
DOCTORAL SCHOOL
UNIVERSITY OF MILANO-BICOCCA

Department of Informatics, Systems and Communication
Ph.D. Program in Computer Science - Cycle XXXI

High-Performance Computing to Tackle
Complex Problems in Life Sciences

Andrea Tangherloni

Supervisors: Prof. Daniela Besozzi
Dr. Paolo Cazzaniga

Tutor: Prof. Alberto Leporati

Ph.D. Coordinator: Prof. Stefania Bandini

Academic Year 2017-2018

To my loving family and to all
people who believed in me . . .

Abstract

Recent advances in several research fields of Life Sciences, such as Bioinformatics, Com-
putational Biology and Medical Imaging, are generating huge amounts of data that require
effective computational tools to be analyzed, while other disciplines, like Systems Biology,
typically deal with mathematical models of biochemical networks, where issues related to the
lack of quantitative parameters and the efficient description of the emergent dynamics must
be faced. In these contexts, High-Performance Computing (HPC) infrastructures represent
a fundamental means to tackle these problems, allowing for both real-time processing of
data and fast simulations. In the latest years, the use of general-purpose many-core devices,
such as Many Integrated Core coprocessors and Graphics Processing Units (GPUs), gained
ground. The second ones, which are pervasive, relatively cheap and extremely efficient
parallel many-core coprocessors capable of achieving tera-scale performance on common
workstations, have been extensively exploited in the work presented in this thesis.

Moreover, some of the problems described here require the application of Computa-
tional Intelligence (CI) methods. As a matter fact, the Parameter Estimation problem in
Systems Biology, the Haplotype Assembly problem in Genome Analysis as well as the
enhancement and segmentation of medical images characterized by a bimodal gray level
intensity histogram can be viewed as optimization problems, which can be effectively ad-
dressed by relying on CI approaches. In the case of the Parameter Estimation problem,
Evolutionary and Swarm Intelligence techniques were exploited and coupled with novel
GPU-powered simulators—designed and developed in this thesis to execute both coarse-
grained and fine-grained simulations—which were used to perform in a parallel fashion the
biochemical simulations underlying the fitness functions required by these population-based
approaches. The Haplotype Assembly and the enhancement of medical images problems
were both addressed by means of Genetic Algorithms (GAs), which were shown to be very
effective in solving combinatorial problems. Since the proposed approaches based on GAs
are computationally demanding, a Master-Slave paradigm was exploited to distribute the
workload, reducing the required running time.

The overall results show that coupling HPC and CI techniques is advantageous to address
these problems and speed up the computational analyses in these research fields.

Acknowledgements

I would like to express my sincere gratitude to Professors Daniela Besozzi and Paolo Caz-
zaniga, they have been friends but also severe supervisors who gave me helpful suggestions
and important advice during my Ph.D., they shaped me as a scientist, changing me for the
rest of my life. A particular thanks to Dr. Marco S. Nobile for several reasons: he always
believed in me, he helped me so many times in writing code, he spent hours and days to
explain me things. Special thanks are due to Professor Giancarlo Mauri, who has been a
further supportive supervisor. Many thanks go to Leonardo Rundo who has become a special
friend, we grew up together during the last 3 years. Thank you for the amazing days in
Nashville and Cambridge as well as for all the last minute rushes to train and bus stations
since we were always late. Our adventures will continue in Cambridge during the next
years. Thanks to Simone Spolaor for his friendship and for having helped me with his deep
knowledge of biology and biotechnology. A big thank goes to Professor Carlos Lopez for
allowing me to spend wonderful days in his research group at Vanderbilt University. I also
want to send a huge “thank you” to Professor Pietro Liò who hosted me for 3 months in
Cambridge, he was a special mentor who helped me during my last months with his love
for sciences. Many thanks to all the wonderful colleagues who helped me during my Ph.D.
visiting periods. In this regard, I am very grateful to Dr. Ana Cvejic who is investing in me
for the next years at the University of Cambridge. Tons of thanks go to my new colleagues
Anna, Paulina and Brynelle. You have been so gentle and have made me feel at ease from
the very beginning of this new adventure. I also want to thank Professor Alberto Leporati for
his support, helpful suggestions and laughter we shared. I wish to thank also the students in
my lab for their friendship and for the parties we had. Finally, I am grateful to my family for
its support during this three-year journey.

Table of contents

List of figures v

List of tables xiii

Introduction 1

1 Complex problems in Life Sciences 15
1.1 Modeling biochemical systems . 15

1.1.1 Mechanistic modeling . 18
1.2 Simulation algorithms for mechanism-based models 24

1.2.1 Deterministic simulation . 25
1.2.2 Stochastic simulation . 35
1.2.3 State-of-the-art . 37

1.3 Parameter Estimation in Systems Biology 39
1.3.1 State-of-the-art . 41

1.4 The Haplotype Assembly problem in Genome Analysis 42
1.4.1 Current trends in sequencing experiments 43
1.4.2 State-of-the-art . 44

1.5 Medical image enhancement and segmentation 47
1.5.1 State-of-the-art . 48

2 Optimization techniques 53
2.1 Classic optimization techniques . 54

2.1.1 Simplex Method . 54
2.1.2 Gradient Descent . 55
2.1.3 Other classic optimization techniques 57

2.2 Evolutionary Computation . 59
2.2.1 Evolution Strategies . 60
2.2.2 Covariance Matrix Adaptation Evolution Strategy 61

ii Table of contents

2.2.3 Differential Evolution . 62
2.2.4 Estimation of Distribution Algorithm 63
2.2.5 Genetic Algorithms . 64

2.3 Swarm Intelligence . 66
2.3.1 Ant Colony Optimization . 66
2.3.2 Artificial Bee Colony . 66
2.3.3 Bat Algorithm . 67
2.3.4 Particle Swarm Optimization . 69
2.3.5 Proactive Particles in Swarm Optimization 70

3 High-Performance Computing 73
3.1 Introduction . 73
3.2 Message Passing Interface . 75
3.3 Many Integrated Cores . 76
3.4 General-Purpose Computing on GPUs . 78

3.4.1 Compute Unified Device Architecture 80

4 High-Performance Computing for the simulation of Reaction-Based Models 89
4.1 SMGen . 90
4.2 LASSIE . 93

4.2.1 GPU implementation . 93
4.2.2 Results . 100
4.2.3 Conclusion . 110

4.3 FiCoS . 112
4.3.1 GPU implementation . 113
4.3.2 Results . 119
4.3.3 Computational performance . 120
4.3.4 Simulation accuracy . 132
4.3.5 Autophagy/Translation model . 136
4.3.6 Treg-Teff cross regulation in multiple sclerosis 138
4.3.7 Conclusion . 142

4.4 SSA accelerated on MIC coprocessors . 143
4.4.1 Results . 144
4.4.2 Conclusion . 149

5 Parameter Estimation of biological systems 151
5.1 Fitness function definition . 151

Table of contents iii

5.2 Single swarm PE of small-scale models 153
5.2.1 Comparison of the performance of PPSO with PSO 154
5.2.2 Comparison of the performance of DBLA with PSO 160
5.2.3 Reboot strategies in PSO . 165
5.2.4 Comparison between PE and benchmark functions 173

5.3 Multi-swarm PE of small-scale models . 188
5.3.1 Master-Slave approach . 189
5.3.2 Results . 192
5.3.3 Conclusions . 197

5.4 PE of a human intracellular metabolic pathway 197
5.4.1 Results and discussion . 199
5.4.2 Conclusions . 203

6 Computational method based on Genetic Algorithms for Haplotype Assembly 205
6.1 Problem formulation . 205
6.2 Implementation strategy . 208
6.3 Results . 213

6.3.1 GenHap accuracy . 213
6.3.2 Computational performance . 220

6.4 Conclusions . 224

7 Evolutionary method for the analysis of medical images 227
7.1 Image thresholding . 228
7.2 MedGA . 229

7.2.1 Implementation strategy . 231
7.3 Evaluation metrics and data . 237

7.3.1 Image enhancement metrics . 237
7.3.2 Image segmentation metrics . 240
7.3.3 MRI data . 242

7.4 Results . 243
7.4.1 GA setting analysis . 245
7.4.2 Enhancement results . 247
7.4.3 Segmentation pipeline . 249
7.4.4 Medical image segmentation results 252

7.5 Conclusions . 255

Conclusions 257

iv Table of contents

Bibliography 265

Appendix A Reaction-based models 299
A.1 The Brusselator model . 299
A.2 The eukaryotic Heat Shock Response model 300
A.3 A human intracellular core metabolic pathway in a red blood cell 302
A.4 The Prokaryotic auto-regulatory Gene Network 311
A.5 The Ras/cAMP/PKA pathway . 312
A.6 The Schlögl model . 314

List of figures

1 Thesis topics overview . 4

1.1 Overview of the principal modeling approaches 17
1.2 Example of bistable and oscillatory dynamics 22
1.3 Comparison of numerical integration methods 34
1.4 Example of different emergent behaviors obtained by varying the kinetic

parameters . 40
1.5 The “phylogeny” of haplotyping methods 45

2.1 Example of the Simplex Method . 54
2.2 Example of multi-modal function . 56

3.1 High-level scheme of the Intel Xeon Phi coprocessor 76
3.2 High-level scheme of the programming models on Intel Xeon Phi coprocessor 77
3.3 Multi-core and many-core devices architectures 78
3.4 Two-stage compilation with virtual and real architectures 81
3.5 CUDA thread organization . 83
3.6 Schematization of CUDA automatic scalability 84
3.7 A simple example of thread divergence . 85
3.8 Architecture of CUDA threads and memories hierarchy 86

4.1 The “semiotic square” of the state-of-the-art of accelerated biochemical
simulators . 90

4.2 Scheme of the Master-Slave implementation of SMGen 92
4.3 Example of matrix encoding to automatically generate an ODE using LASSIE 94
4.4 Simplified scheme of the workflow of LASSIE 97
4.5 Simplified scheme of BDF workflow, corresponding to phase P5 of LASSIE 99
4.6 3D representation of the speed-up values achieved by LASSIE with respect

to LSODA on symmetric models . 103

vi List of figures

4.7 Comparison between the average running time required by LASSIE and
LSODA to simulate 30 instances of models characterized by 128, 256 and
4096 reactions and species . 104

4.8 3D representing the speed-up values achieved by LASSIE with respect to
LSODA on the asymmetric models . 106

4.9 Comparison of the average running times for the simulation of 30 synthetic
models executed with three GPUs . 107

4.10 Comparison of the dynamics of the molecular species Ras2:GTP and cAMP,
PKA and Pde1 obtained with LSODA and LASSIE 108

4.11 Comparison of the dynamics of species S1 of the chain of isomerizations
model obtained with LSODA and LASSIE 109

4.12 Running time required by LASSIE for the simulation of the chain of isomer-
izations model using different values of the RKF method tolerance ε j . . . 109

4.13 Example of matrix encoding to automatically generate an ODE using FiCoS 114
4.14 Simplified scheme of the workflow of FiCoS 117
4.15 Comparison map representing the best method in terms of simulation time in

the case of symmetric models . 122
4.16 Speed-up provided by FiCoS with respect to LSODA considering the sym-

metric models . 123
4.17 Speed-up provided by FiCoS with respect to VODE considering the symmet-

ric models . 123
4.18 Speed-up provided by FiCoS with respect to LASSIE considering the sym-

metric models . 124
4.19 Speed-up provided by FiCoS with respect to cupSODA considering the

symmetric models . 124
4.20 Comparison map representing the best method in terms of simulation time in

the case of asymmetric models (more species than reactions) 125
4.21 Comparison map representing the best method in terms of simulation time in

the case of asymmetric models (more reactions than species) 126
4.22 Speed-up provided by FiCoS with respect to LSODA considering the asym-

metric models in which the number of species is three times higher than the
number of reactions . 127

4.23 Speed-up provided by FiCoS with respect to VODE considering the asym-
metric models in which the number of species is three times higher than the
number of reactions . 127

List of figures vii

4.24 Speed-up provided by FiCoS with respect to LASSIE considering the asym-
metric models in which the number of species is three times higher than the
number of reactions . 128

4.25 Speed-up provided by FiCoS with respect to cupSODA considering the
asymmetric models in which the number of species is three times higher than
the number of reactions . 128

4.26 Speed-up provided by FiCoS with respect to LSODA considering the asym-
metric models in which the number of reactions is three times higher than
the number of species . 130

4.27 Speed-up provided by FiCoS with respect to VODE considering the asym-
metric models in which the number of reactions is three times higher than
the number of species . 130

4.28 Speed-up provided by FiCoS with respect to LASSIE considering the asym-
metric models in which the number of reactions is three times higher than
the number of species . 131

4.29 Speed-up provided by FiCoS with respect to cupSODA considering the
asymmetric models in which the number of reactions is three times higher
than the number of species . 131

4.30 Comparison of the dynamics of the molecular species EIF4EBP and AMBRA
obtained by running FiCoS, LSODA and VODE 132

4.31 Comparison of the dynamics of the molecular species cAMP of the model of
the Ras/cAMP/PKA signaling pathway in yeast, obtained by FiCoS varying
εa ∈ {10−2,10−6,10−10} and εr ∈ {10−2,10−4,10−6}. 133

4.32 Comparison of the dynamics of the molecular species cAMP of the model of
the Ras/cAMP/PKA signaling pathway in yeast, obtained by VODE varying
εa ∈ {10−2,10−6,10−10} and εr ∈ {10−2,10−4,10−6}. 134

4.33 Comparison of the dynamics of the molecular species cAMP of the model
of the Ras/cAMP/PKA signaling pathway in yeast, obtained by LSODA
varying εa ∈ {10−2,10−6,10−10} and εr ∈ {10−2,10−4,10−6}. 134

4.34 Results of a PSA-2D on the Autophagy/Translation model by varying the
initial concentration of AMPK and the value of the P9 rule 137

4.35 Dynamics of Teff and ODC species . 141
4.36 Comparison of the running time to execute an increasing number of SSA

runs of the PGN model on MIC, MIC with vector instructions, CPU and GPU146
4.37 Break-even of the running time to execute a limited number of SSA runs of

the PGN model on MIC, MIC with vector instructions, CPU and GPU . . . 147

viii List of figures

4.38 Comparison of MIC running times with and without the use of vector instruc-
tions to execute an increasing number of stochastic simulations of synthetic
models . 148

5.1 Comparison of the ABF obtained by PPSO and PSO for the optimization of
the PGN model . 155

5.2 Temporal dynamics of two species of the PGN model obtained by PPSO and
PSO . 156

5.3 Comparison of the ABF obtained by PPSO and PSO for the optimization of
the HSR model . 157

5.4 Temporal dynamics of the species hsf3:hse of the HSR model obtained by
PPSO and PSO . 158

5.5 ABF obtained by DLBA with fmax = D = 8 and fmax = 1 161
5.6 Comparison of the ABF obtained by DLBA and PSO for the optimization of

the PGN model . 162
5.7 Temporal dynamics of the species P of the PGN model obtained by DLBA

and PSO . 162
5.8 Comparison of the ABF obtained by DBLA and PSO for the optimization of

the HSR model . 163
5.9 Temporal dynamics of the species hsf3:hse of the HSR model obtained by

DBLA and PSO . 163
5.10 ABF comparison of the PE executed on the HSR model with classic PSO . 166
5.11 ABF comparison of the PE executed on the HSR model with PSO imple-

menting the Global reboot strategy . 168
5.12 ABF comparison of the PE executed on the HSR model with PSO imple-

menting the Local reboot strategy . 169
5.13 ABF comparison of the PE executed on the HSR model with PSO imple-

menting the Distance reboot strategy . 170
5.14 ABF comparison of the PE executed on the HSR model with standard PSO

and PSO implementing the three different reboot strategies 171
5.15 Temporal dynamics of the hsf3:hse species of the HSR model obtained by

PSO implementing the three different reboot strategies 172
5.16 Temporal dynamics of the cAMP species of the Ras/cAMP/PKA model,

obtained with standard PSO and PSO coupled with the Local reboot strategy 173
5.17 Comparison of the performance in terms of ABF on the benchmark functions

with D = 25 . 178

List of figures ix

5.18 Comparison of the performance in terms of ABF for the PE of synthetic
models characterized by 25 reactions and 25 molecular species 178

5.19 Kiviat diagram showing the final ABF value obtained on the benchmark
functions with D = 25 . 179

5.20 Kiviat diagram showing the final ABF value obtained on the PE of synthetic
models characterized by 25 reactions and 25 molecular species 179

5.21 Boxplots showing the distribution of the final best fitness values obtained by
the metaheuristics on the benchmark functions with M = 25 180

5.22 Boxplots showing the distribution of the final best fitness values obtained by
the metaheuristics on the benchmark functions with M = 25 180

5.23 Comparison of the performance in terms of ABF on the benchmark functions
with D = 50 . 181

5.24 Comparison of the performance in terms of ABF for the PE of synthetic
models characterized by 50 reactions and 50 molecular species 181

5.25 Kiviat diagram showing the final ABF value obtained on the benchmark
functions with D = 50 . 182

5.26 Kiviat diagram showing the final ABF value obtained on the PE of synthetic
models characterized by 50 reactions and 50 molecular species 182

5.27 Boxplots showing the distribution of the final best fitness values obtained by
the metaheuristics on the benchmark functions with M = 50 183

5.28 Boxplots showing the distribution of the final best fitness value obtained
by the metaheuristics in the PE of synthetic models characterized by 50
reactions and 50 molecular species . 183

5.29 Comparison of the performances of CMA-ES, EDA and FST-PSO with
normal and logarithmic semantics of parameters 187

5.30 Overall scheme of the Master-Slave implementation of MS2PSO 190
5.31 Workflow of a single PSO swarm execution of MS2PSO 191
5.32 Dynamics of the synthetic model characterized by 20 chemical reactions and

20 molecular species obtained by using MS2PSO 194
5.33 Running time for 15 independent repetitions of MS2PSO for the PE of the

analyzed synthetic biochemical models . 195
5.34 Dynamics of the GLC and LAC species of the human intracellular metabolic

network . 199
5.35 ABF calculated running CMA-ES, DE, GA and FST-PSO for 20 independent

repetitions . 201

x List of figures

5.36 ABF calculated running CMA-ES and FST-PSO (no vmin) with normal and
logarithmic semantics of parameters for 20 independent repetitions 201

5.37 Dynamic profiles of metabolite concentration simulated with the baseline
model, and with increasing (50,75,100%) knock-down interventions on the
HK I isoform in a 10 hours time window 202

5.38 Dynamic profiles of metabolite concentration simulated with the baseline
model, and with increasing (50,75,100%) knock-down interventions on the
HK I isoform in a 50 hours time window 203

6.1 Simplified workflow of the Haplotype Assembly process 206
6.2 Scheme of the partition of the input matrix 209
6.3 Scheme of the Master-Slave implementation of GenHap 212
6.4 Comparison of the ABF achieved by GenHap with the best parameterizations

found for each tested population size . 215
6.5 Comparison of the average running time required by GenHap and HapCol

obtained with Roche/454 sequencing technology 217
6.6 Comparison of the average running time required by GenHap and HapCol

obtained with the PacBio RS II sequencing technology 219
6.7 Comparison of the running time required by GenHap on sequencing data

generated by four sequencing technologies 222

7.1 Examples of input MR images . 230
7.2 Representation of the crossover strategy used in MedGA 233
7.3 General workflow of MedGA . 234
7.4 Enhanced image obtained by MedGA on an example of uterine fibroid . . . 236
7.5 Enhanced image obtained by MedGA on an example of brain tumor 237
7.6 Plots of the implemented global non-linear intensity transformations for

image enhancement . 244
7.7 Comparison of the ABF achieved by MedGA with the best parameterizations

found for each populaion size . 246
7.8 Examples of enhancement achieved on medical images of uterine fibroids . 249
7.9 Flow diagram of the processing pipelines for MR image segmentation based

on the efficient IOTS algorithm . 250
7.10 Segmentation results achieved on the uterine fibroids 253
7.11 Segmentation results achieved on the brain tumors 253
7.12 Boxplots of overlap-based and distance-based metrics obtained on the MRI

dataset composed of patients with uterine fibroids 254

List of figures xi

7.13 Boxplots of overlap-based and distance-based metrics obtained on the MRI
dataset composed of patients with brain metastatic tumors 255

List of tables

1.1 Butcher tableau of a generic Runge-Kutta method 28
1.2 Butcher tableau of the midpoint method 29
1.3 Butcher tableau of the Runge Kutta 4 method 30
1.4 Butcher tableau of the Runge–Kutta–Fehlberg method 31
1.5 Butcher tableau of the Dormand–Prince method 31
1.6 Butcher tableau of the Radau IIA method 33

3.1 Main libraries available for CUDA . 81
3.2 Relevant architectural innovations and new features introduced by different

CUDA architectures . 82

4.1 Average running time of LSODA and LASSIE and the corresponding speed-
up value considering 10, 50 and 100 samples 102

4.2 Average running time of LSODA and LASSIE and the corresponding speed-
up value considering 500 and 1000 samples 102

4.3 Average running time of LASSIE required for the execution of a set of 30
synthetic RBMs of size M×N . 105

4.4 Nvidia GPUs used to assess the scalability of LASSIE 107
4.5 Simulation time required by LSODA, VODE and CPU-based version of

FiCoS to solve the systems of ODEs related to the Ras/cAMP/PKA signaling
pathway in yeast . 135

4.6 Simulation time required by LSODA, VODE and the CPU-based version of
FiCoS to solve the systems of ODEs related to the Autophagy/Translation
switch based on the mutual inhibition of MTORC1 and ULK1 model 135

5.1 Functioning settings of the exploited optimization algorithms 177
5.2 Statistical comparison of the tested algorithms in solving the benchmark

functions and the PE problem considering M = 25 and M = 50 185
5.3 Hardware and software characteristics of the computing platforms 195

xiv List of tables

5.4 Average speed-up achieved by platforms with multi-GPU configurations . . 196
5.5 Average speed-up achieved by the best configuration against the other con-

figurations . 196

6.1 Comparison of GenHap and HapCol on Roche/454 dataset with cov ≃ 30× 217
6.2 Comparison of GenHap and HapCol on PacBio RS II dataset with cov ≃ 30×219
6.3 Results obtained by GenHap on Roche/454 dataset with cov ≃ 60× 220
6.4 Results obtained by GenHap on PacBio RS II dataset with cov ≃ 60× . . . 220
6.5 Results obtained by GenHap on NovaSeq and MinION datasets, by consider-

ing cov ∈ {∼30×,∼60×,∼90×} and #SNPs ∈ {500,1000,5000} 223

7.1 Values of the image enhancement evaluation metrics achieved by MedGA
and the other implemented approaches on the uterine fibroid MRI series . . 248

7.2 Values of the image enhancement evaluation metrics achieved by MedGA
and the other implemented approaches on the brain tumor MRI series . . . 248

7.3 Best solutions to tackle the discussed problems in Life Sciences 263

A.1 Reactions of the Brusselator model . 300
A.2 Initial molecular amounts of the Brusellator model 300
A.3 Reactions of the HSR model . 300
A.4 Initial concentrations of the HSR model 301
A.5 List of the reactions of the RBM of the human intracellular core metabolic

pathways in a red blood cell . 302
A.6 Initial concentrations of the species of model of human intracellular core

metabolic pathways in a red blood cell . 308
A.7 Reactions of the PGN model . 311
A.8 Reactions of the RBM of the Ras/cAMP/PKA pathway 312
A.9 Initial molecular amounts of the RBM of Ras/cAMP/PKA pathway 313
A.10 Reactions of the Schlögl model . 314
A.11 Initial molecular amounts of the Schlögl model 314

Introduction

Nowadays, the recent advances in several biomedical research fields, such as Bioinformatics,
Computational Biology and Medical Imaging, are generating a huge amount of data on
an ongoing basis [170, 461, 135]. On the other hand, different disciplines related to Life
Sciences (e.g., Systems Biology) require computational methods capable of dealing with
the lack of quantitative data, especially when large-scale biological systems are taken into
account. Processing and analyzing this ensemble of data in a reasonable time, even in
real-time, or solving the issues related to the paucity of information to investigate the
functioning of complex cellular systems, are difficult tasks that can be addressed by relying
on High-Performance Computing (HPC) infrastructures. In the biomedical research context,
for instance, grid computing and computer clusters have been largely used due to their
peculiarities that allow researchers to access global-scale resources. These infrastructures are
generally flexible and characterized by a high scalability, which allows for achieving high
performance by exploiting any available computational methods with minimal changes to
the original code. During the latest years, the use of general-purpose many-core devices,
such as Many Integrated Core (MIC) coprocessors and Graphics Processing Units (GPUs),
gained ground. As a matter of fact, traditional computational methods and software tools
designed and developed in research fields related to Life Sciences share a common trait: they
easily become computationally demanding on Central Processing Units (CPUs), hindering
their applicability in many circumstances. In order to overcome this limitation, GPUs
have been widely adopted as an alternative approach to classic parallel architectures for
the parallelization of computational methods in Bioinformatics, Computational Biology
and Systems Biology, as extensively reviewed in [308]. GPUs were initially developed
to deal with the calculations required by real-time three-dimensional computer graphics,
by exploiting their underlying parallel architecture and thus freeing the CPU for further
calculations [302]. Since GPUs are pervasive, relatively cheap and extremely efficient
parallel many-core coprocessors, they are drawing an ever-growing attention by the scientific
community. As a matter of fact, even common consumer machines are equipped with
GPUs that allow the access to tera-scale performance on common workstations (and peta-

2 Introduction

scale performance on GPU-equipped supercomputers [220]). They can markedly decrease
the running times required by traditional CPU-based software, still maintaining low-costs
and energetic efficiency. However, we highlight that, in general, the implementation of
computational methods able to fully exploit the peculiar architecture of GPUs is challenging,
since specific programming skills are required and a complete algorithm redesign is often
necessary to fully leverage the computational power of these many-core devices.

Objectives of the work
Given the effectiveness of HPC solutions, the research activity discussed in this thesis focused
on the design, development and application of HPC approaches to solve computationally
expensive tasks in different disciplines of Life Sciences, proposing new solutions capable
of efficiently dealing with both the lack of quantitative data and the request of an effective
processing of huge amounts of data. In particular, the four major problems addressed in this
thesis are:

1. the definition of efficient tools to simulate and investigate the emergent dynamics of
biological systems;

2. the estimation of unknown parameters of mathematical models of biochemical systems;

3. the Haplotype Assembly problem in Genome Analysis;

4. the enhancement and segmentation of medical images characterized by bimodal gray
level intensity histograms.

It is worth noting that each of these problems also benefited from the use of Computational
Intelligence (CI) algorithms, since they are all related to finding an optimal solution in
a huge search space of candidate solutions. Evolutionary Computation (EC) [105] and
Swarm Intelligence (SI) [224] are two different CI strategies that allow for measuring
the quality of each candidate solution according to a specified fitness function, as in the
case of mathematical optimization problems. In particular, the main concept underlying
the EC methods is the evolution process that exploits genetic operators (i.e., selection,
mutation and crossover) to evolve a population of candidate solutions. On the contrary, SI
approaches rely on the emergent intelligence arising from the collective effort of simple
agents reciprocally sharing information about the explored search space to find an optimal
solution with respect to the defined fitness function. The optimization problems considered
in this thesis can be partitioned into two different classes: continuous (e.g., Parameter
Estimation) and discrete (e.g., Haplotype Assembly) problems, which can be effectively
tackled either by means of EC or SI techniques. EC methods, like Genetic Algorithms (GAs),

Introduction 3

have been successfully applied to optimize discrete problems, while other methods, such as
Particle Swarm Optimization (PSO) or Covariance Matrix Adaptation Evolution Strategy
(CMA-ES), obtain better performance on real-valued problems.

All the methods based on EC and SI proposed in this thesis require a lot of fitness function
evaluations, and they are employed to address problems that are intrinsically computational
demanding. Since the calculations of the fitness functions are independent and some problems
can be decomposed in sub-problems, parallel and distributed architectures can be used to
reduce the required running time. Among all possible architectures, GPUs, MICs and multi-
core CPUs have been used to accelerate the proposed methods, and the results discussed in
this thesis confirm that the coupling of HPC architectures with CI represents an extremely
suitable mean to achieve fast and efficient solutions to the aforementioned problems.

Figure 1 shows the main areas discussed in this thesis together with their conceptual
interconnections. Namely, green hexagons represent Systems Biology and biochemical
simulations; blue hexagons indicate mathematical optimization solved using EC [105] and
SI [224] methods; orange hexagons symbolize the issues related to Genome Analysis; purple
hexagons represent the Medical Imaging area, specifically focusing on the enhancement and
segmentation of Magnetic Resonance (MR) images.

Research questions in Systems Biology
Problems 1 and 2 mentioned above pertain to Systems Biology, a multidisciplinary research
field relying on the cross-talk between mathematical, computational and experimental tools.
As a first step, rigorous mathematical models describing—at the desired level of detail—
the complex, dynamical and non-linear nature of the biological systems must be defined.
After a validation step through ad hoc laboratory experiments, mathematical models can
be used to investigate and analyze the behavior of the biological systems in conditions that
are hard or even impossible to measure with laboratory experiments. These computational
analyses allow for understanding the functioning of biological systems and their response to
environmental and structural perturbations [205], thus helping to formulate new hypotheses
that can be tested by means of further laboratory experiments. The knowledge derived from
these experiments can then be used to increase the detail of the mathematical models, as well
as suggest novel research directions [229], leading to an iterative cycle of model refinements
[84].

In this thesis, the conceptual framework of mechanistic modeling was taken into account
to model biochemical networks. This modeling approach provides a detailed description
of the molecular mechanisms that drive the interactions between the components of the
biochemical network under analysis [71]. As a matter of fact, mechanistic models represent

4 Introduction

Systems
biology

Modeling

Differential
equations

GPGPU
computing

Accelerated
simulations

Many Integrated
Cores

Stochastic
processes

Mathematical
optimization

Benchmark
functions

Evolutionary
Computation

GPGPU
computing

Parameter
Estimation

GPGPU
computing &

Multi-core

Swarm
Intelligence

Genome
Analysis

Genotyping or
sequencing data

Exact
approaches

Single-core

Haplotype
Assembly

Multi-core

Heuristic
approaches

Medical
Imaging

Magnetic Resonance
Imaging

Genetic Algorithms

Multi-core

Image
enhancement &
segmentation

Single-core

Classic
approaches

High-Performance
Computing

Fig. 1 Overview of the topics discussed in this thesis. Different colors have been used to
represent the distint research fields and the exploited methodologies: green for Systems
Biology and the tools for biochemical simulations (Chapters 1 and 4) accelerated by means of
both MIC and GPUs; blue for mathematical optimization, which is the basis for the Parameter
Estimation problem (Chapters 1 and 5), solved using EC and SI methods; orange for Genome
Analysis (Chapters 1 and 6) that has been tackled by exploiting GAs and multi-core CPUs;
purple for Medical Imaging, focusing on the enhancement and segmentation of MR images
characterized by bimodal histograms (Chapters 1 and 7), addressed by means of GAs and
multi-core CPUs. The EC and SI algorithms, exploited during this thesis, are presented in
Chapter 2, while the HPC architecture used to accelerate the proposed methodologies are
described in Chapter 3. This work aims at providing fast and reliable computational tools
to achieve the aforementioned tasks, paving the way for further works integrating different
disciplines for a deeper analysis of biomedical investigations.

the most prominent formalism to achieve a detailed comprehension of biological systems,
since they allow for quantitative predictions of cellular dynamics. Among all possible
mathematical formalizations that can be used to define mechanistic models, Reaction-Based

Introduction 5

Models (RBMs) were considered in this thesis [41]. This choice was based on the following
motivations: (i) RBMs are more easily readable and comprehensible with respect to other
mathematical formalisms, such as differential equations. This is mostly important when
experimental biologists are involved in the modeling phase and in the execution of the
simulations and analyses of biological systems; (ii) RBMs are a flexible formalism that
can be easily extended or modified during further model refinements, by simply adding
or removing new reactions and/or species to the sets of reactions and chemical species
previously defined; (iii) when an RBM is defined, it can be simulated by using both stochastic
and deterministic simulators, according to the mass-action kinetics [154, 84].

The simulation of mathematical models of complex biological systems is indispensable to
determine and predict the quantitative variation of the molecular species in time and in space.
Simulations can be performed by relying on deterministic, stochastic or hybrid algorithms
[466], which should be chosen according to the scale of the modeled system, the nature of its
components and the possible role played by the biological noise. Simulations and analyses of
mechanistic models can be performed if and only if a full model parameterization is properly
specified, that is, all kinetic parameters and the initial conditions (i.e., molecular amounts
or concentrations of the chemical species) are provided. Since a small change of even a
single kinetic parameter or an initial condition can drastically modify the dynamic behavior
of the system, the model parameterization should be as accurate as possible. Unfortunately,
kinetic parameters are usually expensive or even impossible to measure by means of in
vivo experiments, leading to the definition of the Parameter Estimation (PE) problem [285],
which aims at the inference of accurate parameters values1. The most naïve, diffused, error-
prone and time-consuming approach is the manually tuning of the model parameters [454].
Conversely, several automatic methods defined to identify a model parameterization that can
reproduce some target dynamics can be used to obtain repeatable results. Generally, solving a
PE problem consists in finding the model parameterization that allows for obtaining simulated
dynamics that overlap at best some target time-series measurements of the chemical species
involved in the system. This strategy is challenging since it generally leads to a non-linear,
non-convex and multi-modal optimization problem [311, 432]. Moreover, an additional
challenge has to be faced when data related to multiple time-series are available, each one
obtained by executing different experiments under different chemico-physical conditions
(e.g., temperature), replicated many times.

1Notice that to infer the kinetic parameters or the initial amounts of some species relying on PE procedures,
it is implicit to assume that all the reactions characterizing the model are known.

6 Introduction

Contribution In order to deal with the computational burden of biochemical simulations,
we designed and developed two deterministic GPU-powered biochemical simulators. The
former, named LASSIE (LArge-Scale SImulator) [425], was proposed to accelerate the
simulations of large-scale biological systems, characterized by thousands reactions and
molecular species. The latter, named FiCoS (Fine- and Coarse-grained Simulator) [428], was
designed to reduce the running time required by the PE and other computational methods
(e.g., Parameter Sweep Analysis [307] and Sensitivity Analysis [70]) that rely on a massive
number of simulations of large-scale models. Moreover, a stochastic simulator based on
the Stochastic Simulation Algorithm (SSA) [154] and accelerated by exploiting the MIC
coprocessors [427] was proposed. These simulators allow researchers to perform simulations
of biological system under physiological or perturbed conditions on common workstations.

The PE problem was tackled by exploiting several bio-inspired metaheuristics, all based
on global optimization approaches. Considering the PE of small-scale models we performed
a thorough analysis about the application of EC and SI approaches, showing that the PE
problem is completely different to the classic benchmark functions [311, 432]. Afterwards,
in order to deal with optimization problems characterized by multiple targets obtained under
different experimental conditions, we proposed a multi-swarm PE approach [430] based
on PSO. The PE problem of large-scale models was solved by coupling Fuzzy Self-Tuning
Particle Swarm Optimization (FST-PSO) with FiCoS [442].

Research questions in Genome Analysis
Problem 3 pertains to the research field of Genome Analysis in Bioinformatics, more precisely
to the reconstruction of the two distinct copies of each chromosome, called haplotypes, which
is an essential step to fully characterize the genome of an individual. The computational
problem of inferring the full haplotype of a cell, starting from read sequencing data, is
known as Haplotype Assembly, and consists in assigning all heterozygous Single Nucleotide
Polymorphisms (SNPs) to exactly one of the two chromosomes. SNPs are one of the most
studied genetic variations since they play a fundamental role in many medical applications,
such as drug-design, as well as in characterizing their effect on the expression of phenotypic
traits [195]. Indeed, the knowledge of the complete haplotypes is generally more informative
than analyzing single SNPs, especially in the study of complex disease susceptibility. Since a
direct experimental reconstruction of haplotypes still requires huge sequencing efforts and is
not cost-effective [240], computational approaches are extensively used to solve this problem.
In particular, two classes of methods exist for the haplotype phasing [404]. The first class
consists of statistical methods that try to infer the haplotypes from genotype samples in a
population. These data, combined with datasets describing the frequency by which the SNPs

Introduction 7

are usually correlated in different populations, can be used to reconstruct the haplotypes
of an individual. The second class of methods directly leverages sequencing data: in such
a case, the main goal is to partition the entire set of reads into two sub-sets, exploiting
the partial overlap among them to ultimately reconstruct the corresponding two different
haplotypes of a diploid organism [333]. Among the computational methods for Haplotype
Assembly, the Minimum Error Correction (MEC) is one of the most successful approaches.
A weighted variant of MEC, named weighted MEC (wMEC), was proposed in [169], where
the weights represent the confidence for the presence of a sequencing error and the correction
process takes into account the weight associated with each SNP value of a read. These error
schemes generally regard phred quality score [129], which represents the probability that
a given base is called incorrectly by the sequencer, and are very valuable for processing
long reads generated by third-generation sequencing technologies, as they are prone to high
sequencing error rates [333]. MEC computes the two haplotypes that partition the sequencing
reads into two disjoint sets with the least number of corrections to the SNP values [457],
but unfortunately it was proven to be NP-hard [265]. Due to the NP-hardness of the MEC
problem, some methods exploiting heuristic strategies have been proposed (see for instance
[121, 239, 457, 459]).

Contribution In order to tackle the computational complexity of the haplotyping problem,
we proposed GenHap [433], which can efficiently solve large instances of the wMEC problem.
GenHap is a novel computational method based on GAs that yields optimal solutions by
means of a global search process, without any a priori hypothesis about the sequencing
error distribution in the reads. The computational complexity is reduced by relying on
a divide-et-impera approach, which was distributed exploiting a Master-Slave computing
paradigm that allows for speeding up the required computations, reducing the computational
burden.

Research questions in Medical Imaging
Problem 4 pertains to the research field of Medical Imaging, which plays a key role in the clin-
ical workflow thanks to its capability of representing anatomical and physiological features
that are otherwise inaccessible for inspection, thus proposing accurate imaging biomarkers
and clinically useful information [367, 243]. Due to the appearance of the depicted objects
as well as the information conveyed by the pixels, medical images are considerably different
from the pictures usually analyzed in Pattern Recognition and Computer Vision. As a matter
of fact, medical imaging techniques exploit several different principles to measure spatial
distributions of physical attributes of the human body, allowing us to better understand

8 Introduction

complex or rare diseases [441]. The effectiveness of these techniques can be reduced by
a lot of phenomena, such as noise and partial volume effect [441], which might affect the
measurement processes involved in imaging and data acquisition devices. Image contrast
and details might also be impaired by the procedures used in medical imaging, as well as
by the physiological nature of the body part under investigation. Moreover, medical images
actually convey an amount of information related to high image resolution and high pixel
depth, which could overwhelm the human vision capabilities in distinguishing among dozens
of gray levels [325]. Thus, improvements in the appearance and visual quality of medical
images are essential to allow physicians to attain valuable information that would not be
immediately observable in the original image, and assisting them in anomaly detection,
diagnosis, and treatment. In this context, image enhancement techniques aim at realizing a
specific improvement in the quality of a medical image: the enhanced image is expected to
better reveal certain features, compared to their original appearance [104].

In the clinical routine, Contrast-Enhanced (CE) MRI is a diagnostic technique that enables
a more precise assessment of the imaged tissues, resulting the most prominent modality
to obtain soft-tissue imaging [54], especially in oncology, since it provides significant
improvements—in terms of image contrast and resolution—between lesion and healthy
tissue [288]. However, MRI data are affected by acquisition noise [417] and are also prone
to imaging artifacts, related to magnetic susceptibility and large intensity inhomogeneities of
the static magnetic field (i.e., streaking or shadowing artifacts [33]), especially by using high
magnetic field strengths. These aspects make MR image enhancement a challenging task
devoted to improve the outcome of automatic segmentation. Medical image segmentation
concerns both detection and delineation of anatomical or physiological structures from the
background, distinguishing among the different components included in the image [27].
This allows for the extraction of clinically useful information and features in medical image
analysis [367, 218]. Accordingly, computer-assisted approaches enable quantitative imaging
[122], aiming at accurate and objective measurements from digital images regarding a Region
of Interest (ROI) [482, 243]. Indeed, image segmentation is still one of the most challenging
research areas especially in medical image analysis [122]. Accurately delineating the ROIs
is a critical task, since manual segmentation procedures are time-expensive, error-prone, and
operator-dependent (i.e., not ensuring result repeatability).

Contribution The existing image enhancement approaches generally attempt to improve
the contrast level of the whole image and do not address the issues related to overlapped gray
level intensities; by so doing, neither the region contour sharpness nor the image thresholding
results can be improved. However, determining the best pre-processing of an image—able

Introduction 9

to preserve the structural information of the image while enhancing the underlying bimodal
distribution of the histogram bins—is a complex task on a multi-modal fitness landscape.
For this reason, we proposed MedGA [379], a novel image enhancement technique based on
GAs that aims at strengthening the sub-distributions in medical images with an underlying
bimodal histogram of the gray level intensities. We developed also a Master-Slave version
of MedGA to distribute on multiple cores the analysis of the batch of slices obtained by the
CE-MRI of a single patient.

Thesis structure

This thesis is structured as follows. In the first part (Chapters 1–3) the prerequisites necessary
for the development of the proposed solutions are introduced. In the second part (Chapters
4–7), the novel computational approaches proposed in the thesis, together with their appli-
cations, are described in details. These chapters constitute the original contribution of the
research activities proposed in this thesis. The last chapter finally provides a discussion of
this work and future research directions. More precisely:

• In Chapter 1, the complex problems addressed in this thesis are introduced. In the
first two sections, the principal modeling approaches for biochemical networks, along
with the simulations methodologies, are described. In this context, the role of model
parameters is shown and the PE problem defined. Afterwards, the Haplotype Assembly
problem is discussed and, finally, an introduction to medical images characterized by a
bimodal histogram is provided. For each problem, the main state-of-the-art approaches
are also presented.

• Chapter 2 starts with a description of classic and local optimization techniques. Then,
the most known EC and SI techniques are presented. Among them, GAs, PSO, and
two improved version of PSO relying on Fuzzy Logic are discussed in more details,
since the former was used to tackle the Haplotype Assembly and the enhancement of
MR images, while the latter to address the PE problem.

• In Chapter 3, the main features of the most known HPC paradigms are described,
analyzed and discussed, starting from traditional architectures (grid computing and
compluter clusters) to many-core solutions (MICs and GPUs). General-Purpose GPU
computing is described in details along with the Compute Unified Device Architecture
(CUDA), which has been exploited to develop both LASSIE and FiCoS.

10 Introduction

• In Chapter 4, we describe the two deterministic GPU-powered biochemical simulators
(i.e., LASSIE and FiCoS), as well as the stochastic simulator accelerated by means of
MICs coprocessors. We show, in particular, that FiCoS drastically reduces the running
time required by the Parameter Sweep Analysis of two real RBMs. We also propose
an empirical analysis that might facilitate the selection of proper HPC architectures to
parallelize SSA, depending on the number of required independent simulations.

• Chapter 5 describes the PE problem and its solution by means of EC and SI techniques.
A comparison of the efficiency of different EC and SI techniques in solving benchmark
functions with respect to the PE problem is also presented [311, 432]. Then, a PE
methodology designed to deal with the availability of experimental data measured in
multiple initial conditions is discussed. Finally, a PE methodology combining FiCoS
and a Fuzzy Logic-based version of PSO is presented to solve the PE of large-scale
models of biological systems [442].

• In Chapter 6, GenHap is described in details along with the obtained results. The results
show that GenHap always obtains high accuracy solutions (in terms of haplotype error
rate), and is faster than a state-of-the-art approach, considering both short and long
reads generated by second and third-generation sequencing technologies, respectively.
We also assessed the performance of GenHap on two different real datasets, showing
that future-generation sequencing technologies can highly benefit from GenHap, thanks
to its capability of efficiently solving large instances of the Haplotype Assembly
problem.

• Chapter 7 focuses on MedGA. First, the method for image enhancement and its results
are presented, showing that MedGA is capable of outperforming the state-of-the-art
approaches. Afterwards, a segmentation pipeline based on MedGA is proposed and
the achieved results discussed in details. The results highlight that applying MedGA as
a pre-processing step, the MR image segmentation accuracy is considerably increased,
allowing for measurement repeatability in clinical workflows.

• In the last chapter some conclusive remarks about the presented works are given.
Possible improvements and future directions are also discussed.

• In Appendix A the RBMs of some real biochemical systems, exploited to test the
methodologies proposed in this thesis, are described.

Introduction 11

Scientific production

The work presented in this thesis is based on the following publications2:

Journal papers

• Tangherloni A., Spolaor S., Rundo L., Nobile M.S., Cazzaniga P., Mauri G., Liò
P., Merelli I., Besozzi D.: GenHap: A Novel Computational Method Based on
Genetic Algorithms for Haplotype Assembly, BMC Bioinformatics, Special Issue
of the 17th Workshop on Network Tools and Applications for Biology (NETTAB
2017), BioMed Central, in press

• Rundo L., Tangherloni A., Nobile M.S., Militello C., Besozzi D., Mauri G., Cazzaniga
P.: MedGA: A novel evolutionary method for image enhancement in medical
imaging systems, Expert Systems With Applications, 119, pp. 387-399, Elsevier,
2018

• Tangherloni A., Nobile M.S., Besozzi D., Mauri G., Cazzaniga P.: LASSIE: simu-
lating large-scale models of biochemical systems on GPUs, BMC Bioinformatics,
18(1), BioMed Central, 2017

• Tangherloni A., Nobile M.S., Cazzaniga P., Besozzi D., Mauri G.: Gillespie’s Stochas-
tic Simulation Algorithm on MIC coprocessor, The Journal of Supercomputing,
73(2), pp. 1-11, Springer, 2017

• Nobile M.S., Cazzaniga P., Tangherloni A., Besozzi D.: Graphics Processing Units in
Bioinformatics, Computational Biology and Systems Biology, Briefings in Bioin-
formatics, 18(5), pp. 1-16, Oxford University Press, 2017

Book chapters

• Tangherloni A., Rundo L., Spolaor S., Nobile M.S., Merelli I., Besozzi D., Mauri
G., Cazzaniga P., Liò P.: High-Performance Computing for haplotyping: Models
and platforms, In Euro-Par 2018: Parallel Processing Workshops, Lecture Notes in
Computer Science, 11339, pp. 650-661, Springer

2A number of additional topics related to biomedical images were also subject of my research during the
Ph.D. program [374, 380, 370, 378, 371, 373]. These works, which mainly present applications of the methods
presented here, have not been included in this thesis for space limits.

12 Introduction

• Beccuti M., Cazzaniga P., Pennisi M., Besozzi D., Nobile M.S., Pernice S., Russo
G., Tangherloni A., Pappalardo F.: GPU accelerated analysis of Treg-Teff cross
regulation in relapsing-remitting multiple sclerosis, In Euro-Par 2018: Parallel
Processing Workshops, Lecture Notes in Computer Science, 11339, pp. 626-637,
Springer

• Cazzaniga P., Nobile M.S., Tangherloni A., Besozzi D.: Accelerating stochastic sim-
ulations of mechanistic models of biological systems: Advantages and issues in
the parallelization on Graphics Processing Units, In Quantitative Biology: Theory,
Computational Methods, and Models, MIT Press, 2018

Conference proceedings

• Spolaor S., Tangherloni A., Rundo L., Nobile M.S., Cazzaniga P.: Estimation of
Kinetic Reaction Constants: Exploiting Reboot Strategies to Improve PSO’s Per-
formance, Proceedings of the 14th International Meeting on Computational Intelli-
gence Methods for Bioinformatics and Biostatistics (CIBB 2017), Cagliari (Italy),
2019

• Nobile M.S., Tangherloni A., Rundo L., Spolaor S., Besozzi D., Mauri G., Cazzaniga P.:
Computational Intelligence for Parameter Estimation of Biochemical Systems,
proceedings of IEEE Congress on Evolutionary Computation (CEC 2018), Rio de
Janeiro (Brazil), pp. 1-8, 2018

• Tangherloni A., Rundo, L., Spolaor, S., Cazzaniga, P., Nobile, M. S.: GPU-Powered
Multi-Swarm Parameter Estimation of Biological Systems: A Master-Slave Ap-
proach, proceedings of the 26th Euromicro IEEE International Conference on Parallel,
Distributed and Network-based Processing (PDP 2018), Cambridge (UK). Special
Session on: Parallel and distributed high-performance computing solutions in Systems
Biology, pp. 698-705, 2018

• Spolaor S., Tangherloni A., Rundo L., Nobile M.S., Cazzaniga P.: Reboot Strate-
gies in Particle Swarm Optimization and their Impact on Parameter Estimation
of Biochemical Systems, proceedings of IEEE International Conference on Compu-
tational Intelligence in Bioinformatics and Computational Biology (CIBCB 2017).
Special Session on: Parallel and Distributed High Performance Computing Solutions
for Computational Intelligence Methods, Manchester (UK), pp. 1-8, 2017

Introduction 13

• Tangherloni A., Rundo L., Nobile M.S.: Proactive Particles in Swarm Optimiza-
tion: a Settings-Free Algorithm for Real-Parameter Single Objective Optimiza-
tion Problems, proceedings of IEEE Congress on Evolutionary Computation (CEC
2017). Special Session & Competitions on: Real-Parameter Single Objective Opti-
mization, Donostia - San Sebastian (Spain), pp. 1940-1947, 2017

• Tangherloni A., Nobile M.S., Cazzaniga P.: GPU-powered Bat Algorithm for the
Parameter Estimation of biochemical kinetic values, proceedings of IEEE Interna-
tional Conference on Computational Intelligence in Bioinformatics and Computational
Biology (CIBCB 2016). Special Session on: Parallel and distributed high performance
computing solutions for computational intelligence methods, Chiang Mai (Thailand),
pp. 1-6, 2016

• Nobile M.S., Tangherloni A., Besozzi D., Cazzaniga P.:GPU-powered and Settings-
Free Parameter Estimation of Biochemical Systems, proceedings of IEEE Congress
on Evolutionary Computation (CEC 2016). Special Session on: Computational Intelli-
gence Methods Accelerated on Parallel and Distributed Architectures for Applications
in Bioinformatics, Computational Biology and Systems Biology, Vancouver (Canada),
pp. 32-39, 2016

Submitted papers

• Tangherloni A., Spolaor S., Cazzaniga P., Besozzi D., Rundo L., Mauri G., Nobile M.S.:
Benchmark functions do not capture the complexity of biochemical Parameter
Estimation, submitted to Applied Soft Computing, Elsevier, 2018

• Rundo L., Tangherloni A., Cazzaniga P., Nobile M.S., Russo G., Gilardi M.C., Vitabile
S., Mauri G., Besozzi D., Militello C.: Genetic Algorithms improve thresholding-
based segmentation of bimodal Magnetic Resonance Images, submitted to Com-
puter Methods and Programs in Biomedicine, Elsevier, 2018

• Riva S.G., Tangherloni A., Nobile M.S., Cazzaniga P., Besozzi D.: SMGen: A novel
Generator of synthetic models of Biological Systems, under preparation for BMC
Bioinformatics, BioMed Central

• Tangherloni A., Nobile M.S., Cazzaniga P., Capitoli G., Spolaor S., Rundo L., Mauri
G., Besozzi D.: FiCoS: a fine- and coarse-grained GPU-powered deterministic
simulator for biochemical networks, under preparation for Scientific Reports, Nature

Chapter 1

Complex problems in Life Sciences

In this chapter, the main concepts and state-of-the-art methods about the four problems
addressed during this thesis (i.e., the simulation of (large-scale) biochemical models, the
Parameter Estimation (PE) problem of biochemical systems, the Haplotype Asssembly, the
enhancement and segmentation of medical images characterized by bimodal histograms) are
introduced and explained in details. In the first three sections, we present (i) the different
modeling approaches that can be exploited to describe biological systems, (ii) the simula-
tion methodologies that can be used to investigate the dynamic behaviors of the modeled
systems, and (iii) the fundamental role played by the parameters on the emergent behaviors
of biological systems, along with the PE problem. In the following section, the Haplotye
Assembly problem, which is one of the most hot topics in Bioinformatics and Genome
Analysis, is introduced. Finally, in the last section we provide a description of the main
issues related to the enhancement and the segmentation of medical images characterized by
bimodal histograms.

1.1 Modeling biochemical systems

The representation of a biological system by means of a mathematical formulation, which
allows for understanding the phenomenon of interest, must take into account the scale of the
modeled system, the nature of its components, and the possible role played by the biological
noise. The chosen mathematical formulation should be capable of integrating the different
kinds of data obtained from laboratory experiments, as well as providing new hypotheses to
be tested in vivo. As a matter of fact, the mathematical formulation should allows us to: (i)
investigate the functioning of complex biological systems; (ii) characterize their emergent
properties exploiting the interactions among their fundamental components [10]; (iii) predict

16 Complex problems in Life Sciences

how these complex biological systems might behave in both physiological and perturbed
conditions.

Biochemical reaction networks can be described by relying on different modeling ap-
proaches, depending on the desired level of details. A plethora of computational methods
can then be used to simulate and analyze the properties of the modelled system. The choice
of the most appropriate mathematical and computational approaches is related to the purpose
of the study, and should take into account the specific biological problem under investigation,
as well as the complementary analysis performed by means of laboratory experiments. In
order to define the most appropriate mathematical model, the following factors must be
carefully considered: (1) the purpose (i.e., the scientific question) underlying the model; (2)
the expected information that should be collected from in silico analyses; (3) the available
data and their quality. These factors allow for properly determining the abstraction level of
the model that we should define and use.

The modeling approaches can be partitioned into two classes: (i) coarse-grained models
(e.g., interaction-based or constraint-based models), and (ii) fine-grained (e.g., mechanism-
based) models. The former class is suitable for the identification of the main components
or modules of the system under investigation, but they generally do not take into account
the majority of quantitative and kinetic properties of the system, resulting too often poor of
biochemical details. The latter class is composed of mechanism-based modeling approaches
that are characterized by the highest predictive capabilities about the functioning of the
system at molecular level. Nevertheless, they require detailed kinetic information about
the interactions between the molecular species occurring in the system. The lack of these
data may limit the applicability of such detailed modeling approaches. Figure 1.1 depicts a
complete overview of interaction-based, constraint-based and mechanism-based modeling
approaches, along with their main characteristics.

The interaction-based modeling approaches exploit graphs to describe biochemical net-
works: the nodes represent the chemical species, while the edges represent the existing
connections between two species by means of some kind of biochemical or functional in-
teractions. Due to their simplicity and the low computational burden, this methodology is
suited for modeling large-scale networks (e.g., genome-wide), a task that has become more
and more suitable also thanks to the last high-throughput technologies, which generate a
huge amount of data about living systems [407]. The main analyses that can be performed
on these interaction graphs are related to the topological characteristics of the network, such
as shortest paths, degree distribution or clustering coefficient, allowing for determining the
main features of the structural organization of the network at the large-scale level. These
analyses are suitable for understanding the processes underlying the evolution of the network

1.1 Modeling biochemical systems 17

Interaction-based

Network size: large-scale

Analysis level: static

Predictive capability: qualitative

Time: no

Stoichiometry: no

Parameters: no

Compartments: no

Well-stirred/diffusion: no

Constraint-based

Network size: large-scale

Analysis level: steady-state

Predictive capability: quantitative

Time: no

Stoichiometry: yes

Parameters: no

Compartments: yes

Well-stirred/diffusion: no

Mechanism-based

Network size: small-scale

Analysis level: dynamic

Predictive capability: quantitative

Time: continuous/discrete

Stoichiometry: yes

Parameters: fully parameterized

Compartments: yes

Well-stirred/diffusion: yes

G
en

om
e-

w
id

e C
ore m

odel

Network size

Computational demand
 Predictive capability

Fig. 1.1 Figure adapted from [71] showing the principal modeling approaches as well as
their main characteristics and differences. These modeling approaches can be partitioned
in coarse-grained (interaction-based, constraint-based) and fine-grained (mechanism-based)
models, which vary in terms of: (i) size of the system (i.e., number of components and
respective interactions); (ii) computational demand required for in silico analysis; (iii)
predictive capabilities. The interaction-baseds approaches allow for defining genome-wide
models, while the mechanism-based approaches are more suitable for core models. Regarding
the analysis, interaction-based models are generally exploited for the static and qualitative
investigation of the topological properties of the network; constraint-based models are used
to study the quantitative flux distributions at steady-state; due to their fully parameterization,
mechanism-based models are the best choice for the quantitative analysis of the system
dynamics.

structure [262], providing new insights about the components at the basis of the robustness
and redundancy in the biochemical network [29]. Bayesian Networks (BANs) [335] represent
another type of interaction-based models. In such a case, the vertices of the directed acyclic
graph are random variables, while the arcs represent conditional dependencies between the
vertices. BANs are a powerful framework to design probabilistic relationships between
the components (e.g., genes and their mutual regulations) of the biochemical system under
investigation. However, since in BANs it is not possible to include loops and feedback
mechanisms [56], they remain rarely used.

Constraint-based models include some quantitative information in addition to the network
structure previously discussed. Constraint-based models are generally exploited to explore

18 Complex problems in Life Sciences

the set of possible flux distributions (i.e., flows of metabolites [324]) in large-scale metabolic
networks. Among all possible sources of information, reaction stoichiometry (explained
in details in Section 1.1.1) represents the basic one that can be considered. However, this
information does not allow for fully determining the feasible states of the system. In order
to limit the search space of the candidate solutions of flux distributions, further constraints
should be exploited. The most used constraints are given by transcriptomic and enzyme
capacity, as well as thermodynamic constraints associated to the reversibility of the reactions.
In literature, several techniques have been proposed to the aim of investigating the feasible
flux distributions at steady-state. It is worth mentioning Flux Balance Analysis [324],
Extreme Pathway Analysis [348, 386], and Elementary Mode Analysis [444]. Since the
constraints are generally modeled as linear equations, the Simplex Method (described in
Section 2.1.1) is probably the most used approach to solve the resulting Linear Programming
problem that aims at identifying the optimal state of the system.

Mechanism-based models are generally used to quantitatively describe the system at
the level of functional biochemical interactions, obtaining the highest predictive capability
regarding the cellular dynamics. Due to this peculiarity, they represent the best solution to
achieve a detailed comprehension of biological systems [71], as they allow for reproducing
the temporal evolution of all the molecular species occurring in the model. Despite their
high predictive capability, they can be become easily unfeasible to be used due to the
required computational burden of the simulations and analyses that increases along with
the number of the components and interactions composing the system under investigation.
In addition, mechanism-based modeling approaches require the complete knowledge of
quantitative parameters (i.e., reaction stoichiometry, initial molecular concentrations/number
of molecules of the chemical species, and kinetic constants). Unfortunately, these parameters
are difficult or even impossible to measure by means of in vivo and ad hoc experiments. Thus,
the lack of these data can limit the applicability of this modeling approach. Mechanistic
models can be defined by means of different mathematical formalism, as described in Section
1.1.1.

1.1.1 Mechanistic modeling

The biochemical reaction networks taken into account in this thesis are assumed to obey the
mass-action kinetic (MAK) law [84, 78, 455, 301], which is the fundamental and empirical
law governing biochemical reaction rates. MAK states that in a diluted solution in dynamic
equilibrium, the rate of an elementary reaction is directly proportional to the product of
the concentrations of its reactants, raised to the power of the corresponding stoichiometric
coefficients [78, 301]. Since MAK is the most general framework to describe the biochemical

1.1 Modeling biochemical systems 19

kinetics, it is at the basis of the modeling approaches, simulation tools and PE methods
designed and developed in this thesis. In addition, all the biological systems considered in
what follows are assumed to be well-stirred, at thermal equilibrium and characterized by a
fixed volume.

Reaction-based models

Given a biochemical system Ω, the corresponding Reaction-Based Model (RBM) is defined
by specifying the set of N molecular species {S1, . . . ,SN} and the set of M biochemical
reactions {R1, . . . ,RM}. A generic reaction is described as follows:

Ri :
N

∑
j=1

ai jS j
ki−→

N

∑
j=1

bi jS j, i = 1, . . . ,M, (1.1)

where ai j, bi j ∈ N are the stoichiometric coefficients of the reactants and products species—
that is, the number of molecules of species S j that are consumed or produced when the
reaction takes place, respectively—and ki ∈ R+ is the kinetic constant associated with Ri.
The set of reactions {R1, . . . ,RM} can be written compactly in the matrix-vector form:

AS K−→ BS,

where S = [S1 · · ·SN]
T is the N-dimensional column vector of molecular species, K =

[k1 · · ·kM]T is the M-dimensional column vector of kinetic constants, and A,B ∈ NM×N

are the so-called stoichiometric matrices whose (non-negative) elements [A]i, j and [B]i, j cor-
respond to the stoichiometric coefficients ai j and bi j of the reactants and the products of all
reactions, respectively. Besides A,B we can defined the state change matrix H = A−B asso-
ciated to the system, whose rows hi ∈ Z, with hi = (hi1, . . . ,hiN) = (bi1 −ai1, . . . ,biN −aiN),
are the state change vectors. Notice that each vector hi represents the stoichiometric change
of the species S j due to the reaction Ri. We also denote by H the state change matrix com-
posed of the elements hi, j = 0 of the species S j ∈ F, where F ⊂ S is the subset of species
whose amounts is kept fixed during the simulation of the dynamics of the whole system.
This strategy allows for simulating the non-limiting availability of some chemical resources,
and can be used to mimic the execution of in vitro experiments where some species are
continually introduced in Ω to keep their amount constant [82].

Null reactions (i.e., bi j = ai j = 0 for all j = 1, . . . ,N, indicated as /0
ki−→ /0), are not taken

into account in this thesis, as well as reactions in the form Ri: a jS j
ki−→ b jS j, for any a j and b j.

As a matter of fact, reactions in that form correspond to unfeasible biochemical processes that
convert a j molecules of the species S j in b j molecules of the same species. On the contrary,

20 Complex problems in Life Sciences

source and degradation reactions are considered feasible. A source reaction Ri (denoted as
/0

ki−→ products) is characterized by ai j = 0, for all j = 1, . . . ,N, while a degradation reaction

(denoted as reagents
ki−→ /0) is obtained by setting bi j = 0, for all j = 1, . . . ,N.

The state of the system Ω at time t is defined as x(t) = (x1(t), . . . ,xN(t)), where x j

represents the amount of the species S j at time t. In RBMs, the amount of chemicals
composing the biochemical system can be given either as concentrations (i.e., x j ∈ R)
or number of molecules (i.e., x j ∈ N). Concentrations are used to perform deterministic
simulations, while number of molecules are suitable for stochastic simulations. In the latter
case, the value ki is usually indicated by ci and represents the stochastic constant associated
to the reaction Ri (a real value representing the physical and chemical properties of Ri [153]).
The fundamental hypothesis underlying the stochastic formulation of chemical kinetics states
that the average probability of the reaction Ri to occur in the interval (t, t + dt) is equal
to cidt [153]. The dynamics of the system can then be calculated by using a stochastic
simulation algorithm, as described in Section 1.2.2, taking into account the probabilities of
all the reactions.

Notice that since a reaction simultaneously involving more than two reactants has a
probability to take place almost equal to zero, in this thesis only first and second-order
reactions (i.e., at most two reactant molecules of the same or different species can appear in
the left hand side of Equation 1.1) are considered. For this reason, the matrices A and B are
sparse.

Differential equations

Ordinary Differential Equations (ODEs) represents the traditional mechanistic modeling
approach in Systems Biology. The dynamics (i.e., rate of changes) of the chemical species
can be investigated by describing a biochemical reaction network Ω by means of a system of
coupled ODEs. For instance, starting from the following biochemical reactions involving
four species, namely S1, S2, S3 and S4:

S1 +S2

k1

⇄

k2

S3

k3

→ S4, (1.2)

1.1 Modeling biochemical systems 21

the following system of coupled ODEs can be derived by assuming the MAK law:

dx1
dt =−k1x1x2 + k2x3

dx2
dt =−k1x1x2 + k2x3

dx3
dt = k1x1x2 − k2x3 − k3x3

dx4
dt = k3x3

, (1.3)

where x j represents the concentration value of species S j
1.

More generally, given an arbitrary RBM it is always possible to obtain the corresponding
system of ODEs as follows:

dx
dt

= (B−A)T [k⊙xA], (1.4)

where A and B are the stoichiometric coefficient matrix of the reactants and products,
respectively, k is the column vector of the kinetic constants, x is the column vector of the
concentration values, and xA denotes the vector-matrix exponentiation form [78], where the
symbol ⊙ denotes the entry-by-entry matrix multiplication (Hadamard product). Formally, xA

is a M-dimensional vector whose i-th component is given by xAi1
1 · · ·xAiN

N , for i = 1, . . . ,M. It
is worth noting that each ODE appearing in Equation 1.4 is a polynomial function consisting
in at least one monomial, which is associated with a specific kinetic constant.

ODE models can be easily generalized by exploiting the Reaction Rate Equations (RREs)
[18]. Assuming that there exist N different chemical species involved in M different reactions,
for each species S j the following ODE is derived:

dx j

dt
=

M

∑
i=1

hi jαi(x,ki), for j = 1, . . .N, (1.5)

where αi is the so-called propensity function of the reaction Ri, defined according to the
reactant concentrations (contained in the state vector x) and the kinetic parameters of the
reaction. For instance, given the biochemical system defined in Equation 1.1.1, according to
the MAK law, since the reaction R1 involves the species S1 and S2, its propensity is −k1x1x2.

ODE models represent a powerful mathematical framework to simulate biochemical sys-
tems. However, the dynamics obtained by means of ODE solvers represent an approximation
of the system. As a matter of fact, ODE models do not take into account the stochasticity
that usually characterizes several biochemical systems [444]. As a way of example, many

1The ODE models described in this section could obviously exploit other biochemical kinetic laws, such as
Michaelis-Menten kinetic [301] or Hill functions, which are not explicitly taken into account in this thesis

22 Complex problems in Life Sciences

0 5 10 15 20 25

200

400

600

N
um

be
r o

f m
ol

ec
ul

es

0 100 200 300 400 500 600 700
Time [a.u.]

0

25000

50000

75000

100000

125000

N
um

be
r o

f m
ol

ec
ul

es

Fig. 1.2 Example of bistable (top panel, Schlögl model) and oscillatory (bottom panel,
Ras/cAMP/PKA model) dynamics. In both cases, a deterministic simulation (black line)
and 128 stochastic simulations (colored dotted lines) are compared. The Schlögl model (see
Appendix A.6) is a simple biochemical system characterized by bistability, in which two
steady states are reached starting from the same initial condition. The deterministic simulation
can reach only one of the possible states, while stochastic simulations allow for reproducing
the bistability characterizing this model. The Ras/cAMP/PKA model (see Appendix A.5)
plays a major role in the regulation of metabolism in the yeast Saccharomyces cerevisiae.
This model is characterized by oscillatory dynamics that can be correctly reproduced by
using both deterministic and stochastic simulations. As a matter of fact, the deterministic
simulation is able to reproduce the average trend of the dynamics.

cellular regulation networks are characterized by molecular species occurring in very low
amounts in the cell and, as such, they are often affected by noise [127]. Moreover, non
deterministic behaviors can arise from the randomness at the molecular scale, which produces
stochastic phenomena at the macromolecular scale (e.g., bistability). Since classical ODE
approaches are not capable of capturing the effects of stochastic processes, they cannot be
straightforwardly exploited to simulate and analyze bistability phenomena (see Figure 1.2,

1.1 Modeling biochemical systems 23

top panel), while stochastic approaches [173] are more suitable for an effective investigation
of macromolecular phenomena of this type. On the contrary, ODE models can be effectively
and efficiently used to simulate and analyze other kind of emergent dynamics, such as oscil-
latory systems (see Figure 1.2, bottom panel), thanks to their lower computational load with
respect to that required by stochastic approaches.

An extension of ODEs is represented by Stochastic Differential Equations (SDEs), such
as the Chemical Langevin Equations (CLEs) [156, 158]. These modeling approaches allow
for reproducing the dynamics of the systems by adding noise terms to the rate equations;
still, CLEs can only yield an approximation of the correct dynamics of the system under
investigation. CLEs can be properly used where the concentration of chemical species
corresponds to a high number of molecules. In such a case, the system can be modeled by
means of the following stochastic equation:

x(t + τ) = x(t)+
M

∑
i=1

hiN(αi(x(t))τ,αi(x(t))τ), (1.6)

where N(αi(x(t))τ,αi(x(t))τ) is a normally distributed random variable with mean µ =

αi(x(t))τ and variance σ2 = αi(x(t))τ . Nevertheless, when either the amount of molecules
is low (e.g., lower than 100) or the number of reactions that occurs in the time interval
(t, t + τ) is small, CLEs do not represent a good modeling solution.

Chemical Master Equation

The Chemical Master Equation (CME) can be exploited to model a biochemical system
Ω when a stochastic approach is required to investigate Ω, by describing the probability
distribution function associated to Ω itself [449]. The probability that the system will be in a
state x at time t, starting from an initial state x0 at time t0, is indicated as P(x, t|x0, t0). It can
be calculated by applying the CME as follows:

∂P(x, t|x0, t0)
∂ t

=
M

∑
i=1

(
αi(x−vi)P(x−vi, t|x0, t0)−αi(x)P(x, t|x0, t0)

)
, (1.7)

where hi is the state change associated to the reaction Ri and αi(x) is the propensity function
of Ri. Given an arbitrary couple of initial state x0 and initial time t0, CME allows for exactly
calculating the probability that the system will be in the state x at time t. However, the
analytical solution of the CME is generally untractable. In Section 1.2.2 it will be shown
how to deal with this issue.

24 Complex problems in Life Sciences

Rule-based models

Rule-based models represent an extension of RBMs suitable for dealing with the combinato-
rial complexity that derives from multiple protein-protein interactions, which generally cause
an explosion of the reactions as well as of the intermediate molecular complexes [196]. This
modeling approach has a higher level of abstraction with respect to RBMs: the molecules are
represented by means of “objects" with extended features, while the chemical reactions are
defined as rules involving these objects, instead of specific chemical species. This strategy
allows for reducing both the size and complexity of the model under investigation [197].

In order to simulate a rule-based model, two main approaches exist. The former consists
in re-expanding the model by explicitly enumerating all the chemical species and reactions
[280], obtaining an RBM that can be simulated by applying a stochastic or a deterministic
method. This approach generates large-scale models characterized by hundreds or thousands
of species and reactions, which are generally difficult to simulate. The latter relies on
“network-free" Monte Carlo [480] methods, by explicitly representing all the molecules
composing the system. However, this strategy cannot be applied in case of large-scale
models due to the required prohibitive spatial computational complexity. Some “hybrid"
particle-counters approaches have been proposed to deal with this issue: they represent the
chemical species that appear in large numbers by means of normal variables [87].

In this thesis, the rule-based modeling is used to generate large-scale RBMs that are then
simulated by means of FiCoS (Fine- and Coarse-grained Simulator) [428], as described in
Section 4.3.

1.2 Simulation algorithms for mechanism-based models

Given a biochemical system modeled by exploiting one of the mechanistic approaches
described in the previous section, its dynamics can be obtained by using a simulation
methodology, which is generally strongly related to the chosen modeling formalism. Notice
that it is not sufficient to describe the biochemical system as a simple interaction network to
perform the simulation of a mechanistic model. As a matter of fact, both deterministic and
stochastic simulation techniques require that a proper kinetic parameterization and the initial
state of the system are known, which must be provided as part of the model. In the following
sections the most common simulation techniques are described in details.

1.2 Simulation algorithms for mechanism-based models 25

1.2.1 Deterministic simulation

Deterministic simulations rely on ODE modelling approach: given the system of ODEs,
along with a set of kinetic constants as well as an initial state at time t0, the temporal evolution
of the biological system in the interval [t0, tmax] can be obtained by means of a numerical
integration algorithms.

We remind that, given a system of N ODEs (one for each species occurring in the
biochemical system), its Cauchy problem is defined as:dx

dt = f (t,x)

x(t0) = x0
, (1.8)

where x(t) = (x1(t),x2(t), . . . ,xN(t)) is the state of the system, x j(t) represents the concen-
tration of species S j at time t, and t ∈ [t0, tmax].

Euler method

The most straightforward and basic numerical algorithm for solving systems of ODEs is the
Euler’s method (EM), defined by the mathematician Euler in 1768 [59]. It is an iterative
algorithm in which the differential equation is considered as a simple formula to calculate
the slope of the tangent to the unknown curve described by the system of ODEs. To be more
precise, in the case of a single ODE x′(t) = f (t,x(t)), given the initial point x(t0) = x0 and
a fixed step-size h, the ODE is used to calculate the slope of the curve in each point, by
exploiting the value of the previous point as follows:

xn+1 = xn +h f (tn,xn),

where xn ≈ x(tn). Note that xn is an approximation of the real solution to the ODE at time tn.
EM can be derived by considering the Taylor expansion of the function f around a point t0:

x(t0 +h) = x(t0)+hx′(t0)+
1
2

h2x′′(t0)+O(h3).

EM is obtained by substituting x′ with f (t,x), which corresponds to the differential equation
definition, and ignoring the quadratic and higher-order terms. EM results in a first-order,
explicit, single- and fixed-step approximation method, whose error at each time t is O(h2).

26 Complex problems in Life Sciences

Besides the explicit version of the EM, we can derive the implicit version [67] (also
called Backward EM) of this simple method as follows:

xn+1 = xn +h f (tn+1,xn+1).

Since the new approximation xn+1 appears on both sides of the equation, a non-linear equation
for the unknown term xn+1 must be solved during each iteration of the method.

Backward EM is the simplest Backward Differentiation Formulae (BDF), since it repre-
sents the BDF of order 1. The general formula for a BDF can be written as

q

∑
i=0

αix(t − ti) = hβ0 f (t,x(t)), (1.9)

where the coefficients αi (with α0 = 1) and β0 are chosen according to the order q of BDF
[438], and h is user-defined. Note that, for q > 6, the absolute stability region of the resulting
BDF methods is too small, so that these BDFs are characterized by numerical instability
[147]. Therefore, BDFs with an order q greater than 6 are not used. Considering a system of
ODEs, since each BDF is an implicit method, at each time step it requires the solution of a
non-linear system of equations, which can be solved by using the iterative Newton–Raphson
method [35]. This system can be written as follows:

g(x(t))≡ x(t)−hβ0 f (t,x(t))+ cx(t) = 0, (1.10)

where cx(t) = ∑
q
i=1 αix(t − ti) is a constant quantity depending on previous values of the

state of the system x(t) and on the order q.
The Newton–Raphson method allows for finding successively better approximations z of

the zeros of a real-valued function f (z) = 0, and it is repeated until a sufficiently accurate
value is reached. The approximation at iteration n is calculated as follows:

zn+1 = zn −
f (zn)

f ′(zn)
. (1.11)

This idea can be extended to a system of non-linear equations, by using the Jacobian matrix
J(t,x(t)) of f (t,x(t)). Therefore, the following system must be solved:J(xi)vxi =− f (xi)

xi+1 = xi +vxi
, (1.12)

1.2 Simulation algorithms for mechanism-based models 27

where vxi is the vector used to update xi, and xi+1 at time t can be written as

xi+1(t) = xi(t)−
(

I− ∂ f
∂x

)−1

g(xi(t)). (1.13)

Since the calculations required to invert the matrix

(
I− ∂ f

∂x

)
are computationally expensive,

we can derive the following linear system:(III −hβ0
∂ fff
∂x (t,x

i(t))∆∆∆vvvi =−g(t,xi(t))

xi+1(t) = xi(t)+∆∆∆vvvi
, (1.14)

where ∆∆∆vvvi is the vector solution of the linear system (Equation 1.14) at iteration i, and I is
the identity matrix. The ∆∆∆vvvi vector is used to update the iteration vector xi+1(t) required by
the Newton-Raphson method.

Since the evaluation of the Jacobian matrix at each iteration is computationally expensive,
the modified Newton–Raphson method [403] can be exploited to reduce the computational
load. Thus, the iteration matrix is evaluated once at the beginning of each step, based on the
predicted value x0(t), and it is used for all the iterations during the current step. The linear
system can be solved by using a linear system solver, such as the LU factorization method
[30]. The Newton-Raphson method is iterated until the maximum number of iterations is
reached, or a sufficiently accurate value is achieved (i.e., smaller than a user-defined tolerance
value εNR). When this method ends, the state of the system is updated as x(t +h) = xi+1(t).

Runge-Kutta methods

The mathematicians Runge and Kutta introduced a family of methods to mitigate the error of
EM, by extending the basic idea of the EM itself [59]. A generic Runge-Kutta (RK) method
of order r—the value describing the desired local truncation error, i.e., O(hr+1)—and s stages
is defined as:

x(tn+1)≃ xn+1 = xn +h
s

∑
i=1

βili, (1.15)

The auxiliary variables li are given by the following relationship:

li = f (tn + cih,xn +h
s−1

∑
j=1

αi jl j),with i = 1, . . . ,s. (1.16)

28 Complex problems in Life Sciences

Table 1.1 Butcher tableau of a generic Runge-Kutta method.

c1 α11 α12 · · · α1s

c2 α21 α22 · · · α2s
...

...
...

cs αs1 αs2 · · · αss

β1 β2 · · · βs

β ∗
1 β ∗

2 · · · β ∗
s

=
c ΛΛΛ

βββ
T

The coefficients αi j, βi and ci allow for characterizing every RK method, which can be
represented in the so-called Butcher tableau (see Table 1.1).

The RK methods are partitioned into three classes based on the coefficients represented
in their Butcher tableau. To be more precise, the following rules are applied:

• if the matrix ΛΛΛ is lower triangular (i.e., αi j = 0 for j > i, with i, j = 1, . . . ,s), then the
method is said to be explicit;

• if the matrix ΛΛΛ is lower triangular including the main diagonal, the method is called
semi-implicit;

• conversely, the method is implicit. In such a case, in order to calculate the auxiliary
variables li, with i = 1, . . . ,s, at least one non-linear system must be solved. As a matter
of fact, each li depends on all l j, with j = 1, . . . ,s.

Generally, implicit RK methods are exploited for the resolution of stiff problems due to
their stability regions. Stiffness is a well-known phenomen characterizing the numerical
solution of ODEs. It is a subtle, difficult and important concept that depends on the ODE
to be solved, the initial conditions, as well as the numerical method taken into account. An
ODE is considered stiff if the sought solution varies slowly, but at the same time nearby
solutions varying rapidly exist. In this condition, explicit methods may use small integration
step-size to obtain satisfactory results, increasing the required running time. Systems of
ODEs related to biochemical systems are often affected by stiffness [194]. Note that a system
of biochemical reactions may be stiff when two well-separated dynamical modes, determined
by fast and slow reactions, occur [158].

The most simple RK method is the midpoint method (also called RK2), which is a
second-order method with two stages. Considering a single ODE, its Butcher tableau is

1.2 Simulation algorithms for mechanism-based models 29

Table 1.2 Butcher tableau of the midpoint method, which corresponds to a two stages
Runge-Kutta method of second-order.

0
1
2

1
2

0 1

shown in Table 1.2, which corresponds to:

xn+1 = xn +h f
(

tn +
1
2

h,xn +
1
2

h f (tn,xn)
)
.

In such a case, the slope is calculated twice: (i) the slope of the curve is calculated from tn to
tn+h; (ii) this value is used to obtain the slope at the midpoint tn+ 1

2h. The midpoint method
has a local error at each step of order O(h3), while the global error is of order O(h2).

The most popular explicit single- and fixed-step RK method is called RK4, which is
a fourth-order method. According to its Butcher tableau (see Table 1.3), the following
quantities must be calculated:

l1 = f (tn,xn),

l2 = f
(

tn +
1
2

h,xn +
1
2

hl1
)
,

l3 = f
(

tn +
1
2

h,xn +
1
2

hl2
)
,

l4 = f
(

tn +h,xn +hl3
)
.

Starting from these quantities, the new point xn+1 is calculated as the weighted average of l1,
l2, l3 and l4:

xn+1 = xn +
1
6

h(l1 +2l2 +2l3 + l4).

RK4 has a final error of order O(h4), which allows for obtaining an improved approximation
of the unknown curve.

In contrast to the multi-step methods, RK methods are single-step methods in which
it is possible to change the step-size during the ODE resolution, according to the desired
error, which is controlled by means of two tolerances (i.e., absolute and relative tolerances).
Adaptive RK methods are characterized by two embedded methods, as shown in the Butcher
tableau (Table 1.1) with βi and β ∗

i , with i = 1, . . . ,s.

30 Complex problems in Life Sciences

Table 1.3 Butcher tableau of the RK4 method, which is a fourth-order Runge-Kutta method.

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

The most known explicit adaptive RK methods are: (i) the Runge–Kutta–Fehlberg (RKF)
[134, 277, 176, 133] method that implements two methods of orders 5 and 4, respectively;
(ii) the Dormand–Prince (DOPRI) method [116, 115, 176]. To be more precise, in this thesis
we exploited the DOPRI5 version, which is a method of order 5. Both RKF and DOPRI5
are capable of varying the integration step-size during the resolution of the ODE system by
exploiting their embedded methods.

Runge–Kutta–Fehlberg. Given a single ODE to be solved, according to the Butcher
tableau given in Table 1.4, RKF requires two different approximated solutions un+1 and
wn+1, which are generated as follows:

un+1 = xn +
25
216

l1 +
1408
2565

l3 +
2197
4104

l4 −
1
5

l5,

wn+1 = xn +
16

135
l1 +

6656
12825

l3 +
28561
56430

l4 −
9

50
l5 +

2
55

l6,
(1.17)

where
l1 = h f (t,xn),

l2 = h f
(

tn +
1
4

h,xn +
1
4

l1
)
,

l3 = h f
(

tn +
3
8

h,xn +
3

32
l1 +

9
32

l2
)
,

l4 = h f
(

tn +
12
13

h,xn +
1932
2197

l1 −
7200
2197

l2 +
7296
2197

l3
)
,

l5 = h f
(

tn +h,xn +
439
216

l1 −8l2 +
3680
513

l3 −
845

4104
l4
)
,

l6 = h f
(

tn +
1
2

h,xn −
8

27
l1 +2l2 −

3544
2565

l3 +
1859
4104

l4 −
11
40

l5
)
.

(1.18)

1.2 Simulation algorithms for mechanism-based models 31

Table 1.4 Butcher tableau of the RKF method.

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

−7200
2197

7296
2197

1 439
216 −8 3680

513
−845
4104

1
2

−8
27 2 −3544

2565
1859
4104

−11
40

25
216 0 1408

2565
2197
4104

−1
5 0

16
135 0 6656

12825
28561
56430

−9
50

2
55

Table 1.5 Butcher tableau of the DOPRI5 method.

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656

1 35
834 0 500

1113
125
192

−2187
6784

11
84

35
834 0 500

1113
125
192

−2187
6784

11
84 0

5179
57600 0 7571

16695
393
640

−92097
339200

187
2100

1
40

To evaluate the accuracy of un+1 and wn+1, a user-defined tolerance ε ∈ R is exploited.
Two additional values, ER ∈ R and δ ∈ R, are calculated as follows:

ER =
|wn+1 −un+1|

h
, δ = 0.84

(
ε

ER

) 1
4
. (1.19)

If ER≤ ε , then un+1 is accepted as new solution, that is, xn+1 = un+1; otherwise, the solutions
un+1 and wn+1 are rejected and recalculated by using a new step-size, which is computed as
h = h ·δ . Thus, RKF is a method with an error estimator of order O(h5).

