51]. For instance, the ResNet-50
architecture is about 20 times and 8 times deeper than AlexNet and VGGNet respectively.

In particular, the network architecture adopted in this chapter is based on the ResNet-
18 architecture which represents a good trade-off between depth (that is computational
time) and performance. The network architecture includes 5 convolutional stages (see
Tab. 6.1 for further details). The network is pre-trained on the set of images defined
by the ILSVRC 2015 challenge. The goal of this challenge is to identify the scene and
object categories depicted in a photograph. The total number of categories is 1000.

77

6.3 Proposed method

Table 6.1 ResNet-18 Architecture

layer name output size ResNet-18
conv1 112 × 112 × 64 7 × 7, 64, stride 2

conv2_x 56 × 56 × 64 3 × 3 max pool, stride 2[
3 × 3, 64
3 × 3, 64

]
× 2

conv3_x 28 × 28 × 128

[
3 × 3, 128
3 × 3, 128

]
× 2

conv4_x 14 × 14 × 256

[
3 × 3, 256
3 × 3, 256

]
× 2

conv5_x 7 × 7 × 512

[
3 × 3, 512
3 × 3, 512

]
× 2

average pool 1 × 1 × 512 7 × 7 average pool
fully connected 1000 512 × 1000 fully connections

softmax 1000

Although the network is pre-trained on scene and object images, it has demonstrated, in
preliminary experiments, to work much better than a ResNet-18 pre-trained on texture
images [33, 32]. The visual appearance of textures is certainly more similar to the visual
appearance of the SEM images considered in this chapter. Notwithstanding this, the
performance obtained by exploiting the texture-domain network are much worse than the
performance obtained using a scene- and object-domain one. Actually, recognizing scenes
and objects is more complicated than recognizing textures, and thus the network trained
to recognize scenes and objects is more capable of recognizing unexpected anomalous
patterns within SEM images.

Given the network, the output of a given layer is linearized to be used as feature
vector. We experiment the use of two different layers of the network: the linearized
output of the fifth convolutional stage (that is conv5_x) and the output of the average
pooling layer (that is avgpool). The size of the feature vector is 25088 (that is 7×7×512)
in the case of the conv5_x layer and 512 in in the case of the avgpool layer. The size of
the feature vector affects the computational cost, then the size is therefore reduced by
applying dimensionality reduction techniques such as Principal Component Analysis.

6.3.2 Dictionary building

The degree of abnormality of a patch is obtained by computing the visual similarity
between the given patch and a reference dictionary W of normal subregions. The
dictionary is built from the set of training images Itrain = {I1, · · · , IL}. For each image
Il, T patches {P1, · · · , PT} of size wt × ht are extracted following a regular grid and
using a stride s. The total amount of patches extracted from the whole training set Itrain

78

6.3 Proposed method

Fig. 6.5 Creation of the dictionary.

is LT = L× T . The feature extraction module computes for each patch Pt a vector of
features of size N , ft = {f t

1, . . . , f t
N}. The dimension of the feature vector is then reduced

to M with M < N by applying the Principal Component Analysis (PCA) [118] to all
the feature vectors extracted from Itrain.

M is the number of principal components such that a given percentage of the data
variance is retained. For instance, if M = N , we have an exact approximation of the
original data, and we say that 100% of the variance is retained. If M = 0, we are
approximating all the data with the zero-dimensional vector, and thus 0% of the variance
is retained. For this work we set a percentage of variance to 95%. After reduction, each
feature vector is then normalized by using the following formula:

f t
i = f t

i − µi

σi

,∀i ∈ (1, M) (6.2)

where µi = 1
LT

∑LT
t=1 f t

i and σi = 1
LT

∑LT
t=1(f t

i − µi)2. The normalization process makes all
the feature components have zero mean and a unit variance.

The dictionary is built by grouping all the reduced feature vectors of the training
set into k clusters. We adopt the kmeans algorithm that takes the number of groups or
clusters k as an input parameter and outputs the best k clusters and corresponding k

centroids. A centroid is the mean position of all the elements of the cluster. For each
cluster we take the feature vector that is nearest to its centroid. The set of these k

feature vectors composes the dictionary W. Fig. 6.5 shows the pipeline for dictionary
building. Fig. 6.6 shows examples of dictionary learned from images of the training set
(anomaly free) with different patch sizes and number of clusters. The figure shows the
subregions corresponding to each feature vector of the dictionary W .

6.3.3 Learning to detect anomalies

The rationale behind the proposed method is that, in order to detect anomalies within
an image, we have to estimate how much a subregion of the image is far from being

79

6.3 Proposed method

Fig. 6.6 Examples of images corresponding to the features from the dictionary. Here we
show different dictionaries built with different patch sizes (16, 32, 64, 128) and number
of clusters (10, 100, 500, 1000).

normal, in other words how much it is anomalous. To do so, we have to learn from one
or more examples of images without anomalies the concept of “normality”. We use V

images from the validation set Ival that are never used for the creation of the dictionary.
Each image from Ival is then processed as in the dictionary creation, that is VT = V × T

patches are extracted from V images, the feature vectors of size N are extracted from
the patches and then they are reduced to size M and finally they are normalized. At
the end of this operation, the average of the euclidean distances between all the feature
vectors of the validation set and the m most similar subregions of the dictionary are
calculated d = {d1, · · · , dVT

}. The concept of “normality” is model by the boundaries
of a Gaussian function with mean and variance defined as follows: µd = 1

VT

∑VT
t=1 dt and

σd = 1
VT

∑VT
t=1(dt − µd)2. The boundaries allow to define a threshold to be used in testing

time as:
th = µd + ασd (6.3)

where α being a positive real number that modulates the size of the boundaries. The
smaller will be α, the more recall-oriented will be the system. In testing time, a subregion

80

6.4 Experiments

Patch size

16 32 64 128

La
ye

r conv5_x (25088-dim) 2217 3083 2633 1585

avgpool (512-dim) 151 203 175 111

Fig. 6.7 Dimension of the feature vectors after PCA reduction.

of an image is considered as anomalous if its average euclidean distance dtest with the m

most similar subregions from the dictionary is higher than th.

6.4 Experiments

We experiment our method on SEM images of nanofibrous materials (see section A.2
for details about the dataset) and we compare it with the method proposed by Carrera
et al. [25]. We experiment several versions of our method by varying the following
parameters:

1. patch size: 16× 16, 32× 32, 64× 64, 128× 128. The larger is the patch the lower
is the computational time and the precision in defect localization;

2. dictionary size: 10, 100, 500, 1000 number of subregions. The larger is the number
the higher is the time to calculate the similarity between a test patch and the
subregions of the dictionary and the better are the performance;

3. CNN layer output as feature vector: we use a ResNet-18 pre-trained on the images
from ILSVRC 2015 (ImageNet Large Scale Visual Recognition Challenge) [98]. The
input of the network is a RGB image of size 224× 224. To adapt the input of the
network to our problem we up-sample the SEM image subregion to fit the network
desired size and we convert the gray-scale SEM image to a RGB one by cloning the
color channels. We take the output of the conv5_x of the network that is a matrix
7× 7× 512. The output is linearized to be of size 25088. Alternatively we take the
output of the average pooling layer (that we name avgpool). The 512-dimensional
feature vector is obtained by linearizing the output matrix 1 × 1 × 512. All the
feature vectors are L1 normalized;

4. feature dimensionality reduction: the larger is the size of the feature vector the
higher is the time to calculate to calculate the similarity between a test patch and
the subregions of the dictionary. In the case of PCA we consider to take the first
principal components such that the retained variance of the data is about 95%.
Tab. 6.7 shows, in the case of use of PCA, the reduced sizes of the feature vectors.

81

6.4 Experiments

The smallest feature vector is obtained by combining the avgpool with a patch
size of 128× 128 while the largest is obtained by combining the conv5_x with a
patch size of 32× 32.

For all the experiments we use a stride s of 8 pixels. The kmeans clustering algorithm
is performed 10 times and the best output is taken in terms of intra cluster sum
of squares. The kmeans algorithm uses the euclidean distance and it is initializated
through the “kmeans++” a procedure introduced by David Arthur et al. [8] to reduce
the sensitivity of kmeans to the initialization seeds. The method is implemented in
PyTorch (http://pytorch.org/) a python-based tool for deep learning. The experiments
are launched on a Ubuntu 16.04 Personal Computer equipped with a Intel i7-4790 CPU
3.60GHz × 8, 16 GB RAM and a NVIDIA 1070 GPU.

6.4.1 Performance metrics

The performance of the proposed method is evaluated by comparing the reference anomaly
map ΩI with the estimated anomaly map Ω̃I obtained by thresholding the aggregated
distance map ΘI. At each value of the threshold corresponds an anomaly map, the smaller
is the threshold, the lower will be the tolerance to which a sample is considered normal.
As Carrera et al. [25] did in their work, we use two different evaluation procedures with
the aim of evaluating two different aspects of the proposed method. The first one is the
Receiver Operating Characteristic Curve (ROC) in which we evaluate the ability of the
system to perform the per-pixel one-class classification. Specifically, we plot the true
positive rate in function of the false positive rate and we use as a performance index the
Area Under Curve (AUC) to evaluate the global goodness of the method. Comparing
each value p̃i ∈ Ω̃I with the relative ground truth value pi ∈ ΩI, we define it as:

true negative ⇐⇒ p̃i = pi = 0 (6.4)
true positive ⇐⇒ p̃i = pi = 1 (6.5)

false positive ⇐⇒ p̃i = 1 ∧ pi = 0 (6.6)
false negative ⇐⇒ p̃i = 0 ∧ pi = 1 (6.7)

82

http://pytorch.org/

6.4 Experiments

The true positive rate (TPR) and the false positive rate (FPR) is defined as follows:

TPR = TP

TP + FN
(6.8)

FPR = FP

FP + TN
(6.9)

where TP ,FP ,TN ,FN are respectively the total number of true positives, false positives,
true negatives and false negatives for each map Ω̃I. By varying the threshold value th we
obtain several values of TPR and FPR ranging from 0 to 1 and so the ROC curve. The
area under curve (AUC) is the performance index used to evaluate the global goodness
of the method.

The second metric proposed by Carrera et al. [25] is the coverage percentage of defects.
To this aim we choose a threshold value th such that FPR is about 5%. To compute
the defect coverage percentage, we detect each defect within each reference map ΩI by
finding each connected component ccj ∈ ΩI. Each ccj represents a defect and for each
defect we calculate the coverage factor as follows:

coverage factorj = TPj

TPj + FNj

(6.10)

where TPj, FNj are respectively the true positives and the false negatives. In other
words, the coverage factor of a connected component is the number of correctly detected
pixels over its area.

6.4.2 Results

Fig. 6.8 shows the AUC achieved with different variants of the proposed method. In
particular Fig. 6.8(a) represents the average and standard deviation of the AUC achieved
with different values of the patch size (that is 16, 32, 64 and 128) whatever is the CNN
layer adopted for feature extraction (that is conv5_x and avgpool), whatever is the use
of PCA to reduce the size of the feature vector and whatever is the number of words
of the dictionary (that is 10, 100, 500, 1000). Results suggest that, in terms of AUC,
the best performing variants are obtained with patch size 32 whatever are the other
parameters, while the worst variants are with patch size 128 and 16. To be noticed
that the best variants achieve an average AUC of about 97% while the worst variants
achieve an average AUC of about 90%. As comparison, we select the method proposed
by Carrera et al. [25] that is both the most performing and the most recent state of the
art method on this dataset. It achieves an AUC of about 92%.

83

6.4 Experiments

Number of words

10 100 500 1000

Pa
tc

h
si

ze

16 0.90 0.91 0.91 0.91

32 0.97 0.97 0.97 0.97

64 0.95 0.95 0.95 0.96

128 0.90 0.90 0.90 0.90

(a) (b)

Fig. 6.8 AUC achieved with different variants of the proposed method. (a) Average and
standard deviation of the AUC achieved with different patch sizes whatever is the CNN
layer adopted for feature extraction, whatever is the use of PCA to reduce the size of
the feature vector and whatever is the number of words of the dictionary. (b) Average
of the AUC achieved with different patch sizes and number of words of the dictionary
whatever is the CNN layer adopted for feature extraction and whatever is the use of
PCA to reduce the size of the feature vector.

Fig. 6.8(b) shows the average of the AUC achieved with different patch sizes and
number of words of the dictionary whatever is the CNN layer adopted for feature extraction
and whatever is the use of PCA to reduce the size of the feature vector. Results suggest
that, in terms of AUC, the best performing variants are obtained combining a patch size
32 with all the possible sizes of the dictionary. From this result is quite clear that the
best solution is based on a patch size of 32× 32 pixels and size of the dictionary equals
to 10.

Fig. 6.9(a) and (b) show the computational time needed to process an entire image
with the use of conv5_x and avgpool CNN layers respectively. The figure shows that
the variants with a lower computational cost are the ones based on features extracted
from the avgpool layer. This is related to the fact that whatever we use or not the PCA,
the size of the feature vector extracted from the conv5_x layer is 5 times larger than the
size of the feature vector extracted from the avgpool layer. The best variants of the
proposed method are the ones that consider a patch size 32 × 32 and a dictionary of
10 words. The proposed method variants take about 53 seconds and 15 seconds in the
case of conv5_x and avgpool respectively measured on the same machine. As argued by
Carrera et al. [25] such a computational time makes it possible to monitor the production
process of the nanofibers.

84

6.4 Experiments

Number of words

10 100 500 1000

Pa
tc

h
si

ze

16 42.47 45.47 55.69 71.82

32 53.09 53.95 69.03 91.17

64 49.2 48.14 59.26 75.71

128 37.04 38.78 43.57 53.92

Number of words

10 100 500 1000

Pa
tc

h
si

ze

16 15.03 15.22 15.75 16.91

32 15.29 15.87 15.68 17.40

64 16.22 16.18 16.70 18.09

128 22.57 22.91 23.65 25.00

(a) (b)

Fig. 6.9 Average time to process a test image. (a) Time needed in the case of features
extracted from the conv5_x of the CNN. (a) Time needed in the case of features extracted
from theavgpool of the CNN.

Fig. 6.10(a) and (b) show the ROC curves and the defect coverage box plots of the
best variants of the proposed method and the state of the art. The ROC curves of both
the variants of the proposed method are higher than the state of the art and the AUC
of both variants is about 5% higher than the state of the art. It is quite interesting to
note that the variant with the avgpool layer achieves almost the same AUC than the
one with the conv5_x while having a computational time that is about 3 time less than
the computational time of the conv5_x-based one.

The box plots of Fig. 6.10(b) show that the state of the art solution achieves an
average value of defect coverage that is quite similar to the worst value obtained by the
best variant of the proposed method, that covers at least the 50% of the anomalies for
more than 85% of their area.

Fig. 6.11 shows some defect detections and localizations obtained with a variant of
the proposed method that use conv5_x layer, patch size 32, PCA for dimensionality
reduction and a dictionary of size 10. The images are close-ups of fine- and coarse-grained
defects. True positives are green colored, false positives are red colored while false
negatives are blue colored. It is quite evident that the proposed method is quite accurate
to detect coarse grained defects and it should be further improved to detect medium-
and fine-grained defects.

85

6.4 Experiments

(a) (b)

Fig. 6.10 Results from the two variants of the proposed method, one with conv5_x and
the other with avgpool, and comparison with the method proposed by Carrera et al. [25].
Both the variants consider the PCA to reduce the feature vector, a patch size of 32 pixels
and a dictionary of size 10. (a) ROC curves. For each ROC curve, the corresponding
AUC values are in the legend. (b) Box-plots reporting the distribution of the defect
coverage obtained at a fixed FPR = 5%.

Fig. 6.11 Closeup of the anomalies found by the proposed method. True positives,
false positives, false negatives are showed respectively as green,red and blue color. For
visualization purpose, the images are slightly cropped and scaled to focus on fine- and
coarse-grained anomalies.

86

Chapter 7

Generative Methods For Anomaly
Removal

“Men are disturbed not by things, but by the view which they take of
them.”

Epictetus

7.1 Introduction

The detection of spatially distributed anomalies, in contrast to highly localized anomalies,
requires a different approach. Specifically, the key idea to detect them is firstly to recon-
struct the image. The proposed method is of type generative (see figure 7.1 for reference).
In the context of this chapter, we consider spatially distributed anomalies as local color
effects that usually can be obtained with a filtering technique. Therefore, we concentrate
on the task of removing photographic filters from normal images. Starting from this
moment, with the term unfiltering we refer at the same time with the identification of an
anomaly and to its removal by projecting the input image in the manifold of normality
as well as to the recovery of a filtered image to its origial version.

7.2 Proposed method

We propose here a method for the automatic removal of photographic filters. The method
takes as input a color image that has been possibly processed with a photographic filter,
and produces as output a color image representing the same content, but with the style
modified to reproduce the appearance of a “natural”, unfiltered image. Note that no
knowledge is required about which filter (if any) needs to be removed.

87

7.2 Proposed method

Background

Homogeneous

Heterogeneous

StatisticalFreq. sep. Feature b.

Cluster Analysis Generative

GMM b.Fourier b. Handcr. feat. b. CNN b.

Sparsity b. CNN b.

Fig. 7.1 The method presented in this chapter is able to work with heterogeneous
backgrounds.

Not all the editing operations involved in the computations of the filters are invertible.
In fact, some of them cause a loss of information, making unfiltering an ill-posed problem.
For instance, to an image processed by a filter that includes a conversion to gray-level
(such as Gotham or Inkwell) correspond many plausible unfiltered images. However, as
we will show in Section 7.3, our method is often able to guess a reasonable recovery of
the missing information by inferring it from the semantic content of the input image (for
instance, by recognizing the sky in a gray-level image and by coloring it in blue).

Many image-to-image deep learning models have been recently proposed [60, 128, 56].
Their results are often remarkable, but they come at the price of a high computational
cost. In fact, all the information in the input image that is required to generate the
output has to be preserved through all the layers, either by using large intermediate
representations [52] or by using skip connections [96]. Applied to the problem at hand,
this fact implies that all the fine details that are not affected by the photographic
filters need to be preserved from input to output. To address this issue, we diverged
from the popular image-to-image approach: instead of directly estimating the pixel
values of the original unfiltered image, our model estimates the parameters of a set of

88

7.2 Proposed method

local transformations that, when applied to the input image, approximate the desired
output. Note that a single global transformation would not be suitable, since many filters
(e.g. Amaro) are spatially varying. However, a small number of local transformations
may be enough to reverse the photographic filters considered keeping manageable, at the
same time, the complexity of the model and the number of parameters that needs to
be learned. We chose to work with polynomial transformations, since they have been
demonstrated to be very effective for color processing[62, 18, 19]. More precisely, we
decided to use a grid of T ×T polynomials that are then bilinearly upsampled to produce
a per-pixel transformation (this can be done since the set of polynomials is closed under
linear combinations).

In addition to the relatively low computational requirements, our approach also has
the advantage of keeping the training procedure simple. In fact, one of the problems
of image-to-image methods is that they require a complex loss function (often in the
form of an adversarial network) to avoid losing the details of the image [60, 56]. Our
model, instead, can be trained simply by minimizing the mean squared error between the
desired and the actual output since details are preserved by the local transformations.

Given an input image of size 256× 256, the method works as follows: first for each
pixel x the (xR, xG, xB) components are projected into the monomial basis:

(1, xR, xG, xB, xRxG, xRxB, xGxB, x2
R, x2

G, x2
B, . . . , xD

R , xD
G , xD

B) (7.1)

for a set degree D. The result of this operation, that we call ‘polynomial expansion’, is an
image of

(
D+3

D

)
channels. After that the method applies a sequence of five convolutional

blocks each one including a 3 × 3 convolution with 200 output channels, preceded by
batch normalization and followed by the ReLU activation function. Convolutions are
applied with a stride of two in both spatial dimensions to progressively reduce the size of
the image. The resulting 7×7×200 image is flattened into a vector that is processed by a
sequence of two linear layers (followed by a ReLU) producing a vector of 2000 components.
A further linear transformation produces the coefficients of 3 × T × T polynomials of
degree D (T 2 polynomials for each of the three color channels, each one defined by

(
D+3

D

)
coefficients). Bilinear upsampling is then applied to smoothly interpolate the T × T

transformations over the 256× 256 input in such a way that each pixel has is own triplet
of polynomials (for the R, G and B channels). Finally the polynomial expansion of
the input image is multiplied by the interpolated coefficients yielding to the unfiltered
image. Note that, thanks to the fully connected linear layers, the coefficients of each
local transformation depends on the whole image. This facilitates the modeling of global

89

7.2 Proposed method

Fig. 7.2 Pipeline of the unfiltering process. The input image is unfiltered through a set
of local polynomial color transformations whose coefficients are estimated by the CNN.

corrections, when appropriate. Note also that the bilinear upsampling of the polynomials
makes it easy to preserve the details in the input image.

We experimented with polynomial transformations up to the third degree, implying
the use of to the following polynomial expansions:

E1(x) =(1, xR, xG, xB), (D = 1),
E2(x) =(1, xR, xG, xB, xRxG, xRxB, xGxB, x2

R, x2
G, x2

B), (D = 2),
E3(x) =(1, xR, xG, xB, xRxG, xRxB, xGxB, x2

R, x2
G, x2

B,

xRxGxB, x2
RxG, x2

RxB, xRx2
G, xRx2

B, x2
GxB, xGx2

B, x3
R, x3

G, x3
B), (D = 3).