Dormand-Price. Similar to RKF, given a single ODE to be solved, DOPRI5 requires two
different approximated solutions un+1 and wn+1 (see the Butcher tableau given in Table 1.5),

32 Complex problems in Life Sciences

which are generated as follows:

un+1 = xn +
35
834

l1 +
500

1113
l3 +

125
192

l4 −
2187
6784

l5 +
11
84

l6,

wn+1 = xn +
5179

57600
l1 +

7571
16695

l3 +
393
640

l4 −
92097
339200

l5 +
187
2100

l6 +
1
40

l7,
(1.20)

where

l1 = h f (t,xn),

l2 = h f
(

tn +
1
5

h,xn +
1
5

l1
)
,

l3 = h f
(

tn +
3

10
h,xn +

3
40

l1 +
9

40
l2
)
,

l4 = h f
(

tn +
4
5

h,xn +
44
45

l1 −
56
15

l2 +
32
9

l3
)
,

l5 = h f
(

tn +
8
9

h,xn +
19372
6561

l1 −
25360
2187

l2 +
64448
6561

l3 −
212
729

l4
)
,

l6 = h f
(

tn +h,xn +
9017
3168

l1 −
355
33

l2 +
46732
5247

l3 +
49

176
l4 −

5103
18656

l5
)
,

l7 = h f
(

tn +h,xn +
35

834
l1 +

500
1113

l3 +
125
192

l4 −
2187
6784

l5 +
11
84

l6
)
.

(1.21)

Once the solutions of the two embedded methods are calculated, they are used to evaluated
the committed error. If the error is greater than the desirable error—which strongly depends
on the user-defined absolute and relative tolerances—the current solutions are rejected and
re-calculated using a smaller step-size; otherwise, un+1 is accepted as new solution, that
is, xn+1 = un+1. In both cases, the solutions of the two embedded methods are also used
to calculate the step-size for the next iteration. The absolute tolerance is a threshold below
which the value of the solution is considered unimportant. The absolute error tolerance
determines the accuracy when the solution approaches zero. The relative tolerance is a
measure of the error relative to the size of the solution. Approximately, this value controls
the number of correct digits in the solution, except those smaller than the absolute tolerance.
DOPRI5 is a method with an error estimator of order O(h6).

Radau IIA family. Among the implicit adaptive RK methods, the Radau IIA family
[177, 178] is probably the most known. The most exploited Radau IIA method is the
so-called RADAU5 (Table 1.6 shows its Butcher tableau), which is a method of order 5.

Since RADAU5 is implicit, given a single ODE to be solved it requires the resolution of
one non-linear equation for each li (with i = 1, . . . ,s) that must be calculated. Since β ∗

1 = 0
and β ∗

2 = 0, four non-linear equations will be solved during each iteration of the method. In

1.2 Simulation algorithms for mechanism-based models 33

Table 1.6 Butcher tableau of the RADAU5 method.

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

0 0 1

the case of a system of ODEs, four non-linear systems must be solved during each iteration
of the method. Notice that the Jacobian matrix of the system of ODEs is required to solve the
non-linear systems. The first three non-linear systems are converted into three linear systems
exploiting the modified Newton–Raphson method [403] and then solved by means of the
LU factorization method [30]. Notice that in each iteration of the Newton–Raphson method,
these three linear systems must be solved. The last non-linear system is converted into a
linear system using a linear combination of the li (with i = 1, . . . ,s) obtained at the end of
Newton–Raphson method. This linear system is then solved exploiting the LU factorization
method.

Once the solutions of the two embedded methods are calculated, they are used to evaluated
the committed error. If the error is greater than the desirable error, which depends on the user-
defined absolute and relative tolerances, the current solutions are rejected and re-calculated
by using a smaller step-size; otherwise, they are accepted. In both cases, the solutions of the
two embedded methods are also used to calculate the step-size for the next iteration.

Notice that in both DOPRI5 and RADAU5 the maximum number of internal iterations
allowed for the integration can be modified by the user.

Figure 1.3 depicts the comparison of the aforementioned methods to solve the differential
equation x′(t) =−0.5e

t
2 sin(5t)+5e

t
2 cos(5t)+ x(t) with initial condition x(0) = 0, whose

exact solution is x(t) = e
t
2 sin(5t). This simple example shows that fixed step-size methods

(explicit EM, implicit EM, RK2 and RK4) are capable of obtaining a good approximation
of the exact solution only when a correct step-size is selected (top panel). As a matter of
fact, using a step-size too large (bottom panel) the error is propagated during the iterations.
Even though implicit EM resulted less accurate with respect to RK4 in this simple example,
it is suitable for a stiff ODE (or a system of ODEs), while RK4 might require a very small
step-size to obtain accurate solutions.

34 Complex problems in Life Sciences

0 1 2 3 4 5
t

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

x(
t)

Explicit EM
Implict EM
RK2
RK4
RKF
RADAU5
DOPRI5
x(t) = e t

2sin(5t)

0 1 2 3 4 5
t

10

0

10

20

30

40

50

60

x(
t)

Explicit EM
Implict EM
RK2
RK4
RKF
RADAU5
DOPRI5
x(t) = e t

2sin(5t)

Fig. 1.3 Numerical solutions obtained by explicit EM, implict EM, RK2, RK4, RKF, DOPRI5,
and RADAU5 to solve the differential equation x′(t) =−0.5e

t
2 sin(5t)+5e

t
2 cos(5t)+ x(t)

with initial condition x(0) = 0, whose exact solution is x(t) = e
t
2 sin(5t). The solutions

obtained using h = 0.001 are shown in the top panel, while those obtained using h = 0.1
are depicted in the bottom panel. This simple example shows that fixed step-size methods
(explicit EM, implicit EM, RK2 and RK4) require the selection of a proper h value—which
is kept constant during the iterations of the methods—to well approximate the exact solution.

LSODA

Livermore Solver of Ordinary Differential Equations (LSODA) [341] is an ODE solver
capable of automatically recognizing stiff and non-stiff systems, switching between the

1.2 Simulation algorithms for mechanism-based models 35

most appropriate integration family of methods: (i) the Adams-Moulton family [176] in
the absence of stiffness, and (ii) the BDF otherwise. Both families are multi-step methods,
so the current solution depends on more than one previous state. Initially, the problem is
assumed to be non-stiff and during the integration some heuristics are exploited to evaluate
the stiffness. If the problem becomes stiff, LSODA automatically switches to the BDF
family. As in the case of implicit EM and Radau IIA family, LSODA exploits the Jacobian
matrix of the system of ODEs, which must by provided by the user as a function (LSODA
implementation is available in FORTRAN, C and Python programming languages). In order
to control the performance and quality of the solution of the ODEs, LSODA has several
functioning settings that can be provided by the user. Among them, the most important are
the absolute and relative error tolerances (as in the case of RADAU5 and DOPRI5), and the
maximum number of internal iterations allowed for a single integration step.

The Variable-coefficient ODE solver (VODE) [53] exploits the same integration method
family of LSODA. Differently from LSODA, VODE does not switch between the two
families of solvers during the integration, but it selects the most appropriate family at the
beginning of the integration by exploiting some heuristics.

1.2.2 Stochastic simulation

Stochastic modeling approaches are suitable to represent biochemical systems when some
molecular species occur in a low number of copies in the system Ω. In such a case, the
simulated trajectories diverge from those generated by the deterministic simulation. Indeed,
stochastic approaches allow for a deeper knowledge of the behavior of systems where
intrinsic biological noise plays a fundamental role, such as those characterized by bistability.
According to a specific probability distribution for the firing of reactions, a stochastic
simulation reproduces one of the possible trajectories that can occur. Differently from ODE
modeling, stochastic approaches assume that the state of the system is discrete, that is, it
is represented by a vector of integer-valued numbers whose values correspond to the exact
amount of molecules of the chemical species occurring in Ω.

In stochastic modeling and simulation, given a system Ω we would like to know the
probability that Ω will be in any state x at time t starting from the initial condition x0 at
time t0. As described in Section 1.1.1, this probability is given by the CME and can be
obtained by calculating every possible state of Ω. Since the number of possible states of Ω

increases exponentially with the number of chemical species, the CME cannot be easily used
to investigate complex (biochemical reaction) systems. As a matter of fact, as a consequence
of the reactions firing [211], a specific differential equation exist for each possible state than
can be reached, leading to the so-called “curse of dimensionality”.

36 Complex problems in Life Sciences

During the years, numerical algorithms based on matrix descriptions of the discrete-state
Markov process [412] were proposed to solve the CME. Considering systems consisting in a
lot of molecular species, which lead to a huge number or even infinite reachable states, the
computational demand makes these methods unfeasible. In literature there exist also analytic
algorithms that allow for solving the CME. Among them, it is worth mentioning those based
on uniformization methods [192, 397, 488], finite state projection algorithms [58, 296], or
the sliding window method [470].

Differently from these solutions, stochastic simulation algorithms generate trajectories of
the underlying Markov process to provide a solution that is equivalent to the CME. Among
this family of algorithms, in the next section we describe the Gillespie’s Stochastic Simulation
Algorithm [153, 154].

Gillespie’s Stochastic Simulation Algorithm

Gillespie introduced the Stochastic Simulation Algorithm (SSA) [153, 154] that generates
exact realizations of the CME of a biochemical system. Given a system Ω, SSA is capable of
providing trajectories of the associated continuous time and discrete state space jump Markov
process x of Ω. Notice that the CME determines the initial conditional density function of
the system [155].

SSA works as follows: given the state x of the system, the reaction that will take place in
the next time interval [t, t + τ) has to be chosen. To this aim, the probability of each reaction
Ri to occur in the next infinitesimal time step [t, t +dt) is evaluated: SSA exploits the joint
probability density function P(i,τ|x, t) of the two random variables i (i.e., the index of the
next reaction) and τ (i.e, the time to the next reaction), given that the system is currently in
state x at time t. Gillespie proved that P(i,τ|x, t) can be formulated as

P(i,τ|x, t) = αi(x)exp(−α0(x)τ),

where αi(x) = ci · di(x) is the so-called propensity function of the reaction Ri—where ci

is the stochastic constant associated with the reaction, and di(x) is the number of distinct
combinations of the reactant molecules in Ri occurring in state x—and α0(x) = ∑

M
i=1 αi(x).

Then, SSA computes the time τ before a reaction takes place as:

τ =
1

α0(x)
ln
(

1
ρ1

)
,

1.2 Simulation algorithms for mechanism-based models 37

where ρ1 is a random number sampled in [0,1] with a uniform probability. The reaction Ri to
be actually executed is then chosen by taking the smallest integer in the set 1, . . . ,M such that

i

∑
i′=1

αi′(x)> ρ2 ·α0(x),

where ρ2 is a second random number sampled in [0,1] with a uniform probability.
This is the traditional formulation of SSA, called the Direct Method (DM). The First

Reaction Method (FRM) is a variant of the DM introduced by Gillespie in which a putative
time τi is calculated for each reaction Ri. Once all the putative times are known, the reaction
that has the smallest putative time is applied. Even if they seem different, Gillespie proved
that the DM and the FRM are equivalent [153].

The most expensive part of SSA consists in calculating the propensity function at each
step. As a matter of fact, the only propensity functions that should be updated are those
related to the reactions whose reactants were interested by a reaction fired in the previous
simulation step. Gibson and Bruck introduced an approach based on the FRM, called the
Next Reaction Method (NRM) [152], which exploits a dependency graph to update at each
simulation step only the propensity functions whose reactants were interested in the previous
step. Moreover, in the NRM the putative times are reused to reduce the computational time
by avoiding the generation of random numbers, which is a computationally expensive task.
Finally, the NRM takes advantage of optimized priority queues to store both the propensity
functions and putative times in order to efficiently perform the updates.

The improvements proposed by the NRM were not enough to reduce the computational
burden of SSA, especially in the case of biochemical systems characterized by a lot of
reactions and chemical species. In order to deal with this issue, Gillespie proposed τ-leaping
[157], which is an approximate but faster version of SSA. The major modification introduced
in τ-leaping regards the reactions that can be applied at each step: in this approximate version
several reactions can be applied during each step of the method, instead of a single reaction
as is the case of SSA.

1.2.3 State-of-the-art

Among the CPU-based simulators of biochemical models, it is worth mentioning the COm-
plex PAthway SImulator (COPASI) [202], which integrates different algorithms, including
LSODA and SSA, and is one of the most used tools in the community of Systems Biology.
Since in this thesis we exploit High-Performance Computing (HPC) solutions to accelerate
both deterministic and stochastic simulations, in this section we provide an overview of the

38 Complex problems in Life Sciences

existing simulators accelerated on Graphics Processing Units (GPUs). The existing tools can
be classified with respect to two main concepts: the simulation granularity and the simulation
type [308]. The first category determines how the threads are used: in coarse-grained simula-
tion each thread corresponds to an independent simulation, while in fine-grained simulation
the calculations of a single simulation are distributed over multiple threads. The second
category determines the type of simulation: deterministic or stochastic.

Regarding deterministic simulation, Ackermann et al. [3] developed a GPU-accelerated
simulator to execute massively parallel simulations of biological molecular networks. This
methodology automatically converts a model, described using the Systems Biology Mark-up
Language (SBML) standard [229], into a specific Compute Unified Device Architecture
(CUDA) implementation of the EM (see Section 3.4.1 for further details about CUDA). The
authors developed also a CPU version of the EM to test the efficiency of the proposed GPU
simulator. The evaluation of this implementation on a Nvidia GeForce 9800 GX2 showed a
speed-up between 28× and 63×, compared to the execution on a CPU Xeon 2.66 GHz. In
a similar vein, a simulator developed in CUDA (named cuda-sim), which exploits LSODA
as ODE solver, was presented by Zhou et al. [491]. Notice that cuda-sim implements also
a GPU-powered version of SSA. The cuda-sim simulator performs the so-called “just in
time” (JIT) compilation (that is, the creation, compilation and linking at run-time of new
source code) by converting an SBML model into CUDA code. With respect to the CPU
implementation of LSODA contained in the numpy library of Python, cuda-sim achieved a
47× speed-up. Nobile et al. [306] presented another parallel simulator relying on the LSODA
algorithm, named cupSODA, to speed-up the simultaneous execution of a large number
of deterministic simulations. Differently from cuda-sim, cupSODA saves execution time
by avoiding JIT compilation and by relying on a GPU-side parser. cupSODA achieved an
acceleration up to 86× with respect to COPASI [202], used as reference CPU-based LSODA
simulator. This relevant acceleration was obtained thanks to a meticulous optimization of the
data structures and an intensive usage of the whole memory hierarchy on GPUs (described in
detail in Section 3.4.1).

When stochastic simulations are taken into account, a problematic issue is the availability
of GPU-side high-quality random numbers generators (RNGs). Since the CURAND library
(see Section 3.4.1) was introduced with the fourth release of CUDA, early GPU implemen-
tations required the development of custom kernels for RNGs. This problem was faced
for the CUDA version of SSA developed by Li and Petzold [259], who implemented the
Mersenne Twister RNG [278], achieving a 50× speed-up with respect to a common single-
threaded CPU implementation of SSA. Sumiyoshi et al. [419] extended this methodology by
performing both coarse-grain and fine-grain parallelization: the former allows for multiple

1.3 Parameter Estimation in Systems Biology 39

simultaneous stochastic simulations of a model, while the latter is achieved by distributing
over multiple threads the calculations related to the model reactions. This version of SSA
achieved a 130× speed-up with respect to the sequential simulation on the host computer.
The τ-leaping algorithm allows for a faster generation of the dynamics of stochastic models
with respect to SSA, by properly calculating longer simulation steps [159, 64]. Komarov
et al. [235] proposed a GPU-powered fine-grained τ-leaping implementation, which was
shown to be efficient in the case of extremely large (synthetic) biochemical networks (i.e.,
characterized by more than 105 reactions). Nobile et al. [307] then proposed cuTauLeaping, a
GPU-powered coarse-grained implementation of the optimized version of τ-leaping proposed
by Cao et al. [64]. Thanks to the optimization of data structures in low-latency memories
and to the splitting of the algorithm into multiple phases corresponding to lightweight CUDA
kernels, cuTauLeaping was up to three orders of magnitude faster on a GeForce GTX 590
GPU than the CPU-based implementation of τ-leaping contained in COPASI, executed on a
CPU Intel Core i7-2600 3.4 GHz. A mixed approach of fine- and coarse-grained accelerations
is GPU-ODM [234], which is based on a variant of SSA called the Optimized DM.

The simulators proposed in this thesis—i.e., LASSIE (LArge-Scale SImulator) [425] and
FiCoS, together with a coarse-grained implementation of SSA by means of Many Integrated
Core coprocessors [427]—will be extensively described and analyzed in Chapter 4.

1.3 Parameter Estimation in Systems Biology

The design and development of efficient methods to analyze the functioning of cellular
systems represent one of the main goals of Computational Systems Biology. The emergent
behavior is a system-level property due to the complex interactions among lots of molecular
species. The analyses of these complex interactions cannot be performed by only relying on
classic experimental research based on in vivo experiments. As described in the previous
sections, mathematical modeling along with simulation techniques have become valuable
tools that are capable of describing and understanding the molecular mechanisms taking
place in cellular processes. However, mathematical (mechanism-based) models require
proper quantitative parameterizations to perform in silico simulations of the system dynamics
in physiological or perturbed conditions [84]. These chemico-physical parameters (e.g.,
reaction rates) are fundamental for biochemical modeling since they drive the emergent
behavior of the system. As a matter of fact, sometimes even a small change in the parameters
values can dramatically change the output dynamics. Figure 1.4 shows how small changes
in the initial value of the parameters lead to completely different dynamics in the case of a
simple model like the Brusselator (see Appendix A.1).

40 Complex problems in Life Sciences

1

2

3

4

M
ol

ec
ul

ar
 c

on
ce

nt
ra

tio
n

[a
.u

.] k1 = 1, k2 = 1, k3 = 1, k4 = 1

0.8

1.0

1.2

1.4

1.6

M
ol

ec
ul

ar
 c

on
ce

nt
ra

tio
n

[a
.u

.] k1 = 1, k2 = 1, k3 = 0.5, k4 = 1

0 5 10 15 20 25 30
Time [a.u.]

0.25

0.50

0.75

1.00

1.25

M
ol

ec
ul

ar
 c

on
ce

nt
ra

tio
n

[a
.u

.] k1 = 1, k2 = 1, k3 = 0.05, k4 = 1

X
Y

Fig. 1.4 Example of different emergent behaviors obtained by varying the kinetic parameters.
The Brusselator is a simple and theoretical model for an autocatalytic reaction, characterized
by four reactions and five chemical species (see Appendix A.1 for further details). The
top panel shows the dynamics of the species X and Y obtained using the following kinetic
parameters: k1 = 1, k2 = 1, k3 = 1, k4 = 1. By setting k3 equal to 0.5 the resulting dynamics
are completely different (middle panel). By varying k3 from 0.5 to 0.05 the oscillations are
no longer present (bottom panel). This simple example shows that the parameters play a
fundamental role, driving the emergent behavior of the system under investigation.

The lack of knowledge of kinetic parameters limits the effectiveness of mathematical
modeling and in silico simulations. These parameters are generally hard or even impossible
to measure directly by means of classic in vivo experiments, leading to the definition of
PE problem [84, 356]. The main goal of the PE problem is the inference of the unknown
values of the model parameters. In this thesis, this problem will correspond to determine
the unknown values of the constants associated with the set of reactions R= {R1, . . . ,RM}
in an RBM. Notice that, when some prior knowledge about a number of kinetic constants
is available, the PE task can be performed by considering only a subset of the reactions
R′ = {R1, . . . ,RD} ⊆ R, with D ≤ M. The estimation process is carried out by exploiting
the availability of some other experimental data (related, for instance, to time-series amounts
of some molecular species occurring in the system), which can be measured by means of
classic laboratory experiments and protocols.

1.3 Parameter Estimation in Systems Biology 41

1.3.1 State-of-the-art

Several PE methodologies was proposed to deal with the lack of data when both deterministic
and stochastic simulation approaches are taken into account. Generally, these methodologies
rely on approximation strategies [263, 356, 368], probabilistic methods [300, 347, 460],
global optimization [43, 118, 294], or a combination of these approaches [487].

Probabilistic methods and approximation strategies have been applied especially for the
PE of stochastic biological systems. Since they require a huge amount of simulations to
obtain reliable results, becoming very time consuming, they are unfeasible in the case of
large-scale systems.

The traditional methods based on the Gradient Descend or local search strategies (de-
scribed in Section 2.1.2) are also not suitable to address the PE problems because (i) the
fitness landscape is non-linear, non-convex and multi-modal, thus the probability that these
methods converge to a local minimum is high (also by applying multi-start strategies [285]);
(ii) when stochastic simulations are considered, the fitness landscape is rugged due to the
stochastic fluctuations, which generally produce a lot of local minima increasing the difficulty
of the optimization problem.

In order to overcome the limitations afflicting the methods based on the Gradient Descend,
global optimization techniques (see, e.g., Sections 2.2 and 2.3) can be applied. In [285], the
authors showed that Simulated Annealing (see Section 2.1.3) was able to outperform local
search approaches for the PE of the mechanism of irreversible inhibition of HIV proteinase.
The main drawback of the proposed approach is represented by the computational time
required to perform the PE of this simple model. Mendes [284] applied different optimization
methods to deal with the PE of a large three-step pathway characterized by 36 kinetic
parameters to estimate. The results indicate that Evolutionary Programming is the best choice
since it found a set of parameters that allows for obtaining simulated dynamics overlapping
the target of the analyzed system, while the other tested methods failed in finding good
parameterizations. A benchmark model consisting in 36 parameters have been used as case
study in [294]. The authors tested several global optimization methods, showing that the
most suitable approach to solve the PE problem, among those considered in this work, is
the Evolution Strategy using Stochastic Ranking (SRES) [369]. This effective method uses
a stochastic ranking as the constraint handling technique, which exploits the bubble-sort
algorithm, to automatically adjust the balance between the fitness and penalty functions
during the evolutionary search. Also in this case, the main drawback is represented by
the time required to perform a computation, burdened by the sorting algorithm. Dräger
et al. [118] performed an empirical comparison of six alternative models of valine and
leucine bio-synthesis in C. glutamicum, characterized by different levels of complexity and

42 Complex problems in Life Sciences

considering different kinetic equations, resulting in up to 59 parameters to be estimated. The
authors reported that, when the settings of Particle Swarm Optimization (PSO) (see Section
2.3.4) are carefully tuned, it results the most efficient algorithm for the PE problem.

Although global optimization methods require the execution of a non negligible number
of fitness evaluations, they are the best candidates to solve the PE problem. Moreover, the
computation of the fitness functions can be parallelized by using some HPC architecture,
especially GPUs (see Chapter 5 for further details).

1.4 The Haplotype Assembly problem in Genome Analysis

Somatic human cells are diploids, that is, they contain 22 pairs of homologous chromosomes
and a pair of sex chromosomes, one copy inherited from each parent. In order to fully
characterize the genome of an individual, the reconstruction of the two distinct haplotypes
is essential [254]. The inference of the full haplotype information is known as haplotyping,
which consists in assigning all heterozygous Single Nucleotide Polymorphisms (SNPs)
to exactly one of the two chromosome copies. SNPs are one of the most studied genetic
variations, since they play a fundamental role in many medical applications (e.g., drug-design,
disease susceptibility studies). This information can be valuable in several contexts, including
linkage analysis, association studies, population genetics, and clinical genetics [404].

The advent of second-generation sequencing technologies revolutionized the field of
genomics, enabling a more complete view and understanding of the genome of different
species. However, despite their great contribution to the field, the data produced by these
technologies are still unsuitable for several applications, including Haplotype Assembly. The
short length of the reads produced by second-generation sequencing technologies might be
not long enough to span over a relevant number of SNP positions, leading to the reconstruction
of short haplotype blocks [489, 99] and ultimately hindering the possibility of reconstructing
the full haplotypes. In recent years, however, a third-generation of sequencing technologies
was developed and paved the way to the production of sequencing data characterized by reads
covering hundreds of kilobases, thus able to span different SNP loci at once [358, 363, 212].
Unfortunately, the increase in length comes at the cost of a decrease in the accuracy of the
reads, compared to the short and precise ones produced by second-generation sequencing
technologies, such as NovaSeq (Illumina Inc., San Diego, CA, USA) [350]. In order to
compensate for this inadequacy, there is a need to increase read coverage. Formally, the
coverage of a sequencing experiment is the average number of times that each nucleotide is

1.4 The Haplotype Assembly problem in Genome Analysis 43

expected to be covered by a read. This value is given by the following relationship:

cov = (L ·N)/G, (1.22)

where cov stands for the coverage, L for the read length, N for the number of reads and G
for the length of the haploid region of the genome on which the reads are mapped [245].
Equation 1.22 shows that longer reads or a higher amount of reads are needed to increase
the coverage. In practice, an average coverage higher than 30× is the de facto standard for
accurate SNP detection [398].

1.4.1 Current trends in sequencing experiments

The first studies regarding Single Nucleotide Variations (SNVs) showed that all homozygous
SNVs can be effectively detected by using sequencing experiments with average coverage
equal to 15×, while a higher coverage (i.e., 33× on average) is necessary to discover the
same proportion of heterozygous SNVs [398]. In the latest years, a sequencing coverage of
35× is the de facto standard for SNV as well as insert and deletion (InDel) detection, even if
Ajay et al. [6] suggested that an average coverage of 50× is required to allow for reliable
calling of SNVs and small InDel analyses.

Whole Genome Sequencing (WGS) is becoming more and more important in many
applications, ranging from SNV to Copy Number Variation (CNV) detection. Depending
on the aims of the proposed study, the typical coverage for WGS experiments varies from
1×-8× for CNVs to 60× for InDel analyses [149, 13]. Due to the high cost of the WGS
experiments, a coverage equal to 15× is the most common.

Considering Whole Exome Sequencing (WES) studies, a greater average read depth is
mandatory to achieve the same breadth of coverage of WGS experiments, requiring an 80×
average depth to cover 89.6%-96.8% of the target bases [398].

De novo assembly requires a sequencing depth between 38× and 56× [149, 398]. As
shown in [355], the minimum sequencing coverage from technologies producing short reads
should be equal to 29×. In [76], the authors proposed a comparative study about de novo
assembly, showing that long reads can be applied to this purpose; however, exploiting long
reads alone with a coverage below 35× is not sufficient to produce satisfying results. This
study suggested that, in the case of low coverage, hybrid assembly methods are the best
choices.

During the latest years, single-cell RNA sequencing (scRNA-seq) experiments gained
ground since they provide the expression profile of individual cells, allowing for revealing
complex and rare cell populations [204], which are fundamental for the characterization of

44 Complex problems in Life Sciences

the sub-population structure of a heterogeneous cell population. Downstream analyses are
applied to uncover regulatory relationships between genes as well as track the trajectories of
distinct cell lineages in development. In this field, the coverage of the underlying sequencing
experiments is generally defined as the number of reads per cell. Depending on the scRNA-
seq approach and the purpose of the study, different read depth (per cell) are used, varying
from 104 to 106 [185]. For instance, the different cell types of a population can be classified
by exploiting a sequencing depth of 5 · 104 reads per cell, which allows for accurate and
reliable results [414, 185].

Finally, for SNP and SNV detection as well as small InDel identifications, the minimum
coverage should be equal to 30× [398].

1.4.2 State-of-the-art

Several computational Haplotype Assembly approaches for human genome phasing have
been proposed in literature [83]. Most of these methods solve the NP-hard Minimum Error
Correction (MEC) problem, which aims at inferring the haplotype pair that yields two disjoint
sets of the sequencing reads characterized by the minimum number of SNP values to be
corrected [457]. An additional variant of MEC exists, called weighted MEC (wMEC) [169],
which takes into account also the information concerning the quality of the reads. Figure 1.5
shows a “phylogenetic tree”-like diagram of the existing haplotyping methods, which are
briefly described in what follows.

Beagle [55] is one of the earliest heuristic approaches based on Hidden Markov Models
(HMMs). Considering the genotype information of an individual, Beagle finds the most likely
haplotype pair among different possible haplotype solutions. It has a quadratic computational
complexity with respect to the input data. SHAPEIT [110] starts from genotyping data from
a population and, given the genotype data of an individual, exploits an HMM-based approach
to estimate the haplotype pair. The population data are used to apply constraints on the graph,
which denotes all possible haplotypes compatible with the input data, in order to determine
the haplotype of that individual. At each iteration, SHAPEIT has a linear complexity with
respect to the number of haplotypes. Eagle2 [266] is a phasing algorithm that exploits
the Burrows-Wheeler transform to encode the information from large external reference
panels. It relies on an HMM to explore only the most relevant phase paths among all possible
paths. The authors showed that Eagle is 20 times faster than SHAPEIT [110]. HapCUT [28]
leverages sequencing data (i.e., the entire set of reads is considered) instead of population
genotypes. It infers the haplotype pair of an individual by partitioning the set of reads
solving the MEC problem. The MEC problem is reduced to the max-cut problem, which
is greedily solved over the graph representation of the input instance. HapCUT2 [124] is a

1.4 The Haplotype Assembly problem in Genome Analysis 45

hen et al.
Hap

et a l

Hap

Fig. 1.5 The “phylogeny” of haplotyping methods. Over the past few years, the reper-
toire of tools for haplotyping has rapidly expanded. A “phylogenetic tree”-like diagram is
used here to depict the division of the algorithms in four different classes, namely: exact,
greedy, probabilistic, metaheuristic. Hybrid methods are connected with dashed lines to
the implemented multiple computational techniques. The orange superscript denotes the
analyzed data: sequencing (S) and genotyping (G). Methods that solve either the MEC or
the wMEC problem are denoted with blue or magenta, respectively. Finally, the Haplotype
Assembly methods that exploit HPC are highlighted with a green arrow directed to the used
computational resources.

recent heuristic approach that exploits a haplotype likelihood model for the sequencing reads.
A partial likelihood function is used to evaluate the likelihood of a subset of the fragments.
Differently from its previous version (HapCUT [28]), which is based on a max-cut algorithm,
HapCUT2 optimizes the likelihood to find a max-cut in graph representation of the input
instance.

46 Complex problems in Life Sciences

ProbHap [239] relies on an exact likelihood optimization technique to solve a generalized
version of the MEC problem. It exploits a dynamic programming algorithm capable of
exactly optimizing a likelihood function, which is specified by a probabilistic graphical
model that generalizes the MEC problem. ProbHap can handle long reads coverage values
up to 20×, which is not appropriate for higher coverage short-read datasets; on the other
hand, it works better with very long reads at a relatively shallow coverage (≤ 12×).

ReFHap [121] is based on a heuristic algorithm to find the max-cut. ReFHap solves the
Maximum Fragments Cut (MFC) problem instead of the classic MEC problem. The max-
cut problem is reduced to the MFC problem, which is addressed using a greedy approach.
HuRef [254] is a heuristic approach that aims at inferring the heterozygous variants of
an individual. It is based on a greedy algorithm that iteratively refines the initial partial
haplotype solutions. The authors leveraged this Haplotype Assembly approach to study
non-SNP genetic alterations considering the diploid nature of the human genome.

Chen et al. (2013) [81] proposed an exact approach for the MEC problem using an
integer Linear Programming solver. First, the fragment matrix is decomposed into small
independent sub-matrices. Each of these sub-matrices is used to define an integer Linear
Programming problem that is then exactly solved. WhatsHap [333] is an exact method
relying on a dynamic programming algorithm used to solve wMEC. It implements a fixed
parameter tractable algorithm [191, 51], where the fixed parameter is the maximum coverage
of the input instance, to deal with the NP-hardness of the wMEC problem, leveraging the
long-range information of long reads. This method does not assume the all-heterozygosity
of the phased positions, however, it can deal only with datasets of limited coverage up to
∼ 20×. pWhatsHap [52] is an efficient version of WhatsHap [333], which was designed to
leverage multi-core architectures in order to obtain a relevant reduction of the execution time
required by WhatsHap. The proposed implementation exploits the physical shared memory
of the underlying architecture to avoid data communication among threads. HapCol [342]
implements a dynamic programming algorithm to solve an alternative version of the wMEC
problem, called k-MEC, which is used to take into account the distribution of sequencing
errors of future-generation technologies. In this strategy, the number of corrections per
column is bounded by the parameter k. No all-heterozygous assumption is required, but it
can only deal with instances of relatively small coverages up to ∼ 25−30×.

Two-Level ACO [36] is based on the Ant Colony Optimization (ACO) technique (see
Section 2.3.1), which is a metaheuristic designed to deal with combinatorial problems on
graphs generated starting from the genotyping data given as input. This approach is based
on the pure parsimony criterion to find the smallest set of distinct haplotypes that solves
the Haplotype Assembly problem. Probabilistic Evolutionary Algorithm with Toggling

1.5 Medical image enhancement and segmentation 47

for Haplotyping (PEATH) [298] is based on the Estimation of Distribution Algorithm (see
Section 2.2.4), which is exploited to deal with noisy sequencing reads, aiming at inferring
one haplotype, under the all-heterozygous assumption. The method proposed by Wang et al.
(2005) [457] relies on Genetic Algorithms (GAs), which are extensively explained in Section
2.2.5, to address an extended version of the MEC problem, called MEC with Genotype
Information (MEC/GI), which also considers genotyping data during the SNP correction
process. GAHap [459] uses GAs to infer the haplotype pair of an individual working on
nucleotide strings. During the optimization, GAHap solves the MEC problem by using a
fitness function based on a majority rule that takes into account the allele frequencies. The
results shown in [459] are limited to a coverage up to 10× and a haplotype length equal to
700. No all-heterozygous assumption is required.

In Chapter 6 we will explain in details GenHap [433], which is a novel computational
method based on GAs, designed to deal with the computational hardness of the Haplotype
Assembly problem.

1.5 Medical image enhancement and segmentation

Medical imaging systems often require the application of image enhancement techniques
to help physicians in anomaly/abnormality detection and diagnosis, as well as to improve
the quality of images that undergo automated image processing. Appropriate image pre-
processing steps can improve the result accuracy achieved by computer-assisted segmentation
methods. Among the low-level intensity-based Pattern Recognition techniques, which are
widely adopted in scenarios with real-time constraints, the simplest unsupervised image
segmentation algorithm is global thresholding, which essentially reduces to a pixel classifica-
tion problem [165]. In particular, image binarization classifies the input pictorial data into
exactly two classes (i.e., foreground and background), given a threshold intensity value [365].
This global threshold value is efficiently computed by operating on the image histogram
alone. Unfortunately, adaptive thresholding techniques for two-class segmentation work
properly only for images characterized by bimodal histograms [477]. Therefore, in the case
of images with a bimodal intensity distribution, image binarization techniques are able to
classify the input pictorial data into two classes. In practice, different types of regions in an
image could overlap, thus affecting the bimodality conditions of the gray level histogram,
where the histogram modes semantically correspond to different types of regions. Image
pre-processing can definitely improve the result accuracy achieved by computer-assisted
segmentation methods [365], by sharpening the peaks of the two sub-distributions, so that
the resulting histogram is characterized by a stronger bimodality, even in the case of blurred

48 Complex problems in Life Sciences

region contours and of the related Mach band effect pertaining to edge-detection in the human
visual system [97, 238]. As a way of example, in radiology this phenomenon is accentuated
in edges of adjacent regions that slightly differ in terms of gray level intensities [353].

No existing pre-processing technique addresses the issues related to medical image
enhancement for subsequent binarization by using adaptive thresholding [477]. Literature
methods may be inadequate when dealing with low-contrast images [257], producing false
edges and under-/over-segmentation when input images are affected by noise, as in the case
of Magnetic Resonance Imaging (MRI) data [144], which represents the leading modality
for the imaging of soft-tissues in current medical practice, with particular relevance in cancer
imaging, allowing for high-contrast between the tumors and the surrounding tissues [128].
Unfortunately, MRI data are affected by acquisition noise [400] and are also prone to imaging
artifacts, mainly caused by magnetic susceptibility and large intensity inhomogeneities of
the principal field (i.e., streaking or shadowing artifacts [402]), especially in the latest MRI
acquisition devices with high magnetic field intensity.

1.5.1 State-of-the-art

Most of the existing enhancement techniques are empirical or heuristic methods—strongly
related to a particular type of images—which generally aim at improving the contrast
level of images degraded during the acquisition process [79]. As a matter of fact, finding
the best gray level mapping that adaptively enhances each different input image can be
considered an optimization problem [334, 117]. Unfortunately, no unifying theory employing
a standardized image quality measure is currently available to define a general criterion for
image enhancement [297]. In addition, in the case of medical imaging, techniques tailored on
specific tasks are necessary to achieve a significant enhancement and, in general, interactive
procedures involving considerable human effort are needed to obtain satisfactory results.

In order to achieve objective and reproducible measurements conveying clinically useful
information, operator-dependence should be minimized by means of automated methods.
Point-wise operations in the spatial (pixel) domain, representing the simplest form of image
processing, are effective solutions since efficiency requirements have also to be met. In the
case of image enhancement, they re-map each input gray level into a certain output gray
level, according to a global transformation [165]. Thus, such kind of techniques treat images
as a whole, without considering specific features of different regions, or selectively distin-
guishing between a collection of contrast enhancement degrees or settings [297]. Histogram
Equalization (HE) is the most common global image enhancement technique, whose aim
is to uniformly redistribute the input gray level values according to the cumulative density
function of its histogram [165, 180]. Unfortunately, HE does not take into account the image

1.5 Medical image enhancement and segmentation 49

mean intensity [80], which is subject to a significant change during the equalization process
by invariably shifting the output mean brightness to the middle gray level, regardless of the
mean gray level in the input image [143]. Consequently, HE is not able to preserve the input
mean brightness, possibly suffering from over-enhancement, and giving rise to artifacts such
as the so-called washed-out effect [80]. This global transformation method applies contrast
stretching just on gray levels with the highest frequencies, causing a significant contrast
loss concerning the gray levels characterized by low frequencies in the input histogram
[227]. Bi-Histogram Equalization (Bi-HE), which is a refined version of the traditional HE,
was proposed to overcome the limitations related to input mean brightness preservation,
mainly caused by histogram flattening [227]. Firstly, Bi-HE splits the original histogram
into two sub-histograms according to the global mean of the original image; afterwards, the
sub-histograms are independently processed by applying the standard HE method to each of
them.

In addition to HE, which automatically yields an image with a uniform histogram, it is
possible to explicitly specify the desired shape of the output histogram. This method, named
Histogram Specification (HS), aims at matching the histogram of the gray level intensities of
the input image against a desired histogram [165]. Unfortunately, this approach cannot be
applied in the case of image datasets characterized by heterogeneous gray level distributions,
since the histogram to be matched should be defined either a priori for all the images in
the dataset, or interactively for each processed image, by separating and shaping the two
underlying sub-distributions [473].

Other traditional global gray level transformations generally used for contrast stretching
are formalized as transformation functions of the form s = T (r), where T (·) maps an input
intensity value r into an output intensity value s [165]. Power-law transformation—also
called Gamma Transformation (GT)—is a non-linear operation of the form T (r) = crγ ,
where typically c = 1. For instance, when the image is predominantly dark, an expansion
of the intensity levels is desirable. In such a case, GT with γ < 1 yields a brighter image
by increasing the number of hyper-intense pixels; on the contrary, by using γ > 1, the GT
converts the input gray-scale range into a darker one, by increasing the occurrences of darker
pixels. Obviously, the value of γ strongly depends on the (medical) application. Accordingly,
logarithmic and anti-logarithmic transformations make an image much brighter and darker,
respectively. Unfortunately, for medical images characterized by low-contrast and weak
edges at adjacent tissue boundaries, GT may result in merely brighter or darker images,
leading to difficulties in the visualization and discrimination of different tissues. Therefore,
to adequately enhance contrast, the two different behaviors of GT—corresponding to values
γ > 1 and γ < 1—should be combined for contextually decreasing the darker pixel gray

50 Complex problems in Life Sciences

values and increasing the brighter pixel gray values. This results in a significant improvement
of the contrast, by enhancing the edges thanks to the increased gradient magnitude of
the image [144]. This kind of contrast stretching can be achieved by using a Sigmoid
intensity Transformation (ST), which darkens a wide range of hypo-intense gray levels and
brightens a wide range of hyper-intense gray levels [165]. Such an operation indirectly
increases the difference between low and high intensity values, resulting in the overall
contrast enhancement of the image [144].

The complexity of the enhancement criteria to be met (i.e., the effective contrast stretching
combined with image detail preserving) leads to the application of global search metaheuris-
tics that allow for coping with several constraints, which are not generally tractable by means
of traditional exhaustive computational approaches [334, 297, 325]. Evolutionary methods
have been widely adopted in the image enhancement domain to find the optimal enhancement
kernel [297], sequence of filters [233], or input-output mapping transformation [381, 65].
Recently, [188] proposed a GA-based method that efficiently encodes the histogram by
means of the non-zero intensity levels, by employing genetic operators that directly process
images to increase the visible details and contrast of low illumination regions, especially in
the case of high dynamic ranges. The authors argued that this method yields “natural-looking”
images, considering the visual appearance.

Regarding other evolutionary computation approaches, Genetic Programming (GP) [236]
was shown to be a powerful framework to select and combine existing algorithms in the
most suitable way. Differently to GAs, GP evolves a population of functions, or more
generally, computer programs to solve a computational task. The solutions in the computer
program space can be represented as trees, lines of code, expressions in prefix or postfix
notations as well as strings of variable length [69]. For instance, [49] tackled the video
change detection problem (among the frames of video streams) by combining existing
algorithms via different GP solutions exploiting several fusion schemes. The fitness function
was composed of different performance measures regarding change detection evaluation. For
what concerns the application of GP in image enhancement, [343] proposed an approach
to yield optimally pseudo-colored images for visualization purposes, aiming at combining
multiple gray-scale images (e.g., time-varying images, multi-modal medical images, and
multi-band satellite images) into a single pseudo-color image. This approach relies on user
interactions to determine which candidate solution should be the winner in tournament
selection, so it does not explicitly require a fitness function. As case studies, a pair of brain
MRI sequences were fused as well as the motion of the heart on echocardiographic images
was synthesized into a single pseudo-color image. Other works exploited Swarm Intelligence
techniques. The approach presented in [392], called Multi-Objective Histogram Equalization,

1.5 Medical image enhancement and segmentation 51

uses PSO [225] to enhance the contrast and preserve the brightness at the same time. The
work presented in [117] employed the same encoding of candidate solutions and histogram
mapping strategy described in [188], within an optimization strategy based on the Artificial
Bee Colony (ABC) algorithm [223]. However, since ABC natively works in a continuous
space, while a discrete representation is used for the solutions (i.e., gray-level mapping),
a discretization step is mandatory in the correction operation during the search phase. An
alternative approach using the ABC algorithm for image contrast enhancement was proposed
in [79], wherein the optimal values for the parameters of a parametric image transformation,
namely the Incomplete Beta Function, are estimated. Differently to the work described in
[117], the optimization procedure is carried out in a continuous search space. Finally, multi
objective Bat Optimization and a neuron-based model of Dynamic Stochastic Resonance
were combined in [399] for the enhancement of brain MR images.

In Chapter 7 we will describe a novel image enhancement technique based on GAs, called
MedGA [379], specifically aimed at strengthening the sub-distributions in medical images
with an underlying bimodal histogram of the gray level intensities.

Chapter 2

Optimization techniques

An optimization problem is defined as the problem of finding the optimal solution by
means of mathematical or computational methodologies, among all feasible solutions in
a D-dimensional search space that is generally bounded (i.e., a set of given constraints
bounds the search space). The most common optimization problems are minimization
(maximization) problems, in which the solution x∗ ∈ RD minimizing (or maximizing) an
objective function F : RD → R must be identified. All the optimization problems considered
in this thesis are expressed as minimization problems, where x∗ is the optimal solution if
and only F(x∗) < F(x′), ∀x′ ̸= x∗. Notice that any maximization problem can be easily
formulated as a minimization problem by inverting the sign of the objective function, and
viceversa.

The most naïve approach consists in enumerating all the feasible solutions, evaluating
them by means of the objective function and ranking them according to the calculated values.
This method cannot be applied due to the size of the search space, which may be too large or
even infinite. Several methods have been proposed to efficiently explore the search space in
order to find the best solution of the given objective function.

In this chapter, the classic optimization techniques will be presented, then Evolutionary
Computation (EC) and Swarm Intelligence (SI) will be introduced and some examples of
algorithms belonging to these fields will be explained. We highlight that Computational
Intelligence is the field of research involving Neural Networks, Fuzzy Systems, EC and SI
[120]. All these disciplines are based on practical adaptation, self-organization concepts
and algorithms that can promote actions in complex environments. In this thesis, EC and SI
methods have been taken into account to solve complex real world problems.

54 Optimization techniques

1 0 1 2 3 4 5 6 7 8 9 10
x1

1

0

1

2

3

4

5

6

7

8

9

10
x 2

x1 0
x2 0
Constraint on x2
Constraint on x1
Constraint on x1 and x2
Points visited by SM
Feasible region

Fig. 2.1 Example of the execution of the SM maximizing the objective function described in
Equation 2.1. The blue lines represent the 2-polytope defined by the 5 constraints (Equation
2.2), that is, 3 inequations and the non-negativity conditions of the variables x1 and x2.
The 3 inequations are represented by the orange, red and brown dashed lines, while the
non-negativity conditions by using the black dashed lines. The gray polygon indicates the
feasible region obtained considering the aforementioned constraints. SM starts selecting
an initial vertex as candidate solution x∗ of the problem (here x∗ = (0,0)). The algorithm
moves across the vertices (green dots), by following the edges of the polytope improving the
objective function (green arrows). When no improving directions are found, the SM stops.
By so doing, the last visited vertex corresponds to the global optimum (here x∗ = (2,6)).

2.1 Classic optimization techniques

2.1.1 Simplex Method

The Simplex Method (SM) [101] is probably the most known traditional technique used
to solve Linear Programming (LP) problems where both the objective function and the
constraints are linear. In SM, as shown in Figure 2.1, the space of the feasible solutions is

2.1 Classic optimization techniques 55

described by means of a convex D-polytope, which is a polytope characterized by a convex
set of points in the D-dimensional space generated by the linear constraints.

SM is an exact iterative algorithm in which, given a initial vertex x∗ ∈ RD of the D-
polytope, the objective function is evaluated on the vertices of the set V connected to x∗ by
means of an edge. Considering a maximization problem, the vertex in V characterized by the
highest value (i.e., F(x′)>F(x∗) and F(x′)>F(x) ∀ x′,x ∈V such that x′ ̸= x) is selected as
the new optimal solution x∗ and the process is repeated. When no adjacent vertex improving
the objective function is found (i.e., F(x′) ≤ F(x∗), ∀ x′ ∈ V), the SM stops. Figure 2.1
depicts the execution of the SM maximizing the following objective function:

maximizing 3x1 +5x2, (2.1)

with 5 constraints:

x1 ≤ 4

2x2 ≤ 12

3x1 +2x2 ≤ 18

x1 ≥ 0

x2 ≥ 0

, (2.2)

with global optimum in x∗ = (2,6).
The described SM requires that the feasible region is convex and both the constraints and

the objective function are linear. Moreover, in [231] the authors showed that for some classes
of optimization problems SM has an exponential complexity in the worst case. Since many
real world problems are strongly non-linear and non-convex (e.g., the Parameter Estimation
of biological systems shown in Chapter 5), SM cannot be applied. Nevertheless, SM is used
in some Systems Biology applications, such as the Flux Balance Analysis (FBA) [324], in
which the vector of reaction fluxes in a biochemical system must be optimized. A classic
FBA problem is represented by the maximization of some products of the system (e.g., ATP
[351] or biomass [57]), where the constraints are represented by some biophysical limits (e.g.,
fluxes limitations or mass balance). Since a steady-state assumption is taken into account,
the optimization of these fluxes can be stated as a LP problem and can be effectively solved
by exploiting the SM.

2.1.2 Gradient Descent

As discussed above, the SM can be exploited when the region of feasible solutions is convex,
the constraints as well as the objective function are linear. These assumptions limit the

56 Optimization techniques

x1

30
20

10
0

10
20

30

x2

30
20

10
0

10
20

30

f(x
1,

x 2
)

2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

Ackley

Fig. 2.2 The Ackley function is a classic benchmark function used to evaluate the performance
of the optimization algorithms. It has a global optimum in 0 and several local optima. A
gradient descent method is not able to converge to the global optimum, unless the initial
solution is sampled close to 0.

applicability of SM in several real-world applications that are typically strongly non-linear.
Gradient Descent (GD) [136] can be used to solve problems characterized by non-convex
search spaces or non-linear objective functions. Unfortunately, the GD-based methodologies
require that the objective functions is differentiable. Starting from an initial optimal solution
x∗—chosen randomly, using some a priori distribution or taking advantage of some available
domain knowledge—GD exploits the slope of the objective function to search a better
solution. To exploit the slope of the objective function, the gradient of the function is
calculated in x∗ and according to the gradient direction, a new optimal solution is determined
as:

x∗ = x∗−∆ ·∇F(x∗), (2.3)

where ∆ ∈ R+ is the so-called step-size. GD is stopped when a stationary point (i.e.,
∇F(x∗) = 0) is reached, since there is no improving direction to follow. GD-based methods
are capable of converging to the global optimum solution only when the initial solution
is properly chosen, that is, it is very close to the global optimum. Due to their strictly
deterministic nature, GD belongs to the class of local optimization methodology. As a
matter of fact, GD-based methods converge to the global optimum when the initial solution
is very close to the global optimum itself; otherwise, there is no way that these methods
converge to the desired solution. Figure 2.2 depicts the Ackley function [4], which is an
example of multi-modal objective function, with the global minimum in 0 and several local
minima. Notice that the Ackley function was extended to arbitrary dimensions in [25] with

2.1 Classic optimization techniques 57

the following equation:

F(x) =−20exp(−0.2

√
1
n

n

∑
i=1

x2
i)− exp(

1
n

n

∑
i=1

cos(2πxi))+20+ e, −32 ≤ xi ≤ 32.

For this function, GD converges to 0 only when the initial solution is very close 0. In order to
overcome the aforementioned limitation, some modification have been proposed, such as the
Multi-Start strategy. In such a case, a set of initial solutions is generated and they are used
as starting points for the optimization procedure. Since a starting point could be sampled
close to the global solution, this strategy increases the probability of converging to the global
optimum. Nevertheless, the performance of the Multi-Start strategy is not good when large,
noisy or high dimensional search spaces are taken into account.

2.1.3 Other classic optimization techniques

A plethora of different optimization techniques has been presented in literature, such as
Random Optimization [279], Simulated Annealing [228] and Tabu Search [161, 162].

Random Optimization

Random Optimization (RO), known also as direct-search or derivative-free, is an ensemble
of local numerical optimization techniques that do not require continuous and differentiable
functions, since they are not based on the gradient. RO is an iterative procedure that moves
a random solution x∗ to better positions in the search space by applying some statistical
distributions (e.g., normal distribution). The basic scheme of RO can be summarized as
follows:

1. initialize the candidate solution x∗ with random position in the search space;

2. calculate a new position x′ = x+ r, where r is a vector of random numbers sampled
from a normal distribution;

3. if F(x′)< F(x∗), then set x∗ = x′; otherwise discard x′;

4. if the termination criterion is met, then stop the RO and return x∗; otherwise go back
to Step 2.

At the end of the procedure, x∗ is the best solution. Matyas [279] proved that the basic
version of RO is capable of converging to the global optimum of simple unimodal functions
when an infinite number of iterations are performed, a condition that makes RO unfeasible

58 Optimization techniques

in real scenarios. Baba [23] and Solis [405] showed that different variant of RO, exploiting
other statistical distributions, are able to convergence to the region of the global optimum.

Simulated Annealing

Simulated Annealing (SA) is a global optimization method belonging to the probabilistic
metaheuristics; as in the case of RO techniques, to explore the search space SA does not
require that the function is continuous and differentiable. It takes inspiration from the
annealing in metallurgy, that is, the melting of metal and its successive slow cooling. While
the material cools down, the state of the system x∗, which corresponds to a candidate solution
of the given optimization problem, can probabilistically either change to a neighbor state x′

or remain in the same state. This procedure is iterated until the lowest energy configuration
is met. The neighborhood of x∗ is strictly dependent on the structure of the solutions. A
common way to define the neighborhood is to build a set of random points contained in a
hypersphere centered in x∗. All the solutions x∗ in the search space are characterized by a
different energy value (i.e., the value of the objective function) that is denoted by E(x∗). In a
probabilistic way, the system moves towards states (i.e., solutions) with lower energy, but
also new solutions with higher energy can be accepted. The acceptance of those solutions is
calculated as follows:

P(accept x′|E(x∗),E(x′)) =

1, if E(x∗)> E(x′)

exp −|E(x∗)−E(x′)|
T , otherwise

, (2.4)

where T is the current temperature of the system, which generally starts from 1 decreasing
to values very close to 0 during the last iterations of the algorithm. Thanks to this simple
strategy, SA has a less chance of being trapped in local minima. In [228] the authors proved
that SA asymptotically converge to the global optimum. SA can be seen as an important
improvement with respect to traditional local search techniques thanks to the exploration
phase of the search space that is used instead of a promising neighborhood.

Notice that SA is an adaptation of the Metropolis-Hastings algorithm [289], which is
applied to generate sequences of random number from multivariate distributions.

Tabu Search

Tabu Search (TS) is an extension of SA, so it is a metaheuristics exploiting a neighborhood
search procedure that iteratively proceeds from a solution x∗ to another solution x′, which
belongs to the neighborhood set N (x∗) of x∗, until a termination criterion is met. In order

2.2 Evolutionary Computation 59

to explore as much as possible the regions of the search space, each solution x′ ∈N (x∗) is
reached from x∗. TS exploits the following memory structures to carry out the optimization:

• short-term. It is the list of the solutions that have been recently considered. These
solutions cannot be revisited until they are in the list;

• intermediate-term. It contains some intensification rules that are used to bias the search
towards the promising areas of the search space;

• long-term. It is the structure in which are stored the diversification rules driving the
search procedure into new regions.

These structures allow for iteratively moving from the current solution x∗ to an improved
solution x′ ∈N (x∗). The ensemble of these memory structures forms the so-called tabu list
containing both rules and “banned” solutions that are exploited to add novel solutions to the
neighborhood N (x∗) of x∗.

Short-term memory stores the selected attributes (called tabu-active) of the recently
visited solutions. All the solutions that have tabu-active attributes are “banned". In order
to override the tabu state of a solution, some aspiration criteria can be adopted. The most
common used aspiration criterion allows for taking into consideration those solutions that
are better than the current best solution, according to the objective function. The most simple
rule that can be added to the intermediate-term memory allows for preventing those solutions
containing certain attributes (e.g., undesirable values of certain variables). Finally, in the
long-term memory are stored some functioning settings, such as the total number of iterations
since the beginning of the search where the solution components have been associated to the
current best solution.

Other advanced optimization techniques were designed to obtain a good balancing
between the exploration and exploitation phases, which are generally controlled by means
of some functioning settings. All the methodologies described in this section improve a
single solution x∗ until a convergence criterion is achieved. EC and SI techniques adopt a
completely different approach in which a population of candidate solutions is evolved until a
convergence criterion is met.

2.2 Evolutionary Computation

EC is a field of research that aims at proposing metaheuristics inspired by Darwinian evolution
theory to solve complex problems [105]. All the bio-inspired EC methods that have been
proposed share the following characteristics:

60 Optimization techniques

• the candidate solutions are represented by a population P of randomly generated
individuals;

• during the generations, P evolves by means of an iterative process in which the
individuals are modified by using random modifications;

• each individual in P is characterized by a fitness value—measured applying a fitness
function—which measures its quality;

• the process is stopped when a termination criterion is met (e.g., the maximum number
of generations is achieved, an optimal solution is found or the maximum execution
time is reached);

• some functioning settings are used to balance the exploration and exploitation phases.
A fine tuning of these settings is required to obtain the best performance.

The fitness function represents the objective function previously discussed, allowing for
measuring the “goodness" of the individuals in P and driving the evolution of P. The surface
(see Figures 2.2) described by the fitness function and containing the set of feasible solutions
in the search space is called fitness landscape.

Some settings-free algorithms (such as, parameter-free Genetic Algorithms [384], Tribes
[88], Proactive Particles in Swarm Optimization [309] and Fuzzy Self-Tuning Particle Swarm
Optimization [305]) have been proposed to avoid the necessity of performing a fine tuning of
the functioning settings.

2.2.1 Evolution Strategies

Evolution Strategies (ES) are one of first EC strategies, further developed by Rechemberg
[354], proposed to solve optimization problems in continuous search spaces. In ES the
number of individuals |P| of the population P is traditionally denoted by µ; each individual
represents a position in the RD domain. In order to modify the population among the
generations, ES exploits the following mechanism:

• new offspring are generated by means of recombination operators applied to a subset
of individuals (called parents) of P;

• a mutation operator is applied to the generated offspring, which are then inserted in the
population P;

• the population size is reduced to µ by means of a selection operator.

2.2 Evolutionary Computation 61

The number of parents that are used for the recombination phases is denoted by ρ , with 2 ≤
ρ ≤ µ , while other EC techniques exploit exactly two parents for the crossover mechanism.
In each generation the number of new offspring is λ , with λ ≥ µ . Different recombination
strategies can be applied to blend the parents, such as a weighted average of the ρ parents or
a discrete combination of the components of the real-valued vectors encoded by the parents
(the interested reader is referred to Hansen et al. [182] and [46], where a complete description
of recombination strategies is presented).

Once the offspring have been generated, they undergo a mutation operator that is generally
used to perturb the components of the real-valued vectors. The most applied perturbation
is based on the multivariate normal distribution N(0,C), where C ∈ RD,D is the covariance
matrix. C allows for generating completely general perturbations as well as isotropic, axis-
aligned perturbations. Moreover, it can adapted during the iterations to take into account the
correlations that can exist among the components.

Regarding the selection strategy, the truncation selection is the most common. This
strategy selects the best µ individuals, i.e., those characterized by the best fitness values,
for the next generation. Two specific approaches for the creation and the selection of the
novel population were proposed, namely, plus (+) and comma (,). In the former, the best µ

individuals among the µ +λ individuals survive in the next generation, while in the latter all
parents die and the best µ of λ are chosen for the next generation. Finally, a plus-selection
named (1+ λ)-ES was proposed to the aim of preserving the best individual (including
the parents) among the generations, which is also used to generate new offspring. There is
no convergence theorem valid for every version of ES; however, there exist a convergence
theorem, proven by Granville [167] for the SA approach, which is also valid for (1,1)-ES
method with a fixed mutation strength and a time-dependent selection pressure [45].

2.2.2 Covariance Matrix Adaptation Evolution Strategy

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [184] is probably the most
effective stochastic EC strategy for optimization problems in continuous search spaces.
The most important feature of CMA-ES is the self-adaptation of the covariance matrix
to the problem under investigation. The basic version of CMA-ES exploits a simple ES
strategy that uses a mutation operator to explore the search space. The mutation operator
is applied to generate the offspring by perturbing the best individual or a novel individual
created by using a recombination strategy that exploits a weighted average of the population.
The mutation operators consists in a perturbation obtained by using multivariate normally
distributed random deviates, which have mean equal to 0 and standard deviation σσσ (named

62 Optimization techniques

step-size). Finally, deterministic selection of the best µ individuals is applied to create the
new population.

The most important modification introduced by CMA consists in dynamically adapting
the multivariate normally distributed random deviates to achieve more successful mutation
steps. Thus, the mutation strategy used in CMA-ES is based on a D-dimensional ellipsoid
distribution, whose size and rotation are updated during the generations according to the
optimization convergence. More precisely, CMA-ES relies on a D×D symmetric positive
covariance matrix C, which is adapted to capture possible existing pairwise dependencies
between the components of the problem under investigation. This adaptation scheme deter-
mines the correct scaling of a given problem, allowing for invariance with respect to any
orientation of the coordinate system.

CMA-ES is almost a settings-free algorithm since only the initial step-size must be
provided by the user. As in the case of ES, a global convergence theorem for any version of
CMA-ES is not available.

2.2.3 Differential Evolution

Differential Evolution (DE) [413] is a population-based algorithm that exploits mutation
and crossover operators during the evolutionary process. Multiple versions of DE have been
proposed [102, 290], generally based on the following schema:

• three different candidate solutions are randomly selected and blended by means of a
weighted function (i.e., mutation);

• the obtained individual (called recombined individual) undergoes to the crossover
operator along with a fourth randomly chosen individual generating a a new offspring
called trial vector;

• the fitness function of the trial vector is evaluated;

• if the fitness value of the trial vector is better than that of the recombined individual, the
trial vector replaces the recombined individual in the population for the next generation.

According to the classic taxonomy of DE and the general convention, the strategies are
indicated as DE/a/b/c, where a is a string denoting the individual (e.g., randomly selected,
the best one) that is modified by means of the mutation operator, b indicates the number
of different individuals considered to perturb a, and c represents the type of crossover that
is applied. For instance, according to [413, 142], the DE/rand/1/bin strategy exploits a
differential weight F ∈ [0,2] to balance the recombination of the three randomly selected

2.2 Evolutionary Computation 63

individuals, and performs a random crossover with the parent solution by using a crossover
probability CR ∈ [0,1]. To be more precise, the mutation operator is applied to a randomly
selected individual x as follows: three individual x1, x2 and x3 are randomly selected and are
then used to calculate the recombined individual z = x1 +F · (x2 −x3). The trial vector is
obtained by applying a uniform crossover (binomial distribution) to z and x, which replaces x
in the next generation if it is characterized by an improved fitness value. Another well-known
version is the DE/rand/1/exp in which an exponential crossover with self-adaptive probability
is used instead of a uniform crossover.

Few studies were conducted about the conditions for the DE convergence to the global
optimum. Hu et al. [203] proposed a sufficient condition along with a corollary for the DE
convergence, showing that DE is able to converge to the global optima if the trial vectors
satisfy the sufficient condition. They proposed a DE algorithm framework integrating an
extra mutation component that allows for satisfying the proposed convergence condition.

2.2.4 Estimation of Distribution Algorithm

Estimation of Distribution Algorithm (EDA) is an EC method that explores the space of
potential solutions by sampling and incrementally building explicit probabilistic models of
the promising candidate solutions found so far [190]; therefore, the optimization can be
seen as incremental updates of a probabilistic model. The basic version of EDA starts with
the model that encodes the uniform distribution of the admissible solutions and ends with
a refined model capable of generating global optima solutions [247]. Other versions start
with a model encoding different a priori distributions (e.g., normal) of feasible solutions.
The EDA computational framework is general-purpose and can virtually be used with any
probabilistic distribution and graphical model. The rationale underlying the most basic
EDA version is to iteratively generate new probabilistic models of the distribution of the
parameters, which is used to iteratively sample λ new individuals. The new individuals are
used to refine the distribution, according to their fitness values, and generate new offspring.
In the case of Gaussian mixture models, a normal random number generator is initialized
with a certain mean and standard deviation (σ) for each component. During the update phase,
the distribution of the parameters is adapted and a new generation is provided. Among the
existing variants of EDAs [247], a real-valued version named continuous Population-Based
Incremental Learning (PBILC) [389] uses the information about the µ < λ best individuals
found during each generation to dynamically adapt the underlying Gaussian generative model.
The initial distribution is initialized on the centroid χ0 of the search space and the standard
deviation is set to σ for each component. In particular, the vector σσσ of the standard deviations
is adapted by averaging the standard deviations of the µ best individuals.

64 Optimization techniques

A converge theorem valid for some EDA versions applied to a specific class of problems
(i.e., functions that can be additively decomposed) was provided in [295].

2.2.5 Genetic Algorithms

Genetic Algorithms (GAs) represent an EC technique for global optimization tasks [125].
Inspired by the mechanisms of natural selection, GAs look for optimal solutions to complex
problems by evolving a population P of randomly created candidate solutions [200]. In the
most general formulation, each solution represents an individual encoded as a fixed length
string of characters taken from a finite alphabet (i.e., the genes); in alternative versions, the
individuals codify real-valued genes [12].

In GAs, the population P evolves in competition under controlled variation. Based on
the fitness value, each individual competes according to a selection process, inspired by the
Darwin’s “survival of the fittest” laws. Given an optimization problem, a GA is initialized
with a randomly generated population of individuals corresponding to the potential solutions.
During each generation (i.e., iteration) the quality of each individual is evaluated by using
a fitness function. Then, the individuals undergo to the selection, crossover and mutation
operators to create the next population. Notice that in ES (as shown in Section 2.2.1) the
selection strategy is applied after the recombination, while GAs exploit a selection procedure
before the recombination.

The following schema represents a general implementation for GAs:

1. given the problem to be optimized, randomly generate an initial population;

2. for each individual, evaluate the fitness function;

3. according to the fitness values, select the individuals for the next generation;

4. apply crossover and mutation operators to recombine and vary the selected individuals;

5. if the termination criterion is satisfied, terminate the GA and return the individual with
the best fitness among the population; otherwise go back to Step 2.

Different termination criteria can be used: for instance, the GA could stop when a given
number of generations Tmax is reached or when the fitness value of an individual is lesser than
a fixed threshold value. Given the population P, consisting in |P| individuals, all selection
techniques have the same goal, that is, obtaining an intermediate population P′ by means of
a fitness-dependent sampling procedure [24], composed of copies of individuals from the
previous population P. Each individual can be added more than one time at P′, depending on
its fitness value (the better the fitness, the higher the chance to be selected).

2.2 Evolutionary Computation 65

Once P′ has been created by means of any selection procedure, the variation operators
(i.e., crossover and mutation) are applied to obtain new individuals, named offspring, for the
next generation. Notice that the individuals characterized by a better fitness will be selected
with higher probability, by using one of the available selection strategies: roulette wheel
selection [163], ranking selection [26] and tournament selection [293].

The crossover operator is used to recombine the genetic information from two parent
individuals (Parent1 and Parent2). This operator, which plays a key role in GAs, allows for
obtaining offspring solutions with better characteristics with respect to the parents. Crossover
is applied to several selected pairs of individuals with a probability value pc, named crossover
rate. There are different versions of crossover, such as single point crossover, two point
crossover and uniform crossover. In order to arbitrarily alter one or more genes of a selected
offspring the mutation operator can be applied, increasing the variability inside P′. This
simple operator, which allows for introducing new genetic material into the population, is
able to prevent the convergence of the individuals to local optimal solutions, increasing
the probability to reach every point in the search space. Also this operator is applied with
a probability pm (i.e., mutation rate), such that some randomly selected genes of each
individual are selected and their values are perturbed. Generally, the crossover is executed
with high probability values (e.g., pc = 0.95), conversely the mutation is applied with very
low rates (e.g., pm = 0.05). These parameter settings are chosen so as to reflect the natural
evolution process in which the characteristics (genes) of two parents are deeply blended,
while mutations has a very low probability to occur. Taking advantage of the information
accumulation about the unknown search space underlying the fitness function, relying on a
sufficient large population, GAs are capable of converging to optimal solutions, by adapting
the individuals during the iterations through exploration and exploitation of the promising
subspaces. The scheme theorem proves that GAs asymptotically converge to the optimal
solution of any problem under investigation [200].

Finally, the elitism strategy could also be exploited. This strategy is applied to copy the
best individual (or a subset of best individuals) directly into the next generation without
modifying it (them). This prevents the quality of the best solution from decreasing during
some iterations since the best individual is copied into the next population without undergoing
the genetic operators. Notice that this strategy is similar to the plus-selection (1+λ)-ES
exploited in ES (see Section 2.2.1).

66 Optimization techniques

2.3 Swarm Intelligence

While EC techniques are inspired by Darwinian evolution theory, SI methodologies are
based on the emergent collective behavior of groups of living organisms. As a matter of
fact, socio-biological investigations showed that some animals and social insects (e.g., ants,
bees, bats) [201] are characterized by some behavioral patterns that allow these animals
to share information, self-organize and perform complex tasks that cannot be conducted
by single individuals [390]. These peculiarities have been exploited to design and propose
several nature-inspired optimization techniques, such as those described in the next sections,
namely: Ant Colony Optimization, Artificial Bee Colony, Bat Algorithm, Particle Swarm
Optimization and its settings-free versions [309, 429, 305], called Proactive Particles in
Swarm Optimization and Fuzzy Self-Tuning Particle Swarm Optimization.

A convergence theorem does not exist for these approaches, expect for a class of Ant
Colony Optimization algorithms [416].

2.3.1 Ant Colony Optimization

Ant Colony Optimization (ACO) [114] is probably one of the most used SI approaches to
solve combinatorial problems, such as the Traveling Salesman Problem (TSP) [415] and the
Maximum Independent Set [260]. As a matter of fact, in [175] the authors proposed conver-
gence theorems for ACO, proving its efficiency and effectiveness in optimizing solutions
for NP complete problems. ACO is based on the stigmergy mechanism, which is indirectly
used by the pheromone-based ants as signaling to communicate [436]. The most-known
pheromone-based ants are the foraging ants, which deposit pheromone trails along the routes
leading to a food source. Once an ant meets one of these pheromone trails, it tends to travel
along that route aiming at reaching the food, reinforcing the signal of that route. In such
a way, only the optimal route automatically emerges from the collective movement of the
colony. ACO method emulates the behavior of the real ants by using simulated pheromone
trails that are stochastically generated to iteratively improve the set of candidate solutions.

2.3.2 Artificial Bee Colony

Artificial Bee Colony (ABC) is another population-based SI optimization algorithms, which
exploits the emergent behavior of foraging honey bees [223]. In this optimization method,
three different groups of honey bees (i.e., scouts, onlookers, and employees) compose the
colony and cooperate in identifying the best food resources, which correspond to the solutions
with the best fitness values. Employees (also called workers) and onlookers carry out the

2.3 Swarm Intelligence 67

exploitation process, while scouts lead the exploration process. To be more precise, scouts are
randomly distributed across the search space and become employees as soon as they identify
a promising food source, which corresponds to a region of the search space characterized
by solutions with good fitness values. Onlookers are divided into groups and assigned to
the employees, proportionally to their fitness values. During the iterative process, they
randomly search around the food sources previously found by the employees, looking for
more promising solutions. When onlookers cannot improve their position anymore, the food
source is abandoned and bees return to the hive to start a new search for food by randomly
choosing a new position. ABC is a global optimization method that was generally applied to
real-valued problems, showing to be competitive with respect to other SI and EC techniques
[222].

2.3.3 Bat Algorithm

The Bat Algorithm (BA), originally presented in [481], is a metaheuristic based on the
echolocation behavior of microbats. Microbats are able to emit very loud and short sound
pulses and analyze the echo that the surrounding objects reflect back. This information is used
to discriminate the direction of their flight to avoid collisions. The optimization algorithm
created by using this biological metaphor can be seen as a combination of an exploration
procedure —where the movement of bats is influenced by a frequency value—and a local
search controlled by the loudness and rate of pulse emissions. Microbats adjust both the
frequency of their emitted pulses and the rate of pulse emission, according to the proximity
of the preys. Moreover, also the loudness fluctuates along with the proximity of preys, that is,
when a bat is near its target its loudness decreases. Each bat in the swarm can find the best
positions by performing an individual search or moving to the best location previously found
by the swarm.

To be more precise, the original version of BA is based on the following criteria: (i)
the echolocation is used by bats to sense distances and to discriminate between prey and
background barriers; (ii) each bat i is characterized by a position xi, flies with a velocity vi

(equal to 0 at the first iteration), and emits on a frequency fi varying in the range [fmin, fmax].
In addition, each bat can vary its own loudness Ai and pulse rate ri when its fitness is
improving. The loudness Ai varies within the interval [Amin,A0], where A0 is a very large
positive value, while the pulse rate ri can take values in the range [0,1].

68 Optimization techniques

At each iteration t of BA, each bat updates its frequency, velocity and position (with
respect to the previous iteration) as follows:

f t
i = fmin +(fmax − fmin)β ,

vt
i = vt−1

i +(xt−1
i −x∗) f t

i ,

xt
i = xt−1

i +xt
i,

(2.5)

where fmin and fmax depend on the size of the search space, β is a random number drawn
from a uniform distribution in [0,1], and x∗ is the current global best solution.

For what concerns the local search phase of BA, each bat generates a new solution
around the best solution found during the current iteration xt

best by using the random walk
xnew = xt

best + εAt , where At = ⟨At
i⟩ is the average loudness of all bats at iteration t, and ε

is a random number drawn with a uniform distribution in the range [−1,1]. Finally, at each
iteration and for each bat i, the loudness At

i decreases as At
i = αAt−1

i if rnd < At
i, where α is

a fixed parameter and rnd is a random number sampled with uniform distribution in [0,1].
Similarly, the pulse rate rt

i increases as rt
i = r0

i (1− e(−γt)), where γ is a fixed parameter and
r0

i is the initial pulse rate. This increment is performed only if F(xi)< F(x∗).
An improved version of BA was proposed by Xie et al. [474], in which the algorithm

makes use of a differential operator and Lévy flights trajectories (DLBA). The differential
operator introduced in DLBA modifies the original frequency update strategy employed by
bats. Lévy flights are Markov processes that differ from regular Brownian motion and allow
for improving the convergence speed and accuracy of BA. Besides the position update of the
bats, in DLBA also the local search process is different from the original algorithm; before
the position update, each bat i performs the Lévy flight: xt

i = x̂t
i + µ[rand − 0.5]⊙Levy,

where x̂t
i is the best solution found so far by bat i; µ and rand are random numbers drawn

from a uniform distribution in [0,1]; ⊙ is the entry-wise multiplication (Hadamard product);
Levy is the step length that obeys Lévy distribution Levy ∼ u = t−λ (with 1 < λ ≤ 3). The
updating formulas of the frequencies and position of each bat are inspired by the mutation
operator of the DE algorithm [349]. The frequencies of bats change, at each iteration, as
follows:

f t
1i =

(
(f1,min − f1,max)

t
nt

+ f1,max

)
β1,

f t
2i =

(
(f2,max − f2,min)

t
nt

+ f2,min

)
β2,

(2.6)

where β1,β2 are random numbers drawn from a uniform distribution [0,1]. f1,min, f2,min,
f1,max, f2,max and nt are user-defined values.

2.3 Swarm Intelligence 69

The position xt
i of each bat is updated as xt

i = xt
best + f t

1i(x
t
r1−xt

r2)+ f t
2i(x

t
r3−xt

r4), where
xt

best is the current best global solution and xt
r j (with j = 1, . . . ,4) are the positions of four

random bats in the swarm. In the final phase of the iteration, the best bat in the swarm
is selected and, if the fitness value is better than x∗, then its loudness At

i is decreased as

At
i = αAt−1

i and the pulse rate rt
i is increased as rt

i = rt−1
i

(
t
nt

)3
.

2.3.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic population-based metaheuristic belonging
to SI methods and suitable for real-valued optimization problems [225, 123]. A popu-
lation (called swarm) of n widely candidate solutions (called particles) moves through a
D-dimensional bounded search space and cooperates to identify the optimal solution, eventu-
ally clustering in regions where minima are identified. Each particle i, where i = 1, . . . ,n, is
identified by a position vector xi of real-valued coordinates, defined in a multi-dimensional
search space RD, and by a velocity vector vi ∈ RD used to update its own current position.
During the PSO execution, particles are attracted towards the best position bi ∈ RD found by
the particle itself so far, and the global best position g ∈ RD found by the neighborhood of
the particle or by the entire swarm. The optimization process proceeds until a termination
criterion is met (such as a maximum number of iterations is achieved). The social factor
csoc ∈R+ and the cognitive factor ccog ∈R+ are used to balance the exploration and exploita-
tion strategies, respectively. Moreover, two vectors r1,r2 ∈ RD of random numbers, sampled
with uniform probability in [0,1), are exploited to add stochasticity to particles movement
and thus preventing premature convergence to local optima. To avoid chaotic behaviors in
the swarm, the velocity of each particle is weighted by an inertia factor w ∈ R+ [187], and
limited by maximum velocity values vmax ∈ RD proportional to the distance between the
boundaries of the search space. A vector of minimum velocities vmin ∈ RD is often used to
prevent stagnation and to keep a high diversity inside the swarm [2]. Considering what has
been stated above, the velocity of each particle i is updated as follows:

vi = w ·vi + csoc · r1 ⊙ (xi −g)+ ccog · r2 ⊙ (xi −bi),

where ⊙ denotes the component-wise multiplication operator. Afterwards, the particle
position xi is updated as:

xi = xi +vi.

The inertia value w can be either constant throughout the optimization or decreased by
applying an update function. Since these functioning settings have a relevant impact on the

70 Optimization techniques

optimization performance, they were deeply analyzed in several works (see [109, 21, 62]
for csoc and ccog analyses, and [77] for w). Nevertheless, these functioning settings are
problem dependent since every fitness landscape has different characteristics. Moreover,
in order to avoid divergence of candidate solutions towards infinity, the search space is
generally bounded. β min

d and β max
d (with d = 1, . . . ,D) indicate the boundaries along the

d-th dimension of the search space. Once a particle moves outside the search space, it is
moved back to the valid regions of search space. This strategy allows for always evaluating
the fitness function since the particles always identify valid solutions to the optimization
problem. The most applied boundary conditions are: absorbing, reflecting and damping
strategies [475]. Absorbing condition consists in relocating at the boundary of the search
space those components of the particle positions that moves outside the valid search space,
setting to zero the relative velocity components. Similarly, in the reflection condition the
velocity components are reversed instead of being set to zero, while in the damping condition
the velocity is reversed and modulated by using a random number sampled with the uniform
distribution in the range [0,1].

Even though a convergence theorem was not demonstrated, PSO was applied to solve a lot
of real-world problems thanks to its implementation simplicity and optimization performance
[344].

2.3.5 Proactive Particles in Swarm Optimization

As described in the previous section, PSO relies on specific functioning settings (i.e., ccog,
csoc, w, vmin, vmax), which are strongly problem dependent. Determining the best values of
these functioning settings is a difficult task, often unfeasible, since a complete knowledge of
the fitness landscape would be required [275]. To overcome this limitation, Fuzzy Logic (FL)
[484] can be employed during the optimization phase to dynamically adjust the functioning
settings of PSO [1, 357]. The first attempt in exploiting a Fuzzy Rule-Based System (FRBS)
in this context was presented by the original authors of PSO [394]. In their fuzzy version,
during each iteration, the performance of the current best candidate solution and the current
inertia weight are used as input of the FRBS to assess a new inertia weight for the whole
swarm. Another version called Fuzzy Adaptive Turbulence in Particle Swarm Optimization
(FATPSO) [2] was introduced with the explicit goal of solving the problem of premature
convergence. In order to reduce the crowding of the swarm around the global best, FATPSO
adaptively tunes the vmin of the particles by using FL. Tian et al. presented Fuzzy Particle
Swarm Optimization algorithm (FPSO) [439], in which the inertia weight and the learning
coefficient—a new parameter introduced to throttle the particle velocities—are dynamically
adapted. In FPSO, the FRBS exploits two input variables: the deviation of fitness of the

2.3 Swarm Intelligence 71

particles and the improvement of the global best. All these works show that FL is suitable
for the development of self-tuning strategies for PSO, even if they only take into account
a subset of the overall PSO settings. Moreover, the aforementioned methods consider w,
csoc and ccog as global settings for the whole swarm. A different approach is to determine
specific functioning settings for each particle during the optimization. Examples are the
adaptive inertia weights provided in Gray PSO [253], Self-Regulating PSO [434] or the
recently introduced Stability-based Adaptive Inertia Weight [424].

Nobile et al. proposed Proactive Particles in Swarm Optimization (PPSO) [309] in which
the inertia, cognitive and social factors are calculated for each particle using an FRBS. In
such a way, the reactive individuals are turned into proactive optimizing agents. The FRBS
used by PPSO calculates the novel settings of each particle by analyzing two functions: (i)
the distance of the particle from the global best, and (ii) a normalized fitness incremental
factor of the particle. Thanks to the introduction of these fuzzy concepts, PPSO prevents the
use of arbitrary thresholds (i.e., crisp boundaries) and naturally handles these concepts to
control the behavior of the individual particles. The output variables used as consequents of
the rules are: Inertiai, Sociali and Cognitivei, clearly corresponding to the respective settings
of the i-th particle in PPSO.

PPSO recalculates the values of wt
i,c

t
soci

and ct
cogi

—for each particle i = 1, . . . ,n during
each iteration t—by using an FRBS composed by the 9 fuzzy rules [309]. PPSO relies on
the Sugeno inference method [418] to compute the crisp outputs, according to the calculated
membership functions [309]. Given a set R of R rules, all relative to the same output variable,
the Sugeno inference method calculates the final numerical value of that output variable as
the weighted average of the output of all rules.

The aim of the rules that adjust the value of Inertiai is to increase the value of this variable
when the particle shows a good performance (in terms of fitness), and to lower it otherwise.
In alternative, Inertiai is set to a “neutral choice”, when no relevant changes in the fitness
value occur or the distance from the global best is small. The rules that adjust the value of
Sociali reduce the value of this factor either if the particle is finding better solutions for the
optimization problem, or if it is near to the global best. On the contrary, when the particle is
not finding better solutions or it is not close to the global best, it should rather “follow the
leader”, and Sociali is increased. As in the case of Inertiai, the FRBS assigns an intermediate
value to Sociali if no relevant changes in the fitness value occur. The rules defined to control
the variable Cognitivei reduce the value of this factor if the distance from the global best is
large. On the contrary, if the particle is not improving its fitness value or it is not far from
the global best, then an intermediate value of Cognitivei can weigh the particle tendency to
move in the direction of its personal best position bi, with respect to the effect of the social

72 Optimization techniques

component. If the particle is finding better solutions, then the local exploration around its
current position within the search space is encouraged by increasing Cognitivei. Finally,
PPSO automatically sets the maximum velocity of the particles, along each component of
the search space, as:

vmax
d = µ · |β max

d −β
min
d |, for d = 1, . . . ,D, (2.7)

with µ ∈ [0,1), with µ = 0.2 as default value.

Fuzzy Self-Tuning Particle Swarm Optimization

Fuzzy Self-Tuning Particle Swarm Optimization (FST-PSO) [305] is an improved version
of PPSO [309, 429] in which also the values of vmin, vmax of each particle are individually
modified during the iterations by means of fuzzy rules. In such a way, FST-PSO results to be
a completely settings free version of PSO. In FST-PSO the vmin and vmax are automatically
determined for each particle by means of two linguistic values associated to two linguistic
variables. In order to clamp vmin of each particle along the d-th dimension of the search
space, an additional setting ω < µ ∈ [0,1) is introduced, obtaining this simple equation:

vmin
d = ω · |β max

d −β
min
d |, for d = 1, . . . ,D. (2.8)

In this case, the five output variables of each particle i are: Inertiai, Sociali, Cognitivei, µi,
ωi. This new set of fuzzy rules along with the introduction of two new linguistic variables,
designed to dynamically adjust the vmin and vmax of each particle, allows FST-PSO to obtained
better results with respect to PPSO in terms of convergence speed and concerning the best
solutions found in a set of benchmark functions [305].

Chapter 3

High-Performance Computing

3.1 Introduction

In the context of High-Performance Computing (HPC), the traditional solutions for dis-
tributed architectures are represented by computer clusters and grid computing [208]. The
former exploits a set of inter-connected computers controlled by a centralized scheduler,
while the latter consists in the logical organization of a set of geographically distributed
and heterogeneous computing resources. In both cases, the overall computational task is
partitioned into smaller sub-tasks, which are assigned to the various computing units for
parallel or distributed computations. These infrastructures are particularly appealing because
they usually require minimal changes to the existing source code of some given program.
As a matter of fact, the computing units are generally based on classic architectures (e.g.,
the x86 instruction set used in personal computers), so that the code can be easily ported,
with the exception of possible modifications required for message passing. Moreover, both
architectures support the Multiple Instruction Multiple Data (MIMD) execution paradigm,
that is, all computing units are independent, asynchronous and can work on different data
executing different portions of code.

Despite these advantages, computer clusters and grid computing have considerable
drawbacks. On the one hand, computer clusters are expensive, require maintenance and
are characterized by a relevant energy consumption. On the other hand, grid computing
[139] is generally based on volunteering, whereby computer owners donate resources (e.g.,
computing power, storage) to a specific project [15, 16]. Several factors may further affect
grid computing, notably the fact that remote computers might not be completely trustworthy:
potentially unpublished data are transmitted to unknown remote clients for processing and
the returned results might be intentionally erroneous or misleading. Moreover, no general

74 High-Performance Computing

guarantee about the availability of remote computers exists, so that some allocated tasks
could never be processed.