(7.2)

The bilinear interpolation produces, for each pixel of the input image, a set of coefficients
{kc

ijk} with i + j + k ≤ D, c ∈ {R, G, B}. The components (yR, yG, yB) of a pixel in the
output image are finally computed as in the following expression:

yc =
∑

i+j+k≤D

kc
ijkxi

Rxj
Gxk

B, c ∈ {R, G, B}, (7.3)

that can be casted as an inner product between the set of coefficients (suitably encoded
as a vector) and the polynomial expansion in Equation (7.2).

The whole method is summarized in Figure 7.2 and in Table 7.1.
We used stochastic gradient descent with mini-batches to train the CNN, by minimiz-

ing the mean squared error (MSE, Equation 7.4) between the output pixels y and the
corresponding ground truth ŷ:

MSE = 1
3× 2562

256∑
i=1

256∑
j=1

∑
c∈{R,G,B}

(yc(i, j)− ŷc(i, j))2 . (7.4)

90

7.3 Experimental results

Table 7.1 Structure of the convolutional neural network. D denotes the degree of the
polynomial transformations while T 2 is their number of local transformations. All
convolutional layers have filters of dimension 3× 3 and stride 2.

Stage Operation Output size
Pre-processing Input 256× 256× 3

Polynomial Expansion 256× 256×
(

D+3
D

)
Conv. Network Batch Norm. + Conv. + ReLU 127× 127× 200

Batch Norm. + Conv. + ReLU 63× 63× 200
Batch Norm. + Conv. + ReLU 31× 31× 200
Batch Norm. + Conv. + ReLU 15× 15× 200
Batch Norm. + Conv. + ReLU 7× 7× 200
Linear + ReLU 2000
Linear + ReLU 2000
Linear T × T × 3×

(
D+3

D

)
Post-processing Bilinear Upsampling 256× 256× 3×

(
D+3

D

)
Polynomial Transformation 256× 256× 3

7.3 Experimental results

To assess the effectiveness of the proposed method, we run various experiments where
test images are processed and the result is compared against the original image, before
the application of photographic filters. We evaluated three aspects:

• faithfulness of the result of the unfiltering process with respect to the ground truth
original image, measured with objective error metrics;

• ‘naturalness’ of the result, measured by a neural network trained to identify filtered
images;

• improvement in recognizability of the unfiltered content, measured by a network
trained to classify the image content.

7.3.1 Error metrics

Four different objective metrics are used to evaluate the quality of the recovered images.
The first two are the simplest and most widely used full-reference quality metrics: the
former is the Mean Squared Error (MSE). Given an image I and its recovered version K,

91

7.3 Experimental results

MSE is defined as:
MSE = 1

m n

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2. (7.5)

This metric is used since it is the one used as loss function in the training of our CNN.
The latter is the Peak Signal-to-Noise Ratio (PSNR) and is related to MSE:

PSNR = 20 · log10

(
MAX I√

MSE

)
, (7.6)

where MAX I is the maximum possible pixel value of the image.
The third error metric considered is the Structural Similarity (SSIM) index [116]. It

exploits the assumption that human visual perception is highly adapted for extracting
structural information from a scene, and is an alternative complementary framework for
quality assessment based on the degradation of structural information. In particular, it
is used here to assess if the filter removal process degrades the structural information
present in the original image. The general form of SSIM combines information from the
luminance l(I, K), the contrast c(I, K) and structure s(I, K) as follows:

SSIM (I, K) = l(I, K)α · c(I, K)β · s(I, K)γ (7.7)

where α > 0, β > 0 and γ > 0 are parameters used to adjust the relative importance of
the three components (we used the values α = β = γ = 1).

The fourth error metric considered is the spatial extension of CIELAB (S-CIELAB)
that has been specifically designed for measuring reproduction errors of color images
[123].

7.3.2 Performance varying the degree and number of polyno-
mials

In this section we show the performance we obtained in terms of the four error metrics
considered in the previous section. Our method depends on two parameters: the degree
D of the polynomial transformations and their number T 2.

Table 7.2 reports the results obtained by changing the degree of the polynomial used
for the recovery, as well as the number of transformations considered. The number of
transformations we considered are 32× 32 = 1024, 16× 16 = 256, 8× 8 = 46, 4× 4 = 16,
2 × 2 = 4 and 1 × 1 = 1 (i.e. a global transformation of the whole image). From the
results it can be noticed that the performance obtained with 8× 8 transformations or
more are almost equivalent and that they start to decrease when fewer transformations

92

7.3 Experimental results

Original Filtered

32× 32 16× 16 8× 8 4× 4 2× 2 1× 1

Fig. 7.3 Example of removal of a spatially varying filter (Amaro) with a different number
of polynomial transformations. As the number of transformation decreases, the quality
of the restoration gets worse.

are used. This behavior is consistent across all the four error metrics considered. A visual
example is reported in Figure 7.3, where the results obtained using the different number
of third degree polynomial transformations considered are reported. Fixing the number
of transformations, it is possible to notice how the results improve for all the four error
metrics considered at the increase of the polynomial degree. The same conclusion can
be drawn also by fixing the number of parameters required, i.e. looking at the results
in Table 7.2 taking into account the color coded background. Therefore, for the next
experiments we considered only the configuration of the proposed method with 32× 32
polynomial transformations of third-degree.

7.3.3 Comparison with the state of the art

In this section we compare the results of the proposed method with those of other
algorithms from the state of the art. The first one is the Gray World (GW) [22], which
is a global color correction algorithm. It is based on the assumption that the average
reflectance in a natural scene is gray, and it balances the image channels in order to
make their average value match. The second one is the Retinex algorithm [71], which
is able to deal with non-uniform illumination by assuming that an abrupt change in
chromaticity is caused by a change in reflectance properties. The third method is the
image to image translation architecture recently proposed by Isola et al. [60], that we
used in two variants: the former obtained with the default setup recommended by the
authors and the latter obtained by disabling the GAN loss during training, so that the
method becomes a regression with a per-pixel L1 loss. The comparison is reported in

93

7.3 Experimental results

Polynomial Number of transformations T × T
degree D 32× 32 16× 16 8× 8 4× 4 2× 2 1× 1
D = 1 30.70 30.57 30.47 29.47 27.83 27.53
D = 2 31.60 31.49 31.41 30.43 28.64 28.33
D = 3 32.01 31.99 31.92 30.83 28.86 28.50

a) PSNR (higher is better)

Polynomial Number of transformations T × T
degree D 32× 32 16× 16 8× 8 4× 4 2× 2 1× 1
D = 1 0.9343 0.9332 0.9327 0.9288 0.9141 0.9123
D = 2 0.9403 0.9400 0.9394 0.9361 0.9203 0.9210
D = 3 0.9435 0.9435 0.9431 0.9395 0.9252 0.9257

b) SSIM (higher is better)

Polynomial Number of transformations T × T
degree D 32× 32 16× 16 8× 8 4× 4 2× 2 1× 1
D = 1 78.94 81.15 82.03 100.19 155.86 178.72
D = 2 66.13 67.47 68.58 83.67 135.56 148.31
D = 3 61.61 61.34 62.37 78.08 129.43 141.85

c) MSE (lower is better)

Polynomial Number of transformations T × T
degree D 32× 32 16× 16 8× 8 4× 4 2× 2 1× 1
D = 1 5.14 5.33 5.22 5.74 5.93 6.14
D = 2 4.71 4.82 4.80 4.98 5.72 5.79
D = 3 4.72 4.75 4.71 5.11 5.64 5.66

d) S-CIELAB (lower is better)

e)
Table 7.2 Comparison of the performance of the proposed method varying the degree of
the polynomial and the number of transformations used. Results are assessed using the
four error metrics considered: PSNR (a), SSIM (b), MSE (c) and S-CIELAB (d). The
background is color-coded with the legend reported in (e), to represent the total number
of parameters used by the transformations.

94

7.3 Experimental results

Fig. 7.4 Comparison of the proposed method with the state of the art for the four error
metrics considered: PSNR, SSIM, MSE and S-CIELAB. For the former two metrics
(reported in the top row) the higher the better, for the latter two (reported in the bottom
row) the lower the better.

Figure 7.4 in terms of all the four error metrics considered. We can see from the plots
that our method significantly outperforms the compared methods.

Some visual examples of images recovered with all the compared methods are reported
in Figure 7.5. Figure 7.6 shows a couple of enlargements of portions of the same image
recovered with our method compared with the two variants of Isola et al. [60], from which
it is possible to notice how our method is able to preserve also the finest details.

As a further analysis we report in Figure 7.7 the break down of the results with
respect to the different filters considered. From the results it is possible to see that the
performance of the different methods tested is consistent across the filters considered
with very few ranking inversions. Focusing on the proposed method, we can notice that
the worst results across the four error metric considered are obtained on those filters
characterized by a heavy information loss, i.e. Gotham, Inkwell and Willow, that are all
black & white filters. This is particularly evident looking at the plot of the S-CIELAB
metric, where it can be seen that the error on these three filters is almost the double of

95

7.3 Experimental results

Original Filtered Proposed Isola et al. Isola et al. Gray world Retinex
(no GAN)

Fig. 7.5 Examples of recovery by our proposed method, gray world, Retinex, and by two
variants of the method by Isola et al. [60]

96

7.3 Experimental results

Original Filtered Proposed Isola et al. Isola et al.
(no GAN)

Fig. 7.6 Qualitative comparison of the details produced by the proposed method and by
the method by Isola et al., with and without the GAN term in the loss function.

the others. Nevertheless, this error is lower than that of the filtered image, which means
that the proposed method also performs a form of colorization.

7.3.4 Filter classification

The filter removal procedure described here produces an output image that most of the
times looks more natural than its filtered version. To partially quantify this aspect, we
measured how often this happens from the point of view of a convolutional network
trained to recognize the application of photographic filters. More in detail, we considered
the network that Bianco et al. [15] designed to recognize the same 22 photographic filters
used in this work. The accuracy of that network was very high (about 98.9%), as it
can be seen in the confusion matrix summarizing the results of classification for the test
images (Table 7.3). All the 22 filters are correctly recognized in at least 97% of the times
and original images are recognized as such in 91.5% of the cases.

We assessed the same network on the test images after removing the filters with
the proposed method. The results, reported as confusion matrix in Table 7.4 are very
different. The classification accuracy dropped to about 5.39%, which is slightly better
than random guessing. In the great majority of cases the network classified the recovered
images as original, i.e. without any photographic filter applied. This happens, on average,
89.4% of the times. It seems that the recovery process is very good in canceling out those
characteristic properties that make the filters recognizable for the neural network.

97

7.3 Experimental results

Fig. 7.7 Detailed comparison of the proposed method with the state of the art in
removing each of the 23 filters considered. Results are reported using the four error
metrics considered: for those in the top row the higher the better, while for those in the
bottom row the lower the better.

98

7.3 Experimental results

Table 7.3 Confusion matrix summarizing the output of the filter classification network
proposed by Bianco et al.[15], obtained on the test images transformed by photographic
filters. For each filter, the most common prediction is reported in bold.

O
rig

in
al

19
77

A
m

ar
o

A
po

llo

Br
an

na
n

Ea
rly

bi
rd

G
ot

ha
m

H
ef

e

H
ud

so
n

In
kw

el
l

Lo
fi

Lo
rd

-K
.

M
ay

fa
ir

N
as

hv
ill

e

Po
pr

oc
ke

t

R
ise

Si
er

ra

Su
tr

o

To
as

te
r

Va
le

nc
ia

W
al

de
n

W
ill

ow

X
-p

ro
II

Orig 91.5 0.6 0.1 0.2 0.3 0.3 0.0 1.9 1.3 0.1 0.2 - 1.2 0.1 0.0 0.9 - 0.4 - 0.0 0.2 0.1 0.3
1977 0.1 99.2 - - 0.2 - - - 0.2 - - - - 0.1 - - - 0.1 - 0.1 0.2 - -
Amar 0.0 - 99.9 0.0 - - - - - - - - - - - - 0.0 - - - - - -
Apol 0.5 - 0.0 99.2 - - - 0.0 0.0 - 0.0 - - - - 0.2 - - - - - - -
Bran 0.1 0.3 - - 99.0 - 0.0 - 0.1 - - 0.0 0.0 0.0 - - - 0.1 - 0.1 0.1 - 0.1
Earl 0.3 0.1 - 0.1 0.1 99.0 - 0.1 - - 0.1 - - - - 0.1 0.1 - - 0.0 0.1 - -
Goth - - - - - - 100.0 - - - - - - - - - - - - - - - -
Hefe 0.8 - - 0.1 - - - 98.6 - 0.1 0.2 - 0.1 - 0.0 0.1 - 0.0 - 0.0 - - -
Huds 0.7 0.2 0.0 - 0.2 - - - 98.4 - - - - 0.1 0.1 0.0 0.0 0.0 - 0.1 0.2 - 0.1
Inkw 0.0 - - - - - - 0.0 - 97.9 - - - - - - - - - - - 2.1 -
Lofi 0.1 - - 0.0 - - - 0.0 - - 99.9 - - - 0.0 - - - - 0.0 - - -
Lord - - - - - - - - - - - 99.9 - 0.1 - - 0.0 - 0.0 0.0 - - -
Mayf 0.9 - - 0.0 - 0.1 - 0.1 0.1 0.1 0.0 - 98.5 - 0.0 0.1 - - - 0.0 - 0.0 0.1
Nash - - - - - - - - - - - 0.1 - 99.8 - - - - - 0.0 0.1 - 0.1
Popr 0.0 - - - - - - - 0.1 - - - - - 99.9 0.0 - - - - 0.0 - -
Rise 0.6 - - 0.5 0.1 0.1 - - 0.1 - - - 0.1 - 0.0 98.3 - 0.1 - 0.0 - - -
Sier - - - - - - - - 0.0 - - - - - - - 100.0 - - 0.0 - - -
Sutr 0.1 0.1 - - 0.1 - - 0.0 0.0 - 0.1 - - 0.0 - - - 99.5 - 0.1 0.1 - -
Toas - - - - - - - - - - - - - - - - - - 100.0 - - - -
Vale 0.0 - - - - - - - - - - - - 0.1 - - - - - 99.9 - - -
Wald - 0.1 - - 0.1 - - - 0.1 - - 0.1 - 0.5 - - - 0.1 - 0.0 99.1 - 0.1
Will 0.1 - - - - - - - - 1.9 - - - - - - - - - - - 98.0 -
X-pr 0.0 - - 0.0 0.1 - - - - - - - - 0.1 - - - - - 0.0 0.1 - 99.6

99

7.3 Experimental results

Table 7.4 Confusion matrix summarizing the output of the filter classification network
proposed by Bianco et al.[15], obtained on the test images restored by the proposed
method. For each filter, the most common prediction is reported in bold.

O
rig

in
al

19
77

A
m

ar
o

A
po

llo

Br
an

na
n

Ea
rly

bi
rd

G
ot

ha
m

H
ef

e

H
ud

so
n

In
kw

el
l

Lo
fi

Lo
rd

-K
.

M
ay

fa
ir

N
as

hv
ill

e
Po

pr
oc

ke
t

R
ise

Si
er

ra

Su
tr

o

To
as

te
r

Va
le

nc
ia

W
al

de
n

W
ill

ow
X

-p
ro

II

Orig 96.0 0.2 0.1 0.3 - 0.4 - 1.2 0.1 - 0.1 - 0.9 - - 0.4 - 0.1 - 0.0 0.0 - 0.1
1977 81.4 2.4 0.0 0.2 0.3 0.1 - 0.1 10.7 - 0.5 - 0.2 - 0.0 1.7 0.0 2.2 - 0.0 0.1 - 0.1
Amar 90.8 0.6 0.2 0.2 0.2 0.4 - 2.2 2.2 - 0.3 - 1.1 - 0.0 0.6 0.0 0.7 - - 0.2 - 0.1
Apol 90.9 0.7 0.1 1.8 0.2 0.6 - 1.3 1.5 - 0.1 - 0.9 0.1 - 1.2 - 0.3 - 0.0 0.1 - 0.2
Bran 88.3 1.0 0.1 0.2 1.0 0.2 0.0 1.2 2.4 - 0.6 - 0.7 - - 1.3 - 2.8 - 0.0 0.0 - 0.3
Earl 89.1 0.8 - 0.4 1.0 1.4 0.0 1.9 0.9 - 0.2 - 0.9 0.0 0.0 1.3 - 1.6 - 0.0 0.0 - 0.2
Goth 88.7 1.3 0.0 0.7 0.1 0.4 0.1 1.1 0.7 0.0 0.1 - 0.7 - - 5.4 - 0.8 - - - 0.0 -
Hefe 88.3 0.4 0.0 0.2 0.4 0.1 0.1 4.4 1.4 - 0.4 - 1.0 - - 2.2 - 0.9 - - 0.1 - 0.1
Huds 91.0 0.6 0.0 0.2 0.2 0.6 0.0 1.7 1.2 - 0.5 0.0 0.9 0.0 - 0.9 - 1.8 - 0.0 0.1 - 0.2
Inkw 88.4 0.7 - 0.5 0.1 0.9 0.1 0.6 0.0 0.1 0.2 - 0.8 - - 6.4 - 1.0 - - - 0.1 -
Lofi 91.1 0.8 - 0.2 0.3 0.1 0.0 1.4 2.0 - 0.9 - 1.0 0.1 - 1.1 - 0.5 - - 0.2 - 0.2
Lord 91.0 0.6 0.1 2.3 0.1 0.4 - 1.7 0.6 - 0.1 - 1.4 - 0.0 0.7 - 0.8 0.0 - - - 0.2
Mayf 89.8 0.7 0.0 0.2 0.2 0.2 0.1 0.9 1.2 - 0.4 - 3.6 0.0 0.1 1.4 - 0.7 - 0.1 0.2 0.0 0.2
Nash 88.8 1.8 - 0.3 0.7 0.8 - 1.8 0.3 - 0.2 - 0.9 - - 0.8 0.1 2.6 - - 0.5 - 0.5
Popr 90.2 0.8 0.1 0.4 0.4 0.5 0.0 1.8 1.8 - 0.3 - 1.1 - 0.3 1.0 - 0.7 - 0.0 0.2 - 0.3
Rise 91.1 0.8 0.1 0.7 0.2 0.2 - 1.3 1.5 - 0.2 - 1.1 0.0 0.0 2.2 - 0.5 - - 0.1 - 0.1
Sier 91.5 1.0 0.1 0.3 0.6 0.4 - 1.1 2.6 - 0.3 0.0 0.8 0.0 0.0 0.7 0.1 0.2 - - 0.2 - 0.2
Sutr 83.0 1.1 0.1 0.4 0.6 0.2 0.1 2.3 1.3 - 0.5 - 1.2 - - 2.5 - 6.8 - - 0.0 - 0.1
Toas 91.1 0.7 0.1 0.2 0.6 1.2 - 0.7 2.8 - 0.4 - 0.7 0.1 0.0 0.8 - 0.8 - - 0.0 - -
Vale 88.6 1.2 - 1.8 0.2 0.1 0.1 1.7 1.4 - 0.2 0.0 0.9 0.1 0.0 2.0 - 1.0 - 0.0 0.7 - 0.1
Wald 92.2 0.8 0.1 0.4 0.4 0.5 - 1.4 0.9 - 0.2 - 1.8 - - 0.5 0.0 0.2 - 0.0 0.5 - 0.2
Will 86.2 0.9 - 0.2 0.1 2.8 0.0 1.5 0.2 0.0 0.1 - 0.3 - - 4.5 - 3.0 - - - 0.0 -
X-pr 89.8 0.5 0.0 0.3 0.4 0.1 - 1.0 0.9 - 0.4 - 1.0 0.0 - 2.8 - 1.6 - 0.0 0.2 - 0.9

100

7.3 Experimental results

Fig. 7.8 Classification accuracy of a CNN trained to recognize the semantic labels in the
Places-205 dataset.

7.3.5 Semantic classification on Places-205 dataset

As a further experiment, we assessed the classification performance of a CNN trained to
identify the semantic classes defined in the Places-205 dataset. The CNN architecture
used is AlexNet [68] and the trained model can be downloaded on the website of Places-
205. The classification accuracy is measured on the original images (on which no filter
was applied), on the filtered images, on the images corrected with the other methods
included in the evaluation, and on those corrected with the proposed method. From
Figure 7.8 it is possible to see that, as expected, the best classification result is obtained
on the original images. When the filters are applied, classification accuracy drops by
almost 10% for the top-1 result. Correcting the images with GW and Retinex does not
improve this result, but it actually lowers the accuracy by almost a further 1%. The
proposed method instead, is able to reduce the gap with respect to the results obtained
on the original images, increasing the accuracy by almost 7% with respect to the results
obtained on the filtered images.

7.3.6 Analysis of the learned features

Finally, in order to better understand the behavior of the network, we conducted an
analysis on the features computed by the second fully-connected linear layer. More

101

7.3 Experimental results

1977

XproII

amaro

apollo

brannan

earlybird

gotham

hefe

hudson

inkwell

lofi

lord_kelvin

mayfair

nashville

original

poprocket

rise

sierra

sutro

toaster

valencia

walden

willow

Fig. 7.9 Output of the t-SNE data visualization method applied to a set of 10 000 feature
vectors computed by the second fully-connected layer. The projected data points are
displayed according to the corresponding photographic filter, even though this information
was not available to t-SNE.

in detail, we randomly sampled 10 000 images from the test set and used the t-SNE
method [80] to project the 2000-dimensional feature vectors produced by that layer
onto a plane. The projection computed by t-SNE preserves the similarity among the
feature vectors and it is determined in a completely unsupervised way, without any
knowledge about the photographic filter applied to the image. From the results depicted
in Figure 7.9, it is clear how the method identified 23 clusters, one for each photographic
filter. This fact suggests that the main purpose of the second fully-connected layer is to
recognize which filter has been applied to the input image, an information that allows to
effectively select the restoration strategy that is implemented in the following layer.