A third way to distribute computation is the emergent field of cloud computing, in which
private companies offer a pool of computation resources (e.g., computers, storage) attainable
on-demand and ubiquitously over the Internet [60]. Although cloud computing mitigates
some problems of classic distributed architectures—like the costs of the infrastructure and its
maintenance—it is characterized by other problems, mainly the fact that data are stored on
servers owned by private companies. This brings about issues of privacy, potential piracy,
espionage, continuity of the service (e.g., due to some malfunctioning, DDoS attacks, or
Internet connection problems), international legal conflicts, data lock-in, along with typical
problems of Big Data. Among them, the transferring of terabyte-scale data to and from the
cloud represents probably the biggest issue [19].

In the latest years, a completely different approach to HPC gained ground: the use of
general-purpose many-core devices like Many Integrated Core (MIC) coprocessors [437] and
Graphics Processing Units (GPUs) [319]. Noteworthy, both types of devices can be installed
on common consumer computers and are characterized by a large number of computing
cores (up to 72 for MICs and 3840 for GPUs). MICs are characterized by cores based on
the x86 instruction set, extended with 512-bit vector instructions, inter-connected by means
of a ring bus. Thanks to this architectural choice, any existing code developed for Central
Processing Units (CPUs) should be easily ported to the MIC architecture.

Differently from MICs, GPUs are pervasive, relatively cheap and extremely efficient
parallel many-core coprocessors, which were originally designed to accelerate the real-time
rendering of computer graphics, freeing the CPU for further calculations [302]. Nowadays,
even common consumer machines are equipped with GPUs, whose exceptional computing
power can be exploited to obtain, with a single machine, the same performance of clusters
and grid, without the need for job scheduling or the transfer of confidential information and
data.

In the next sections, we briefly describe the Message Passing Interface (MPI) that we
exploited to leverage the computational power offered by modern multi-core processors and
computer clusters. Then, we introduce the MIC coprocessors that were used to distribute sim-
ulations performed with the Stochastic Simulation Algorithm (see Section 1.2.2). Finally, we
describe in details the General-Purpose GPU (GPGPU) computing along with the Compute
Unified Device Architecture (CUDA) platform that was exploited to design and implement
two GPU-powered deterministic simulators (see Sections 4.2 and 4.3).

3.2 Message Passing Interface 75

3.2 Message Passing Interface

MPI represents the de facto standard for message-passing communication protocol among
processes on a distributed memory system. It was officially released in 1994 by a group of
researchers with the aim of providing a standardization among different message-passing
protocols [172, 330]. MPI is designed to work on a wide variety of parallel computing
architectures (e.g., computer clusters, multi-core processors and many-core coprocessors),
representing the most important model used in HPC [421]. Several open-source, well-
tested and efficient implementations of MPI were proposed to encourage the design and
development of portable and scalable large-scale parallel applications.

MPI consists in a communication protocol designed to leverage parallel and distributed
computers by means of the programmer interface, protocol and semantic specifications that
must be exploited during the implementation [171], to obtain high performance, scalability
and portability. MPI defines both the syntax and semantic of different library routines
to write portable message-passing programs in C, C++ and Fortran, which are natively
supported. The first version of MPI (named MPI-1) did not support shared memory at all,
while the second version (MPI-2) had a distributed shared memory concept, so that the
best performance were achieved over Non-Uniform Memory Access architectures (NUMA)
[244], thanks to the memory locality. Starting from the third version (MPI-3), explicit shared
memory programming models were introduced [150]. The MPI interface provides a virtual
topology, synchronization and communications among different processes, which are mapped
to cores or nodes by means of language-specific syntax. In the library, both point-to-point
and send-receive operations among the processes to exchange data between process pairs,
are available. Moreover, gather and reduce operations to combine partial results during the
computation as well as barrier operations to synchronize the processes can be exploited. It is
worth noting that point-to-point operations can be synchronous, asynchronous or buffered.

The best advantage of MPI regards its portability over different distributed memory
architectures along with the achievable performance as several optimized implementations
were proposed for different hardware. Moreover, MPI-2 and MPI-3 offer parallel I/O,
dynamic process management and remote memory operations, while in MPI-3 non-blocking
collective operations along with one-sided operations were introduced [199].

76 High-Performance Computing

...

...GDDR MC GDDR MC

TD TD

TD TD

TD GDDR MC

TDTD

TDGDDR MC

PCIe
Client
Logic

Core
L2

Core
L2

Core
L2

Core
L2

L2
Core

L2
Core

L2
Core

L2
Core

...

...

...

...

Fig. 3.1 High-level scheme of the Intel Xeon Phi coprocessor. The proposed architecture
relies on a bidirectional ring that interconnects multiple processing cores (up to 72), memory
controllers (GDDR MC), caches (e.g., the L2 caches that are kept coherent by TDs) and the
PCI client logic interface.

3.3 Many Integrated Cores

The Xeon Phi [86] products are a family of coprocessors proposed by Intel and based on
the MIC architecture. In 2012, the first family of the new line of highly parallel many-
core devices, named Xeon Phi coprocessor, was launched [217]. These coprocessors were
equipped with up to 61 general-purpose processor cores along with a novel powerful vector
processing unit for each core.

Since every MIC consists in multiple cores based on the x86 instruction set interconnected
by an on-die bidirectional ring, they can be also defined as Symmetric Multi-Processor (SMP)
on-a-chip devices. As shown in Figure 3.1, this ring is also exploited to connect the Peripheral
Component Interconnect (PCI) express (PCIe) interface logic and the Graphics Double Data
Rate (GDDR) memory controllers (GDDR MC). Each single core of the MIC is capable of
managing 4 parallel threads running in hardware and has a 512-bit wide Vector Processing
Unit (VPU) with 32 vector registers per thread. Each VPU allows for a second level of
parallelism by means of vector instructions that executes up to 8 double-precision operations
per cycle. Moreover, in each core there is a 512-KB Level 2 (L2) cache to provide high speed
and reusable data access. This cache is kept coherent by a global-distributed Tag Directory
(TD) so that the cached and referenced data remain consistent across all cores. From an
architectural point of view, the cores were designed to obtain a device optimized for high

3.3 Many Integrated Cores 77

Offload mode
Code with highly parallel

portions

Processor centric Coprocessor centric

Host-only mode
General serial and

parallel code

Symmetric
Code characterized by

balanced needs

Native
Code characterized by

balanced needs

Main()
Foo()
Bar()

Main()
Foo()
Bar()

Main()
Foo()
Bar()

Foo()
Main()
Foo()
Bar()

Main()
Foo()
Bar()

CPU

MIC

Fig. 3.2 High-level scheme of the programming models that can be exploited to develop
applications running on these coprocessors. In host-only mode the code is executed on the
CPU (light blue boxes). When the offload mode is exploited, only the embarrassingly parallel
portions of the code are run on MIC (blue boxes). In symmetric mode the code is executed
on both CPU and MIC, while in native mode the entire code runs on the MIC.

levels of power efficient parallelism, while preserving the general programmability of the
Intel processors. In order to reduce the size, the complexity and the power consumption they
exploit a code execution based on the round-robin multithreading scheduling [352].

The Xeon Phi coprocessors exploit the PCIe system interface to comunicate with the
main host computer and run over an embedded Linux µOS. Since they are equipped with an
embedded system and are based on the x86 technology, they are able to leverage the existing
software for Intel (and compatible) processors. Figure 3.2 depicts the main computing
options to couple classic CPU (i.e., the host) and Xeon Phi coprocessors. The code can be run
only on the host (host-only mode), on both processor and coprocessor (offload and symmetric
modes) and only on the coprocessor (native mode). The Xeon Phi relies on two different
programming models: the native mode and the the offload mode. The former is used to
directly run the code on the Xeon Phi and the system bus is exploited for the communications
and the data transfer between the Xeon Phi and the host. In order to develop an application
running in native mode, multithreading libraries like Open Multiprocessing (openMP) and
MPI are used. In the specific case of MPI, the application runs on the host and the highly
parallel portions of the code are offloaded on the cores of the Xeon Phi by using compiler
directives. Finally, the symmetric mode exploits cooperative communication (typically using
MPI) to run the code on both coprocessors and processor cores.

78 High-Performance Computing

Core Core Core Core

CPU

Cache
control

Cache
control

Cache
control

Cache
control

Cache 1

Cache 2

Cache 1

Cache 2

Cache 1

Cache 2

Cache 1

Cache 2

Cache 3

GPU

Core

Shared memory

Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Streaming Multiprocessor

Core

Shared memory

Core Core Core Core Core Core Core

Core Core Core Core Core Core Core Core

Streaming Multiprocessor

...

RAM

Fig. 3.3 The multi-core devices have a few numbers of cores along with different levels of
cache memories, which are exploited to handle with a limited number of software threads at
a time. On the contrary, many-core devices are composed of hundreds or even thousands
of physical cores that are capable of managing thousands of threads simultaneously, giving
access to a high level of parallelism.

3.4 General-Purpose Computing on GPUs

During the latest years, GPUs gained ground in several fields of research thanks to their
ability to deal with the computational burden of intensive algorithms.

From the architectural point of view, GPUs are completely different with respect to the
traditional CPUs. The former are composed of hundreds or even thousands of physical
cores that are capable of managing thousands of threads simultaneously, giving access to
a high level of parallelism. Conversely, the latter have a few numbers of cores along with
different levels of cache memories (generally three), which are exploited to concurrently
handle a limited number of software threads. Figure 3.3 provides a high-level comparison
between modern CPU and GPU architectures, showing their main characteristics. From a
hardware point of view, the transistors composing the CPU are used to branch predictions,
caching as well as out-of-order execution optimization performed at run-time. This feature
has become fundamental in the design of optimized pipelines in general-purpose processors.
On the other hand, the transistors used to design the GPU architectures are mainly employed
to perform strict computations since the GPUs have been produced to deal with graphic
rendering pipelines at high throughput, which require a lot of independent parallel operations.

3.4 General-Purpose Computing on GPUs 79

Initially, GPUs allowed for processing only a massive number of geometric primitives
(especially triangles, which are ordered triples of vertices) with several attributes by using a
multithread design and pipelines. They were composed of a fixed functionality set used to
vertex transform and lighting (T&L) by means of few libraries (e.g., OpenGL and Microsoft
Direct3D). Thanks to the increasing requests of video-game developers and 3D artists, the
GPU hardware was modified by adding programmable vertex and fragment processors. Pixar
in 1988 [207] introduced the naming convention for GPUs, so the programs for custom T&L
were called shaders. In 2001 Nvidia proposed the first programmable GPU, motivating the
creation of new languages that allowed for simplifying the development of shaders. By so
doing, in 2003 Nvidia proposed its own shading language named CG, which was inspired
by the C language [276]. During the same year, Microsoft added the High-Level Shading
Language (HLSL) to the DirectX libraries [168]. A year later, the Khronos Group consortium
proposed the shading language GLSL (OpenGL Shading Language), which was an extension
of the specification of OpenGL Application Programming Interface (API). In the following
years, the purpose of shaders changed from the graphics-oriented geometric transformations
to general computation, giving birth to the modern GPGPU. The first general shaders were
difficult to design and develop since both the input and output of the computation had to be
graphics objects (such as textures, pixels or 3D meshes), while the required computations
had to be performed by means of the graphics API. The following APIs introduced for
general-purpose computations solved this problem, making the GPGPU computing the main
alternative to the traditional HPC infrastructures.

The emerging field of GPGPU is nowadays a methodology combining CPUs and GPUs to
address the increasing demand of parallel and throughput intensive algorithms. Accordingly,
GPGPU takes advantage of the great computational power of modern many-core GPUs.
Generally, the serial portions of the algorithms are performed on the CPUs since they are
more effective and efficient than GPUs for serial processing, while GPUs perform those
portions requiring the elaboration of large blocks of data that can be processed in a parallel
fashion. This HPC methodology gives access to low-cost and energy-efficient solutions
that allow for achieving tera-scale performances on common workstations (and peta-scale
performances on GPU-equipped supercomputers [220, 50]), obtained by leveraging the
powerful parallel capabilities of modern video cards.

Despite the relevant performance-per-watt and performance-per-price ratio, also GPGPU
computing has some drawbacks. GPUs are mainly designed to provide the Same Instruction
Multiple Data (SIMD) parallelism. In such a case, differently from the MIMD architecture,
all cores in the GPU are supposed to execute the same instructions on different input data:
this is not the usual execution strategy for existing CPU implementations, therefore the

80 High-Performance Computing

CPU code cannot be directly ported to the GPU architecture. In general, the code needs to
be rewritten for GPUs, which have completely different architectures (see Figure 3.3) and
support a different set of functionalities as well as different libraries. In addition, the complex
hierarchy of memories and the limited amount of high performance memories available
on GPUs require a redesign of the existing algorithms to better fit and fully leverage this
architecture. Thus, from the point of view of the software developer, GPU programming
remains a challenging task [132] due to the effort required to code the algorithms.

Nevertheless, GPGPU computing represents a valuable and even “green” alternative to
traditional HPC infrastructures: indeed, GPUs offer the possibility of creating supercom-
puters that are orders of magnitude faster than conventional clusters [220, 50], but having a
comparable energy consumption. Empirical comparisons of equivalent implementations have
also shown that GPUs attain better performances than MICs [72, 395, 427], especially when
the code is not purposely modified to leverage the additional MICs throughput allowed by
vector instructions. For these reasons, although GPUs require a relevant programming effort,
they still represent one of the most attractive alternatives for Life Science-oriented HPC.

3.4.1 Compute Unified Device Architecture

Among the existing libraries for GPGPU computing, the most exploited are CUDA (created
by Nvidia), OpenCL (proposed by the Khronos Group) and Microsoft DirectCompute.

Here we focus on CUDA, a parallel computing platform and programming model,
programmable using the C language and based on many-core Streaming Multiprocessors
(SMs). The CUDA compiler nvcc subdivides this “extended” C code into two separate parts:
the host (i.e., the CPU) code and the device (i.e., the GPU) code. The former is compiled
using any C++ compiler that is available on the machine, while the latter is processed by
using the proprietary Nvidia compiler. The device code is then embedded as binary image
into the host object file. Finally, during the linking stage, CUDA runtime libraries are added
to the binary executable file.

The compilation of the device code is performed using an intermediate stage during
which a special representation, namely PTX, is used. PTX can be seen as the equivalent of
assembly code for a “virtual GPU”, being an instruction set architecture that is supposed to
remain stable and uniform across multiple generations of GPUs. The PTX is translated for
one (or more) specific target architectures, supporting the capabilities of this “virtual GPU’.
A schematization of this process is reported in Figure 3.4. It is worth noting that this process
can be performed automatically by nvcc or split into two separate phases. In the second case,
the intermediate PTX files can be modified before the compilation in order to drive a desired

3.4 General-Purpose Computing on GPUs 81

CUDA runtimeNVCC

Virtual compute architecture

STAGE 1
PTX generation

Real streaming multiprocessor architecture

STAGE 2
cubin generation EXECUTEx.cu x.ptx x.cubin

Device (GPU) code

Fig. 3.4 Two-stage compilation with virtual and real architectures. Figure adapted from
[312].

Table 3.1 Main libraries available for CUDA.

Name of the library Purpose of the library Reference
cuBLAS Linear algebra [314]
cuFFT Fast Fourier transform computation [316]
cuRAND Random numbers generation [317]
cuSPARSE Linear algebra subroutines for sparse matrices [318]
NPP Primitives for image and signal processing [320]
NVBIO High-throughput sequence analysis [313]
Thrust Library of common data structures and paral-

lel algorithms (e.g., sort, scan, transform and
reduction operations)

[198]

behavior or to leverage special device instructions, which might not be directly supported by
CUDA C (e.g., SIMD instructions).

CUDA is nowadays a mature architecture and offers several additional libraries that make
GPGPU computing easier for developers. Among them, it is worth mentioning cuBLAS [314]
(which implements linear algebra routines), CURAND [317] (which provides high-quality
pseudo- and quasi-random numbers generators), cuFFT [316] (a Fast Fourier Transform
library) or Thrust [198] (a C++ template library for CUDA based on the Standard Template
Library). A list of CUDA libraries and their functionalities is reported in Table 3.1.

CUDA code can run on the most widespread operating systems (Microsoft Windows,
Apple macOS, GNU/Linux), although it requires a Nvidia GPU. More precisely, CUDA
code can be compiled but cannot be executed on host machines equipped with ATI/AMD
or Intel video cards. In order to exploit GPUs made by these vendors, alternative libraries
(e.g., OpenCL) must be used. Each new generation of Nvidia GPUs offers novel or improved
characteristics; the subset of features supported by a specific hardware determines its Compute

82 High-Performance Computing

Table 3.2 Architectural innovations and new features introduced in the CC versions of
different CUDA architectures. CUDA architectures and CC are ordered from the oldest to
the latest. For each architecture, the CC generally maintains or improves the functionalities
provided by the previous versions.

CUDA architecture Compute capability Architectural innovations and new features

Tesla

1.0 Up to 512 threads per block and 65536 blocks
per grid, up to 16 KB of shared memory per SM,
up to 8 simultaneous blocks per SM, up to 63
registers per thread

1.1 Atomic functions in global memory
1.2 Atomic functions in shared memory and warp

voting
1.3 Double precision floating point operations

Fermi

2.0 Up to 1024 threads per block, up to 48 KB of
shared memory per SM, L2 cache on global
memory, custom balancing of L1 cache and
shared memory (48+16 KB vs 16+48 KB)

2.1 Advanced synchronization functions

Kepler

3.0 Unified memory programming, up to 231 − 1
blocks per grid, up to 16 simultaneous blocks
per SM, up to 255 registers per thread, balanced
L1 cache/shared memory configuration (32+32
KB)

3.5 Dynamic parallelism

Maxwell
5.0 Up to 64 KB of shared memory per SM, up to

32 blocks per SM
5.2 Up to 96 KB of shared memory per SM
5.3 Half-precision floating-point operations

Pascal
6.X Base clock up to 1700 MHz with GPU Boost,

4 MB of L2 cache, 4096-bit high performance
HBM2 memories

Volta
7.X Atomic addition operating on 64-bit floating

point values in global memory and shared mem-
ory, Tensor Core

Capability (CC). Table 3.2 reports an overview of the various CUDA architectures to date,
along with their CCs and some of the novel functionalities they introduced.

CUDA can be programmed by means of C/C++ language: following CUDA naming
conventions, the developer implements a C/C++ function (called kernel) that is loaded from
the host (the CPU) to the devices (one or more GPUs) and replicated in many copies named
threads. Notice that Fortran is natively supported by CUDA. Threads are organized in
three-dimensional structures named blocks, contained in three-dimensional grids (see Figure

3.4 General-Purpose Computing on GPUs 83

Fig. 3.5 CUDA thread organization: a kernel (represented by the light blue cube), invoked
from the host (blue cube), is executed in multiple threads on the GPU (the device). Threads
(red cubes) are organized in three-dimensional structures named blocks. Blocks (yellow
cubes) are organized in a three-dimensional structure named grid (green cube). During the
kernel launch, the programmer must specify the dimensions of both blocks and grid. Thanks
to this three-dimensional arrangement, threads in a block and blocks in a grid are addressed
by a triple of coordinates: the darker red thread in the figure, for instance, belongs to block
(0,0,0) and, inside this block, it is identified by coordinates (1,0,0), being the second thread
along the x axis and the first along the y and z axes.

3.5). Whenever the host computer runs a kernel, the GPU creates the corresponding grid and
automatically schedules each block of threads on an available SM, allowing for a transparent
scaling of performance on different devices (see Figure 3.6).

During the launch of a kernel, CUDA requires the programmer to specify how many
threads T are assigned to each block and how many blocks B must be created. The total
number of running threads on the GPU will be equal to T ×B. CUDA poses limitations to
the number of threads that a single block can contain. For instance, T was limited to 512 on
Tesla GPUs made by Nvidia, while it is limited to 1024 on more recent architectures (see
Table 3.2). Within a block, threads can be uniformly distributed by the user along the three
dimensions, given that x- and y-dimensions not exceed 1024 threads, while z-dimension must
be limited to 64 threads. For instance, Figure 3.5 shows an example of three-dimensional
blocks, each consisting of 3×3×3 = 27 threads. The number of simultaneous threads on a
SM is further limited by the available physical resources (e.g., registers, high performance

84 High-Performance Computing

Multithreaded CUDA Program

Block 1 Block 2 Block 4Block 3

Block 5 Block 6 Block 7 Block 8

GPU with 2 SMs

Block 1 Block 2 Block 4Block 3

Block 5 Block 6 Block 7 Block 8

GPU with 4 SMs

SM 1 SM 2 SM 3 SM 4SM 1 SM 2

Block 1 Block 2

Block 3 Block 4

Block 5 Block 6

Block 7 Block 8

Kernel

execution time

Fig. 3.6 CUDA automatic scalability: blocks are automatically scheduled on the available
SMs, in a transparent way for the programmer. The more SMs are present on the GPU, the
faster the execution of the kernel.

memories). It follows that the performance of CUDA kernels are tied to the choice of the
values T and B.

The CUDA programming model combines SIMD and multithreading: the programmer
launches a large number of identical threads that are supposed to perform identical com-
putations on different data; however, threads are allowed for temporarily taking divergent
control flows (e.g., when the code contains if-then-else constructs). Nvidia refers to this
peculiar architecture as SIMT: Single Instruction Multiple Threads. Figure 3.7 provides an
example of a divergent execution flow, in which 16 threads are executing a common CUDA
kernel (shown in the gray box on the right). The CUDA kernel is characterized by two nested
conditional branches: a first branch is taken by threads whose variable x is greater than zero
(yellow region); the second branch is taken by the remaining threads, whose variable y is
greater than zero (green region); the last branch is taken by the remaining threads (purple re-
gion). These three regions cannot be simultaneously executed: CUDA automatically handles
the workflow by serializing the execution. Serialization affects performance, since it implies
an increased running time. For this reason, conditional branches should be avoided in the
kernels as much as possible. In the example shown in Figure 3.7, the last conditional branch
(taken by threads that satisfy x ≤ 0 and y ≤ 0) causes the execution of a single thread at once

3.4 General-Purpose Computing on GPUs 85

Time

...

float tmp, x = A[i]; y = B[i];

if (x>0) {

 tmp = curand_uniform(&ls);

 tmp *= parameter1;

 x = tmp + parameter2;

} else if (y>0) {

 tmp = curand_normal(&ls);

 x = tmp + parameter2;

} else {

 tmp = curand_poisson(&ls, la);

 x = tmp;

}

result[i] = x;

...

/
/
/
/

/
/

/
/
/

/
/
/

/
/

//

/

/
/
/

/

/
/

/
/

/
/

/
/ /

/

Single thread
running

/
/ /

/
/ /

// /
/

/
/

/
/

/
/

/
/

/
/ /

/

/
/
/ /

// /
/

/
/

/
/

/
/

/
/

/
/

T T T T T T T T T

T T T T T T

T

F F F F F F F

F- - - - - - - - -

-- - - - - - - - - - - - - -

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Th
re

ad
 4

Th
re

ad
 5

Th
re

ad
 6

Th
re

ad
 7

Th
re

ad
 8

Th
re

ad
 9

Th
re

ad
 1

0

Th
re

ad
 1

1

Th
re

ad
 1

2

Th
re

ad
 1

3

Th
re

ad
 1

4

Th
re

ad
 1

5

Fig. 3.7 A simple example of thread divergence. Threads are grouped according to the
conditional branches, which are evaluated at run-time. Then, threads performing the same
calculations are executed together (e.g., the yellow parts). In the worst case scenario, the
conditional branches can cause a complete serialization of the execution (e.g., the purple
parts), hence reducing parallelism and strongly affecting the overall performance.

(thread #10). It is clear that, in order to fully leverage the GPU, the algorithms might require
a major redesign to reduce the recourse to conditional branches.

GPUs are equipped with a variety of memories. As schematized in Figure 3.8, the
GPU memory hierarchy consists in the global memory (accessible from all threads), the
shared memory (accessible from threads belonging to the same block), the registers (high
performance on-chip memories used to store local variables), the local memory (part of the
global memory, accessible exclusively by the owner thread), and the constant memory (cached
and not modifiable). One additional type of CUDA memory is the texture memory, which is
another cached and read-only memory. Formerly designed to speed up the texture mapping
in real-time 3D graphics, the texture memory was later exploited by CUDA to provide cached
access to non modifiable data. However, since the introduction of the Fermi architecture, the
global memory is equipped with a cache system (see Table 3.2) so that the texture memory
is no longer useful, except for its hardware-accelerated trilinear interpolation capabilities.
Nvidia increased the L2 cache to 4 MB starting from the Pascal [322] architecture. This

86 High-Performance Computing

Grid

Global

Memory

Block (0,0,0) Block (1,0,0)

Shared Memory

Registers

Thread

(0,0,0)

Local

Memory

Registers

Thread

(1,0,0)

Local

Memory

Texture

Memory

Constant

Memory

Shared Memory

Registers

Thread

(0,0,0)

Local

Memory

Thread

(1,0,0)

Local

Memory

Registers

Fig. 3.8 Architecture of CUDA threads and memories hierarchy. Threads can access data
from multiple kinds of memories, all with different scopes and characteristics: registers
and local memories are private for each thread; shared memory let threads belonging to
the same block communicate, and has low access latency; all threads can access the global
memory, which suffers of high latencies, but it is cached since the introduction of the Fermi
architecture; texture and constant memory can be read from any thread and are equipped
with a cache as well.

increment of high performance cache reduces the number of requests to the Dynamic Random
Access Memory (DRAM), improving the overall performance even on older software.

The best performance in the execution of CUDA code can be achieved by smartly
distributing the data structures across these memories and, in particular, by exploiting the
shared memory as much as possible. Unfortunately, the latter is a very limited resource
(i.e., up to 96 KB for each multi-processor on the Maxwell GPUs, see Table 3.2), causing
further restrictions on block size. On the contrary, the global memory is very large (some
GB in the most recent GPUs) but suffers of high latencies, a problem mitigated by the
introduction of the aforementioned caching system. Also registers may pose a limitation to
performance, since they are a scarce resource. When the number of registers required by a
kernel outnumbers the available physical memories, the so-called register spilling on global
memory occurs: the local variables are stored into the (slow) global memory, affecting the
overall performance. Initially, GPUs were equipped with just 63 registers per thread; with
the introduction of Kepler GPUs, with compute capability 3.5, the number of threads was

3.4 General-Purpose Computing on GPUs 87

increased to 255 (see Table 3.2), reducing the recourse to the global memory and directly
improving the performance in the case of complex kernels.

Finally, three additional matters concerning GPUs programming are worth to be men-
tioned. First, since blocks are asynchronously scheduled on different SMs, there exist no
communication nor synchronization primitives between blocks. However, intra-block com-
munication can be performed by means of the shared memory and the family of warp vote
functions, which allow for the evaluation of a predicate for all threads and the recombination
of the results. Intra-block synchronization is achieved using the family of __syncthreads
functions, which can be also combined with warp voting.

Second, during the execution of a kernel, the CPU is idle and is allowed for executing
additional useful tasks on the host side. This approach, which permits to fully leverage the
computing power of a GPU-powered machine, is called heterogeneous computing. A different
approach for leveraging the CPU during the execution of a kernel is the asynchronous data
transfer: CUDA allows for the creation of multiple streams, i.e., execution queues that handle
the concurrent execution of tasks, including overlapped kernel runs and memory transfers.

Third, global memory accesses can be optimized by the CUDA driver as long as the way
data are organized—i.e., the access pattern—is coalesced, that is, the memory areas read by
threads in a warp are contiguous. Although this complication has been mitigated by the most
recent GPU architectures, a proper organization of data into coalesced patterns is necessary
to reduce the number of memory transactions and improve the performance.

Chapter 4

High-Performance Computing for the
simulation of Reaction-Based Models

In this chapter, two deterministic biochemical simulators accelerated on Graphics Processing
Units (GPUs) and an implementation of the Stochastic Simulation Algorithm (SSA) on Many
Integrated Core (MIC) coprocessors are described in details. The scheme in Figure 4.1 shows
the “semiotic square” of the state-of-the-art of deterministic and stochastic biochemical
simulators (see Section 1.2.3), accelerated by means of GPUs. This figure highlights the
gap that were filled with the works proposed in this thesis—i.e., LASSIE (LArge-Scale
SImulator) and FiCoS (Fine- and Coarse-grained Simulator)—that is, the development
of efficient simulators capable of executing in a parallel fashion the calculations required
by a single simulation and by a batch of simulations, exploiting the fine-grained or the
coarse-grained parallelization strategies.

In the first section, we present a novel generator of synthetic (yet realistic) Reaction-
Based Models (RBMs) of biological networks, which has been used to test the efficiency
of the parallel simulators [361]. In Section 4.2, we introduce LASSIE [425], the first fine-
grained deterministic simulator designed to accelerate the simulation of large-scale models
(top-right panel of Figure 4.1). Section 4.3 describes FiCoS [428], an efficient deterministic
simulator accelerated on GPU exploiting both the fine- and coarse-grained parallelization
strategies (top-center panel of Figure 4.1). Finally, Section 4.4 is dedicated to an alternative
coarse-grained implementation of SSA by means of MIC coprocessors [427] (bottom-left
panel of Figure 4.1).

90 High-Performance Computing for the simulation of Reaction-Based Models

Stochastic

GPU-ODM
Komarov et al.,

PLOS ONE (2012)

Deterministic

Komarov and D’Souza
PLOS ONE (2012)

FiCoS

Li and Petzold,
Int. J. High Perform. Comput. Appl. (2010)

cuda-sim (SSA)
Zhou et al.,

Bioinformatics (2011)

cuda-sim (LSODA)
Zhou et al.,

Bioinformatics (2011)

LASSIE

cupSODA
Nobile et al.,

J. Supercomp. (2014)

cuTauLeaping
Nobile et al.,

PLOS ONE (2014)

SSA on MIC
coprocessors

Fine-grainedCoarse-grained

Ackermann et al.,
Proc. of Massively Parallel

Computational Biology on GPUs (2009)

Fig. 4.1 The “semiotic square” of the state-of-the-art of accelerated biochemical simulators.
The horizontal axis represents the parallelization strategy, that is, the two main approaches to
leverage the threads: coarse-grained (on the left), where multiple simulations are performed
in a parallel fashion; fine-grained (on the right), where a single simulation of a large-scale
model is accelerated by distributing the computation over multiple threads. The vertical
axis partitions the two types of simulation: deterministic (top) and stochastic (bottom). The
simulators that combine either two parallelization strategies or two types of simulations are
represented by means of the gradient of the colors that represent the simulators based on a
single parallelization strategy or performing only a type of simulation.

4.1 SMGen

In order to test the effectiveness and efficiency of the simulators and the Parameter Estimation
methodologies presented in this thesis, we designed and developed a novel custom tool
capable of generating RBMs of any size. This tool, named SMGen (Synthetic Models of
biological systems Generator) [361], was designed to generate synthetic (yet realistic) models
of biological networks that must comply with some structural characteristics, in order for
them to be as much realistic as possible:

4.1 SMGen 91

1. system connectivity. Since a biological network can be represented as a graph, in order
to guarantee a single connected component each species S j ∈ S, with j = 1, . . . ,N,
must be involved in at least one reaction Ri ∈R, where i = 1, . . . ,M;

2. order guarantee. For each reaction Ri ∈ R, the order of the reaction must be lower
or equal than the maximum order maxord, whose value is a user-defined parameter.
Similarly, the number of products of each reaction must be lower or equal than the
user-defined value maxprod representing the maximum number of allowed products;

3. linear independence. In order to ensure that each reaction Ri is a plausible biochemical
reaction, the reactants and products involved in Ri, represented as two vectors in RN ,
must be linearly independent;

4. unique reactions. Each reaction Ri must appear only once in the network, that is,
duplicated reactions are forbidden.

SMGen saves the synthetic RBMs to file using the Systems Biology Mark-up Language
(SBML) standard [229] as well as in the BioSimWare format [42], which is composed of an
ensemble of input files describing all the elements necessary to define and simulate an RBM.
These files have been used as input for all the simulators proposed in this thesis. SMGen is
also provided with a user-friendly Graphical User Interface (GUI) that easily allows the user
to provide all the settings required to generate the RBMs.

Since SMGen is designed to generate a whole set of RBMs, we developed a Master-
Slave implementation to distribute and parallelize the generation of the RBMs. SMGen was
entirely developed using the Python programming language and exploiting mpi4py [98],
which provides bindings of the Message Passing Interface (MPI) specifications for Python
to leverage multi-core Central Processing Units (CPUs). Figure 4.2 shows the scheme of
the proposed Master-Slave implementation. The user-defined number of processes Σ are
assigned as follows: Rank 0 manages the GUI; Rank 1 corresponds to the Master; Rank k,
with k = 3, . . . ,Σ, are the Slave processes. Notice that SMGen requires at least 3 processes,
which is the default value for Σ.

The functioning of SMGen can be summarized as follows:

1. the user interacts with the GUI (Rank 0), providing all the required settings, namely:
the number N of species; the number M of reactions; the maximum order maxord of
the reactions; the maximum number maxprod of products; the probability distributions
and the ranges for sampling both the initial concentrations and the kinetics parameters;

2. the GUI sends the aforementioned settings to the Master (Rank 1), which allocates the
resources and offloads the network generation to the available Slaves;

92 High-Performance Computing for the simulation of Reaction-Based Models

GUI
MPI Rank 0

Slave 1

MPI Rank 1

Slave 𝚺
MPI Rank 𝚺

Slave 2
MPI Rank 3

...

Master

MPI Rank 2

Fig. 4.2 Scheme of the Master-Slave implementation of SMGen: first, the GUI communicates
to the Master the settings provided by the user; the Master orchestrates all the Slaves, sending
the settings to the Slaves, which then generate the set of RBMs.

3. each Slave (Rank k, with k = 3, . . . ,Σ) generates a different RBM. When a Slave
finishes, it communicates to the Master that it is available and, as long as there are
models to generate, the Master assigns a new network to the Slave.

A high-level overview of the algorithm underlying the generation phase, which each
Slave performs, can be summarized as follows:

1. given the settings provided by the user, the graph representing the reactions is initial-
ized;

2. the stoichiometric coefficients are randomly generated;

3. for each reaction Ri the linear independence between the reactants and products
involved Ri is evaluated. If the linear independence is violated, then go back to Step 1.
Otherwise, continue with Step 4;

4. for each reaction Ri any reaction equal to Ri is removed.

The algorithm is iterated until all the reactions appear only once in the network. Finally, the
initial amount of the species in S and the kinetic constants are randomly generated by using
the probability distributions chosen by the user.

4.2 LASSIE 93

4.2 LASSIE

LASSIE is the first fine-grained GPU-accelerated software designed to simulate large-scale
RBMs of cellular processes, consisting in hundreds or thousands of reactions and molecular
species. LASSIE was designed to be a “black-box” deterministic simulator, not requiring any
expertise in mathematical modeling nor any GPU programming skill. More precisely, given
the formalization of a cellular process as an RBM and assuming the mass-action kinetics
[84, 78, 455] (see Section 1.1.1), LASSIE proceeds according to the following workflow:

1. it automatically generates the system of Ordinary Differential Equations (ODEs)—one
ODE for each molecular species occurring in the system—according to the biochemical
reactions included in the RBM;

2. it automatically derives the Jacobian matrix associated to the system of ODEs, taking
advantage of the symbolic derivation, necessary to apply the Backward Differentiation
Formulae (BDF) (see Section 1.2.1);

3. it executes the numerical integration of the ODEs by automatically switching between
the Runge–Kutta–Fehlberg (RKF) method (described in Section 1.2.1) in the absence
of stiffness and the BDF in presence of stiffness.

Notice that LASSIE was developed to solve systems of coupled ODEs specified in the form
dx
dt = f (t,x), where x ≡ x(t) represents the vector of concentration values at time t of all
chemical species occurring in the system.

4.2.1 GPU implementation

Given an RBM as input, LASSIE automatically generates the systems of ODEs according
to the Equation 1.4 and encodes the matrices A and H = (B−A)T as two arrays of short4
Compute Unified Device Architecture (CUDA) vector types, named VA and VH, respec-
tively. Notice that CUDA vector types are multi-dimensional structures ranging from 1 to
4 components, addressed by .x, .y, .z, and .w. Since the matrices A and H are sparse,
LASSIE uses compressed data structures created by removing all zero elements from A
and H to save memory and avoid unnecessary readings from the global memory. Namely,
let h ji be the element of H at row j and column i, and ai j the element of A at row i and
column j, for i = 1, . . . ,M and j = 1, . . . ,N, where N and M are the number of species and
reactions composing the RBM, respectively. For each non-zero element of H, we store
into the .x and .y components of VH the values j and i, respectively; the .z component
of VH is used to store the element h ji, while the .w component stores the index of the

94 High-Performance Computing for the simulation of Reaction-Based Models

dx1/dt = - k1(x1)
1(x2)

1 + k2(x3)
1

- 0 -1 0

- 1 1 1

VH

 .x .y .z .w

0 1

OH

 .x .y
- 1 1 -

- 2 1 -

- 3 1 -

VA

 .x .y .z .w

.

.

.

0 1

OA

22

 .x .y

.

.

. .
.
.

.

.

.

thread 0 (species X1)

thread N-1 (species XN)

.

.

.

k1

K

k2
. . .

Fig. 4.3 Example of matrix encoding to automatically generate an ODE using LASSIE.

kinetic constant associated with that monomial. Similarly, for each non-zero element of A,
the .x and .y components of VA contain the values i and j, respectively. The value ai j is
stored into the .z component of VA, while the .w component is left unused. Note that we
exploited the short4 CUDA vector type rather than the short3 CUDA vector type, because
the former is 8-aligned and requires a single instruction to fetch a whole entry, while the
latter is 2-aligned and thus takes three memory operations to read each entry. In order to
parse these arrays inside the GPU, we use two additional arrays of short2 CUDA vector
types, named OH and OA, which store the offsets used to correctly read the entries of the
VH and VA structures, respectively. The .x and .y components of each row of OH contain,
respectively, the first index and the last index to access the VH structure. Each thread uses
its own pair of indeces to read the rows of the VH structure between the first index and
the last one. Similarly, OA stores the indeces that allow for correctly accessing the VA
structure. Finally, the values of the kinetic constants are stored into an array of type double,
named K. Figure 4.3 shows an example of the matrix encoding used in LASSIE, where
all terms of the polynomial function describing the ODE of species x1 given at the top of
the figure are encoded in the components of the data structures OH, VH, OA, VA and K, as
detailed hereby. Notice that only the data structures components with solid borders are used
to automatically generate the ODE; the various terms appearing in the ODE are represented
with corresponding colors in the data structure components. Matrix encoding starts from
matrix OH. Each thread j, for j = 0, . . . ,N − 1, reads the values stored in the .x and .y
components of OH (denoted by the lightblue borders). In this example, we consider species
x1 that corresponds to thread 0. Each thread fetches the values in VH, starting from the row

4.2 LASSIE 95

indicated by the value stored in the .x component of OH, up to the row corresponding to the
value stored in the .y component. In this example, thread 0 in matrix OH reads the values
contained in the first two rows—i.e., rows 0 and 1—in matrix VH. Each row of VH encodes
a monomial of an ODE: the .x component is not used; the .y components (denoted by green
and orange borders) indicate the row numbers of the OA structure that each thread must read;
the .z components (red borders) indicate the sign and the coefficient of the monomial; the
.w components (gray borders) indicate the positions of the array K containing the values
of the kinetic constants corresponding to the reactions that the threads are parsing. In this
example, the .z and .w components of VH allows for deriving the coefficients −1k1 and
+1k2 for the first and the second term of the ODE, respectively. Afterwards, as in the case
of OH, each thread fetches the values in VA, starting from the row indicated by the value
stored in the .x component of OA, up to the row corresponding to the value stored in the
.y component of OA. The values stored in the .y (violet and fuchsia borders) and .z (blue
and dark green borders) components of VA correspond to the indeces of the species and
the stoichiometric coefficients, respectively, while the .x and .w components of VA are left
unused. In this example, row 0 in matrix OA reads the values stored in rows 0 and 1 (.y and
.z components) of matrix VA, generating the factors (x1)

1(x2)
1 in the first term of the ODE,

while row 1 in matrix OA reads the values stored in row 2 (.y and .z components) of matrix
VA, generating the factor (x3)

1 in the second term of the ODE. Therefore, in this example,
the matrix encoding overall generates the ODE of species x1 consisting in the sum of two
polynomial terms: −k1(x1)

1(x2)
1 + k2(x3)

1.
Thanks to these CUDA structures, we obtain a twofold performance improvement:

• at the instruction level, a single instruction is enough to either load or store a multi-word
vector. By so doing, the total instruction latency for a particular memory transaction is
lower and also the bytes per instruction ratio is higher;

• at the memory controller level, by using vector types a transfer request from a warp has
a larger net memory throughput per transaction, yielding a higher bytes per transaction
ratio. With a fewer number of transfer requests, the memory controller is able to reduce
contentions producing a higher overall memory bandwidth utilization.

The only limitation due to short data type is that indices are limited to 22×8−1, which means
that LASSIE cannot simulate systems larger than 65536 chemical species and reactions.

Once that the system of ODEs is generated and appropriately stored according to the
CUDA vector types, LASSIE solves it by automatically switching between the RKF method
in the absence of stiffness, and the BDF in presence of stiffness. The integration of the
systems of ODEs is carried out from an initial time instant t0, up to a given maximum

96 High-Performance Computing for the simulation of Reaction-Based Models

simulation time tmax. In order to reproduce the dynamics of the cellular process described by
the ODEs, the concentration values of the molecular species appearing in the RBM are saved
at specified time steps within the interval [t0, tmax] (these time steps might correspond, e.g., to
the sampling times of laboratory experiments).

The workflow of LASSIE consists in 6 distinct phases, as represented in Figure 4.4. Note
that phases P1, P4 and P6 are executed by the CPU (yellow boxes in Figure 4.4), while P2, P3

and P5 are executed by the GPU (green boxes in Figure 4.4). Overall, phases P2, P3 and P5

rely on 25 different lightweight kernels, which were specifically developed to fully leverage
the parallel architecture of the GPU for the implementation of the aforementioned numerical
integration methods. We describe hereafter the main design and implementation choices of
each phase and their related CUDA kernels, which result in a novel parallelization strategy
with respect to state-of-the-art methodologies (see, e.g., [210]).

Phase P1. It implements the generation of all data structures used to encode the ODEs, as
described above. This phase is executed on the CPU.

Phase P2. It is used to sample and save the system dynamics and it is implemented by
means of a single CUDA kernel (kernel K1). In particular, if the current simulation time t
corresponds to one of the specified sampling time instants, LASSIE saves the concentration
values of (possibly, a subset of) all molecular species into an array defined on the GPU.
Otherwise, the execution proceeds to the next phase.

Phase P3. It implements the RKF method [277], used by each thread j to solve the j-th
ODE, for j = 0, . . . ,N −1. This phase is implemented as 9 CUDA kernels.

During this phase, the two different approximated states un+1 and wn+1 of the state xn+1

of the system are generated at each step, thanks to the evaluation of six supplementary values
l1, . . . , l6 (see Table 1.4). As described in Section 1.2.1 for a single ODE, to evaluate the
accuracy of u and w at the current step-size h, a user-defined vector tolerance εεε ∈ RN (with
ε j > 0 for all j = 1, . . . ,N), and two additional arrays, ER,δδδ ∈ RN are taken into account.
If ER j ≤ ε j for all j = 1, . . . ,N, then un+1 is accepted as new state of the system, that is,
xn+1 = un+1; otherwise, the solutions u and w are rejected and recalculated by using a new
step-size. The new step-size is computed as h = h ·min{δ1, . . . ,δN}, being δ1, . . . ,δN the
components of vector δδδ (note that the new value of h has to be chosen in order to satisfy the
requested error tolerance for all ODEs).

Overall, phase P3 is implemented by means of the following kernels:

• kernel K2: used to evaluate each ODE at the current state xn of the system;

4.2 LASSIE 97

Phase P4

Phase P1:
generation of ODEs data

structures

Phase P2:
check and save samples

of the dynamics

Solution
accepted

Phase P3:
RKF method

Phase P6:
termination

criterion

[no]

Phase P5:
BDF methods

GPU

CPU

[solutions rejected]

end

start

dt < εs

[yes]

[no]

[yes]

[yes]

[no]

Fig. 4.4 Simplified scheme of the workflow of LASSIE. The data structures used to encode
the system of ODEs are generated in phase P1. In phase P2, if the current simulation time t
corresponds to a specified sampling time instant, then the current concentration values of all
molecular species are saved; otherwise, the execution proceeds to the next phase. In phase
P3 each thread derives and solves the corresponding ODE by exploiting the RKF method,
while in phase P4 the RKF solutions are verified: (i) if the RKF solutions are rejected, then
the integration step-size h is reduced and phase P3 is executed again; (ii) if RKF solutions
are rejected but the integration step-size h is too small, then phase P5 is executed and the
system of ODEs is solved by using the BDF methods; (iii) if the RKF solutions are accepted,
the termination criterion is verified during phase P6 (all phases from P2 are iterated until the
maximum simulation time tmax is reached).

• kernels K3 – K8: each thread j, for j = 0, . . . ,N − 1, computes the components
l1 j, . . . , l6 j of l1, . . . , l6, by invoking kernel K2;

98 High-Performance Computing for the simulation of Reaction-Based Models

• kernel K9: each thread j, for j = 0, . . . ,N −1, computes the components w j and u j of
the approximated states un+1 and wn+1, respectively;

• kernel K10: each thread j, for j = 0, . . . ,N −1, calculates the components ER j and δ j

of ER and δδδ , respectively.

Phase P4. It is used to verify the RKF solutions calculated during phase P3 and, accordingly,
to choose the next phase to be executed:

1. if the solutions are rejected and the new step-size h is acceptable (that is, h ≥ εs, for
some εs > 0, e.g., εs = 10−6), phase P3 is executed again using a smaller step-size h;

2. if the solutions are rejected and the new step-size h becomes too small (that is, h < εs),
LASSIE executes phase P5;

3. if all solutions do not violate the specified RKF-tolerance vector εεε , then LASSIE
executes phase P6.

Note that Point 1 implicitly states that the system of ODEs is considered to be stiff, so
that LASSIE automatically switches to phase P5, where the BDF methods are used for the
numerical integration. Phase P4 is executed on the host.

Phase P5. It implements the BDF methods, the most widely used implicit multi-step
numerical integration algorithms [438]. LASSIE switches to this phase if and only if the
RKF solutions u and w evaluated during phase P4 are rejected as well as the RKF step-size h
becomes smaller than εs.

Since the evaluation of the Jacobian matrix required by the BDF methods during each
iteration is computationally expensive, LASSIE actually exploits the modified Newton-
Raphson method [403]. Thus, the iteration matrix is evaluated once at the beginning of each
step, based on the predicted value x0, and it is used for all the iterations during the current
step. The linear system is solved by using the LU factorization method [30], which is a direct
method supplied by the Nvidia CUDA Basic Linear Algebra Subroutines (cuBLAS) [314], a
GPU-accelerated version of the standard BLAS library [248]. The Newton-Raphson method
is iterated until the maximum number of iterations is reached, or a sufficiently accurate
value is achieved (i.e., smaller than a user-defined tolerance value εNR). When this method
ends, the state of the system is updated as x = xi+1 (see Section 1.2.1 for more details). The
workflow of phase P5 is schematized in Figure 4.5.

Overall, phase P5 is implemented by means of the following kernels:

4.2 LASSIE 99

Creation of the known
terms of the linear system

Derivation and evaluation
of Jacobian matrix

Termination
criterion

[no]

LU factorization

[yes]

GPU

CPU

cuBLAS

Update iteration vector for
Newton-Raphson method

(1)

(2)

(3) (4)

(5)
end

start

Fig. 4.5 Flowchart of phase P5. (1) Each thread j, for j = 0, . . . ,N −1, calculates the j-th
known term of the linear system given in Equation 1.14, which is obtained from the system
of non-linear equations given in Equation 1.12; (2) each thread j derives the j-th row of
the Jacobian matrix and evaluates it on the current state of the system x; (3) the linear
system is solved by exploiting the LU factorization method supplied by cuBLAS library; (4)
the solution of the linear system is used to update the iteration vector for the execution of
the Newton-Raphson method; (5) steps 1 to 4 are iterated until the termination criterion is
satisfied, that is, a maximum number of iterations is reached, or a value smaller than a fixed
tolerance value εNR is achieved.

• kernel K11: each thread j, for j = 0, . . . ,N −1, derives the j-th row of the Jacobian
matrix and evaluates it on the current state of the system x;

• kernel K12: the Jacobian matrix is transposed in order to exploit the LU factorization
method;

• kernels K13 – K18: based on the order q of the BDF, LASSIE invokes one of these
kernels (i.e., kernel K13 for q = 1, kernel K14 for q = 2, ..., kernel K18 for q = 6) to
calculate the known terms of the linear system;

• kernels K19 – K24: each kernel K(18+q), q = 1, . . . ,6, performs the calculations of
the q-th order BDF;

• kernel K25: it updates the iteration vector needed to execute the Newton-Raphson
method.

Phase P6. It is used to verify the termination criterion: if the maximum time tmax is reached,
then the simulation ends. On the contrary, the execution iterates from phase P2. This phase is
executed on the host.

100 High-Performance Computing for the simulation of Reaction-Based Models

All the temporary results computed by LASSIE are stored on the GPU, since data transfers
between the CPU and the GPU (and viceversa) are very time consuming. For the same reason,
the output data (i.e., the concentration values of the molecular species sampled at fixed time
instants) are transferred to the CPU as soon as the whole simulation is completed.

4.2.2 Results

The computational performance of LASSIE was compared against the Livermore Solver of
Ordinary Differential Equations (LSODA) [341] ODE solver, which is generally considered
one of the best ODE solver for deterministic simulations of biological systems, thanks to its
capability of dealing with stiff and non-stiff systems. In particular, we exploited the LSODA
implementation provided by SciPy library [219] (version 0.15.1), written in C language.
LASSIE was run on a machine with a GPU Nvidia GeForce GTX Titan Z, based on the
Kepler architecture and equipped with 2× 15 SMs for a total of 5760 cores (clock 837
MHz) and a theoretical peak processing power of 1.3 TFLOPS in double precision. Instead,
LSODA was run on GALILEO, a supercomputer created by the Italian consortium CINECA.
GALILEO consists of 516 compute nodes, each one equipped with 2 CPUs octa-core Intel®

Xeon® Haswell E5-2630 v3 (clock 2.40 GHz) for a total of 8256 cores, and 128 GB of RAM.
Each CPU is capable of about 300 GFLOPS in double precision. In our tests, we exploited
one node with 120 GB of RAM distributed over 5 cores.

The computational performance was evaluated by simulating a set of synthetic RBMs of
increasing size, that is, having a number of reactions and species M×N arbitrarily chosen
in the range from 64× 64 to 8192× 8192. The models were generated considering the
methodology used in [234, 307], which was modified in order to randomly sample the initial
concentration of each species with a uniform distribution in the range [0,1), and the kinetic
constant of each reaction with a logarithmic distribution in the range [10−8,1).

For each model size M×N, we generated and simulated 30 different synthetic RBMs to
the aim of measuring the average running time of both LASSIE and LSODA. The simulation
of each RBM was performed multiple times, using different settings for the sampling of the
time-series. Specifically, in each repetition, we saved either 10,50,100,500 or 1000 samples
of the system dynamics of all chemical species, at regular intervals. All simulations were
halted at time tmax = 50 (arbitrary units).

All simulations were executed—independently from the size of the model and the number
of samples saved—by setting the following parameters of LASSIE:

• tolerance of RKF method ε j = 10−12, j = 1, . . . ,N;

• first–order BDF method (q = 1);

4.2 LASSIE 101

• BDF integration step h = 0.1;

• tolerance of Newton–Raphson method εNR = 10−6;

• maximum number of iterations allowed during each call of the Newton-Raphson
method maxit = 104;

• initial integration step of RKF method equal to 10−3;

• tolerance value to switch between RKF method and Backward Euler method (EM)
εs = 10−6.

The following parameters of LSODA were used to run the simulations:

• relative tolerance εr = 10−6;

• absolute tolerance εa = 10−12;

• maximum number of internal steps equal to 104.

Tables 4.1 and 4.2 report the values of the average running times (given in seconds) of
LSODA and LASSIE, required for the execution of each set of 30 different synthetic RBMs
of size M×N, each time considering 10,50,100,500,1000 samples of the system dynamics
of all chemical species. The speed-up values achieved by LASSIE with respect to LSODA
are given in Tables 4.1 and 4.2 and graphically represented in Figure 4.6, for each tested case;
note that when the speed-up value is greater than one, LASSIE is faster than LSODA, and
vice versa. The break-even (blue line in Figure 4.6) between the performances of LASSIE
and LSODA is observed when the number of reactions and chemical species is between
128 and 256. Specifically, in the case of 256×256 model size and 10 samples, the running
time of LSODA is almost twice with respect to LASSIE: 1.28 seconds vs. 0.67 seconds.
In particular, we emphasize that the execution of the simulations for models characterized
by 4096 reactions and 4096 species with 10 samples takes, on average, 249.8 seconds with
LSODA and just 2.71 seconds with LASSIE, resulting in around 92× speed-up. Furthermore,
LASSIE allows for the simulation of large-scale models (e.g., 8192× 8192) thanks to its
smaller memory footprint with respect to LSODA, taking just 14.13 seconds to simulate
the model characterized by 8192 reactions and 8192 species with 10 samples. Conversely,
the version of LSODA implemented in SciPy library has a high memory footprint that does
not allow for simulating models of this size on GALILEO, the supercomputer employed to
perform the simulations.

Figure 4.6 also points out that the number of samples of the dynamics affects the per-
formance of LASSIE, due to the different number of accesses to the high-latency global

102 High-Performance Computing for the simulation of Reaction-Based Models

Table 4.1 Average running time (in seconds) of LSODA and LASSIE – and corresponding
speed-up value – required for the execution of the set of 30 synthetic RBMs of size M×N
(with M = N), considering 10, 50 and 100 samples of the dynamics of all chemical species.

10 samples 50 samples 100 samples
M×N LSODA LASSIE speed-up LSODA LASSIE speed-up LSODA LASSIE speed-up
64×64 0.257 0.519 0.495 0.288 0.541 0.532 0.220 0.557 0.395
128×128 0.393 0.613 0.641 0.473 0.635 0.745 0.507 0.644 0.787
256×256 1.277 0.669 1.909 1.486 0.696 2.135 1.293 0.727 1.779
512×512 4.313 0.792 5.446 4.629 0.841 5.504 4.559 0.915 4.982
1024×1024 15.753 0.955 16.495 15.707 1.056 14.874 16.201 1.201 13.490
2048×2048 61.824 1.662 37.199 61.748 1.987 31.076 61.762 2.397 25.766
4096×4096 249.839 2.713 92.090 248.234 4.571 54,306 249.422 5.665 44.029
8192×8192 NA 14.134 NA NA 26.051 NA NA 38.058 NA

Table 4.2 Average running time (in seconds) of LSODA and LASSIE – and corresponding
speed-up value – required for the execution of the set of 30 synthetic RBMs of size M×N
(with M = N), considering 500 and 1000 samples of the dynamics of all chemical species.

500 samples 1000 samples
M×N LSODA LASSIE speed-up LSODA LASSIE speed-up
64×64 0.307 0.665 0.462 0.303 0.839 0.361
128×128 0.674 0.786 0.858 0.498 0.958 0.520
256×256 1.319 0.905 1.456 1.277 1.122 1.138
512×512 4.300 1.215 3.539 4.669 1.526 3.060
1024×1024 15.982 1.809 8.835 16.647 2.407 6.916
2048×2048 62.307 3.721 14.745 62.742 5.479 11.451
4096×4096 249.546 12.407 20.113 254.416 17.393 14.627
8192×8192 NA 101.91 NA NA 129.755 NA

memory. For instance, the speed-up achieved with the model characterized by 4096 reac-
tions and 4096 species decreases to 14.6× with 1000 samples, meaning that the simulations
with 1000 samples are around 6× slower than the simulations with 10 samples. In models
characterized by 2048 reactions and 2048 species, the speed-up obtained with 10 samples
(37.2×) is around 3× larger compared to the one achieved with 1000 samples (11.4×), while
in models characterized by 1024 reactions and 1024 species, the speed-up obtained with
10 samples (16.5×) is around 2× larger compared to the one achieved with 1000 samples
(6.9×). Finally, Figure 4.7 shows that the running time of LASSIE increases with the number
of samples, while LSODA is characterized by an almost constant running time, irrespective
of the number of samples. It is worth noting that CPU-bound ODE solvers, like this version
of LSODA, can be more efficient in the case of small-scale models. This is due to two
concomitant circumstances. On the one hand, the clock frequency of CPUs is higher than the
clock frequency of GPU (2.4 GHz with respect to 837 MHz, in the case of the hardware used
to execute our tests). On the other hand, the communication and synchronization between
threads can introduce a significant overhead, which is mitigated only when the calculations
are distributed over a relevant number of threads; therefore, LASSIE becomes profitable for

4.2 LASSIE 103

Model size

64x64
128x128

256x256
512x512

1024x1024
2048x2048

4096x4096
8192x8192

Sa
mp
les

1000

500

100

50

10

Sp
ee
d-
up

0

20

40

60

80

0.4
0.5

1.1 3.0 7.0 11.5 14.6

NA

0.5
0.9

1.5 3.5 8.8 14.7 20.1

NA

0.4
0.8 1.8 5.0

13.5

25.8

44.0

NA

0.5
0.8 2.1 5.5

14.9

31.0

54.3

NA

0.5
0.6 1.9 5.4

16.5

37.2

92.1

NA

Fig. 4.6 speed-up values (z-axis) achieved by LASSIE with respect to LSODA for the
simulation of synthetic models of increasing size, having a number of reactions and of
species M×N (x-axis), with M = N, and characterized by an increasing number of sampling
time instants of the system dynamics (y-axis). When the value of the speed-up is greater than
one, LASSIE is faster than LSODA and vice versa.

medium/large-scale models characterized by hundreds of species. Notably, the bigger the
model, the greater the speed-up.

As an additional test, we investigated whether the relationship between the number of
reactions and the number of species could affect the overall performance of LASSIE. As the
number of chemical species corresponds to the number of ODEs, the length of each ODE is
roughly proportional to the number of reactions. Since GPUs have a lower clock frequency
than CPUs (e.g., in the case of the hardware used for the tests, 837 MHz with respect to
2.4 GHz, respectively), each GPU core is slower than the CPU core to perform a single
instruction 1. For this reason, in order to obtain the highest performance, the calculations on
the GPU should be spread across threads as much as possible, while the number of operations
performed by each thread should be reduced.

1The advances in GPU technology will progressively reduce this gap. As a matter of fact, Nvidia is
continually working to increase both the clock frequency and the band memory, two features that, theoretically,
are expected to increase the performance of LASSIE.

104 High-Performance Computing for the simulation of Reaction-Based Models

10 50 10
0

50
0

10
00

Samples

0.1

1

R
u
n
n
in
g
 t
im

e
 [
s]

128 Reactions x 128 Species
LASSIE

LSODA

10 50 10
0

50
0

10
00

Samples

0.1

1

10

R
u
n
n
in
g
 t
im

e
 [
s]

256 Reactions x 256 Species
LASSIE

LSODA

10 50 10
0

50
0

10
00

Samples

1

10

100

1000

R
u
n
n
in
g
 t
im

e
 [
s]

4096 Reactions x 4096 Species
LASSIE

LSODA

Fig. 4.7 Comparison between the average running time required by LASSIE (green bars) and
LSODA (red bars) to simulate 30 instances of models characterized by 128 reactions and
128 species (top), 256 reactions and 256 species (middle), 4096 reactions and 4096 species
(bottom), saving different numbers of sampling time instants of the dynamics. Note that the
y-axes are in logarithmic scale.

4.2 LASSIE 105

Table 4.3 Average running time (in seconds) of LASSIE required for the execution of a set of
30 synthetic RBMs of size M×N (with M ̸= N), considering 10, 50, 100, 500, 1000 samples
of the dynamics of all chemical species.

10 samples 50 samples 100 samples 500 samples 1000 samples
M×N LASSIE LASSIE LASSIE LASSIE LASSIE
171×512 0.589 0.623 0.662 0.900 1.149
512×171 1.032 1.062 1.087 1.318 1.540
341×1024 0.682 0.751 0.828 1.285 1.726
1024×341 1.119 1.179 1.220 1.597 1.895
512×1024 0.759 0.828 0.941 1.419 1.949
1024×512 1.053 1.112 1.192 1.624 1.999
683×2048 0.876 1.064 1.310 2.442 3.533
2048×683 1.389 1.512 1.664 2.406 3.029
1024×2048 1.002 1.201 1.508 2.858 3.889
2048×1024 1.317 1.444 1.613 2.614 3.281

Indeed, as reported in Table 4.3 and shown in Figure 4.8, when the number of chemical
species involved in a model is greater than the number of reactions, LASSIE achieves better
performance than those obtained in the case of models with a number of chemical species
smaller than the number of reactions. For instance, considering the models with M×N equal
to 171× 512, the running time of LASSIE is smaller than in the case of the models with
size 512×171, irrespective of the number of samples of the system dynamics, thanks to the
higher number of threads that are concurrently launched on the GPU in the first case.

This is in general valid in all cases with the exception of the models characterized by
2048 chemical species with 500 and 1000 samples of the system dynamics. Here, the average
running time of LASSIE is greater than in the case of models with 2048 reactions, since
the required number of accesses to the high-latency global memory of the GPU impairs the
performance of the simulations.

In order to assess the scalability of LASSIE, and of CUDA applications in general,
we executed additional tests on different GPUs. Figure 4.9 shows a comparison of the
performance of LASSIE using three different GPU models (described in Table 4.4): a
notebook video card (Nvidia GeForce 960M, red bars), the Nvidia GeForce GTX Titan
Z used for the previous tests (green bars), and a Tesla-class GPU (the Nvidia K20c, blue
bars). To compare the speed-up provided by these GPUs we generated 30 different synthetic
models (characterized by size M×N equal to 1024×1024, 2048×2048 and 4096×4096)
and calculated the average running time. Our results highlight the importance of two distinct
factors on the performance of LASSIE: the GPU clock frequency and the amount of available
resources (in this case, the cores). As a matter of fact, despite the lower amount of CUDA
cores, the GeForce 960M turns out to be competitive on models of moderately large size,
thanks to its higher clock rate, with respect to the Titan Z and the K20c. When the ODEs
largely outnumber the available cores (e.g., for 4096 reactions and chemical species), the

106 High-Performance Computing for the simulation of Reaction-Based Models

Model size

171x512512x171
341x102

4
1024x34

1
512x102

4
1024x51

2
683x204

8
2048x68

3
1024x20

48
2048x10

24

Sam
ple

s

10

50

100

500

1000

R
un

ni
ng

 ti
m
e
[s
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.589

1.032

0.682

1.119

0.759
1.053

0.876

1.389

1.002
1.317

0.623

1.062

0.751

1.179

0.828
1.112

1.064

1.512

1.201
1.444

0.662

1.087

0.828
1.22

0.941
1.192 1.31

1.664

1.508 1.613

0.9

1.318
1.285

1.597

1.419 1.624

2.442
2.406

2.858

2.6141.149

1.54 1.726 1.895 1.949 1.999

3.533

3.029

3.889

3.281

Fig. 4.8 Running time (z-axis) of LASSIE for the simulation of synthetic models of increas-
ing size, having a number of reactions and of species M ×N (x-axis), with M ̸= N, and
characterized by an increasing number of sampling time instants of the system dynamics
(y-axis).

GeForce 960M is no longer competitive. This is an example of transparent scalability
of CUDA applications: the threads are automatically distributed over the available cores,
improving the overall performance, without any user intervention. Moreover, as described
in Section 3.4.1, threads are organized in blocks that are scheduled on the available SMs.
Thanks to this characteristic, when the overall number of threads outnumbers the available
cores, CUDA automatically creates a queue of blocks that are scheduled on the SMs as soon
as they become available for computation. Thus, LASSIE can, in principle, simulate any
model on any GPU, as long as there is enough memory to store the data structures. The Tesla
K20c is characterized by a large amount of cores that, in the case of 1024×1024 models, are
fully exploited only during the simulation of the stiff parts of the dynamics. For the remaining
parts of the simulation, half of its cores are actually used for computation with a slower clock
rate with respect to the clock rate of the GeForce GPUs. Moreover, Tesla cards exploit the
Error Correcting Code (ECC) on memories, ensuring additional checks of correctness to
the data against potential corruption from electrical or magnetic interference, at the price of
a significant overhead [468]. The ECC was enabled during all tests, partly explaining the
reduced performance of the Tesla K20c on very large-scale models with respect to the Titan
Z.

4.2 LASSIE 107

Table 4.4 Nvidia GPUs used to assess the scalability of LASSIE.

GeForce GTX 960M GeForce GTX Titan Z Tesla K20c
Global memory 4 GB 6 GB 5 GB
Number of SMs 5 15 13

CUDA cores per SM 128 192 192
Total number of CUDA cores 640 2880 2496

Base clock 1.2 GHz 876 MHz 706 MHz

1024 × 1024 2048 × 2048 4096 × 4096

Model size

0

1

2

3

4

5

R
un

ni
ng

 ti
m

e
[s

]

960M
Titan Z
K20c

Fig. 4.9 Comparison of the average running times for the simulation of 30 synthetic models
characterized by three different sizes, executed with different GPUs: a notebook GPU Nvidia
GeForce 960M (red bars); a Nvidia GeForce GTX Titan Z (green bars); a Tesla-class GPU
Nvidia K20c (blue bars).

Finally, we assessed the accuracy of LASSIE by simulating the dynamics of the model of
the Ras/cAMP/PKA pathway in yeast (see Appendix A.5), and comparing the outcome of
LASSIE with the result of the simulation performed with LSODA. We also investigated the
influence of LASSIE parameters (e.g., tolerance values) on the running times and quality of
the simulated dynamics by exploiting a model representing a chain of isomerizations.

The simulation accuracy was tested by comparing the dynamics of four pivotal molecular
species involved in the RBM of Ras/cAMP/PKA pathway [75], which consists in 34 reactions
among 30 molecular species and is characterized by stiffness. Figure 4.10 shows that the

108 High-Performance Computing for the simulation of Reaction-Based Models

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 100 200 300 400 500 600 700

M
o

le
c
u

la
r

a
m

o
u

n
t

Time [a.u.]

LASSIE Ras2:GTP
LASSIE cAMP

LSODA Ras2:GTP
LSODA cAMP

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700

M
o

le
c
u

la
r

a
m

o
u

n
t

Time [a.u.]

LASSIE PKA
LASSIE Pde1
LSODA PKA

LSODA Pde1

Fig. 4.10 Comparison of the dynamics of the molecular species Ras2:GTP and cAMP (top),
PKA and Pde1 (bottom) of the model of the Ras/cAMP/PKA signaling pathway in yeast,
obtained by running LASSIE (solid lines) and LSODA (dots).

dynamics of species Ras2:GTP and cAMP (top), PKA and Pde1 (bottom) perfectly overlap,
proving the accuracy of LASSIE.

To assess the robustness of the parameterization of LASSIE (e.g., tolerance values set
in all results presented above), we performed an additional batch of tests by changing one

4.2 LASSIE 109

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

M
o

le
c
u

la
r

c
o

n
c
e

n
tr

a
ti
o

n

Time [a.u.]

εj = 10
-6

εj = 10
-12

εj = 10
-18

LSODA

Fig. 4.11 Comparison of the dynamics of species S1 of the chain of isomerizations model
obtained with LSODA (dots) and using different values of the tolerance ε j of RKF method
exploited by LASSIE (solid lines).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1e-18

1e-12

1e-6

R
u

n
n

in
g

 t
im

e
 [

s
]

εj value

Fig. 4.12 Running time required by LASSIE for the simulation of the chain of isomerizations
model using different values of the RKF method tolerance ε j.

110 High-Performance Computing for the simulation of Reaction-Based Models

parameter at a time, and measuring the effect of the corresponding perturbations on the
quality of the output dynamics and on the running time. For the execution of these tests,
we considered a model characterized by stiffness, representing a chain of isomerizations in
which a chemical species Si (where i = 1, . . . ,N −1) undergoes a cascade of modifications:
Si −→ Si+1. To be more precise, this model consists in 31 reactions among 32 chemical
species, where the kinetic constant of each reaction is set to 0.1, and the initial concentration
of species S1 is equal to 1 (the initial concentration of all other species is equal to 0). The
variation of the tolerance value of the Newton–Raphson method, as well as the tolerance
value used to switch between RKF and Backward EM, have no relevant effect on the quality
of the output dynamics and on the running time of LASSIE. On the contrary, the variation
of the tolerance value of RKF method, which is generally set as default to ε j = 10−12, can
have a substantial effect on the output dynamics of LASSIE, as shown in Figure 4.11. Taking
into account the chain of isomerizations model, the dynamics is correctly reproduced in the
case of ε j = 10−12 and ε j = 10−18, while in the case of ε j = 10−6, the dynamics does not
overlap the simulation outcome obtained by running LSODA. In addition, as the value of
ε j decreases, the running time of LASSIE increases, as shown in Figure 4.12. However,
considering that a value of ε j = 10−12 is sufficient to ensure a correct replication of the model
dynamics, it is unnecessary to further reduce this tolerance value.

4.2.3 Conclusion

LASSIE is a fully automatic simulator in which the system of ODEs corresponding to an
RBM is automatically determined according to the mass-action kinetics, making LASSIE
usable without any prior knowledge about ODE modeling and integration. The mass-action
law allows for obtaining a first order ODE for each species appearing in the model: it is
worth noting that this ODE is a polynomial function that describes how the concentration
of that species changes in time, according to all the reactions where it appears either as
reactant or product [455]. The presence of polynomial functions simplifies the symbolic
derivation that is needed to calculate the Jacobian matrix associated with the system of ODEs
and exploited by implicit integration methods. In addition, polynomials can be efficiently
encoded in the memory and parsed GPU-side. As a result, all GPU threads can perform the
same task (i.e., polynomial decoding and evaluation), strongly reducing the warp divergence
and the consequent stalling of threads due to serialization, a circumstance that would instead
happen if each thread calculated an ODE characterized by an arbitrary kinetics.

In order to assess the computational performance of LASSIE, we performed a set of
simulation tests using synthetic RBMs of increasing size, and we compared LASSIE running
time with respect to the LSODA ODE solver running on CPU. Despite the improvement

4.2 LASSIE 111

of efficiency granted by LSODA, the numerical integration of the system of ODEs can
become excessively burdensome when the numbers of reactions and molecular species
increase. LASSIE overcomes this limitation by distributing over thousands of GPU cores all
the calculations required by the numerical integration methods it embeds, therefore paving
the way for fast simulations of large-scale and stiff models of cellular processes. LASSIE
execution flow was partitioned into 25 CUDA kernels, overall distributing the calculations
over the available cores in order to fully exploit the massive parallel capabilities of modern
GPUs, therefore achieving a relevant reduction of the running time in case of large-scale
models. One interesting feature of GPUs is that they can have different characteristics, both
in terms of resources (e.g., amount of high performance memories, number of cores) and
computing power (e.g., clock rate). For instance, kernel performance transparently scale on
different GPUs, since they automatically leverage the additional resources offered by the
latest architectures, a characteristic known as transparent scalability. We assessed this feature
testing LASSIE on different GPUs and showing how the number of available SMs effect the
performance. Indeed, the higher the number of available SMs, the lower the required running
time.

As a final remark, we highlight that a fair comparison of GPUs and CPUs is a difficult
task, in general, due to their deep architectural differences. The theoretical peak performance
of both architectures are difficult to achieve: indeed, developers must implement code to
the aim of maximizing the parallelism and the occupancy of the multi-processors, adhering
as much as possible to the underlying SIMD computational model in the case of the GPU
and exploiting vector instructions in the case of the CPU. However, as explained in Section
3.4.1, GPUs allow for the temporary divergence of the execution flow of threads. When
this situation occurs, some threads get stalled waiting for reconvergence. This mechanism
provides the programmer with a certain degree of freedom to abandon the SIMD paradigm,
but at the same time it can potentially lead to the complete serialization of the execution
affecting the overall performance. We also highlight that the usage of registers and shared
memory influences the occupancy of the GPU, as these resources are scarce on each SM.
All these circumstances can prevent the achievement of the peak computational power of a
GPU. To this aim, we developed kernels that maximize the parallelism and the occupancy
of the SMs avoiding threads divergence as much as possible. Moreover, we optimized data
structures to store the matrices A and H that encode the system of ODEs, and CUDA vector
types that allow us to increase the memory throughput and to reduce the number of memory
accesses, all precautions that explain the performance boost achieved with LASSIE.

112 High-Performance Computing for the simulation of Reaction-Based Models

4.3 FiCoS

In the previous section we discussed LASSIE, the first fine-grained deterministic simulator in
literature. In order to fully exploit the parallelism provided by modern GPU, here we present
FiCoS, an efficient deterministic simulator accelerated on GPU by exploiting both the fine-
and coarse-grained parallelization strategies: the former is used to distribute the calculations
required by every ODE over multiple GPU cores, while the latter is exploited to perform
a massive number of simulations in a parallel fashion. As shown in Figure 4.1, FiCoS
is the first deterministic simulator that takes advantage of both parallelization strategies,
filling the gap in the combined fine- and coarse-grained deterministic simulation. Regarding
the fine-grained strategy, FiCoS takes inspiration from LASSIE, but at the same time it is
based on more efficient numerical integration methods, which allow for strongly reducing
the computational effort required by deterministic simulations. As in Variable-coefficient
ODE solver (VODE) [53] (see Section 1.2.1), FiCoS exploits an heuristic to determine if
the system is stiff and which integration method is the most appropriate. It implements two
integration methods belonging to the Runge-Kutta family: (i) the Dormand–Prince (DOPRI)
method [116, 115, 176] for stiffness-free systems; (ii) the Radau IIA method [177, 178] when
the system is stiff. To be more precise, we used DOPRI5 and RADAU5, which are explicit
and implicit adaptive Runge-Kutta methods of order 5, respectively, capable of varying the
integration step-size during the resolution of the system of ODEs (see Section 1.2.1).

In order to compare the computational performance of FiCoS against CPU-based (i.e.,
LSODA [341] and VODE [53]) and GPU-based (i.e., cupSODA [306] and LASSIE) ODE
solvers, we carried out different batches of simulations using (i) a set of symmetric synthetic
models of increasing size, ranging from 64 to 800 species and reactions, to evaluate the im-
pact of the models size on the computational performance; (ii) a set of asymmetric synthetic
models of increasing size, ranging from 21 species (64 reactions) to 267 species (800 reac-
tions) and viceversa, to evaluate in which way the number of species and reactions affects the
performance of the GPU-powered simulators; (iii) a real model of the Autophagy/Translation
switch based on the mutual inhibition of MTORC1 and ULK1 [422], characterized by 173
molecular species and 6581 reactions.

For each synthetic model, we performed an increasing number of parallel simulations
(up to 2048) and calculated both the integration time and the overall simulation time. The
integration time indicates the running time spent by the numerical integration algorithms to
solve the system of ODEs, while the simulation time is the overall running time required
to perform a simulation, including the I/O operations (i.e., reading and writing operations).
In the case of multiple simulations, both the integration time and the simulation time were
calculated by summing up the integration time and the simulation time required by each

4.3 FiCoS 113

simulation. As a case study, we then performed a bidimensional Parameter Sweep Analysis
[11, 85] (PSA-2D) varying two parameters of the Autophagy/Translation model to identify
the initial conditions and reaction rates that allow for obtaining an oscillatory regime of the
dynamics. In this case FiCoS was able to perform 36864 simulations in 24 hours, while
LSODA and VODE completed only 2090 and 1363 simulations, respectively, in the same
time. This result shows that FiCoS can be effectively coupled with the computational meth-
ods used to calibrate mathematical models of complex (large-scale) biochemical networks.
Considering the achieved results, FiCoS was also exploited to perform an in-depth analysis
of an RBM describing the Treg-Teff cross regulation in relapsing-remitting multiple sclerosis
[31].

4.3.1 GPU implementation

As a first step, starting from the RBM given as input, FiCoS automatically generates the
system of ODEs, according to Equation 1.4, and encodes both the matrices H = (B−A)T

and A as two arrays of short2 CUDA vector type, named Hv and Av, respectively. Note that
we exploited the short2 CUDA vector type because it is 4-aligned in the memory, meaning
that a single instruction to fetch a whole entry is required. We used these data structures
to compress and store the matrices A and H, which are highly sparse, removing all zero
elements to save memory, and at the same time avoiding unnecessary readings from the
global memory of the GPU. The following strategy is applied to generate the CUDA vector
type Hv and Av:

• for each non-zero element h ji of H, with i = 1, . . . ,M and j = 1, . . . ,N, we stored
into the .x and .y components of Hv the values i and h ji, respectively. Notice that N
corresponds to the number of species, while M corresponds to the number of reactions
in the RBM;

• for each non-zero element ai j of A, with i = 1, . . . ,M and j = 1, . . . ,N, we stored into
the .x and .y components of Av the values j and ai j, respectively.

Besides these two data structures, we use two additional arrays of int, named OH and OA, to
parse Hv and Av inside the GPU. OH and OA store the offsets to correctly fetch the entries of
Hv and Av, respectively. Each thread j, with j = 0, . . . ,N −1, reads the j and j+1 elements
of OH, whose values indicate the first index and the last index (minus 1) to access the Hv

structure. Similarly, OA stores the indeces that allow the threads to correctly decode the
Av structure. Finally, an array K of type double is used to store the values of the kinetic
constants. An example of these data structures and their decoding is depicted in Figure

114 High-Performance Computing for the simulation of Reaction-Based Models

dX1/dt = - k1(x1)
1 + k2(x2)

1(x3)
1

0
OH

2 . . .

K
k1 k2

0 -1

11

 .x .y

.

.

.
Hv

1 1

12

 .x .y

.

.

.

-

thread0 thread1

. . .

. . .
0 1 . . .3

13

threadN-1

kM

OA

Av

Fig. 4.13 Example of matrix encoding to automatically generate an ODE using FiCoS.

4.13, where the monomials composing the polynomial function that describes the ODE of
the species x1, at the top of the figure, are encoded in OH, OA, Hv, Av and K. The ODE
is automatically generated by using the data structure components with solid borders; the
colors used to highlight the terms composing the ODE are also used in the data structure
components. Each thread j, with j = 0, . . . ,N − 1, reads the j and j+ 1 elements of OH

(denoted by the lightblue borders). Each thread j fetches the values stored in Hv, starting
from the row indicated by the value of the element j of OH up to the row indicated by the
value (minus 1, since this value is used as starting point for the thread j+1) of the element
j + 1 of OH. In this example, thread 0 reads the .x and .y components of the first two
rows (i.e., rows 0 and 1) of Hv. The .x component of each row of Hv (denoted by dark
yellow) indicates both the position of the vector K—which contains the values of the kinetic
constants—and the first index of OA where each thread j must read; the .y component (red
borders) codifies both the sign and coefficient of the monomial. In this example, the .x
and .y components of Hv codify the coefficients −1k1 and +1k2 of the first and the second
term of the ODE, respectively. Afterwards, each thread j fetches the values encoded in OA

starting from the value stored in the position indicated by the index previously read up to
value (minus 1) stored in the next position. The values stored in the .x (purple, magenta

4.3 FiCoS 115

and orange borders) components of Av are the indices of the species, while the .y (blue,
dark green and dark red borders) components codify the stoichiometric coefficients. In this
example, the row 0 of Av contains the factor (x1)

1, while the rows 1 and 2 allow the thread
0 to generate the factor (x2)

1(x3)
1. By so doing, the thread 0 is capable of reproducing the

polynomial composing the ODE: −k1(x1)
1 + k2(x2)

1(x3)
1.

Once the data structures encoding the system of ODEs are generated, FiCoS solves
the systems of ODEs by means of the DOPRI5 method [116, 115, 176] in the absence of
stiffness or the RADAU5 method [177, 178] when the system is stiff. We point out that our
implementation was inspired by the source code of Blake Ashby, who ported the original
Fortran code of Hairer and Wanner [177, 176] to C++.

Starting from an initial time instant t0, the system of ODEs is integrated up to a given
maximum simulation time tmax. The dynamics of the species are sampled and saved at
specified time steps within the interval [t0, tmax] (these time steps should generally correspond
to the sampling times of laboratory experiments).

The workflow of FiCoS can be summarized in 5 distinct phases, as depicted in Figure
4.14. Note that only phases P1 and P5 are executed by the host (light orange boxes in
Figure 4.14), while the others are executed by the device (light green boxes in Figure 4.14).
Phases P2, P3 and P4 correspond to three different kernels (K1, K2, and K3) developed to take
advantage of the coarse-grained parallelization strategy. Moreover, these phases invoke other
lightweight kernels, which were developed to fully leverage the parallel architecture of the
modern GPU exploiting the dynamic parallelism [321] as fine-grained parallelization strategy
for the implementation of the aforementioned numerical integration methods. By exploiting
the dynamic parallelism, each thread belonging to the grid called by the host (named parent
grid) can launch a novel grid (named child grid) composed of several threads. All child grids
that are executed by the threads of the parent grid can be synchronized so that the parent
threads can consume the output produced from the child threads without the involvement of
the CPU.

We describe hereafter each phase with its CUDA kernels to explain our novel paral-
lelization strategy that allowed FiCoS to achieve the relevant speed-up shown in Section
4.3.2.

Phase P1. This phase is executed by the host and implements the generation of the data
structures encoding the system of ODEs, as discussed above.

Phase P2. This phase implements the estimation of the dominant eigenvalue ρ of the
Jacobian matrix J by means of the norm bound of J itself. As norm bound we used the

116 High-Performance Computing for the simulation of Reaction-Based Models

so-called maximum absolute row sum norm, defined as:

∥J∥
∞
= max

1≤i≤M

N

∑
j=1

∣∣Ji j
∣∣ . (4.1)

Note that the dominant eigenvalue ρ is equal to the spectral radius, which is defined as the
largest absolute value of the eigenvalues of J. Since the value ρ strictly depends on both
the initial concentrations and the kinetic parameter values, ρ is calculated for each parallel
simulation φ , with φ = 0, . . . ,Φ−1, which must be performed. This phase is implemented
using 2 different CUDA kernels:

• kernel K1: each thread φ , with φ = 0, . . . ,Φ− 1, invokes the kernel K1a to evaluate
the Jacobian matrix J using the φ -th parameterization and the φ -th set of initial
concentrations as state of the system xφ . As soon as J is calculated, the thread φ

applies the Equation 4.1 to estimate the dominant eigenvalue ρ associated to the φ -th
parameterization and the φ -th set of initial concentrations;

• kernel K1a: each thread j, with j = 0, . . . ,N −1, calculates the values of the j-th row
of J using the state of the system xφ and the parameterization given as input.

Note that each thread φ , with φ = 0, . . . ,Φ−1, exploits the dynamic parallelism to call the
kernel K1a launching a new grid of threads.

Phase P3. It implements the DOPRI5 method [116, 115, 176], an explicit Runge-Kutta
integration algorithm of order 5 with variable step-size and stiffness control, used by the
threads whose dominant eigenvalue ρ is less than ερ to solve the system of ODEs. As a matter
of fact, the Φ threads are partitioned in two different sets: the former (LDOPRI) contains
the threads whose dominant eigenvalue ρ is less than ερ ; the latter (LRADAU) contains the
remaining threads. By simulating both synthetic and real RBMs, including some models
that are characterized by stiffness (e.g., the Ras/cAMP/PKA signal transduction pathway in
yeast, see Appendix A.5 for further details), we found an empirical value of ερ equal to 500.
Since this phase is performed before the phase that implements the RADAU5 method, if the
DOPRI5 method fails in solving the system of ODEs characterized by some parameterization
and set of initial concentrations φ (e.g., the system of ODEs is stiff), the φ -th thread is put in
LRADAU along with the threads related to the simulations characterized by ερ > 500.

The DOPRI5 method relies on the following 12 kernels:

• kernel K2: it is the main kernel implementing the DOPRI5 method. It is executed by
each thread d ∈ LDOPRI , which uses its own parameterization as well as its own set of
initial concentrations;

4.3 FiCoS 117

start

[yes]

[no]

Phase P1:
Generation of ODEs data

structures

Phase P2:
Estimation of the dominant

eigenvalue ⍴

Is ⍴ < 500?

GPU

CPU

Phase P3:
DOPRI method

Phase P4:
Radau IIA methodDoes DOPRI

fail?
[yes]

Phase P5:
Save dynamics

[no]

end

Fig. 4.14 Simplified scheme of the workflow of FiCoS. During phase P1 all the data structures
used to encode the system of ODEs are generated. In phase P2 each thread φ , with φ =
0, . . .Φ−1, estimates the dominant eigenvalue ρ related to the simulation φ , using the φ -th
parameterization and the φ -th set of initial concentrations. All threads whose dominant
eigenvalue ρ is less than 500 are added in the set LDOPRI , which contains the threads that
use DOPRI5 as integration algorithm (phase P3). If some simulations using DOPRI5 fail,
those threads are added to the set LRADAU , which contains the threads that use RADAU5 as
integration algorithm (phase P4). As soon as the phases P3 and P4 are completed, the output
data (i.e., the concentration values of the molecular species sampled at fixed time instants)
are transferred to the host that writes them to output files (phase P5).

• kernel K2a : each thread j, with j = 0, . . . ,N−1, evaluates the j-th ODE using the state
of the system xd and the parameterization given as inputs;

• kernel K2b: it exploits N threads to update the vectors used to calculate the initial
step-size of the DOPRI5 method;

118 High-Performance Computing for the simulation of Reaction-Based Models

• kernels K2c – K2i: each kernel uses N threads to update the vectors required by the
DOPRI5 method to estimate the next step-size, using the Butcher tableau shown in
Table 1.5;

• kernels K2 j and K2k : in each kernel, N threads are used to update the vectors involved
in the spline approximation of the ODEs.

It is worth noting that each thread d ∈ LDOPRI exploits the dynamic parallelism to call the
kernels K2a – K2k , launching a novel grid of threads. Since data transfers between the CPU
and the GPU are very time consuming, all the temporary results computed by FiCoS during
this phase are stored on the global memory of the GPU.

Phase P4. This phase implements the RADAU5 method [177, 178], an implicit Runge-
Kutta integration algorithm of order 5 with variable step-size. It is executed after the phase
P3 since some threads running that phase can fail. The RADAU5 method is based on the
following 22 kernels:

• kernel K3: it is the main kernel implementing the RADAU5 method. It is executed by
each thread r ∈ LRADAU , which uses its own parameterization as well as its own set of
initial concentrations;

• kernel K1a: each thread j, with j = 0, . . . ,N −1, calculates the values of the j-th row
of J using the state of the system xr and the parameterization given as inputs;

• kernel K2a : each thread j, with j = 0, . . . ,N−1, evaluates the j-th ODE using the state
of the system xr and the parameterization given as inputs;

• kernel K3a : it uses N threads to reinitialize the vectors involved in the Newton-Raphson
method [35], which is exploited to solve the non-linear systems (see Section 1.2.1);

• kernels K3b and K3c : each kernel takes advantage of N threads to update the matrices—
which are linearized—used during the linear system resolutions required by the
RADAU5 method;

• kernels K3d and K3l : in each kernel, N threads are used to update the vectors used
before and after the linear system resolutions required by RADAU5 method, relying
on the Butcher tableau given in Table 1.6;

• kernels K3m and K3o: these 3 kernels are used during the error estimation phase in
which the new step-size is computed. Also in this case, each kernel takes advantage of

4.3 FiCoS 119

N threads to update the vectors required to calculate the new step-size based on the
estimated error;

• kernels K3p and K3s : in each kernel, N threads are used to update the vectors involved
in the spline approximation of the ODEs.

We highlight that both the matrix decompositions and the linear system resolutions were
implemented exploiting the cuBLAS library [315]. Note that each thread r ∈ LRADAU takes
advantage of the dynamic parallelism to call the kernels K1a , K2a , K3a – K3s , launching novel
grids of threads. Since data transfers between the CPU and the GPU are very time consuming,
all the temporary results computed by FiCoS during this phase are stored on the global
memory of the GPU.

Phase P5. During this phase, for each simulation the dynamics of the species to be sampled
are written in output files. These output data (i.e., the concentration values of molecular
species sampled at fixed time instants) are transferred to the host as soon as the phases P3

and P4 are completed.

4.3.2 Results

In this section the computational performance of FiCoS are compared against LSODA,
VODE, cupSODA, and LASSIE. We leveraged the LSODA and VODE methods provided
by the SciPy scientific library (version 0.18.1) [219]; we used Python (version 2.7.12) and
the NumPy library (version 1.11.2). All tests that follow were performed on a workstation
equipped with an Intel Core i7-2600 CPU (clock 3.4 GHz) and 8 GB of RAM, running on
Ubuntu 16.04 LTS. The GPU used in the tests was an Nvidia GeForce GTX Titan X (3072
cores, clock 1.075 GHz, RAM 12 GB), CUDA toolkit version 8 (driver 387.26). All the
simulations were executed by using the following settings for FiCoS, LSODA, VODE, and
cupSODA: (i) absolute tolerance εa = 10−12; (ii) relative tolerance εr = 10−6; (iii) maximum
number of allowed steps equal to 104. These values correspond to the most used values in
literature and by the main computational tools (e.g., COPASI [202]). LASSIE was run using
the default settings. We highlight that in every simulation we stored the dynamics of all the
species appearing in the tested RBMs.

The performance of FiCoS as a fine- and coarse-grained simulator was evaluated using
two sets of synthetic models of increasing size, generated by SMGen (Section 4.1) in order
to satisfy the following characteristics:

• a log-uniform distribution in the interval [10−4,1) was applied to sample the initial
concentrations of the molecular species;

120 High-Performance Computing for the simulation of Reaction-Based Models

• a log-uniform distribution in the interval [10−6,10] was used to sample the values of
the kinetic constants;

• the stoichiometric matrix A was generated allowing only zero, first and second-order re-
actions (i.e., maxord = 2), meaning that in each reaction at most two reactant molecules
of the same or different species can appear;

• the stoichiometric matrix B is created allowing at most 2 product molecules for each
reaction (i.e., maxprod = 2).

A log-uniform distribution (i.e., a uniform distribution in the logarithmic space) was used to
sample both the initial conditions and the kinetic constants to capture the typical dispersion
of both the concentrations and kinetic parameters, which generally span over multiple orders
of magnitude [485, 73].

For each synthetically generated RBM, the initial value of the kinetic parameters was
perturbed to generate different parameterizations (up to 2048). For each kinetic parameter ki,
with i = 1, . . . ,M, we applied the following perturbation:

ki = exp(ln(ki −0.25 · ki)+(ln(ki +0.25 · ki)− ln(ki −0.25 · ki)) · rnd), (4.2)

where rnd is a random number sampled with the uniform distribution in [0,1).
In addition to the synthetic RBMs, FiCoS was applied to carry out an in-depth investi-

gation of the Autophagy/Translation Switch Based on Mutual Inhibition of MTORC1 and
ULK1 model [422], as an interesting case study of a real large-scale biological system.

4.3.3 Computational performance

By using the two sets of synthetic RBMs, we performed a thorough analysis to understand
which integration method is the most suitable under different conditions (i.e., number of
species and number of reactions). We investigated how the relationship between the number
of reactions and the number of species affects the overall performances of the GPU-powered
simulators. As already stated for LASSIE in Section 4.2, since each ODE corresponds to a
different species, the higher the number of the species the higher the parallelization that can
be achieved by exploiting the fine-grained strategy. On the contrary, the number of reactions
is roughly related to the length of each ODE, thus increasing the number of operations that
must be performed by each thread. Since the clock frequency of the GPUs cores is lower
with respect to the CPUs ones, the required time to perform a single instruction on a GPU is
higher. Thus, the performance that can be achieved by means of GPU-powered simulators
decreases when the number of reactions is much larger than the number of species.

4.3 FiCoS 121

Symmetric models. Figure 4.15 depicts the map representing the comparison of the
achieved results considering the symmetric RBMs. According to our results, FiCoS provides
a relevant reduction of the simulation time, achieving a 360× speed-up against LSODA
(Figure 4.16a), and a 487× speed-up against VODE (Figure 4.17a) in the case of 2048 paral-
lel simulations of the 800×800 model. This is the highest speed-up achieved with respect
to VODE, while against LSODA the maximum speed-up (366×) was reached considering
1024 parallel simulations of the 800×800 model. For bigger models, the speed-up could be
even higher with respect to CPU-bound execution; however, we did not perform tests using
bigger models due to the excessive memory requirements afflicting both LSODA and VODE
implementations.

Since FiCoS was designed to perform both fine- and coarse-grained parallelization
strategies, the intra-GPU communication overhead—due to the fine-grain kernels—causes
the simulation to become inefficient in the case of small size models. Moreover, as expected,
the performance of FiCoS can be affected when only a few parallel simulations are executed.
For instance, in the case of a single simulation of a model smaller than or equal to 256×256,
FiCoS is slower than both LSODA (Figure 4.16a) and VODE (Figure 4.17a). Thus, whilst for
a single simulation of a small/medium model a CPU-bound simulation should be preferred,
in any other case FiCoS is highly beneficial. Moreover, the coarse-grained performance can
be affected by the saturation of the computing resources due to excessive parallelization. The
computing resources required by the fine-grained kernels, which are exploited to parallelize
the resolution of the system of ODEs, increase along with the model size. As a matter of fact,
the blocks of threads generated using the dynamic parallelism saturate the GPU resources,
thus decreasing the speed-up. In our tests, this phenomenon occurred for models larger than
512 species and reactions, in the case of 2048 parallel simulations.

We now restrict the analyses to the actual integration time. Notice that these tests exclude
from the analyses the portion of the running time due to reading/writing operations of the
input/output files. According to our tests, the speed-up achieved by the integration method
implemented in FiCoS is smaller than the overall acceleration of the simulation time in the
case of LSODA. Specifically, the highest speed-up is 79× with respect to LSODA integration,
and 855× with respect to VODE (see Figs. 4.16b and 4.17b, respectively). The patterns in
the results, however, are consistent with the previous findings: FiCoS becomes less effective
in scarcity of resources, e.g., when more than 2000 parallel simulations are executed. These
results show that the integration method used in FiCoS are very effective and efficient.

We evaluated the performance of FiCoS also against LASSIE: as shown in Figure 4.18a,
LASSIE is faster than FiCoS in the case of a single simulation (except when 512 species
and reactions are considered). Regarding the integration time, FiCoS always outperformed

122 High-Performance Computing for the simulation of Reaction-Based Models

64x64 128x128 256x256 512x512 640x640 800x800
Model size

1

32

64

128

256

512

1024

2048

Nu
m

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

LSODA

cupSODA

cupSODA

cupSODA

FiCoS

FiCoS

FiCoS

FiCoS

VODE

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

LSODA

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

LASSIE

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

LASSIE

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

Fig. 4.15 Comparison map representing the best method in terms of simulation time in the
case of symmetric models. The simulation time was analyzed for the increasing size of the
models (horizontal axis) and number of parallel simulations (vertical axis).

LASSIE achieving a maximum speed-up equal to 5.57× (Fig. 4.18a). Considering more than
a simulation, FiCoS resulted always faster than LASSIE, with the highest speed-up achieved
in the case of 2048 simulations of the model characterized by 64 species and reactions. In
such a case, the simulation time of FiCoS is 298× slower than that required by LASSIE (Fig.
4.18a), while the integration time is 760× slower (Fig. 4.18b).

In order to evaluate the coarse-grained performance of FiCoS, we tested it against
cupSODA. Since cupSODA was designed for small models, it resulted faster than FiCoS
in the case of a single simulation when less than 512 species and reactions are taken into
account (see Fig. 4.19a). In the case of the smallest model (i.e., 64 species and reactions),
FiCoS is more efficient only considering more than 128 simulations. In the remaining cases,
FiCoS turns out to be the natural choice achieving a speed-up up to 7.35×. Regarding the
integration time, FiCoS always outperformed cupSODA, reaching the maximum speed-up
(17×) in the case of 128 simulations of the model characterized by 800 species and reactions
(see Fig. 4.19b). Notice that, due to the required amount of memory, cupSODA failed to
perform 2048 simulations of the models with 640 and 800 species and reactions.

To summarize, in the case of a single simulation, LSODA and VODE are the best choice
when dealing with models characterized by a number of species and reactions lower than
512×512, which represents the break-even point among CPU- and GPU-based simulators.

4.3 FiCoS 123

64
x6

4

12
8x

12
8

25
6x

25
6

51
2x

51
2

64
0x

64
0

80
0x

80
0

Model size

1

32

64

128

256

512

1024

2048

N
um

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

 0.03 0.29 0.62 2.07 3.03 3.72

 1.45 4.42 11.68 38.62 51.78 79.20

 3.24 7.68 23.44 73.76 94.31 136.70

 6.15 15.04 42.46 121.46 156.66 213.32

13.09 27.56 71.49 183.73 244.78 286.14

19.93 38.26 95.68 218.71 318.13 334.59

31.88 58.32 85.78 291.33 366.04 360.05

42.95 47.19 116.32 234.96 314.83 314.09

a) Simulation

64
x6

4

12
8x

12
8

25
6x

25
6

51
2x

51
2

64
0x

64
0

80
0x

80
0

Model size

1

32

64

128

256

512

1024

2048

 0.24 1.06 0.61 0.64 0.70 0.65

 1.27 1.95 2.44 4.74 4.79 5.65

 2.62 4.06 4.88 9.53 9.02 11.16

 5.18 7.74 9.63 18.22 17.17 21.01

10.05 15.28 18.72 32.43 32.63 39.30

18.89 28.41 35.02 57.06 53.53 57.63

32.81 48.02 57.63 79.72 76.08 72.73

41.76 61.55 67.46 50.88 46.56 35.29

b) Integration

15

30

45

60

75

80

160

240

320

Fig. 4.16 Speed-up provided by FiCoS with respect to LSODA considering the symmetric
models. The speed-up is analyzed for an increasing size of the model (horizontal axis) and
number of parallel simulations (vertical axis). Panel a) shows the speed-up regarding the
whole simulation, while panel b) considers only the numerical integration.

64
x6

4

12
8x

12
8

25
6x

25
6

51
2x

51
2

64
0x

64
0

80
0x

80
0

Model size

1

32

64

128

256

512

1024

2048

N
um

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

 0.07 0.28 0.79 2.63 4.30 5.95

 1.33 4.53 12.77 48.29 67.52 107.66

 3.10 7.86 25.96 88.34 122.57 184.41

 6.15 15.35 46.98 152.62 204.66 286.84

12.79 28.14 78.86 223.75 318.18 389.49

19.14 38.98 104.96 271.61 410.85 450.70

30.90 59.73 95.27 362.67 473.32 487.58

42.32 47.89 127.91 290.52 409.14 420.41

a) Simulation

64
x6

4

12
8x

12
8

25
6x

25
6

51
2x

51
2

64
0x

64
0

80
0x

80
0

Model size

1

32

64

128

256

512

1024

2048

 0.84 0.73 1.28 3.87 5.24 8.27

 1.00 2.39 5.73 27.72 41.06 63.96

 2.20 4.76 11.93 52.50 78.79 127.34

 4.52 9.12 23.51 105.31 149.54 243.90

 8.49 17.84 44.71 185.08 282.44 457.31

16.04 33.39 82.46 329.33 462.75 664.46

28.33 56.68 140.75 463.67 655.12 855.32

35.74 72.02 162.04 292.90 402.81 400.45

b) Integration

150

300

450

600

750

100

200

300

400

Fig. 4.17 Speed-up provided by FiCoS with respect to VODE considering the symmetric
models. The speed-up is analyzed for an increasing size of the model (horizontal axis) and
number of parallel simulations (vertical axis). Panel a) shows the speed-up regarding the
whole simulation, while panel b) considers only the numerical integration.

124 High-Performance Computing for the simulation of Reaction-Based Models

64
x6

4

12
8x

12
8

25
6x

25
6

51
2x

51
2

64
0x

64
0

80
0x

80
0

Model size

1

32

64

128

256

512

1024

2048

N
um

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

 0.31 0.55 0.70 1.13 0.93 0.66

12.04 10.35 13.29 20.57 13.77 16.24

24.02 17.72 25.88 37.46 25.62 27.47

45.99 34.78 47.29 63.06 43.02 43.23

86.90 63.52 78.63 94.64 66.46 58.65

145.82 87.65 105.85 114.55 87.00 68.80

233.17 134.46 94.77 152.84 99.42 73.22

298.43 108.75 128.85 120.97 85.74 64.14

a) Simulation

64
x6

4

12
8x

12
8

25
6x

25
6

51
2x

51
2

64
0x

64
0

80
0x

80
0

Model size

1

32

64

128

256

512

1024

2048

 4.73 4.48 5.27 5.57 3.37 2.32

24.78 12.66 22.86 38.01 21.28 25.18

47.90 26.91 43.08 72.33 42.35 47.51

93.75 47.98 86.76 139.17 80.73 92.19

182.06 93.36 165.14 252.03 152.03 172.60

342.64 176.43 311.96 444.94 253.69 254.82

596.21 293.45 517.92 626.53 356.35 320.17

760.28 375.73 607.20 392.87 218.48 153.81

b) Integration

150

300

450

600

750

50

100

150

200

250

Fig. 4.18 Speed-up provided by FiCoS with respect to LASSIE considering the symmetric
models. The speed-up is analyzed for an increasing size of the model (horizontal axis) and
number of parallel simulations (vertical axis). Panel a) shows the speed-up regarding the
whole simulation, while panel b) considers only the numerical integration.

64
x6

4

12
8x

12
8

25
6x

25
6

51
2x

51
2

64
0x

64
0

80
0x

80
0

Model size

1

32

64

128

256

512

1024

2048

N
um

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

 0.38 0.55 0.95 1.90 2.37 2.54

 0.50 1.43 2.23 5.40 5.78 7.35

 0.58 1.73 2.68 5.55 6.01 7.35

 0.85 1.69 2.61 5.04 5.73 6.66

 1.06 2.28 2.67 4.49 5.19 5.11

 1.05 1.75 2.22 3.51 4.04 3.93

 1.24 1.89 1.43 3.03 3.28 3.08

 1.93 1.36 1.81 3.80 NA NA

a) Simulation

64
x6

4

12
8x

12
8

25
6x

25
6

51
2x

51
2

64
0x

64
0

80
0x

80
0

Model size

1

32

64

128

256

512

1024

2048

 3.33 7.83 9.58 10.10 9.58 9.88

 1.76 4.18 5.88 12.09 12.08 14.69

 2.01 5.88 6.79 12.97 13.14 16.18

 2.17 5.36 6.68 12.64 13.73 17.13

 2.22 7.30 7.07 12.35 13.71 16.88

 2.26 5.67 6.92 11.43 11.85 13.19

 2.00 6.14 6.25 9.19 9.85 11.35

 1.32 6.11 4.30 11.62 NA NA

b) Integration

0

3

6

9

12

15

0.0

1.5

3.0

4.5

6.0

Fig. 4.19 speed-up provided by FiCoS with respect to cupSODA considering the symmetric
models. The speed-up is analyzed for an increasing size of the model (horizontal axis) and
number of parallel simulations (vertical axis). Panel a) shows the speed-up regarding the
whole simulation, while panel b) considers only the numerical integration. The NA values
indicate that cupSODA failed to perform the simulations due to the required amount of
memory.

4.3 FiCoS 125

64x21 128x43 256x85 512x171 640x213 800x267
Model size

1

32

64

128

256

512

1024

2048
Nu

m
be

r o
f p

ar
al

le
l s

im
ul

at
io

ns

LSODA

cupSODA

cupSODA

cupSODA

cupSODA

cupSODA

cupSODA

FiCoS

LSODA

cupSODA

cupSODA

cupSODA

cupSODA

cupSODA

FiCoS

FiCoS

cupSODA

cupSODA

cupSODA

cupSODA

FiCoS

FiCoS

FiCoS

FiCoS

LASSIE

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

LASSIE

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

LASSIE

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

Fig. 4.20 Comparison map representing the best method in terms of simulation time in the
case of asymmetric models (N ×M), where N indicates the number of species and M the
number of reactions, and N > M. The simulation time was analyzed for the increasing size
of the models (horizontal axis) and number of parallel simulations (vertical axis).

When models characterized by a larger number of species and reactions are taken into
account, LASSIE is the best choice thanks to its design and implementation that rely on
a pure fine-grained strategy. Considering multiple simulations, cupSODA should be used
with small-scale models (i.e., less than 128 species and reactions) and a number of parallel
simulations less than 256. As a matter of fact, considering these dimensions cupSODA
is capable of exploiting the most performing GPU memories (i.e, constant and shared
memories). In the other cases, FiCoS outperforms all the simulators thanks to its mixed fine-
and coarse-grained parallelization strategies that allow for distributing both the number of
simulations and the calculations required to solve the system of ODEs.

Asymmetric models. In order to evaluate how the number of species and reactions affects
the performance of the simulators, especially those exploiting GPUs to reduce the required
simulation time, we designed specific tests. We generated two sets of asymmetric models:
in the former we used a number of species that is three times higher than the number of
reactions, while in the latter we flipped this condition.

We remind that since each ODE corresponds to a different species, the higher the number
of the species the higher the parallelization that can be obtained by exploiting the fine-grained

126 High-Performance Computing for the simulation of Reaction-Based Models

21x64 43x128 85x256 171x512 213x640 267x800
Model size

1

32

64

128

256

512

1024

2048

Nu
m

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

LSODA

cupSODA

cupSODA

cupSODA

cupSODA

cupSODA

cupSODA

cupSODA

LSODA

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

LSODA

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

LSODA

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

LSODA

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

FiCoS

Fig. 4.21 Comparison map representing the best method in terms of simulation time in the
case of asymmetric models (N ×M), where N indicates the number of species and M the
number of reactions, and M > N. The simulation time was analyzed for the increasing size
of the models (horizontal axis) and number of parallel simulations (vertical axis).

strategy. Conversely, since the number of reactions is roughly related to the length of each
ODE, the number of operations that must be performed by each thread increases along with
the number of reactions. Considering this condition as well as the clock frequency, which is
slower in the case of GPUs cores with respect to the CPUs ones, the simulation time required
to perform a single instruction on GPU is higher. In such a case, the performance that can be
reached by means of GPU-powered simulators should decrease when the number of reactions
is much larger than the number of species.

Figures 4.20 and 4.21 show the results considering the asymmetric models. As in the
case of symmetric models, for each synthetic model we performed an increasing number
of parallel simulations (up to 2048) and calculated both the integration time and the overall
simulation time. Figures 4.22, 4.23, 4.24 and 4.25 show the speed-ups achieved by FiCoS
against LSODA, VODE, LASSIE and cupSODA, respectively, considering a number of
species higher than the number of reactions. Conversely, Figures 4.26, 4.27, 4.28 and 4.29
show the speed-ups achieved in the case of a higher number of reactions. Taking into account
the simulation time, FiCoS achieved a speed-up up to 413× against LSODA, and up to 508×
with respect to VODE (see Figures 4.22a, 4.23a, respectively). These values are higher with
respect to those obtained considering the symmetric models (Figures 4.16a and 4.17a).

4.3 FiCoS 127

64
x2

1

12
8x

43

25
6x

85

51
2x

17
1

64
0x

21
3

80
0x

26
7

Model size

1

32

64

128

256

512

1024

2048

N
um

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

 0.05 0.16 0.57 2.03 3.08 4.34

 1.60 7.69 15.47 47.30 62.95 81.82

 3.16 9.30 26.57 81.29 111.95 144.74

 6.37 16.57 48.63 138.36 182.56 228.07

11.66 29.47 79.67 198.64 263.62 310.77

20.11 46.53 104.98 257.68 341.84 413.59

32.20 65.80 145.28 262.79 292.03 334.03

44.10 83.75 128.75 296.44 301.31 238.47

a) Simulation

64
x2

1

12
8x

43

25
6x

85

51
2x

17
1

64
0x

21
3

80
0x

26
7

Model size

1

32

64

128

256

512

1024

2048

 0.31 0.29 0.32 0.48 0.44 0.63

 1.37 1.20 1.64 3.07 2.32 5.13

 2.51 2.33 3.11 5.79 4.67 9.89

 5.27 4.36 6.09 11.70 9.11 19.29

 9.95 8.09 10.39 17.72 16.85 36.17

19.14 13.99 18.59 30.53 26.78 53.16

30.35 24.34 26.85 41.43 35.57 54.17

36.98 29.27 31.11 20.71 14.68 29.61

b) Integration

10

20

30

40

50

80

160

240

320

400

Fig. 4.22 Speed-up provided by FiCoS with respect to LSODA considering the asymmetric
models in which the number of species is three times higher than the number of reactions.
The speed-up is analyzed for an increasing size of the model (horizontal axis) and number
of parallel simulations (vertical axis). Panel a) shows the speed-up regarding the whole
simulation, while panel b) considers only the numerical integration.

64
x2

1

12
8x

43

25
6x

85

51
2x

17
1

64
0x

21
3

80
0x

26
7

Model size

1

32

64

128

256

512

1024

2048

N
um

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

 0.06 0.24 0.63 3.09 7.58 6.37

 1.69 4.45 20.89 52.58 71.31 100.15

 3.30 9.30 28.65 90.60 125.20 174.51

 6.41 17.21 51.97 154.02 208.79 278.95

11.88 30.36 83.60 224.66 296.90 386.65

21.25 48.50 110.06 286.89 384.66 508.51

32.87 68.30 151.46 292.49 325.87 411.31

46.35 88.06 134.85 329.05 335.68 292.04

a) Simulation

64
x2

1

12
8x

43

25
6x

85

51
2x

17
1

64
0x

21
3

80
0x

26
7

Model size

1

32

64

128

256

512

1024

2048

 0.43 0.75 1.78 4.51 5.27 6.87

 1.77 3.10 8.21 26.84 26.92 51.59

 3.23 5.63 16.48 52.62 53.54 97.82

 6.55 11.50 32.40 100.84 104.78 190.84

12.61 20.48 52.59 159.29 192.97 364.52

24.06 37.14 95.16 271.77 305.56 541.06

37.75 63.47 137.00 367.87 405.88 545.30

46.13 76.10 158.96 182.76 166.18 297.82

b) Integration

100

200

300

400

500

100

200

300

400

500

Fig. 4.23 Speed-up provided by FiCoS with respect to VODE considering the asymmetric
models in which the number of species is three times higher than the number of reactions.
The speed-up is analyzed for an increasing size of the model (horizontal axis) and number
of parallel simulations (vertical axis). Panel a) shows the speed-up regarding the whole
simulation, while panel b) considers only the numerical integration.

128 High-Performance Computing for the simulation of Reaction-Based Models

64
x2

1

12
8x

43

25
6x

85

51
2x

17
1

64
0x

21
3

80
0x

26
7

Model size

1

32

64

128

256

512

1024

2048

N
um

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

 0.32 0.33 0.33 0.39 0.34 0.51

 9.46 8.31 8.76 8.62 6.75 9.25

18.84 17.92 15.48 14.99 12.12 16.09

36.46 33.24 28.40 25.02 19.28 25.12

67.28 58.99 45.60 35.56 27.99 35.12

118.19 93.57 59.40 46.43 36.99 46.17

186.15 131.60 82.72 47.38 31.42 37.66

255.13 168.24 73.08 53.34 32.11 26.91

a) Simulation

64
x2

1

12
8x

43

25
6x

85

51
2x

17
1

64
0x

21
3

80
0x

26
7

Model size

1

32

64

128

256

512

1024

2048

 2.86 2.08 1.02 1.37 0.53 1.43

10.65 8.11 5.21 8.60 3.07 10.52

19.83 16.04 10.33 15.93 6.06 20.02

39.46 32.14 20.46 30.56 11.31 38.46

75.92 57.76 33.54 47.64 21.33 74.23

146.61 101.73 59.55 82.65 34.53 109.05

228.30 175.50 87.16 111.53 46.04 111.18

278.70 213.70 102.03 55.49 18.86 60.87

b) Integration

50

100

150

200

250

50

100

150

200

250

Fig. 4.24 Speed-up provided by FiCoS with respect to LASSIE considering the asymmetric
models in which the number of species is three times higher than the number of reactions.
The speed-up is analyzed for an increasing size of the model (horizontal axis) and number
of parallel simulations (vertical axis). Panel a) shows the speed-up regarding the whole
simulation, while panel b) considers only the numerical integration.

64
x2

1

12
8x

43

25
6x

85

51
2x

17
1

64
0x

21
3

80
0x

26
7

Model size

1

32

64

128

256

512

1024

2048

N
um

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

 0.21 0.21 0.25 0.68 0.78 1.82

 0.32 0.33 0.54 1.14 1.20 4.10

 0.31 0.43 0.66 1.16 1.29 4.06

 0.36 0.59 0.80 1.33 1.42 3.75

 0.46 0.70 1.03 1.60 1.58 3.73

 0.67 0.93 1.14 1.71 1.77 3.04

 0.93 1.19 1.47 1.50 1.41 2.42

 1.14 1.43 1.25 2.71 2.23 NA

a) Simulation

64
x2

1

12
8x

43

25
6x

85

51
2x

17
1

64
0x

21
3

80
0x

26
7

Model size

1

32

64

128

256

512

1024

2048

 2.94 3.51 4.09 7.18 6.14 9.05

 1.52 1.81 2.39 3.14 2.63 9.14

 1.44 1.80 2.35 3.09 2.61 9.34

 1.50 1.82 2.30 3.19 2.61 9.58

 1.44 1.72 1.92 2.64 2.60 9.72

 1.40 1.53 1.80 2.58 2.23 7.97

 1.14 1.32 1.36 2.20 1.86 7.37

 0.69 0.80 0.91 4.15 2.22 NA

b) Integration

0

2

4

6

8

0.0

0.8

1.6

2.4

3.2

4.0

Fig. 4.25 Speed-up provided by FiCoS with respect to cupSODA considering the asymmetric
models in which the number of species is three times higher than the number of reactions.
The speed-up is analyzed for an increasing size of the model (horizontal axis) and number
of parallel simulations (vertical axis). Panel a) shows the speed-up regarding the whole
simulation, while panel b) considers only the numerical integration. The NA values indicate
that cupSODA failed to perform the simulations due to the required amount of memory.

4.3 FiCoS 129

Conversely, regarding the integration time, the speed-ups achieved by FiCoS are smaller
compared to those obtained by simulating the symmetric models.

Since the fine-grained strategy is exploited to parallelize the number of ODEs, whose
length is shorter compared to those of symmetric models, the speed-up achieved with respect
to LASSIE is smaller. As a matter of fact, LASSIE always outperformed FiCoS when a
single simulation is performed. Considering the simulation time, the maximum speed-up
decreased from 298× to 255×, while in the case of the integration time it decreased from
760× (simulation time) to 278× (see Figures 4.24 and 4.18). Finally, comparing FiCoS and
cupSODA we can note that the maximum speed-up is approximately half the one achieved
considering the symmetric models (see Figures 4.25 and 4.19).

Considering the set of asymmetric models characterized by a higher number of reactions,
FiCoS remains faster than both LSODA and VODE, but the speed-ups, regarding the simu-
lation time, are smaller than those achieved in the case of both symmetric and asymmetric
(with more species than reactions) models. As shown in Figures 4.26a and 4.27a, the best
results are equal to 252× (LSODA) and 277× (VODE). Taking into account the integration
time, FiCoS achieved a maximum speed-up equal to 147× with respect to LSODA (Figure
4.26b), which represents the best result. In the case of the comparison against VODE (Figure
4.27b), the maximum speed-up is 234×, which is the smallest one considering this method.

LASSIE resulted always slower than FiCoS, which was capable of achieving the max-
imum speed-ups (1100× considering the simulation time and 3666× in the case of the
integration time, as depicted in Figure 4.28). This result was possible since the number of
species is smaller compared to that of symmetric models and asymmetric models with a
higher number of species than reactions. In such a case, the pure fine-grained parallelization
strategy resulted inefficient.

Finally, the comparison between FiCoS and cupSODA indicates that FiCoS achieved the
best result in this case. As shown in Figure 4.29, regarding the simulation time it obtained
a maximum speed-up equal to 27×, while regarding the integration time the maximum
speed-up increased up to 60×.

To summarize, only considering a small number of species (less than 256) and a single
simulation, LSODA can be effectively applied. As in the case of symmetric models, when
a single simulation is required, LASSIE is the fastest simulator if the number of species
becomes greater than 256. cupSODA is the best simulator to perform a number of simulations
less than 2048 when the number of species is not greater than 512. Otherwise, FiCoS should
be exploited to reduce the required simulation time. Taking into account the models in which
the number of reactions is considerably greater than the number of species, LSODA is the
natural choice to perform a single simulation for models up to 213 species.

130 High-Performance Computing for the simulation of Reaction-Based Models

21
x6

4

43
x1

28

85
x2

56

17
1x

51
2

21
3x

64
0

26
7x

80
0

Model size

1

32

64

128

256

512

1024

2048

N
um

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

 0.02 0.09 0.16 0.50 0.76 1.10

 1.79 1.35 6.14 8.92 12.36 19.10

 1.25 2.71 6.61 17.16 23.09 37.97

 2.60 5.10 12.37 32.27 43.43 65.98

 5.02 9.94 22.48 56.38 70.74 106.57

 9.39 18.29 38.91 92.84 122.12 172.07

16.79 30.79 61.49 133.75 168.74 227.00

25.19 43.44 80.73 161.26 189.58 252.86

a) Simulation

21
x6

4

43
x1

28

85
x2

56

17
1x

51
2

21
3x

64
0

26
7x

80
0

Model size

1

32

64

128

256

512

1024

2048

 0.39 0.68 0.76 1.07 1.33 1.96

 0.84 1.29 2.25 4.08 5.04 6.82

 1.49 2.58 4.66 8.01 10.04 13.64

 2.99 4.97 8.93 15.82 20.25 25.67

 5.79 9.75 17.29 29.54 36.84 45.75

11.15 18.87 31.18 55.72 67.77 88.51

20.36 31.96 54.19 95.55 108.68 136.14

26.87 41.74 67.97 110.24 127.79 147.57

b) Integration

25

50

75

100

125

50

100

150

200

250

Fig. 4.26 Speed-up provided by FiCoS with respect to LSODA considering the asymmetric
models in which the number of reactions is three times higher than the number of species.
The speed-up is analyzed for an increasing size of the model (horizontal axis) and number
of parallel simulations (vertical axis). Panel a) shows the speed-up regarding the whole
simulation, while panel b) considers only the numerical integration.

21
x6

4

43
x1

28

85
x2

56

17
1x

51
2

21
3x

64
0

26
7x

80
0

Model size

1

32

64

128

256

512

1024

2048

N
um

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

 0.07 0.12 0.22 0.60 0.88 1.24

 7.94 1.20 3.17 9.57 15.18 20.82

 1.38 2.38 6.30 17.68 24.80 39.54

 2.62 4.43 11.93 33.27 46.00 73.81

 5.43 8.65 22.14 58.00 76.24 119.68

 9.81 15.78 38.10 95.87 132.39 186.06

18.93 27.02 60.72 138.88 183.10 246.74

27.97 38.12 79.64 166.05 202.05 277.45

a) Simulation

21
x6

4

43
x1

28

85
x2

56

17
1x

51
2

21
3x

64
0

26
7x

80
0

Model size

1

32

64

128

256

512

1024

2048

 0.62 0.55 0.72 1.36 1.55 2.10

 0.88 0.98 2.15 4.85 7.39 10.48

 1.68 1.92 4.11 9.13 14.24 20.98

 3.03 3.70 8.23 17.87 27.66 41.97

 5.84 7.31 16.17 33.73 52.01 75.92

11.38 13.77 29.35 64.09 95.35 138.35

20.96 23.91 50.79 110.42 153.39 214.50

27.30 30.85 63.89 126.61 177.21 234.36

b) Integration

40

80

120

160

200

50

100

150

200

250

Fig. 4.27 Speed-up provided by FiCoS with respect to VODE considering the asymmetric
models in which the number of reactions is three times higher than the number of species.
The speed-up is analyzed for an increasing size of the model (horizontal axis) and number
of parallel simulations (vertical axis). Panel a) shows the speed-up regarding the whole
simulation, while panel b) considers only the numerical integration.

4.3 FiCoS 131

21
x6

4

43
x1

28

85
x2

56

17
1x

51
2

21
3x

64
0

26
7x

80
0

Model size

1

32

64

128

256

512

1024

2048

N
um

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

 0.79 1.71 1.87 3.23 3.85 4.60

30.33 27.68 36.98 56.09 64.58 81.74

53.35 54.60 83.65 108.55 119.88 153.32

107.59 106.08 164.05 203.52 219.55 294.96

207.13 205.26 274.66 354.31 360.85 461.45

394.17 369.55 474.56 573.30 630.58 732.98

757.29 624.03 758.51 822.57 867.45 961.97

1085.73 877.95 1026.39 1006.51 951.34 1100.49

a) Simulation

21
x6

4

43
x1

28

85
x2

56

17
1x

51
2

21
3x

64
0

26
7x

80
0

Model size

1

32

64

128

256

512

1024

2048

22.72 18.68 28.72 33.89 27.88 47.87

82.32 45.09 76.06 107.49 121.19 163.63

135.21 85.79 174.36 214.17 237.05 316.79

266.75 170.45 357.39 417.10 463.95 661.49

517.90 334.11 624.56 774.77 852.23 1138.26

1009.01 626.04 1126.59 1443.01 1578.58 2141.28

2033.10 1067.10 1972.11 2455.54 2531.21 3282.79

2521.82 1389.30 2568.01 2900.16 2911.87 3666.83

b) Integration

800

1600

2400

3200

200

400

600

800

1000

Fig. 4.28 Speed-up provided by FiCoS with respect to LASSIE considering the asymmetric
models in which the number of reactions is three times higher than the number of species.
The speed-up is analyzed for an increasing size of the model (horizontal axis) and number
of parallel simulations (vertical axis). Panel a) shows the speed-up regarding the whole
simulation, while panel b) considers only the numerical integration.

21
x6

4

43
x1

28

85
x2

56

17
1x

51
2

21
3x

64
0

26
7x

80
0

Model size

1

32

64

128

256

512

1024

2048

N
um

be
r o

f p
ar

al
le

l s
im

ul
at

io
ns

 0.24 0.46 0.48 1.11 1.83 6.00

 0.38 2.00 1.78 10.86 9.33 NA

 0.43 2.19 1.93 13.13 10.24 27.94

 0.46 2.25 2.04 14.71 10.33 NA

 0.52 2.28 2.00 18.15 8.63 NA

 0.56 2.26 2.03 15.90 9.37 NA

 0.65 2.16 1.97 13.18 7.80 NA

 0.71 1.80 1.73 8.91 5.25 NA

a) Simulation

21
x6

4

43
x1

28

85
x2

56

17
1x

51
2

21
3x

64
0

26
7x

80
0

Model size

1

32

64

128

256

512

1024

2048

 2.52 3.85 5.80 10.86 12.57 49.35

 0.91 3.60 4.01 22.56 18.56 NA

 0.98 3.96 4.26 28.04 21.41 60.97

 1.04 4.10 4.57 32.46 22.72 NA

 1.10 4.10 4.50 42.51 20.85 NA

 1.07 4.10 4.30 42.15 23.37 NA

 1.08 3.71 3.93 40.30 21.55 NA

 0.83 2.54 2.58 24.87 14.02 NA

b) Integration

0

15

30

45

60

0

5

10

15

20

25

Fig. 4.29 Speed-up provided by FiCoS with respect to cupSODA considering the asymmetric
models in which the number of reactions is three times higher than the number of species.
The speed-up is analyzed for an increasing size of the model (horizontal axis) and number
of parallel simulations (vertical axis). Panel a) shows the speed-up regarding the whole
simulation, while panel b) considers only the numerical integration. The NA values indicate
that cupSODA failed to perform the simulations due to the required amount of memory.

132 High-Performance Computing for the simulation of Reaction-Based Models

0 5000 10000 15000 20000 25000 30000
Time [s]

0

2000

4000

6000

8000

10000

M
ol

ec
ul

ar
 a

m
ou

nt
LSODAEIF4EBP LSODAAMBRA FiCoSEIF4EBP FiCoSAMBRA VODEEIF4EBP VODEAMBRA

Fig. 4.30 Comparison of the dynamics of the molecular species EIF4EBP and AMBRA,
obtained by running FiCoS, LSODA and VODE, by using εa = 10−12 and εr = 10−6.

This result confirms that the number of reactions has a deep impact on the performance
that can be achieved by exploiting the GPUs. FiCoS outperforms all the other simulators
when larger models are considered as well as in the case of multiple simulations. Finally, it
is worth noting that in the case of small-scale models, cupSODA remains the best tool to
perform a massive number of simulations.

This analysis shows the importance of GPU-powered deterministic simulators, especially
when a massive number of simulations must be performed or large-scale models are taken
into account. These results show that the pure fine- and coarse-grained strategies taken alone
are inefficient in some conditions, while a mixed strategy is capable of obtaining great results
in all the tested conditions.

4.3.4 Simulation accuracy

In order to assess the accuracy of FiCoS simulations, we compared the dynamics of the
molecular species EIF4EBP and AMBRA of the model of the Autophagy/Translation switch
based on the mutual inhibition of MTORC1 and ULK1 [422] (see Section 4.3.5 for more
details). The dynamics were obtained by running LSODA, VODE and FiCoS. We set
the initial value of AMPK to 90000 (molecules/cell), as suggested in [422], to induce an
oscillatory behavior that makes the system of ODEs stiff. Figure 4.30 shows that the dynamics
obtained by FiCoS perfectly overlap those reproduced by LSODA and VODE, confirming
FiCoS accuracy.

4.3 FiCoS 133

0 100 200 300 400 500 600 700
Time [s]

0

20000

40000

60000

80000

100000

120000

M
ol

ec
ul

ar
 a

m
ou

nt
a = 10 2, r = 10 2

a = 10 6, r = 10 6
a = 10 2, r = 10 4

a = 10 10, r = 10 2
a = 10 2, r = 10 6

a = 10 10, r = 10 6
a = 10 6, r = 10 2

a = 10 10, r = 10 4
a = 10 6, r = 10 4

baseline

Fig. 4.31 Comparison of the dynamics of the molecular species cAMP of the model
of the Ras/cAMP/PKA signaling pathway in yeast, obtained by FiCoS varying εa ∈
{10−2,10−6,10−10} and εr ∈ {10−2,10−4,10−6}.

In order to assess the robustness of FiCoS with respect to its settings (i.e., absolute (εa)
and relative (εr) tolerances), we designed an ad hoc batch of tests in which we changed
one parameter at a time. The same batch was also executed by running both LSODA and
VODE. We evaluated the effect of these settings on both the quality of the output dynamics
and the simulation time. For the execution of these tests we considered the model of the
Ras/cAMP/PKA signal transduction pathway in yeast [44, 75, 339] (see Appendix A.5 for
further details). The accuracy of the simulations performed by LSODA, VODE and FiCoS
were assessed by comparing the dynamics of the molecular species cAMP, simulated by
using different settings. The baseline shown in Figures 4.31, 4.32 and 4.33 was obtained
by running LSODA with εa = 10−12, εr = 10−6, and a maximum number of allowed steps
equal to 104. The various simulations were performed by using the following settings:

• absolute tolerance εa ∈ {10−2,10−6,10−10};

• relative tolerance εr ∈ {10−2,10−4,10−6};

• maximum number of internal steps equal to 104.

Figure 4.31 depicts the output dynamics obtained by FiCoS varying the settings. Since
all the dynamics are perfectly overlapped, these tolerances have no relevant effect on the
quality of the output dynamics. Similarly to FiCoS, VODE generates simulated dynamics
that overlap the baseline (see Figure 4.32). Conversely, the tolerance values have a high

134 High-Performance Computing for the simulation of Reaction-Based Models

0 100 200 300 400 500 600 700
Time [s]

0

20000

40000

60000

80000

100000

120000

M
ol

ec
ul

ar
 a

m
ou

nt
a = 10 2, r = 10 2

a = 10 6, r = 10 6
a = 10 2, r = 10 4

a = 10 10, r = 10 2
a = 10 2, r = 10 6

a = 10 10, r = 10 6
a = 10 6, r = 10 2

a = 10 10, r = 10 4
a = 10 6, r = 10 4

baseline

Fig. 4.32 Comparison of the dynamics of the molecular species cAMP of the model
of the Ras/cAMP/PKA signaling pathway in yeast, obtained by VODE varying εa ∈
{10−2,10−6,10−10} and εr ∈ {10−2,10−4,10−6}.

0 100 200 300 400 500 600 700
Time [s]

0

20000

40000

60000

80000

100000

120000

M
ol

ec
ul

ar
 a

m
ou

nt

a = 10 2, r = 10 2

a = 10 6, r = 10 6
a = 10 2, r = 10 4

a = 10 10, r = 10 2
a = 10 2, r = 10 6

a = 10 10, r = 10 6
a = 10 6, r = 10 2

a = 10 10, r = 10 4
a = 10 6, r = 10 4

baseline

Fig. 4.33 Comparison of the dynamics of the molecular species cAMP of the model
of the Ras/cAMP/PKA signaling pathway in yeast, obtained by LSODA varying εa ∈
{10−2,10−6,10−10} and εr ∈ {10−2,10−4,10−6}.

impact on the dynamics produced by LSODA. As a matter of fact, when εr = 10−2 and
εa = 10−2 or 10−6 are taken into account, then the output dynamics do not perfectly overlap
the baseline (Figure 4.33). This result is probably related to the automatic switching between

4.3 FiCoS 135

Table 4.5 Simulation time required by LSODA, VODE and the CPU-based version of FiCoS
to solve the systems of ODEs related to the Ras/cAMP/PKA signaling pathway in yeast, by
varying both the absolute (εa) and relative (εr) tolerances.

Settings Simulation time [s]
εa εr LSODA VODE FiCoS

10−2 10−2 0.255 2.516 0.030
10−2 10−4 0.306 2.538 0.041
10−2 10−6 0.381 2.419 0.030
10−6 10−2 0.339 2.508 0.043
10−6 10−4 0.407 2.465 0.059
10−6 10−6 0.579 2.419 0.081
10−10 10−2 0.324 2.533 0.046
10−10 10−4 0.373 2.481 0.034
10−10 10−6 0.601 2.501 0.052

Table 4.6 Simulation time required by LSODA, VODE and the CPU-based version of FiCoS
to solve the systems of ODEs related to the Autophagy/Translation switch based on the
mutual inhibition of MTORC1 and ULK1 model, by varying both the absolute (εa) and
relative (εr) tolerances.

Settings Simulation time [s]
εa εr LSODA VODE FiCoS

10−2 10−2 12.599 25.922 2.398
10−2 10−4 16.348 27.101 2.791
10−2 10−6 19.722 29.449 3.311
10−6 10−2 13.261 31.077 2.661
10−6 10−4 19.433 32.822 3.717
10−6 10−6 33.544 43.372 5.655
10−10 10−2 13.747 32.503 2.774
10−10 10−4 21.219 33.860 4.329
10−10 10−6 37.02 56.687 6.952

the explicit and implicit families of integration methods. Since the explicit methods are
not stiffly accurate they are not able to properly integrate a stiff system, thus reducing the
accuracy of the outcome.

Considering the achieved results, which provided relevant speed-ups, as well as the
accuracy of the employed integration methods, we developed a CPU-based version of FiCoS
to perform a single simulation. Table 4.5 summarizes the simulation time required by
LSODA, VODE and the CPU-based version of FiCoS to solve the system of ODEs related
to the Ras/cAMP/PKA signaling pathway in yeast, for each tested combination of εa and

136 High-Performance Computing for the simulation of Reaction-Based Models

εr. Every combination does not have a deep impact on VODE performance, while in the
case of the CPU-based version of FiCoS and LSODA some combinations seem to double or
triple the simulaion time. Since the simulations of this model are performed very quickly, we
defined another batch of tests in which we varied the tolerances to analyze the simulation time
required to simulate the Autophagy/Translation model (Section 4.3.5), which is characterized
by by 173 molecular species and 6581 reactions. Table 4.6 shows that the simulation time
of VODE doubles from the combination εa = εr = 10−2 to the combination εa = 10−10 and
εa = 10−6, while the simulation time of LSODA and the CPU-based version of FiCoS triples.
The relative tolerance has a higher impact on the simulation time with respect to the absolute
tolerance. Considering FiCoS, setting εa = 10−10 the simulation time triples when using
εr = 10−6 with respect to εr = 10−2.

Finally, considering the Autophagy/Translation model, we can observe that the CPU-
based version of FiCoS is ∼6× faster than LSODA, and ∼12× faster than VODE. Taking
into account the Ras/cAMP/PKA signal transduction pathway in yeast, the CPU-based
version of FiCoS is capable of outperforming both LSODA and VODE, achieving a ∼12×
speed-up against LSODA, and a ∼84× speed-up against VODE.

4.3.5 Autophagy/Translation model

We tested the performance of FiCoS on a model of the Autophagy/Translation switch based
on the mutual inhibition of MTORC1 and ULK1 [422]. These two proteins are part of a
large regulatory network that is responsible of maintaining cellular energy and nutrients
homeostasis. Autophagic processes are involved in cell survival during starvation and
clearing of damaged cellular components, and thus their study plays a fundamental role
in understanding aging-related and neurodegenerative diseases, as well as immunity and
tumorigenesis. This model, defined to investigate the complex interplay between autophagy
and protein synthesis, was defined using BioNetGen rule-based modeling language (BNGL)
[186] and is characterized by 7 initial molecule types involved in 29 rules. Rule-based
modeling is a practical means to succintely describe the interactions between molecules,
keeping track of site-specific details (e.g., the phosphorylation states) (see Section 1.1.1). In
the case of the rule-based model of the Autophagy/Translation system, the corresponding
asymmetric RBM contains 173 molecular species involved in 6581 reactions2.

FiCoS was capable of achieving relevant speed-ups with respect to LSODA and VODE
for the execution of 512 simulations. For what concerns the simulation time, FiCoS is 22×

2The parameterizations of this model were obtained using the same procedure exploited for the generation
of the synthetic models.

4.3 FiCoS 137

0.0e+00
1.8e+04

3.6e+04
5.4e+04

7.2e+04
9.0e+040.0e+00

2.0e-07
4.0e-07

6.0e-07
8.0e-07

1.0e-06

0.0e+00
1.0e+03
2.0e+03
3.0e+03
4.0e+03
5.0e+03
6.0e+03
7.0e+03
8.0e+03
9.0e+03

AMPK

P9

EI
F4

EB
P	
os
ci
lla
tio

ns
	a
m
pl
itu

de

	0
	1000
	2000
	3000
	4000
	5000
	6000
	7000
	8000
	9000

(a) FiCoS

0.0e+00
1.8e+04

3.6e+04
5.4e+04

7.2e+04
9.0e+040.0e+00

2.0e-07
4.0e-07

6.0e-07
8.0e-07

1.0e-06

0.0e+00
1.0e+03
2.0e+03
3.0e+03
4.0e+03
5.0e+03
6.0e+03
7.0e+03
8.0e+03
9.0e+03

AMPK

P9

EI
F4

EB
P	
os
ci
lla
tio

ns
	a
m
pl
itu

de

	0
	1000
	2000
	3000
	4000
	5000
	6000
	7000
	8000
	9000

(b) LSODA

0.0e+00
1.8e+04

3.6e+04
5.4e+04

7.2e+04
9.0e+040.0e+00

2.0e-07
4.0e-07

6.0e-07
8.0e-07

1.0e-06

0.0e+00

1.0e+03

2.0e+03

3.0e+03

4.0e+03
5.0e+03

6.0e+03

7.0e+03

8.0e+03

AMPK

P9

EI
F4

EB
P	
os
ci
lla
tio

ns
	a
m
pl
itu

de

	0
	1000
	2000
	3000
	4000
	5000
	6000
	7000
	8000

(c) VODE

0.0e+00
1.8e+04

3.6e+04
5.4e+04

7.2e+04
9.0e+040.0e+00

2.0e-07
4.0e-07

6.0e-07
8.0e-07

1.0e-06

0.0e+00
1.0e+03
2.0e+03
3.0e+03
4.0e+03
5.0e+03
6.0e+03
7.0e+03
8.0e+03
9.0e+03
1.0e+04

AMPK

P9

A
M

BR
A

	o
sc

ill
at

io
ns

	a
m

pl
itu

de

	0
	1000
	2000
	3000
	4000
	5000
	6000
	7000
	8000
	9000
	10000

(d) FiCoS

0.0e+00
1.8e+04

3.6e+04
5.4e+04

7.2e+04
9.0e+040.0e+00

2.0e-07
4.0e-07

6.0e-07
8.0e-07

1.0e-06

0.0e+00
1.0e+03
2.0e+03
3.0e+03
4.0e+03
5.0e+03
6.0e+03
7.0e+03
8.0e+03
9.0e+03
1.0e+04

AMPK

P9

A
M

BR
A

	o
sc

ill
at

io
ns

	a
m

pl
itu

de

	0
	1000
	2000
	3000
	4000
	5000
	6000
	7000
	8000
	9000
	10000

(e) LSODA

0.0e+00
1.8e+04

3.6e+04
5.4e+04

7.2e+04
9.0e+040.0e+00

2.0e-07
4.0e-07

6.0e-07
8.0e-07

1.0e-06

0.0e+00
1.0e+03
2.0e+03
3.0e+03
4.0e+03
5.0e+03
6.0e+03
7.0e+03
8.0e+03
9.0e+03
1.0e+04

AMPK

P9

A
M

BR
A

	o
sc

ill
at

io
ns

	a
m

pl
itu

de

	0
	1000
	2000
	3000
	4000
	5000
	6000
	7000
	8000
	9000
	10000

(f) VODE

Fig. 4.34 Results of a PSA-2D on the Autophagy/Translation model by varying the initial
concentration of AMPK in the range [0,104] (molecules/cell) and the value of the P9 rule,
which modifies 5476 kinetic parameters, in the range [10−9,10−6] ((molecules/cell)−1s−1).
The figure shows the average amplitude of both EIF4EBP (top panels) and AMBRA (bottom
panels) oscillations. Note that the dynamics are not oscillating when the amplitude value
is equal to zero (black points). Considering 24 hours as time budget, FiCoS was capable
of performing 36864 simulations, while exploiting LSODA and VODE we could execute
only 2090 and 1363 simulations, respectively. The result of this analysis can be visually
appreciated in panels (a) and (d) with respect to panels (b), (c), (e) and (f). As a matter of
fact, panels (a) and (d) provide a better overview of all the paramaterizations that allow for
obtaining an oscillatory regime.

and 40× faster than LSODA and VODE, respectively. Regarding the integration time, FiCoS
achieved a 16× and 36× speed-up against LSODA and VODE, respectively.

In order to show the advantages provided by FiCoS in the investigation of real models,
we performed a PSA-2D by varying simultaneously two parameters of this model. To be
more precise, we varied the initial amount of the AMPK species and the value of the P9 rule,
which modify 5476 kinetic parameters. For both parameters, we used the sweep intervals
proposed in [422], namely: (i) the range [0,104] (molecules/cell) for the AMPK value; (ii)
the range [10−9,10−6] ((molecules/cell)−1s−1) for the P9 value. The numerical values of
these two parameters were determined with a uniform sampling in the Cartesian product
of their ranges. We run 36864 simulations using FiCoS, partitioning the simulations in 72
batches of 512 simulations to maximize the performance of FiCoS. FiCoS completed these
simulations in 24 hours, while LSODA and VODE were capable of performing only 2090
and 1363 simulations, respectively, in the same time. Figures 4.34a and 4.34d show the
average amplitude of EIF4EBP and AMBRA oscillations, respectively, for each performed

138 High-Performance Computing for the simulation of Reaction-Based Models

simulation. When the amplitude value is equal to zero (black points) the dynamics are
considered non oscillating. In order to correctly detect the oscillations characterizing these
molecular species, we removed the first peak that could be erroneously detected as a single
oscillation.

Oscillations in the phosphorylation levels of EIF4EBP and AMBRA can generate alter-
nating periods of autophagy and translation. Here, we verified the presence of oscillations of
EIF4EBP and AMBRA at varying levels of AMPK (whose presence represents a stressed
condition in the cell) and P9, which represents the strength of the negative regulation of
MTORC1 by AMPK. Figures 4.34b and 4.34e illustrate the same analysis performed us-
ing LSODA, while Figures 4.34c and 4.34f show the EIF4EBP and AMBRA oscillations
obtained by VODE.

4.3.6 Treg-Teff cross regulation in multiple sclerosis

The Immune System (IS) is the ensemble of cells and molecules that protects living organisms
from foreign pathogens. This complex machinery consists in a set of mechanisms whose
complexity depends on the evolutionary level of the host. In mammals, besides the innate
immunity, the adaptive immunity represents the most effective weapon against viruses and
bacteria, thanks to its ability to specifically recognize and act against pathogens (specificity),
to discriminate between self and non-self, and to remember previously encountered pathogens
in order to act more rapidly (memory). While being extremely effective, adaptive immunity is
not faultless. A breakdown of the mechanisms that allow the IS to discriminate between self
and non-self antigens may lead to harmful effects, such as the arise of autoimmune diseases.
Multiple sclerosis (MS), a disease of the Central Nervous System (CNS), falls within those.

MS is a chronic inflammatory disease that causes the removal of myelin sheath created
by oligodendrocytes from axons, leading to a reduced functionality of the CNS. It is well
known that a genetic predisposition correlates with MS [91]. Moreover, environmental
and dietary factors may play an important role. Epstein-Barr virus (EBV) may trigger the
disease onset [346, 420], while it is supposed that vitamin D could help in preventing MS
[166]. Symptoms include weakness and fatigue, blurry vision, speech problems, numbness
and tingling, dizziness, lack of coordination and uncontrolled bodily functions. The most
common form of MS (80−90% of the total insurgence) is Relapsing-Remitting MS (RRMS)
[408], where relapses (periods of disease progression) are followed by periods of remission
(total or partial recovery from symptoms). RRMS usually occurs in the age of 20−40, with
a women-to-men ratio of 2:1. When left untreated, 65% of RRMS cases turn after 15−25
years to more severe MS forms [90].

4.3 FiCoS 139

Even if the etiology of MS is not fully understood, the common shared hypothesis suggests
that self-reactive T lymphocytes may be activated in the periphery by an external trigger
(i.e., EBV). Activated T cells can overcome the blood brain barrier and go through the CNS
[478]. Once in the brain, self-reactive cells cause inflammatory events that negatively affect
both myelin and oligodendrocytes, also involving other IS entities such as B lymphocytes,
macrophages, and microglia. It is worth noting that relapses usually represent the clinical
correlates of inflammatory bouts. Self-reactive T lymphocytes represent one of the main
actors in the development and progression of the disease, as such cells tend to decrease in
the peripheral blood while increasing in the spinal fluid when relapses occur. Furthermore,
homeostasis of regulatory T cells (Treg) and effectors T cells (Teff) is fundamental in
preventing autoimmunity [137, 269]. More precisely, a breakdown of the peripheral tolerance
mechanisms, such as the lack of functionality or deficiency of Treg functions, may bring to
uncontrolled activation and proliferation of effectors T cells [382].

This hypothesis has been confirmed by Vélez de Mendizábal et al. [450] with the use
of a model based on ODEs to reproduce RRMS. However, this model represented a very
simplistic scenario, by avoiding to explicitly include the trigger of the disease represented by
an external factor such as the EBV, as well as the occurrence of neural damage represented
by the loss of myelin and/or the death of oligodendrocytes. Furthermore, the model totally
missed to give any description of the spatial evolution of the disease. These issues were
fulfilled by an agent based model (ABM) capable of better describing, from a temporal
and spatial points of view, the typical shape of RRMS [337]. It must be said that, due
to the significant computational efforts needed to run thousands of ABM simulations, a
deeper analysis of the model parameters that may influence the disease progression was
not carried out. The case study considered here refers to the cross regulation mechanism
between Treg and Teff cells in RRMS. T cells are a type of white blood cells that play a
central role in the human immune system. Indeed, they implement the adaptive immunity
that tailors the immune response of the body to specific pathogens. T cells are commonly
divided into various populations, including Cytotoxic CD8 T lymphocytes, also known as
effectors T cells (Teff), the main effectors of cellular-mediated immunity that can directly
attack infected or cancer cells, and CD4 T helper lymphocytes, essential to boost the immune
functions by activating other immune cells. More recently, regulatory T cells (Treg) have been
discovered as one of the main actors in modulating the immune system in order to maintain
tolerance to self-antigens and to prevent autoimmune diseases. In particular, Treg cells
are usually responsible of controlling the Teff functionalities suppressing their potentially
deleterious activities. Teff cells can be inhibited by Treg cells through cell-to-cell contact
and immunosuppressive cytokines. Furthermore, Treg proliferation can be stimulated as

140 High-Performance Computing for the simulation of Reaction-Based Models

a consequence of the suppression of Teff cells. In our study we consider the activation
of self-reactive Teff and Treg cells due to an EBV infection that, through a process called
antigenic mimicry, misleads such cells. In this situation, in healthy people, Treg cells are
able to control the spread of Teff cells activated by EBV. Instead, in diseased people a
breakdown of the regulation mechanism, represented by a malfunction of Treg activities,
leads to widespread inflammatory events driven by Teff cells that erroneously attack the
Myelin Based Protein (MBP), a major structural component of myelin that is expressed by
oligodendrocytes (ODC) in the central nervous system. This attack can irredeemably damage
myelin sheath of neurons leading to the occurrence of demyelinating diseases as MS.

We performed a one dimensional PSA on the RRMS model, in which one kinetic parame-
ter was varied within a given sweep interval (chosen with respect to a fixed reference value for
each parameter). The PSA was performed by generating a set of different initial conditions—
corresponding to different parameterizations of the model—and then automatically executing
the parallel deterministic simulations with FiCoS. For this analysis we took into account
an RBM characterized by 3200 reactions and 700 chemical species representing the RRMS
model. The kinetic constant associated with the reaction involving both Treg and Teff cells
was varied by taking 640 different values equally distributed in the interval [10−3,1] days−1.
The value of this reaction rate is fundamental to describe the possible malfunction of Treg
cells activities, which may lead to a breakdown of the peripheral tolerance and thus to the
insurgence of the disease.

For this test we exploited a Nvidia GeForce GTX Titan Z (2880 cores, clock 876 MHz,
RAM 6 GB). The results of this analysis are reported in Figure 4.35, where we can observe
that for values of the kinetic constant higher than 0.109 days−1, Treg cells are able to control
the spread of Teff cells (top panel, yellow and purple lines) and consequently avoid the
appearing of the disease. This is also visible on the ODC plot (bottom panel, yellow and
purple lines) that shows how the amount of ODC, even if initially lowered due to the Teff
actions, goes rapidly back to its maximum value, suggesting that any damage has been
avoided or recovered at most (recoverable damage). This outcome well describes the scenario
of healthy people, in which the peripheral tolerance is able to compensate for a genetic
predisposition in developing the disease. For values of the kinetic constant lower than
0.109 days−1, an oscillatory behavior of Teff starts to appear (top panel, red line), becoming
more and more pronounced as the value of the kinetic constant decreases (i.e., top panel,
black line). In this scenario, it is possible to observe that the amount of ODC decreases
to around zero in correspondence to each peak in the number of Teff (top panel, red and
black lines), suggesting an ongoing inflammation that causes neural damage, and thus the
possibility of relapses in correspondence of each peak in the Teff amount. Interestingly, a

4.3 FiCoS 141

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

Te
ff

 a
m

o
u
n
t

Days

0.001 days-1

0.030 days-1

0.109 days-1

0.156 days-1

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

O
D

C
 a

m
o
u
n
t

Days

Fig. 4.35 Dynamics of Teff (top) and ODC (bottom) with different values of the kinetic
constant associated with the reaction involving both Treg and Teff cells.

fixed initial quantity of EBV seems to be sufficient to start such oscillatory behavior that can
be correlated to multiple relapses. This is somewhat different from the models presented in
[450, 337], where each relapse was triggered by a single spread of virus.

For what concerns the computational time required to execute the PSA on the GPU,
by considering the time necessary to run a single simulation with a C++ implementation
of DOPRI method, exploiting a single core of a CPU Intel Core i7-6700HQ, 2.6 GHz,
we estimated a speed-up around 97× on the Nvidia GeForce GTX Titan Z, thanks to the
parallelization provided by FiCoS.

142 High-Performance Computing for the simulation of Reaction-Based Models

4.3.7 Conclusion

In order to fill the gap in the state-of-the-art of deterministic simulation, we developed
FiCoS. As in the case of LASSIE, we designed FiCoS to be a “black-box” simulator able
to automatically convert RBMs representing complex biochemical networks into the cor-
responding systems of ODEs. The performance of FiCoS was evaluated considering two
sets of synthetic RBMs of increasing size, and two real models. We performed an in-depth
analysis to determine which simulator should be exploited according to the number of species
and reactions appearing in the model, and the number of simulations to be executed. To
do this, we compared FiCoS against LASSIE, cupSODA, and two CPU-based simulators
based on LSODA and VODE. Thanks to its mixed parallelization strategy, FiCoS resulted the
natural choice when more than a single simulation is required and the number of species is
greater than 64, noticeably outperforming all the other simulators. Afterwards, we performed
a 2D PSA of a model of the Autophagy/Translation switch based on the mutual inhibition
of MTORC1 and ULK1 [422], showing that FiCoS was able to execute 36864 simulations
in 24 hours, while LSODA and VODE in the same time completed only 2090 and 1363
simulations. This interesting experimental finding allowed us to better understand which
initial conditions lead the system to an oscillatory behavior. Considering the effectiveness
of FiCoS, we realized also a PSA to investigate the effects of possible malfunctions in the
Teff-Treg cross regulation mechanisms that involve a break of peripheral tolerance and bring
to the occurrence of relapses in multiple sclerosis. Thanks to the acceleration provided by
FiCoS, we obtained around 97× speed-up with respect to a CPU-based execution of the
same analysis.

Despite the high performance that FiCoS achieved, we did not completely exploit the
CUDA memory hierarchy that should be used as much as possible to obtain the best perfor-
mance. Since both explicit and implicit integration algorithms are intrinsically sequential
FiCoS kernels generally do not reuse any variable. Moreover, the dynamic parallelism does
not allow for sharing variable among the threads belonging to the parent grid and the those
inside the child grids. For these reasons, the current version of FiCoS only relies on the global
memory (characterized by high latencies) and registers. We plan to develop an improved
version of FiCoS tailored for models characterized by a few number of species, able to
leverage both constant and shared memories: the former can be used to store the kinetic
constants and the structures containing the offsets, used to correctly decode the ODEs, while
the latter can be exploited to store the states of the system.

4.4 SSA accelerated on MIC coprocessors 143

4.4 SSA accelerated on MIC coprocessors

As shown in Section 1.2.2, SSA is able to achieve an exact description of the temporal
evolution of the biological system under investigation. In general, large batches of SSA runs
need to be executed to determine the distribution of the system states, to collect statistically
significant results, or to investigate the behavior of the system under different conditions (e.g.,
in the case of the Parameter Estimation problem described in Chapter 5). For computational
analyses of this type, the computational burden can quickly become excessive when SSA
is executed on CPUs. However, since all SSA runs can be executed independently, parallel
architectures can be exploited to distribute the workload and reduce the overall running time.
Algorithm parallelization is usually realized by means of multithreading [440], distributed
computing on clusters [226], custom circuitry produced with Field Programmable Gate Array
(FPGA) [272] or GPGPU [307, 306, 425, 74]. We highlight that these parallel technologies
generally require a custom implementation of the algorithm, since most of the time the
CPU code cannot be directly ported on the parallel architecture; in addition, distributed
architectures need the definition of an appropriate scheduler to manage the parallel execution
of processes. An alternative solution to algorithm parallelization is represented by the family
of Intel Xeon Phi coprocessors, based on the MIC architecture, which allow for directly
compiling and executing on the coprocessors the code implemented for CPUs (see Section
3.3).

We present here a coarse-grained implementation of SSA on MIC coprocessors, com-
paring its performance with respect to both CPU and GPU implementations of SSA. To this
purpose we considered, on the one hand, two execution modalities of SSA for MIC: the
first consisted in directly executing the same CPU source code of SSA, while the second
exploited vector instructions, a peculiar capability of MIC that allows for reusing any existing
CPU source code with only few modifications. On the other hand, we developed an ad hoc
implementation of SSA for GPUs, optimizing the use of the memory hierarchy. To evaluate
the running time of these sequential and parallel SSA implementations, we executed an
increasing number of stochastic simulations of the Prokaryotic Gene Network (PGN) (see
Appendix A.4). A family of synthetic RBMs with different size (i.e., different number of
molecular species and reactions) was also used as test case to investigate the benefits of
exploiting MIC vector instructions and offload capabilities. In addition to the computational
time, we evaluated the costs and power consumption of the hardware employed, discussing
the effort to port the existing code on parallel architectures.

Previous works already focused on the comparison of the performance of Intel Xeon
Phi coprocessors against other parallel architectures, showing different results according to
the specific problem under investigation. For instance, in the context of the simulation of

144 High-Performance Computing for the simulation of Reaction-Based Models

spin systems, a comparison between Intel Xeon Phi 5110P and Nvidia Tesla K20s video
card was presented in [40], highlighting that a careful implementation of the C code allows
the MIC to compete with the GPU. On the contrary, in [130] it was shown that a Nvidia
Tesla K20x outperforms an Intel Xeon Phi 5110P for the parallelization of non-bonded
electrostatic computation for Virtual Screening; this work pointed out, in particular, the
importance of OpenMP source code optimization. The work presented in [181] described
the performance comparison among a multi-core Intel CPU, an Nvidia Tesla K20c GPU and
an Intel Xeon Phi 7120P coprocessor for the execution of a tracking algorithm based on the
Hough transform: the results highlighted that, in this case, the CPU performs better than
both GPU and MIC coprocessors. Moreover, the authors suggested that an implementation
with offloaded calculations to the coprocessors might help in achieving better performance.
A multithreaded version of an algorithm to tackle the tensor transpose problem was then
presented in [271]. In this case, the multi-core CPU and the MIC achieved a relevant speed-up
with respect to the GPU, since the optimization of L1 cache is easier than the implementation
of a coalesced global memory access on the GPU. As a final example, a comparison of
the acceleration on an Intel Xeon Phi 5110P and a Nvidia Tesla K20x for protein docking
calculation based on the fast Fourier transform was introduced in [396]. The GPU resulted to
be 5× faster than the MIC, considering the comparable implementation costs required by
these architectures.

In what follows, we show that GPU largely outperforms the other architectures, thanks
to its large number of computing units, for the problem of executing increasing batches of
SSA runs. Nevertheless, GPU required a complete redesign and specific programming of
this simulation algorithm. On the other side, we show that MIC coprocessors allow for a
relevant speed-up, especially when the simulated biochemical system is large and MIC vector
instructions are used, and have the additional advantage of requiring minimal modifications
to CPU code.

4.4.1 Results

We consider two different test cases of stochastic RBMs to the aim of evaluating the computa-
tional performances of MIC, CPU and GPU when executing large batches of SSA runs. The
first test case is the stochastic version of PGN (see Appendix A.4), while the second test case
is a family of synthetic stochastic models of increasing size, which are randomly generated
according to the methodology proposed in [307]. These models are characterized by a
number of species N and of reactions M ranging from (20×20) to (240×240); the values
of the stochastic constants are randomly sampled with uniform distribution in (0,1). They

4.4 SSA accelerated on MIC coprocessors 145

are specifically exploited to evaluate the impact of the size of the model on the performance
of the MIC architecture.

We start by showing the comparison between the computational performance achieved
with Intel Xeon Phi coprocessors, CPUs and GPUs for the execution of an increasing
number of SSA runs for the PGN model. Then, we investigate some specific MIC features,
such as vector instructions and offload capability, to simulate a set of synthetic stochastic
models with increasing size. We developed three different implementations of SSA. The
first implementation was designed for the x86 architecture, that is, the Intel Xeon Haswell
E5-2630 v3 and the Intel Xeon Phi 7120P. The second implementation consisted in reusing
the CPU code, modified to exploit the advantages of MIC vector instructions. The third
version was specifically developed for the Nvidia Tesla K80 architecture, and optimized to
fully exploit the memory hierarchy of the GPU: the state of the biochemical system is stored
in the shared memory, while the matrices of stoichiometric coefficients are stored in the
constant memory. All SSA implementations were written using the C++ language and exploit
the MRG32K32a [249] pseudorandom numbers generator [250], which is available in the Intel
Math Kernel Library [456] for the CPU and MIC, and in the CURAND [317] Library for the
GPU.

Simulation of the PGN model. For each architecture and its respective SSA implementa-
tion, every SSA run of the PGN model was executed for a total simulation time of t = 80
time units, storing the amount of all molecular species along 16 time points of the dynamics.
Figure 4.36 reports the running time (in seconds) required to execute increasing batches of
SSA runs on the MIC (light gray bars), MIC using vector instructions (dark gray bars), CPU
(black bars) and GPU (white bars).

These results show that the CPU running time linearly increases with the number of
simulations, and that the GPU largely outperforms the other architectures. In particular, the
GPU running time remains almost constant while increasing the number of parallel SSA
runs: this is due to the high number of cores available on the GPU used in this work, which
allows for distributing the simulations over individual computing units. During this batch of
tests, anyway, the GPU Nvidia K80 was far from a full usage of its computing and memory
resources. Thus, although for 320 parallel SSA runs the GPU achieved a speed-up of 15×
with respect to the CPU, we argue that its computational performance would be even better
by running a larger number of simulations. It is also worth noting that, despite the branching
of CUDA threads due to the stochastic nature of all (independent) simulations, the simplicity
of SSA makes coarse-grain simulation perfectly suitable for GPU architecture.

146 High-Performance Computing for the simulation of Reaction-Based Models

40 80 120 160 200 240 280 320
Simulations

0

1

2

3

4

5

6

R
u
n
n
in
g
 t
im

e
 [
s]

MIC

MIC vec

CPU

GPU

Fig. 4.36 Comparison of the running time to execute an increasing number of SSA runs of the
PGN model on the three architectures: MIC (light gray bars), MIC using vector instructions
(dark gray bars), CPU (black bars) and GPU (white bars). The dotted and dashed lines
represent the linear regression for the estimated running time on the MIC with and without
the use of vector instructions, respectively, assuming a number of cores larger than 60. The
estimated values highlight the actual drop of performance when the number of parallel
threads is larger than 240 (i.e., the maximum number of threads concurrently executable on
the MIC). When more than 80 simulations are performed the GPU outperforms the other
architectures, and the running time remains basically constant up to 320 parallel SSA runs,
thanks to the large number of available cores.

In the case of MIC architecture we observed an acceleration with respect to the sequential
SSA execution on the CPU. According to our results, in the case of 240 SSA runs, the
speed-up achieved by this architecture—without the use of vector instructions—is 4.1× with
respect to the CPU (Figure 4.36, light gray bars). Since Xeon Phi coprocessors can execute
up to 4 concurrent threads on each of the 60 available cores, the acceleration provided by
MIC scales up to 240 simulations only. In order to highlight this limitation, we estimated by
linear regression the theoretical running time of MIC to execute 280 and 320 simulations,
using the running times obtained in the case of 1, . . . ,240 simulations. In Figure 4.36 we
show the estimated running times with and without the use of MIC vector instructions (dotted
and dashed lines, respectively). We observe that, using both SSA execution modalities on
MIC, the measured running times with 280 and 320 simulations are higher than expected
because of the limitation of resources.

The use of MIC vector instructions allows for an additional improvement of computational
performance (Figure 4.36, dark gray bars), and highlights that this peculiar capability of

4.4 SSA accelerated on MIC coprocessors 147

1 5 10 15 20 25
Simulations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

R
u
n
n
in
g
 t
im

e
 [
s]

MIC

MIC vec

CPU

GPU

Fig. 4.37 Break-even of the running time to execute a limited number of SSA runs of the
PGN model on the three architectures: MIC (light gray bars), MIC using vector instructions
(dark gray bars), CPU (black bars) and GPU (white bars). When only a few simulations are
executed, the CPU outperforms the other architectures thanks to its higher clock frequency.
The MIC becomes advantageous with respect to CPU execution when about 10 simulations
are performed, using vector instructions. Without vectorialization, the MIC is more perfor-
mant than CPU when at least 15 simulations are run. Similarly, the GPU outperforms the
CPU when about 20 simulations are executed.

MIC is necessary to fully leverage the computational power of Intel Xeon Phi coprocessors.
More precisely, in the case of 15 simultaneous simulations (Figure 4.37), the running time of
the MIC with and without the use of vector instructions changes from 0.15 to 0.27 seconds,
respectively, corresponding to an overall reduction of about 42% when vector instructions
are enabled. Figure 4.37 also shows the break-even between MIC, CPU and GPU. It is worth
noting that when only a few SSA runs need to be executed, the CPU outperforms both GPUs
and MICs, thanks to its higher clock frequency. The MIC is faster than the CPU when about
15 SSA runs are performed (10 when using vector instructions). The break-even between
CPU and GPU is around 20 simulations.

Simulation of synthetic stochastic models. In the second batch of tests, we specifically
focused on MIC architecture to investigate the impact of the size of the simulated model. To
evaluate the performance of the Xeon Phi coprocessor, we randomly created a set of synthetic
models of increasing size, i.e., 20× 20, 40× 40, 80× 80, 160× 160, whose dimensions
correspond to the number of chemical species and the number of reactions, respectively.

148 High-Performance Computing for the simulation of Reaction-Based Models

20x20 40x40 80x80 160x160
Model size

0.0

0.5

1.0

1.5

2.0

2.5

R
u
n
n
in
g
 t
im

e
 [
s]

MIC vec, 1 sim

MIC vec, 40 sim

MIC vec, 80 sim

MIC vec, 120 sim

MIC vec, 160 sim

MIC vec, 200 sim

MIC vec, 240 sim

MIC, 1 sim

MIC, 40 sim

MIC, 80 sim

MIC, 120 sim

MIC, 160 sim

MIC, 200 sim

MIC, 240 sim

Fig. 4.38 Comparison of MIC running times with (bars with cross) and without (empty bars)
the use of vector instructions to execute an increasing number of stochastic simulations (from
1 to 240) of synthetic models, having a number of species N and of reactions M equal to
(20×20),(40×40),(80×80),(160×160).

The models were simulated using the SSA implementation, with and without the vector
instructions enabled. For every model, each SSA run was executed for a total simulation
time of t = 100 time units, storing the amount of 10 molecular species along 11 time points
of the dynamics.

The results, summarized in Figure 4.38, show two relevant trends. First, although the
running time constantly increases, it is not directly proportional to the size of the model: a
single simulation takes 0.11 seconds for size 20×20, and 0.74 seconds for size 160×160.
This means that a biochemical system that is 8 times bigger (160×160 vs. 20×20) requires
a running time of 6.7×. If we consider the case of 240 simulations, the running times are
0.6 and 1.5 seconds, respectively, corresponding to an increment of just 3.4×. The second
observation is that, by using the vector instructions, the scalability is strongly improved:
bars with cross in Figure 4.38 show that, in the case of 240 simulations, if we compare
models of size 20× 20 and 160× 160, we see that the running time of the largest model
is only 2.2× greater than the smallest one. In the same situation, but without using vector
instructions (empty bars), the running time of the largest model is only 3.38× greater than the
smallest one. Stated otherwise, the use of vector instructions achieves better computational
performance when the size of synthetic stochastic models increases.

4.4 SSA accelerated on MIC coprocessors 149

MIC offload capability. In the last test we exploited the explicit offload capabilities of the
Xeon Phi coprocessors. In order to do so, we modified the SSA implementation in two ways:
(i) we linearized all data structures, so that the arrays could be automatically transferred
to the Xeon Phi; (ii) we added the offload compiler pre-directives, which mark the regions
of the source code that must be offloaded (in our case, the initialization of the system, the
calculation of the propensity functions and the update of the system states). According
to our results, even in the case of “large” stochastic models of biochemical systems (e.g.,
240×240 chemical species and reactions) the offload does not provide a relevant speed-up.
The rationale behind this is that SSA is a relatively simple algorithm, so that the reduced
number of calculations distributed on MIC cores—combined with the overhead due to MIC
initialization and data transfers—affect the overall performance, making CPU more efficient
for this task. Although it is possible that MIC could provide a more relevant speed-up to
simulate larger models, it is usually not trivial to define stochastic models of such complexity,
due to the lack of kinetic parameters and of initial molecular amounts that usually affect the
availability of large scale mechanistic models of biochemical systems.

4.4.2 Conclusion

According to our results, MICs are capable of outperforming CPUs when more than 10 SSA
runs are taken into account. Nevertheless, GPUs are the best choice when more than 80 SSA
runs are executed. However, we highlight that some additional issues should be considered
for the selection of a proper parallel architecture. Specifically, we discuss hereby also the
efforts of code porting, the power consumption of the three architectures and the financial
costs items.

Concerning the cost of code porting, in the case of GPGPU computing on Nvidia video
cards, the effort necessary to reimplement any algorithm using the CUDA programming
technique is relevant. Since this issue would increase the time-to-market, it should be
seriously taken into account. On the contrary, Xeon Phi coprocessors are supposed to be fully
compatible with CPUs based on the x86 instruction set; however, according to our experience,
the code has to be slightly adapted in order to be correctly executed on MIC (considering
the native mode). On the other hand, a comparison between the three architectures should
also take into consideration the evaluation of costs, power consumption and theoretical peak
performance. In 2016, the CPU Intel Xeon Haswell E5-2630 v3 had a cost of around e600,
with a power consumption of 80W and theoretical peak performance in double precision of
about 500 GFlops, which is only reachable when fused multiply-add (FMA) and advanced
vector instructions (AVX) are simultaneously exploited. The characteristics of the other
devices in 2016 were: e5800, 300W and 1208 GFlops for Intel Xeon Phi 7120P; e4200,

150 High-Performance Computing for the simulation of Reaction-Based Models

300W and 2910 GFlops for Nvidia Tesla K80. According to these data, the same theoretical
peak of the Tesla K80 GPU can be achieved using either 6 CPUs or 3 Xeon Phi 7120P, with
the consequent increment in terms of financial cost and power consumption. However, to
fully leverage the computational power of the CPU, the implementation would require the
extensive use of FMA, AVX and multithreading, requiring relevant modifications of the code.

As a final remark, we highlight that the performances of GPUs and MICs are affected
by the ECC, used to avoid any error caused by natural radiations [131]. This functionality
is enabled on both accelerators on the GALILEO supercomputer and introduces a relevant
overhead, mainly due to bits verification. According to the tests performed by Fang et al.,
the ECC on MIC coprocessors causes a bandwidth reduction greater than 20% [131]. Tesla
GPUs exploit ECC over the whole memory hierarchy, including the global memory, L1 and
L2 caches, and registers [302]. Also in the case of GPUs the bandwidth reduction is around
20% [237], so we expect that the speed-up obtained using GPUs and MIC for stochastic
simulations could be further improved by disabling the ECC.

Chapter 5

Parameter Estimation of biological
systems

In this chapter we present some methodologies to address the Parameter Estimation (PE)
problem of biological systems, all based on global optimization approaches. In order to
tackle the high computational time required by the PE problem, tools accelerated on Graphics
Processing Units (GPUs) are exploited in the fitness calculation of the individuals. First,
the PE of small-scale models is presented; in this context, a thorough analysis about the
application of several global optimization approaches is proposed, showing that the PE
problem is completely different to the classic benchmark functions [311, 432]. Afterwards, a
multi-swarm PE approach [430] is proposed to deal with optimization problems characterized
by multiple targets, as in the case of experimental measurements of biological systems, which
are obtained under different conditions. Finally, we present the application of Fuzzy Self-
Tuning Particle Swarm Optimization (FST-PSO) to the PE problem of large-scale models
[442].

In what follows, we denote by P the size of the population (except for the Bat Algorithm
where B indicates the number of bats), by D the number of dimensions of the search space,
and by β min

d and β max
d (with d = 1, . . . ,D) the boundaries along the d-th dimension of the

search space.