102

Part V

Epilogue

103

Chapter 8

Conclusions

In this thesis it has been done an in-depth study of anomaly detection for industrial
quality inspection, ensured through the analysis of images depicting the product under
inspection. In the introduction (part I) it has been done an extensive study on the
subject to introduce the reader and to propose a pipeline for automatic anomaly detection.
This pipeline is composed by two steps: 1) the enhancement of the input images for
highlighting defects; 2) the detection of the anomalies.

The first step has been addressed with the use of a global color transformation able
to remove undesired light effects and to enhance the contrast. This transformation is
inferred through the use of SpliNet, a new CNN-based method presented in this thesis in
part III, that is able to enhance the input images by inferring the parameters of a set
of splines. The method allows to retouch images preserving their content and without
introducing any artifacts. The results obtained demonstrate that the presented approach
allows to reproduce with great fidelity the retouching styles of the individual experts.
Moreover, this method performs favorably with respect to other methods that have been
recently proposed in the literature. In this context, it is also presented an extension of the
system to adapt the preprocessing to a new retouching style, without having to retrain
the system. In future it is planned to extend this step by adopting a larger dataset, that
includes more diverse range of subjects and image conditions. Furthermore, it is also
planned to augment the proposed method by injecting additional semantic information
obtained by suitably trained neural networks.

In the context of anomaly detection, two methods have been presented in part IV.
The first one (chapter 6) is a feature-based method that models normality by learning
a dictionary and uses it in test time to determine the degree of abnormality of an
inquiry image of the product under inspection. This method has been benchmarked on
the detection and localization of anomalies in Scanning Electron Microscope images of

104

nanofibrous material, where it has demonstrated great flexibility and high accuracy even
on very small datasets (in the order of five images). This method outperformed existing
methods of about 5% reaching an area under curve of about 97% and represents so far
the state of the art. Future investigations for extending this method could include the
processing of the input images at different scales in order to be more accurate in the
detection of small anomalies.

The second proposed algorithm (chapter 7) in the context of anomaly detection is
a generative method able to restore the input, creating an anomaly-free version of the
inquiry image. Subject of this study is the detection of spatially distributed anomalies,
seen in this case as unknown photographic filters applied randomly on the input image.
This method uses a set of local transforms to restore the input images. Specifically,
these transforms are sets of polynomials of degree two, whose parameters are determined
through the use of a convolutional neural network. In this context, the method can be
tuned with a parameter toward accuracy or speed, for matching the needs of the final
user. To assess the effectiveness of the method, we processed a subset of the Places-205
dataset with 22 different photo-graphic filters. The quality of the reconstructions we
obtained, measured with several objective quality measures, clearly outperformed that of
the other algorithms included in the evaluation.

To address the lack of public data that is suffered in this field, it has been presented
in part II a totally new method for data augmentation able to generate thousands of
new samples starting from a few. We show how systems trained only on the generated
synthetic data are able to outperform themselves trained only on real data. In particular,
the proposed method is able to dramatically boost the performances on classes with low
cardinality, that in the original formulation with real data achieved 0% of accuracy.

As an extension of the proposed pipeline, it is possible to determine a system for
evaluating the degree of seriousness of the anomaly, to give a more accurate feedback
to human operators. This further extension will require an in-depth study on how
to assign a criticity level to an anomaly and an intensive manual data collection for
extending existing datasets. This step will be very challenging since usually the criticity
level is associated to a specific defective class, such as holes, and evaluated through the
measurement of some characteristics of the class. In the case of anomalies, there are no
assumptions on the structure and therefore there aren’t measurable properties.

105

References

[1] (1989). Oxford English Dictionary. Oxford University Press.

[2] Aiger, D. and Talbot, H. (2012). The phase only transform for unsupervised surface
defect detection. In Emerging Topics In Computer Vision And Its Applications, pages
215–232. World Scientific.

[3] Alvarez, J. and Petersson, L. (2016). Decomposeme: Simplifying convnets for end-to-
end learning. arXiv preprint arXiv:1606.05426.

[4] An, J. and Cho, S. (2015). Variational autoencoder based anomaly detection using
reconstruction probability. Special Lecture on IE, 2:1–18.

[5] An, X. and Pellacini, F. (2008). Appprop: all-pairs appearance-space edit propagation.
In ACM Transactions on Graphics (TOG), volume 27, page 40.

[6] Antoniou, A., Storkey, A., and Edwards, H. (2017). Data augmentation generative
adversarial networks. arXiv preprint arXiv:1711.04340.

[7] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan. arXiv preprint
arXiv:1701.07875.

[8] Arthur, D. and Vassilvitskii, S. (2007). k-means++: The advantages of careful
seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics.

[9] Azadi, S., Pathak, D., Ebrahimi, S., and Darrell, T. (2018). Compositional gan:
Learning conditional image composition. arXiv preprint arXiv:1807.07560.

[10] Bae, S., Paris, S., and Durand, F. (2006). Two-scale tone management for photo-
graphic look. ACM Transactions on Graphics (TOG), 25(3):637–645.

[11] Banavar, G. S. (2016). Cognitive computing: From breakthroughs in the lab to
applications on the field. In Big Data (Big Data), 2016 IEEE International Conference
on, pages 1–1. IEEE.

[12] Bartels, R. H., Beatty, J. C., and Barsky, B. A. (1998). An Introduction to Splines
for Use in Computer Graphics and Geometric Modelling, chapter Hermite and cubic
spline interpolation.

[13] Bianco, S., Buzzelli, M., and Schettini, R. (2018). Multiscale fully convolutional
network for image saliency. Journal of Electronic Imaging, 27(5):051221.

106

References

[14] Bianco, S., Celona, L., Napoletano, P., and Schettini, R. (2017a). On the use of
deep learning for blind image quality assessment. Journal of Signal, Image and Video
Processing, -(-).

[15] Bianco, S., Cusano, C., Piccoli, F., and Schettini, R. (2017b). Artistic photo
filter removal using convolutional neural networks. Journal of Electronic Imaging,
27(1):011004.

[16] Bianco, S., Cusano, C., and Schettini, R. (2015). Color constancy using cnns. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
pages 81–89.

[17] Bianco, S., Cusano, C., and Schettini, R. (2017c). Single and multiple illuminant es-
timation using convolutional neural networks. IEEE Transactions on Image Processing,
26(9):4347–4362.

[18] Bianco, S., Gasparini, F., Schettini, R., and Vanneschi, L. (2008). Polynomial
modeling and optimization for colorimetric characterization of scanners. Journal of
Electronic Imaging, 17(4):043002.

[19] Bianco, S. and Schettini, R. (2014). Error-tolerant color rendering for digital cameras.
Journal of Mathematical Imaging and Vision, 50(3):235–245.

[20] Boracchi, G., Carrera, D., and Wohlberg, B. (2014). Novelty detection in images by
sparse representations. In Intelligent Embedded Systems (IES), 2014 IEEE Symposium
on, pages 47–54. IEEE.

[21] Botta, A., De Donato, W., Persico, V., and Pescapé, A. (2016). Integration of cloud
computing and internet of things: a survey. Future Generation Computer Systems,
56:684–700.

[22] Buchsbaum, G. (1980). A spatial processor model for object colour perception.
Journal of the Franklin Institute, 310(1):1–26.

[23] Buslaev, A., Parinov, A., Khvedchenya, E., Iglovikov, V. I., and Kalinin, A. A.
(2018). Albumentations: fast and flexible image augmentations. arXiv preprint
arXiv:1809.06839.

[24] Bychkovsky, V., Paris, S., Chan, E., and Durand, F. (2011). Learning photographic
global tonal adjustment with a database of input/output image pairs. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 97–104.

[25] Carrera, D., Manganini, F., Boracchi, G., and Lanzarone, E. (2017). Defect detection
in sem images of nanofibrous materials. IEEE Transactions on Industrial Informatics,
13(2):551–561.

[26] Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75.

[27] Chan, C.-h. and Pang, G. K. (2000). Fabric defect detection by fourier analysis.
IEEE transactions on Industry Applications, 36(5):1267–1276.

107

References

[28] Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., and Xu, Y.-Q. (2006). Color
harmonization. In ACM Transactions on Graphics (TOG), volume 25, pages 624–630.

[29] Commision Internationale de l’Eclairage, C. (1995). Industrial colour-difference
evaluation. CIE. Publication No.116.

[30] Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2018). Autoaug-
ment: Learning augmentation policies from data. arXiv preprint arXiv:1805.09501.

[31] Cusano, C., Napoletano, P., and Schettini, R. (2013). Intensity and color descriptors
for texture classification. In Image Processing: Machine Vision Applications VI, volume
8661, page 866113. SPIE.

[32] Cusano, C., Napoletano, P., and Schettini, R. (2016a). Combining multiple features
for color texture classification. Journal of Electronic Imaging, 25(6):1–9.

[33] Cusano, C., Napoletano, P., and Schettini, R. (2016b). Evaluating color texture
descriptors under large variations of controlled lighting conditions. Journal of the
Optical Society of America A, 33(1):17–30.

[34] de Boor, C. (1978). A Practical Guide to Spline, volume 27.

[35] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet:
A large-scale hierarchical image database. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255. IEEE.

[36] Donchev, T. and Farkhi, E. (1998). Stability and euler approximation of one-sided
lipschitz differential inclusions. SIAM journal on control and optimization, 36(2):780–
796.

[37] Du, B. and Zhang, L. (2011). Random-selection-based anomaly detector for hyper-
spectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 49(5):1578.

[38] Ehret, T., Davy, A., Morel, J.-M., and Delbracio, M. (2018). Image anomalies: a
review and synthesis of detection methods. arXiv preprint arXiv:1808.02564.

[39] El-Hakim, S. F. and Pizzi, N. J. (1993). Multicamera vision-based approach to flexible
feature measurement for inspection and reverse engineering. Optical Engineering,
32(9):2201–2216.

[40] Eslami, A. M. (2011). Computer digital image processing in quality inspection-
reverse engineering approach. In American Society for Engineering Education. American
Society for Engineering Education.

[41] Fairchild, M. D. (2013). Color appearance models. John Wiley & Sons.

[42] Gatys, L., Ecker, A. S., and Bethge, M. (2015). Texture synthesis using convolutional
neural networks. In Advances in Neural Information Processing Systems, pages 262–270.

[43] Gharbi, M., Chen, J., Barron, J. T., Hasinoff, S. W., and Durand, F. (2017). Deep
bilateral learning for real-time image enhancement. ACM Transactions on Graphics
(TOG), 36(4):118.

108

References

[44] Gilchrist, A. (2016). Introducing industry 4.0. In Industry 4.0, pages 195–215.
Springer.