5.1 Fitness function definition

In this section we provide a formal definition of the fitness function used in the PE to evaluate
the quality of the individuals, starting from the available target experimental data. We assume
here to have a complete knowledge of the stoichiometric matrices A and B of the biological

152 Parameter Estimation of biological systems

system Ω under investigation (see Section 1.1.1), as well as the initial concentrations of all
molecular species.

The target data required by the PE process can be formalized as the experimental mea-
surement of a subset of species S ′ = {S1, . . . ,SQ} ⊆ S, with Q ≤ N, where N indicates
the total number of species in Ω. In particular for single swarm PE, a discrete-time series
consisting of experimental data, sampled at a finite set of time points τ1, . . . ,τF , is assumed
to be available for each Sq ∈ S ′. This set of measurements, denoted by Yq(τ f)—which
represents the concentration of the species Sq measured at time τ f (for each q = 1, . . . ,Q
and f = 1, . . . ,F)—is called Discrete-Time Target Series (DTTS). The PE is carried out by
comparing the DTTS with the corresponding simulated dynamics of the species in S ′. To
be more precise, for each species Sq ∈ S ′ and for each time point τ f , the fitness function is
calculated as the distance between the experimental measure Yq(τ f) and the corresponding
simulated concentrations Xk

q (τ f), obtained with the parameterization k, as follows:

F(k) =
F

∑
f=1

Q

∑
q=1

|Yq(τ f)−Xk
q (τ f)|

Yq(τ f)
. (5.1)

F(·) measures the relative point-to-point distance between the DTTS and the simulation
dynamics, considering all the species in S ′ and all the sampled time instants τ f , therefore
assessing the quality of the candidate parameterization k with respect to the target DTTS.
Hence, the PE problem consists in minimizing F(k) to the aim of identifying a vector k that
provides a simulated dynamics that overlaps the DTTS.

The fitness function in Equation 5.1 has been defined considering that (i) this function
correctly reflects the overlapping of the simulated dynamics with respect to the available
experimental data; (ii) differently from common Root Mean Squared Error, Equation 5.1
exploits the normalization term at the denominator to accumulate relative distances instead
of absolute distances, in order to prevent the most abundant chemical species to have a higher
impact on the final fitness value. Notice that this fitness function represents a variant of
the Mean Absolute Percent Error (MAPE) [106]. The fitness landscape shaped by MAPE
is identical to that defined by Equation 5.1, although it is scaled due to the multiplicative
constant used by MAPE to calculate the average of the contributions.

In the case of the typical scenario of biological laboratory research, the PE methods have
to take into account as target of the PE a set of discrete-time measurements, obtained under
different experimental conditions. In multi-swarm approaches, a single series of target data
is assigned to each swarm and, during the optimization, the best individual of each swarm
can migrate to the aim of obtaining a set of reaction constants that simultaneously fits all the
experimental data. As target data for the PE task, these methods exploit a set of different

5.2 Single swarm PE of small-scale models 153

experimental conditions, each one corresponding to some genetic, chemical or environmental
perturbation of the system under investigation. Therefore, we assume the availability of the
following experimental target data:

1. a set E of experimental measurements corresponding to E different initial conditions,
with E ≥ 1, which we assume to be characterized by distinct initial amounts of some
molecular species in S;

2. for each initial condition, we consider the measurement of the concentrations of a
subset of species S ′ = {S1, . . . ,SQ}⊆ S , with Q ≤ N, determined by means of standard
laboratory technologies;

3. for each initial condition, the experimental data are assumed to be taken at some time
points τ1, . . . ,τF , not necessarily sampled at regular intervals along the time course of
the experiment.

In what follows, we denote by Y e
q (τ f) the amount of the species Sq, measured at time

τ f of the e-th initial condition, with q = 1, . . . ,Q, f = 1, . . . ,F , e = 1, . . . ,E. As in the
case of single swarm, this set of measures is called DTTS. We denote by Xke

q (τ f) the
simulated concentrations of the target species Sq at time τ f in the e-th initial condition, with
q = 1, . . . ,Q, f = 1, . . . ,F and e = 1, . . . ,E, obtained by using some values k1, . . . ,kM of the
kinetic constants, as specified in an arbitrary vector ke, where M is the number of reactions
in Ω. The fitness function associated with the parameterization ke is calculated as follows:

Fe(ke) =
F

∑
f=1

Q

∑
q=1

|Y e
q (τ f)−Xke

q (τ f)|
Y e

q (τ f)
. (5.2)

The function Fe(ke) represents the normalized point-to-point distance between the DTTS and
the simulated dynamics referring to the e-th initial condition, calculated using the amounts
of all species in S ′ sampled at each time instant τ f . Please notice that, in order to determine
the vector ke that provides a simulated dynamics overlapping at best the DTTS, the fitness
function Fe(ke) has to be minimized.

5.2 Single swarm PE of small-scale models

In all the methodologies proposed below, we exploited cupSODA [306] to perform the
simulations required to evaluate the quality of the individuals in the swarm that encode the
putative model parameterizations. cupSODA allows for executing in a parallel fashion on the
cores of the GPU all the calculations needed by this task.

154 Parameter Estimation of biological systems

5.2.1 Comparison of the performance of PPSO with PSO

In this section we compare the performances of Proactive Particles in Swarm Optimization
(PPSO) and Particle Swarm Optimization (PSO) (see Section 2.3.5 and 2.3.4, respectively)
for the PE of two Reaction-Based Models (RBMs): the Prokaryotic Gene Network (PGN)
(see Appendix A.4) and the eukaryotic Heat Shock Response (HSR) (see Appendix A.2)
[310]. The capability of PPSO (with respect to standard PSO) to correctly estimate a fitting
parameterization of these two biochemical systems are assessed, in conditions characterized
by an increasing number of particles and by different initialization strategy for the positions
of the particles within the search space.

In all tests presented hereby, PPSO and PSO have the following settings: (i) damping
boundary conditions; (ii) maximum velocity vmax

d = 0.2 · |β max
d −β min

d |, for all d = 1, . . . ,D;
(iii) number of iterations ITMAX = 400. In PSO we also set ccog = 2.0, csoc = 2.0 and inertia w
linearly decreasing from 0.9 (at iteration 0) down to 0.4 (at iteration 400), which correspond
to some values typically used in literature (see, e.g., [118, 388, 435, 43]).

We investigate the quality of the best model parameterization found by PPSO and PSO,
and their respective computational time, by varying the number of particles in the swarm,
i.e., by setting P = 32,64,128,256,512. The quality of the model parameterizations encoded
by particles is assessed by considering the Average Best Fitness (ABF) over Θ independent
repetitions. The ABF at iteration t is calculated as ABF(t) = 1

Θ ∑
Θ

θ=1Fθ ,t(k), where Fθ ,t(k)
denotes the best fitness found during the t-th iteration of the θ -th optimization. Here, the ABF
is calculated considering Θ = 20 repetitions of the optimization. Since we are minimizing
the fitness values, a smaller ABF corresponds to a better result.

As additional task, we test the impact on the PE outcome of two different initialization
strategies, namely uniform and log-uniform (i.e., a uniform distribution in the logarithmic
space) [73]. In the uniform initialization strategy the d-th component of a particle is sampled
with a uniform distribution in the interval [β min

d , β max
d]. In the log-uniform initialization

strategy, the d-th component of a particle is equal to exp
(

ln(β min
d)+ ln(β max

d
β min

d
) ·rnd

)
, where

rnd is a random number sampled with uniform distribution in [0,1). The log-uniform
sampling is exploited here since it allows for uniformly spanning the different orders of
magnitude of the search space by using a reduced set of samples, which is particularly
appropriate in the case of the PE of biological systems [73]. Notice that in what follows, we
refer to the log-uniform distribution as logarithmic.

5.2 Single swarm PE of small-scale models 155

0 50 100 150 200 250 300 350 400
Iterations

0

10

20

30

40

50
Av

er
ag

e
B

es
t F

itn
es

s
PPSO
PSO

0 50 100 150 200 250 300 350 400
Iterations

0

10

20

30

40

50

Av
er

ag
e

B
es

t F
itn

es
s

PPSO
PSO

0 50 100 150 200 250 300 350 400
Iterations

0

10

20

30

40

50

Av
er

ag
e

B
es

t F
itn

es
s

PPSO
PSO

0 50 100 150 200 250 300 350 400
Iterations

0

10

20

30

40

50

Av
er

ag
e

B
es

t F
itn

es
s

PPSO
PSO

Fig. 5.1 Comparison of the ABF obtained by PPSO (green dotted line) and PSO (red
solid line), using the uniform (top) and logarithmic (bottom) initialization strategies for the
optimization of the PGN model. Left (right) panels correspond to a swarm with P = 32
(P = 512) particles.

PE of the PGN model

The PE of the PGN model was performed by considering D = 8 dimensions of the search
space, with boundaries equal to β min

d = 1 ·10−10 and β max
d = 100, for each d = 1, . . . ,D. The

DTTS for the PGN model were generated in silico, by sampling 10 points from a simulation
realized by using a reference kinetic parameterization. The initial condition is: 500 molecules
of the species DNA; zero molecules of all other species.

The first set of tests allowed us to assess the influence of the swarm size and the initial-
ization strategy on the performance of PPSO and PSO. To this aim, we performed different
PE tasks with an increasing number of particles P in the swarm, observing that with both
initialization strategies the ABF decreases as the number of particles increases. For any
tested value of P, our results highlighted that PPSO and PSO are characterized by a compa-
rable convergence speed, and they reach similar results in terms of ABF at the end of the
optimization process.

In Figure 5.1 we show the results obtained with P= 32 and P= 512 particles in the swarm
(left and right panels, respectively). The plots clearly show that the uniform initialization

156 Parameter Estimation of biological systems

0 3 6 9 12 15
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ol

ec
ul

ar
 c

on
ce

nt
ra

tio
n

1e 4 mRNA
Uniform
Logarithmic
DTTS

0 3 6 9 12 15
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ol

ec
ul

ar
 c

on
ce

nt
ra

tio
n

1e 4 mRNA
Uniform
Logarithmic
DTTS

0 3 6 9 12 15
Time [s]

0

1

2

3

4

5

6

M
ol

ec
ul

ar
 c

on
ce

nt
ra

tio
n

1e 6 P
Uniform
Logarithmic
DTTS

0 3 6 9 12 15
Time [s]

0

1

2

3

4

5

6

M
ol

ec
ul

ar
 c

on
ce

nt
ra

tio
n

1e 6 P
Uniform
Logarithmic
DTTS

Fig. 5.2 Temporal dynamics of the species mRNA (top) and P (bottom) of the PGN model
obtained with the best parameterization found by PSO (left) and PPSO (right) in the case
of P = 512 particles. Dots represent the DTTS target used in the PE, solid (dashed) lines
represent the simulation realized by using the best parameterization found during the 20
repetitions of the optimization exploiting the uniform (logarithmic) initialization strategy.

strategy (top panels) has worse performances compared to the logarithmic one (bottom
panels), confirming the results obtained in [73]. As a matter of fact, with the uniform
initialization strategy, both PSO and PPSO get stuck into local minima (characterized by a
fitness value around 20), while the logarithmic strategy allows particles to perform a better
initial exploration of the search space, therefore finding better solutions.

Figure 5.2 shows the dynamics of the species mRNA and P of the PGN model, generated
by considering the best model parameterization found by PSO (left) and PPSO (right), in the
case of a swarm with P = 512 particles. We observe that, despite the low number of points
in the DTTS, our PE methodology was robust enough to converge to a good solution in the
case of the logarithmic initialization. This model parameterization results in a dynamics that
perfectly overlaps the target data, both in the case of PSO and PPSO.

5.2 Single swarm PE of small-scale models 157

0 50 100 150 200 250 300 350 400
Iterations

0

20

40

60

80

100
Av

er
ag

e
B

es
t F

itn
es

s
PPSO
PSO

0 50 100 150 200 250 300 350 400
Iterations

0

20

40

60

80

100

Av
er

ag
e

B
es

t F
itn

es
s

PPSO
PSO

0 50 100 150 200 250 300 350 400
Iterations

0

20

40

60

80

100

Av
er

ag
e

B
es

t F
itn

es
s

PPSO
PSO

0 50 100 150 200 250 300 350 400
Iterations

0

20

40

60

80

100

Av
er

ag
e

B
es

t F
itn

es
s

PPSO
PSO

Fig. 5.3 Comparison of the ABF obtained by PPSO (green dotted line) and PSO (red
solid line), using the uniform (top) and logarithmic (bottom) initialization strategies for the
optimization of the HSR model. Left (right) panels correspond to a swarm with P = 32
(P = 512) particles.

PE of the HSR model

Here, we exploited the RBM of the HSR presented in [340], whereby the molecular mech-
anisms of HSR are formalized by means of 17 reactions among 10 species. The PE of
the HSR model was performed by considering D = 16 dimensions, since the value of the
kinetic constant of a reaction is known and it is therefore kept to its real value throughout
the optimization (namely, the protein misfolding rate occurring at 42◦C). The search space
boundaries were fixed to β min

d = 1 ·10−9 and β max
d = 100, for each d = 1, . . . ,D.

The first set of tests allowed us to assess the influence of the swarm size and the initial-
ization strategy on the performance of PPSO and PSO for the PE of this model. Similarly
to the analysis and results carried out for the PGN model, we observed that, with both
initialization strategies, the ABF decreases as the number of particles increases from P = 32
to P = 512. Moreover, while the uniform initialization strategy prevented the convergence
of both PPSO and PSO, the best results were obtained with the logarithmic strategy. As in
the case of the PGN model, we observed that both PPSO and PSO are characterized by a

158 Parameter Estimation of biological systems

0 2000 4000 6000 8000 10000 12000 14000
Time [s]

0

5

10

15

20

25

30

35

hs
f 3

:h
se

 c
on

ce
nt

ra
tio

n

Uniform P=32
Logarithmic P=32
Logarithmic P=128
Logarithmic P=512
DTTS

0 2000 4000 6000 8000 10000 12000 14000
Time [s]

0

5

10

15

20

25

30

35

hs
f 3

:h
se

 c
on

ce
nt

ra
tio

n

Uniform P=32
Logarithmic P=32
Logarithmic P=128
Logarithmic P=512
DTTS

Fig. 5.4 Temporal dynamics of the hsf3:hse species of the HSR model obtained with the best
parameterization found by PSO (left) and PPSO (right). Dots represent the DTTS target
used in the PE, dotted line corresponds to the best parameterization found during the 20
repetitions of the optimization exploiting the uniform initialization strategy. Solid and dashed
lines refers to the best parameterization found by using the logarithmic strategy with 32, 128
and 512 particles.

similar convergence speed, and they reach similar results in terms of the ABF at the end of
the optimization process.

In Figure 5.3 we show the results obtained with P = 32 and P = 512 particles in the
swarm (left and right panels, respectively). With the uniform initialization strategy (top
panels) both PSO and PPSO get stuck to very high values of the fitness (around 90), while
the logarithmic initialization strategy (bottom panels) allows for achieving better results. In
particular, in the case of logarithmic initialization and swarm size P = 512, although PPSO
has a slightly higher ABF with respect to PSO, it is characterized by a larger variance. Thanks
to this behavior, the best fitting individuals (i.e., model parameterizations with lower fitness
value) were identified by PPSO. Specifically, Figure 5.4 shows the dynamics of the hsf3:hse
species of the HSR model, generated by using the best parameterization found by PSO
(left) and PPSO (right). We observe that, in the case of PPSO with logarithmic initialization
strategy, all simulated dynamics perfectly overlap the target DTTS. On the contrary, PSO
with P = 128 particles and logarithmic initialization strategy obtained a parameterization
that cannot fit the DTTS, especially in the first part of the dynamics. Finally, for both
PPSO and PSO, the uniform initialization strategy prevented the convergence to a correct
parameterization.

Analysis of the performance of PPSO

The PE shown in previous two sections, executed with an increasing number of particles,
were realized to the aim of assessing the computational performance of PPSO against PSO.

5.2 Single swarm PE of small-scale models 159

For the tests, we compared the performances of a Nvidia GeForce GTX Titan Z with 2880
cores (clock 837MHz) with a Central Processing Unit (CPU) Intel Core i7-4790K (clock
4GHz).

Thanks to the GPU acceleration, the execution time with respect to the CPU was strongly
reduced. In particular, we performed an experiment, tailored on the Titan Z, to execute a
PE of the HSR model using swarms with P = 2880 particles that required 1514 seconds
(approximately 25 minutes), while the execution on the CPU took 202392 seconds (approxi-
mately 56 hours), meaning that we achieved a speed-up of 133×. These results highlight the
importance of GPU parallelization provided by cupSODA [306] for the simulations and the
fitness calculations.

As a final remark, we stress the fact that cupSODA is not the only source of computational
acceleration of our PE methodology. Indeed, with respect to standard PSO, also PPSO is able
to reduce the overall running time. Although PPSO is computationally more expensive than
PSO—due to the Θ(P · ITMAX) Sugeno inferences required by the fuzzy rules—according to
our tests a batch of 20 PE tasks with PPSO takes about 3 hours less than a batch of 20 PE
tasks with PSO (with equal conditions). We argue that this speed-up is due to the capabilities
of the fuzzy reasoner to allow the proactive particles to escape the regions characterized by a
high fitness value. On the contrary, we believe that PSO is less efficient in escaping these
regions, because the cognitive factor has a fixed weight in the velocity update. The regions
with high fitness values are generally characterized by “extreme” model parameterizations
that can lead to stiffness of the system of Ordinary Differential Equations (ODEs), therefore
slowing down the simulation. This condition is automatically tackled by cupSODA, which
switches to implicit integration methods. We remember that implicit integration requires
multiple evaluations of the Jacobian matrix, which has a relevant computational complexity.
As a consequence, PSO might require longer execution times since more particles in its
swarm risk to remain stuck into bad regions of the search space.

The results obtained in this work highlight that PPSO represents a valuable alternative
to classic PSO, allowing for a correct and accurate estimation of the kinetic parameters
of mathematical models of biochemical systems, remarkably without the need for a fine-
tuning of the functioning settings. As a matter of fact, PPSO works “out-of-the-box” by
automatically selecting the inertia weight, the cognitive factor and the social factor of each
particle, adjusting these settings according to the run-time performance of each particle in the
swarm. In addition, the results confirm the analysis presented in [73], where the logarithmic
strategy for the particle initialization was identified as more effective than the classic uniform
initialization strategy for this particular application.

160 Parameter Estimation of biological systems

We will further investigate this hypothesis by analyzing and comparing the distributions of
particles in the search space by using the two optimization algorithms, to possibly determine
a quantitative relationship among the particle behavior, their fitness values and the overall
running time.

5.2.2 Comparison of the performance of DBLA with PSO

In this section we compare the performances of Bat Algorithm with differential operator and
Lévy flights trajectories (DLBA) and PSO (see Section 2.3.3 and 2.3.4, respectively) for the
PE of PGN and HSR models [426].

In all tests, PSO has the following settings: (i) damping boundary conditions; (ii) max-
imum velocity vmax

d = 0.2 · |β max
d − β min

d |, for all d = 1, . . . ,D; (iii) number of iterations
ITMAX = 400; (iv) cognitive factor ccog = 2.0 and social factor csoc = 2.0; (v) inertia w linearly
decrementing from 0.9 down to 0.4, according to [73]. The settings used in DLBA are: (i)
frequencies f1,min = f2,min = 0 and f1,max = f2,max = 1; (ii) initial loudness A0 sampled with
uniform distribution in [1,2); (iii) initial pulse rate r0 sampled with uniform distribution in
[0,0.1); (iv) α parameter is fixed to 0.9; (v) nt parameter is fixed to 5000, as suggested in
[474]. In the specific case of uniform initialization strategy, we set fmax = D, which helps
to prevent premature convergence of DLBA (see Figure 5.5). In order to perform a fair
comparison between DLBA and PSO, we fixed the number of iterations ITMAX of DLBA equal
to 133, since each iteration of this algorithm requires three fitness evaluations for each bat.
The quality of the best model parameterization found by DLBA and PSO, and their respective
computational time, are investigated by varying the number of individuals in the swarm (i.e.,
P = B = 32,64,128,256,512). We run Θ independent repetitions and considered the ABF
to evaluate the quality of the model parameterizations encoded by individuals. Here, we run
Θ = 20 repetitions of the optimization algorithms to calculate the ABF. Furthermore, we
exploited two different strategies—uniform and logarithmic—for the initial distribution of
individuals in the search space to test the impact on the PE outcome.

PE of the PGN model

The PE of the PGN model considers D = 8 dimensions of the search space, with boundaries
equal to β min

d = 1 · 10−10 and β max
d = 100 for each d = 1, . . . ,D. The DTTS of the PGN

model were generated in silico, by sampling 10 points from a simulation realized by using a
reference kinetic parameterization.

In the set of tests performed on the PGN model, we show the influence of the swarm size
and the initialization strategy on the performance of DLBA and PSO. To this aim, different PE

5.2 Single swarm PE of small-scale models 161

0 50 100 150 200 250 300 350 400
Fitness evaluations

0

10

20

30

40

50

A
ve

ra
g

e
 B

e
st

 F
it

n
e
ss

DLBA fmax = 1

DLBA fmax =D

Fig. 5.5 ABF obtained by DLBA with fmax = D = 8 (green dotted line) and fmax = 1 (red
solid line), using uniform initialization with B = 32 bats for the optimization of the PGN
model. The colored areas around the ABF lines represent the standard deviation. Note that
the x-axis reports the number of fitness evaluations performed by each individual in the
swarm.

tasks with an increasing number of individuals P=B in the swarm are performed. We observe
that with both initialization strategies, when the number of individuals increases the ABF
decreases. The results shown in Figure 5.6 highlight that DLBA and PSO have a comparable
convergence speed and reach similar results in terms of ABF, but DLBA achieves better
(worse) fitness than PSO with uniform (logarithmic) distribution. By exploiting the uniform
initialization, both DLBA and PSO suffer from premature convergence; on the contrary, this
issue is mitigated by the improved exploration of different orders of magnitude allowed by
logarithmic sampling. In accordance with [73], these results clearly show how the logarithmic
initialization employed here (right panels) allows for achieving better performance compared
to uniform one (left panels).

Figure 5.7 reports the dynamics of the species P of the PGN model, obtained with the best
model parameterization found by PSO (left) and DLBA (right) with P = B = 32 individuals.
In the case of logarithmic initialization, the PE methodology converges to a good solution
despite the low number of points in the DTTS, achieving a simulation of the dynamics that
perfectly overlaps with the target data.

162 Parameter Estimation of biological systems

0 50 100 150 200 250 300 350 400
Fitness evaluations

0

10

20

30

40

50

A
ve

ra
g

e
 B

e
st

 F
it

n
e
ss

PSO 32 particles

PSO 512 particles

DLBA 32 bats

DLBA 512 bats

0 50 100 150 200 250 300 350 400
Fitness evaluations

0

10

20

30

40

50

A
ve

ra
g

e
 B

e
st

 F
it

n
e
ss

PSO 32 particles

PSO 512 particles

DLBA 32 bats

DLBA 512 bats

Fig. 5.6 Comparison of the ABF obtained by DLBA and PSO with P = B = 32 and P = B =
512 individuals, using the uniform (left) and logarithmic (right) initialization strategies for
the optimization of the PGN model. The colored areas around the ABF lines represent the
standard deviation. Note that the x-axis reports the number of fitness evaluations performed
by each individual in the swarm.

0 3 6 9 12 15
Time [s]

0

1

2

3

4

5

6

7

8

M
o
le

cu
la

r
co

n
ce

n
tr

a
ti

o
n

1e 6 P
Uniform

Logarithmic

DTTS

0 3 6 9 12 15
Time [s]

0

1

2

3

4

5

6

7

M
o
le

cu
la

r
co

n
ce

n
tr

a
ti

o
n

1e 6 P
Uniform

Logarithmic

DTTS

Fig. 5.7 Temporal dynamics of the species P of the PGN model obtained with the best
parameterization found by PSO (left) and DLBA (right) in the case of 32 individuals. Red
dots represent the DTTS used in the PE, solid (dashed) lines represent the simulation realized
by using the best parameterization found during the 20 repetitions of the optimization
exploiting the uniform (logarithmic) initialization strategy.

PE of the HSR model

In the set of tests performed on the HSR model, we investigated again the influence of the
swarm size and the initialization strategy on the performance of DLBA and PSO. Similarly
to the results obtained for the PGN model, in both initialization strategies, the ABF decreases
when the number of individuals increases from 32 to 512. Moreover, while PSO suffers
from premature convergence with the uniform initialization, DLBA obtains an almost good
parameterization also using this initialization strategy. As in the case of the PGN model, the
best results were obtained with the logarithmic strategy, whereas both DLBA and PSO are
characterized by a similar convergence speed and obtain similar ABF values.

5.2 Single swarm PE of small-scale models 163

0 50 100 150 200 250 300 350 400
Fitness evaluations

0

20

40

60

80

100
A

ve
ra

g
e
 B

e
st

 F
it

n
e
ss

PSO 32 particles

PSO 512 particles

DLBA 32 bats

DLBA 512 bats

0 50 100 150 200 250 300 350 400
Fitness evaluations

0

20

40

60

80

100

A
ve

ra
g

e
 B

e
st

 F
it

n
e
ss

PSO 32 particles

PSO 512 particles

DLBA 32 bats

DLBA 512 bats

Fig. 5.8 Comparison of the ABF obtained by DLBA and PSO with P = B = 32 and P =
B = 512 individuals, using the uniform and logarithmic initialization strategies for the
optimization of the HSR model. The colored areas around the ABF lines represent the
standard deviation. Left (right) panels correspond to uniform (logarithmic) distribution. Note
that the x-axis reports the number of fitness evaluations performed by each individual in the
swarm.

0 2000 4000 6000 8000 10000 12000 14000
Time [s]

0

5

10

15

20

25

30

35

h
sf

3
:h
se

 c
o
n

ce
n

tr
a
ti

o
n

Uniform P=32

Uniform P=512

Logarithmic P=32

Logarithmic P=128

Logarithmic P=512

DTTS

0 2000 4000 6000 8000 10000 12000 14000
Time [s]

0

5

10

15

20

25

30

35

h
sf

3
:h
se

 c
o
n

ce
n

tr
a
ti

o
n

Uniform B=32

Uniform B=512

Logarithmic B=32

Logarithmic B=128

Logarithmic B=512

DTTS

Fig. 5.9 Temporal dynamics of the species hsf3:hse of the HSR model obtained with the best
parameterization found by PSO (left) and DLBA (right). Red dots represent the DTTS used
in the PE, solid line corresponds to the best parameterization found during the 20 repetitions
of the optimization by exploiting the uniform initialization strategy. Dotted and dashed lines
refers to the best parameterization found by using the logarithmic strategy with 32, 128 and
512 individuals.

In left and right panels of Figure 5.8 are shown the results obtained with the uniform and
logarithmic initialization strategies, respectively. The left panel shows that PSO get stuck to
very high fitness values (around 90) with the uniform initialization strategy with P = 32 and
P = 512, while DLBA reaches a fairly good fitness values (around 45) with B = 512. Better
results are achieved by both PSO and DLBA with the logarithmic initialization strategy
(right panel); the best solutions found at the end of the optimization process are comparable
between the two algorithms both in the case of 32 and 512 individuals. In almost all tests,

164 Parameter Estimation of biological systems

DLBA is characterized by a larger variance and for this reason it is able to identify the best
fitting individuals (i.e., model parameterizations with the lowest fitness value).

In Figure 5.9 are shown the dynamics of the species hsf3:hse of the HSR model, obtained
with the best model parameterizations found by PSO (left) and DLBA (right) under different
conditions. Considering the logarithmic initialization strategy, both PSO and DLBA obtained
parameterizations that fit the DTTS; however, in the case of B= 32 bats and P= 128 particles
the first part of the dynamics is not perfectly overlapped with the DTTS. On the contrary, the
uniform initialization strategy prevented the convergence to an optimal parameterization in
the case of PSO, while DLBA is able to identify a set of kinetic values that fits the DTTS.

Analysis of the performance of DLBA

The aforementioned PEs were executed with an increasing number of individuals to assess
the computational performance of DLBA against PSO. The GPU acceleration allowed us
to strongly reduce the execution time with respect to the CPU. For the tests, a Nvidia
GeForce GTX Titan Z (2880 cores, clock 837MHz) was compared with a CPU Intel Core
i7-4790K (clock 4GHz). To show the importance of parallelization of the simulations and the
corresponding fitness calculations, we performed an experiment that saturates the Titan Z. In
this task, we executed a PE of the HSR model using swarms with B = 2880 bats, achieving a
speed-up of 61× since the PE on the CPU required around 83 hours, while the execution on
the GPU required around 80 minutes. Besides cupSODA, DLBA itself is able to reduce the
overall running time, with respect to PSO. Indeed, the efficiency of a metaheuristic search
algorithm is based on balancing between intensification (exploitation) and diversification
(exploration). Lévy flights generate new solutions that allow for escaping from local minima,
i.e., regions of the search space with high fitness values. These regions are characterized
by solutions that can lead to ODE stiffness, slowing down the simulations since cupSODA
switches to implicit integration methods. Avoiding these regions, DLBA takes about 10
hours less than PSO (with equal conditions) to execute a batch of 20 different optimizations
for the PE problem.

According to our results, DLBA represents a valuable alternative to classic PSO. In our
tests, DLBA outperformed PSO when the uniform initialization is employed. However, with
both algorithms, the logarithmic initialization improves the ABF, confirming the results
presented in [73].

5.2 Single swarm PE of small-scale models 165

5.2.3 Reboot strategies in PSO

In this section, three different reboot strategies for PSO are presented [409, 410], whose
aim is to reinitialize particle positions to avoid particles to get trapped in local optima. We
compare the performance of PSO coupled with the reboot strategies with respect to standard
PSO in the case of the PE of two biochemical systems, namely, the HSR model and the
Ras/cAMP/PKA signaling pathway in yeast (see Appendix A.5).

Over the years, different works presented modifications aimed to improve the standard
PSO algorithm. Some of them introduced specific strategies that attempted to overcome
stagnation of the swarm in local minima, either by implementing hybrid PSO approaches
[332, 453, 323] or reboot strategies that re-initialize all particles in the swarm [146, 107] in
the case of problems characterized by very large search spaces. Here, we define different
reboot strategies in which the particles are re-initialized if they are too close to the global best
position found so far by the swarm, or if the global or local best positions remain unchanged
for a given number of iterations.

Reboot strategies in PSO are introduced to avoid early convergence of the swarm and
stagnation of particles in local minima. An efficient reboot strategy should accurately identify
the particles that are no longer exploring effectively the search space, and re-initialize
their positions to improve diversity in the swarm and possibly achieve a better exploration.
Different reboot strategies were previously integrated in PSO [146, 107] to deal with the
problem of continuous optimization in large search spaces. In this context, a “restart” of the
algorithm is implemented by re-initializing all particles in the swarm except for the global
best position found so far.

We designed three different reboot strategies and assessed their impact on the performance
of PSO applied to the PE of the kinetic constants of biochemical systems. In particular, our
three reboot strategies, namely Global, Local and Distance, are defined as follows:

• Global: if the global best position g remains unchanged for η iterations, where η is a
user-defined parameter, the position xi is re-initialized by sampling from a logarithmic
distribution in (β min

d ,β max
d), the local best position bi is set to xi and the velocity vi is

reset to 0, for each particle i of the swarm;

• Local: if the local best position bi of a particle i does not change for η iterations, its
position xi is re-initialized by sampling from a logarithmic distribution in (β min

d ,β max
d),

its local best position bi is set to the new position and its velocity vi is reset to 0;

• Distance: at each iteration, if ∥b∗
i − g∗∥< θ , the position xi of the particle i is re-

initialized by sampling from a logarithmic distribution in (β min
d ,β max

d), its local best

166 Parameter Estimation of biological systems

0 200 400 600 800 1000
Iterations

30

40

50

60

70

80

Av
er

ag
e

B
es

t F
itn

es
s

Standard PSO
standard n = 32
standard wdec

standard n = 512

standard n = 32 standard wdec standard n = 5120

20

40

60

80

Fi
tn

es
s

Fig. 5.10 Top: ABF comparison of the PE executed on the HSR model with PSO having
swarm size n = 32 and inertia w = 0.729 (red line), swarm size n = 512 and decreasing
inertia w (green line), and swarm size n = 512 and inertia w = 0.729 (gray line). Bottom:
boxplots obtained considering the best fitness values reached by PSO during the last iteration
of each optimization, with the same settings specified above. The red line corresponds to the
median, while the blue line corresponds to the mean of the distribution.

position bi is set to the new xi and its velocity vi is reset to 0. θ is a user defined
parameter, b∗

i = (log10 (bi,1), . . . , log10 (bi,D)) and g∗ = (log10 (g1), . . . , log10 (gD)) are
the logarithmic transformation of bi and g, respectively.

In all tests presented hereby, PSO has the following settings: (i) damping boundary
conditions; (ii) maximum velocity vmax

d = 0.2 · |β max
d − β min

d |, for all d = 1, . . . ,D; (iii)
number of iterations ITMAX = 1000. We also set ccog = csoc = 1.494, which correspond to
values used in literature (see, e.g., [443]). Moreover, we compared the effect of decreasing

5.2 Single swarm PE of small-scale models 167

and fixed values for the inertia parameter w. In particular, we used an inertia decreasing from
w = 0.9 to w = 0.4, and a fixed inertia value equal to w = 0.729 [443].

The performances of the different optimization strategies are assessed by considering
the ABF over Θ independent repetitions of the PE. Here, the ABF is calculated over Θ = 20
repetitions of the optimization process.

PE of the HSR model

In the PE of the HSR model performed here, the DTTS were generated in silico by sampling
140 points from a simulation realized using a reference kinetic parameterization. In the first
set of tests, we assessed the influence of the swarm size and of the inertia updating strategy
on the standard PSO algorithm. In Figure 5.10 we show the results obtained with a swarm
size n = 32 and a fixed inertia w = 0.729, swarm size n = 512 and a linearly decreasing
inertia (from w = 0.9 to w = 0.4 throughout the entire simulation), and swarm size n = 512
and inertia w = 0.729. These results show that a larger number of particles produce lower
ABF values (see Figure 5.10, top) and reach better results at the end of the optimization
process with respect to a swarm of smaller size, as highlighted in the boxplots (Figure 5.10,
bottom). Moreover, Figure 5.10 shows that PSO with a fixed inertia outperforms PSO with a
decreasing inertia in the PE of this biochemical model, despite it has been previously shown
that a decreasing inertia allows for achieving better results on benchmark functions.

Figures 5.11, 5.12 and 5.13 show the results obtained by PSO implementing our three
different reboot strategies. In these tests we varied the threshold parameters exploited by the
reboot strategies, i.e., η for Global and Local, θ for Distance. While the performance of the
Distance reboot (Figure 5.13) appears to be strongly affected by the choice of θ values, both
Local (Figure 5.12) and Global (Figure 5.11) reboot strategies are robust with respect to the
choice of η values, as also indicated by the smaller dispersion in the boxplots. The threshold
parameters directly influence the number of reboots that take place at each iteration of PSO,
even though this does not necessary lead to better performance. For instance, by looking at
Figure 5.13 it is evident how θ = 0.1 performs better than θ = 0.01. Moreover, the latter is
even worse than in the case of θ = 0.25. Thus, it is necessary to find a good trade-off for the
threshold parameter, in order to prevent both excessive rebooting (i.e., particles are distant
and should not be rebooted, yet) and an insufficient rebooting (i.e., particles never actually
get that close to g, so that the reboot is never triggered).

Afterwards, we selected the best threshold values of each reboot strategy and compared
them against standard PSO. The results, presented in Figure 5.14, show that each of the three
strategies outperforms PSO both in terms of ABF and interquartile range of the final best

168 Parameter Estimation of biological systems

0 200 400 600 800 1000
Iterations

10

20

30

40

50

60

70

80
Av

er
ag

e
B

es
t F

itn
es

s
Global reboot

= 10
= 25
= 50
= 75
= 100

= 10 = 25 = 50 = 75 = 100

2

4

6

8

10

12

Fi
tn

es
s

Fig. 5.11 Top: ABF comparison of the PE executed on the HSR model with PSO implement-
ing the Global reboot strategies. Different colors correspond to different threshold values.
In all cases, the inertia value is set to w = 0.729 and the swarm size to n = 512. Bottom:
boxplots obtained considering the best fitness values reached by PSO coupled with the Global
reboot, during the last iteration of each optimization, with the same settings specified above.
The red line corresponds to the median, while the blue line corresponds to the mean of the
distribution.

fitness. In particular, the Global and Local reboot procedures obtain a better final ABF and a
very low statistical dispersion, as shown in the boxplots of Figure 5.14.

Since the Local strategy seemed to consistently outperform the other approaches, we
tested an additional reboot strategy: instead of sampling the new positions from a logarithmic
distribution, we used a lognormal distribution with mean equal to (log(β min

d)+ log(β max
d))/2

and σ equal to (log(β max
d)− log(β min

d))/2 [264]. In Figure 5.14 we denote the Local strategy

5.2 Single swarm PE of small-scale models 169

0 200 400 600 800 1000
Iterations

10

20

30

40

50

60

70

80
Av

er
ag

e
B

es
t F

itn
es

s

Local reboot
= 10
= 25
= 50
= 75
= 100

= 10 = 25 = 50 = 75 = 100
0

10

20

30

40

Fi
tn

es
s

Fig. 5.12 Top: ABF comparison of the PE executed on the HSR model with PSO implement-
ing the Local reboot strategies. Different colors correspond to different threshold values.
In all cases, the inertia value is set to w = 0.729 and the swarm size to n = 512. Bottom:
boxplots obtained considering the best fitness values reached by PSO coupled with the Local
reboot, during the last iteration of each optimization, with the same settings specified above.
The red line corresponds to the median, while the blue line corresponds to the mean of the
distribution.

based on logarithmic samples and lognormal samples with localloguni and locallognorm,
respectively. According to our results, the new version slightly improves the average perfor-
mance (top plot) although with a higher variance in the final ABF (bottom plot). Moreover,
the generation of lognormally distributed random deviates is more computationally demand-
ing than uniform random numbers (approximately five times slower). Due to these drawbacks,
localloguni remains the most reliable strategy for PSO reboots.

170 Parameter Estimation of biological systems

0 200 400 600 800 1000
Iterations

20

30

40

50

60

70

80
Av

er
ag

e
B

es
t F

itn
es

s
Distance reboot

= 0.01
= 0.1
= 0.25
= 0.5
= 0.75
= 1.0

= 0.01 = 0.1 = 0.25 = 0.5 = 0.75 = 1.0
0

20

40

60

80

Fi
tn

es
s

Fig. 5.13 Top: ABF comparison of the PE executed on the HSR model with PSO imple-
menting the Distance reboot strategies. Different colors correspond to different threshold
values. In all cases, the inertia value is set to w = 0.729 and the swarm size to n = 512.
Bottom: boxplots obtained considering the best fitness values reached by PSO coupled with
the Distance reboot, during the last iteration of each optimization, with the same settings
specified above. The red line corresponds to the median, while the blue line corresponds to
the mean of the distribution.

Finally, to verify the “goodness” of the PE results, we simulated the dynamics of the HSR
model by using the best parameterization found by PSO (over the 20 optimization runs) with
Local and Global reboot strategies. The temporal dynamics of the hsf3:hse species depicted
in Figure 5.15 shows that both the Local and Global reboot found a parameterization that
allows for closely approximating the target dynamics.

5.2 Single swarm PE of small-scale models 171

0 200 400 600 800 1000
Iterations

10

20

30

40

50

60

70

80
Av

er
ag

e
Be

st
 F

itn
es

s

Best settings
distance = 0.1
localloguni = 50
locallognorm = 50
global = 75
standard n = 512

distance = 0.1 localloguni = 50 locallognorm = 50 global = 75
0

20

40

60

80

Fi
tn

es
s

Fig. 5.14 Top: ABF comparison of the PE executed on the HSR model with standard PSO (n=
512 and w = 0.729), and PSO implementing the three different reboot strategies, performed
with their respective best parameter threshold. Bottom: boxplots obtained considering the
best fitness values reached by PSO and PSO coupled with the reboot strategies, during the
last iteration of each optimization, with the same settings specified above. The red line
corresponds to the median, while the blue line corresponds to the mean of the distribution.

PE of the Ras/cAMP/PKA signaling pathway

Here, we rely on the model of the Ras/cAMP/PKA signaling pathway (see Appendix A.5),
formalized by means of 35 reactions among 30 molecular species. The PE was performed by
considering D = 35 dimensions, and the search space boundaries were fixed to β min

d = 10−9

and β max
d = 10, for each d = 1, . . . ,D. The DTTS was generated in silico, by sampling 1000

points from a simulation realized by using a reference kinetic parameterization.

172 Parameter Estimation of biological systems

0 2000 4000 6000 8000 10000 12000 14000
Time [a.u.]

0

5

10

15

20

25
hs

f 3
:h

se
DTTS
local = 50
global = 75

Fig. 5.15 Temporal dynamics of the hsf3:hse species of the HSR model, obtained with the
best parameterization found by PSO coupled with the Local (η = 50) and Global (η = 75)
reboot strategies.

The size of this model, compared to the HSR model, further increases the complexity of
the PE task. Thus, to the aim of estimating the kinetic parameters of the Ras/cAMP/PKA
model, we exploited the reboot procedure that performed best in the previous tests, namely,
the Local reboot strategy with η = 50. Figure 5.16 shows the target data and the simulated
dynamics of the cAMP species obtained by using the best parameterization found by standard
PSO and PSO coupled with the Local reboot strategy. We observe that, on the one hand stan-
dard PSO was unable to find a correct parameterization; on the other hand, PSO coupled with
the Local reboot strategy identified an appropriate parameterization of the Ras/cAMP/PKA
model, achieving a dynamics that fits with the target data.

Conclusive remarks

The results presented in the previous sections highlight that a fixed inertia parameter seems
to be more convenient in the case of the PE problem. Moreover, we showed that reboot
strategies can be coupled with PSO to avoid early convergence and stagnation of the swarm,
thus achieving a correct and accurate estimation of the kinetic parameters of medium-size
mathematical models of biochemical systems (characterized by tens of chemical reactions).

In particular, the Local reboot strategy proved to be remarkably reliable, since it is
characterized by (i) a better convergence speed; (ii) lower ABF with respect to the other
considered strategies; (iii) a higher robustness with respect to different choices for its
functioning setting η .

5.2 Single swarm PE of small-scale models 173

0 200 400 600 800 1000 1200 1400
Time [a.u.]

0

20000

40000

60000

80000

100000

120000

140000

cA
M

P

DTTS
local = 50
standard n = 512

Fig. 5.16 Temporal dynamics of the cAMP species of the Ras/cAMP/PKA model, obtained
with the best parameterization found by standard PSO and PSO coupled with the Local
(η = 50) reboot strategy.

Moreover, we will apply the PE methodology based on PSO and cupSODA to more
complex models of biological systems, where standard approaches fail because of the
computational burden of the simulation process. Finally, when the biochemical systems under
investigation are characterized by molecular species present in small quantities, stochasticity
plays a fundamental role and cannot be neglected. In these situations, stochastic simulation
algorithms must be employed to calculate the fitness of PSO particles; we will therefore
replace cupSODA with cuTauLeaping [307]. We will also develop an appropriate fitness
function able to deal with complex and noisy dynamics, based on some statistical measure
computed according to the outcome of different repetitions of the stochastic simulations. |

5.2.4 Comparison between PE and benchmark functions

In this section we show that the state-of-the-art optimization methods, able to largely out-
perform other metaheuristics on benchmark functions, can be characterized by considerable
poor performances when applied to real-world problems, without considering their specific
peculiarities, like the PE.

Generally, the performances of these metaheuristics are assessed by relying on different
sets of benchmark functions, specifically designed to test the search capabilities of the various
optimization strategies [215]. However, when the same algorithms are applied to real-world
problems pertaining to different application domains, which can involve continuous or
discrete optimization tasks, their performances may considerably change. For instance, this

174 Parameter Estimation of biological systems

phenomenon was observed in the case of the optimization of atomic and molecular clusters
[112], building energy systems [221] and aircraft design [93]. This outcome is coherent
with the no free lunch theorem [471, 273], which states that no algorithm outperforms all
the competitors in any optimization problem, which imply that techniques with outstanding
performances in a benchmark test suite could not properly work on every real-world problems
[267]. For instance, Da Ros et al. [96] compared stochastic optimization methods (i.e.,
Artificial Bee Colony (ABC), Differential Evolution (DE), PSO, and Simulated Annealing)
for the estimation of kinetic parameters of a biochemical model for alcoholic fermentation
in bioreactors. Their results show that benchmark functions are not representative of real
optimization problems, and the evaluation of global optimization metaheuristics based on
these benchmark functions alone may induce strong biases.

Here, we exploit six well-known benchmark functions to compare the performances
of ABC, Covariance Matrix Adaptation Evolution Strategy (CMA-ES), DE, Estimation of
Distribution Algorithm (EDA), Genetic Algorithms (GAs), PSO, and its fuzzy-based settings-
free variant FST-PSO (see Chapter 2 for further details). Then, we apply the same algorithms
to the PE problem by using a set of synthetic biochemical models of increasing size (25 or
50 molecular species and reactions). By measuring the convergence speed and the quality
of the final results achieved by the different metaheuristics, we show that algorithms able
to perform efficiently on benchmark functions can be completely unfit for the PE problem.
In particular, to investigate the performance of the optimization algorithms listed above, we
exploited the computational tool described in Section 4.1 to randomly generate 12 different
instances of RBMs of increasing size (6 RBMs are characterized by 25 reactions and species,
6 RBMs are characterized by 50 reactions and species). Each RBM satisfies the following
characteristics:

• the initial concentrations of the molecular species are sampled from a logarithmic
distribution in the interval [10−6,1);

• the values of the kinetic constants are sampled from a logarithmic distribution in the
interval [10−8,10];

• only zero, first and second-order reactions (i.e., maxord = 2, meaning that at most 2
reactant molecules of the same or different species can appear in a reaction), are used
to create the stoichiometric matrix A;

• the stoichiometric matrix B is created using at most 2 product molecules for each
reaction (i.e., maxprod = 2).

5.2 Single swarm PE of small-scale models 175

We highlight that we exploited a logarithmic distribution since the concentrations and kinetic
constants of biochemical systems generally span over multiple orders of magnitude [485, 73].
Deterministic simulations of RBMs and the fitness function evaluations were executed in
parallel by offloading the calculations onto the GPU by means of cupSODA.

Benchmark function suites for numerical optimization

Several benchmark function suites have been proposed in the literature to evaluate the
performance of global optimization techniques, since real-world problems cannot be straight-
forwardly exploited to this purpose. Indeed, real-world problems are often characterized by
additional complex features that basic optimization algorithms might not be able to handle
[141]. Considering the specific case of real-parameter numerical optimization, every year
research competitions are organized by the IEEE Congress on Evolutionary Computation
(CEC) [92] and the Genetic and Evolutionary Computation Conference (GECCO). Among
them, it is worth mentioning the workshop on Real-Parameter Black-Box Optimization
Benchmarking (BBOB) [148] that exploits the COmparing Continuous Optimisers (COCO)
benchmarking platform [183]. In addition, there exist real-world problems that have intrinsic
discrete structure and solutions; in this context Doerr et al. [113] improved the COCO
software by introducing pseudo-Boolean optimization problems, providing an environment
to empirically analyze and evaluate the performance of pseudo-Boolean black-box heuristics.
A generalized and dynamic benchmark generator was also proposed in [256] to construct
dynamic environments in the binary, real and combinatorial spaces.

Even though many different benchmark functions were proposed for continuous op-
timization (e.g., global optimization, dynamic optimization, multimodal optimization), a
complete and unified framework for generating benchmark functions able to take into account
different properties pertaining to real-world problems has not been yet proposed. Recently,
an attempt in this direction was made by Li et al., who presented a novel framework that
aims at constructing benchmark functions having features that might be met in real-world
problems, such as non-linearity and discontinuity [255]. This framework is based on a
multidimensional tree, which is exploited to partition the search space and to select the best
set of simple functions for each subspace, according to the characteristics underlying the
considered subspace.

Results

The comparison of the performance of the metaheuristics exploited for the PE of 12 randomly
generated RBMs, and for the optimization of a commonly used suite of benchmark functions,

176 Parameter Estimation of biological systems

are presented here. Specifically, we employed the following functions from the CEC’17
benchmark problems for single-objective real-parameter numerical optimization

• the shifted/rotated Rosenbrock’s (f4) and Levy’s (f9) functions, as representatives
of multimodal and non-separable problems characterized by a large number of local
minima and whose optimum is not centered in 0;

• the hybrid Ackley’s (f13), Griewank’s (f15), expanded Griewank plus Rosenbrock
(f19), and Schaffer’s F7 (f20) functions.

It is worth noting that hybrid functions are composed of multiple subcomponents that are
assigned to different basis functions. The rationale is that hybrid functions represent strongly
non-separable problems, with subcomponents that are characterized by specific behavior
and sensitivity, supposedly mimicking real-world problems. Hybrid functions are designed
to reproduce the peculiarities of real-world problems; however, we will show that these
functions cannot capture all the characteristics of the fitness landscapes defined by the PE
problem.

Table 5.1 summarizes the functioning settings of all the metaheuristics used in this work.
The search space for the PE problem was set to [10−12,100]D, while for the benchmark
functions was set to [−100,100]D. The population size P was calculated by exploiting the
following heuristic:

P = 32×
⌈√

D
2

⌉
,

which takes into account both the number of dimensions D and the Compute Unified Device
Architecture (CUDA) warp size. The latter is critical to fully leverage the power of modern
GPUs to simulate the dynamics of the RBMs by means of cupSODA. A population size
P = 96 and P = 128 for D = 25 and D = 50, respectively, is obtained by applying the
aforementioned heuristic.

We used the implementation of ABC provided by the SwarmPackagePy library (v.
1.0.0a5). CMA-ES, DE, EDA, and GA were implemented by using the Distributed Evo-
lutionary Algorithms in Python (DEAP) framework (v. 1.0.2) [138]. We opted for this
specific library because it simplifies the integration of cupSODA (v. 1.1.0) for the fitness
evaluation. In the case of the algorithms implemented by using DEAP and SwarmPackagePy,
we tested off-the-shelf optimization by using the default settings. For PSO, we used the most
widespread settings relying on the analyses conducted in [448, 443, 409].

In order to collect statistically sound results, we performed 15 repetitions for each
metaheuristic keeping track of the best fitness value found during each iteration, and then
calculating the ABF. In the following figures, each metaheuristic is identified by a specific

5.2 Single swarm PE of small-scale models 177

Table 5.1 Functioning settings of the exploited optimization algorithms. n0, ne, ns are the
onlookers, employed and the scouts bees of ABC, respectively. χES

0 , σES
0 denote the initial

mean and initial step-size of CMA-ES, respectively. CR, F represent the crossover rate and
mutation strategy used for the DE/rand/1/bin strategy, respectively. χEDA

0 , σEDA
0 , λ µ are

the centroid of the search space, standard deviation, new individuals and best individuals
of EDA, respectively. pcr, pmu, κ = 3 represent the crossover rate (two point crossover),
mutation rate (Gaussian mutation with σGA = 1.0), and number of individuals involved in
each tournament in GA, respectively.

Algorithm Settings
ABC no = ⌊0.5 ·n⌋,ne = ⌊0.4 ·n⌋,ns = P−no −ne

CMA-ES χES
0 =

(
β max

d +β min
d

)
/2,σES

0 = 1.0
DE CR = 0.25,F = 1.0, mutation strategy: DE/rand/1/bin

EDA χEDA
0 =

(
β max

d +β min
d

)
/2,σEDA

0 = 1.0,λ = n,µ = 32
GA pmu = 0.2, pcr = 0.99, tournament selection (κ = 3), two point crossover,

Gaussian mutation with σGA = 1.0
PSO ccog = csoc = 1.496, w = 0.729,vmin

d = 0,vmax
d = 0.2 ·ψd , where ψd =

β max
d −β min

d
FST-PSO —

color: ABC is grey, CMA-ES is yellow, DE is pink, EDA is light blue, GA is blue, PSO is
green, and FST-PSO is orange. We also tested an alternative version of FST-PSO whose
minimum velocity throttling is disabled (rules 10− 12 [305]); we refer to this version as
FST-PSO (no vmin) and we depict it with the magenta color in the figures.

In Figures 5.17 and 5.18 we show the results concerning the convergence speed in terms
of ABF obtained by the metaheuristics on the benchmark functions with D = 25 dimensions
and on the RBMs with D = 25 kinetic constants to be estimated. The results reveal that in
the case of the benchmark functions, CMA-ES is characterized by the best performances,
except for the case of the f9 and f20 functions, where the classic PSO achieves the best result.
Interestingly, although CMA-ES largely outperformed the other algorithms in the case of the
rotated/shifted Rosenbrock’s function, it ranked last in the case of the hybrid Schaffer’s F7
f20. We also observe that the performances of DE are good with functions f9 and f20, while
they are limited with the other benchmark functions. EDA was outperformed by the other
algorithms on functions f4, f13 and f19, having an ABF orders of magnitude higher than the
competitor methods. FST-PSO is characterized by mixed performances, yielding some high
quality solution (e.g., f4, f15, f20) but never outperforming the other algorithms in any of the
tested benchmark functions.

178 Parameter Estimation of biological systems

102

103

104

A
B

F

f4

102

103

104

f9

102

104

106

108

1010

f13

0 100 200 300 400 500
Iterations

103

105

107

109

A
B

F

f15

0 100 200 300 400 500
Iterations

103

105

107

109

f19

0 100 200 300 400 500
Iterations

103

4× 102

6× 102

f20

ABC CMA-ES DE EDA GA PSO FST-PSO
FST-PSO
(no vmin)

Fig. 5.17 Comparison of the performance in terms of ABF achieved by the metaheuristics on
the benchmark functions with D = 25.

0

50

100

150

200

A
B

F

Model 1 Model 2 Model 3

0 100 200 300 400 500
Iterations

0

50

100

150

200

A
B

F

Model 4

0 100 200 300 400 500
Iterations

Model 5

0 100 200 300 400 500
Iterations

Model 6

ABC CMA-ES DE EDA GA PSO FST-PSO
FST-PSO
(no vmin)

Fig. 5.18 Comparison of the performance in terms of ABF achieved by the metaheuristics for
the PE of synthetic models characterized by 25 reactions and 25 molecular species.

Finally, both ABC and GA show average performances, always remaining in the middle
of the ranking. Interestingly, ABC is characterized by a high variability in the results, as
shown by the boxplots of the best solutions found across all runs (see Figures 5.21 and 5.27):
the algorithm seems to yield either poor or very good solutions, probably according to the
distribution of the bees at the beginning of the optimization phase. GA, however, seem to

5.2 Single swarm PE of small-scale models 179

f4

f9

f13

f15

f19

f20

ABC f4

f9

f13

f15

f19

f20

CMA-ES f4

f9

f13

f15

f19

f20

DE f4

f9

f13

f15

f19

f20

EDA

f4

f9

f13

f15

f19

f20

GA f4

f9

f13

f15

f19

f20

PSO f4

f9

f13

f15

f19

f20

FST-PSO f4

f9

f13

f15

f19

f20

FST-PSO
(no vmin)

Fig. 5.19 Kiviat diagram showing the final ABF value obtained by the metaheuristics on the
benchmark functions with D = 25.

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

ABC Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

CMA-ES Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

DE Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

EDA

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

GA Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

PSO Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

FST-PSO Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

FST-PSO
(no vmin)

Fig. 5.20 Kiviat diagram showing the final ABF value obtained by the metaheuristics in the
PE of synthetic models characterized by 25 reactions and 25 molecular species.

be characterized by a slower convergence (see, e.g., functions f4, f13, f15 and f19) than the
other metaheuristics.

180 Parameter Estimation of biological systems

0

100

200

300

400
Function f4

0

2000

4000

6000

Function f9

0

10000

20000

30000

Function f13

A
B

C

C
M

A
-E

S

D
E

E
D

A

G
A

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O

(n
o

v
m
in

)0

20000

40000

60000

Function f15

A
B

C

C
M

A
-E

S

D
E

E
D

A

G
A

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O

(n
o

v
m
in

)0

5000

10000

15000

20000

25000

30000
Function f19

A
B

C

C
M

A
-E

S

D
E

E
D

A

G
A

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O

(n
o

v
m
in

)0

250

500

750

1000

1250

Function f20

Fig. 5.21 Boxplots showing the distribution of the final best fitness values obtained by the
metaheuristics on the benchmark functions with M = 25.

0

25

50

75

100

125

B
es

t
fi

tn
es

s

Model 1 Model 2 Model 3

A
B

C

C
M

A
-E

S

D
E

E
D

A

G
A

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O

(n
o

v
m
in

)0

25

50

75

100

125

B
es

t
fi

tn
es

s

Model 4

A
B

C

C
M

A
-E

S

D
E

E
D

A

G
A

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O

(n
o

v
m
in

)

Model 5

A
B

C

C
M

A
-E

S

D
E

E
D

A

G
A

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O

(n
o

v
m
in

)

Model 6

Fig. 5.22 Boxplots showing the distribution of the final best fitness value obtained by the
metaheuristics in the PE of synthetic models characterized by 25 reactions and 25 molecular
species.

Notice that the boxplots show the best fitting solutions found after 500 iterations. Since
in some cases the algorithms could not converge properly the corresponding boxplot would
be displayed outside the figure. We denote such situations using an arrow filled with the
color corresponding to that algorithm (e.g., Figure 5.21, EDA in the case of function f4).

When we consider the PE problem, the results turn out to be totally different, since
the version of FST-PSO (no vmin) consistently achieves the best results compared to the
other metaheuristics. CMA-ES obtains a performance comparable to the other methods only

5.2 Single swarm PE of small-scale models 181

102

103

104

105

A
B

F

f4

104

105

f9

104

106

108

1010

f13

0 100 200 300 400 500
Iterations

104

106

108

1010

A
B

F

f15

0 100 200 300 400 500
Iterations

103

105

107

109

f19

0 100 200 300 400 500
Iterations

103

2× 103

3× 103

f20

ABC CMA-ES DE EDA GA PSO FST-PSO
FST-PSO
(no vmin)

Fig. 5.23 Comparison of the performance in terms of ABF achieved by the metaheuristics on
the benchmark functions with D = 50.

0

50

100

150

200

250

300

A
B

F

Model 7 Model 8 Model 9

0 100 200 300 400 500
Iterations

0

50

100

150

200

250

300

A
B

F

Model 10

0 100 200 300 400 500
Iterations

Model 11

0 100 200 300 400 500
Iterations

Model 12

ABC CMA-ES DE EDA GA PSO FST-PSO
FST-PSO
(no vmin)

Fig. 5.24 Comparison of the performance in terms of ABF achieved by the metaheuristics for
the PE of synthetic models characterized by 50 reactions and 50 molecular species.

in the case of Model 2 (where DE has the worst performance), and a worse performance
(comparable to EDA) in all other cases. Interestingly, ABC tied FST-PSO performance in
the case of Models 2 and 6 and, differently from the case of benchmark functions, it was not
characterized by a high variance in the optimal solutions found (see Figures 5.22 and 5.28),
confirming that the algorithm has a different behavior in the case of PE.

182 Parameter Estimation of biological systems

f4

f9

f13

f15

f19

f20

ABC f4

f9

f13

f15

f19

f20

CMA-ES f4

f9

f13

f15

f19

f20

DE f4

f9

f13

f15

f19

f20

EDA

f4

f9

f13

f15

f19

f20

GA f4

f9

f13

f15

f19

f20

PSO f4

f9

f13

f15

f19

f20

FST-PSO f4

f9

f13

f15

f19

f20

FST-PSO
(no vmin)

Fig. 5.25 Kiviat diagram showing the final ABF value obtained by the metaheuristics on the
benchmark functions with D = 50.

Model 7

Model 8

Model 9

Model 10

Model 11

Model 12

ABC Model 7

Model 8

Model 9

Model 10

Model 11

Model 12

CMA-ES Model 7

Model 8

Model 9

Model 10

Model 11

Model 12

DE Model 7

Model 8

Model 9

Model 10

Model 11

Model 12

EDA

Model 7

Model 8

Model 9

Model 10

Model 11

Model 12

GA Model 7

Model 8

Model 9

Model 10

Model 11

Model 12

PSO Model 7

Model 8

Model 9

Model 10

Model 11

Model 12

FST-PSO Model 7

Model 8

Model 9

Model 10

Model 11

Model 12

FST-PSO
(no vmin)

Fig. 5.26 Kiviat diagram showing the final ABF value obtained by the metaheuristics in the
PE of synthetic models characterized by 50 reactions and 50 molecular species.

We executed further tests to analyze how the performance of the metaheuristics scale
with the number of dimensions of the benchmark functions and the number of parameters to
be estimated in the case of the PE problem. In Figures 5.23 and 5.24 we show the results

5.2 Single swarm PE of small-scale models 183

0

500

1000

1500

2000
Function f4

0

10000

20000

30000

40000

Function f9

0

500000

1000000

1500000

2000000

2500000

3000000
Function f13

A
B

C

C
M

A
-E

S

D
E

E
D

A

G
A

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O

(n
o

v
m
in

)0

25000

50000

75000

100000

125000

150000
Function f15

A
B

C

C
M

A
-E

S

D
E

E
D

A

G
A

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O

(n
o

v
m
in

)0

20000

40000

60000

80000

100000
Function f19

A
B

C

C
M

A
-E

S

D
E

E
D

A

G
A

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O

(n
o

v
m
in

)

2500

3000

3500

4000

4500

Function f20

Fig. 5.27 Boxplots showing the distribution of the final best fitness values obtained by the
metaheuristics on the benchmark functions with M = 50.

0

50

100

150

200

B
es

t
fi

tn
es

s

Model 7 Model 8 Model 9

A
B

C

C
M

A
-E

S

D
E

E
D

A

G
A

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O

(n
o

v
m
in

)0

50

100

150

200

B
es

t
fi

tn
es

s

Model 10

A
B

C

C
M

A
-E

S

D
E

E
D

A

G
A

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O

(n
o

v
m
in

)

Model 11

A
B

C

C
M

A
-E

S

D
E

E
D

A

G
A

P
S

O

F
S

T
-P

S
O

F
S

T
-P

S
O

(n
o

v
m
in

)

Model 12

Fig. 5.28 Boxplots showing the distribution of the final best fitness value obtained by the
metaheuristics in the PE of synthetic models characterized by 50 reactions and 50 molecular
species.

obtained on the benchmark functions with D = 50 dimensions and on the RBMs with D = 50
kinetic constants to be estimated. Differently from the case of D = 25 dimensions, we
observe that CMA-ES outperforms the other techniques only in the case of f4. In the case
of f19, the final ABF of CMA-ES after 500 iterations is tied with PSO and FST-PSO, even
though the convergence speed is far lower in the case of CMA-ES. Interestingly, the algorithm
characterized by the best performances is the classic PSO except in the case of function
f9, contradicting what was observed in the case of D = 25. Moreover, taking into account

184 Parameter Estimation of biological systems

benchmark functions with D = 50, EDA is no longer able to identify optimal solutions and
seems to be extremely prone to premature convergence, while ABC has a considerably slower
convergence speed with respect to the other metaheuristics. Again, when considering the
PE problem, FST-PSO (no vmin) consistently achieves the best results, outperforming the
other methods and showing a higher convergence speed in the case of Model 7. CMA-ES
consistently holds the worst performances, besides Models 9 and 12. GA seems to scale
better, maintaining good or average performances over all 6 models.

An alternative representation of the results presented above is given in Figures 5.19, 5.20
and 5.25, 5.26 (for 25 and 50 dimensions of the benchmark functions and parameters to be
estimated in the RBMs, respectively), in which we show the Kiviat diagrams obtained by
plotting the ABF value achieved by the different metaheuristics during the last iteration of
the optimization processes. Note that the lower the area described by the plot, the better the
performance of the metaheuristic. Since the final fitness values are generally different among
the benchmark functions as well as among the PE of different RBMs, we normalized these
values in the range [0,1]. We observe how the performance of CMA-ES drastically decreases
when applied to the PE problem, compared with the performance on the benchmark functions.
The opposite holds for DE and GA, since these algorithms show better convergence properties
in the case of PE with respect to benchmark functions. The performance of FST-PSO is also
striking, especially when the fuzzy rules for minimum velocity are disabled. Note that this
strategy leads to slightly worse results with the benchmark functions, but extremely good
performances in the case of the PE, notably without the need for any functioning setting.

In order to investigate the existence of any statistical differences among the performances
of the tested algorithms, we executed the Friedman’s test [145] and the Bonferroni-Dunn’s
post hoc test [111]. Table 5.2 lists the ranks calculated using the ABF values achieved during
the last iteration of all tests executed on the benchmark functions and the RBMs considered
in this work. Since the p-values of the Friedman’s test (reported in the table) allowed
us to reject the null hypothesis (i.e., the difference in the performance of the algorithms
is not statistically significant), we proceeded with the Bonferroni-Dunn’s post hoc test to
determine which algorithms are significantly better than the others. We thus calculated
the critical differences (CDs) with 90% and 95% confidence levels, obtaining CDs equal
to 0.895 and 0.982, respectively. Taking into account 95% confidence level, we formed
groups of algorithms whose performances are not significantly different (denoted by Roman
numerals in Table 5.2). ABC ranks in the third and fourth groups of algorithms in solving
the benchmark functions with M = 25 and M = 50, respectively, while in the case of the
PE problems it is capable of catching up with the second group of algorithms. PSO is
characterized by an almost opposite trend; indeed, it ranks among the best algorithms (always

5.2 Single swarm PE of small-scale models 185

Table 5.2 Statistical comparison of the tested algorithms in solving the benchmark functions
and the PE problem considering M = 25 and M = 50, calculated using the ABF values at the
last iteration. The second row shows the p-values of the Friedman’s test. Since the p-values
allow us to reject the null hypothesis, we performed the Bonferroni-Dunn’s post hoc test
obtaining critical differences equal to 0.895 and 0.982 considering 90% and 95% confidence
levels, respectively. For each column, the results are expressed as: ranking – group (obtained
with 95% confidence level and denoted with Roman numerals). Note that an algorithm can
belong to more than one group.

M = 25 M = 50
Benchmarks PE Benchmarks PE
p-value=0.0014 p-value=0.00025 p-value=0.00020 p-value=0.00014

ABC 6.000 – III 3.167 – II 5.833 – IV 3.500 – II
CMA-ES 3.000 – I, II 6.333 – IV 4.000 – III 6.500 – IV, V
DE 5.833 – III 5.333 – III 5.667 – IV 3.667 – II
EDA 7.833 – IV 7.500 – V 8.000 – V 7.167 – V
GA 3.833 – II 3.833 – II 4.500 – III 2.000 – I
PSO 2.833 – I 3.833 – II 1.667 – I 5.833 – III, IV
FST-PSO 3.667 – I, II 5.000 – III 3.667 – III 5.500 – III
FST-PSO (no vmin) 3.000 – I, II 1.000 – I 2.667 – II 1.833 – I

in the first group) when solving benchmark functions (resulting the best choice in the case of
M = 50), whereas it belongs to the second group regarding the PE problem when M = 25,
and in the third and fourth groups when M = 50, showing how its performance decreases
while the number of dimensions increases. The results obtained by FST-PSO are strictly
comparable with those achieved by PSO, even if it generally performs better (worse) in the
PE problem (benchmark functions). Moreover, FST-PSO generally outperforms DE in all
cases except for the PE with M = 50. Disabling the fuzzy rules for the minimum velocity
throttling, the results are quite different. As a matter of fact, FST-PSO (no vmin) ranks always
among the best algorithms, taking into account both benchmark functions and the PE problem.
GAs obtain the best results when the number of dimensions increases, becoming highly
competitive in solving the PE problem, ranking first together with FST-PSO (no vmin) when
M = 50. It is also competitive in solving benchmark functions, placing in the second and
third groups. In this case, the performance of GAs decreases as the number of dimensions
increases. CMA-ES shows quite good performance with benchmark functions, being always
in the first three groups of algorithms, while it is not competitive in the case of the PE
problem. Finally, the achieved results highlight that EDA obtains the worst performance
considering both the benchmark functions and the PE problem, attaining the last group in all
tests.

To summarize, the analysis conducted on the benchmark functions highlighted that the
best algorithms are PSO, FST-PSO, FST-PSO (no vmin) and CMA-ES. Among them, PSO
might be employed due to its simplicity; however, its performance are strongly related to

186 Parameter Estimation of biological systems

the values of its settings. FST-PSO and its variant FST-PSO (no vmin) can overcome this
limitation, thus resulting the most suitable algorithms to deal with benchmark functions.
Regarding the PE problem, FST-PSO (no vmin) is generally capable of outperforming the
other tested algorithms, being the best metaheuristic when M = 25 and ranking first together
with GAs when M = 50.

Since both CMA-ES and EDA exploit normal distributions to generate new individuals,
their performances could be affected by the peculiar logarithmic distribution of kinetic
parameters. We point out that alternative semantics for the parameters can radically change
the performances of the metaheuristics. Specifically, we show that a simple logarithmic
transformation of the parameters can turn the previously outperformed algorithms into
competitive alternatives. In order to investigate this conjecture, we modified CMA-ES, EDA
and FST-PSO to change the semantics of the parameters to a logarithmic scale. To be more
precise, the putative parameters were bounded in the interval (0,1) and each value ki was
converted to the actual kinetic parameter k′i—used for the fitness evaluation—by means of
the following transformation:

φi = log10(β
max
i)+

(
log10(β

min
i)− log10(β

max
i)

)
ki,

k′i = 10φi. (5.3)

We denote by CMA-ES-log, EDA-log and FST-PSO-log the three modified algorithms.
We show in Figure 5.29 a comparison of the performances of the three modified algorithms
(solid lines) with respect to the original methods (dashed lines). The test was carried out on
Model 10, in which both CMA-ES and EDA showed, by far, the worst performances.

According to our results, thanks to the transformation in Equation 5.3, the performance
of CMA-ES-log is radically different from classic CMA-ES, with a final ABF very close to
zero and an extremely quick convergence. The performance of EDA-log (whose σEDA

0 was
set to 0.1 because of the modified search space) strongly improved with respect to classic
EDA; however, it was repeatedly unable to converge to an optimal solution, keeping the final
ABF above 50. Even though CMA-ES-log was able to rapidly converge, the result achieved
by FST-PSO-log is even better and highlights how the logarithmic semantics can help all
algorithms for the PE problem. This circumstance further reveals that benchmark functions
cannot capture the intrinsic complexity of biochemical PE.

Overall, the results achieved in this work point out that the performance of the meta-
heuristics can drastically change according to the context of application, showing that the
fitness landscapes identified by classic benchmark functions are completely different from
those characterizing the PE problem. We argue that a novel set of benchmark functions,

5.2 Single swarm PE of small-scale models 187

0 100 200 300 400 500
Iterations

0

50

100

150

200

250

300

AB
F

CMA-ES-log
CMA-ES
EDA-log
EDA
FST-PSO-log
(no vmin)
FST-PSO
(no vmin)

Fig. 5.29 Comparison of the performances of CMA-ES, EDA and FST-PSO with normal and
logarithmic semantics of parameters.

designed to mimic the characteristics of real-world problems, is necessary to achieve a better
understanding and a thorough evaluation of the performance of the metaheuristics. These
benchmark functions should be defined attempting to resemble the fitness landscapes of a
variety of real-world problems. Although some preliminary efforts were devoted to create
functions similar to the PE problem [73], we are still far from a complete and reliable repro-
duction of its intrinsic characteristics. In principle, real-world problems should be applied for
benchmarking, since they provide a valuable contribution to experimental research practice
[141]. Differently from benchmark functions, the structural features underlying real-world
optimization problems are often not well characterized [261]; thus, additional research must
be performed to understand how novel benchmark functions could be designed to replicate
their peculiarities. As a matter of fact, defining benchmark functions inspiblue by real-world
problems is not trivial, since it requires the preliminary design and development of novel ad
hoc methods to analyze and classify optimization problems, as well as automatic methods
(by using, e.g., Genetic Programming [246] or hierarchical fitness assignment methods
based on statistical tests [267, 268]) to devise arbitrary functions characterized by analogous
fitness-space features.

188 Parameter Estimation of biological systems

The results of our tests highlighted that CMA-ES is one of the best choices for the
optimization of benchmark functions, but its performance turned out to be worse than most
of the other metaheuristics when applied to the PE of biochemical systems in 10 out of
12 RBMs. Since both CMA-ES and EDA exploit normal distributions to generate new
individuals, their performances are probably affected by the peculiar log-uniform distribution
of kinetic parameters [409]. We empirically proved this conjecture by repeating the PE tasks
using a logarithmic semantics for the putative parameters, showing that all algorithms benefit
from this solution and, in particular, CMA-ES was now able to efficiently converge to high
quality solutions. We will further investigate the logarithmic exploration of the parameter
space, a topic that we previously tackled by considering also the population initialization
[73] and particle reboot [409] in PSO. We argue that the performance of some algorithms
in specific real-world problems can be strongly improved by transforming, or adapting,
the representation of the solutions. Although it was possible for us to define an effective
transformation in the case of PE, this task is generally not straightforward to perform. In
particular, we speculate that the automatic design of the optimal transformation for any
problem might be as difficult as solving the optimization problem itself. Due to its relevance
in the context of optimization problems, we plan to investigate this topic in the near future.

Finally, we observed that the version of FST-PSO where fuzzy rules for the minimum
velocity throttling are disabled (i.e., not leveraging turbulence [2]) appears to be the best
choice for PE, although its convergence speed in the case of the benchmark functions is
worse than classic PSO. Anyway, PSO requires the selection of multiple functioning settings,
which is not necessary in the case of FST-PSO. As a further extension of this work, we will
define improved alternative fuzzy rules (or approaches) to automatically set the minimum
velocity, in order to define a completely multi-purpose methodology effective both in the
case of benchmark functions and real-world problems.

5.3 Multi-swarm PE of small-scale models

The starting point of the work presented in this section is the multi-swarm version of PSO
proposed in [304, 303], an efficient optimization method that takes into account as target of
the PE a set of DTTS, obtained under different experimental conditions, the typical scenario of
biological laboratory research. Multi-swarm approaches, which belong to distributed island-
based algorithms [8], partition the population into a set of sub-populations, called islands,
executing independent parts of the whole optimization process. Occasionally, information is
transferred among the islands, aiming at introducing more diversity into the sub-populations,
thus preventing early convergence to local optima. In the multi-swarm PSO, a single series of

5.3 Multi-swarm PE of small-scale models 189

target data is assigned to each swarm and, during the optimization, the best particle of each
swarm can migrate to the aim of obtaining a set of reaction constants that simultaneously
allow for fitting all the experimental data.

Here we present an efficient implementation of such optimization methodology, called
MS2PSO, which allows for drastically accelerating the computation by exploiting a numerical
integrator of ODEs accelerated on GPUs and the Message Passing Interface (MPI) to leverage
multi-core CPUs. This work is motivated by the fact that the computation time required to
run a PE increases both with the number of swarms (and particles), and with the complexity
of the mathematical model under investigation.

In particular, since the optimization process requires the calculation of a massive number
of fitness values, MS2PSO relies on cupSODA. In addition, to leverage the power of the
modern computer clusters, we introduce a further level of parallelism by exploiting the
Master-Slave distributed programming paradigm that allows for offloading all the calculations
required by MS2PSO[119] onto multiple GPUs (when available) and multi-core CPUs. In
MS2PSO, the Master orchestrates the communication among the Slave processes, which in
turn execute the PE of each PSO swarm involved in the optimization process.

Parallel and distributed computing applications have been widely adopted in Compu-
tational Intelligence [9, 164]. Traditional Master-Slave architectures represent a valuable
solution in both Evolutionary Computation [119, 209] and Swarm Intelligence [206]. Yang
et al. proposed a Master-Slave PSO algorithm, employing a Master swarm for exploitation
and a Slave swarm for exploration [479]. In the field of Systems Biology, such a kind of
HPC paradigm has been recently used to accelerate the PE of large-scale models [336].

5.3.1 Master-Slave approach

The multi-swarm version of PSO employed in MS2PSO is structured as follows. For each
e-th initial condition, with e = 1, . . . ,E, we consider a swarm σe, consisting of P particles,
in which the i-th particle can be identified by the position vector xe

i that codifies a model
parameterization ke = (ke,1, . . . ,ke,D), whose components correspond to the values of the
kinetic constants of the reactions in R′.

Each vector ke associated with a particle is used to execute a simulation with cupSODA
in order to generate, for each target species Sq, the sets of concentrations Xke

q (τ f). The fitness
of the particle is then evaluated according to Equation 5.2, using the experimental data Y e

q (t f)

corresponding to the e-th experimental condition. By so doing, each swarm performs the
estimation of kinetic constants independently from the other swarms and determines, for each
iteration, its global best particle whose position vector represents the best parameterization
kbest

e that overlaps the DTTS under the e-th condition in the best possible way. On the contrary,

190 Parameter Estimation of biological systems

Master
MPI Rank 0

Slave 1
MPI Rank 1

PSO Swarm

Slave ᵑ
MPI Rank ᵑ

PSO Swarm

Slave 2
MPI Rank 2

PSO Swarm

...

...

Fig. 5.30 Scheme of MS2PSO: the Master process orchestrates all the Slaves assigning one
or more PSO swarms to each Slave, which then run the PE task exploiting cupSODA to solve
in parallel all the required deterministic simulations.

during each generation, the swarm also identifies the worst particle kworst
e , corresponding to

the parameterization that leads to the worst overlap under the e-th condition.
Afterwards, in order to estimate a set of kinetic constants that is common to all swarms,

and that is able to reproduce the expected system dynamics under all experimental conditions,
we let particles migrate among swarms. The migration takes place at regular intervals, every
κITmig iterations, with 1 ≤ κ ≤ ⌊ITMAX/ITmig⌋ and 1 ≤ ITmig ≤ ITMAX, where ITMAX is the
maximum number of iterations of the PSO. To better explain migration, we formalize the
topology of MS2PSO as a directed graph G = ⟨V,A⟩, where V = {σ1, . . . ,σE} is the set of E
vertices (the swarms) and A= {(σe′,σe′′) | particles can migrate from swarm σe′ to swarm
σe′′} is the set of edges. We also assume that, considering any edge in A, exactly one particle
migrates from σe′ to σe′′ , to assure that the size P of each swarm is not altered by migration.

Different interconnection topologies among the swarms can be defined, for instance the
one proposed in [304] or [366]. Here we consider a ring interconnection topology among
swarms; then, the migration acts as follows: for each edge (σe′,σe′′) in A, at the ITmig-th
iteration the worst particle kworst

e′′ of swarm σe′′ is removed and replaced by the global best
particle kbest

e′ of swarm σe′ .

5.3 Multi-swarm PE of small-scale models 191

Update local best of particles
and global best

Is

reached?

Evaluate the fitness function
Eq. (1)

Receive a PE task
from the Master

Update position of particles
Eq. (3)

Update velocity of particles
Eq. (2)

PS
O

 S
w

ar
m

[yes] [no]Send and
to the Master

Fig. 5.31 Workflow of a single PSO swarm execution. The Master assigns to the Slaves a
different PE task. Each Slave σe performs ITmig iterations and communicates both kbest

e and
kworst

e to the Master. This process is repeated until the maximum number of iterations ITMAX
is reached by all swarms.

Master-Slave approaches in Computational Intelligence generally rely on parallel fitness
evaluations, since each individual can be evaluated independently. More specifically, there is
a process, called Master, which orchestrates the communication among the other processes
called Slaves. In the case of MS2PSO, the Master efficiently manages the Slaves and the
communication among them to solve the PE tasks, as schematized in Figure 5.30. Please
notice that in our implementation, both the Master and the Slave processes can run on
different cores of the same CPU. Figure 5.31 shows the workflow of a single PSO swarm
execution.

We can summarize the functioning of MS2PSO as follows:

1. the Master allocates the resources and offloads the experimental data, corresponding to
the E swarms, onto the available Σ Slaves (in general, Σ ≤ E). During this phase, each
Slave generates the initial population of swarm σe;

2. each Slave σe (with e= 1, . . . ,E) executes the assigned PE task, running ITmig iterations
of PSO, independently of the other Slaves. In particular, at each iteration the Slaves
execute in a parallel fashion on the GPU the deterministic simulations required to
calculate the fitness values of all particles in the swarm, by exploiting cupSODA;

3. after ITmig iterations, each Slave σe communicates both kbest
e and kworst

e to the Master;

192 Parameter Estimation of biological systems

4. as soon as all Slaves have communicated the best and worst particles found, the
Master executes the migration, by using a ring topology among swarms, following the
procedure described above;

5. the process is iterated from Step 2 until the maximum number of iterations ITMAX is
reached by all swarms;

6. the Master performs a sorting of the kbest
e particles, and returns the particle with the

lowest fitness as final result.

Note that when Σ < E GPUs are available, the Master process must assign more than one
swarm to the Slaves, whose execution is then scheduled sequentially. Moreover, if required,
alternative fitness functions might be implemented on Slave nodes by fetching and processing
on the CPUs the raw dynamics received from cupSODA. This scenario is technically feasible,
even though more computationally demanding.

The proposed Master-Slave approach was entirely developed with the Python program-
ming language (version 2.7.12) exploiting mpi4py, which provides bindings of the MPI
specifications for Python to leverage multi-core architectures [98].

5.3.2 Results

The performance obtained by MS2PSO, in terms of running time required to execute the PE,
is evaluated under different configurations in which different numbers of GPUs as well as
different numbers of cores of the CPU are exploited.

For what concerns the settings used in the multi-swarm PSO, in all tests, we have: (i)
damping boundary conditions; (ii) maximum velocity vmax

d = 0.2 · |β max
d − β min

d |, for all
d = 1, . . . ,D; (iii) number of iterations ITMAX = 400. (iv) migration interval ITmig = 40
iterations; (v) ring topology for migration. We also set ccog = csoc = 1.494 and we kept
the inertia factor constant during the optimization (i.e., w = 0.729), according to the results
presented in the previous sections. Finally, each swarm has the same size P, determined by
the following heuristic that considers successive multiples of 32, increasing with the search
space dimensions D:

P = 32×
(

1+
⌊

D
10

⌋)
. (5.4)

The principle underlying Equation 5.4 is to create a population proportional to both the
complexity of the problem and the size of a CUDA warp, in order to fully exploit the
acceleration given by cupSODA.

5.3 Multi-swarm PE of small-scale models 193

The performance of MS2PSO, in terms of computation time required to solve the PE
problem, are evaluated by performing 15 independent repetitions of the PE of three realistic
in silico generated biochemical models with 10, 20 and 30 chemical reactions and molecular
species. These models are obtained by relying on the tool described in Section 4.1, which
is capable of automatically yielding realistic networks of reactions with different size and
features.

In particular, each model is generated considering the following features:

• the initial concentrations x at time t = 0 are sampled from the uniform distribution
[10−6,1);

• the kinetic constants ke, concerning the e-th experimental condition, with e = 1, . . . ,E,
associated with the reactions are sampled from the logarithmic distribution in [10−8,10];

• the final network of reactions must consist in a single connected component;

• only zero, first, or second order reactions are allowed;

• reactions can have zero, one or two products;

• we assume E = 4 distinct experimental conditions for each model, by perturbing the
initial concentration of some chemical species.

The fitness value of the individuals is calculated by considering a DTTS having a number
of species H = ⌈0.15 ·N⌉. Therefore, in the following tests we considered H = 2, H = 3
and H = 5 for the models with 10, 20 and 30 reactions and species, respectively. Finally,
according to Equation 5.4, we used a swarm size of P = 64, P = 96 and P = 128 for D = 10,
D = 20 and D = 30, respectively.

We first assess the accuracy of the multi-swarm PSO, which is at the basis of MS2PSO.
For each model, we verified if the best set of kinetic parameters, found at the end of the
PE, allows for obtaining simulated dynamics that overlap the DTTS in each of the E = 4
initial conditions. As an example, we show in Figure 5.32 the results obtained in the case of
the model consisting in 20 chemical reactions and molecular species, where the simulated
dynamics (solid lines) perfectly overlap the DTTS (red dots) in all of the considered initial
conditions and for each species.

The performance of MS2PSO are then evaluated by executing 15 repetitions of the PE
of the three analyzed synthetic models using four computational platforms equipped with
different CPUs and Nvidia GeForce GPUs: GTX Titan Z, GTX Titan X, GTX 960M, and
GTX 1050. The technical specifications of these platforms are summarized in Table 5.3. We
defined specific tests to investigate the capability of MS2PSO of leveraging both single- and

194 Parameter Estimation of biological systems

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
ol

ec
ul

ar
co

nc
en

tr
at

io
n

Condition 1

DTTS
Simulation

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Condition 2

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Condition 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Condition 4

0.05

0.06

0.07

0.08

0.09

0.10

M
ol

ec
ul

ar
co

nc
en

tr
at

io
n

0.05

0.06

0.07

0.08

0.09

0.10

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5
Time [a.u]

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

0.00225

M
ol

ec
ul

ar
co

nc
en

tr
at

io
n

0.0 0.5 1.0 1.5
Time [a.u]

0.000

0.002

0.004

0.006

0.008

0.0 0.5 1.0 1.5
Time [a.u]

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

0.00225

0.0 0.5 1.0 1.5
Time [a.u]

0.000

0.002

0.004

0.006

0.008

Fig. 5.32 Dynamics of the synthetic model characterized by 20 chemical reactions and 20
molecular species, obtained using the kinetic constants of the best solution generated by the
four swarms of PSO (solid lines) compared to the DTTS (red dots), under different initial
conditions.

multi-GPU architectures (when available) together with multi-core CPUs. Indeed, among
the considered computing platforms, #3 and #4 are multi-GPU systems: the first is equipped
with a dual-GPU GTX Titan Z, while the second is a cluster node equipped with 4 GTX
Titan X.

Figure 5.33 shows the average running times (top) and the boxplots (bottom) achieved
by exploiting the 4 computational platforms. If we compare the results obtained when
considering the single-GPU configurations, in which the execution of the PE of the 4 swarms
is scheduled sequentially by the Master process on the GPU, we can observe that for both
models with 10 and 20 parameters to be estimated, the performances are comparable in the
case of platforms #1, #2 and #3, while platform #4 has, in general, higher running times (see
Figure 5.33, top). We believe that, despite the clock frequency of the GTX Titan X (platform
#4) is higher than that of the GTX Titan Z (platform #3), the performance of the former
platform are impaired by the CPU (whose clock frequency is lower than the others). In the
case of the model with 30 parameters to be estimated, the efficiency of the GPU is the key
factor influencing the overall performance of MS2PSO; as a matter of fact, the GTX 1050,

5.3 Multi-swarm PE of small-scale models 195

Table 5.3 Hardware and software characteristics of the computing platforms used to evaluate
the performance of MS2PSO.

Platform GPU Cores Clock [MHz] Mem. BW [GB/s] CPU Cores Clock [GHz] Operating System
#1 GTX 960M 640 1176 80 Intel Core 6700HQ 4 3.50 Ubuntu 14.04
#2 GTX 1050 640 1455 112 Intel Core 7700HQ 4 3.80 MS Windows 10
#3 GTX Titan Z 2×2880 876 672 Intel Core i7-4790K 4 4.40 Ubuntu 16.04
#4 GTX Titan X 3072 1075 336.5 Intel Xeon E5-2620 v3 6 3.20 CentOS 6.9

characterized by the highest clock frequency, allows for obtaining the lowest average running
times.

0

500

1000

1500

2000

2500

A
ve

ra
ge

ru
nn

in
g

ti
m

e
[s

]

Model 10×10 Model 20×20 Model 30×30

#1
(1

G
P

U
)

#2
(1

G
P

U
)

#3
(1

G
P

U
)

#3
(2

G
P

U
s)

#4
(1

G
P

U
)

#4
(2

G
P

U
s)

#4
(4

G
P

U
s)

0

500

1000

1500

2000

2500

3000

3500

R
un

ni
ng

ti
m

e
[s

]

#1
(1

G
P

U
)

#2
(1

G
P

U
)

#3
(1

G
P

U
)

#3
(2

G
P

U
s)

#4
(1

G
P

U
)

#4
(2

G
P

U
s)

#4
(4

G
P

U
s)

#1
(1

G
P

U
)

#2
(1

G
P

U
)

#3
(1

G
P

U
)

#3
(2

G
P

U
s)

#4
(1

G
P

U
)

#4
(2

G
P

U
s)

#4
(4

G
P

U
s)

Fig. 5.33 Running time for 15 independent repetitions of MS2PSO for the PE of the analyzed
synthetic biochemical models with 10 (left), 20 (center), and 30 (right) parameters to be
estimated. Top panel: bar diagram depicting the average running time obtained by each
platform. Bottom panel: boxplots showing the distribution of the running times of each
platform (the median is denoted by a horizontal white line, whisker value is 1.5 and outliers
are displayed as black diamonds).

Considering the boxplots reported in Figure 5.33 (bottom), we can observe that in the case
of the models with 10 and 20 reactions and species, the capabilities of the different GPUs do
not strongly emerge, since the simulation of these relatively small models do not represent
the most computational intensive task of the PE, thus the overall process is CPU-bound. This
is confirmed by the fact that platform #3, which is equipped with the CPU characterized by
the highest clock frequency, obtained the lowest running time. Moreover, the boxplots show,

196 Parameter Estimation of biological systems

Table 5.4 Average speed-up achieved by platforms #3 and #4 with multi-GPU configurations
with respect to the corresponding single-GPU configurations.

Platform Model size Average speed-up
2 GPUs 4 GPUs

#3
10×10 1.6× N/A
20×20 1.8× N/A
30×30 1.9× N/A

#4
10×10 1.6× 2.2×
20×20 1.9× 2.7×
30×30 1.9× 3.3×

Table 5.5 Average speed-up achieved by the best configuration (i.e., platform #4 exploiting 4
GPUs) against the other configurations.

Platform Model size Average speed-up
1 GPU 2 GPUs

#1
10×10 1.9× N/A
20×20 2.1× N/A
30×30 2.6× N/A

#2
10×10 1.8× N/A
20×20 1.9× N/A
30×30 2.4× N/A

#3
10×10 1.6× 1.0×
20×20 2.0× 1.1×
30×30 3.2× 1.7×

#4
10×10 2.2× 1.3×
20×20 2.7× 1.4×
30×30 3.3× 1.8×

both in the case of single- and multi-GPU configurations, a very low statistical dispersion
especially in the 10×10 and 20×20 models, with values considerably concentrated around
the median. On the other hand, in the case of the model with 30 chemical reactions and
molecular species, the performance of MS2PSO executed on platform #2 are in general better
than the other single-GPU configurations.

When considering configurations in which 2 or 4 GPUs are exploited in parallel, we
observe that the average running times are strongly reduced, confirming the efficiency of
the Master-Slave implementation of MS2PSO. These results are also confirmed by the
values reported in Table 5.4, where we calculated the speed-up achieved by multi-GPU
configurations of platforms #3 and #4 with respect to the single-GPU configurations of the
same platforms. For instance, by exploiting 4 GTX Titan X GPUs, the running time of

5.4 PE of a human intracellular metabolic pathway 197

the PE can be reduced more than three times, with respect to the same platform exploiting
a single GPU. Finally, in Table 5.5 we calculated the speed-up achieved by the 4-GPUs
configuration of platform #4—which obtained the lowest average running times for the PE of
all models—with respect to all other possible configurations. In this case, MS2PSO allows
for achieving more than 3× speed-up with respect to the other platforms. We can then argue
that MS2PSO scales well with the size of the model, especially when 4 GPUs are exploited
for the PE; indeed, the running times obtained with this configurations with different models
are comparable, as shown by the boxplots of Figure 5.33.

5.3.3 Conclusions

We presented MS2PSO, a parallel and distributed implementation of a multi-swarm version of
PSO to efficiently tackle the PE of biochemical systems. Considering the typical scenario of
biological laboratory research, in which multiple target data related to different experimental
conditions are available, MS2PSO is capable of estimating a set of kinetic parameters that
correctly reproduces the dynamics of the systems in all conditions. MS2PSO is based on
the Master-Slave distributed computing paradigm, in which the Master process offloads the
time-consuming calculations needed to carry out the PE tasks onto different Slaves processes;
in addition, each Slave exploits cupSODA [306], which allows for running in a parallel
fashion on the cores of the GPU the simulations necessary to calculate the fitness values
required for the optimization.

We evaluated the performance of MS2PSO by executing the PE of three synthetic models
characterized by 10, 20, 30 parameters to be estimated, using four computational platforms
equipped with different Nvidia GeForce GPUs. The results highlighted that platforms in
which 2 or 4 GPUs are exploited in parallel, the average running times for the PE are strongly
reduced, revealing the effectiveness of the Master-Slave implementation. In particular,
MS2PSO achieved more than 3× speed-up with respect to the single-GPU configurations.
MS2PSO will be integrated in the forthcoming web-based computational platform for Sys-
tems Biology COSYS [95], in order to provide an efficient means for the estimation of the
kinetic constants in models of biological systems.

5.4 PE of a human intracellular metabolic pathway

Considering the results discussed in Section 5.2.4, where we showed that FST-PSO is capable
of outperforming other metaheuristics in solving the PE problem of small and medium
scale models, we applied it here to perform the PE of the model of the human intracellular

198 Parameter Estimation of biological systems

metabolic pathway in a red blood cell described in Appendix A.3, in which 78 parameters
need to be estimated.

Metabolic networks are inherently complex systems, characterized by thousands of
reactions and metabolites, and regulated by a number of other intra- and extra-cellular
processes [37, 287]. Kinetic models of metabolism exploit mechanistic biological information
to provide a detailed description of the reaction network, as well as to simulate or predict its
dynamic behavior in different conditions. To this aim, both the structure of the network—that
is, how metabolites interact with enzymes, operating either as reactants, products, inhibitors,
or activators in each reaction—and the kinetic parameters need to be properly defined.
Unfortunately, due to the high costs and complexity of experimental procedures, these data
are scarce or incomplete, and the resulting model is usually undetermined [71]. In addition,
the modeling task is further complicated by the fact that the flux of metabolites through
the network strongly depends on many interrelated processes, like transcription, translation,
post-translational modifications, and allosteric control [287]. As a matter of fact, many
sources of indetermination can affect models of uncharacterized enzyme isoform mixtures
[401]. Enzyme isoforms, also called isozymes, are structurally similar but non-identical
protein complexes that are able to catalyze the same biochemical reaction. Every cell type
presents specific mixtures of isoforms of its metabolic enzymes and, in order to quantify
their abundance, experimental techniques, like proteomics analyses, are used [446]. The
structural differences of these proteins result in different kinetic behaviors of the catalytic
process [328, 472]. However, the main databases that collect information about enzyme
kinetics and the associated parameters, such as SABIO-RK [469] and BRENDA [387],
generally lack details when it comes to differences among isozymes. The knowledge so far
available in the literature thus prevents modelers from formulating a precise mathematical
representation of the kinetic differences of isozymes. As a result, the vast majority of
published metabolic models do not explicitly take these kinetic differences into account
[401]. Instead, the averaged behavior of the whole isoform mixture is reproduced using a
single set of kinetic parameters, either taken from the literature or inferred through global
optimization methods. The main drawback of this assumption emerges, in particular, when
the two following conditions superimpose: (i) the isozymes of the modeled metabolic
system display significant kinetic variations; (ii) in the modeled experimental condition
the abundance of isozymes differs from the condition in which the kinetic parameters of
the whole mixtures were originally estimated. These issues should be carefully taken into
consideration since the expression levels of metabolic enzymes change due to genetic knock-
downs, therapeutic interventions, as well as various environmental stimuli [287]; therefore,

5.4 PE of a human intracellular metabolic pathway 199

0

2

4

M
ol

ec
ul

ar
 c

on
ce

nt
ra

tio
n GLC

CMA-ES
DE
GAs
FST-PSO
DTTS

0 10 20 30 40 50
Time [hours]

2.5

5.0

7.5

10.0

M
ol

ec
ul

ar
 c

on
ce

nt
ra

tio
n LAC

Fig. 5.34 Dynamics of the GLC (top) and LAC (bottom) species of the human intracellular
metabolic network, obtained with the best parameterization found by CMA-ES, DE, GAs
and FST-PSO, compared with the experimental DTTS.

the modeling and understanding of metabolic systems in perturbed conditions can highly
benefit from the explicit representation of enzyme isoforms.

Here, we apply FST-PSO to calibrate the model of the red blood cell metabolism presented
in [216] (see Appendix A.3), considering the different isoforms of the enzyme hexokinase
(HK), the first enzyme of the glycolythic pathway that converts glucose (GLC) into glucose-
6-phosphate (G6P). We decided to explicitly represent the three isoforms of HK that are the
most abundant across different cell types and are known to have different kinetic properties
[467]. The resulting RBM is composed of 114 species and 226 reactions; therefore, to
drastically reduce the running time required to execute the simulations of this large-scale
model, we exploit FiCoS (see Section 4.3).

5.4.1 Results and discussion

In this section we present the results of the PE of the model of the red blood cell metabolism;
to show the effectiveness of FST-PSO we compared its performance against CMA-ES, DE
and GAs. In all tests, the initial population of each metaheuristic was randomly generated
by sampling the parameters of each individual by using a logarithmic distribution [73],
restricting the values in the boundaries of the search space. The simulations required for

200 Parameter Estimation of biological systems

the fitness calculation were performed using absolute error tolerance 10−8 and relative error
tolerance 10−4. All tests that follow were repeated 20 times, to collect statistical information
and assess the ABF value, in order to discuss the average behavior of each algorithm.

The model considered here is an extension of the model proposed by Jamshidi and Palsson
[216], in which we increased the level of detail by specifying the three main isoforms of HK
enzyme (i.e., HK I, II and III). For our experiments we assumed the relative abundances of
HK I, II and III equal to 0.6, 0.3 and 0.1, respectively We point out that these values were
not fixed according to some experimental measurements, and thus are meant to represent a
possible condition for the metabolic network. By so doing, we included 78 new reactions,
whose kinetic constants are unknown.

To perform the PE we relied on synthetic experimental measurements of GLC and lactate
(LAC) concentrations in a 50 hours time window. The ranges of feasible parameter values
were defined by considering the 26 original parameter values used to generate the synthetic
data, and allowing for a variation of at most 3 orders of magnitude above and below these
values. The complete RBM—including the known and estimated parameters, and the initial
conditions—is shown in Appendix A.3.

Figure 5.34 shows the comparison between the DTTS (red dots) and the simulation of
GLC and LAC obtained with the best parameterizations found by CMA-ES (blue line), DE
(green line), GAs (orange line), and FST-PSO (pink line). We observe that all metaheuristics,
except for CMA-ES, achieved a perfect fitting at the end of the optimization process. Figure
5.35 reports the ABF calculated according to the results of 20 independent PE repetitions,
showing that FST-PSO is capable of outperforming the other metaheuristics for this specific
task, confirming the results presented in Section 5.2.4. In order to validate the findings shown
in Section 5.2.4, we executed the PE of this model by applying the logarithmic transformation
to CMA-ES and FST-PSO (no vmin). The results shown in Figure 5.36 confirm that the
standard CMA-ES version (blue solid line) is not capable of achieving good optimization
results in terms of ABF. On the contrary, thanks to the transformation in Equation 5.3,
CMA-ES (blue dashed line) is capable of achieving results similar to FST-PSO (no vmin)
(magenta lines), in accordance with the general patterns observed with the tested synthetic
models (see Section 5.2.4). In addition, it is worth noting that CMA-ES-log, on average,
begins the optimization with a better initial distribution with respect to FST-PSO (no vmin):
indeed, the ABF in the case of CMA-ES-log at iteration 0 is approximately 25, while in the
case of FST-PSO (no vmin) is approximately 32. This result highlights a further advantage of
our alternative representation of parameters.

From the computational perspective, FiCoS strongly reduced the running time required
by the PE task, achieving a 30× speed-up running on a Nvidia GeForce Titan X (3072 cores,

5.4 PE of a human intracellular metabolic pathway 201

0 20 40 60 80 100
Iterations

10
0

10
1

AB
F

CMA-ES
DE
GAs
FST-PSO

Fig. 5.35 ABF calculated running CMA-ES, DE, GA and FST-PSO for 20 independent
repetitions. FST-PSO clearly outperforms the competitor methods.

0 20 40 60 80 100
Iterations

0

10

20

30

40

50

60

AB
F

CMA-ES
CMA-ES-log
FST-PSO
(no vmin)
FST-PSO-log
(no vmin)

Fig. 5.36 ABF calculated running CMA-ES and FST-PSO (no vmin) with normal and loga-
rithmic semantics of parameters for 20 independent repetitions.

clock 1.075 GHz and RAM 12 GB) with respect to the same analysis carried out with the
ODE solver LSODA (see Section 1.2.1), running on a CPU Intel Core i7-2600 (3.4 GHz,
RAM 8 GB).

202 Parameter Estimation of biological systems

0

1

2

3

4

5

M
ol

ec
ul

ar
 c

on
ce

nt
ra

tio
n

GLC
base
50%
75%
100%

0.00

0.01

0.02

0.03

G6P

0.000

0.002

0.004

0.006

FDP

0.000

0.002

0.004

0.006

GAP

0 5 10
Time [hours]

0

1

2

3

4

5

6

M
ol

ec
ul

ar
 c

on
ce

nt
ra

tio
n

PYR

0 5 10
Time [hours]

2

4

6

8

LAC

0 5 10
Time [hours]

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175
GL6P

0 5 10
Time [hours]

0.004

0.006

0.008

0.010

0.012

R5P

Fig. 5.37 Dynamic profiles of metabolite concentration simulated with the baseline model,
and with increasing (50,75,100%) knock-down interventions on the HK I isoform, in
a 10 hours time window. GLC and G6P are upstream metabolites with respect to HK.
Fructose-diphosphate (FDP), glyceraldehyde-3-phosphate (GAP), pyruvate (PYR) and LAC
are downstream metabolites with respect to HK. 6-Phosphogluconolactone (GL6P) and
ribose 5-phosphate (R5P) are involved in the pentose phosphate pathway.

We then explored how the model could be used to reproduce the effect of an isoform-
specific modification of the system. This scenario can represent a gene knock-down experi-
ment, the effect of a drug with an isoform-specific target, or a change in isozyme expression
after the cell is exposed to an environmental stimulus [287]. In Figure 5.37 we show that 50%,
75% and 100% reductions of the concentration of the HK isoform (see Table A.6) with the
highest abundance (0.6) affect the dynamics of key metabolites in the network in a 10 hours
time window. Noteworthy, from these results we can see that a complete knock-out of one
isoform is not necessarily detrimental for intracellular energy-producing pathways, as other
isoforms with efficient kinetics can provide alternative catalytic routes. The simulations of
the model in a 50 hours time window indeed show that the 50%, 75% and 100% knock-down
interventions only result in negligible effects on steady state metabolite concentrations (see
Figure 5.38).

The dynamics of GLC and LAC apparently display the most evident differences in a
50 hours window; however, it should be considered that this result was indeed expected
as these two metabolites represent, respectively, the “source” and the “sink” entities in the

5.4 PE of a human intracellular metabolic pathway 203

0

1

2

3

4

5
M

ol
ec

ul
ar

 c
on

ce
nt

ra
tio

n
GLC

base
50%
75%
100%

0.00

0.01

0.02

0.03

G6P

0.000

0.002

0.004

0.006

FDP

0.000

0.002

0.004

0.006

GAP

0 20 40
Time [hours]

0

2

4

6

M
ol

ec
ul

ar
 c

on
ce

nt
ra

tio
n

PYR

0 20 40
Time [hours]

2

4

6

8

10
LAC

0 20 40
Time [hours]

0.0000

0.0005

0.0010

0.0015

GL6P

0 20 40
Time [hours]

0.002

0.004

0.006

0.008

0.010

0.012

R5P

Fig. 5.38 Dynamic profiles of metabolite concentration simulated with the baseline model,
and with increasing (50,75,100%) knock-down interventions on the HK I isoform, in
a 50 hours time window. GLC and G6P are upstream metabolites with respect to HK.
Fructose-diphosphate (FDP), glyceraldehyde-3-phosphate (GAP), pyruvate (PYR) and LAC
are downstream metabolites with respect to HK. 6-Phosphogluconolactone (GL6P) and
ribose 5-phosphate (R5P) are involved in the Pentose Phosphate Pathway.

biochemical network and no influx/efflux reactions were modeled. If we compare the GLC
and LAC dynamics, it is anyway interesting to observe that altering the activity of enzymes
like HK, which is known to exert high control over the whole pathway [401], produces
proximal effects (upstream metabolite GLC is directly degraded by HK) and distal effects (9
metabolic reactions separate HK from the downstream metabolite LAC) on a comparable
scale.

5.4.2 Conclusions

When mathematical models are used to investigate the effects produced by the different kinetic
properties of metabolic isozymes, issues of lack of parameters and efficient simulation of the
dynamics often arise. Here, we showed that FST-PSO coupled with FiCoS can effectively
and efficiently solve the PE problem of large-scale models, thanks to the parallelization of
the computations on the GPU. This is particularly well suited to deal with complex metabolic
models that, for instance, include many reactions alternatively catalyzed by various isozymes
with unknown kinetic parameters. As a matter of fact, we successfully estimated the 78

204 Parameter Estimation of biological systems

missing parameters related to HK isozymes. These allowed us to correctly reproduce the
network behavior and to perform new in silico experiments. Thanks to FiCoS, we achieved
a 30× speed-up with respect to the same methodology exploiting LSODA as ODE solver
running on CPU.

Chapter 6

Computational method based on Genetic
Algorithms for Haplotype Assembly

In order to deal with the computational hardness required by the Haplotype Assembly
problem, we designed GenHap [433, 431], a computational method based on GAs that
can efficiently solve large instances of the weighted Minimum Error Correction (wMEC)
problem, yielding optimal solutions by means of a global search process, without any a priori
hypothesis about the sequencing error distribution in the reads. The computational complexity
of the problem is overcome by relying on a divide-et-impera approach, which provides faster
and often more accurate solutions compared with the state-of-the-art haplotyping tools.

6.1 Problem formulation

Given n positions on two homologous sequences belonging to a diploid organism and m
reads obtained after a sequencing experiment, we can reduce each read to a fragment vector
f ∈ {0,1,−}n, where 0 denotes a position that is equal to the reference sequence, 1 denotes
a Single Nucleotide Polymorphism (SNP) with respect to the reference sequence and −
indicates a position that is not covered by the read. We define a haplotype as a vector
h ∈ {0,1}n, that is, the combination of SNPs and wild-type positions belonging to one of
the two chromosomes. Given the two haplotypes h1 and h2—which refer to the first and
second copy of the chromosome, respectively—a position j (with j ∈ {1, . . . ,n}) is said to
be heterozygous if and only if h1 j ̸= h2 j , otherwise j is homozygous.

Let M be the “fragment matrix”, that is, the m×n matrix containing all fragments. Two
distinct fragments f and g are said to be in conflict if there is a position j (with j ∈ {1, . . . ,n})
such that f j ̸= g j and f j,g j ̸=−, otherwise they are in agreement. M is conflict-free if there

206 Computational method based on Genetic Algorithms for Haplotype Assembly

Reference chromosomeA

C

T

G

G

T T

G A A

C G

Chromosome copy 1

Chromosome copy 2

Fragment matrix

Reconstructed
haplotypes

h1= (1 0 1 1 0 0)
h2= (0 1 0 0 1 1)

wMEC
solving

M =

m
 re

ad
s

2n candidate
haplotypes n heterozygous SNP positions

1
1
1
0
0
0
-
-
-
-
-
-

0
0
0
1
1
1
-
-
-
-
-
-

-
-
-
-
-
-
0
0
0
1
1
1

1
1
1
0
0
0
1
1
1
0
0
0

1
1
1
0
0
0
1
1
1
0
0
0

-
-
-
-
-
-
0
0
0
1
1
1

1
1
1
-
-
-
0
0
0
-
-
-

0
0
0
-
-
-
1
1
1
-
-
-

-
-
-
0
0
0
-
-
-
1
1
1

1
1
1
1
1
1
0
0
0
0
0
0

1
1
1
1
1
1
0
0
0
0
0
0

-
-
-
0
0
0
-
-
-
1
1
1

M1 =

M2 =

Fragment matrix partitions

wMEC

Fig. 6.1 Simplified workflow of the Haplotype Assembly process. Raw sequencing data are
initially aligned, defining m reads. Every position of the two chromosome copies is compared
against a reference chromosome. The black solid points denote n heterozygous positions,
along with the corresponding nucleobases. The fragment matrix M is defined assigning 1
to SNP positions and 0 to wild-type positions. To reconstruct the two haplotypes h1 and h2
characterized by the least number of corrections to the SNP values among the 2n candidate
haplotypes, the wMEC problem is solved by partitioning the matrix M into two disjoint
matrices M1 and M2.

are two different haplotypes h1 and h2 such that each row Mi (with i ∈ {1, . . . ,m}) is in
agreement with h1 or h2. The overall Haplotype Assembly process is outlined in Figure 6.1.

6.1 Problem formulation 207

We can extend the heterozygous and homozygous definitions at the column level as
follows: a column c of M is homozygous if all its values are either in {0,−} or in {1,−},
on the contrary c is heterozygous because its values are in {0,1,−}, meaning that both
a SNP and a wild-type exist in that position. Finally, we can detect the case where two
distinct fragments are in conflict and measure their diversity by defining a distance D(·, ·)
that calculates the number of different values between two fragments. Namely, given two
fragment f = (Mi1, . . . ,Min) and g = (Ml1, . . . ,Mln) of M (with i, l ∈ {1, . . . ,m}), we consider:

D(f,g) =
n

∑
j=1

d(f j,g j), (6.1)

where d(f j,g j) is defined as:

d(x,y) =

1, if x ̸= y, x ̸=−, and y ̸=−
0, otherwise

. (6.2)

Equation 6.1 defines the extended Hamming distance between two ternary strings f and g
[81], denoting the total number of positions wherein both characters of f and g belong to
{0,1}, but they are different according to Equation 6.2.

If M is conflict-free, then it can be partitioned into two disjoint matrices M1 and M2,
each one containing a set of conflict-free fragments. We can infer the two haplotypes h1 and
h2 from M1 and M2, respectively, as follows:

hk j =

1, if N1 j(Mk)≥ N0 j(Mk)

0, otherwise
, (6.3)

where j ∈ {1, . . . ,n}, k ∈ {1,2}, and N0 j(Mk), N1 j(Mk) denote the number of 0s and 1s in
the j-th column, respectively. In such a way, N0(Mk) is the vector consisting of the number
of 0s of each column j using the reads of the partition Mk, while N1(Mk) is the vector
consisting of the number of 1s of each column j represented by the partition Mk.

In order to solve the wMEC problem, N0 and N1 are calculated by using the m×n weight
matrix W representing the weight associated with each position in each fragment. As a
matter of fact, W can be divided into the two disjoint partitions W1 and W2, whose row
indices correspond to those in M1 and M2, respectively. We can extend Equation 6.3 taking

208 Computational method based on Genetic Algorithms for Haplotype Assembly

into account the weights as follows:

hk j =

1, if N1 j(Wk)≥ N0 j(Wk)

0, otherwise
, (6.4)

where j ∈ {1, . . . ,n}, k ∈ {1,2}, and N0 j(Wk), N1 j(Wk) denote the sum of the weights
associated with the 0 and 1 elements in the j-th column, respectively.

The distance D(·, ·) given in Equation 6.1 can be used also to evaluate the distance
between a fragment and a haplotype, by means of the following error function:

E(M1,M2,h1,h2) =
2

∑
k=1

∑
f∈Mk

D(f,hk). (6.5)

The best partitioning of M can be obtained by minimizing Equation 6.5, inferring h1 and h2

with the least number of errors. Equation 6.5 is used as fitness function in GenHap.

6.2 Implementation strategy

GenHap exploits a very simple and efficient structure for the individuals composing the
population P of the Genetic Algorithm (GA) at the basis of GenHap. This structure encodes
a partition of the fragment matrix M as a binary string. In particular, each individual
Cp = [Cp1,Cp2, . . . ,Cpm] (with p ∈ {1, . . . , |P|}) is encoded as a circular array of size m (i.e.,
the number of reads). In order to obtain the two partitions M1 and M2, Cp is evaluated as
follows: if the i-th bit is equal to 0, then the read i belongs to M1; otherwise, the read i
belongs to M2. Once the two partitions are computed, GenHap infers the haplotypes h1 and
h2 by applying Equation 6.4. Finally, Equation 6.5 is exploited to calculate the number of
errors made by partitioning M as encoded by the individuals in P. This procedure is iterated
until the maximum number of iterations T is reached, the number of errors is equal to 0 or
the fitness value of the best individual does not improve for θ = ⌈0.25 ·T⌉ iterations.

Among the different selection mechanisms employed by GAs (e.g., roulette wheel [163],
ranking [26], tournament [293]), GenHap exploits the tournament selection to create an
intermediate population P′, starting from P. In each tournament, κ individuals are randomly
selected from P and the individual characterized by the best fitness value is added to P′. The
size of the tournament κ is related to the selection pressure: if κ is large, then the individuals
characterized by worse fitness values have a low probability to be selected, therefore the
variability of P′ might decrease.

6.2 Implementation strategy 209

...

#r
ea
ds
=

#r
ea
ds
=

#r
ea
ds
=

#r
ea
ds
≤

Fig. 6.2 Scheme of the partition of the input matrix: the input matrix M ∈ {0,1,−}m×n is
split into sub-matrices consisting of γ reads, generating Π = ⌊m/γ⌋ sub-problems that are
solved independently by a GA instance. The last sub-matrix could have a number of reads
lower than γ .

Afterwards, the genetic operators (i.e., crossover and mutation) are applied to the in-
dividuals belonging to P′ to obtain the offspring for the next iteration. GenHap exploits

210 Computational method based on Genetic Algorithms for Haplotype Assembly

a single-point crossover with mixing ratio equal to 0.5. It is applied with a given proba-
bility cr and allows for the recombination of two parent individuals Cy,Cz ∈ P′ (for some
y,z ∈ {1, . . . , |P|}), generating two offspring that possibly have better characteristics with
respect to their parents.

In order to increase the variability of the individuals, one or more elements of the offspring
can be modified by applying the mutation operator. GenHap makes use of a classic mutation
in which the elements Cpe (with e ∈ {1, . . . ,m}) of the individual can be flipped (i.e., from 0
to 1 or viceversa) with probability mr. Besides this mutation operator, GenHap implements
an additional bit-flipping mutation in which a random number of consecutive elements of the
individual is mutated according to the probability mr. This operator is applied if the fitness
value of the best individual does not improve for a given number of iterations (2 in our tests).

Finally, to prevent the quality of the best solution from decreasing during the optimization,
GenHap exploits an elitism strategy, so that the best individual from the current population is
copied into the next population without undergoing the genetic operators.

Unlike the work in [457], GenHap solves the wMEC problem instead of the unweighted
MEC formulation, by means of Equation 6.4. Moreover, differently from the other heuristic
strategies, such as ReFHap [121] and ProbHap [239], we did not assume the all-heterozygosity
of the phased positions [81]. Under this assumption, every column corresponds to heterozy-
gous sites, implying that h1 must be the complement of h2. In addition, since the required
execution time as well as the problem difficulty increase with the number of reads and SNPs,
to efficiently solve the wMEC problem we split the fragment matrix M into Π = ⌊m/γ⌋
sub-matrices consisting of γ reads (see Figure 6.2). Following a divide-et-impera approach
[274], the computational complexity can be tackled by partitioning the entire problem into
smaller and manageable sub-problems, each one solved by a GA that converges to a solution
characterized by two sub-haplotypes with the least number of corrections to the SNP values.
The solutions to the sub-problems achieved by the Π GA instances are finally combined.
This approach is feasible thanks to the long reads with higher coverage produced by the
second- and third-generation sequencing technologies. As a matter of fact, highly overlapping
reads allow us to partition the problem into easier sub-problems, avoiding the possibility of
obtaining incorrect reconstructions during the merging phase.

The parameter γ , used for the calculation of Π, depends on the coverage value and on
the nature of the sequencing technology; its value must be correctly set to avoid discrete
haplotype blocks that do not exist in the input matrix M. Generally, the intervals where several
independent historical recombination events occurred separate discrete blocks, revealing
greater haplotype diversity for the regions spanning the blocks [99].

6.2 Implementation strategy 211

GenHap firstly detects all the haplotype blocks inside the fragment matrix M and then, in
each block, it automatically sets γ equal to the mean coverage of that block to partition the
reads. Notice that GenHap solves each block sequentially and independently, obtaining a
number of haplotype pairs equal to the number of detected blocks. By so doing, for each block
GenHap proceeds by executing Π different GA optimizations, one for each sub-problem,
calculating 2 ·Π sub-haplotypes. The length of the individuals is equal to γ , except for the
last sub-problem that could have a number of reads smaller than γ (accordingly, the length of
the individuals could be smaller than γ).

Since the problem is divided into Π sub-problems, two sub-problems referring to contigu-
ous parts of the two chromosome copies might contain some overlapped positions that can
be either homozygous or heterozygous. However, the reads covering an overlapped position
might not be entirely included in the same sub-problem. For this reason, during the GA-based
optimizations, all the phased positions are assumed to be heterozygous. If a position j is
homozygous (i.e., all the reads covering this position have the same value, belonging to
{0,−} or {1,−}, in both the sub-partitions and in every read covering it), then only one of
the two sub-haplotypes will have the correct value. This specific value is correctly assigned
to the sub-haplotype covered by the highest number of reads by following a majority rule. As
soon as the two sub-haplotypes are obtained, all the possible uncorrected heterozygous sites
are removed and the correct homozygous values are assigned by checking the columns of the
two sub-partitions. Finally, once all sub-problems in Π are solved, GenHap recombines the
sub-haplotypes to obtain the two entire haplotypes h1 and h2 of the block under analysis.

GenHap is also able to find and mask the ambiguous positions by replacing the 0 or 1
value with a X symbol. We highlight that an ambiguous position is a position covered only
by the reads belonging to one of the two haplotypes.

In order to efficiently solve the wMEC problem and tackle its computational complexity,
GenHap detects the haplotype blocks inside the matrix M and then, for each block, it splits
the portion of M into Π sub-matrices consisting of γ reads. By so doing, the convergence
speed of the GA is increased thanks to the lower number of reads to partition in each sub-
problem with respect to the total number of reads of the whole problem. As shown in Figure
6.3, the Π sub-matrices are processed in parallel by means of a divide-et-impera approach
that exploits a Master-Slave distributed programming paradigm [430] to speed-up the overall
execution of GenHap. This strategy allowed us to distribute the computation in presence of
multiple cores. As a matter of fact, GenHap works by partitioning the initial set of reads
into sub-sets and solving them by executing different GA instances. This strategy can be
exploited in GenHap, as it solves the wMEC problem working on the rows of the fragment

212 Computational method based on Genetic Algorithms for Haplotype Assembly

Master
MPI Rank 0

Slave 1
MPI Rank 1

Slave ᵑ
MPI Rank ᵑ

Slave 2
MPI Rank 2

...

GA GA GA

Fig. 6.3 Scheme of the Master-Slave implementation of GenHap: the Master process orches-
trates all the Σ Slaves sending one or more sub-partitions to each Slave, which then solves
the assigned wMEC sub-task.

matrix M; on the contrary, several state-of-the-art exact methods (e.g., HapCol [342]) work
considering the columns of M, which cannot be independently processed in parallel.

The functioning of our Master-Slave implementation can be summarized as follows:

1. the Master allocates the resources and detects the haplotype blocks inside the fragment
matrix. For each detected block, it partitions the portion of the matrix M into Π sub-
matrices and offloads the data onto the available Σ Slaves (in real scenarios, Σ ≪ Π).
During this phase, each Slave generates the initial population of the GA;

2. the σ -th Slave (with σ ∈ {1, . . . ,Σ}) executes the assigned wMEC sub-task, running
the GA for either θ non-improving iterations or T maximum iterations, independently
of the other Slaves;

3. the process is iterated until all the wMEC sub-tasks are terminated;

4. the Master recombines the sub-solutions received from the Slaves, and returns the
complete wMEC solution for the block under analysis.

GenHap was entirely developed using the C++ programming language, exploiting the Mes-
sage Passing Interface (MPI) specifications to leverage multi-core Central Processing Units
(CPUs).

6.3 Results 213

6.3 Results

In this section we first describe the synthetic and real datasets used during the tests and
present the results obtained to identify the best GA setting. Then, we discuss the performance
achieved by GenHap with respect to HapCol [342], which was previously shown to be more
efficient than the other existing methods for the Haplotype Assembly problem, both in terms
of memory consumption and execution time. Finally, we show how GenHap performs on
data produced by four different sequencing platforms, namely:

• Illumina NovaSeq (Illumina Inc., San Diego, CA, USA) [350]: the most used and wide-
spread platform belonging to the class of second-generation sequencing technologies,
able to produce a huge number of short and precise reads (up to 150bp);

• Roche/454 (Roche AG, Basel, Switzerland) [270]: a second-generation sequencing
technology able to produce accurate and slightly longer reads than Illumina sequencers
(up to 700bp);

• PacBio RS II (Pacific Biosciences of California Inc., Menlo Park, CA, USA) [358, 363]:
a third-generation sequencing technology able to produce long reads (up to 30000bp);

• Oxford Nanopore Technologies (ONT) MinION (ONT Ltd., Oxford, United Kingdom)
[212, 213, 391]: the latest developed third-generation sequencing technology, able to
produce reads that are tens of kilobases long.

6.3.1 GenHap accuracy

The analyzed datasets

In order to test the performance of GenHap, we generated two synthetic (yet realistic)
datasets, each one consisting of instances obtained from a specific sequencing technology. In
particular, we considered the Roche/454 genome sequencer (Roche AG, Basel, Switzerland),
representing one of the next-generation sequencing (NGS) systems able to produce long
and precise reads, and the PacBio RS II sequencer [363, 66], which is an emerging third-
generation sequencing technology. Note that the reads produced by the Roche/454 sequencer
are approximately 9-times shorter than those generated by the PacBio RS II system.

In order to generate the datasets, we exploited the General Error-Model based SIMulator
(GemSIM) toolbox [281]. GemSIM is a software able to generate in silico realistic sequencing
data. It relies on empirical error models and distributions learned from real NGS data, and
simulates both single- and paired-end reads from a single genome, collection of genomes,

214 Computational method based on Genetic Algorithms for Haplotype Assembly

or set of related haplotypes. GemSIM can in principle simulate data from any sequencing
technology producing output data encoded in the FASTQ format [89], for raw reads, and
Sequence Alignment/Map (SAM), for aligned reads. We exploited the error model for the
Roche/454 sequencer, already available in GemSIM, and defined an additional error model
for the PacBio RS II technology. The synthetic reads were generated from the reference
sequence of the human chromosome 22 (UCSC Genome Browser, GRCh37/hg19 Feb. 2009
assembly [68]), in which random SNPs were inserted.

We exploited the GemHaps tool included in GemSIM [281] to generate a haplotype file
starting from a given genome sequence, and specifying the number as well as the frequency
of SNPs in each haplotype, denoted by #SNPs and fSNPs, respectively. Note that the SNP
positions were randomly determined. Then, the resulting haplotype file was processed by
GemReads, together with an error model file (generated by GemErr or supplied in GemSIM),
a FASTA genome file (or directory), and the selected quality score offset. The resulting
SAM file was converted into the compressed Binary Alignment/Map (BAM) format for a
more efficient manipulation [258]. In order to store the SNPs, we exploited the Variant Call
Format (VCF) [100], which is the most used format that combines DNA polymorphism
data, insertions and deletions, as well as structural variants. Lastly, the BAM and VCF files
were processed to produce a WhatsHap Input Format (WIF) file [333], which is the input of
GenHap.

The two synthetic datasets are characterized by the following features: i) #SNPs ∈
{500,1000,5000,10000,20000} (equally distributed over the two haplotypes); ii) coverage
cov ∈ {∼ 30×, ∼ 60×}; iii) average fSNPs ∈ {100,200}, which means one SNP every
100bp or 200bp [299, 140], varying the portion of genome onto which the reads were
generated. Read lengths were set to 600bp and 5000bp for the Roche/454 and the PacBio RS
II sequencers, respectively. The number of reads was automatically calculated according to
the value of cov and the sequencing technologies, by means of the following relationship:

#reads = cov · len(genome)
len(read)

, (6.6)

where len(genome) represents the length of the considered genome, which starts at a given
position x and ends at position y = x+ fSNPs ·#SNPs.

Afterwards, to assess the performance of GenHap on real sequencing data, we exploited
a WIF input file generated starting from high-quality SNP calls and sequencing data made
publicly available by the Genome in a Bottle (GIAB) Consortium [493]. In particular, this
data is produced with the PacBio technology and is limited to the chromosome 22 of the
individual NA12878 (the real dataset is available in [38]) Moreover, we tested GenHap on

6.3 Results 215

0 20 40 60 80 100
Iterations

0

50

100

150

200

AB
F

|P| = 50, cr = 0.90, mr = 0.05
|P| = 100, cr = 0.90, mr = 0.05
|P| = 150, cr = 0.95, mr = 0.05
|P| = 200, cr = 0.95, mr = 0.05

Fig. 6.4 Comparison of the ABF achieved by GenHap with the best parameterizations found
for each value of |P| tested here. The ABF was computed over the results of the optimization
of instances characterized by #SNPs ∈ {500,1000,5000} and fSNPs = 100.

an additional [329], limiting our analysis to chromosome 22 as in the previous case. The
available BAM file–containing long reads with high-coverage produced with the PacBio RS
II sequencing technology–and the VCF file were processed to obtain a WIF input file as
described above.

GA setting analysis

As a first step, the performance of GenHap was evaluated to determine the best settings for
the Haplotype Assembly problem. We considered different instances for the two sequencing
technologies employed (i.e., Roche/454 and PacBio RS II), and we varied the settings of
GenHap used throughout the optimization process, as follows:

• size of the population |P| ∈ {50,100,150,200};

• crossover rate cr ∈ {0.8,0.85,0.9,0.95};

• mutation rate mr ∈ {0.01,0.05,0.1,0.15}.

In all tests, the size of the tournament is fixed to κ = 0.1 · |P| and the maximum number of
iterations is T = 100. A total of 6 different instances (3 resembling the Roche/454 sequencer

216 Computational method based on Genetic Algorithms for Haplotype Assembly

and 3 the PacBio RS II sequencer) were generated by considering #SNPs∈{500,1000,5000}
and fSNPs = 100.

We varied one setting at a time, leading to 64 different settings tested and a total number
of 64×6 = 384 GenHap executions. These tests highlighted that, for each value of |P|, the
best settings are:

1. |P|= 50, pc = 0.9, pm = 0.05;

2. |P|= 100, pc = 0.9, pm = 0.05;

3. |P|= 150, pc = 0.95, pm = 0.05;

4. |P|= 200, pc = 0.95, pm = 0.05.

Figure 6.4 shows the comparison of the performance achieved by GenHap with the
settings listed above, where the Average Best Fitness (ABF) was computed by taking into
account, at each iteration, the fitness value of the best individuals over the 6 optimization
processes. Even though all settings allowed GenHap to achieve almost the same final ABF
value, we observe that the convergence speed increases with the size of the population. How-
ever, also the running time of GenHap increases with the size of the population. In particular,
the executions lasted on average 1.41 s, 2.33 s, 3.52 s, 4.95 s with |P| ∈ {50,100,150,200},
respectively, running on one node of the Advanced Computing Center for Research and
Education (ACCRE) at Vanderbilt University, Nashville, TN, USA. The node is equipped
with 2 Intel® Xeon® E5-2630 v3 (8 cores at 2.40 GHz) CPUs, 240 GB of RAM and CentOS
7.0 operating system. To perform the tests we exploited all 8 physical cores of a single CPU.

Considering these preliminary results, we selected the parameter settings |P| = 100,
cr = 0.9, mr = 0.05, as the best trade-off between convergence speed (in terms of ABF) and
running time.

Comparison of the performance of GenHap and HapCol

The performance achieved by GenHap was compared with those obtained by HapCol [342],
which was shown to outperform the main available haplotyping approaches. In particular, we
exploited here a more recent version of HapCol capable of dealing with haplotype blocks
[38]. The same computational platform used for the setting analysis of GenHap was used to
execute all the tests on the two synthetic datasets described above.

We stress the fact that GenHap was compared against HapCol only on the instances with
cov ≃ 30×, since HapCol is not capable of solving instances with higher coverage values
(i.e., the algorithm execution halts when a column covered by more than 30 reads is found).

6.3 Results 217

Table 6.1 Comparison of GenHap and HapCol on Roche/454 dataset with cov ≃ 30×. The
performances were evaluated both in terms of HE and running time. The N/A symbol denotes
that HapCol was not able to complete the execution on all the 15 instances.

GenHap HapCol
fSNPs cov #SNPs Avg HE Std dev

HE
Avg
Running
Time [s]

Avg HE Std dev
HE

Avg
Running
Time [s]

100 ∼ 30×
500 0.04 0.08 0.21 0.00 0.00 0.62
1000 0.09 0.08 0.36 0.00 0.00 1.20
5000 0.18 0.06 3.17 0.01 0.03 5.35
10000 2.50 5.52 10.33 6.55 16.38 10.23

200 ∼ 30×
500 0.09 0.14 0.34 0.00 0.00 0.50
1000 0.09 0.10 0.63 0.01 0.03 0.96
5000 3.61 3.43 6.07 0.38 0.78 4.90
10000 2.15 1.62 17.24 N/A N/A N/A

0

2

4

6

8

10

R
un

ni
ng

 T
im

e
[s

]

SNP frequency = 100
GenHap
HapCol

500 1000 5000 10000
#SNPs

0

5

10

15

R
un

ni
ng

 T
im

e
[s

]

SNP frequency = 200

Fig. 6.5 Comparison of the average running time required by GenHap (blue bars) and
HapCol (red bars) computed over 15 instances for each value of #SNPs ∈ {500,1000,5000}
obtained with the Roche/454 sequencing technology, cov ≃ 30× and fSNPs = 100 (top) and
fSNPs = 200 (bottom). In the case of fSNPs = 200 and #SNPs = 10000, HapCol was not able
to complete the execution on all the 15 instances.

Considering the two sequencing technologies, we generated 15 different instances for
each value of #SNPs and fSNPs. The performance was then evaluated by computing (i) the
average haplotype error rate (HE), which represents the percentage of SNPs erroneously
assigned with respect to the ground truth [17], and (ii) the average running time.

As shown in Table 6.1, in the instances generated using the Roche/454 sequencing
technology with fSNPs = 100, both GenHap and HapCol reconstructed the two haplotypes,
achieving an average HE lower than 0.2% with a negligible standard deviation in the case

218 Computational method based on Genetic Algorithms for Haplotype Assembly

of #SNPs ∈ {500,1000,5000}. GenHap inferred the haplotypes characterized by 10000
SNPs with an average HE lower than 2.5% and a standard deviation around 5%, while
HapCol obtained an average HE equal to 6.55% with a standard deviation around 16%. For
what concerns the running time, GenHap outperformed HapCol in all tests except in the
case of #SNPs = 10000, as shown in Figure 6.5, being around 4× faster in reconstructing
the haplotypes. In the case of #SNPs = 10000, the running times are comparable, but
GenHap obtains a lower HE than HapCol. In the instances generated using fSNPs = 200
and #SNPs ∈ {500,1000}, both GenHap and HapCol reconstructed the two haplotypes,
achieving an average HE lower than 0.1% with a negligible standard deviation. When
#SNPs ∈ {5000,10000} are taken into account, GenHap inferred the haplotype pairs with an
average HE lower than 3.65% and a standard deviation lower than 3.5%. Notice that HapCol
was not able to complete the execution on all the 15 instances characterized by 10000 SNPs.
As in the case of instances with fSNPs = 100, GenHap is faster than HapCol in all tests,
except in the case of #SNPs = 5000. For what concerns the PacBio RS II sequencing dataset,
since this technology is characterized by a higher error rate with respect to the Roche/454
sequencer, both GenHap and HapCol reconstructed the two haplotypes with higher HE
values (see Table 6.2). Nonetheless, the average HE value is lower than 2.5% with a standard
deviation lower than 1% in all cases. Figure 6.6 shows the running time required by GenHap
and HapCol to reconstruct the haplotypes. As in the case of the Roche/r454 dataset, the
running time increases with #SNPs, but GenHap always outperforms HapCol, achieving up
to 20× speed-up.

Table 6.3 lists the results obtained by GenHap on the instances of the Roche/454 dataset
characterized by cov ≃ 60×, #SNPs ∈ {500,1000,5000,10000} and fSNPs ∈ {100,200}. In
all tests with fSNPs = 100, GenHap was always able to infer the two haplotypes with high
accuracy, indeed the average HE values are always lower than 0.15%. In the instances
generated with fSNPs = 200, GenHap reconstructed the haplotype pairs with an average HE
lower than 0.2%. This interesting result shows that higher coverages can help during the
reconstruction phase, allowing GenHap to infer more precise haplotypes.

Regarding the PacBio RS II dataset, the achieved HE is on average lower than 1.25%
with a standard deviation ≤ 0.4% (see Table 6.4). In particular, the average HE decreases
when the value of #SNPs or the coverage increase, thus suggesting that higher coverages
values can considerably help in achieving a correct reconstruction of the two haplotypes. On
the contrary, the running time increases at most linearly with respect to the coverage (see
Table 6.4).

As a first test on real sequencing data, we exploited a WIF input file codifying the SNPs
of the chromosome 22 generated from high-quality sequencing data made publicly available

6.3 Results 219

Table 6.2 Comparison of GenHap and HapCol on PacBio RS II dataset with cov ≃ 30×. The
performances were evaluated both in terms of HE and running time.

GenHap HapCol
fSNPs cov #SNPs Avg HE Std dev

HE
Avg
Running
Time [s]

Avg HE Std dev
HE

Avg
Running
Time [s]

100 ∼ 30×

500 2.04 0.59 0.11 2.42 0.78 2.24
1000 1.27 0.51 0.19 1.20 0.61 1.89
5000 1.06 0.19 0.94 0.60 0.17 9.04
10000 0.96 0.19 2.50 0.43 0.11 15.51
20000 1.02 0.14 8.49 0.41 0.11 31.13

200 ∼ 30×

500 2.09 0.52 0.14 1.73 0.42 0.95
1000 1.70 0.24 0.22 1.09 0.41 1.84
5000 1.05 0.18 1.39 0.54 0.11 7.10
10000 1.13 0.18 4.09 0.51 0.17 14.13
20000 1.02 0.13 13.86 0.33 0.05 27.55

0

10

20

30

R
un

ni
ng

 T
im

e
[s

]

SNP frequency = 100
GenHap
HapCol

500 1000 5000 10000 20000
#SNPs

0

5

10

15

20

25

R
un

ni
ng

 T
im

e
[s

]

SNP frequency = 200

Fig. 6.6 Comparison of the average running time required by GenHap (blue bars) and HapCol
(red bars) computed over 15 instances for each #SNPs ∈ {500,1000,5000,10000,20000}
obtained with the PacBio RS II sequencing technology, cov ≃ 30×, fSNPs = 100 (top) and
fSNPs = 200 (bottom).

by the GIAB Consortium. This instance contains #SNPs ≃ 27000 and #reads ≃ 80000 with
average and maximum coverages equal to 22 and 25, respectively. In [38], in order to down-
sample the instances to the target maximum coverages of 30× allowed by HapCol, the authors
applied a greedy-based pruning strategy. This procedure selects the reads characterized by
high base-calling quality. GenHap detected and inferred the 305 different haplotype blocks in
less than 10 minutes, obtaining approximately an 87% agreement with respect to the HapCol

220 Computational method based on Genetic Algorithms for Haplotype Assembly

Table 6.3 Results obtained by GenHap on Roche/454 dataset with cov ≃ 60×. The perfor-
mances were evaluated both in terms of HE and running time.

GenHap
fSNPs cov #SNPs Avg HE Std dev

HE
Avg
Running
Time [s]

100 ∼ 60×
500 0.00 0.00 0.26
1000 0.05 0.05 0.54
5000 0.10 0.03 6.57
10000 0.15 0.03 21.13

200 ∼ 60×
500 0.00 0.00 0.37
1000 0.07 0.09 0.89
5000 1.13 1.72 11.17
10000 2.00 1.02 53.77

Table 6.4 Results obtained by GenHap on PacBio RS II dataset with cov ≃ 60×. The
performances were evaluated both in terms of HE and running time.

GenHap
fSNPs cov #SNPs Avg HE Std dev

HE
Avg
Running
Time [s]

100 ∼ 60×

500 1.22 0.36 0.17
1000 0.88 0.21 0.33
5000 0.56 0.10 1.81
10000 0.62 0.10 5.34
20000 0.60 0.07 17.14

200 ∼ 60×

500 1.22 0.37 0.22
1000 0.79 0.27 0.36
5000 0.53 0.09 3.26
10000 0.45 0.08 8.01
20000 0.49 0.05 27.15

solution. This agreement was calculated considering every SNP of both haplotypes in each
block.

We tested GenHap also on the chromosome 22 sequenced using the PacBio RS II
technology (publicly available at [329]). This instance contains #SNPs≃ 28000 and #reads≃
140000 with average and maximum coverages equal to 29 and 565, respectively. GenHap
reconstructed the two haplotypes in about 10 minutes, showing its capability of dealing with
instances characterized by high coverages, avoiding pruning pre-processing steps.

6.3.2 Computational performance

In order to assess the computational performance of GenHap, we considered different
sequencing technologies, namely: Illumina NovaSeq, Roche/454, PacBio RS II, and ONT
MinION. For each sequencing technology, we generated a single instance varying the
following parameters:

• #SNPs ∈ {500,1000,5000,10000,20000};

6.3 Results 221

• cov ∈ {∼30×,∼40×,∼50×,∼60×};

• average fSNPs = 200 (i.e., one SNP every 200bp exists [299, 140]).

These instances were used to evaluate the scalability of GenHap by varying the number of
cores, that is, #cores ∈ {2,4,8,16,24,32,40,48,56,64}. All tests were performed on the
MARCONI supercomputer, which is based on Lenovo NeXtScale System® platform (Mor-
risville, NC, USA), provided by the Italian inter-university consortium CINECA (Bologna,
Italy). Three different partitions running on CentOS 7.2 are available on this supercomputer:

A1 Broadwell (BDW) partition consists of 720 compute nodes, each one equipped with 2
Intel® Xeon® E5-2697 v4 (18 cores at 2.30GHz) and 128 GB RAM;

A2 Knights Landing (KNL) partition consists of 3600 compute nodes, each one equipped
with an Intel® Knights Landing (68 cores at 1.40GHz and 16 GB MCDRAM), which is
the next-generation of the Intel® Xeon Phi™ product family of many-core architecture,
and 93 GB RAM;

A3 Skylake (SKL) partition consists of 92 compute nodes, each one equipped with 2 Intel®

Xeon® 8160 CPU (18 cores at 2.10GHz) and 192 GB RAM.

Our analysis was carried out by using the computing nodes of partition A2, which was chosen
due to the availability of a higher number of computing cores.

Figure 6.7 depicts the running times required by GenHap to infer the pairs of haplotypes.
As expected, the processing time generally decreases along with the read length: according
to Equation 1.22, the same coverage can be obtained by means of long reads coupled with
a lower number of reads. This circumstance leads to a lower number of sub-problems to
be solved, reducing the necessary computational effort. Moreover, the lowest running time
is achieved on the instances generated relying on the ONT MinION, which is capable of
producing long reads (up to 6000bp) with accuracy greater than 92%. As a matter of fact,
the amount of SNPs to be corrected decreases when reads characterized by high accuracy
are taken into account, allowing the GA instances to have a fast convergence to the optimal
solutions. The results obtained for each sequencing platform are summarized as follows:

• Illumina NovaSeq: independently from the coverage, the lowest running time is
achieved by exploiting 24 cores to parallelize the GA instances when #SNPs = 10000.
When #SNPs < 10000, 16 or 24 cores require the minimum running time to infer the
haplotype pairs;

• Roche/454: when #SNPs ≥ 5000, the best performance of GenHap is achieved by
exploiting 16 or 24 cores, otherwise the best choice is 24 cores;

222 Computational method based on Genetic Algorithms for Haplotype Assembly

2 4 8 16 24 32 40 48 56 64
0

500

1000

1500

R
un

ni
ng

 ti
m

e
[s

]

cov 30

2 4 8 16 24 32 40 48 56 64
0

500

1000

1500

cov 40

2 4 8 16 24 32 40 48 56 64
0

500

1000

1500

2000

cov 50

2 4 8 16 24 32 40 48 56 64
0

500

1000

1500

2000

cov 60

2 4 8 16 24 32 40 48 56 64
0

200

400

600

800

R
un

ni
ng

 ti
m

e
[s

]

2 4 8 16 24 32 40 48 56 64
0

250

500

750

1000

2 4 8 16 24 32 40 48 56 64
0

500

1000

2 4 8 16 24 32 40 48 56 64
0

500

1000

1500

2 4 8 16 24 32 40 48 56 64
0

50

100

150

200

250

R
un

ni
ng

 ti
m

e
[s

]

2 4 8 16 24 32 40 48 56 64
0

100

200

300

2 4 8 16 24 32 40 48 56 64
0

100

200

300

400

2 4 8 16 24 32 40 48 56 64
0

100

200

300

400

2 4 8 16 24 32 40 48 56 64
Number of cores

0

20

40

60

80

100

R
un

ni
ng

 ti
m

e
[s

]

2 4 8 16 24 32 40 48 56 64
Number of cores

0

50

100

2 4 8 16 24 32 40 48 56 64
Number of cores

0

50

100

150

2 4 8 16 24 32 40 48 56 64
Number of cores

0

50

100

150

200

Illum
ina N

ovaSeq
R

oche/454
PacB

io R
S II

O
N

T M
inIO

N

500 SNPs 1000 SNPs 2500 SNPs 5000 SNPs 10000 SNPs 20000 SNPs

Fig. 6.7 Comparison of the running time required by GenHap on sequencing data generated by
four sequencing technologies (Illumina NovaSeq, Roche/454, PacBio RS II, ONT MinION)
by varying the coverage values and the number of SNPs. Note that the instances generated
using the Illumina NovaSeq technology and characterized by #SNPs = 20000 required more
RAM than the amount of memory available on the computing nodes used for the tests. The
tests were executed by increasing the number of cores exploited to run GenHap, to evaluate
the scalability of the implementation based on distributed computing.

• PacBio RS II: in every test, the fastest executions are generally obtained by exploiting
24 cores to parallelize the GA instances, except when #SNPs = 500 is taken into
account. In this case, the running time decreases when 16 cores are exploited to
effectively distribute the GA instances on multiple cores. Since the reads generated by
relying on this technology have a low accuracy (approximately 87%), which makes the
problem more difficult to be solved (i.e., the amount of SNPs to be corrected increases),
the scalability of GenHap is emphasized;

• ONT MinION: in all tests, the best choice is 16 cores that allow for efficiently dis-
tributing the computational load.

In all tests, a number of cores greater than 24 does not reduce the running time since the
overhead introduced by MPI is not entirely mitigated by the required computational load.
Furthermore, when the number of sub-problems is lower than the number of available cores,
our Master-Slave approach exploits a number of cores equal to the number of sub-problems.
On the one hand, when technologies producing short reads are considered, the number of

6.3 Results 223

Table 6.5 Results obtained by GenHap on NovaSeq and MinION datasets, by considering
cov ∈ {∼ 30×,∼ 60×,∼ 90×} and #SNPs ∈ {500,1000,5000}. The performances were
evaluated both in terms of HE and number of detected haplotypes blocks (values expressed as
average ± standard deviation, calculated over the 10 model instances for each configuration).

NovaSeq MinION
cov #SNPs HE Blocks HE Blocks

∼30×
500 5.06 ± 1.070 195 ± 6 0.02 ± 0.066 1 ± 0
1000 4.38 ± 1.219 388 ± 9 0.05 ± 0.070 1 ± 0
5000 4.58 ± 0.515 1940 ± 13 0.15 ± 0.439 1 ± 0

∼60×
500 4.40 ± 1.139 185 ± 6 0.06 ± 0.098 1 ± 0
1000 3.96 ± 1.091 382 ± 12 0.00 ± 0.000 1 ± 0
5000 4.66 ± 0.368 1862 ± 21 0.01 ± 0.010 1 ± 0

∼90×
500 4.72 ± 1.669 187 ± 4 0.00 ± 0.000 1 ± 0
1000 3.93 ± 1.424 370 ± 9 0.00 ± 0.000 1 ± 0
5000 4.92 ± 0.544 1843 ± 28 0.02 ± 0.025 1 ± 0

haplotype blocks increases along with #SNPs. Since these blocks are solved sequentially
and are generally characterized by a number of sub-problems lower than the available cores,
16 or 24 cores allow for balancing the computational load. On the other hand, technologies
producing long reads generate a small number of reads that lead to a low number of sub-
problems to be solved. Notice that exploiting the accuracy of the reads produced using
Illumina NovaSeq, Roche/454 and ONT MinION, the GA instances have a fast convergence
to the optimal solutions requiring only a dozen of generations.

In order to quantitatively evaluate how the read length affects the number of haplotype
blocks, we generated a set of synthetic (yet realistic) instances by using NovaSeq (Illumina
Inc., San Diego, CA, USA) [350] and Oxford Nanopore MinION [212] sequencing platforms.
For both sequencing technologies, we generated different instances to collect statistically
sound results varying the following parameters: (i) #SNPs ∈ {500,1000,5000}; (ii) cov ∈
{∼30×,∼60×,∼90×}; (iii) average fSNPs = 200. To be more precise, 10 different instances
were generated for each combination of cov and #SNPs. The results are evaluated considering
the HE. As shown in Table 6.5, GenHap obtains better results when applied to infer the pair
of haplotypes on the MinION instances, obtaining HE values always lower than 0.2%, with
a neglectable standard deviation (less than 0.5%). Notice that these instances are always
characterized by a single haplotype block. Analyzing the results obtained by running GenHap
on the instances generated by the NovaSeq sequencer, the HE increases, ranging from 3.93%
to 5.06% with a standard deviation up to 1.7%. Due to the short reads characterizing this
sequencing platform (i.e., ∼150bp), a high number of haplotype blocks is produced. This
number increases along with the #SNPs, reaching ∼2000 blocks when #SNPs = 5000 are
analyzed. As shown in Section 6.3.1, the coverage is generally capable of mitigating this
problem: indeed, increasing the coverage allows for decreasing the number of haplotypes
blocks affecting the instances generated by this technology.

224 Computational method based on Genetic Algorithms for Haplotype Assembly

6.4 Conclusions

We presented GenHap, a novel computational method based on GAs to solve the haplotyping
problem, which is one of the hot topics in Computational Biology and Bioinformatics. The
performance of GenHap was evaluated by considering synthetic (yet realistic) read datasets.
The solutions yielded by GenHap are accurate, independently of the number, frequency
and coverage of SNPs in the input instances, and without any a priori hypothesis about
the sequencing error distribution in the reads. Differently from the other state-of-the-art
algorithms, GenHap was designed for taking into account datasets produced by the third-
generation sequencing technologies, characterized by longer reads and higher coverages
with respect to the previous generations. As a matter of fact, the experimental findings show
that GenHap works better with the datasets produced by third-generation sequencers. The
read accuracy achieved by novel sequencing technologies, such as PacBio RS II and Oxford
Nanopore MinION, may be useful for several practical applications. In the case of SNP
detection and haplotype phasing in human samples, besides read accuracy, a high-coverage
is required to reduce possible errors due to few reads that convey conflicting information
[214]. In [398], the authors argued that an average coverage higher than 30× is the de facto
standard. As a matter of fact, the first human genome that was sequenced using Illumina
short-read technology showed that, although almost all homozygous SNPs are detected at a
15× average coverage, an average depth of 33× is required to detect the same proportion of
heterozygous SNPs.

We showed that GenHap is capable of outperforminhg HapCol [342], achieving approx-
imately a 4× speed-up in the case of Roche/454 instances, and up to 20× speed-up in the
case of the PacBio RS II dataset. Notice that in order to keep the running time constant
when the number of SNPs increases, the number of available cores should increase propor-
tionally with #SNPs. Although several approaches have been proposed in literature to solve
the haplotyping problem [333, 342], GenHap can be easily adapted to exploit Hi-C data
characterized by very high-coverages (up to 90×), in combination with other sequencing
methods for long-range haplotype phasing [34]. Moreover, GenHap can be also extended to
compute haplotypes in organisms with different ploidity [5, 39]. Differently from diploid
organisms having two copies of each chromosome set, polyploid organisms have multiple
copies of their chromosome sets. Polyploidy has gained scientific interest in the study of
the ongoing species diversification phenomena [327]. This characteristic is mainly present
in plant genomes, but also in animals (such as salmonid fishes and African clawed frogs)
[364]. In these comparative genomic studies, haplotype-aware assemblies play a crucial
role in elucidating genetic and epigenetic regulatory evolutionary aspects. Unfortunately,
the computational burden of the Haplotype Assembly problem is emphasized in the case

6.4 Conclusions 225

of polyploid haplotypes with respect to diploids [103]. Therefore, High-Performance Com-
puting represents a key element for efficient, accurate, and scalable methods for Haplotype
Assembly of both diploid and polyploid organisms. Worthy of notice, GenHap could be
easily reformulated to consider a multi-objective fitness function (e.g., by exploiting an
approach similar to NSGA-III [108]). In this context, a possible future extension of GenHap
would consist in introducing other objectives in the fitness function, such as the methylation
patterns of the different chromosomes [174] or the gene proximity in maps achieved through
Chromosome Conformation Capture (3C) experiments [286].

Chapter 7

Evolutionary method for the analysis of
medical images

In this chapter, a novel image enhancement technique based on Genetic Algorithms (GAs)
(see Section 2.2.5), called MedGA [379], is described. MedGA specifically aimed at strength-
ening the sub-distributions in medical images with an underlying bimodal histogram of the
gray level intensities. Among the existing Computational Intelligence methods for global
optimization, GAs represent the most suitable technique because of the discrete structure
of the candidate solutions and the intrinsic combinatorial structure of the problem under
investigation.

It is worth noting that all works mentioned in Section 1.5.1 are focused on consumer
electronics or medical applications, to obtain more “visually pleasant” images by mainly
increasing the contrast of the whole image. On the contrary, the main key novelty of MedGA
consists in better revealing the two underlying sub-distributions occurring in an image
sub-region characterized by a roughly bimodal histogram, overcoming the limitations of
the state-of-the-art contrast enhancement methods, which could produce false edges and
consequently over-segmentation when the input images are affected by noise, as in the case of
Contrast-Enhanced (CE) Magnetic Resonance Imaging (MRI) data [144]. There exist other
algorithms, like Histogram Specification (HS), whose aim is similar to MedGA and consists
in matching the histogram of the gray level intensities of the input MR image with a desired
output histogram [165]. Nevertheless, this approach cannot be applied to process image
datasets characterized by a high variability in gray level distributions, since the histogram
to be matched should be defined either a priori for the whole dataset, or interactively for
each processed image, through a procedure that consists in strengthening and shaping the
two underlying sub-distributions.

228 Evolutionary method for the analysis of medical images

Even though MedGA exploits the same encoding of candidate solutions defined in [188]
and [117], its purpose is very different since it was designed to explicitly strengthen the two
sub-distributions of medical images characterized by an underlying bimodal histogram. To
this aim, we defined a specific fitness function that emphasizes the two Gaussian distributions
composing a bimodal histogram. This achievement plays a fundamental role for threshold-
based segmentation approaches, since they strongly rely on the assumption that the bimodal
histogram under investigation is composed of two nearly Gaussian distributions with almost
equal size and variance [477].

Finally, MedGA also differs from the approaches based on Genetic Programming (GP)
whose generated solutions might have a large size [69], even when the GP model is imple-
mented efficiently, thus representing a limitation that could significantly impair the readability
and interpretability of the final outcome. Moreover, MedGA does not require any user inter-
action step, differently to [343] where the user, being directly involved in the tournament
selection, controls the evolution of simple programs that enhance and integrate multiple
gray-scale images into a single pseudo-color image. Therefore, the selection is based on
the output image (i.e., phenotype) rather than the structure and size of the program (i.e.,
genotype) [343].

We also integrated MedGA as a pre-processing stage into a novel framework for image
enhancement, automatic global thresholding and segmentation, which has been applied
to different clinical scenarios involving bimodal MR image analysis [377]. We remind
that medical image segmentation concerns both detection and delineation of anatomical or
physiological structures from the background, distinguishing among the different components
included in the image [331]. This important task allows for the extraction of clinically useful
information and features in medical image analysis [458, 218]. Accordingly, computer-
assisted approaches enable quantitative imaging [122], whose aim is to derive accurate and
objective measurements from digital images regarding a Region of Interest (ROI) [482, 160].
Indeed, image segmentation is still one of the most compelling research areas, especially
in medical image analysis [122]. Accurately delineating the ROIs is a critical task, since
manual segmentation procedures are time-expensive, error-prone, and operator-dependent
(i.e., they do not guarantee results repeatability).

7.1 Image thresholding

The most straightforward unsupervised Pattern Recognition technique for automatic image
segmentation is global thresholding, which generally consists in classifying pixels according
to fixed criteria, usually specified as ranges of intensities [365]. In particular, binarization is

7.2 MedGA 229

a segmentation technique that partitions the input image into two classes by considering a
certain intensity threshold value θ . Despite its simplicity, this strategy provides an efficient
and effective segmentation technique, according to the different intensities in the foreground
and background regions of an image. The threshold value θ must be carefully chosen,
considering the features of the image underlying the pixel intensity values. Consequently,
given an image I consisting of M ×N pixels, θ defines two different classes, by dividing
the histogram of the gray levels H into two parts, namely H1 and H2. The pixels in
the image I are partitioned into the two sub-regions R1 =

{
I(x,y) : I(x,y)> θ

}
and R2 ={

I(x,y) : I(x,y)≤ θ
}

, for every x = 1, . . . ,M and y = 1, . . . ,N.
Several literature methods have been proposed to implement adaptive thresholding meth-

ods, able to automatically select a proper value for each analyzed image. The most widespread
algorithms for dynamic thresholding are: the Iterative Optimal Threshold Selection (IOTS)
[359]; the method proposed by Otsu [326]; the Minimum-Error Thresholding (MET) method
conceived by Kittler and Illingworth [230], later extended by Ye and Danielsson [483]. All
these approaches are closely related and strongly rely on images characterized by bimodal
histograms (see, e.g., [477]). In addition, the two populations (i.e., foreground and back-
ground pixels in the case of two-class image segmentation), assumed to be nearly Gaussian
distributions, should be characterized by approximately equal size and variance [241]. When
these assumptions are not satisfied—i.e., the pixel intensity distribution is not approximately
bimodal—the aforementioned algorithms show some limitations. As a matter of fact, the opti-
mal threshold θopt—especially in the case of Otsu’s method—either over- or under-estimates
the ROI, since the computed threshold tends to split the class with larger size and to bias
towards the class with larger variance. Under these conditions, the IOTS method [359, 445]
could provide better results than Otsu’s method [326] when the sizes of the two classes
are highly different [476]. In addition, Medina-Carnicer et al. in [282] showed that these
algorithms often perform poorly with unimodal distributions of gray levels. Moreover, in the
case of images affected by intensity overlap, the IOTS algorithm is less likely to either over-
or under-estimate the threshold, when compared to other techniques selecting a threshold
between the two peaks of the histogram, even if the histogram is not strongly bimodal [406],
in particular when applied to medical images [242].

7.2 MedGA

MedGA is a global enhancement technique able to improve the details of medical images
characterized by an underlying bimodal histogram. Given a medical image wherein a ROI
needs to be enhanced to achieve further analyses, MedGA aims at improving the ROI quality

230 Evolutionary method for the analysis of medical images

(a) (b)

(c) (d)

Fig. 7.1 Examples of input MR images: (a, b) uterine fibroid inside the uterus region; (c, d)
brain tumor inside a ROI bounding region selected by the healthcare operator. The image
regions including the ROIs, defined by the white contour and zoomed at the bottom right of
each sub-figure, are characterized by nearly bimodal histograms.

to facilitate the classification among different neighboring tissues, in order to support both the
interpretation tasks by experienced radiologists and automated image analysis approaches.

The image enhancement carried out by MedGA focuses on the pixels within a sub-
region of the input MRI, called ROI bounding region, including the ROI itself. To be more
precise, starting from an MR image (Figure 7.1), a bounding region that roughly includes
the actual ROI (e.g., the uterus region including uterine fibroids in Figure 7.1a and 7.1b)

7.2 MedGA 231

is identified by using either a manual or a computational method. Afterwards, the entire
original MR image is cropped at the smallest rectangular box including the previously
identified ROI bounding region. The pixels included in the rectangular cropped image,
but external to the ROI bounding region, are set to zero (i.e., the black level). By so
doing, an image characterized by a nearly bimodal histogram is obtained. Then, a linear
contrast stretching is applied to the initial full range of gray levels, that is, the ordered
set Lin = [l(min)

in , l(min)
in + 1, . . . , l(max)

in − 1, l(max)
in] ⊂ N, where l ̸= l′ for any l, l′ ∈ Lin. The

integers l(min)
in and l(max)

in in Lin denote the minimum and maximum non-zero gray levels
of the analyzed image sub-region, respectively. The linear contrast stretching applied
to Lin exploits the extended range of the non-zero gray levels, that is, the ordered set
L′

in = [1, . . . , l(max)
in]⊂ N, where typically l(min)

in > 1. Note that the zero-padding pixels (i.e.,
the pixels corresponding to the level 0) are not taken into account, and that any element of
Lin is also an element of L′

in. This normalization operation, which employs only values
of gray levels already representable in the initial dynamic range, does not alter the image
content and allows MedGA to process additional intensity levels with respect to the initial
full range Lin, by considering the intensity variability within the analyzed MRI dataset. It
is worth noting that the pre-processing described hereby does not exploit any method that
could affect the actual pictorial content (e.g., spatial or frequency filtering).

7.2.1 Implementation strategy

MedGA exploits a population P of individuals Ci = [Ci(1),Ci(2), . . . ,Ci(n)] (with i = 1, . . . ,
|P|) defined as circular arrays of integer numbers of size n, where n = |L′

in| corresponds
to the number of different gray levels belonging to L′

in identified in the input MR image
(i.e., the gray levels whose frequency is greater than zero in the input MR image). Each
individual Ci ∈ P is randomly initialized by sampling n integer values from the discrete
uniform distribution in L′

in. The n values are then sorted in ascending order so that the
intensity levels Ci(j) (with j = 1, . . . ,n) codified by the individual can be mapped to the
intensity levels of the input MR image (i.e., the gray level frequencies of the input MR image
are assigned to the corresponding intensity levels of the individual). During the initialization
of the individuals, if an integer value is sampled more than once then the frequency values
of the input MR image, corresponding to these gray level intensities, are summed up and
assigned to the same gray level of the individual.

The rationale of MedGA is to process the ordered set L′
in by modifying its gray levels

using a sequence of genetic operators, to obtain a solution characterized by a stronger bimodal
gray level distribution in an output gray-scale range Lout = [l(min)

out , . . . , l(max)
out] ⊂ N, where

any element of Lout is also an element of L′
in. In such a way, a direct mapping between

232 Evolutionary method for the analysis of medical images

the gray levels of the original image and the final one is defined, so that each gray level in
the original histogram is replaced with the gray level value contained by the same position
in the final best solution Cbest ∈ P. MedGA realizes this global intensity transformation
by improving the separation between H1,i and H2,i, which represent the dark and bright
sub-regions of the histogram Hi encoded by the individual Ci, respectively. To this aim,
MedGA exploits the optimal threshold θopt,i adaptively selected using the IOTS method
[359, 445]. This procedure yields enhanced medical images that better reveal the bimodal
intensity distribution in computer-assisted ROI extraction tasks.

At each iteration of MedGA, a number of individuals properly selected from the current
population are inserted into intermediate populations, and modified by means of crossover
and mutation operators. Note that, at each iteration, each individual Ci belonging to the
current population codifies for an ordered set Lout,i = [Ci(1), . . . ,Ci(n)] = [l(min)

out,i , . . . , l
(max)
out,i],

which represents a modified gray level distribution of L′
in. In order to simplify the notation,

in what follows we do not explicitly express that, at each iteration, each individual Ci is
(possibly) represented by a different circular array corresponding to Lout .

For the selection of individuals, MedGA exploits a tournament strategy for three main
reasons: (i) the selection pressure can be controlled by setting the tournament size k (with
k ≪ |P|); (ii) the fitness evaluations are performed only on the k individuals selected for
the tournaments, and not on the whole population; (iii) this technique could be easily
implemented on parallel architectures [293].

As shown in Figure 7.2, a single point crossover operator is applied with a given prob-
ability pc to the individuals selected by the tournament strategy and belonging to the first
intermediate population P′. Namely, given two parent individuals Parent1, Parent2 ∈ P′:

1. a crossover point cp is randomly selected from the ordered set [1,2, . . . ,n];

2. if cp > round(n
2), the first offspring is generated using the genes 1, . . . ,cp −hp −1 and

cp, . . . ,n from Parent1, and the genes cp −hp, . . . ,cp −1 from Parent2. Otherwise, it is
generated using the genes cp, . . . ,cp +hp −1 from Parent1, and the genes 1, . . . ,cp −1
and cp +hp, . . . ,n from Parent2;

3. the second offspring is generated changing the Parent1’s genes with those of Parent2
and viceversa.

The two offspring generated by swapping 50% of the values between the two parents are
then inserted into a second intermediate population P′′.

The mutation operator is applied with probability pm to each element Ci(j) ∈ Ci =

[l(min)
out,i , . . . , l

(max)
out,i] of each individual belonging to P′′, where l(min)

out,i and l(max)
out,i are the mini-

7.2 MedGA 233

Gene n
Gene

1

G
en

e cp
+1

...

Cros
so

ve
r

Poin
t (c

p
)

Gen
es

 fr
om

 P
ar

en
t 1

Genes from Parent2
G

ene
2

G
ene3G

en
ec

p

...Genec
p-1

c p
+

rou
nd

(n/
2)

Fig. 7.2 Representation of the crossover strategy used for generating the first offspring from
two parents Parent1 and Parent2. The second offspring is generated changing the Parent1’s
genes with those of Parent2 and viceversa.

mum and maximum non-zero gray levels encoded by Ci during the current iteration, respec-
tively. In particular, if the gray level intensity encoded in Ci(j) is smaller than the optimal
threshold θopt,i evaluated by IOTS at that iteration for the individual Ci, then an integer is
randomly sampled from the uniform distribution in [l(min)

out,i , . . . ,θopt,i −1]⊂ N to update the
value Ci(j); otherwise, an integer is randomly sampled from the uniform distribution in
[θopt,i, . . . , l

(max)
out,i]⊂ N to update the value Ci(j).

Finally, to prevent the quality of the best solution from decreasing during the optimiza-
tion, MedGA also exploits an elitism strategy, so that the best individual from the current
population is copied into the next population without undergoing the genetic operators.

Figure 7.3 illustrates the overall procedure of MedGA, by presenting the initialization
phase as well as the flow diagram of the proposed GA for image enhancement. The final
best solution shows the achieved result on MRI data characterized by a bimodal histogram,
emphasizing the two underlying distributions for the subsequent image thresholding phase,
according to the optimal adaptive threshold θopt , computed on the final best solution Cbest ,
by using the simple IOTS algorithm [359, 445].

To evaluate the quality of the individuals throughout the optimization, the fitness function
has been conceived to obtain a bimodal histogram in the gray levels intensities, therefore
facilitating further automated image processing phases. The fitness function F(·) used by

234 Evolutionary method for the analysis of medical images

Initialization

Genetic
algorithm

Termination
criterion

yes

no

Fitness
evaluation

Crossover

Mutation

Selection

Input MR image histogram

An individual of the
initial population

Final best solution

Fig. 7.3 Workflow of MedGA: the individuals are initialized according to the characteristics of
the input MR image, and processed by the GA. The final best solution of MedGA strengthens
the two underlying distributions in the gray levels intensity characterized by mean values µ1
and µ2 and standard deviations σ1 and σ2, respectively. The two distributions are highlighted
in the plot with blue and green dashed lines.

7.2 MedGA 235

MedGA fosters individuals Ci characterized by a histogram with two well separated normal
distributions, having an equal distance from the optimal threshold θopt,i. To this purpose,
at each iteration MedGA estimates, by using the efficient IOTS algorithm [359, 445], the
mean values µ1,i and µ2,i of the two components H1,i and H2,i of the histogram Hi, encoded
by each individual Ci, according to the current optimal threshold θopt,i. Afterwards, at each
iteration the fitness function of every individual Ci is calculated as follows:

F(Ci) = τ1 + τ2 + τ3, where:

τ1 =
∣∣2 ·θopt,i −µ1,i −µ2,i

∣∣ ,
τ2 =

∣∣ω1,i −3σ1,i
∣∣ ,

τ3 =
∣∣ω2,i −3σ2,i

∣∣ .
(7.1)

The terms ω1,i =
1
2(θopt,i − min

j∈{1,...,n}
{Ci(j)}) and ω2,i =

1
2(max

j∈{1,...,n}
{Ci(j)}−θopt,i) corre-

spond to the half width of H1,i and H2,i, respectively, while σ1,i and σ2,i are the standard
deviations of H1,i and H2,i, respectively. The three terms of the fitness function F(·) coop-
erate together to achieve the desired image enhancement: τ1 aims at maintaining the mean
values µ1,i and µ2,i equidistant from the yielded optimal threshold θopt,i, while τ2 and τ3 are
designed to force the sub-histograms H1,i and H2,i to approximate normal distributions.

We exploit the empirical property of normal distributions related to the coverage proba-
bility with respect to the standard deviation. To be more precise, we consider the so-called
3-σ rule, which states that approximately 99.73% of the values lie within 3σ according to:
Pr(µ −3σ ≤ X ≤ µ +3σ) ≈ 0.9973, where µ , σ and X represent the mean, the standard
deviation and an observation from a normally distributed random variable, respectively.

Two examples of image enhancement results, achieved by MedGA on a uterine fibroid
and on a brain tumor, are shown in Figures 7.4 and 7.5, respectively. In the case of uterine
fibroids, MedGA enhances the input MR image by making fibroid regions more uniform
and with sharper edges in terms of both visual human perception and automated image
segmentation. The histogram in Figure 7.4d points out that the output image is characterized
by a more defined bimodal distribution compared to the initial image (Figure 7.4b), which
presents approximately a trimodal gray level distribution. In the case of brain tumors, MedGA
enhances the underlying bimodal distribution related to contrast-enhancing tumoral tissue
and brain healthy tissues on CE-MR images. This visual achievement is endorsed by the
histogram of the enhanced image (see Figure 7.5d) that shows two more distinct peaks with
respect to the initial gray level distribution (see Figure 7.5b).

It is worth noting that, in the case of further automated analysis, ROI pixel classification
can be carried out by means of a basic threshold-based segmentation approach, since MR

236 Evolutionary method for the analysis of medical images

(a)

Intensity
Fr

eq
ue

nc
y

(b)

(c)

µ1 θopt µ2

Intensity

Fr
eq

ue
nc

y

(d)

Fig. 7.4 Enhanced image obtained by MedGA on an example of uterine fibroid (size: 89×70
pixels): (a) normalized input image using linear contrast stretching on the initial full range of
the masked MR image; (c) resulting image after the application of the pre-processing using
MedGA. The histograms corresponding to the sub-images in (a) and (c) are shown in (b) and
(d), respectively. The final histogram emphasizes the two underlying distributions in the gray
levels intensity characterized by mean values µ1 and µ2, and standard deviations σ1 and σ2,
respectively. The two distributions are highlighted with blue and green dashed lines.

images enhanced with MedGA reveal a more precise separation between the two (possibly
overlapping) sub-distributions in the histogram. Accordingly, MedGA allows for dealing
with image histograms that do not meet the assumptions imposed by thresholding techniques,
regarding bimodal histograms composed of two nearly Gaussian distributions with almost
equal size and variance [477]. Indeed, MedGA enhances the image thresholding results on
MRI data, as shown in Figure 7.3, where the final best solution improves the underlying
bimodal nature of the input histogram.