[45] Goldman, A. and Cohen, I. (2004). Anomaly detection based on an iterative local
statistics approach. Signal Processing, 84(7):1225–1229.

[46] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680.

[47] Grosjean, B. and Moisan, L. (2009). A-contrario detectability of spots in textured
backgrounds. Journal of Mathematical Imaging and Vision, 33(3):313.

[48] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017).
Improved training of wasserstein gans. In Advances in Neural Information Processing
Systems, pages 5767–5777.

[49] Guo, X., Li, Y., and Ling, H. (2017). Lime: Low-light image enhancement via
illumination map estimation. IEEE Transactions on Image Processing, 26(2):982–993.

[50] Hawkins, S., He, H., Williams, G., and Baxter, R. (2002). Outlier detection using
replicator neural networks. In International Conference on Data Warehousing and
Knowledge Discovery, pages 170–180. Springer.

[51] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778.

[52] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of
data with neural networks. science, 313(5786):504–507.

[53] Honda, T. and Nayar, S. K. (2001). Finding" anomalies" in an arbitrary image. In
Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Confer-
ence on, volume 2, pages 516–523. IEEE.

[54] Hu, Y., He, H., Xu, C., Wang, B., and Lin, S. (2018). Exposure: A white-box photo
post-processing framework. ACM Transactions on Graphics (TOG), 37(2):26.

[55] Huang, H., Yu, P. S., and Wang, C. (2018). An introduction to image synthesis
with generative adversarial nets. arXiv preprint arXiv:1803.04469.

[56] Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., and Gool, L. V. (2017).
Dslr-quality photos on mobile devices with deep convolutional networks. In The IEEE
International Conference on Computer Vision (ICCV).

[57] International Electrotechnical Commission, I. (1999). Iec 61966-2-1, 1999. Multimedia
systems and equipment — Colour measurements and management — Part 2-1: Colour
management — Default RGB color space — sRGB’.

[58] ISO 9000:2005 (2005). Quality management systems - fundamentals and vocabulary.
Standard, International Organization for Standardization, Geneva, CH.

109

References

[59] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017a). Image-to-image translation
with conditional adversarial networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5967–5976.

[60] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017b). Image-to-image translation
with conditional adversarial networks. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[61] Julesz, B. (1981). Textons, the elements of texture perception, and their interactions.
Nature, 290(5802):91.

[62] Kang, H. R. (1997). Color technology for electronic imaging devices. SPIE press.

[63] Kang, S. B., Kapoor, A., and Lischinski, D. (2010). Personalization of image
enhancement. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1799–1806.

[64] Kaplinsky, R. (1985). Electronics-based automation technologies and the onset of
systemofacture: Implications for third world industrialization. World Development,
13(3):423–439.

[65] Kaufman, L., Lischinski, D., and Werman, M. (2012). Content-aware automatic
photo enhancement. In Computer Graphics Forum, volume 31, pages 2528–2540.

[66] Khaitan, S. K. and McCalley, J. D. (2015). Design techniques and applications of
cyberphysical systems: A survey. IEEE Systems Journal, 9(2):350–365.

[67] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In
International Conference on Learning Representation.

[68] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105.

[69] Kumar, A. (2008). Computer-vision-based fabric defect detection: A survey. IEEE
transactions on industrial electronics, 55(1):348–363.

[70] Kumar, A. and Pang, G. K. (2002). Defect detection in textured materials using
gabor filters. IEEE Transactions on industry applications, 38(2):425–440.

[71] Land, E. H. and McCann, J. J. (1971). Lightness and retinex theory. Journal of the
Optical Society of America A, 61(1):1–11.

[72] Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., and Hoffmann, M. (2014). Industry
4.0. Business & Information Systems Engineering, 6(4):239–242.

[73] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

[74] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

110

References

[75] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A. P., Tejani, A., Totz, J., Wang, Z., et al. (2017). Photo-realistic single image
super-resolution using a generative adversarial network. In CVPR, volume 2, page 4.

[76] Levina, E. and Bickel, P. (2001). The earth mover? s distance is the mallows
distance: Some insights from statistics. In null, page 251. IEEE.

[77] Lim, S. K., Loo, Y., Tran, N.-T., Cheung, N.-M., Roig, G., and Elovici, Y. (2018).
Doping: Generative data augmentation for unsupervised anomaly detection with gan.
arXiv preprint arXiv:1808.07632.

[78] Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. (2006). Interactive
local adjustment of tonal values. In ACM Transactions on Graphics (TOG), volume 25,
pages 646–653.

[79] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks
for semantic segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3431–3440.

[80] Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
Machine Learning Research, 9:2579–2605.

[81] Margolin, R., Tal, A., and Zelnik-Manor, L. (2013). What makes a patch distinct?
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1139–1146.

[82] Mazzini, D. (2018). Guided upsampling network for real-time semantic segmentation.
In British Machine Vision Conference.

[83] Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784.

[84] Napoletano, P. (2017). Hand-crafted vs learned descriptors for color texture classifi-
cation. In International Workshop on Computational Color Imaging, pages 259–271.
Springer.

[85] Napoletano, P. (2018). Visual descriptors for content-based retrieval of remote-
sensing images. International Journal of Remote Sensing, 39(5):1–34.

[86] Napoletano, P., Piccoli, F., and Schettini, R. (2018). Anomaly detection in nanofi-
brous materials by cnn-based self-similarity. Sensors, 18(1):209.

[87] Nash, J. F. et al. (1950). Equilibrium points in n-person games. Proceedings of the
national academy of sciences, 36(1):48–49.

[88] Oesterreich, T. D. and Teuteberg, F. (2016). Understanding the implications of
digitisation and automation in the context of industry 4.0: A triangulation approach
and elements of a research agenda for the construction industry. Computers in Industry,
83:121–139.

[89] Paszke, A., Chaurasia, A., Kim, S., and Culurciello, E. (2016). Enet: A deep
neural network architecture for real-time semantic segmentation. arXiv preprint
arXiv:1606.02147.

111

References

[90] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.
In Autodiff Workshop — NIPS 2017.

[91] Perng, D.-B., Chen, S.-H., and Chang, Y.-S. (2010). A novel internal thread
defect auto-inspection system. The International Journal of Advanced Manufacturing
Technology, 47(5-8):731–743.

[92] Pimentel, M. A., Clifton, D. A., Clifton, L., and Tarassenko, L. (2014). A review of
novelty detection. Signal Processing, 99:215–249.

[93] Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434.

[94] Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). CNN features
off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 806–813.

[95] Romera, E., Alvarez, J. M., Bergasa, L. M., and Arroyo, R. (2018). Erfnet: Efficient
residual factorized convnet for real-time semantic segmentation. IEEE Transactions
on Intelligent Transportation Systems, 19(1):263–272.

[96] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 234–241.

[97] Rüschendorf, L. (2001). Wasserstein metric. Hazewinkel, Michiel, Encyclopaedia of
Mathematics, Springer.

[98] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252.

[99] Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U., and Langs, G.
(2017). Unsupervised anomaly detection with generative adversarial networks to guide
marker discovery. In International Conference on Information Processing in Medical
Imaging, pages 146–157. Springer.

[100] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61:85–117.

[101] Schwartz, E., Karlinsky, L., Shtok, J., Harary, S., Marder, M., Feris, R., Kumar, A.,
Giryes, R., and Bronstein, A. M. (2018). Delta-encoder: an effective sample synthesis
method for few-shot object recognition. arXiv preprint arXiv:1806.04734.

[102] Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A. P., Bishop, R., Rueckert,
D., and Wang, Z. (2016). Real-time single image and video super-resolution using an
efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1874–1883.

112

References

[103] Simonyan, K. and Zisserman, A. (2014a). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

[104] Simonyan, K. and Zisserman, A. (2014b). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

[105] Sironi, A., Tekin, B., Rigamonti, R., Lepetit, V., and Fua, P. (2015). Learning
separable filters. IEEE transactions on pattern analysis and machine intelligence,
37(1):94–106.

[106] Stock, T. and Seliger, G. (2016). Opportunities of sustainable manufacturing in
industry 4.0. Procedia Cirp, 40:536–541.

[107] Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). Inception-v4,
inception-resnet and the impact of residual connections on learning. In AAAI, volume 4,
page 12.

[108] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1–9.

[109] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826.

[110] Tarassenko, L., Hayton, P., Cerneaz, N., and Brady, M. (1995). Novelty detection
for the identification of masses in mammograms.

[111] Tout, K., Cogranne, R., and Retraint, F. (2016). Fully automatic detection of
anomalies on wheels surface using an adaptive accurate model and hypothesis testing
theory. In Signal Processing Conference (EUSIPCO), 2016 24th European, pages
508–512. IEEE.

[112] Tsai, D.-M. and Hsieh, C.-Y. (1999). Automated surface inspection for directional
textures. Image and vision computing, 18(1):49–62.

[113] Valdeza, A. C., Braunera, P., Schaara, A. K., Holzingerb, A., and Zieflea, M. (2015).
Reducing complexity with simplicity-usability methods for industry 4.0. In Proceedings
19th triennial congress of the IEA, volume 9, page 14.

[114] Vedaldi, A. and Lenc, K. (2014). Matconvnet – convolutional neural networks for
matlab. CoRR, abs/1412.4564.

[115] Wang, D. C., Vagnucci, A. H., and Li, C. (1983). Digital image enhancement: a
survey. Computer Vision, Graphics, and Image Processing, 24(3):363–381.

[116] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612.

113

References

[117] Wheeler, D. A., Brykczynski, B., and Meeson Jr, R. N. (1996). Software Inspection:
An Industry Best Practice for Defect Detection and Removal. IEEE Computer Society
Press.

[118] Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52.

[119] Wollschlaeger, M., Sauter, T., and Jasperneite, J. (2017). The future of industrial
communication: Automation networks in the era of the internet of things and industry
4.0. IEEE Industrial Electronics Magazine, 11(1):17–27.

[120] Xie, X. and Mirmehdi, M. (2005). Texture exemplars for defect detection on random
textures. In International Conference on Pattern Recognition and Image Analysis,
pages 404–413. Springer.

[121] Yan, Z., Zhang, H., Wang, B., Paris, S., and Yu, Y. (2016). Automatic photo
adjustment using deep neural networks. ACM Transactions on Graphics (TOG),
35(2):11.

[122] Yang, J. and Yang, M.-H. (2017). Top-down visual saliency via joint crf and
dictionary learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(3):576–588.

[123] Zhang, X. and Wandell, B. A. (1997). A spatial extension of CIELAB for digital
color-image reproduction. Journal of the Society for Information Display, 5(1):61–63.

[124] Zhao, H., Gallo, O., Frosio, I., and Kautz, J. (2017). Loss functions for image
restoration with neural networks. IEEE Transactions on Computational Imaging,
3(1):47–57.

[125] Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. (2014). Learning
deep features for scene recognition using places database. In Advances in Neural
Information Processing Systems, pages 487–495.