A sequential and a parallel version of MedGA have been implemented. The sequential
version has been entirely developed using the Python programming language (version
2.7.12), while the parallel version is based on a Master-Slave paradigm employing mpi4py,

7.3 Evaluation metrics and data 237

(a)

Intensity

Fr
eq

ue
nc

y
(b)

(c)

µ1 θopt µ2

Intensity

Fr
eq

ue
nc

y

(d)

Fig. 7.5 Enhanced image obtained by MedGA on an example of brain tumor (size: 21×21
pixels): (a) normalized input image using linear contrast stretching on the initial full range of
the masked MR image; (c) resulting image after the application of the pre-processing using
MedGA. The histograms corresponding to the sub-images in (a) and (c) are shown in (b) and
(d), respectively. The final histogram emphasizes the two underlying distributions in the gray
levels intensity characterized by mean values µ1 and µ2 and standard deviations σ1 and σ2,
respectively. The two distributions are highlighted in the plot with blue and green dashed
lines.

which provides bindings of the Massage Passing Interface (MPI) specifications for Python
to leverage High-Performance Computing (HPC) resources [98].

7.3 Evaluation metrics and data

7.3.1 Image enhancement metrics

In this section, we recall the definition of the metrics typically used to evaluate image
enhancement approaches, which will be exploited to assess the performance of MedGA.
These metrics are essential to quantitatively evaluate the effects of image enhancement

238 Evolutionary method for the analysis of medical images

techniques, since measuring the “quality” of an image might be strongly subjective. In
particular, we benefit here from the metrics considered in [188] to assess the capability of
image enhancement approaches in improving contrast, details and human visual perception.

Let Iorig and Ienh be the original input image and the enhanced image, respectively,
consisting in M rows and N columns. Considering that the range of gray levels of the
output image Lout = [l(min)

out , . . . , l(max)
out] could be different from the original range Lin =

[l(min)
in , . . . , l(max)

in], as a first step before computing the metrics we remap the output pixel
intensities (i.e., the gray levels) into the original range, as follows:

Ĩenh(a,b) =
(Ienh(a,b)− l(min)

out) · (l(max)
in − l(min)

in)

(l(max)
out − l(min)

out)
+ l(min)

in , (7.2)

where a = 1, . . . ,M and b = 1, . . . ,N. Note that we actually consider the extended range L′
in

for Iorig, as explained in Section 7.2.
The Peak Signal-to-Noise Ratio (PSNR) denotes the ratio between the maximum possible

intensity value of a signal and the distortion between the input and output images:

PSNR = 10 · log10

(l(max)
in)2

MSE

= 20 · log10

 l(max)
in√
MSE

 , (7.3)

where MSE = 1
M×N ∑

M
a=1 ∑

N
b=1

∥∥Iorig(a,b)− Ĩenh(a,b)
∥∥2 is the Mean Squared Error (MSE),

which allows us to compare the pixel values of Iorig to those of Ĩenh.
Furthermore, the PSNR is usually expressed in terms of the logarithmic Decibel scale.

With regard to our application, we employ only a limited portion of the full dynamic range of
the 16-bit images (see Section 7.2); we thus use as the largest possible value the maximum
intensity value present in the original image (i.e., l(max)

in = max{Lin}= max{L′
in}) instead

of the maximum representable value in a 16-bit image (i.e., 216 −1 = 65,535).
In [297], the authors stated that good contrast and enhanced images are characterized

by high numbers of edgels (i.e., pixels belonging to an edge), and that an enhanced image
should have a higher intensity of the edges, compared to its non-enhanced counterpart [381].
Therefore, a good enhancement technique should yield satisfactory results in the case of
standard vision processing tasks, such as segmentation or edge detection [411]. Here, to
evaluate image enhancement of MRI data, we employ the method proposed by [63], which is
a highly reliable and mathematically well-defined edge detector. This approach deals with
weak edges and accurately determines edgels, by applying a double threshold (to identify
potential edges) and a hysteresis-based edge tracking. Let MCanny be the edge map yielded
by the Canny’s edge detector, which is a binary image wherein only edgels are set to 1. The

7.3 Evaluation metrics and data 239

number of detected edges (#DE) in MCanny is computed as:

#DE =
M

∑
a=1

N

∑
b=1

MCanny(a,b). (7.4)

An additional metrics, called Absolute Mean Brightness Error (AMBE) [80, 20], can be
employed to measure the brightness preservation of the enhanced image:

AMBE =

∣∣E[Iorig]−E[Ĩenh]
∣∣

L
, (7.5)

where E[·] denotes the expected (mean) value of a gray level distribution. AMBE is normalized
in [0,1], divided by L = l(max)

in − l(min)
in , which is the dynamic range of the input gray-scale

(in our case, L′
in). Note that low values of AMBE denote that the mean brightness of the

original image is preserved.
Finally, we consider an alternative quality metrics called Structural Similarity Index

(SSIM) [463], used to assess the image degradation perceived as variations in structural
information [47]. The structural information defines the attributes that represent the structure
of objects in the image, independently of the average luminance and contrast. In particular,
local luminance and contrast are taken into account since overall values of luminance and
contrast can remarkably vary across the whole image. SSIM is based on the degradation of
structural information—assuming that human visual perception is highly adapted for extract-
ing structural information from a scene—and compares local patterns of pixel intensities.
As a matter of fact, natural image signals are highly structured, since pixels are strongly
dependent on each other, especially those close by. These dependencies convey important
information about the structure of the objects in the viewing field. Let X and Y be the Iorig

and Ienh image signals, respectively; SSIM combines three relatively independent terms:

• the luminance comparison l(X,Y) = 2µXµY+κ1
µ2

X+µ2
Y+κ1

;

• the contrast comparison c(X,Y) = 2σXσY+κ2
σ2

X+σ2
Y+κ2

;

• the structural comparison s(X,Y) = σXY+κ3
σXσY+κ3

;

where µX, µY, σX, σY, and σXY are the local means, standard deviations, and cross-
covariance for the images X and Y, while κ1,κ2,κ3 ∈ R+ are regularization constants
for luminance, contrast, and structural terms, respectively, exploited to avoid instability in
the case of image regions characterized by local mean or standard deviation close to zero.
Typically, small non-zero values are employed for these constants; according to [463], an
appropriate setting is κ1 = (0.01 ·L)2, κ2 = (0.03 ·L)2, κ3 = κ2/2, where L is the dynamic

240 Evolutionary method for the analysis of medical images

range of the pixel values in Iorig (represented in L′
in). SSIM is then computed by combining

the components described above:

SSIM = l(X,Y)α · c(X,Y)β · s(X,Y)γ , (7.6)

where α , β , γ > 0 are weighting exponents. As reported in [463], if α = β = γ = 1 and
κ3 = κ2/2, the SSIM becomes:

SSIM =
(2µXµY +κ1)(2σXY +κ2)(

µ2
X +µ2

Y +κ1
)(

σ2
X +σ2

Y +κ2
) . (7.7)

SSIM generalizes the Universal Quality Index (UQI), defined in [462], which is obtained by
setting κ1 = κ2 = 0, and yields unstable results when either

(
µ2

X +µ2
Y

)
or
(

σ2
X +σ2

Y

)
tends

to zero. Notice that the higher the SSIM value, the higher the structural similarity, implying
that the enhanced image Ienh and the original image Iorig are quantitatively similar.

7.3.2 Image segmentation metrics

Hereafter, the used spatial overlap-based and distance-based metrics for medical image
segmentation evaluation are defined, according to the formulations given in [423]. These
evaluation metrics aim at quantifying the accuracy of a computer-assisted segmentation
method against a gold-standard delineation, as described in [490].

Spatial overlap-based metrics

In order to perform a fair comparison with respect to the real measurement and to quantify
the area or the volume of the segmented object in the treatment phase, it is mandatory to
calculate several spatial overlap-based metrics. These metrics are calculated considering the
gold-standard regions obtained in a manual way by an expert (RG), and the automatically
segmented regions (RS) performed by a computational method, in terms of sample sets
composed of pixels (2D) or voxels (3D). Let IMRI be the entire input MR image, including
all possible segmented regions, and considering the confusion matrix, true positive (TP),
false positive (FP), false negative (FN), and true negative (TN) regions are defined as:
RT P = RS ∩RG, RFP = RS −RG, RFN = RG −RS, and RT N = IMRI −RG −RS, respectively.
We used the following spatial overlap-based metrics:

• Dice Similarity Index (or Sørensen-Dice coefficient) is the most significant measure to
estimate the accuracy in medical image segmentation and is highly dependent on the
size of the compared regions (the higher the value, the better the segmentation results)

7.3 Evaluation metrics and data 241

[494]:

DSI =
2 ·|RT P|

|RS|+|RG|
·100%; (7.8)

• Sensitivity, as known as True Positive Ratio (TPR), detects the correct detection ratio,
that is, the area of the automatic segmentation that includes the area of the manually
segmented region (high values imply good segmentation results):

SEN = T PR =
|RT P|

|RT P|+|RFN |
·100%; (7.9)

• Specificity quantifies the ability of the automated method to exclude wrong regions
in the segmented ROI. This statistical measure is usually defined as True Negative
Ratio (TNR) in binary classification and indicates the portion of background pixels
correctly identified by the automatic segmentation with respect to the gold-standard
RT , according to (7.10):

T NR =
|RT N |

|RT N |+|RFP|
·100%. (7.10)

However, this formulation is ineffective when unbalanced data (i.e., the ROI is very
small with respect to the whole image) are analyzed. Consequently, we decided to use
the definition given in (7.11):

SPC =

(
1−|RFP|

|RS|

)
·100%, (7.11)

where |RFP|
|RS| is the incorrect fraction of the ROI included by the automatic procedure

(high values of SPC mean good segmentation result).

Spatial distance-based metrics

Generally, the quality of a segmentation method cannot be evaluated by calculating area-
based metrics only. In clinical practice, one of the primary objectives of ROI segmentation
is to achieve a precise boundary tracing. In such a case, the distance between the ROI
boundaries generated by the automatic approach and those manually contoured by an expert
physician (i.e., the gold-standard) must be measured. Accordingly, to take into account
the spatial position of the voxels, distance-based metrics are highly recommended. We
define G = {ga : a = 1,2, . . . ,A} as the set of vertices composing the ground truth, and
S = {sb : b = 1,2, . . . ,B} the set of vertices forming the automatically generated boundaries.

242 Evolutionary method for the analysis of medical images

We calculate the distance between an element of the set S, representing a segmented ROI,
and the set G as follows:

d(sb,G) = min
a∈{1,2,...,A}

∥sb −ga∥, (7.12)

where ∥sb −ga∥ corresponds to the Euclidean distance between two points in a 2D space.
Now, we can define the main three measures based on the distance of points and indepen-

dent of region size:

• Mean Absolute Distance (MAD) measures the average error between the boundaries of
the target ROI and the automatic one in the segmentation process:

MAD =

B
∑

b=1
d(sb,G)

N
; (7.13)

• Maximum absolute Distance (MaxD) represents the maximum difference between the
ROI boundaries of the regions RA and RT :

MaxD = max
b∈{1,2,...,B}

{d(sb,G)}; (7.14)

• Hausdorff Distance (HD) measures the extent between the set of vertices S and G,
corresponding to the boundaries of regions RS and RG, respectively. It is defined as:

HD = max{h(G,S),h(S,G)}, (7.15)

where h(G,S) = max
g∈G

{
min
s∈S

{d(g,s)}
}

, h(S,G) = max
s∈S

{
min
g∈G

{d(s,g)}
}

, and d(g,s) is

the Euclidean distance in an n-dimensional Euclidean space Rn.

In order to make these metrics independent on the spatial resolution of different datasets (i.e.,
pixel spacing), they are expressed in pixels. Accordingly, higher values of such distances
imply a bigger segmentation error, since the distance between boundaries is measured.

7.3.3 MRI data

Uterine fibroids

Eighteen patients affected by symptomatic uterine fibroids who underwent Magnetic Reso-
nance guided Focused Ultrasound Surger (MRgFUS) therapy [362] were considered. The
total number of the examined fibroids was 29, overall represented on 163 MR slices, since

7.4 Results 243

some patients presented a pathological scenario with multiple fibroids. The analyzed images
were acquired using a Signa HDxt 1.5 T MRI scanner (General Electric Medical Systems,
Milwaukee, WI, USA) at two different institutions. These MRI series were acquired after
the MRgFUS treatment, executed with the ExAblate 2100 (Insightec Ltd., Carmel, Israel)
HIFU equipment. The considered MR slices were scanned using the T1-weighted (T1w)
“Fast Spoiled Gradient Echo + Fat Suppression + Contrast mean” (FSPGR+FS+C) sequence.
This MRI protocol is usually employed for Non-Perfused Volume (NPV) assessment, since
ablated fibroids appear as hypo-intense areas due to low perfusion of the contrast mean [291].
Sagittal MRI sections were processed, in compliance with the current clinical routine for
therapy response assessment [291]. In current clinical practice, the NPV evaluation procedure
is fully manual [375]. Two uterine fibroid MR slices are depicted in Figures 7.1a and 7.1b.

Brain metastatic tumors

Twenty-seven brain metastases treated using a Leksell Gamma Knife (Elekta, Stockholm,
Sweden) stereotactic neuro-radiosurgical device [251] were processed, for a total of 248
MR slices. All the available MRI datasets were acquired on a Gyroscan Intera 1.5 T MR
Scanner (Philips Medical System, Eindhoven, the Netherlands), before treatment, for the
planning phase. In current radiation therapy practice, Gamma Knife treatments are planned
manually by a neurosurgeon on MRI alone, by typically using T1w Fast Field Echo (T1w
FFE) CE-MRI sequences [372, 376]. Thanks to the Gadolinium-based contrast agent, brain
lesions appear as enhanced hyper-intense zones. Sometimes a dark area might be present due
to either edema or necrotic tissues [372, 374]. Two representative instances of brain tumors
are shown in Figures 7.1c and 7.1d.

7.4 Results

This section presents the experimental results achieved by MedGA. We first analyzed the
performance of MedGA by varying the parameter settings of the GA underlying our method-
ology; we then compared it against the most common and popular image enhancement
techniques in the image processing field (see [165] for additional details). Finally, we de-
scribe the integration of MedGA as pre-processing step into a segmentation pipeline and the
achieved results.

The performance of MedGA were compared against the following image enhancement
techniques:

244 Evolutionary method for the analysis of medical images

l(min)
in l(max)

in
Input intensity level

l(min)
out

l(max)
out

O
ut

pu
ti

nt
en

si
ty

le
ve

l

γ =0.4
γ =2.5

(a)

l(min)
in l(max)

in
Input intensity level

l(min)
out

l(max)
out

O
ut

pu
ti

nt
en

si
ty

le
ve

l

λ =4/α
λ =6/α
λ =8/α

(b)

Fig. 7.6 Plots of the implemented global non-linear intensity transformations for image
enhancement: (a) Gamma Transformation; (b) Sigmoid intensity Transformation. We report
on the x-axis the input intensity range [l(min)

in , . . . , l(max)
in], and on the y-axis the output intensity

range [l(min)
out , . . . , l(max)

out].

• Histogram Equalization (HE) [331, 180], which adjusts pixel intensities for contrast
enhancement according to the normalized histogram of the original image Iorig. With
HE, gray levels are more uniformly distributed on the histogram, by spreading the
most frequent intensity values;

• Bi-Histogram Equalization (Bi-HE) [227]—a modification of the traditional HE—that
addresses issues concerning mean brightness preservation;

• Gamma Transformation (GT), which is a non-linear operation using the power-law
relationship s(r) = crγ , where r and s are the input and the output gray-scale values,
respectively, and c is a multiplication constant (c = 1 in the following tests). The
parameter γ is set to values greater than 1 (i.e., decoding gamma) to obtain a gamma
expansion, or to values smaller than 1 (i.e., encoding gamma) to realize a gamma
compression (see Figure 7.6a). In our tests we considered the values γ = 0.4 and
γ = 2.5, as higher (lower) values of γ tend to logarithmic (anti-logarithmic) functions,
resulting in an excessively bright (dark) output image, unsuitable for practical medical
applications [144];

7.4 Results 245

• Sigmoid intensity Transformation (ST) function (Figure 7.6b), also called S-shaped
curve, which is a global non-linear mapping defined as follows:

s(r) =
l(max)
in

1+ exp
(
−λ (r−α)

) , (7.16)

where l(max)
in = max{Lin}= max{L′

in} is the asymptotic maximum value of the func-

tion, α = 1
2

(
l(max)
in − l(min)

in

)
is the midpoint value, and λ defines the function steepness.

This transformation stretches the intensity around the level α , by making the hypo-
intense histogram part darker and the hyper-intense histogram part brighter. Thus,
the difference between the minimum and maximum gray values and the gradient
magnitude of the image are increased, obtaining strong edges [144]. In our tests, we
used sigmoid functions that allow for considering the entire input dynamic range, by
varying the curve slope with the values λ ∈

{
4
α
, 6

α
, 8

α

}
.

7.4.1 GA setting analysis

To analyze the performance of MedGA and identify the best settings for the image en-
hancement problem, we considered a calibration set consisting of 80 medical images
randomly selected from the available fibroid MRI data, and we varied the settings of
MedGA used throughout the optimization process, that is: (i) the size of the population
|P| ∈ {50,100,150,200}; (ii) the crossover probability pc ∈ {0.8,0.85,0.9,0.95,1.0}; (iii)
the mutation probability pm ∈ {0.01,0.05,0.1,0.2}; (iv) the size of the tournament selection
strategy k ∈ {5,10,15,20}. In all tests MedGA was run for T = 100 iterations. Each MedGA
execution was performed by varying one setting at a time, for a total of 320 different settings
tested and a total number of 320×80 = 25600 MedGA executions.

The results of these tests highlighted that, for each value of |P|, the best settings in terms
of fitness values achieved are:

1. |P|= 50, pc = 0.85, pm = 0.01, k = 15;

2. |P|= 100, pc = 0.9, pm = 0.01, k = 20;

3. |P|= 150, pc = 0.85, pm = 0.01, k = 20;

4. |P|= 200, pc = 0.85, pm = 0.01, k = 20.

Figure 7.7 reports the comparison of the performance achieved by MedGA with these settings,
where the Average Best Fitness (ABF) was computed by taking into account, at each iteration

246 Evolutionary method for the analysis of medical images

0 20 40 60 80 100
Iterations

0

2

4

6

8

10

A
ve

ra
ge

B
es

tF
itn

es
s

|P| = 50, pc = 0.85, pm = 0.01, k = 15
|P| = 100, pc = 0.9, pm = 0.01, k = 20
|P| = 150, pc = 0.85, pm = 0.01, k = 20
|P| = 200, pc = 0.85, pm = 0.01, k = 20

Fig. 7.7 Comparison of the ABF achieved by MedGA with the best parameterizations
found for each value of |P| tested here. The average was computed over the results of the
optimization of 80 MR images.

of MedGA, the fitness value of the best individuals over the 80 optimization processes. It
is clear from the plot that, despite the final ABF values are comparable in all settings, the
convergence speed increases with the size of the population, as well as the running time
required by MedGA; therefore, to choose the best settings, we analyzed the computational
performance concerning the 4 tests listed above.

Considering that an MRI series related to a single patient contains on average 10 slices
with ROI fibroids, we tested the clinical feasibility of MedGA by calculating the total
execution time for enhancing 10 randomly chosen MR images. For what concerns the tests
1-4 described above, the executions lasted on average 672.12 s, 1290.15 s, 1987.8 s, and
2669.74 s, respectively, for the optimization of the same batch of 10 images running on
a single-core of the Intel® Xeon® E5-2440 CPU with 2.40 GHz clock frequency (16 GB
RAM and CentOS 7 operating system) of one node of the Advanced Computing Center for
Research and Education (ACCRE) at Vanderbilt University, Nashville, TN, USA. On the
other hand, by exploiting the 6 cores of the same CPU to execute the parallel version of
MedGA, we achieved up to 3.6× spped up with respect to the sequential version. The results
achieved using the parallel version of MedGA confirm the importance of HPC solutions
in the field of real healthcare environment to obtain clinically feasible outcomes, that is,
enhancing MR images in reasonable time for medical imaging practice.

7.4 Results 247

Taking into account both the performance of MedGA in terms of ABF and the running
time required to process 80 images, we selected the parameter settings |P|= 100, pc = 0.9,
pm = 0.01, k = 20 as the best trade-off characterized by a good convergence speed and an
adequate running time (for this specific application), and we exploited this configuration for
all tests reported and discussed in the following sections.

7.4.2 Enhancement results

In order to achieve a comprehensive comparison between MedGA and the other pre-
processing techniques listed above, we exploited the entire set of MRI data consisting
in 18 patients affected by uterine fibroids and 27 brain metastatic cancers.

Tables 7.1 and 7.2 show the enhancement/pre-processing results achieved by each method
on the uterine fibroid and brain tumor MRI datasets, respectively, by using the metrics
reported in Section 7.3.1.

Considering the results in Table 7.1, HE over-enhances the processed uterine fibroid MR
images, as denoted by the highest mean #DE value, while Bi-HE allows for the preservation of
the mean brightness, as also indicated by the lower mean value of AMBE. For what concerns
the other techniques, on the one hand, GT with γ = 0.4 yields better results compared to GT
with γ = 2.5, especially in the case of the SSIM; on the other hand, all metrics related to
the tested ST functions show that their performances decrease as the value of λ increases.
This phenomenon is related to the rapid variation characterizing the highest values of λ ,
which do not allow for taking into consideration the existing dependency among the pixels,
especially those in the neighborhood. As it can be observed in Figures 7.10 and 7.11, MedGA
strengthens the ROI edges by enhancing details and features useful for image binarization;
this result confirms, from a qualitative perspective, the quantitative results presented above.
From an overall view of the metrics values, we can claim that the approaches obtaining the
highest values of the #DE measure (i.e., HE and GT with γ = 2.5) could imply a considerable
over-enhancement of the output image, according to the other image quality metrics.

The results on brain tumor MRI data reported in Table 7.2 show a slightly different trend,
also due to the small size of the pre-processed cropped sub-images. As a first evidence, both
GTs do not preserve the input mean brightness considering the AMBE measure. Interestingly,
GT with γ = 2.5 and γ = 0.4 achieve the highest and the lowest #DE values, respectively.
Bi-HE strongly improves the enhancement metrics obtained by HE, by generally reporting
the best results. Consistently with the metrics calculated on uterine fibroid MRI data, all the
results concerning ST functions get worse when the value of λ increases. The highest SSIM
mean value is achieved by Bi-HE, revealing the best structural information, even though
MedGA obtains the best signal quality in terms of PSNR mean values.

248 Evolutionary method for the analysis of medical images

Table 7.1 Values of the image enhancement evaluation metrics achieved by MedGA and the
other implemented approaches on the uterine fibroid MRI series. The experimental results
are calculated on the MRI dataset with 18 patients affected by uterine fibroids and expressed
as mean and standard deviation values. Numbers in bold indicate the best value for each
measure achieved by the implemented methods.

Method
PSNR #DE AMBE SSIM

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
HE 30.994 1.949 975.465 475.951 0.085 0.029 0.859 0.044

Bi-HE 31.880 2.046 907.177 415.703 0.038 0.020 0.907 0.032
GT γ = 0.4 30.194 2.170 717.555 401.186 0.212 0.019 0.823 0.024
GT γ = 2.5 29.952 2.127 965.012 380.967 0.261 0.012 0.586 0.075
ST λ = 4/α 33.971 1.874 872.594 396.016 0.040 0.014 0.880 0.023
ST λ = 6/α 32.286 1.975 869.032 378.277 0.060 0.021 0.715 0.056
ST λ = 8/α 31.353 2.029 841.420 348.674 0.073 0.025 0.613 0.070

MedGA 37.366 2.347 866.604 409.604 0.033 0.011 0.928 0.025

Table 7.2 Values of the image enhancement evaluation metrics achieved by MedGA and
the other implemented approaches on the brain tumor MRI series. The experimental results
are calculated on the MRI dataset composed of 27 brain tumors and expressed as mean and
standard deviation values. Numbers in bold indicate the best value for each measure achieved
by the implemented methods.

Method
PSNR #DE AMBE SSIM

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
HE 34.215 1.447 38.779 21.287 0.124 0.049 0.756 0.112

Bi-HE 36.758 1.718 44.923 26.252 0.042 0.024 0.932 0.021
GT γ = 0.4 33.193 0.841 21.271 18.467 0.229 0.020 0.713 0.065
GT γ = 2.5 33.520 1.113 45.119 27.444 0.229 0.028 0.457 0.096
ST λ = 4/α 36.812 0.923 43.574 27.307 0.055 0.019 0.848 0.048
ST λ = 6/α 35.270 0.942 43.779 26.492 0.079 0.028 0.645 0.105
ST λ = 8/α 34.435 0.991 44.072 26.508 0.090 0.034 0.543 0.121

MedGA 37.751 1.990 43.534 22.598 0.079 0.039 0.881 0.053

These findings are also corroborated by a visual inspection of Figures 7.10 and 7.11,
where the enhanced images using HE and GT with γ = 2.5 present an inadequate appearance
for image observation and interpretation. Overall, these results highlight that MedGA
significantly outperforms the conventional image enhancement approaches in terms of
signal quality and perceived structural information in the images, while preserving the input
mean brightness. As a matter of fact, in both MR image analysis applications, MedGA
remarkably achieves the highest PSNR mean values with respect to the state-of-the-art
methods, generally involving the highest signal quality. Concerning the other enhancement

7.4 Results 249

Original HE Bi-HE GT =0.4 GT =2.5 ST =4/ ST =6/ ST =8/ MedGA

(a)

(b)

Fig. 7.8 Examples of enhancement achieved on medical images of uterine fibroids by HE,
Bi-HE, GT (with γ ∈ {0.4,2.5}), ST (with λ ∈

{
4/α,6/α,8/α

}
) and MedGA, compared

with the original input MR image.

techniques, we observe that Bi-HE achieves better performance with respect to HE, while
increasing the values of γ and λ corresponds to a degradation of the performances of GT and
ST, respectively.

7.4.3 Segmentation pipeline

Image enhancement techniques can facilitate the user interpretation of an image as well
as improve the automated image understanding. Considering that achieving an effective
MR image segmentation is an important processing goal [411], the enhanced images after
applying MedGA are here segmented using the IOTS algorithm [359, 445], which is the
simplest automated segmentation approach. To this aim, we developed two slightly different
post-processing pipelines to refine the results achieved by this efficient adaptive thresholding
technique (see Figure 7.9). These post-processing steps, here applied to perform uterine
fibroid and brain tumor segmentation are described in what follows. MedGA is able to
enhance images in segmentation tasks involving both hyper- and hypo-intense ROIs in CE-
MR images, also dealing with data unbalanceness (i.e., the number of foreground pixels is
either much higher or lower than the number of background pixels).

Uterine fibroid segmentation

Firstly, uterus region delineation is required. This task can be accomplished manually by the
user or automatically by means of computational methods to reduce operator-dependency, as
described in [292]. ROIs are represented by tissues with low contrast mean absorption (i.e.,
NPV), thus the pixels with lower values with respect to the achieved threshold are yielded in

250 Evolutionary method for the analysis of medical images

Input

MR image

Image

Normalization

MedGA

Iterative

Optimal

Threshold

Selection

Global

Thresholding

Automatic

Global

Thresholding

Bounding

region

mask

⊙

Normalized

MR image

Image

Cropping

BEGIN

Enhanced

MR image

Binarized

MR image

Pre-

Processing

O
R

Hole Filling

Small Area

Removal

Convex Hull

Post-

Processing

END

Segmented

ROI

Morphological

Opening

Hole Filling
Small Area

Removal

Morphological

Erosion

⊙

Shape-based

Selection

Uterine

Fibroids

Brain

Tumors

(a)

(b)

Fig. 7.9 Flow diagram of the proposed pipeline that integrates MedGA as a pre-processing
step for MR image segmentation based on the efficient IOTS algorithm [359, 445]. Note
that two slightly different post-processing pipelines were developed for (a) uterine fibroids
and (b) brain tumors. Gray and black data blocks denote MR gray-scale images and binary
masks, respectively.

7.4 Results 251

the binarized MR image. However, segmentation approaches have to take into account NPV
inhomogeneities, due to sonication spots during the MRgFUS treatment.

The used post-processing refinement steps are the following (Figure 7.9a):

1. morphological opening with a circular structuring element (2-pixel radius) to separate
possible loosely connected hypo-intense regions;

2. some regions at the boundary of the uterus bounding region mask could present similar
intensity values to gray levels characterizing fibroid regions, so being included in
the thresholding output. To eliminate this ambiguity, it is appropriate to apply a
morphological erosion (with a circular structuring element of 5-pixel radius) to the ROI
binary mask, and then the logical pixel-by-pixel product (i.e., Hadamard multiplication)
with the image resulting from the previous step is performed;

3. a hole filling algorithm is necessary to deal with possible holes in fibroid regions also
due to non-uniform distribution of ablated tissue caused by sonication spots;

4. segmentation is further improved through a connected-component labeling based
operation by removing objects that are smaller than a certain area (i.e., 120 pixels) and
characterized by similar intensity with respect to the fibroids to be treated, because
there may be regions or artifacts caused by very small dark areas;

5. some lengthened connected-component with sufficiently large area could be present
(i.e., due to other anatomical structures or to acquisition artifacts). Fibroids, in fact,
present a spherical or semi-spherical shape [452] that can be denoted by means of
the parameters of the various connected-components. This connected-component
based selection considers the eccentricity (that is, the ratio between the foci distance
related to an ellipse and its own major axis length) and the extent (that is, the ratio
between the pixels belonging to the region and the bounding box pixels) of the detected
regions. Specifically, experimental reference values to discern fibroids from the rest of
connected-components are: 0.3 ≤ extent < 0.8 and 0.0 ≤ eccentricity < 0.8, according
to [292]. Lastly, any connected-component, which has passed the shape-based control
and whose centroid distance is more than a given upper limit (i.e.,

√
M2+N2

3) from the
MR image center, is removed.

Brain tumor segmentation

The accurate and reproducible measurement of tumor size and its changes over time is crucial
for diagnosis, treatment planning, as well as monitoring of response to oncologic therapy

252 Evolutionary method for the analysis of medical images

for brain tumors [283]. As a preliminary step, the user has to interactively select a bounding
region that includes the tumor zone (by means of a free-hand “lasso” tool). Since the areas to
segment are enhancement regions, the pixels that have higher intensities than the threshold
are selected during the image binarization phase. Brain metastatic cancers may contain also
necrotic cores, which could affect the achieved enhancement region segmentation. Therefore,
some refinement steps are useful to cope with this situation.

The used post-processing pipeline is described in the following (see Figure 7.9b):

1. hole filling algorithm to consider also necrotic areas;

2. adaptive post-processing steps based on the size of the input image, consisting in small
area removal (considering 4-connectivity) with minimum threshold equal to 30 pixels
on images with size greater than 300 pixels, or 10 pixels otherwise;

3. to allow also for large bounding regions, shape-based selection is applied in the case of
at least two connected-components, according to: extent≥ 0.6 and 0.0≤ eccentricity<
0.8 (see [376]). However, when a single connected-component is present, these controls
are avoided;

4. brain metastases have a pseudo-spherical appearance [14], therefore a convex hull
algorithm is employed to envelope the segmented lesion into the smallest convex
polygon containing this region.

7.4.4 Medical image segmentation results

Figures 7.10 and 7.11 show two examples of uterine fibroid and brain tumor MR images,
respectively, which were pre-processed by means of the comparison methods and segmented
using the processing pipelines described above.

The quantitative segmentation results achieved by using the pipeline in Figure 7.9a,
employing the different pre-processing approaches, on the analyzed MRI dataset composed
of 18 patients affected by uterine fibroids are depicted in the boxplots in Figure 7.12, reporting
both overlap-based and distance-based metrics values. Analogously, the boxplots concerning
the segmentation results, achieved by using the pipeline in Figure 7.9b on the analyzed MRI
dataset consisting in 27 brain metastases, are shown in Figure 7.13.

In the literature, it has been shown that a DSI above 70% is generally regarded as a
satisfactory level of agreement between two segmentations (i.e., manual and automated
delineations) in clinical applications [492]. Since the MR image segmentation methods
obtain a DSI appreciably higher than 70% regardless the pre-processing technique, we can
consider that the processing pipelines in Figures 7.9 are clinically valuable, thus allowing for

7.4 Results 253

Original HE Bi-HE GT =0.4 GT =2.5 ST =4/ ST =6/ ST =8/ MedGA

(a)

(b)

Fig. 7.10 Segmentation results achieved on the uterine fibroids in Figures 7.1a and 7.1b
by the processing pipeline in Figure 7.9a exploiting the implemented image enhancement
approaches (namely: HE, Bi-HE, GT γ = 2.5, GT γ = 0.4, ST λ = 4/α , ST λ = 8/α and
ST λ = 6/α) and the MedGA.

Original HE Bi-HE GT =0.4 GT =2.5 ST =4/ ST =6/ ST =8/ MedGA

(a)
Original HE Bi-HE GT =0.4 GT =2.5 ST =4/ ST =6/ ST =8/ MedGA

(b)

Fig. 7.11 Segmentation results achieved on the brain tumors in Figures 7.1c and 7.1d by
the processing pipeline in Figure 7.9b by exploiting the implemented image pre-processing
approaches (namely: HE, Bi-HE, GT γ = 2.5, GT γ = 0.4, ST λ = 4/α , ST λ = 8/α and
ST λ = 6/α) and the MedGA.

a fair comparison on segmentation performance among the state-of-the-art pre-processing
algorithms.

In both cases, the segmentation results concerning the images pre-processed using
MedGA achieved the highest mean and median DSI values, with low standard deviation.
GT with γ = 0.4 and Bi-HE obtained the second best performances for uterine fibroid and
brain tumor MR image segmentation, respectively. So, we can claim that MedGA shows the
highest accuracy and reliability in the two considered MRI analysis tasks. This evidence is
also confirmed by the boxplots, where the distributions for MedGA present significantly less
than 10% outliers in all the overlap-based metrics, thus evidencing extremely low statistical
dispersion. As a matter of fact, MedGA is the only technique that significantly supports the
IOTS algorithm in dark (i.e., uterine fibroid NPV) and bright (i.e., brain tumor enhancement

254 Evolutionary method for the analysis of medical images

40

60

80

DSI

5

10

MAD

40

60

80

100
SEN

10

20

30

MaxD

40

60

80

100
SPC

2.5

3.0

3.5

4.0

HD

HE Bi-HE GT γ = 0.4 GT γ = 2.5 ST λ = 4/α ST λ = 6/α ST λ = 8/α MedGA

Fig. 7.12 Boxplots of overlap-based and distance-based metrics (left and right columns,
respectively) obtained on the MRI dataset composed of 18 patients with uterine fibroids
who underwent MRgFUS treatment. The lower and the upper bounds of each box represent
the first and third quartiles of the statistical distribution, respectively. The median (i.e., the
second quartile) and the mean values are represented by a black solid line and a red star,
respectively. Whisker value is 1.5 in all cases and outliers are displayed as black diamonds.

region) ROI extraction. In agreement with the image enhancement results discussed in
Section 7.4.2, GT with γ = 0.4 considerably outperforms GT with γ = 2.5. The decreasing
trend, related to ST when the value of λ increases, is also confirmed. ST with λ = 4/α

achieved good results in both cases. Brain tumor MR images pre-processed by means of HE
achieved low DSI values, but better results are obtained on uterine fibroid MR segmentation
with respect to Bi-HE. Overall, the achieved segmentation performance shows the great
accuracy and reliability of the proposed EC-based computational model. Considering SEN
and SPC, MedGA yielded the best trade-off between these two often conflicting measures
that should be always considered and combined together. These metrics reveal that the other
techniques could involve over- or under-segmentation.

The achieved spatial distance-based indices are consistent with overlap-based metrics,
also observing the corresponding boxplots shown in Figures 7.12 and 7.13. Hence, MedGA
allows also for accurate results in terms of distance between the automated and the manual
boundaries. It is worth noting that, generally, the boxplots pertaining to MedGA results
present the lowest statistical dispersion (in terms of box width and number of outliers), which
implies a lower standard deviation with respect to the conventional techniques. Therefore,

7.5 Conclusions 255

20

40

60

80

DSI

1

2

3

MAD

40

60

80

100
SEN

2

4

6

MaxD

20

40

60

80

100
SPC

1.5

2.0

2.5
HD

HE Bi-HE GT γ = 0.4 GT γ = 2.5 ST λ = 4/α ST λ = 6/α ST λ = 8/α MedGA

Fig. 7.13 Boxplots of overlap-based and distance-based metrics (left and right columns,
respectively) obtained on the MRI dataset composed of 27 brain metastatic tumors underwent
stereotactic neuro-radiosurgery. The lower and the upper bounds of each box represent the
first and third quartiles of the statistical distribution, respectively. The median (i.e., the
second quartile) and the mean values are represented by a black solid line and a red star,
respectively. Whisker value is 1.5 in all cases and outliers are displayed as black diamonds.

the use of MedGA as a pre-processing step allows for considerably robust and reliable
segmentation results. These experimental findings are endorsed by the segmentation examples
shown in Figures 7.10 and 7.11.

7.5 Conclusions

In order to overcome the limitations related to the assumptions underlying threshold selection
methods and automatically determine a suitable optimal threshold, MedGA tackles this
complex problem, introducing a fitness function tailored to better separate the two underlying
sub-distributions of the gray level intensities. Unlike the traditional image enhancement
techniques that generally improve the contrast level of the whole image, MedGA focuses on
MR image sub-regions characterized by a roughly bimodal histogram, making it valuable
in clinical contexts, especially involving CE-MRI analysis. As a matter of fact, the Com-
putational Intelligence approaches presented in [117, 188] explicitly consider in the fitness
function both the number of edge pixels and the intensity of these pixels, thus achieving high

256 Evolutionary method for the analysis of medical images

#DE values that would consistently lead to over-enhanced images, possibly yielding also
inaccurate ROI segmentations.

We integrated MedGA as a pre-processing stage in a pipeline for image enhancement,
automatic global thresholding and segmentation, and we tested it on two different clinical
scenarios requiring CE-MR image analysis: (i) uterine fibroid segmentation in MRgFUS
treatments, and (ii) brain metastatic cancer segmentation in neuro-radiosurgery therapy. Over-
all, the MedGA pre-processing outperformed, in terms of image quality and segmentation
accuracy, the conventional image enhancement, namely, HE, Bi-HE, GT, and ST. According
to the achieved experimental results, MedGA was shown to be an appropriate and reliable
solution when employed as a medical image pre-processing method. Even considering the
statistical dispersion of the segmentation evaluation metrics, MedGA achieved the most
robust and repeatable segmentation results.

Considering the achieved results in terms of #DE, the performance of MedGA could be
further improved—in terms of contrast—by integrating a novel component in the fitness
function, which explicitly relies on the number of detected edges. Since this additional
component would have a different purpose and a different magnitude, a multi-objective
optimization method should be taken into account. In particular, MedGA could be extended
by means of an effective Evolutionary Computation approach, such as NSGA-III [108], to
simultaneously optimize both conflicting objectives, which consist in maximizing the number
of edges while minimizing the distance between the optimal threshold and the two normal
distributions.

Conclusions

Objectives of the work
The work discussed in this thesis has been motivated by the need to tackle complex problems
in Life Sciences—especially in the biomedical field—which require novel computational
methods capable of dealing with both the lack of quantitative information and the availability
of huge amounts of data. Indeed, we presented different approaches based on Evolutionary
Computation (EC) and Swarm Intelligence (SI) along with High-Performance Comput-
ing (HPC) solutions to address Systems Biology, Bioinformatics, and Medical Imaging
challenges. In particular, we proposed:

1. two deterministic simulators accelerated on Graphics Processing Units (GPUs) and
a stochastic simulator exploiting the Many Integrated Cores (MIC) coprocessors to
analyze the emergent dynamics of biological systems;

2. different methodologies based on SI to solve the Parameter Estimation (PE) problem
considering both single and multiple targets;

3. a novel computational method relying on Genetic Algorithms (GAs), accelerated by
means of a Master-Slave approach, to solve the Haplotype Assembly problem;

4. a novel approach based on GAs for the enhancement and segmentation of Magnetic
Resonance (MR) images, which are characterized by a bimodal gray level intensity
histogram.

Contribution to Systems Biology
The proposed simulators are valuable tools for in-depth investigations of biochemical systems,
since they strongly reduce the running time required by the computational analyses performed
in Systems Biology, which generally rely on a massive number of simulations (e.g., Parameter
Sweep Analysis [307] and Sensitivity Analysis [70]). This computational demand can
become prohibitive for the analysis of large-scale biological systems, characterized by
hundreds or thousands of reactions and molecular species.

258 Conclusions

We first proposed LASSIE (LArge-Scale SImulator), a GPU-powered simulator of large-
scale biochemical systems based on mass-action kinetics. LASSIE is a “black-box” simulator
able to automatically convert Reaction-Based Models (RBMs) of biological systems into
the corresponding system of Ordinary Differential Equations (ODEs). In particular, to solve
systems of ODEs characterized by stiffness, LASSIE automatically switches between the
Runge–Kutta–Fehlberg (RKF) and the Backward Differentiation Formulae (BDF) integration
methods. LASSIE adopts a novel fine-grained parallelization strategy to distribute on the
GPU cores all the calculations required to solve the system of ODEs. By virtue of this
implementation, LASSIE achieves up to 92× speed-up with respect to the Livermore Solver
of Ordinary Differential Equations (LSODA) ODE solver [341], therefore reducing the
running time from approximately 1 month down to 8 hours to simulate models consisting in,
for instance, four thousands of reactions and species. Notably, thanks to its smaller memory
footprint, LASSIE is able to perform fast simulations of even larger models, whereby the
tested CPU-implementation of LSODA failed to reach termination.

Even if LASSIE represents an important achievement in this research field, it performs in
parallel the calculations of a single simulation. To overcome this limitation, we designed
and developed FiCoS (Fine- and Coarse-grained Simulator), a GPU-powered simulator that
exploits both a fine- and a coarse-grained parallelization strategy. With FiCoS, the system
of ODEs is solved by using two Runge-Kutta methods of order 5: the DOPRI5 method
in the absence of stiffness, and the RADAU5 method when the system is stiff. FiCoS can
distribute a massive number of simulations, as well as all the calculations required by each
simulation, over the available GPU cores. This mixed parallelization strategy takes advantage
of the dynamic parallelism provided by the latest Nvidia GPUs and leverages their massive
parallel capabilities, which are essential to obtain a relevant reduction of the computational
costs. Considering the different tests executed to assess the performance of FiCoS, we
observed that it resulted 487× faster in terms of simulation time and 855× faster considering
the integration time with respect to Variable-coefficient ODE solver (VODE) [53]. The
simulation time required by LSODA resulted 366× higher, while the integration time 79×,
compared to those obtained by FiCoS, which performed 760× faster than LASSIE in terms
of integration time and 298× considering the simulation time. Finally, FiCoS was also
capable of outperforming cupSODA [306], obtaining a speed-up up to 17× considering the
integration time and up to 7× in terms of simulation time.

In order to fully exploit the Compute Unified Device Architecture (CUDA), the mem-
ory hierarchy must be exploited as much as possible. Because of the peculiar sequential
structure of both explicit and implicit integration algorithms, LASSIE and FiCoS kernels are
lightweight and rarely reuse any variables. For this reason, the current implementations only

Conclusions 259

leverage the global memory (characterized by high latencies) and registers to manipulate
the mutable data. The shared memory has not been exploited in any way, leaving room for
potential future improvements of performance. In a future release, we plan to make use of
these memories, for instance to store the array of the kinetic constants and the structures
containing the offsets used to correctly decode the ODEs. Both LASSIE and FiCoS currently
exploit only a single GPU, even on multi-GPU systems; as a future improvement of these
works, we plan to extend their implementation in order to support multi-GPU systems, to
further increase the size of the models that can be simulated.

In this thesis we also presented a simulator implementing the Stochastic Simulation
Algorithm (SSA), accelerated by means of MIC coprocessors, which exploit a coarse-
grained parallelization. We performed several tests and compared MIC with two alternative
architectures: CPUs and GPUs. According to our results, MICs provide better performance
than CPUs when more than 10 SSA runs are executed, although GPUs outperform both MICs
and CPUs when more than 80 SSA runs are executed. It is worth noting that the running
time on GPUs remains constant until computing resources (i.e., the cores) are available;
in the case of MICs, the performance scale well until the maximum number of supported
threads (i.e., 240) is reached. Moreover, the performance of MICs in native mode are strongly
improved when vector instructions are exploited, especially in the case of larger synthetic
stochastic models. We also tested the offload capability of the Xeon Phi coprocessors, that is,
the possibility of automatically distributing independent calculations over multiple threads.
Our results showed that the offload of the SSA algorithm does not provide a speed-up since
the portions of code that can be offloaded consist in a few instructions only; therefore, the
offload parallelization is affected by overheads and data transfers. The empirical analyses
that we proposed might facilitate the selection of the proper parallel architecture and SSA
implementation when a large number of mutually independent simulations are needed,
as is the case of many computationally expensive tasks typically carried out for in-depth
investigations of biological systems (see, e.g., [11, 44]).

Afterwards, we focused on the role that the kinetic parameters play in driving the
dynamic behavior of biochemical systems. As a matter of fact, a small change of their
values can dramatically lead to completely different outcomes. In order to calibrate the
kinetic parameters characterizing the biochemical systems, we addressed the PE problem by
exploiting different EC and SI approaches. In particular, we presented an in-depth analysis of
the EC and SI methods, comparing the optimization performance of these methods in solving
both classic benchmark functions and the PE problem. In addition, since all the methodologies
employed in this thesis to solve the PE problem are population-based and require a massive
number of simulations for the fitness evaluations, they were coupled with the GPU-powered

260 Conclusions

biochemical simulators. The achieved results point out that the performance of the meta-
heuristics can drastically change according to the context of application, highlighting that the
fitness landscape associated with the PE problem is completely different with respect to the
fitness landscapes of the most known benchmark functions. We plan to further investigate this
issue to understand which are the peculiarities that allow for describing and characterizing
the fitness landscape related to the PE, in order to propose a novel population-based approach
tailored to this important problem.

Fuzzy Self-Tuning Particle Swarm Optimazation (FST-PSO) resulted one of the best
strategies to address the PE problem; we coupled it with FiCoS to solve the PE of 78 unknown
kinetic parameters of a large-scale model of the human intracellular metabolic pathway in
a red blood cell. The achieved results showed that FST-PSO was capable of successfully
estimating the missing parameters, allowing for an accurate reproduction of the network
behavior and the execution of predictive in silico experiments. Thanks to FiCoS, the required
running time achieved a 30× reduction with respect to the same methodology exploiting
LSODA as ODE solver running on CPU.

Considering the typical scenario of biological laboratory research in which a set of
discrete-time measurements are obtained under different experimental conditions, we pro-
posed a multi-swarm version of PSO. In order to deal with the computational burden re-
quired by this analysis, we designed an efficient implementation of this methodology, called
MS2PSO, which allows for drastically speeding up the computation by exploiting cupSODA
and the Master-Slave distributed programming paradigm to offload all the required calcula-
tions onto multiple GPUs (when available) and multi-core CPUs. We showed that MS2PSO
is capable of estimating a set of kinetic parameters that correctly reproduces the dynamics
of the systems in all the considered experimental conditions, reducing at the same time the
required running time. As a future extension of this work, the implementation of MS2PSO
will be improved to the aim of fully exploiting the cores of the GPU, thus allowing for a
parallelization of the multi-swarm PSO also on platforms equipped with a single GPU. Since
all these computational methodologies have been provided without a Graphic User Interface
(GUI), we plan to develop a user-friendly toolkit that will hopefully represent a unified
and comprehensive platform for computational biologists to define, simulate and calibrate
mathematical models of biological systems, and execute advanced analyses in a few hours
instead of months.

Contribution to Genome Analysis
To tackle the haplotyping problem, which is a hot topic in Computational Biology and
Bioinformatics, we proposed GenHap.

Conclusions 261

GenHap was implemented with a distributed strategy that exploits a Master-Slave com-
puting paradigm in order to speed up the required computations. The solutions yielded by
GenHap are accurate, independently of the number, frequency and coverage of the Single
Nucleotide Polymorphisms (SNPs) in the input instances. In addition, GenHap does not
require any a priori hypothesis about the sequencing error distribution in the reads. GenHap
was designed for taking into account datasets produced by third-generation sequencing tech-
nologies, such as PacBio RS II and Oxford Nanopore MinION, which are characterized by
longer reads and higher coverages with respect to the previous generations. We showed that
GenHap is remarkably faster than HapCol [342], achieving approximately a 4× speed-up
in the case of Roche/454 instances, and up to 20× speed-up in the case of the PacBio RS
II dataset. Even though high-throughput DNA sequencing technologies are paving the way
for valuable advances in clinical practice, analyzing such an amount of data still represents
a challenging task. This applies especially to clinical settings, where accuracy and time
constraints are critical [360]. The third-generation sequencing technologies could therefore
highly benefit from GenHap, thanks to its capability in solving large combinatorial problems.
Along with the Haplotype Assembly issues, novel challenges—e.g., poliploidity, metage-
nomics, analysis of cancer cell heterogeneity, and Chromosome Conformation Capture (3C)
experiments—require sequencing data with a high coverage. An interesting future trend in
Genome Analysis is related to its connection with machine learning. As a matter of fact,
deep learning has been successfully applied in population genetic inference and learning
informative features of data [393]. Combining population genetics inference and Haplotype
Assembly can provide insights on patterns regarding the genetic diversity in DNA polymor-
phism data, especially for rapid adaptation and selection [193]. An additional issue worth of
notice is that, although the integration of various types of information (e.g., electronic health
records and genome sequences) conveys a wealth of information, it is giving rise to unique
challenges in Bioinformatics analysis even in terms of secure genomic information sharing
[48]. With reference to secure Genome-Wide Association Study (GWAS) in distributed com-
puting environments, multi-party computation schemes based on conventional cryptographic
techniques achieves limited performance in practice [83]. Therefore, HPC could become an
enabling factor also in this context.

Contribution to Medical Imaging
A novel image enhancement method based on GAs, specifically tailored for medical images
characterized by a bimodal histogram, was proposed. This computational framework, named
MedGA, exploits a fitness function that better reveals the two underlying sub-distributions of
the gray level intensities, consequently allowing for an improvement in the results achieved

262 Conclusions

by threshold-based algorithms. Considering the possible clinical applications, MedGA
was proven to improve the visual perception of a Region Of Interest (ROI) in MRI data.
The solution provided by our intelligent image enhancement system can be beneficial to
visually assist physicians in interactive decision-making tasks, as well as to improve the
final outcome of downstream automated processing pipelines for useful measurements in
the clinical practice [367]. MedGA also deals with the practical problems regarding the
interpretability of the results yielded by advanced Machine Learning and Computational
Intelligence methods in medicine [61]. Indeed, the final best solution found by MedGA (i.e.,
the output gray level histogram) and the corresponding enhanced image are understandable
by physicians. In addition, the efficient encoding of the individuals coupled with effective
HPC solutions allows for a clinically feasible computational framework.

In addition, MedGA can be used as an intelligent pre-processing step, in a pipeline
defined to realize an efficient threshold-based image segmentation with two classes (i.e.,
binarization), applied to MRI data. In Pattern Recognition, among the low-level intensity-
based techniques, the most straightforward unsupervised image segmentation technique is
global thresholding [477]. Image thresholding approaches performed on contrast-enhanced
MR image regions could considerably benefit from input data pre-processed by MedGA.
As a matter of fact, MedGA tackles the limitations related to the assumptions underlying
threshold selection methods, and automatically determine a suitable optimal threshold by
exploiting a fitness function tailored at better separating the two underlying sub-distributions
of the gray level intensities. MedGA has been currently used only for off-line image analysis.
Our Python-coded implementation requires approximately two minutes for each image, using
the selected GA parameters. In the case of tomography image stack analysis, we achieved
a sublinear speed-up with respect to the number of the available cores by developing a
Master-Slave version to distribute on multiple cores the computations pertaining different
slices. An additional speed-up could be definitely obtained by porting the current Python
code into a faster compiled programming language (e.g., C/C++) [32]. Consequently, by
leveraging efficient programming languages and HPC paradigms, MedGA may become
a clinically feasible pre-processing step in real-time radiology applications. As a future
extension of this work, in the case of large size images (e.g., 1000×1000 pixels) we plan
to use GPUs, which represent an enabling technology for real-time radiology applications
[126], since the running time of histograms computation can be considerably reduced by
using a parallel implementation [385]. In the near future, we plan to apply MedGA as an
image pre-processing phase also in other clinical contexts requiring MR image analysis and
segmentation to provide useful insights for differential diagnosis and prognosis, such as in

Conclusions 263

the case of breast cancer [189, 7] and meningiomas [179], also for differentiating tumor
grade.

Final remarks
As a final remark, in Table 7.3 we summarize the best solutions for every problem discussed
throughout this thesis.

Table 7.3 Summary of the best solutions to tackle the discussed problems in Life Sciences.

Problem Input instance Scenario Solution Architecture References

Deterministic simulation
Small-scale model Single simulation LSODA - VODE CPUs [341] - [53]

Multiple simulations cupSODA - FiCoS GPUs [306] - [428]

Large-scale model Single simulation LASSIE - FiCoS GPUs [425] - [428]
Multiple simulations FiCoS GPUs [428]

Stochastic simulation Small-scale model
Single simulation

SSA
CPUs [427]

A few tens of simulations MICs [427]
More than 80 simulations GPUs [427]

Parameter Estimation Small-scale model Single DTTS FST-PSO + cupSODA CPUs + GPUs [311, 432]
Multiple DTTS MS2PSO CPUs + GPUs [430]

Large-scale model Single DTTS FST-PSO + FiCoS CPUs + GPUs [442]

Haplotype Assembly
Short reads Low coverage Exact approaches CPUs [342]

High coverage Probabilistic approches CPUs [124]

Long reads Low coverage Exact approaches - GenHap CPUs [342] - [433, 431]
High coverage Probabilistic approches - GenHap CPUs [124] - [433, 431]

Image enhancement Image with a nearly
bimodal histogram

Single image MedGA (single-core) CPUs [379, 377]
Multiple images MedGA (multi-cores) CPUs [379, 377]

According to the results shown in Chapter 4, in the case of deterministic simulations,
different numerical integration methods can be exploited to solve the system of ODEs
corresponding to the RBM under analysis. When the RBM is characterized by a few dozen
species and reactions (small-scale models) and a single simulation is required, the CPU
versions of LSODA and VODE represent the best choices. If multiple simulations have to
be run, cupSODA should be preferred in order to perform in parallel all the simulations. In
the case of large-scale models, LASSIE and FiCoS are the natural choices, when either a
single or multiple simulations are taken into account, respectively. Concerning stochastic
simulations of small-scale models, SSA can be effectively exploited. Even in this case,
different architectures can be used to parallelize the number of simulations. For a single
simulation, CPUs are capable of outperforming the other architectures; for a few tens of
simulations, MICs achieve the best performance, whereas when more than 80 simulations
are needed, GPUs should be considered.

Concerning the PE problem, as described in Chapter 5, different metaheuristics can
represent effective approaches for its solution. However, when a single Discrete-Time Target
Series (DTTS) is considered, FST-PSO coupled with cupSODA or FiCoS (depending on
the size of the RBMs under analysis) achieves the best results, thus enabling the inference
of the kinetic parameters that generate a simulated dynamics overlapping the DTTS. In the
case of multiple DTTS, the proposed MS2PSO is the natural choice, thanks to its capability
of estimating a set of kinetic parameters that allows for obtaining simulated dynamics

264 Conclusions

overlapping all the multiple DTTS. All these methodologies exploit both CPUs and GPUs to
markedly decrease the required running time.

As reported in Chapters 1 and 6, several approaches have been proposed in the literature
to deal with the Haplotype Assembly problem. Most of them have been designed to take
into consideration only short reads and low coverage. In such a case, exact approaches (such
as HapCol) should be used thanks to their ability to infer the correct pair of haplotypes.
When the coverage is greater than 20-30×, these approaches generally fail and probabilistic
approaches (e.g., HapCUT2) are the best choice. GenHap can be effectively exploited
to reconstruct the pair of haplotypes starting from long reads, generated by using third-
generation sequencing technologies. The best performance of GenHap is achieved when
dealing with data characterized by a high coverage, where most of the existing solutions fail
due to the computational burden of this problem.

For what concerns the enhancement of biomedical images characterized by a nearly
bimodal histogram, we proposed MedGA. According to the results shown in Chapter 7,
MedGA is capable of outperforming the classical image enhancement techniques. Since it is
the only method conceived for better emphasizing the two Gaussian distributions composing
a bimodal histogram, it should be used to address this task. When a single image has to be
processed, the single-core version is the correct choice, while in the case of a set of images,
the multi-core version designed by using a Master-Slave approach can be used to reduce the
required running time.

Bibliography

[1] Abdelbar, A. M., Abdelshahid, S., and Wunsch, D. C. (2005). Fuzzy PSO: a general-
ization of particle swarm optimization. In Proc. IEEE International Joint Conference on
Neural Networks, volume 2, pages 1086–1091. IEEE.

[2] Abraham, A. and Liu, H. (2009). Turbulent Particle Swarm Optimization Using Fuzzy
Parameter Tuning, volume 3, pages 291–312. Springer, Berlin Heidelberg, Germany.

[3] Ackermann, J., Baecher, P., Franzel, T., et al. (2009). Massively-parallel simulation
of biochemical systems. In Proc. Massively Parallel Computational Biology on GPUs,
Jahrestagung der Gesellschaft für Informatik e.V, volume 154 of Lecture Notes in Com-
puter Science, pages 739–750.

[4] Ackley, D. H. (1987). A Connectionist Machine for Genetic Hillclimbing. Kluwer
Academic Publishers, Norwell, MA, USA.

[5] Aguiar, D. and Istrail, S. (2013). Haplotype assembly in polyploid genomes and identical
by descent shared tracts. Bioinformatics, 29(13):i352–i360.

[6] Ajay, S. S., Parker, S. C., Abaan, H. O., Fajardo, K. V. F., and Margulies, E. H. (2011).
Accurate and comprehensive sequencing of personal genomes. Genome Res.

[7] Al-Najdawi, N., Biltawi, M., and Tedmori, S. (2015). Mammogram image visual
enhancement, mass segmentation and classification. Appl. Soft Comput., 35:175–185.

[8] Alba, E., Luque, G., and Nesmachnow, S. (2013). Parallel metaheuristics: Recent
advances and new trends. Int. Trans. Oper. Res., 20(1):1–48.

[9] Alba, E. and Tomassini, M. (2002). Parallelism and evolutionary algorithms. IEEE
Trans. Evol. Comput., 6(5):443–462.

[10] Alberghina, L. and Westerhoff, H. V. (2007). Systems biology: Definitions and Perspec-
tives, volume 13. Springer, Berlin Heidelberg, Germany.

[11] Aldridge, B. B., Burke, J. M., Lauffenburger, D. A., and Sorger, P. K. (2006). Physico-
chemical modelling of cell signalling pathways. Nat. Cell Biol., 8(11):1195–1203.

[12] Ali, M. Z., Awad, N. H., Suganthan, P. N., Shatnawi, A. M., and Reynolds, R. G.
(2018). An improved class of real-coded genetic algorithms for numerical optimization.
Neurocomput., 275:155–166.

[13] Alves, J. M. and Posada, D. (2018). Sensitivity to sequencing depth in single-cell
cancer genomics. Genome Med., 10(1):29.

266 Bibliography

[14] Ambrosini, R. D., Wang, P., and O’Dell, W. G. (2010). Computer-aided detection of
metastatic brain tumors using automated three-dimensional template matching. J. Magn.
Reson. Imaging, 31(1):85–93.

[15] Anderson, D. P. (2004). BOINC: A system for public-resource computing and storage.
In Proc. Fifth IEEE/ACM International Workshop on Grid Computing, pages 4–10. IEEE.

[16] Anderson, D. P. and Fedak, G. (2006). The computational and storage potential of
volunteer computing. In Proc. Sixth IEEE International Symposium on Cluster Computing
and the Grid, volume 1, pages 73–80. IEEE.

[17] Andrés, A. M., Clark, A. G., Shimmin, L., Boerwinkle, E., Sing, C. F., and Hixson, J. E.
(2007). Understanding the accuracy of statistical haplotype inference with sequence data
of known phase. Genet. Epidemiol., 31(7):659–671.

[18] Andrews, S. S., Dinh, T., and Arkin, A. P. (2009). Stochastic models of biological
processes, pages 8730–8749. Springer, New York, NY, USA.

[19] Armbrust, M., Fox, A., Griffith, R., et al. (2010). A View of Cloud Computing. Commun.
ACM, 53(4):50–58.

[20] Arriaga-Garcia, E. F., Sanchez-Yanez, R. E., and Garcia-Hernandez, M. G. (2014).
Image enhancement using bi-histogram equalization with adaptive sigmoid functions. In
Proc. IEEE International Conference on Electronics, Communications and Computers,
pages 28–34. IEEE.

[21] Arumugam, M. S. and Rao, M. V. C. (2008). On the improved performances of the
particle swarm optimization algorithms with adaptive parameters, cross-over operators
and root mean square (RMS) variants for computing optimal control of a class of hybrid
systems. Appl. Soft Comput., 8(1):324–336.

[22] Ault, S. and Holmgreen, E. (2009). Dynamics of the Brusselator. Academia.

[23] Baba, N. (1981). Convergence of a random optimization method for constrained
optimization problems. J. Optim. Theory Appl., 33(4):451–461.

[24] Back, T. (1994). Selective pressure in evolutionary algorithms: A characterization of
selection mechanisms. In Proc. First IEEE Conference on Evolutionary Computation,
volume 1, pages 57–62. IEEE.

[25] Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford, UK.

[26] Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. In Proc.
International Conference on Genetic Algorithms and their applications, pages 101–111.
Hillsdale, New Jersey.

[27] Bankman, I. N. (2009). Part II - Segmentation, pages 71–72. Academic Press, Burling-
ton, MA, USA, 2 edition.

[28] Bansal, V. and Bafna, V. (2008). HapCUT: an efficient and accurate algorithm for the
haplotype assembly problem. Bioinformatics, 24(16):i153–i159.

Bibliography 267

[29] Barabasi, A. L. and Oltvai, Z. N. (2004). Network biology: understanding the cell’s
functional organization. Nat. Rev. Genet., 5(2):101.

[30] Bartels, R. H. and Golub, G. H. (1969). The simplex method of linear programming
using LU decomposition. Commun. ACM, 12(5):266–268.

[31] Beccuti, M., Cazzaniga, P., Pennisi, M., Besozzi, D., Nobile, M. S., Pernice, S., Russo,
G., Tangherloni, A., and Pappalardo, F. (2018). GPU accelerated analysis of Treg-Teff
cross regulation in relapsing-remitting multiple sclerosis. In Euro-Par 2018: Parallel
Processing Workshops, volume 11339 of Lecture Notes in Computer Science, pages
626–637. Springer.

[32] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith, K. (2011).
Cython: the best of both worlds. Comput. Sci. Eng., 13(2):31–39.

[33] Bellon, E. M., Haacke, E. M., Coleman, P. E., Sacco, D. C., Steiger, D. A., and
Gangarosa, R. E. (1986). MR artifacts: a review. Am. J. Roentgenol., 147(6):1271–1281.

[34] Ben-Elazar, S., Chor, B., and Yakhini, Z. (2016). Extending partial haplotypes to
full genome haplotypes using chromosome conformation capture data. Bioinformatics,
32(17):i559–i566.

[35] Ben-Israel, A. (1966). A Newton-Raphson method for the solution of systems of
equations. J. Math. Anal. Appl., 15(2):243–252.

[36] Benedettini, S., Roli, A., and Di Gaspero, L. (2008). Two-level ACO for haplotype
inference under pure parsimony. In Proc. International Conference on Ant Colony
Optimization and Swarm Intelligence, volume 5217 of Lecture Notes in Computer Science,
pages 179–190. Springer.

[37] Bennett, M. R., Pang, W. L., Ostroff, N. A., Baumgartner, B. L., Nayak, S., Tsim-
ring, L. S., and Hasty, J. (2008). Metabolic gene regulation in a dynamically changing
environment. Nature, 454(7208):1119.

[38] Beretta, S., Patterson, M. D., Zaccaria, S., Della Vedova, G., and Bonizzoni, P. (2018).
HapCHAT: Adaptive haplotype assembly for efficiently leveraging high coverage in long
reads. BMC Bioinform., 19(1):252.

[39] Berger, E., Yorukoglu, D., Peng, J., and Berger, B. (2014). Haptree: A novel Bayesian
framework for single individual polyplotyping using NGS data. PLOS Comput. Biol.,
10(3):e1003502.

[40] Bernaschi, M., Bisson, M., and Salvadore, F. (2014). Multi-Kepler GPU vs. multi-Intel
MIC for spin systems simulations. Comput. Phys. Commun., 185(10):2495–2503.

[41] Besozzi, D. (2016). Reaction-based models of biochemical networks. In Beckmann, A.,
Bienvenu, L., and Jonoska, N., editors, Pursuit of the Universal, volume 9709 of Lecture
Notes in Computer Science, pages 24–34, Switzerland. Springer International Publishing.

[42] Besozzi, D., Cazzaniga, P., Mauri, G., and Pescini, D. (2010). BioSimWare: a software
for the modeling, simulation and analysis of biological systems. In Proc. International
Conference on Membrane Computing, pages 119–143. Springer.

268 Bibliography

[43] Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D., and Vanneschi, L. (2009). A com-
parison of genetic algorithms and particle swarm optimization for parameter estimation in
stochastic biochemical systems. In Pizzuti, C., Ritchie, M. D., and Giacobini, M., editors,
Proc. European Conference on Evolutionary Computation, Machine Learning and Data
Mining in Bioinformatics, Lecture Notes in Computer Science, pages 116–127. Springer.

[44] Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G., Colombo, S., and Martegani, E.
(2012). The role of feedback control mechanisms on the establishment of oscillatory
regimes in the Ras/cAMP/PKA pathway in s. cerevisiae. EURASIP J. Bioinform. Syst.
Biol., 2012(1):10.

[45] Beyer, H. G. (2013). The theory of Evolution Strategies. Springer, Berlin Heidelberg,
Germany.

[46] Beyer, H. G. and Schwefel, H. P. (2002). Evolution strategies–a comprehensive intro-
duction. Nat. Comput., 1(1):3–52.

[47] Bhandari, A. K., Kumar, A., Chaudhary, S., and Singh, G. (2016). A novel color image
multilevel thresholding based segmentation using nature inspired optimization algorithms.
Expert Syst. Appl., 63:112–133.

[48] Bianchi, L. and Liò, P. (2016). Opportunities for community awareness platforms in
personal genomics and bioinformatics education. Brief. Bioinform., 18(6):1082–1090.

[49] Bianco, S., Ciocca, G., and Schettini, R. (2017). Combination of video change detection
algorithms by genetic programming. IEEE Trans. Evol. Comput., 21(6):914–928.

[50] Bland, A. S., Wells, J. C., Messer, O. E., et al. (2012). Titan: early experience with the
Cray XK6 at Oak Ridge national laboratory. In Proc. Cray User Group Conference.

[51] Bonizzoni, P., Dondi, R., Klau, G. W., Pirola, Y., Pisanti, N., and Zaccaria, S. (2015).
On the fixed parameter tractability and approximability of the minimum error correction
problem. In Proc.Annual Symposium on Combinatorial Pattern Matching, volume 9133
of Lecture Notes in Computer Science, pages 100–113. Springer.

[52] Bracciali, A., Aldinucci, M., Patterson, M., Marschall, T., Pisanti, N., Merelli, I., and
Torquati, M. (2016). pWhatsHap: efficient haplotyping for future generation sequencing.
BMC Bioinform., 17(Suppl 11):342.

[53] Brown, P. N., Byrne, G. D., and Hindmarsh, A. C. (1989). VODE: A variable-coefficient
ODE solver. SIAM J. Sci. Stat. Comp., 10(5):1038–1051.

[54] Brown, R. W., Cheng, Y. C. N., Haacke, E. M., Thompson, M. R., and Venkatesan, R.
(2014). Magnetic Resonance Imaging: Physical Principles and Sequence Design. John
Wiley & Sons, Hoboken, NJ, USA.

[55] Browning, S. R. and Browning, B. L. (2007). Rapid and accurate haplotype phasing
and missing-data inference for whole-genome association studies by use of localized
haplotype clustering. Am. J. Hum. Genet., 81(5):1084–1097.

[56] Bruggeman, F. J. and Westerhoff, H. V. (2007). The nature of systems biology. Trends
Microbiol., 15(1):45–50.

Bibliography 269

[57] Burgard, A. P. and Maranas, C. D. (2001). Probing the performance limits of the
Escherichia coli metabolic network subject to gene additions or deletions. Biotechnol.
Bioeng., 74(5):364–375.

[58] Burrage, K., Hegland, M., Macnamara, S., and Sidje, R. (2006). A Krylov-based finite
state projection algorithm for solving the chemical master equation arising in the discrete
modelling of biological systems. In Langville, A. N. and Stewart, W. J., editors, Proc.
Markov 150th Anniversary Conference, pages 21–37.

[59] Butcher, J. C. (2008). Numerical Methods for Ordinary Differential Equations. John
Wiley & Sons, Chichester West Sussex, UK, 2 edition.

[60] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. (2009). Cloud
computing and emerging IT platforms: Vision, hype, and reality for delivering computing
as the 5th utility. Future Gener. Comput. Syst., 25(6):599–616.

[61] Cabitza, F., Rasoini, R., and Gensini, G. F. (2017). Unintended consequences of
machine learning in medicine. J. Am. Med. Assoc., 318(6):517–518.

[62] Cagnoni, S., Vanneschi, L., Azzini, A., and Tettamanzi, A. G. B. (2008). A critical
assessment of some variants of particle swarm optimization. In Proc. Workshops on
Applications of Evolutionary Computation, pages 565–574. Springer.

[63] Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell., PAMI-8(6):679–698.

[64] Cao, Y., Gillespie, D. T., and Petzold, L. R. (2006). Efficient step size selection for the
tau-leaping simulation method. J. Chem. Phys., 124(4):044109.

[65] Carbonaro, A. and Zingaretti, P. (1999). A comprehensive approach to image-contrast
enhancement. In Proc. IEEE International Conference on Image Processing, pages
241–246. IEEE.

[66] Carneiro, M. O., Russ, C., Ross, M. G., Gabriel, S. B., Nusbaum, C., and DePristo,
M. A. (2012). Pacific Biosciences sequencing technology for genotyping and variation
discovery in human data. BMC Genomics, 13(1):375.

[67] Cash, J. R. (2015). Backward Differentiation Formulae, pages 97–101. Springer, Berlin
Heidelberg.

[68] Casper, J., Zweig, A. S., Villarreal, C., Tyner, C., Speir, M. L., Rosenbloom, K. R.,
Raney, B. J., Lee, C. M., Lee, B. T., Karolchik, D., et al. (2017). The UCSC Genome
Browser database: 2018 update. Nucleic Acids Res., 46(D1):D762–D769.

[69] Castelli, M., Vanneschi, L., and Silva, S. (2014). Prediction of the Unified Parkinson’s
Disease Rating Scale assessment using a genetic programming system with geometric
semantic genetic operators. Expert Syst. Appl., 41(10):4608–4616.

[70] Cazzaniga, P., Colombo, R., Nobile, M. S., Pescini, D., Mauri, G., and Besozzi, D.
(2013). GPU-powered sensitivity analysis and parameter estimation of a reaction-based
model of the post replication repair pathway in yeast. TICSP SERIES, 63:109–110.

270 Bibliography

[71] Cazzaniga, P., Damiani, C., Besozzi, D., Colombo, R., Nobile, M. S., Gaglio, D.,
Pescini, D., Molinari, S., Mauri, G., Alberghina, L., et al. (2014). Computational strategies
for a system-level understanding of metabolism. Metabolites, 4(4):1034–1087.

[72] Cazzaniga, P., Ferrara, F., Nobile, M. S., et al. (2015a). Parallelizing biochemi-
cal stochastic simulations: a comparison of GPUs and Intel Xeon Phi processors. In
Malyshkin, V., editor, Proc. International Conference on Parallel Computing Technologies,
volume 9251 of Lecture Notes in Computer Science, pages 363–374.

[73] Cazzaniga, P., Nobile, M. S., and Besozzi, D. (2015b). The impact of particles ini-
tialization in PSO: Parameter estimation as a case in point. In Proc. IEEE Conference
on Computational Intelligence in Bioinformatics and Computational Biology, pages 1–8.
IEEE.

[74] Cazzaniga, P., Nobile, M. S., Tangherloni, A., and Besozzi, D. (2018). Quantitative
Biology: Theory, Computational Methods, and Models, chapter Accelerating stochastic
simulations of mechanistic models of biological systems: Advantages and issues in the
parallelization on Graphics Processing Units. MIT Press, Cambridge, MA, USA.

[75] Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G., Colombo, S., and Martegani, E.
(2008). Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast s.
cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools.
J. Biotechnol., 133(3):377–385.

[76] Chakraborty, M., Baldwin-Brown, J. G., Long, A. D., and Emerson, J. (2016). Contigu-
ous and accurate de novo assembly of metazoan genomes with modest long read coverage.
Nucleic acids research, 44(19):e147–e147.

[77] Chatterjee, A. and Siarry, P. (2006). Nonlinear inertia weight variation for dynamic
adaptation in particle swarm optimization. Comput. Oper. Res., 33(3):859–871.

[78] Chellaboina, V., Bhat, S. P., Haddad, W. M., and Bernstein, D. S. (2009). Modeling
and analysis of mass-action kinetics. IEEE Control Syst., 29(4):60–78.

[79] Chen, J., Yu, W., Tian, J., Chen, L., and Zhou, Z. (2017). Image contrast enhancement
using an artificial bee colony algorithm. Swarm Evol. Comput., In Press:1–8.

[80] Chen, S. D. and Ramli, A. R. (2003). Minimum mean brightness error bi-histogram
equalization in contrast enhancement. IEEE Trans. Consumer Electron., 49(4):1310–1319.

[81] Chen, Z. Z., Deng, F., and Wang, L. (2013). Exact algorithms for haplotype assembly
from whole-genome sequence data. Bioinformatics, 29(16):1938–1945.

[82] Cho, Y. J., Ramakrishnan, N., and Cao, Y. (2008). Reconstructing chemical reaction
networks: data mining meets system identification. In Proc. 14th ACM International
Conference on Knowledge Discovery and Data Mining, pages 142–150. ACM.

[83] Choi, Y., Chan, A. P., Kirkness, E., Telenti, A., and Schork, N. J. (2018). Comparison
of phasing strategies for whole human genomes. PLOS Genet., 14(4):e1007308.

[84] Chou, I. C. and Voit, E. O. (2009a). Recent developments in parameter estimation and
structure identification of biochemical and genomic systems. Math. Biosci., 219(2):57–83.

Bibliography 271

[85] Chou, I. C. and Voit, E. O. (2009b). Recent developments in parameter estimation and
structure identification of biochemical and genomic systems. Math. Biosci., 219(2):57–83.

[86] Chrysos, G. (2014). Intel® Xeon Phi™ coprocessor-the architecture. Intel Whitepaper,
176.

[87] Chylek, L. A., Harris, L. A., Tung, C. S., Faeder, J. R., Lopez, C. F., and Hlavacek, W. S.
(2014). Rule-based modeling: a computational approach for studying biomolecular site
dynamics in cell signaling systems. Wiley Interdiscip. Rev. Syst. Biol. Med., 6(1):13–36.

[88] Clerc, M. (2010). Particle Swarm Optimization, volume 93. John Wiley & Sons,
Hoboken, NJ, USA.

[89] Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L., and Rice, P. M. (2009). The Sanger
FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ
variants. Nucleic Acids Res., 38(6):1767–1771.

[90] Compston, A. and Coles, A. (2008). Multiple sclerosis. The Lancet, 372(9648):1502–
1517.

[91] Compston, G., McDonald, I., Noseworthy, J., Lassmann, H., Miller, D., Smith, K., Wek-
erle, H., and Confavreux, C. (2013). McAlpine’s Multiple Sclerosis. Elsevier, Amsterdam,
The Netherlands, 4 edition.

[92] Congress on Evolutionary Computation (CEC) (2017). Special Session & Competi-
tions on Real-Parameter Single Objective Optimization. http://www.ntu.edu.sg/home/
EPNSugan/index_files/CEC2017/CEC2017.htm. Online; Accessed on December 29,
2018.

[93] Cox, S. E., Haftka, R. T., Baker, C. A., Grossman, B., Mason, W. H., and Watson, L. T.
(2001). A comparison of global optimization methods for the design of a high-speed civil
transport. J. Glob. Optim., 21(4):415–432.

[94] Craciun, G., Tang, Y., and Feinberg, M. (2006). Understanding bistability in complex
enzyme-driven reaction networks. Proc. Natl. Acad. Sci., 103(23):8697–8702.

[95] Cumbo, F., Nobile, M. S., Damiani, C., Colombo, R., Mauri, G., and Cazzaniga, P.
(2017). COSYS: A computational infrastructure for systems biology. In Bracciali, A.,
Caravagna, G., Gilbert, D., and Tagliaferri, R., editors, Proc. 13th International Meeting
on Computational Intelligence Methods for Bioinformatics and Biostatistics, volume
10477 of Lecture Notes in Computer Science, pages 82–92. Springer.

[96] Da Ros, S., Colusso, G., Weschenfelder, T. A., de Marsillac Terra, L., De Castilhos, F.,
Corazza, M. L., and Schwaab, M. (2013). A comparison among stochastic optimization
algorithms for parameter estimation of biochemical kinetic models. Appl. Soft Comput.,
13(5):2205–2214.

[97] Daffner, R. H. (1980). Visual illusions in computed tomography: phenomena related to
Mach effect. Am. J. Roentgenol., 134(2):261–264.

[98] Dalcín, L., Paz, R., and Storti, M. (2005). MPI for Python. J. Parallel Distrib. Comput.,
65(9):1108–1115.

http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm

272 Bibliography

[99] Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J., and Lander, E. S. (2001).
High-resolution haplotype structure in the human genome. Nat. Genet., 29(2):229.

[100] Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A.,
Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., et al. (2011). The variant call
format and VCFtools. Bioinformatics, 27(15):2156–2158.

[101] Dantzig, G. B. and Thapa, M. N. (2006). Linear Programming 1. Springer, New York,
NY, USA.

[102] Das, S. and Suganthan, P. N. (2011). Differential evolution: a survey of the state-of-
the-art. IEEE Trans. Evol. Comput., 15(1):4–31.

[103] Das, S. and Vikalo, H. (2015). SDhaP: haplotype assembly for diploids and polyploids
via semi-definite programming. BMC Genomics, 16(1):260.

[104] de Araujo, A. F., Constantinou, C. E., and Tavares, J. M. R. S. (2014). New artificial
life model for image enhancement. Expert Syst. Appl., 41(13):5892–5906.

[105] De Jong, K. A. (2006). Evolutionary Computation: A Unified Approach. MIT press,
Cambridge, MA, USA.

[106] De Myttenaere, A., Golden, B., Le Grand, B., and Rossi, F. (2016). Mean absolute
percentage error for regression models. Neurocomput., 192:38–48.

[107] De Oca, M. A. M., Stutzle, T., Birattari, M., and Dorigo, M. (2009). Frankenstein’s
PSO: a composite particle swarm optimization algorithm. IEEE Trans. Evol. Comput.,
13(5):1120–1132.

[108] Deb, K. and Jain, H. (2014). An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, Part I: Solving problems
with box constraints. IEEE Trans. Evol. Computat., 18(4):577–601.

[109] Del Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Harley, R. G., and Hernandez,
J. C. (2008). Particle swarm optimization: basic concepts, variants and applications in
power systems. IEEE T. Evolut. Comput.

[110] Delaneau, O., Marchini, J., and Zagury, J.-F. (2012). A linear complexity phasing
method for thousands of genomes. Nat. Methods, 9(2):179.

[111] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. J.
Mach. Learn. Res., 7(Jan):1–30.

[112] Dieterich, J. M. and Hartke, B. (2012). Empirical review of standard benchmark
functions using evolutionary global optimization. Appl. Math., 3:1552–1564.

[113] Doerr, C., Ye, F., van Rijn, S., Wang, H., and Bäck, T. (2018). Towards a theory-guided
benchmarking suite for discrete black-box optimization heuristics: profiling (1+ λ) EA
variants on onemax and leadingones. In Proc. Genetic and Evolutionary Computation
Conference (GECCO), pages 951–958, New York, NY, USA. ACM.

[114] Dorigo, M., Bonabeau, E., and Theraulaz, G. (2000). Ant algorithms and stigmergy.
Future Gener. Comput. Syst., 16(8):851–871.

Bibliography 273

[115] Dormand, J. R. (1996). Numerical Methods for Differential Equations: A Computa-
tional Approach, volume 3. CRC Press, Boca Raton, FL, USA.

[116] Dormand, J. R. and Prince, P. J. (1980). A family of embedded Runge-Kutta formulae.
J. Comput. Appl. Math., 6(1):19–26.

[117] Draa, A. and Bouaziz, A. (2014). An artificial bee colony algorithm for image contrast
enhancement. Swarm Evol. Comput., 16:69–84.

[118] Dräger, A., Kronfeld, M., Ziller, M. J., Supper, J., Planatscher, H., Magnus, J. B.,
Oldiges, M., Kohlbacher, O., and Zell, A. (2009). Modeling metabolic networks in C.
glutamicum: a comparison of rate laws in combination with various parameter optimization
strategies. BMC Syst. Biol., 3(1):5.

[119] Dubreuil, M., Gagné, C., and Parizeau, M. (2006). Analysis of a master-slave ar-
chitecture for distributed evolutionary computations. IEEE Trans. Syst. Man Cybern.,
36(1):229–235.

[120] Duch, W. (2007). What is Computational Intelligence and where is it going?, pages
1–13. Springer, New York, NY, USA.

[121] Duitama, J., Huebsch, T., McEwen, G., Suk, E. K., and Hoehe, M. R. (2010). ReFHap:
a reliable and fast algorithm for single individual haplotyping. In Proc. First ACM
International Conference on Bioinformatics and Computational Biology, pages 160–169.
ACM.

[122] Duncan, J. S. and Ayache, N. (2000). Medical image analysis: progress over two
decades and the challenges ahead. IEEE Trans. Pattern Anal. Mach. Intell., 22(1):85–106.

[123] Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm theory. In
Proc. Sixth IEEE International Symposium on Micro Machine and Human Science, pages
39–43. IEEE.

[124] Edge, P., Bafna, V., and Bansal, V. (2017). HapCUT2: robust and accurate haplotype
assembly for diverse sequencing technologies. Genome Res., 27(5):801–812.

[125] Eiben, A. E. and Smith, J. (2015). From evolutionary computation to the evolution of
things. Nature, 521(7553):476–482.

[126] Eklund, A., Dufort, P., Forsberg, D., and LaConte, S. M. (2013). Medical image
processing on the GPU–past, present and future. Med. Image Anal., 17(8):1073–1094.

[127] Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S. (2002). Stochastic gene
expression in a single cell. Science, 297(5584):1183–1186.

[128] Evans, P. M. (2008). Anatomical imaging for radiotherapy. Phys. Med. Biol.,
53(12):R151.

[129] Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998). Base-calling of automated
sequencer traces using Phred. I. Accuracy assessment. Genome Res., 8(3):175–185.