[126] Zhou, T., Tulsiani, S., Sun, W., Malik, J., and Efros, A. A. (2016). View synthesis
by appearance flow. In European conference on computer vision, pages 286–301.
Springer.

[127] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017a). Unpaired image-to-
image translation using cycle-consistent adversarial networks. In IEEE International
Conference on Computer Vision (ICCV).

[128] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017b). Unpaired image-to-image
translation using cycle-consistent adversarial networks. In The IEEE International
Conference on Computer Vision (ICCV).

114

Appendix A

Datasets

A.1 Artistic Foto Filter Dataset

We have built this dataset with the intent of making available to the researchers’ com-
munity a reference dataset upon which is possible to banchmark methods for detecting
spatially distributed anomalies and also for the task of artistic photo filter removal. This
dataset is built starting from the Places-205 data set[125]. Places-205 has been designed
to represent places and scenes found in the real world. It includes over one million
images labeled with 205 different categories (each category is represented by at least
5000 images). See section A.3 for more details on the Places205 dataset. For creating
this dataset, we randomly sampled 20 000 images. After that, we processed them with
the 22 filters (explained in subsection A.1.1) to form a dataset of 460 000 filtered images
(including the original ones). Figure A.1 shows a random sample draw from this dataset.
The Images were randomly divided into training, validation and test sets with ratios
75%, 5%, and 20% having care to place all the filtered variants of the same image in the
same set.

A.1.1 Photographic filters

Many photo sharing services, such as Instagram®, give to their users the option to
apply photographic filters to their own pictures. These filters consist of a pipeline
of photo editing operations that are applied in a completely automatic way. Editing
operations that are often used in photographic filters include: global transformations of
the color distribution by using “color levels”, “color curves”, or by changing the pixels’
hue, saturation and lightness; global adjustment of the image brightness and contrast;
introduction of blur or noise; introduction of a “vignette” effect (i.e. darkening of the

115

A.2 Nanofibers Dataset

Fig. A.1 A sample from the Artistic Photo Filter Dataset. On the left, the 22 versions
of the filtered image with instagram-like filters, on the right the corresponding image
without filters (the ground truth).

border of the image); spatially varying modification of color with the use of a gradient;
conversion to Black & White; introduction of a “flare” effect in the central part of the
image.

In this dataset we considered 22 photographic filters defined by photo editing en-
thusiasts to match those made available by the Instagram® photo sharing service. In
particular, we considered the filters named 1977, Amaro, Apollo, Brannan, Earlybird,
Gotham, Hefe, Hudson, Inkwell, Lofi, Lord Kelvin, Mayfair, Nashville, Poprocket, Rise,
Sierra, Sutro, Toaster, Valencia, Walden, Willow, and Xpro-II. As a special case of
filter, we also included the original images without any further processing. Table A.1
summarizes the filters in terms of their editing operations, while Figure A.2 reports, for
each one, a brief description taken from the Instagram® website.

A.2 Nanofibers Dataset

This dataset is composed by 45 images of nanofibrous materials acquired with a SEM
(Scanning Electron Microscope). The external appearance of this material can be seen as
a non-periodic continuous texture with intertwined filamentous elements that look like
white wires, some examples without and with anomalies are in Fig. A.3. The dataset
is composed by two disjoint subsets: a set of 5 images without anomalies, that we call

116

A.2 Nanofibers Dataset

Table A.1 Summary of the basic image processing operations used in the 23 photographic
filters considered.

Filter name Colo
r lev

els

Colo
r cur

ves

Brig
htn

ess
/C

on
tra

st

Blur
/N

ois
e

Hue/
Sa

t/L
igh

tne
ss

Vign
ett

e

Colo
r lay

er

Grad
ien

t

Blac
k &

W
hit

e

Flar
e

Original · · · · · · · · · ·
1977 · ✓ · · · · · · · ·
Amaro · ✓ · · · ✓ · · · ·
Apollo · · · · · ✓ ✓ · · ·
Brannan · ✓ ✓ · ✓ · · · · ·
Earlybird · ✓ ✓ · ✓ ✓ ✓ · · ·
Gotham · ✓ · ✓ · · · · ✓ ·
Hefe · · ✓ · ✓ ✓ · · · ·
Hudson · ✓ · · · · ✓ · · ·
Inkwell · ✓ ✓ · · · · · ✓ ·
Lofi · ✓ ✓ · · ✓ · ✓ · ·
Lord Kelvin · ✓ · · · · · · · ·
Mayfair ✓ ✓ · ✓ ✓ · · · · ·
Nashville ✓ ✓ ✓ · · · · · · ·
Poprocket · · · · · · · ✓ · ·
Rise · · · ✓ ✓ ✓ ✓ ✓ · ·
Sierra · ✓ · · · ✓ · ✓ · ·
Sutro · ✓ ✓ · ✓ ✓ ✓ · · ·
Toaster · ✓ · · · ✓ ✓ ✓ · ·
Valencia ✓ ✓ · · · · · · · ·
Walden ✓ ✓ · · · · · ✓ · ·
Willow · · · ✓ · ✓ · ✓ ✓ ✓
X-pro II · ✓ · · · · · · · ·

117

A.2 Nanofibers Dataset

Original: image taken from the Places
data base without any additional pro-
cessing.

1977: the increased exposure with a
red tint gives the photograph a rosy,
brighter, faded look.

Amaro: adds light to an image, with
the focus on the centre.

Apollo: lightly bleached, cyan-greenish
color, some dusty texture.

Brannan: increases contrast and expo-
sure and adds a metallic tint.

Earlybird: gives photographs an older
look with a sepia tint and warm tem-
perature.

Gotham: produce a black and white
high contrast image, with bluish under-
tones.

Hefe: hight contrast and saturation,
with a similar effect to Lo-Fi but not
quite as dramatic.

Hudson: creates an “icy” illusion
with heightened shadows, cool tint and
dodged center.

Inkwell: direct shift to black and white
— no extra editing.

Lord Kelvin: increases saturation and
temperature to give it a radiant “glow”.

Lo-fi: enriches color and adds strong
shadows through the use of saturation
and “warming” the temperature.

Mayfair: applies a warm pink tone,
subtle vignetting to brighten the photo-
graph center and a thin black border.

Nashville: warms the temperature,
lowers contrast and increases exposure
to give a light “pink” tint — making it
feel “nostalgic”.

Poprocket: adds a creamy vintage and
retro color effect.

Rise: adds a “glow” to the image, with
softer lighting of the subject.

Sierra: gives a faded, softer look. Sutro: burns photo edges, increases
highlights and shadows dramatically
with a focus on purple and brown colors.

Toaster: ages the image by “burning”
the centre and adds a dramatic vignette.

Valencia: fades the image by increas-
ing exposure and warming the colors,
to give it an antique feel.

Walden: increases exposure and adds
a yellow tint.

Willow: a monochromatic filter with
subtle purple tones and a translucent
white border.

X-Pro II: increases color vibrance with
a golden tint, high contrast and slight
vignette added to the edges.

Fig. A.2 Examples of the photographic filters considered in this work. The text has been
taken from the Instagram® website.

118

A.2 Nanofibers Dataset

without anomalies without anomalies with anomalies with anomalies

Fig. A.3 Examples of SEM images of nanofibrous materials with and without anomalies.

(a) (b) (c) (d)

Fig. A.4 (a) The input image I. (b) The binary mask of anomalies ΩI. White pixels
represent anomalies. (c) Estimated mask of anomalies Ω̃I. White pixels represent
anomalies. (d) Difference between ΩI and Ω̃I overlaid on the test image. Green pixels
represent true positives, red pixels represent false positives, blue pixels represent false
negatives, no color pixels represent true negatives.

“normal”, and a set 40 of images with defects that we call anomalies. All the defects have
been manually annotated. The dataset and the defect annotations are publicly available
at http://web.mi.imati.cnr.it/ettore/NanoTwice. Each image I is gray-scale and of size
700× 1024. The annotations associated to each anomalous image is a map ΩI ∈ {0, 1}.
Figure A.4 (a) and (b) shows an anomalous image along with its defect annotation. The
set of normal images Inormal is divided in two subsets Itrain, Ival, which are respectively
used to create the dictionary and to assess through visual self similarity the value of the
threshold th used during the test time to convert the aggregated distance map ΘI in
the corresponding anomaly map Ω̃I. Itrain and Ival have respectively a cardinality of
4 and 1. The set of test images Itest contains 40 images with anomalies. For sake of
comparison with the state of the art, we use a subset made of 35 images obtained by
removing images that are listed in Itest at the following positions: 8, 15, 27, 31, 35. These
images containing anomalies are required by the state of the art methods to validate the
parameters. Our method dos not require to use images containing anomalies at any time
a part from testing.

119

http://web.mi.imati.cnr.it/ettore/NanoTwice

A.3 Places205 Dataset

Fig. A.5 This is the trainset. Is composed by 4 images of normal samples, i.e. samples
that do not present anomalies.

Fig. A.6 Places205 dataset samples

A.3 Places205 Dataset

The places205 dataset [125] is a scene-centric database, with 205 scene categories and 2.5
millions of images with a category label. Figure A.6 shows sample images of this dataset.

A.4 FiveK Dataset

It’s the MIT-Adobe FiveK dataset [24] (in short FiveK). It contains 5000 samples. Each
sample is composed by a raw image in the DNG format and by the same image enhanced
by five experts in 16-bit TIFF format. The dataset is also distributed as a single Adobe
Lightroom® catalog, which makes the download easier and gives the possibility to explore
the history of the enhancement steps performed by the experts. The dataset has been
used in many works but unfortunately each work has exported the images from the
catalog in a different, and often non-documented, way. In order to limit the diffusion of

120

A.4 FiveK Dataset

Raw Expert A Expert B

Expert C Expert D Expert E

Fig. A.7 A sample from the FiveK dataset. For each raw image the dataset includes five
different versions retouched by five expert photographers.

multiple, different, copies of the dataset, to convert the DNG files in a python-readable
format and to allow the comparison of our method with the state-of-the-art, we converted
the images using the procedure described in [54], which is publicly documented and
available online: starting from the catalog, in the collection list we select the collection
Inputs/Input with Daylight WhiteBalance minus 1.5 ; the raw images are exported as
16-bit TIFF in the ProPhotoRGB color space and then converted into the sRGB color
space as 8-bit PNG. This last conversion is required to make it possible to correctly
interpret the images with common image processing libraries. The experts’ images are
exported as 8-bit PNG in the sRGB color space. From the same work by Hu et al we
also take the subdivision into a training set of 4000 images and a test set of 1000 images.

A sample image from the FiveK dataset and the corresponding versions retouched by
the five expert photographers are reported in Figure A.7, where it can be noticed the
different style of the five experts.

121

Appendix B

CIELab conversion

We report here the formulae used for the conversion from sRGB to CIELab color space.
It is assumed that the input sRGB values are normalized in the [0, 1] range.

First, the companded RGB channels (denoted with upper case (R, G, B), or generically
as V to indicate each channel indifferently) are made linear with respect to energy (denoted
with lower case (r, g, b), or generically as v to indicate each channel indifferently):

v =

V/12.92 if V ≤ 0.04045,

((V + 0.055)/1.055)2.4 otherwise.
(B.1)

The next step is the conversion of obtained linear RGB values to XYZ color space:

X

Y

Z

 =

0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

 ·

r

g

b

 . (B.2)

Then using as the reference white the CIE D65 standard illuminant ([Xr, Yr, Zr] =
[0.95047, 1.0000, 1.08883]), the white-normalized XYZ values are obtained:

[xr, yr, zr] =
[

X

Xr

,
Y

Yr

,
Z

Zr

]
. (B.3)

These values are then non-linearly transformed:

fc =

c1/3 if c > ϵ,

κc+16
116 otherwise,

(B.4)

122

where c = (xr, yr, zr), ϵ = 0.008856 and κ = 903.3. Finally, the last step converts the
values to CIELab:

L = 116fy − 16, (B.5)
a = 500(fx − fy), (B.6)
b = 200(fy − fz). (B.7)

123

Appendix C

Spline Interpolation

A spline is a piecewise function composed by N − 1 polynomial sub-functions of degree
three, expressed in the canonical form:

(C.1)yi(x) = ai (x− xi)3 + bi (x− xi)2 + ci (x− xi) + di

where N is the number of nodes and i ∈ [0, N).
Once the nodes of the spline are determined we need to find the coefficients ai, bi, ci

and di of each polynomial. Since there are N nodes and consequently (N−1) polynomials,
there are 4 (N − 1) variables and (N − 1) equations. Let:

s′
i(x) = 3ai (x− xi)2 + 2bi (x− xi) + ci (C.2)

be the first derivative and
s′′

i (x) = 6ai (x− xi) + 2bi (C.3)

be the second derivative of each i− th polynomial described in eq. C.1 with respect to x.
By introducing a constraint on continuity:

si (xi) = si−1 (xi) , (C.4)

a constraint on differentiability:

s′
i (xi) = s′

i−1 (xi) (C.5)

and finally a constraint on smoothness:

s′′
i (xi) = s′′

i−1 (xi) (C.6)

124

between adjacent polynomials it’s possible to make this under-determined system solvable.
Furthermore, the constraints on continuity and differentiability make the splines suitable
for gradient-descent based methods such as the convolutional neural networks.

From equation C.1 and from the constraint on continuity C.1 we derive:

si(xi) = di (C.7)

and
(C.8)si−1 (xi) = ai−1 (xi − xi−1)3 + bi−1 (xi − xi−1)2 + ci−1 (xi − xi−1) + di−1

so
(C.9)di = ai−1 (xi − xi−1)3 + bi−1 (xi − xi−1)2 + ci−1 (xi − xi−1) + di−1 .

for i ∈ [2, N]. Letting h = xi − xi−1, in equation C.8, we obtain:

di = ai−1h
3 + bi−1h

2 + ci−1h + di−1 (C.10)

From the first derivative in equation C.2 and the differentiability constraint (eq. C.5),
we have that:

s′
i (xi) = ci (C.11)

and
(C.12)s′

i−1 = 3ai−1 (xi − xi−1)2 + 2bi−1 (xi − xi−1) + ci−1

Again letting h = xi − xi−1, we obtain:

ci = 3ai−1h
2 + 2bi−1h + ci−1 (C.13)

for i ∈ [2, N − 1]. Finally, from the second derivative (eq. C.3) and from the
smoothness constraint in eq. C.6, we gather:

s′′
i (xi) = 2bi (C.14)

and

s′′
i (xi+1) = s′′

i+1 (xi+1) =
= 6ai (xi+1 − xi) + 2bi

(C.15)

and letting again h = xi − xi−1, from equations C.14 and C.15 we get:

s′′
i+1 = 6ai (xi+1 − xi) + 2bi (C.16)

125

2bi+1 = 6aih + 2bi (C.17)

By doing a variable change, it’s possible to simplify the equations. Specifically, by
introducing:

Mi = s′′ (xi) (C.18)

it’s possible to rewrite all the parameters. Each bi can be represented by:

s′′ (xi) = 2bi

Mi = 2bi

bi = Mi

2

(C.19)

Similarily, using equation C.17, ai can be rewritten as:

2bi+1 = 6aih + 2bi

6aih = 2bi+1 − 2bi

ai = 2bi+1 − 2bi

6h

ai =
2
(

Mi+1
2

)
− 2

(
Mi

2

)
6h

ai = Mi+1 −Mi

6h

(C.20)

In the same way, ci can be re-written as:

di+1 = aih
3 + bih

2 + cih + di

cih = −aih
3 − bih

2 − di − di+1

ci = −aih
3 − bih

2 − di − di+1

h

ci = −aih
3 − bih

2

h
+ −di − di+1

h

ci =
(
−aih

2 − bih
)
− di + di+1

h

ci = −
(

Mi + 1−Mi

6h
h2 + Mi

2 h
)
− yi − yi+1

h

ci = yi+1 − yi

h
−
(

Mi+1 −Mi

6 h + 3Mi

6 h
)

ci = yi+1 − yi

h
− Mi+1 −Mi + 3Mi

6 h

ci = yi+1 − yi

h
− Mi+1 + 2Mi

6 h

(C.21)

126

Now that we computed all the equations we can rewrite the four parameters of each
polynomial composing the spline as:

ai = Mi+1 −Mi

6h

bi = Mi

2
ci = yi+1 − yi

h
−
(

Mi+1 + 2Mi

6

)
h

di = yi

(C.22)

To make the system easier to handle we need to rewrite it in a matricial form, starting
from equation C.13 and sobstituting the four parameters expressed in function of Mi

(equation C.22) we can write:

3aih
2 + 2bih + ci = ci+1

3
(

Mi+1 −Mi

6h

)
h2 + 2

(
Mi

2

)
+ yi+1 − yi

h
−
(

Mi+1 + 2Mi

6

)
h = yi+2 − yi+1

h
−
(

Mi+2 + 2Mi+1

6

)
h

3
(

Mi+1 −Mi

6h

)
h2 + 2

(
Mi

2

)
h−

(
Mi+1 + 2Mi

6

)
h +

(
Mi+2 + 2Mi+1

6

)
h = −yi+1 − yi

h
+ yi+2 − yi+1

h

h
[3Mi+1 − 3Mi

6 + 6Mi

6 −
(

Mi+1 + 2Mi

6

)
+
(

Mi+2 + 2Mi+1

6

)]
= yi − 2yi+1 + yi+2

h
h

6 (Mi + 4Mi+1 + Mi+2) = yi − 2yi+1 + yi+2

h

Mi + 4Mi+1 + Mi+2 = 6
h2 (yi − 2yi+1 + yi+2)

(C.23)

for i ∈ [1, N).

127

Finally, it’s possible to convert it in matricial form as follows:

1 4 1 0 · · · 0 0 0
0 1 4 1 · · · 0 0 0
0 0 1 4 · · · 0 0 0
...
0 0 0 0 · · · 4 1 0
0 0 0 0 · · · 1 4 1
0 0 0 0 · · · 0 1 4

M1

M2

M3

M4
...

Mn−3

Mn−2

Mn−1

Mn

=

= 6
h2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5
...

yn−4 − 2yn−3 + yn−2

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

(C.24)

Note that the system still be under-determined. To make it solvable, we adopt a
particular type of spline called natural spline. In this type of splines, we constraint the
second derivative to be null at the endpoints:

M1 = Mn = 0 (C.25)

Equation C.24 becomes therefore:

4 1 0 · · · 0 0 0
1 4 1 · · · 0 0 0
0 1 4 · · · 0 0 0
...
0 0 0 · · · 4 1 0
0 0 0 · · · 1 4 1
0 0 0 · · · 0 1 4

M2

M3

M4
...

Mn−3

Mn−2

Mn−1

= 6

h2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5
...

yn−4 − 2yn−3 + yn−2

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

(C.26)

128

This equation is equivalent to KM = 6
h2 Y . The solution of the overall system is therefore:

M = 6
h2 K−1Y (C.27)

129

	Table of contents
	List of figures
	List of tables
	I Background
	1 Introduction
	1.1 What is an anomaly?
	1.2 The normal signal (background)
	1.3 Possible pipeline for anomaly detection
	1.4 Sources of anomalies
	1.5 Human-issues in detecting anomalies
	1.6 Implications of adopting an automatic anomaly detection system
	1.7 Lack of data
	1.8 Structure of this thesis

	2 Adversarial Training
	2.1 GANs - Generative Adversarial Networks
	2.2 DC-GANs - Deep Convolutional Generative Adversarial Networks
	2.3 cGANs - Conditional Generative Adversarial Networks
	2.4 wGANs - Wasserstein Generative Adversarial Networks
	2.5 wGANs-GP - Wasserstein Generative Adversarial Networks with Gradient Penalty

	II Data Augmentation
	3 Data Generation
	3.1 Related works
	3.2 Proposed method
	3.2.1 Semantic layout generation
	3.2.2 Image retrieval
	3.2.3 Image generation

	3.3 Experiments
	3.3.1 Dataset
	3.3.2 Evaluation
	3.3.3 Results

	III Image Enhancement
	4 Image Enhancement
	4.1 Introduction
	4.2 Related work
	4.3 Proposed method
	4.3.1 Node estimation
	4.3.2 Spline interpolation
	4.3.3 Color transformation

	4.4 Experimental setup
	4.4.1 Metrics
	4.4.2 Implementation and training

	4.5 Single-user modeling
	4.5.1 Color distribution
	4.5.2 Dependence on the image content
	4.5.3 Sensitivity analysis
	4.5.4 Processing time

	4.6 Multi-user modeling
	4.6.1 Modeling a new user

	IV Anomaly Detection
	5 Introduction To Anomaly Detection
	6 Feature-Based Methods For Anomaly Detection
	6.1 Introduction
	6.2 Anomaly detection and localization
	6.3 Proposed method
	6.3.1 Feature extraction
	6.3.2 Dictionary building
	6.3.3 Learning to detect anomalies

	6.4 Experiments
	6.4.1 Performance metrics
	6.4.2 Results

	7 Generative Methods For Anomaly Removal
	7.1 Introduction
	7.2 Proposed method
	7.3 Experimental results
	7.3.1 Error metrics
	7.3.2 Performance varying the degree and number of polynomials
	7.3.3 Comparison with the state of the art
	7.3.4 Filter classification
	7.3.5 Semantic classification on Places-205 dataset
	7.3.6 Analysis of the learned features

	V Epilogue
	8 Conclusions
	References
	Appendix A Datasets
	A.1 Artistic Foto Filter Dataset
	A.1.1 Photographic filters

	A.2 Nanofibers Dataset
	A.3 Places205 Dataset
	A.4 FiveK Dataset

	Appendix B CIELab conversion
	Appendix C Spline Interpolation