274 Bibliography

[130] Fang, J., Varbanescu, A. L., Imbernon, B., Cecilia, J. M., and Perez-Sanchez, H.
(2014). Parallel computation of non-bonded interactions in drug discovery: Nvidia GPUs
vs. Intel Xeon Phi. In Proc. 2nd International Work-Conference on Bioinformatics and
Biomedical Engineering, Lecture Notes in Computer Science.

[131] Fang, J., Varbanescu, A. L., Sips, H., Zhang, L., Che, Y., and Xu, C. (2013). Bench-
marking Intel Xeon Phi to guide kernel design. Technical Report PDS-2013-005, Delft
University of Technology.

[132] Farber, R. M. (2011). Topical perspective on massive threading and parallelism. J.
Mol. Graph. Model., 30:82–89.

[133] Fehlberg, E. (1968). Classical Fifth-, Sixth-, Seventh-, And Eighth-order Runge-Kutta
Formulas With Stepsize. Technical Report R-287, NASA.

[134] Fehlberg, E. (1969). Low-order classical Runge-Kutta formulas with stepsize control
and their application to some heat transfer problems. Technical report, NASA.

[135] Filonenko, E. and Seeram, E. (2018). Big data: The next era of informatics and data
science in medical imaging: A literature review. J. Clin. Exp. Radiol., 1.

[136] Fletcher, R. (2013). Practical Methods of Optimization. John Wiley & Sons, Hoboken,
NJ, USA, 2 edition.

[137] Fontenot, J. D. and Rudensky, A. Y. (2005). A well adapted regulatory contrivance:
Regulatory T cell development and the forkhead family transcription factor Foxp3. Nat.
Immunol., 6(4):331–337.

[138] Fortin, F., De Rainville, F., Gardner, M., Parizeau, M., and Gagné, C. (2012). DEAP:
Evolutionary algorithms made easy. J. Mach. Learn. Res., 13:2171–2175.

[139] Foster, I. and Kesselman, C. (2003). The Grid 2: Blueprint for a New Computing
Infrastructure. Elsevier, Amsterdam, The Netherlands.

[140] Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel,
B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., et al. (2002). The structure of
haplotype blocks in the human genome. Science, 296(5576):2225–2229.

[141] Gallagher, M. (2016). Towards improved benchmarking of black-box optimization
algorithms using clustering problems. Soft Comput., 20(10):3835–3849.

[142] Gämperle, R., Müller, S. D., and Koumoutsakos, P. (2002). A parameter study
for differential evolution. In Proc. Advances in Intelligent Systems, Fuzzy Systems,
Evolutionary Computation, pages 293–298. WSEAS Press.

[143] Gan, H. S., Swee, T. T., Abdul Karim, A. H., Sayuti, K. A., Abdul Kadir, M. R., Tham,
W. K., Wong, L. X., Chaudhary, K. T., Ali, J., and Yupapin, P. P. (2014). Medical image
visual appearance improvement using bihistogram Bezier curve contrast enhancement:
Data from the osteoarthritis initiative. Sci. World J., 2014(294104):1–13.

[144] Gandhamal, A., Talbar, S., Gajre, S., Hani, A. F. M., and Kumar, D. (2017). Local gray
level S-curve transformation–a generalized contrast enhancement technique for medical
images. Comput. Biol. Med, 83:120–133.

Bibliography 275

[145] García, S., Molina, D., Lozano, M., and Herrera, F. (2009). A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the
CEC’2005 special session on real parameter optimization. J. Heuristics, 15(6):617—-644.

[146] García-Nieto, J. and Alba, E. (2011). Restart particle swarm optimization with velocity
modulation: a scalability test. Soft Comput., 15(11):2221–2232.

[147] Gear, C. W. (1968). The control of parameters in the automatic integration of ordinary
differential equations. Int. Rep., 757.

[148] Genetic and Evolutionary Computation Conference (GECCO) (2018). GECCO
Workshop on Real-Parameter Black-Box Optimization Benchmarking (BBOB). http:
//numbbo.github.io/workshops/BBOB-2018/. Online; Accessed on December 29, 2018.

[149] Genohub (2018). Recommended coverage and read depth for NGS applications. https:
//genohub.com/recommended-sequencing-coverage-by-application. Online; Accessed on
December 29, 2018.

[150] Gerstenberger, R., Besta, M., and Hoefler, T. (2014). Enabling highly-scalable remote
memory access programming with MPI-3 one sided. Sci. Programming, 22(2):75–91.

[151] Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N.,
O’shea, E. K., and Weissman, J. S. (2003). Global analysis of protein expression in yeast.
Nature, 425(6959):737.

[152] Gibson, M. A. and Bruck, J. (2000). Efficient exact stochastic simulation of chemical
systems with many species and many channels. J. Phys. Chem. A, 104(9):1876–1889.

[153] Gillespie, D. T. (1976). A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J. Comput. Phys., 22(4):403–434.

[154] Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem., 81(25):2340–2361.

[155] Gillespie, D. T. (1992). A rigorous derivation of the chemical master equation. Physica
A, 188(1-3):404–425.

[156] Gillespie, D. T. (2000). The chemical Langevin equation. J. Chem. Phys., 113(1):297–
306.

[157] Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chemically
reacting systems. J. Phys. Chem., 115(4):1716–1733.

[158] Gillespie, D. T. (2007). Stochastic simulation of chemical kinetics. Annu. Rev. Phys.
Chem., 58:35–55.

[159] Gillespie, D. T. and Petzold, L. R. (2003). Improved leap-size selection for accelerated
stochastic simulation. J. Chem. Phys., 119:8229–8234.

[160] Gillies, R. J., Kinahan, P. E., and Hricak, H. (2015). Radiomics: images are more than
pictures, they are data. Radiology, 278(2):563–577.

http://numbbo.github.io/workshops/BBOB-2018/
http://numbbo.github.io/workshops/BBOB-2018/
https://genohub.com/recommended-sequencing-coverage-by-application
https://genohub.com/recommended-sequencing-coverage-by-application

276 Bibliography

[161] Glover, F. (1989). Tabu search—part I. ORSA J. Comput., 1(3):190–206.

[162] Glover, F. (1990). Tabu search—part II. ORSA J. Comput., 2(1):4–32.

[163] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Boston, MA, USA, 1 edition.

[164] Gong, Y. J., Chen, W. N., Zhan, Z. H., Zhang, J., Li, Y., Zhang, Q., and Li, J. J. (2015).
Distributed evolutionary algorithms and their models: A survey of the state-of-the-art.
Appl. Soft Comput., 34:286–300.

[165] Gonzalez, R. C. and Woods, R. E. (2002). Digital Image Processing. Prentice Hall
Inc., Upper Saddle River, NJ, USA, 3 edition.

[166] Goodin, D. S. (2009). The causal cascade to multiple sclerosis: A model for MS
pathogenesis. PLOS One, 4(2).

[167] Granville, V., Krivánek, M., and Rasson, J. P. (1994). Simulated annealing: A proof
of convergence. IEEE Trans. Pattern Anal. Mach. Intell., 16(6):652–656.

[168] Gray, K. (2003). Microsoft DirectX 9 Programmable Graphics Pipeline. Microsoft
Press, Redmond, WA, USA.

[169] Greenberg, H. J., Hart, W. E., and Lancia, G. (2004). Opportunities for combinatorial
optimization in computational biology. Informs. J. Comput., 16(3):211–231.

[170] Greene, C. S., Tan, J., Ung, M., Moore, J. H., and Cheng, C. (2014). Big data
bioinformatics. J. Cell. Physiol., 229(12):1896–1900.

[171] Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996). A high-performance,
portable implementation of the MPI message passing interface standard. Parallel Comput.,
22(6):789–828.

[172] Gropp, W. D., Gropp, W., Lusk, E., and Skjellum, A. (1999). Using MPI: Portable Par-
allel Programming With the Message-Passing Interface, volume 1. MIT press, Cambridge,
MA, USA.

[173] Gunawan, R., Cao, Y., Petzold, L., and Doyle III, F. J. (2005). Sensitivity analysis of
discrete stochastic systems. Biophys. J., 88(4):2530–2540.

[174] Guo, S., Diep, D., Plongthongkum, N., Fung, H. L., Zhang, K., and Zhang, K. (2017).
Identification of methylation haplotype blocks aids in deconvolution of heterogeneous
tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat. Genet.,
49(4):635–642.

[175] Gutjahr, W. J. (2002). ACO algorithms with guaranteed convergence to the optimal
solution. Inf. Process Lett., 82(3):145–153.

[176] Hairer, E., Nørsett, S. P., and Wanner, G. (1993). Solving Ordinary Differential
Equations I. Springer, Berlin Heidelberg, Germany.

[177] Hairer, E. and Wanner, G. (1996). Solving Ordinary Differential Equations II. Springer,
Berlin Heidelberg, Germany.

Bibliography 277

[178] Hairer, E. and Wanner, G. (1999). Stiff differential equations solved by Radau methods.
J. Comput. Appl. Math., 111(1-2):93–111.

[179] Hale, A. T., Wang, L., Strother, M. K., and Chambless, L. B. (2018). Differentiating
meningioma grade by imaging features on magnetic resonance imaging. J. Clin. Neurosci.,
48:71–75.

[180] Hall, E. L. (1974). Almost uniform distributions for computer image enhancement.
IEEE Trans. Comput., 100(2):207–208.

[181] Halyo, V., LeGresley, P., Lujan, P., Karpusenko, V., and Vladimirov, A. (2014). First
evaluation of the CPU, GPGPU and MIC architectures for real time particle tracking based
on Hough transform at the LHC. J. Instrum., 9(04).

[182] Hansen, N., Arnold, D. V., and Auger, A. (2015). Evolution strategies, pages 871–898.
Springer, Berlin Heidelberg.

[183] Hansen, N., Auger, A., Mersmann, O., Tusar, T., and Brockhoff, D. (2016). COCO:
A platform for comparing continuous optimizers in a black-box setting. arXiv preprint
arXiv:1603.08785.

[184] Hansen, N. and Ostermeier, A. (1996). Adapting arbitrary normal mutation dis-
tributions in evolution strategies: The covariance matrix adaptation. In Proc. IEEE
International Conference on Evolutionary Computation, pages 312–317. IEEE.

[185] Haque, A., Engel, J., Teichmann, S. A., and Lönnberg, T. (2017). A practical guide to
single-cell RNA-sequencing for biomedical research and clinical applications. Genome
Med., 9(1):75.

[186] Harris, L. A., Hogg, J. S., Tapia, J.-J., Sekar, J. A., Gupta, S., Korsunsky, I., Arora,
A., Barua, D., Sheehan, R. P., and Faeder, J. R. (2016). BioNetGen 2.2: advances in
rule-based modeling. Bioinformatics, 32(21):3366–3368.

[187] Harrison, K. R., Engelbrecht, A. P., and Ombuki-Berman, B. M. (2016). Inertia weight
control strategies for particle swarm optimization. Swarm Intell., 10(4):267–305.

[188] Hashemi, S., Kiani, S., Noroozi, N., and Moghaddam, M. E. (2010). An image contrast
enhancement method based on genetic algorithm. Pattern Recogn. Lett., 31(13):1816–
1824.

[189] Hassanien, A. E., Moftah, H. M., Azar, A. T., and Shoman, M. (2014). MRI breast
cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer
perceptron neural networks classifier. Appl. Soft Comput., 14(Part A):62–71.

[190] Hauschild, M. and Pelikan, M. (2011). An introduction and survey of estimation of
distribution algorithms. Swarm Evol. Comput., 1(3):111–128.

[191] He, D., Choi, A., Pipatsrisawat, K., Darwiche, A., and Eskin, E. (2010). Optimal
algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics,
26(12):i183–i190.

278 Bibliography

[192] Hellander, A. (2008). Efficient computation of transient solutions of the chemi-
cal master equation based on uniformization and quasi-Monte Carlo. J. Chem. Phys.,
128(15):154109.

[193] Hermisson, J. and Pennings, P. S. (2017). Soft sweeps and beyond: understanding the
patterns and probabilities of selection footprints under rapid adaptation. Methods Ecol.
Evol., 8(6):700–716.

[194] Higham, D. J. and Trefethen, L. N. (1993). Stiffness of ODEs. BIT Numer. Math.,
33(2):285–303.

[195] Hirschhorn, J. N. and Daly, M. J. (2005). Genome-wide association studies for
common diseases and complex traits. Nat. Rev. Genet., 6(2):95.

[196] Hlavacek, W. S., Faeder, J. R., Blinov, M. L., Perelson, A. S., and Goldstein, B. (2003).
The complexity of complexes in signal transduction. Biotechnol. Bioeng., 84(7):783–794.

[197] Hlavacek, W. S., Faeder, J. R., Blinov, M. L., Posner, R. G., Hucka, M., and Fontana, W.
(2006). Rules for modeling signal-transduction systems. Sci. STKE., 2006(344):re6–re6.

[198] Hoberock, J. and Bell, N. (2010). Thrust: A parallel template library. Version 1.7.0.

[199] Hoefler, T., Lumsdaine, A., and Dongarra, J. (2009). Towards efficient mapreduce
using MPI. In Proc. European Parallel Virtual Machine/Message Passing Interface, pages
240–249. Springer.

[200] Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press,
Cambridge, MA, USA.

[201] Hölldobler, B. and Wilson, E. O. (2008). The Superorganism: The Beauty, Elegance,
and Strangeness of Insect Societies. WW Norton & Company.

[202] Hoops, S., Sahle, S., Gauges, R., et al. (2006). COPASI - a COmplex PAthway
SImulator. Bioinformatics, 22(24):3067–3074.

[203] Hu, Z., Xiong, S., Su, Q., and Zhang, X. (2013). Sufficient conditions for global
convergence of differential evolution algorithm. J. Appl. Math., 2013.

[204] Hwang, B., Lee, J. H., and Bang, D. (2018). Single-cell RNA sequencing technologies
and bioinformatics pipelines. Exp. Mol. Med., 50(8):96.

[205] Ideker, T., Galitski, T., and Hood, L. (2001). A new approach to decoding life: Systems
biology. Annu. Rev. Genomics. Hum. Genet., 2(1):343–372.

[206] Ilie, S. and Bădică, C. (2013). Multi-agent distributed framework for swarm intelli-
gence. Procedia Computer Sci., 18:611–620.

[207] Inc., P. (1988). The renderman interface specification, version 3.0.

[208] Iosup, A. and Epema, D. (2011). Grid computing workloads. IEEE Internet Comput.,
15(2):19–26.

Bibliography 279

[209] Ismail, M. A. (2004). Parallel genetic algorithms (PGAs): master slave paradigm
approach using MPI. In Proc. E-Tech 2004, pages 83–87. IEEE.

[210] Jackson, K. R. (1991). A survey of parallel numerical methods for initial value
problems for ordinary differential equations. IEEE Trans. Magn., 27(5):3792–3797.

[211] Jahnke, T. and Huisinga, W. (2007). Solving the chemical master equation for
monomolecular reaction systems analytically. J. Math. Biol., 54(1):1–26.

[212] Jain, M., Fiddes, I. T., Miga, K. H., Olsen, H. E., Paten, B., and Akeson, M. (2015).
Improved data analysis for the MinION Nanopore sequencer. Nat. Methods, 12(4):351.

[213] Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., Tyson, J. R.,
Beggs, A. D., Dilthey, A. T., Fiddes, I. T., et al. (2018). Nanopore sequencing and
assembly of a human genome with ultra-long reads. Nat. Biotechnol., 36(4):338.

[214] Jain, M., Olsen, H. E., Paten, B., and Akeson, M. (2016). The Oxford Nanopore
MinION: delivery of nanopore sequencing to the genomics community. Genome Biol.,
17(1):239.

[215] Jamil, M. and Yang, X.-S. (2013). A literature survey of benchmark functions for
global optimization problems. Int. J. Math. Model. Num. Opt., 4(2):150–194.

[216] Jamshidi, N. and Palsson, B. Ø. (2010). Mass action stoichiometric simulation models:
incorporating kinetics and regulation into stoichiometric models. Biophys. J., 98(2):175–
185.

[217] Jeffers, J. and Reinders, J. (2013). Intel Xeon Phi Coprocessor High Performance
Programming. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.

[218] João, A., Gambaruto, A. M., Tiago, J., and Sequeira, A. (2016). Computational
advances applied to medical image processing: an update. Open Access Bioinform.,
2016(8):1–15.

[219] Jones, E., Oliphant, T., Peterson, P., et al. (2014). SciPy: Open source scientific tools
for Python.

[220] Joubert, W., Archibald, R., Berrill, M., et al. (2015). Accelerated application develop-
ment: The ORNL Titan experience. Comput. Electr. Eng., 46:123–138.

[221] Kämpf, J. H., Wetter, M., and Robinson, D. (2010). A comparison of global opti-
mization algorithms with standard benchmark functions and real-world applications using
EnergyPlus. J. Build. Perf. Sim., 3(2):103–120.

[222] Karaboga, D. and Akay, B. (2009). A comparative study of artificial bee colony
algorithm. Appl. Math. Comput., 214(1):108–132.

[223] Karaboga, D. and Basturk, B. (2007). A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim., 39(3):459–
471.

[224] Kennedy, J. (2006). Swarm intelligence, pages 187–219. Springer.

280 Bibliography

[225] Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In Proc. IEEE
International Conference on Neural Networks, volume 4, pages 1942–1948. IEEE.

[226] Kent, E., Hoops, S., and Mendes, P. (2012). Condor-COPASI: high-throughput
computing for biochemical networks. BMC Syst. Biol., 6(1):91.

[227] Kim, Y. T. (1997). Contrast enhancement using brightness preserving bi-histogram
equalization. IEEE Trans. Consumer Electron., 43(1):1–8.

[228] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598):671–680.

[229] Kitano, H. (2002). Systems biology: A brief overview. Science, 295(5560):1662–1664.

[230] Kittler, J. and Illingworth, J. (1986). Minimum error thresholding. Pattern Recognit.,
19(1):41–47.

[231] Klee, V. and Minty, G. J. (1970). How good is the simplex algorithm. Technical report,
Department of Mathematics, University of Washington.

[232] Kline, M. P. and Morimoto, R. I. (1997). Repression of the heat shock factor 1
transcriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell.
Biol., 17(4):2107–2115.

[233] Kohmura, H. and Wakahara, T. (2006). Determining optimal filters for binarization of
degraded characters in color using genetic algorithms. In Proc. 18th IEEE International
Conference on Pattern Recognition, volume 3, pages 661–664. IEEE.

[234] Komarov, I. and D’Souza, R. M. (2012). Accelerating the Gillespie exact stochastic
simulation algorithm using hybrid parallel execution on graphics processing units. PLOS
One, 7(11):e46693.

[235] Komarov, I., D’Souza, R. M., and Tapia, J. (2012). Accelerating the Gillespie τ-leaping
method using graphics processing units. PLOS One, 7(6):e37370.

[236] Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1 edition.

[237] Kraus, J., Pivanti, M., Schifano, S. F., Tripiccione, R., and Zanella, M. (2013). Bench-
marking GPUs with a parallel Lattice-Boltzmann code. In Proc. 25th IEEE International
Symposium on Computer Architecture and High Performance Computing, pages 160–167.
IEEE.

[238] Krupinski, E. A. (2010). Current perspectives in medical image perception. Atten.
Percept. Psychophys., 72(5):1205–1217.

[239] Kuleshov, V. (2014). Probabilistic single-individual haplotyping. Bioinformatics,
30(17):i379–i385.

[240] Kuleshov, V., Xie, D., Chen, R., Pushkarev, D., Ma, Z., Blauwkamp, T., Kertesz,
M., and Snyder, M. (2014). Whole-genome haplotyping using long reads and statistical
methods. Nat. Biotech., 32(3):261–266.

Bibliography 281

[241] Kurita, T., Otsu, N., and Abdelmalek, N. (1992). Maximum likelihood thresholding
based on population mixture models. Pattern Recognit., 25(10):1231–1240.

[242] Kwok, S. M., Chandrasekhar, R., Attikiouzel, Y., and Rickard, M. T. (2004). Automatic
pectoral muscle segmentation on mediolateral oblique view mammograms. IEEE Trans.
Med. Imaging, 23(9):1129–1140.

[243] Lambin, P., Leijenaar, R. T. H., Deist, T. M., Peerlings, J., de Jong, E. E. C., van
Timmeren, J., Sanduleanu, S., Larue, R. T. H. M., Even, A. J. G., Jochems, A., et al.
(2017). Radiomics: the bridge between medical imaging and personalized medicine. Nat.
Rev. Clin. Oncol., 14(12):749–762.

[244] Lameter, C. (2013). NUMA (Non-Uniform Memory Access): an overview. Queue,
11(7):40–51.

[245] Lander, E. S. and Waterman, M. S. (1988). Genomic mapping by fingerprinting
random clones: a mathematical analysis. Genomics, 2(3):231–239.

[246] Langdon, W. B. and Poli, R. (2007). Evolving problems to learn about particle swarm
optimizers and other search algorithms. IEEE Trans. Evol. Comput., 11(5):561–578.

[247] Larrañaga, P. and Lozano, J. A. (2001). A New Tool for Evolutionary Computation:
Estimation of Distribution Algorithms, volume 2. Springer, New York, NY, USA.

[248] Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. (1979). Basic linear
algebra subprograms for Fortran usage. ACM Trans. Math. Softw., 5(3):308–323.

[249] L’Ecuyer, P. (1996). Combined multiple recursive random number generators. Oper.
Res., 44(5):816–822.

[250] L’Ecuyer, P., Simard, R., Chen, E. J., and Kelton, W. D. (2002). An object-oriented
random-number package with many long streams and substreams. Oper. Res., 50(6):1073–
1075.

[251] Leksell, L. (1951). The stereotaxic method and radiosurgery of the brain. Acta Chir.
Scand., 102(4):316–319.

[252] Lepock, J. R., Frey, H. E., and Ritchie, K. P. (1993). Protein denaturation in intact
hepatocytes and isolated cellular organelles during heat shock. J. Cell Biol., 122(6):1267–
1276.

[253] Leu, M. S. and Yeh, M. F. (2012). Grey particle swarm optimization. Appl. Soft
Comp., 12(9):2985–2996.

[254] Levy, S., Sutton, G., Ng, P. C., Feuk, L., Halpern, A. L., Walenz, B. P., Axelrod, N.,
Huang, J., Kirkness, E. F., Denisov, G., et al. (2007). The diploid genome sequence of an
individual human. PLOS Biol., 5(10):e254.

[255] Li, C., Nguyen, T. T., Zeng, S., Yang, M., and Wu, M. (2018). An open framework for
constructing continuous optimization problems. IEEE Trans. Cybern., pages 1–15.

282 Bibliography

[256] Li, C. and Yang, S. (2008). A generalized approach to construct benchmark problems
for dynamic optimization. In Li, X. et al., editors, Simulated Evolution and Learning
(SEAL), Lecture Notes in Computer Science, pages 391–400. Springer.

[257] Li, C., Yang, Y., Xiao, L., Li, Y., Zhou, Y., and Zhao, J. (2016). A novel image
enhancement method using fuzzy Sure entropy. Neurocomput., 215:196–211.

[258] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and SAMtools.
Bioinformatics, 25(16):2078–2079.

[259] Li, H. and Petzold, L. R. (2010). Efficient parallelization of the stochastic simulation
algorithm for chemically reacting systems on the Graphics Processing Unit. Int. J. High
Perform. C., 24(2):107–116.

[260] Li, Y. and Xul, Z. (2003). An ant colony optimization heuristic for solving maximum
independent set problems. In Proc. Fifth IEEE International Conference on Computational
Intelligence and Multimedia Applications, pages 206–211. IEEE.

[261] Liang, J. J., Suganthan, P. N., and Deb, K. (2005). Novel composition test functions
for numerical global optimization. In Proc. Swarm Intelligence Symposium (SIS), pages
68–75. IEEE.

[262] Light, S., Kraulis, P., and Elofsson, A. (2005). Preferential attachment in the evolution
of metabolic networks. BMC Genomics, 6(1):159.

[263] Lillacci, G. and Khammash, M. (2010). Parameter estimation and model selection in
computational biology. PLOS Comput. Biol., 6(3):e1000696.

[264] Limpert, E., Stahel, W. A., and Abbt, M. (2001). Log-normal distributions across the
sciences: Keys and clues. BioScience, 51(5):341–352.

[265] Lippert, R., Schwartz, R., Lancia, G., and Istrail, S. (2002). Algorithmic strategies
for the single nucleotide polymorphism haplotype assembly problem. Brief. Bioinform.,
3(1):23–31.

[266] Loh, P. R., Danecek, P., Palamara, P. F., Fuchsberger, C., Reshef, Y. A., Finucane, H. K.,
Schoenherr, S., Forer, L., McCarthy, S., Abecasis, G. R., et al. (2016). Reference-based
phasing using the haplotype reference consortium panel. Nature Genet., 48(11):1443.

[267] Lou, Y. and Yuen, S. Y. (2018). On constructing alternative benchmark suite for
evolutionary algorithms. Swarm Evol. Comput.

[268] Lou, Y., Yuen, S. Y., and Chen, G. (2018). Evolving benchmark functions using
Kruskal-Wallis test. In Proc. Genetic and Evolutionary Computation Conference Com-
panion (GECCO), pages 1337–1341. ACM.

[269] Lund, J. M., Hsing, L., Pham, T. T., and Rudensky, A. Y. (2008). Coordination of early
protective immunity to viral infection by regulatory T cells. Science, 320(5880):1220–
1224.

Bibliography 283

[270] Luo, C., Tsementzi, D., Kyrpides, N., Read, T., and Konstantinidis, K. T. (2012).
Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same
microbial community DNA sample. PLOS One, 7(2):e30087.

[271] Lyakh, D. I. (2015). An efficient tensor transpose algorithm for multicore CPU, Intel
Xeon Phi, and NVidia Tesla GPU. Comput. Phys. Commun., 189:84–91.

[272] Macchiarulo, L. (2008). A massively parallel implementation of Gillespie algorithm
on FPGAs. In Proc. IEEE International Conference on Engineering in Medicine and
Biology Society, pages 1343–1346. IEEE.

[273] Macready, W. G. and Wolpert, D. H. (1996). What makes an optimization problem
hard? Complexity, 1(5):40–46.

[274] Maisto, D., Donnarumma, F., and Pezzulo, G. (2015). Divide et impera: subgoaling
reduces the complexity of probabilistic inference and problem solving. J. R. Soc. Interface,
12(104):20141335.

[275] Malan, K. M. and Engelbrecht, A. P. (2013). A survey of techniques for characterising
fitness landscapes and some possible ways forward. Inf. Sci., 241:148–163.

[276] Mark, W. R., Glanville, R. S., Akeley, K., and Kilgard, M. J. (2003). CG: a system for
programming graphics hardware in a C-like language. ACM Trans. Graph., 22(3):896–
907.

[277] Mathews, J. H. and Fink, K. D. (1998). Numerical methods using MATLAB. Prentice-
Hall Inc., Upper Saddle River, NJ, USA, 3 edition.

[278] Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM T. Model. Comput. S.,
8(1):3–30.

[279] Matyas, J. (1965). Random optimization. Autom. Rem. Contr., 26(2):246–253.

[280] Maus, C., Rybacki, S., and Uhrmacher, A. M. (2011). Rule-based multi-level modeling
of cell biological systems. BMC Syst. Biol., 5(1):166.

[281] McElroy, K. E., Luciani, F., and Thomas, T. (2012). GemSIM: general, error-model
based simulator of next-generation sequencing data. BMC Genomics, 13(1):74.

[282] Medina-Carnicer, R., Muñoz-Salinas, R., Carmona-Poyato, A., and Madrid-Cuevas,
F. J. (2011). A novel histogram transformation to improve the performance of thresholding
methods in edge detection. Pattern Recognit. Lett., 32(5):676–693.

[283] Meier, R., Knecht, U., Loosli, T., Bauer, S., Slotboom, J., Wiest, R., and Reyes, M.
(2016). Clinical evaluation of a fully-automatic segmentation method for longitudinal
brain tumor volumetry. Sci. Rep., 6.

[284] Mendes, P. (2001). Modeling large biochemical systems from functional genomic data:
parameter estimation, pages 163–168. MIT Press, Cambridge, MA, USA.

284 Bibliography

[285] Mendes, P. and Kell, D. (1998). Non-linear optimization of biochemical pathways: ap-
plications to metabolic engineering and parameter estimation. Bioinformatics, 14(10):869–
883.

[286] Merelli, I., Liò, P., and Milanesi, L. (2013). Nuchart: an R package to study gene
spatial neighbourhoods with multi-omics annotations. PLOS One, 8(9):e75146.

[287] Metallo, C. M. and Vander Heiden, M. G. (2013). Understanding metabolic regulation
and its influence on cell physiology. Mol. Cell., 49(3):388–398.

[288] Metcalfe, P., Liney, G. P., Holloway, L., Walker, A., Barton, M., Delaney, G. P., Vinod,
S., and Tome, W. (2013). The potential for an enhanced role for MRI in radiation-therapy
treatment planning. Technol. Cancer. Res. Treat., 12(5):429–446.

[289] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). Equation of state calculations by fast computing machines. J. Chem. Phys.,
21(6):1087–1092.

[290] Mezura-Montes, E., Velázquez-Reyes, J., and Coello Coello, C. A. (2006). A compar-
ative study of differential evolution variants for global optimization. In Proc. 8th ACM
Annual Conference on Genetic and evolutionary computation, pages 485–492. ACM.

[291] Militello, C., Rundo, L., and Gilardi, M. C. (2014). Applications of imaging processing
to MRgFUS treatment for fibroids: a review. Transl. Cancer Res., 3(5):472–482.

[292] Militello, C., Vitabile, S., Rundo, L., Russo, G., Midiri, M., and Gilardi, M. C. (2015).
A fully automatic 2D segmentation method for uterine fibroid in MRgFUS treatment
evaluation. Comput. Biol. Med., 62:277–292.

[293] Miller, B. L. and Goldberg, D. E. (1995). Genetic algorithms, tournament selection,
and the effects of noise. Complex Syst., 9(3):193–212.

[294] Moles, C. G., Mendes, P., and Banga, J. R. (2003). Parameter estimation in biochemical
pathways: a comparison of global optimization methods. Genome Res., 13(11):2467–
2474.

[295] Mühlenbein, H. (2012). Convergence theorems of estimation of distribution algorithms,
pages 91–108. Springer, Berlin Heidelberg.

[296] Munsky, B. and Khammash, M. (2006). The finite state projection algorithm for the
solution of the chemical master equation. J. Chem. Phys., 124(4):044104.

[297] Munteanu, C. and Rosa, A. (2004). Gray-scale image enhancement as an automatic
process driven by evolution. IEEE Trans. Syst. Man Cybern., 34(2):1292–1298.

[298] Na, J. C., Lee, J.-C., Rhee, J.-K., and Shin, S.-Y. (2018). PEATH: Single individual
haplotyping by a probabilistic evolutionary algorithm with toggling. Bioinformatics, page
bty012.

[299] Nachman, M. W. (2001). Single nucleotide polymorphisms and recombination rate in
humans. Trends Genet., 17(9):481–485.

Bibliography 285

[300] Nakamura, K., Yoshida, R., Nagasaki, M., Miyano, S., and Higuchi, T. (2009).
Parameter estimation of in silico biological pathways with particle filtering towards a
petascale computing. In Biocomputing 2009, pages 227–238. World Scientific.

[301] Nelson, D. L., Lehninger, A. L., and Cox, M. M. (2008). Lehninger principles of
biochemistry. Macmillan, London, UK, 5 edition.

[302] Nickolls, J. and Dally, W. J. (2010). The GPU computing era. IEEE micro, 30(2):56–
69.

[303] Nobile, M. S., Besozzi, D., Cazzaniga, P., G., M., and Pescini, D. (2012a). Estimating
reaction constants in stochastic biological systems with a multi-swarm PSO running on
GPUs. In Soule, T., editor, Proc. 14th ACM International Conference. on Genetic and
Evolutionary Computation, pages 1421–1422. ACM.

[304] Nobile, M. S., Besozzi, D., Cazzaniga, P., G., M., and Pescini, D. (2012b). A GPU-
based multi-swarm PSO method for parameter estimation in stochastic biological systems
exploiting discrete-time target series. In Giacobini, M., Vanneschi, L., and Bush, W. S.,
editors, Proc. European Conference on Evolutionary Computation, Machine Learning
and Data Mining in Bioinformatics, volume 7246 of Lecture Notes in Computer Science,
pages 74–85. Springer.

[305] Nobile, M. S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., and Pasi, G.
(2018a). Fuzzy self-tuning PSO: A settings-free algorithm for global optimization. Swarm
Evol. Comput., 39:70–85.

[306] Nobile, M. S., Cazzaniga, P., Besozzi, D., and Mauri, G. (2014a). GPU-accelerated
simulations of mass-action kinetics models with cupSODA. J. Supercomput., 69(1):17–24.

[307] Nobile, M. S., Cazzaniga, P., Besozzi, D., Pescini, D., and Mauri, G. (2014b). cu-
TauLeaping: a gpu-powered tau-leaping stochastic simulator for massive parallel analyses
of biological systems. PLOS One, 9(3):e91963.

[308] Nobile, M. S., Cazzaniga, P., Tangherloni, A., and Besozzi, D. (2017). Graphics
processing units in bioinformatics, computational biology and systems biology. Brief.
Bioinformatics, 18(5):870–885.

[309] Nobile, M. S., Pasi, G., Cazzaniga, P., Besozzi, D., Colombo, R., and Mauri, G. (2015).
Proactive particles in swarm optimization: a self-tuning algorithm based on fuzzy logic.
In Proc. IEEE International Conference on Fuzzy Systems, pages 1–8. IEEE.

[310] Nobile, M. S., Tangherloni, A., Besozzi, D., and Cazzaniga, P. (2016). GPU-powered
and settings-free parameter estimation of biochemical systems. In Proc. IEEE Congress
on Evolutionary Computation, pages 32–39. IEEE.

[311] Nobile, M. S., Tangherloni, A., Rundo, L., Spolaor, S., Besozzi, D., Mauri, G., and
Cazzaniga, P. (2018b). Computational intelligence for parameter estimation of biochemical
systems. In Proc. IEEE Congress on Evolutionary Computation, pages 1–8. IEEE.

[312] Nvidia (2012). Nvidia CUDA C programming guide v5.0.

286 Bibliography

[313] Nvidia (2014). NVBIO webpage. http://nvlabs.github.io/nvbio/. Online; Accessed on
December 29, 2018.

[314] Nvidia (2015a). cuBLAS library 7.5.

[315] Nvidia (2015b). cuBLAS library 8.0.

[316] Nvidia (2015a). cuFFT library user’s guide 7.5.

[317] Nvidia (2015b). CURAND library programming guide 7.5.

[318] Nvidia (2015a). cuSPARSE library 7.5.

[319] Nvidia (2015b). Nvidia CUDA C programming guide 7.5.

[320] Nvidia (2015c). Nvidia performance primitives 7.5.

[321] Nvidia (2016a). CUDA C programming guide, version 8.0.

[322] Nvidia (2016b). Nvidia Tesla P100.

[323] Orellana, A. and Minetti, G. F. (2009). A modified binary-PSO for continuous
optimization. In Proc. XV Congreso Argentino de Ciencias de la Computación.

[324] Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What is flux balance analysis? Nat.
Biotech., 28(3):245.

[325] Ortiz, A., Górriz, J. M., Ramírez, J., Salas-Gonzalez, D., and Llamas-Elvira, J. M.
(2013). Two fully-unsupervised methods for MR brain image segmentation using SOM-
based strategies. Appl. Soft Comput., 13(5):2668–2682.

[326] Otsu, N. (1975). A threshold selection method from gray-level histograms. IEEE
Trans. Syst. Man Cybern., 11(285-296):23–27.

[327] Otto, S. P. and Whitton, J. (2000). Polyploid incidence and evolution. Annu. Rev.
Genet., 34(1):401–437.

[328] O’Brien, J., Kla, K. M., Hopkins, I. B., Malecki, E. A., and McKenna, M. C. (2007).
Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate
utilization by neurons. Neurochem. Res., 32(4-5):597–607.

[329] PacBio (2014). Data release: ∼ 54× long-read coverage for PacBio-only de novo
human genome assembly.

[330] Pacheco, P. S. (1997). Parallel Programming with MPI. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[331] Paranjape, R. B. (2009). Fundamental Enhancement Techniques, pages 3–18. Aca-
demic Press, Burlington, MA, USA, 2 edition.

[332] Pasupuleti, S. and Battiti, R. O. (2006). The gregarious particle swarm optimizer (G-
PSO). In Proc. 8th ACM Annual Conference on Genetic and Evolutionary Computation,
pages 67–74. ACM.

http://nvlabs.github.io/nvbio/

Bibliography 287

[333] Patterson, M., Marschall, T., Pisanti, N., Van Iersel, L., Stougie, L., Klau, G. W., and
Schönhuth, A. (2015). WhatsHap: weighted haplotype assembly for future-generation
sequencing reads. J. Comput. Biol., 22(6):498–509.

[334] Paulinas, M. and Ušinskas, A. (2007). A survey of genetic algorithms applications for
image enhancement and segmentation. Inf. Technol. Control, 36(3):278—-284.

[335] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Inc., San Francisco, CA, USA.

[336] Penas, D. R., González, P., Egea, J. A., Doallo, R., and Banga, J. R. (2017). Parameter
estimation in large-scale systems biology models: a parallel and self-adaptive cooperative
strategy. BMC Bioinform., 18(1):52.

[337] Pennisi, M., Rajput, A.-M., Toldo, L., and Pappalardo, F. (2013). Agent based
modeling of Treg-Teff cross regulation in relapsing-remitting multiple sclerosis. BMC
Bioinform., 14(Suppl 16):S9.

[338] Peper, A., Grimbergen, C. A., Spaan, J. A. E., Souren, J. E. M., and Wijk, R. V.
(1998). A mathematical model of the hsp70 regulation in the cell. Int. J. Hyperthermia,
14(1):97–124.

[339] Pescini, D., Cazzaniga, P., Besozzi, D., Mauri, G., Amigoni, L., Colombo, S., and
Martegani, E. (2012). Simulation of the Ras/cAMP/PKA pathway in budding yeast
highlights the establishment of stable oscillatory states. Biotechnol. Adv., 30(1):99–107.

[340] Petre, I., Mizera, A., Hyder, C. L., Meinander, A., Mikhailov, A., Morimoto, R. I.,
Sistonen, L., Eriksson, J. E., and Back, R. J. (2011). A simple mass-action model
for the eukaryotic heat shock response and its mathematical validation. Nat. Comput.,
10(1):595–612.

[341] Petzold, L. (1983). Automatic selection of methods for solving stiff and nonstiff
systems of ordinary differential equations. SIAM J. Sci. Stat. Comp., 4(1):136–148.

[342] Pirola, Y., Zaccaria, S., Dondi, R., Klau, G. W., Pisanti, N., and Bonizzoni, P. (2015).
HapCol: accurate and memory-efficient haplotype assembly from long reads. Bioinfor-
matics, 32(11):1610–1617.

[343] Poli, R. and Cagnoni, S. (1997). Genetic programming with user-driven selection:
experiments on the evolution of algorithms for image enhancement. In Proc. 2nd Annual
Conference on Genetic Programming, pages 269–277.

[344] Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization. Swarm
Intell., 1(1):33–57.

[345] Pomerening, J. R. (2008). Uncovering mechanisms of bistability in biological systems.
Curr. Opin. Biotechnol., 19(4):381–388.

[346] Ponsonby, A. L., van der Mei, I., Dwyer, T., Blizzard, L., Taylor, B., Kemp, A.,
Simmons, R., and Kilpatrick, T. (2005). Exposure to infant siblings during early life and
risk of multiple sclerosis. JAMA, 293(4):463–469.

288 Bibliography

[347] Poovathingal, S. K. and Gunawan, R. (2010). Global parameter estimation methods
for stochastic biochemical systems. BMC Bioinform., 11(1):414.

[348] Price, N. D., Papin, J. A., and Palsson, B. Ø. (2002). Determination of redundancy and
systems properties of the metabolic network of Helicobacter pylori using genome-scale
extreme pathway analysis. Genome Res., 12(5):760–769.

[349] Qin, A. K., Huang, V. L., and Suganthan, P. N. (2009). Differential evolution algorithm
with strategy adaptation for global numerical optimization. IEEE T. Evolut. Comput.,
13(2):398–417.

[350] Quail, M. A., Kozarewa, I., Smith, F., Scally, A., Stephens, P. J., Durbin, R., Swerdlow,
H., and Turner, D. J. (2008). A large genome center’s improvements to the Illumina
sequencing system. Nat. Methods, 5(12):1005.

[351] Ramakrishna, R., Edwards, J. S., McCulloch, A., and Palsson, B. Ø. (2001). Flux-
balance analysis of mitochondrial energy metabolism: consequences of systemic stoichio-
metric constraints. Am. J. Physiol. Regul. Integr. Comp. Physiol., 280(3):R695–R704.

[352] Rasmussen, R. V. and Trick, M. A. (2008). Round robin scheduling–a survey. Eur. J.
Oper. Res., 188(3):617–636.

[353] Ratliff, F. (1984). Why Mach bands are not seen at the edges of a step. Vision Res.,
24(2):163–165.

[354] Rechenberg, I. (1973). Evolution Strategy: Optimization of Technical Systems by
Means of Biological Evolution. Fromman-Holzboog, Stuttgart, Germany.

[355] Reinhardt, J. A., Baltrus, D. A., Nishimura, M. T., Jeck, W. R., Jones, C. D., and
Dangl, J. L. (2009). De novo assembly using low-coverage short read sequence data from
the rice pathogen Pseudomonas syringae pv. oryzae. Genome Res., 19(2):294–305.

[356] Reinker, S., Altman, R. M., and Timmer, J. (2006). Parameter estimation in stochastic
biochemical reactions. IEE P. Syst. Biol., 153(4):168–178.

[357] Rezaee Jordehi, A. and Jasni, J. (2013). Parameter selection in particle swarm
optimisation: a survey. J. Exp. Theor. Artif. Intell., 25(4):527–542.

[358] Rhoads, A. and Au, K. F. (2015). PacBio sequencing and its applications. Genomics
Proteomics Bioinformatics, 13(5):278–289.

[359] Ridler, T. W. and Calvard, S. (1978). Picture thresholding using an iterative selection
method. IEEE Trans. Syst. Man Cybern., 8(8):630–632.

[360] Rimmer, A., Phan, H., Mathieson, I., Iqbal, Z., Twigg, S. R. F., Wilkie, A. O. M.,
McVean, G., Lunter, G., WGS500 Consortium, et al. (2014). Integrating mapping-,
assembly-and haplotype-based approaches for calling variants in clinical sequencing
applications. Nat Genet, 46(8):912.

[361] Riva, S. G., Tangherloni, A., Nobile, M. S., Cazzaniga, P., and Besozzi, D. (2018).
SMGen: A novel generator of synthetic models of biological systems. BMC Bioinform.
Under Preparation.

Bibliography 289

[362] Roberts, A. (2008). Magnetic resonance-guided focused ultrasound for uterine fibroids.
Semin. Interv. Radiol., 25(4):394.

[363] Roberts, R. J., Carneiro, M. O., and Schatz, M. C. (2013). The advantages of SMRT
sequencing. Genome Biol., 14(6):405.

[364] Rodriguez, F. and Arkhipova, I. R. (2018). Transposable elements and polyploid
evolution in animals. Curr. Opin. Genet. Dev., 49:115–123.

[365] Rogowska, J. (2009). Overview and Fundamentals of Medical Image Segmentation,
pages 73–90. Academic Press, Burlington, MA, USA, 2 edition.

[366] Romero, J. and Cotta, C. (2005). Optimization by island-structured decentralized par-
ticle swarms. In Reusch, B., editor, Computational Intelligence, Theory and Applications,
volume 33 of Advances in Soft Computing, pages 25–33. Springer.

[367] Rueckert, D., Glocker, B., and Kainz, B. (2016). Learning clinically useful information
from images: Past, present and future. Med. Image Anal., 33:13–18.

[368] Rumschinski, P., Borchers, S., Bosio, S., Weismantel, R., and Findeisen, R. (2010).
Set-base dynamical parameter estimation and model invalidation for biochemical reaction
networks. BMC Syst. Biol., 4(1):69.

[369] Runarsson, T. P. and Yao, X. (2000). Stochastic ranking for constrained evolutionary
optimization. IEEE Trans. Evol. Comput., 4(3):284–294.

[370] Rundo, L., Han, C., Nagano, Y., Zhang, J., Hataya, R., Militello, C., et al. (2018a).
USE-Net: Incorporating squeeze-and-excitation blocks into U-Net for prostate zonal
segmentation of multi-institutional MRI datasets. Neurocomput. Submitted.

[371] Rundo, L., Han, C., Zhang, J., Hataya, R., Nagano, Y., Militello, C., et al. (2018b).
CNN-based prostate zonal segmentation on T2-weighted MR images: a cross-dataset
study. In 28th Italian Workshop on Neural Networks (WIRN) 2018, Vietri sul Mare
(SA), Italy, June 13-15, 2018, Smart Innovation, Systems and Technologies. Springer.
(Accepted).

[372] Rundo, L., Militello, C., Russo, G., Vitabile, S., Gilardi, M. C., and Mauri, G. (2018c).
GTVcut for neuro-radiosurgery treatment planning: an MRI brain cancer seeded image
segmentation method based on a cellular automata model. Nat. Comput., 17(3):521–536.

[373] Rundo, L., Militello, C., Tangherloni, A., Russo, G., Lagalla, R., Mauri, G., Gilardi,
M. C., and Vitabile, S. (2019). Computer-assisted approaches for uterine fibroid segmen-
tation in MRgFUS treatments: quantitative evaluation and clinical feasibility analysis. In
Quantifying and Processing Biomedical and Behavioral Signals, volume 103 of Smart
Innovation, Systems and Technologies, pages 229–241. Springer.

[374] Rundo, L., Militello, C., Tangherloni, A., Russo, G., Vitabile, S., Gilardi, M. C., and
Mauri, G. (2018d). NeXt for neuro-radiosurgery: A fully automatic approach for necrosis
extraction in brain tumor MRI using an unsupervised machine learning technique. Int. J.
Imag. Syst. Tech., 28(1):21–37.

290 Bibliography

[375] Rundo, L., Militello, C., Vitabile, S., Casarino, C., Russo, G., Midiri, M., and Gilardi,
M. C. (2016a). Combining split-and-merge and multi-seed region growing algorithms
for uterine fibroid segmentation in MRgFUS treatments. Med. Biol. Eng. Comput.,
54(7):1071–1084.

[376] Rundo, L., Stefano, A., Militello, C., Russo, G., Sabini, M. G., D’Arrigo, C., Marletta,
F., Ippolito, M., Mauri, G., Vitabile, S., and Gilardi, M. C. (2017). A fully automatic
approach for multimodal PET and MR image segmentation in Gamma Knife treatment
planning. Comput. Methods Programs Biomed., 144:77–96.

[377] Rundo, L., Tangherloni, A., Cazzaniga, P., Nobile, M. S., Russo G., Gilardi, M. C.,
Vitabile, S., Mauri, G., Besozzi, D., and Militello, C. (2018e). Genetic algorithms
improve thresholding-based segmentation of bimodal magnetic resonance images. Comput.
Methods Programs Biomed. Submitted.

[378] Rundo, L., Tangherloni, A., Militello, C., Gilardi, M. C., and Mauri, G. (2016b).
Multimodal medical image registration using particle swarm optimization: a review. In
Proc. IEEE Symposium Series on Computational Intelligence, pages 1–8. IEEE.

[379] Rundo, L., Tangherloni, A., Nobile, M. S., Militello, C., Besozzi, D., Mauri, G., and
Cazzaniga, P. (2018f). MedGA: A novel evolutionary method for image enhancement in
medical imaging systems. Expert Syst. Appl., 119:387–399.

[380] Rundo, L., Tangherloni, A., Tyson, D. R., Betta, R., Nobile, M. S., Spolaor, S.,
Militello, C., Lubbock, A. L. R., Mauri, G., Quaranta, V., Besozzi, D., Lopez, C. F., and
Cazzaniga, P. (2018g). ACDC: Automated cell detection and counting for time-lapse
fluorescence microscopy. Med. Biol. Eng. Comput. Under Preparation.

[381] Saitoh, F. (1999). Image contrast enhancement using genetic algorithm. In Proc. IEEE
International Conference on Systems, Man, and Cybernetics, volume 4, pages 899–904.
IEEE.

[382] Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995). Immunologic
self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains
(CD25). breakdown of a single mechanism of self-tolerance causes various autoimmune
diseases. J. Immunol., 155(3):1152–1164.

[383] Santangelo, G. M. (2006). Glucose signaling in saccharomyces cerevisiae. Microbiol.
Mol. Biol. Rev., 70(1):253–282.

[384] Sawai, H. and Kizu, S. (1998). Parameter-free genetic algorithm inspired by “disparity
theory of evolution”. In Proc. International Conference on Parallel Problem Solving from
Nature, pages 702–711. Springer.

[385] Scheuermann, T. and Hensley, J. (2007). Efficient histogram generation using scatter-
ing on GPUs. In Proc. ACM Symposium on Interactive 3D Graphics and Games, pages
33–37. ACM.

[386] Schilling, C. H., Letscher, D., and Palsson, B. Ø. (2000). Theory for the systemic
definition of metabolic pathways and their use in interpreting metabolic function from a
pathway-oriented perspective. J. Theor. Biol., 203(3):229–248.

Bibliography 291

[387] Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G., and Schom-
burg, D. (2004). BRENDA, the enzyme database: updates and major new developments.
Nucleic Acids Res., 32(suppl_1):D431–D433.

[388] Schwaab, M., Biscaia Jr, E. C., Monteiro, J. L., and Pinto, J. C. (2008). Nonlinear
parameter estimation through particle swarm optimization. Chem. Eng. Sci., 63(6):1542–
1552.

[389] Sebag, M. and Ducoulombier, A. (1998). Extending population-based incremental
learning to continuous search spaces. In Proc. International Conference on Parallel
Problem Solving from Nature, pages 418–427. Springer.

[390] Seeley, T. D. (1989). The honey bee colony as a superorganism. Am. Sci., 77(6):546–
553.

[391] Senol Cali, D., Kim, J. S., Ghose, S., Alkan, C., and Mutlu, O. (2018). Nanopore
sequencing technology and tools for genome assembly: computational analysis of the
current state, bottlenecks and future directions. Brief. Bioinform. bby017.

[392] Shanmugavadivu, P. and Balasubramanian, K. (2014). Particle swarm optimized
multi-objective histogram equalization for image enhancement. Opt. Laser Technol.,
57:243–251.

[393] Sheehan, S. and Song, Y. S. (2016). Deep learning for population genetic inference.
PLOS Comput. Biol., 12(3):e1004845.

[394] Shi, Y. and Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization. In
Proc. IEEE Congress on Evolutionary Computation, volume 1, pages 101–106. IEEE.

[395] Shimoda, T., Suzuki, S., Ohue, M., et al. (2015a). Protein-protein docking on hardware
accelerators: comparison of GPU and MIC architectures. BMC Syst. Biol., 9(Suppl 1):S6.

[396] Shimoda, T., Suzuki, S., Ohue, M., Ishida, T., and Akiyama, Y. (2015b). Protein-
protein docking on hardware accelerators: comparison of GPU and MIC architectures.
BMC Syst. Biol., 9(Suppl 1):S6.

[397] Sidje, R. B., Burrage, K., and MacNamara, S. (2007). Inexact uniformization method
for computing transient distributions of Markov chains. SIAM J. Sci. Stat. Comp.,
29(6):2562–2580.

[398] Sims, D., Sudbery, I., Ilott, N. E., Heger, A., and Ponting, C. P. (2014). Sequencing
depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet., 15(2):121.

[399] Singh, M., Verma, A., and Sharma, N. (2017). Bat optimization based neuron model
of stochastic resonance for the enhancement of MR images. Biocybern. Biomed. Eng.,
37(1):124–134.

[400] Sled, J. G., Zijdenbos, A. P., and Evans, A. C. (1998). A nonparametric method for
automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging,
17(1):87–97.

292 Bibliography

[401] Smallbone, K., Messiha, H. L., Carroll, K. M., Winder, C. L., Malys, N., Dunn, W. B.,
Murabito, E., Swainston, N., Dada, J. O., Khan, F., et al. (2013). A model of yeast
glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Lett.,
587(17):2832–2841.

[402] Smith, T. B. (2010). MRI artifacts and correction strategies. Imaging Med., 2(4):445–
457.

[403] Smooke, M. D. (1983). Error estimate for the modified Newton method with applica-
tions to the solution of nonlinear, two-point boundary-value problems. J. Optim. Theory
Appl., 39(4):489–511.

[404] Snyder, M. W., Adey, A., Kitzman, J. O., and Shendure, J. (2015). Haplotype-resolved
genome sequencing: experimental methods and applications. Nat. Rev. Genet., 16(6):344–
358.

[405] Solis, F. J. and Wets, R. J. B. (1981). Minimization by random search techniques.
Math. Oper. Res., 6(1):19–30.

[406] Sonka, M., Hlavac, V., and Boyle, R. (2014). Image Processing, Analysis, and Machine
Vision. Cengage Learning, Boston, MA, USA, 4 edition.

[407] Soon, W. W., Hariharan, M., and Snyder, M. P. (2013). High-throughput sequencing
for biology and medicine. Mol. Syst. Biol., 9(1):640.

[408] Sospedra, M. and Martin, R. (2005). Immunology of multiple sclerosis. Annu. Rev.
Immunol., 23(May):683–747.

[409] Spolaor, S., Tangherloni, A., Rundo, L., Nobile, M. S., and Cazzaniga, P. (2017).
Reboot strategies in particle swarm optimization and their impact on parameter estimation
of biochemical systems. In Proc. IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology, pages 1–8. IEEE.

[410] Spolaor, S., Tangherloni, A., Rundo, L., Nobile, M. S., and Cazzaniga, P. (2019).
Estimation of kinetic reaction constants: Exploiting reboot strategies to improve pso’s
performance. In Proc. 14th International Meeting on Computational Intelligence Methods
for Bioinformatics and Biostatistics, Lecture Notes in Bioinformatics. Springer. In Press.

[411] Starck, J. L., Murtagh, F., Candes, E. J., and Donoho, D. L. (2003). Gray and color
image contrast enhancement by the curvelet transform. IEEE Trans. Image Process.,
12(6):706–717.

[412] Stewart, W. J. (1994). Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, Princeton, NJ, USA.

[413] Storn, R. and Price, K. (1997). Differential evolution–a simple and efficient heuristic
for global optimization over continuous spaces. J. Global Optim., 11(4):341–359.

[414] Streets, A. M. and Huang, Y. (2014). How deep is enough in single-cell RNA-seq?
Nat. Biotechnol., 32(10):1005.

Bibliography 293

[415] Stützle, T. and Dorigo, M. (1999). ACO algorithms for the traveling salesman problem.
In Miettinen, K., Neittaanmäki, P. Mäkelä, M. M., and Periaux, J., editors, Evolutionary
algorithms in engineering and computer science, pages 163–183. Wiley.

[416] Stutzle, T. and Dorigo, M. (2002). A short convergence proof for a class of ant colony
optimization algorithms. IEEE Trans. Evol. Comput., 6(4):358–365.

[417] Styner, M., Brechbuhler, C., Széckely, G., and Gerig, G. (2000). Parametric estimate
of intensity inhomogeneities applied to MRI. IEEE Trans. Med. Imaging, 19(3):153–165.

[418] Sugeno, M. (1985). Industrial Applications of Fuzzy Control. Elsevier Science Inc.,
New York, NY, USA.

[419] Sumiyoshi, K., Hirata, K., Hiroi, N., et al. (2015). Acceleration of discrete stochastic
biochemical simulation using GPGPU. Front. Physiol., 6(42).

[420] Sundström, P., Juto, P., Wadell, G., Hallmans, G., Svenningsson, A., Nyström, L.,
Dillner, J., and Forsgren, L. (2004). An altered immune response to Epstein-Barr virus in
multiple sclerosis. Neurology, 62(12):2277–2282.

[421] Sur, S., Koop, M. J., and Panda, D. K. (2006). High-performance and scalable MPI
over InfiniBand with reduced memory usage: an in-depth performance analysis. In Proc.
ACM/IEEE conference on Supercomputing, page 105. ACM.

[422] Szymańska, P., Martin, K. R., MacKeigan, J. P., Hlavacek, W. S., and Lipniacki, T.
(2015). Computational analysis of an Autophagy/Translation switch based on mutual
inhibition of MTORC1 and ULK1. PLOS One, 10(3):e0116550.

[423] Taha, A. A. and Hanbury, A. (2015). Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool. BMC Med. imaging, 15(1):29.

[424] Taherkhani, M. and Safabakhsh, R. (2016). A novel stability-based adaptive inertia
weight for particle swarm optimization. Appl. Soft Comp., 38:281–295.

[425] Tangherloni, A., Nobile, M. S., Besozzi, D., Mauri, G., and Cazzaniga, P. (2017a).
LASSIE: simulating large-scale models of biochemical systems on GPUs. BMC Bioin-
form., 18(1):246.

[426] Tangherloni, A., Nobile, M. S., and Cazzaniga, P. (2016). GPU-powered bat algorithm
for the parameter estimation of biochemical kinetic values. In Proc. IEEE Conference
on Computational Intelligence in Bioinformatics and Computational Biology, pages 1–6.
IEEE.

[427] Tangherloni, A., Nobile, M. S., Cazzaniga, P., Besozzi, D., and Mauri, G. (2017b).
Gillespie’s stochastic simulation algorithm on mic coprocessors. J. Supercomput.,
73(2):676–686.

[428] Tangherloni, A., Nobile, M. S., Cazzaniga, P., Capitoli, G., Spolaor, S., Rundo,
L., Mauri, G., and D., B. (2018a). FiCoS: a fine- and coarse-grained gpu-powered
deterministic simulator for biochemical networks. Sci. Rep. Under Preparation.

294 Bibliography

[429] Tangherloni, A., Rundo, L., and Nobile, M. S. (2017c). Proactive particles in swarm
optimization: a settings-free algorithm for real-parameter single objective optimization
problems. In Proc. IEEE Congress on Evolutionary Computation, pages 1940–1947.
IEEE.

[430] Tangherloni, A., Rundo, L., Spolaor, S., Cazzaniga, P., and Nobile, M. S. (2018b).
GPU-powered multi-swarm parameter estimation of biological systems: A master-slave
approach. In Proc. 26th IEEE Euromicro International Conference on Parallel, Distributed
and Network-based Processing, pages 698–705. IEEE.

[431] Tangherloni, A., Rundo, L., Spolaor, S., Nobile, M. S., Merelli, I., Besozzi, D., Mauri,
G., Cazzaniga, P., and Liò, P. (2018c). High performance computing for haplotyping:
Models and platforms. In Euro-Par 2018: Parallel Processing Workshops, volume 11339
of Lecture Notes in Computer Science, pages 650–661. Springer.

[432] Tangherloni, A., Spolaor, S., Cazzaniga, P., Besozzi, D., Rundo, L., Mauri, G., and
Nobile, M. S. (2018d). Benchmark functions do not capture the complexity of biochemical
parameter estimation. Appl. Soft Comput. Submitted.

[433] Tangherloni, A., Spolaor, S., Rundo, L., Nobile, M. S., Cazzaniga, P., Mauri, G., Liò,
P., Merelli, I., and Besozzi, D. (2018e). GenHap: A novel computational method based
on genetic algorithms for haplotype assembly. BMC Bioinform. In press.

[434] Tanweer, M. R., Suresh, S., and Sundararajan, N. (2015). Self regulating particle
swarm optimization algorithm. Inf. Sci., 294:182–202.

[435] Tashkova, K., Korošec, P., Šilc, J., Todorovski, L., and Džeroski, S. (2011). Parameter
estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of
endocytosis. BMC Syst. Biol., 5(159).

[436] Theraulaz, G. and Bonabeau, E. (1999). A brief history of stigmergy. Artif. Life.,
5(2):97–116.

[437] Thiagarajan, S. U., Congdon, C., Naik, S., et al. (2013). Intel Xeon Phi Coprocessor
Developer’s Quick Start Guide.

[438] Thohura, S. and Rahman, A. (2013). Numerical approach for solving stiff differential
equations: A comparative study. J. Sci. Front. Res. Math. Decision Sci., 13:7–18.

[439] Tian, D. and Li, N. (2009). Fuzzy particle swarm optimization algorithm. In Proc.
International Joint Conference on Artificial Intelligence, pages 263–267, Pasadena, CA.

[440] Tian, T. and Burrage, K. (2005). Parallel implementation of stochastic simulation of
large-scale cellular processes. In Proc. 8th International Conference on High-Performance
Computing in Asia-Pacific Region, pages 621–626.

[441] Toennies, K. D. (2017). Guide to Medical Image Analysis. Springer, London, UK, 3
edition.

[442] Totis, N., Tangherloni, A., Beccuti, M., Cazzaniga, P., Nobile, M. S., Besozzi, D.,
Pennisi, M., and Pappalardo, F. (2018). GPU powered parameter estimation of a large-scale
kinetic metabolic model. In 15th International Meeting on Computational Intelligence
Methods for Bioinformatics and Biostatistics.

Bibliography 295

[443] Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis
and parameter selection. Inf. Process. Lett., 85(6):317–325.

[444] Trinh, C. T., Wlaschin, A., and Srienc, F. (2009). Elementary mode analysis: a useful
metabolic pathway analysis tool for characterizing cellular metabolism. Appl. Microbiol.
Biotechnol., 81(5):813.

[445] Trussell, H. J. (1979). Comments on picture thresholding using an iterative selection
method. IEEE Trans. Syst. Man Cybern., 9(5):311–311.

[446] Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu,
A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., et al. (2015). Tissue-based map
of the human proteome. Science, 347(6220):1260419.

[447] Vaidyanathan, S. (2015). Dynamics and control of Brusselator chemical reaction. Int.
J. ChemTech. Res., 8(6):740–749.

[448] Van den Bergh, F. and Engelbrecht, A. P. (2006). A study of particle swarm optimiza-
tion particle trajectories. Inf. Sci., 176(8):937–971.

[449] Van Kampen, N. G. (2007). Stochastic Processes in Physics and Chemistry. Elsevier,
Amsterdam, The Netherlands, 3 edition.

[450] Vélez De Mendizábal, N., Carneiro, J., Solé, R. V., Goñi, J., Bragard, J., Martinez-
Forero, I., Martinez-Pasamar, S., Sepulcre, J., Torrealdea, J., Bagnato, F., Garcia-Ojalvo,
J., and Villoslada, P. (2011). Modeling the effector-regulatory T cell cross-regulation
reveals the intrinsic character of relapses in Multiple Sclerosis. BMC Syst. Biol., 5(114).

[451] Vellela, M. and Qian, H. (2008). Stochastic dynamics and non-equilibrium thermody-
namics of a bistable chemical system: the Schlögl model revisited. J. Royal Soc. Interface,
pages rsif–2008.

[452] Verkauf, B. S. (1993). Changing trends in treatment of leiomyomata uteri. Curr. Opin.
Obstet. Gynecol., 5(3):301–310.

[453] Vitorino, L. N., Ribeiro, S. F., and Bastos-Filho, C. J. A. (2015). A mechanism based
on artificial bee colony to generate diversity in particle swarm optimization. Neurocomput.,
148:39–45.

[454] Voit, E. O. (2000). Computational Analysis of Biochemical Systems: A Practical
Guide for Biochemists and Molecular Biologists, volume 1. Cambridge University Press,
Cambridge, UK.

[455] Voit, E. O., Martens, H. A., and Omholt, S. W. (2015). 150 years of the mass action
law. PLOS Comput. Biol., 11(1):e1004012.

[456] Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., and Wang, Y. (2014). Intel
math kernel library. In High-Performance Computing on the Intel® Xeon Phi™, pages
167–188. Springer.

[457] Wang, R. S., Wu, L. Y., Li, Z. P., and Zhang, X. S. (2005). Haplotype reconstruction
from SNP fragments by minimum error correction. Bioinformatics, 21(10):2456–2462.

296 Bibliography

[458] Wang, S. and Summers, R. M. (2012). Machine learning and radiology. Med. Image
Anal., 16(5):933–951.

[459] Wang, T. C., Taheri, J., and Zomaya, A. Y. (2012). Using genetic algorithm in
reconstructing single individual haplotype with minimum error correction. J. Biomed.
Inform., 45(5):922–930.

[460] Wang, Y., Christley, S., Mjolsness, E., and Xie, X. (2010). Parameter inference for
discretely observed stochastic kinetic models using stochastic gradient descent. BMC Syst.
Biol., 4(1):99.

[461] Wang, Y., Zhang, X.-S., and Chen, L. (2013). Computational systems biology in the
big data era. BMC Syst. Biol., 7(2):S1.

[462] Wang, Z. and Bovik, A. C. (2002). A universal image quality index. IEEE Signal
Process. Lett., 9(3):81–84.

[463] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality
assessment: from error visibility to structural similarity. IEEE Trans. Image Proc.,
13(4):600–612.

[464] Widder, S., Macía, J., and Solé, R. (2009). Monomeric bistability and the role of
autoloops in gene regulation. PLOS One, 4(4):e5399.

[465] Wilhelm, T. (2009). The smallest chemical reaction system with bistability. BMC Syst.
Biol., 3(1):90.

[466] Wilkinson, D. (2009). Stochastic modelling for quantitative description of heteroge-
neous biological systems. Nat. Rev. Genet., 10(2):122–133.

[467] Wilson, J. E. (2003). Isozymes of mammalian hexokinase: structure, subcellular
localization and metabolic function. J. Exp. Biol., 206(12):2049–2057.

[468] Wilt, N. (2013). The CUDA Handbook: A Comprehensive Guide to GPU Program-
ming. Addison-Wesley, Boston, MA, USA.

[469] Wittig, U., Kania, R., Golebiewski, M., Rey, M., Shi, L., Jong, L., Algaa, E., Wei-
demann, A., Sauer-Danzwith, H., Mir, S., et al. (2011). SABIO-RK—database for
biochemical reaction kinetics. Nucleic Acids Res., 40(D1):D790–D796.

[470] Wolf, V., Goel, R., Mateescu, M., and Henzinger, T. A. (2010). Solving the chemical
master equation using sliding windows. BMC Syst. Biol., 4(1):42.

[471] Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization.
IEEE Trans. Evol. Comput., 1(1):67–82.

[472] Wuntch, T., Chen, R. F., and Vesell, E. S. (1970). Lactate dehydrogenase isozymes:
kinetic properties at high enzyme concentrations. Science, 167(3914):63–65.

[473] Xiao, B., Tang, H., Jiang, Y., Li, W., and Wang, G. (2018). Brightness and con-
trast controllable image enhancement based on histogram specification. Neurocomput.,
275:2798–2809.

Bibliography 297

[474] Xie, J., Zhou, Y., and Chen, H. (2013). A novel bat algorithm based on differential
operator and Lévy flights trajectory. Comput. Intell. Neurosci., 2013.

[475] Xu, S. and Rahmat-Samii, Y. (2007). Boundary conditions in particle swarm optimiza-
tion revisited. IEEE Trans. Antennas Propag., 55(3):760–765.

[476] Xu, X., Xu, S., Jin, L., and Song, E. (2011). Characteristic analysis of Otsu threshold
and its applications. Pattern Recognit. Lett., 32(7):956–961.

[477] Xue, J. H. and Zhang, Y. J. (2012). Ridler and Calvard’s, Kittler and Illingworth’s and
Otsu’s methods for image thresholding. Pattern Recogn. Lett., 33(6):793–797.

[478] Yadav, S. K., Mindur, J. E., Ito, K., and Dhib-Jalbut, S. (2015). Advances in the
immunopathogenesis of multiple sclerosis. Curr. Opin. Neurol., 28(3):206–219.

[479] Yang, B., Chen, Y., Zhao, Z., and Han, Q. (2006). A master-slave particle swarm
optimization algorithm for solving constrained optimization problems. In Proc. 6th IEEE
World Congress Intelligent Control and Automation, volume 1, pages 3208–3212. IEEE.

[480] Yang, J., Monine, M. I., Faeder, J. R., and Hlavacek, W. S. (2008). Kinetic monte
carlo method for rule-based modeling of biochemical networks. Phys. Rev. E. Stat. Nonlin.
Soft. Matter. Phys., 78(3):031910.

[481] Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Proc. Nature
inspired cooperative strategies for optimization, pages 65–74. Springer.

[482] Yankeelov, T. E., Mankoff, D. A., Schwartz, L. H., Lieberman, F. S., Buatti, J. M.,
Mountz, J. M., Erickson, B. J., Fennessy, F. M. M., Huang, W., Kalpathy-Cramer, J., et al.
(2016). Quantitative imaging in cancer clinical trials. Clin. Cancer Res., 22(2):284–290.

[483] Ye, Q. Z. and Danielsson, P. E. (1988). On minimum error thresholding and its
implementations. Pattern Recognit. Lett., 7(4):201–206.

[484] Yen, J. and Langari, R. (1999). Fuzzy Logic: Intelligence, Control, and Information.
Prentice Hall, Upper Saddle River, NJ, USA.

[485] Yue, H., Brown, M., He, F., Jia, J., and Kell, D. B. (2008). Sensitivity analysis and
robust experimental design of a signal transduction pathway system. Int. J. Chem. Kinet.,
40(11):730–741.

[486] Zaman, S., Lippman, S. I., Schneper, L., Slonim, N., and Broach, J. R. (2009). Glucose
regulates transcription in yeast through a network of signaling pathways. Mol. Syst. Biol.,
5(1):245.

[487] Zhan, C., Situ, W., Yeung, L. F., Tsang, P. W. M., and Yang, G. (2014). A parameter
estimation method for biological systems modelled by ODE/DDE models using spline
approximation and differential evolution algorithm. IEEE/ACM Trans. Comput. Biol.
Bioinform., 11(6):1066–1076.

[488] Zhang, J., Watson, L. T., and Cao, Y. (2010). A modified uniformization method for
the solution of the chemical master equation. Comput. Math. Appl., 59(1):573–584.

298 Bibliography

[489] Zhang, K., Calabrese, P., Nordborg, M., and Sun, F. (2002). Haplotype block structure
and its applications to association studies: power and study designs. Am. J. Hum. Genet.,
71(6):1386–1394.

[490] Zhang, Y. J. (2001). A review of recent evaluation methods for image segmentation.
In Proc. 6th IEEE International Symposium on Signal Processing and its Applications,
volume 1, pages 148–151. IEEE.

[491] Zhou, Y., Liepe, J., Sheng, X., et al. (2011). GPU accelerated biochemical network
simulation. Bioinformatics, 27(6):874–876.

[492] Zijdenbos, A. P., Dawant, B. M., Margolin, R. A., and Palmer, A. C. (1994). Mor-
phometric analysis of white matter lesions in MR images: method and validation. IEEE
Trans. Med. Imaging, 13(4):716–724.

[493] Zook, J. M., Chapman, B., Wang, J., Mittelman, D., Hofmann, O., Hide, W., and Salit,
M. (2014). Integrating human sequence data sets provides a resource of benchmark SNP
and indel genotype calls. Nat. Biotech., 32(3):246–251.

[494] Zou, K. H., Warfield, S. K., Bharatha, A., Tempany, C. M. C., Kaus, M. R., Haker,
S. J., Wells, W. M., Jolesz, F. A., and Kikinis, R. (2004). Statistical validation of image
segmentation quality based on a spatial overlap index. Acad. Radiol., 11(2):178–189.

Appendix A

Reaction-based models

In this appendix, the Reaction-Based Models (RBMs) used in the tests carried out in this
thesis are described. In Section A.1 a theoretical model representing an autocatalytic, named
Brusselator is described; Section A.2 presents the eukaryotic heat shock response model
(HSR); the details about the human intracellular core metabolic pathways in a red blood
cell are provided in Section A.3; Section A.4 is dedicated to the Prokaryotic auto-regulatory
(PGN) gene network; the Ras/cAMP/PKA signaling pathway in Saccharomyces cerevisiae
yeast is described in Section A.5; finally, Section A.6 explains the Schlögl model.

A.1 The Brusselator model

The Brusselator is a theoretical model representing an autocatalytic, oscillating chemical
reaction [447, 22]. In an autocatlytic reaction a species acts to increase its producing
reaction rate. Several autocatlytic systems have been studied to observe complex dynamics,
including multiple steady-states and periodic orbits. Moreover, since the autocatalytic
chemical reaction phenomenon plays a fundamental role in the breakdown of the stability of
the thermodynamical branch, it gained ground during the years.

As shown in Table A.1, the Brusselator model is composed of 4 reactions involving 6
different species. The reactant A is converted in a final product E by means of the 4 reactions
modifying 4 intermediate species (i.e., X , B, Y and D). Reactions R2 and R3 represent
bimolecular and autocatalytic trimolecular reactions, respectively, while R4 generates the
product species E consuming the species X produced in R1 from the species A. The initial
molecular amounts of the species different from 0 are listed in Table A.2. Notice that the
amounts of the species A and B are kept constant during the simulation.

300 Reaction-based models

Table A.1 List of the reactions of the Brusselator model.

No. Reagents Products Constant
R1 A X 1
R2 B + X Y 1
R3 2X + Y 3X 1
R4 X E 1

Table A.2 Initial molecular amounts of the Brusellator model.

Species Initial amount
A 1
B 3
X 1
Y 1

A.2 The eukaryotic Heat Shock Response model

The Heat Shock Response (HSR) is a regulatory mechanism that allows the cell to quickly
react to high temperatures and other forms of physiological and environmental stress [232]. In
HSR, the heat shock protein (hsp) is fundamental to prevent mis-folding, and thus facilitating
protein folding. In the absence of heat stress, the heat shock factor molecules (hsf) are present
as monomers, usually bounded to hsp. On the contrary, in stress conditions, hsf forms first
dimers and then trimers, which are the active components able to bind heat shock elements
(hse) that activates genes encoding hsp. A sufficient concentration of hsp exerts a negative
feedback by unbinding the complexes formed by a trimer of hsf and hse, thus inhibiting their
synthesis. Finally, proteins mis-folding is formalized as a reaction whose rate depends on the
system temperature; hsp binds to a mis-folded protein and helps its refolding.

In this thesis we considered the HSR model presented in [340], consisting of 17 reactions
among 10 species (Table A.3). The initial concentrations of the species different from 0 are
shown in Table A.4.

Table A.3 List of the reactions of the HSR model.

No. Reagents Products Constant
R1 2hsf hsf2 3.49
R2 hsf2 2hsf2 0.19
R3 hsf + hsf2 hsf3 1.07

A.2 The eukaryotic Heat Shock Response model 301

R4 hsf3 hsf + hsf2 1 ·10−9

R5 hsf3 + hse hsf3:hse 0.17
R6 hsf3:hse hsf3 + hse 1.21 ·10−6

R7 hsf3:hse hsf3:hse + hsp 8.3 ·10−3

R8 hsp + hsf hsp:hsf 9.74
R9 hsp:hsf hsp + hsf 3.56
R10 hsp + hsf2 hsp:hsf + hsf 2.33
R11 hsp + hsf3 hsp:hsf + 2hsf 4.31 ·10−5

R12 hsp + hsf3:hse hsp:hsf + hse + 2hsf 2.73 ·10−7

R13 hsp /0 3.2 ·10−5

R14 prot mfp T dependent
R15 hsp + mfp hsp:mfp 3.32 ·10−3

R16 hsp:mfp hsp + mfp 4.44
R17 hsp:mfp hsp + prot 13.94

Table A.4 Initial concentrations of the HSR model.

Species Initial amount
hsf 0.67
hsf2 8.7 ·10−4

hsf3 1.2 ·10−4

hse 29.73
hsf3:hse 2.96
hsp 766.88
hsp:hsf 1403.13
mfp 517.352
hs mfp 71.65
prot 1.15 ·108

The kinetic constant value of the reaction R14 depends by the temperature T of the
environment, expressed in Celsius degrees. As shown in [340], its value can be calculated by
modifying the formula proposed in [338] as follows:(

1− 0.4
eT−37

)
·1.4T−37 ·1.45 ·10−5 s−1. (A.1)

According to [252], this equation can be applied with T in the range [37◦C,45◦C].

302 Reaction-based models

A.3 A human intracellular core metabolic pathway in a
red blood cell

In this thesis we consider the model of the red blood cell metabolism presented in [216].
The basic version of the model consists in 92 metabolites and 94 reactions describing the
central pathways for carbohydrate metabolism, namely, glycolysis and pentose phosphate
pathway, in a human red blood cell. Differently from [216], we do not consider the uptake of
extracellular substrates. Instead, we consider the different isoforms of the enzyme hexokinase
(HK), the first enzyme of the glycolythic pathway that converts glucose (GLC) into glucose-
6-phosphate (G6P). By so doing, we extended the model obtaining 226 reactions (see Table
A.5) among 114 species. The initial concentrations of the species along with (50,75,100%)
knock-down interventions on the HK I isoform are shown in Table A.6

Table A.5 List of the reactions of the RBM of the human intracellular core metabolic pathways
in a red blood cell. The estimated values of the kinetic parameters obtained by means of the
PE presented in Section 5.4 are denoted by the asterisk “*”.

No. Reagents Products Constant
R1 hkE_0 + MgATP hkEMgATP_0 3.948 ·1010*
R2 hkE_1 + MgATP hkEMgATP_1 6.858 ·109*
R3 hkE_2 + MgATP hkEMgATP_2 2.030 ·109*
R4 hkEMgATP_0 hkE_0 + MgATP 6.226 ·109*
R5 hkEMgATP_1 hkE_1 + MgATP 1.948 ·109*
R6 hkEMgATP_2 hkE_2 + MgATP 1.418 ·109*
R7 hkEMgATP_0 + GLC hkEMgATPGLC_0 1.925 ·1011*
R8 hkEMgATP_1 + GLC hkEMgATPGLC_1 3.066 ·108*
R9 hkEMgATP_2 + GLC hkEMgATPGLC_2 3.209 ·1010*
R10 hkEMgATPGLC_0 hkEMgATP_0 + GLC 1.021 ·1010*
R11 hkEMgATPGLC_1 hkEMgATP_1 + GLC 2.599 ·1010*
R12 hkEMgATPGLC_2 hkEMgATP_2 + GLC 3.995 ·109*
R13 hkE_0 + GLC hkEGLC_0 6.943 ·1010*
R14 hkE_1 + GLC hkEGLC_1 4.465 ·1010*
R15 hkE_2 + GLC hkEGLC_2 1.358 ·1010*
R16 hkEGLC_0 hkE_0 + GLC 3.498 ·1010*
R17 hkEGLC_1 hkE_1 + GLC 1.157 ·1010*
R18 hkEGLC_2 hkE_2 + GLC 1.180 ·108*
R19 MgATP + hkEGLC_0 hkEMgATPGLC_0 1.048 ·1010*
R20 MgATP + hkEGLC_1 hkEMgATPGLC_1 3.375 ·1010*
R21 MgATP + hkEGLC_2 hkEMgATPGLC_2 9.843 ·109*

A.3 A human intracellular core metabolic pathway in a red blood cell 303

R22 hkEMgATPGLC_0 MgATP + hkEGLC_0 3.307 ·109*
R23 hkEMgATPGLC_1 MgATP + hkEGLC_1 2.257 ·1010*
R24 hkEMgATPGLC_2 MgATP + hkEGLC_2 1.289 ·1010*
R25 hkEMgATPGLC_0 hkEMgADPG6P_0 8.281 ·104*
R26 hkEMgATPGLC_1 hkEMgADPG6P_1 4.610 ·106*
R27 hkEMgATPGLC_2 hkEMgADPG6P_2 6.869 ·105*
R28 hkEMgADPG6P_0 hkEMgATPGLC_0 1.505 ·105*
R29 hkEMgADPG6P_1 hkEMgATPGLC_1 5.613 ·104*
R30 hkEMgADPG6P_2 hkEMgATPGLC_2 1.399 ·105*
R31 hkEMgADPG6P_0 hkEG6P_0 + MgADP 6.013 ·108*
R32 hkEMgADPG6P_1 hkEG6P_1 + MgADP 9.520 ·108*
R33 hkEMgADPG6P_2 hkEG6P_2 + MgADP 4.419 ·109*
R34 hkEG6P_0 + MgADP hkEMgADPG6P_0 1.258 ·1010*
R35 hkEG6P_1 + MgADP hkEMgADPG6P_1 1.196 ·1010*
R36 hkEG6P_2 + MgADP hkEMgADPG6P_2 5.685 ·109*
R37 hkEG6P_0 hkE_0 + G6P 1.232 ·1010*
R38 hkEG6P_1 hkE_1 + G6P 1.518 ·108*
R39 hkEG6P_2 hkE_2 + G6P 7.616 ·108*
R40 hkE_0 + G6P hkEG6P_0 1.896 ·1010*
R41 hkE_1 + G6P hkEG6P_1 7.445 ·1010*
R42 hkE_2 + G6P hkEG6P_2 7.039 ·1010*
R43 hkEMgADPG6P_0 G6P + hkEMgADP_0 1.163 ·109*
R44 hkEMgADPG6P_1 G6P + hkEMgADP_1 2.004 ·109*
R45 hkEMgADPG6P_2 G6P + hkEMgADP_2 1.019 ·1010*
R46 G6P + hkEMgADP_0 hkEMgADPG6P_0 1.004 ·1011*
R47 G6P + hkEMgADP_1 hkEMgADPG6P_1 2.605 ·1010*
R48 G6P + hkEMgADP_2 hkEMgADPG6P_2 7.624 ·109*
R49 hkEMgADP_0 hkE_0 + MgADP 1.225 ·108*
R50 hkEMgADP_1 hkE_1 + MgADP 3.246 ·109*
R51 hkEMgADP_2 hkE_2 + MgADP 1.920 ·109*
R52 hkE_0 + MgADP hkEMgADP_0 1.311 ·109*
R53 hkE_1 + MgADP hkEMgADP_1 7.685 ·109*
R54 hkE_2 + MgADP hkEMgADP_2 2.757 ·1010*
R55 hkEGLC_0 + GSH hkEGLCGSH_0 7.605 ·108*
R56 hkEGLC_1 + GSH hkEGLCGSH_1 3.157 ·108*
R57 hkEGLC_2 + GSH hkEGLCGSH_2 3.176 ·108*
R58 hkEGLCGSH_0 hkEGLC_0 + GSH 5.035 ·108*
R59 hkEGLCGSH_1 hkEGLC_1 + GSH 1.021 ·109*
R60 hkEGLCGSH_2 hkEGLC_2 + GSH 2.304 ·1010*

304 Reaction-based models

R61 hkEGLC_0 + DPG23 hkEGLCDPG23_0 1.770 ·109*
R62 hkEGLC_1 + DPG23 hkEGLCDPG23_1 9.980 ·108*
R63 hkEGLC_2 + DPG23 hkEGLCDPG23_2 6.864 ·108*
R64 hkEGLCDPG23_0 hkEGLC_0 + DPG23 7.162 ·109*
R65 hkEGLCDPG23_1 hkEGLC_1 + DPG23 1.121 ·1010*
R66 hkEGLCDPG23_2 hkEGLC_2 + DPG23 4.799 ·109*
R67 hkE_0 + Phosi hkEPhosi_0 6.966 ·1010*
R68 hkE_1 + Phosi hkEPhosi_1 3.806 ·109*
R69 hkE_2 + Phosi hkEPhosi_2 3.734 ·1010*
R70 hkEPhosi_0 hkE_0 + Phosi 1.724 ·109*
R71 hkEPhosi_1 hkE_1 + Phosi 1.464 ·108*
R72 hkEPhosi_2 hkE_2 + Phosi 4.894 ·107*
R73 hkEGLC_0 + G6P hkEGLCG6P_0 8.938 ·1010*
R74 hkEGLC_1 + G6P hkEGLCG6P_1 2.703 ·1011*
R75 hkEGLC_2 + G6P hkEGLCG6P_2 1.321 ·1011*
R76 hkEGLCG6P_0 hkEGLC_0 + G6P 1.254 ·108*
R77 hkEGLCG6P_1 hkEGLC_1 + G6P 1.028 ·109*
R78 hkEGLCG6P_2 hkEGLC_2 + G6P 8.807 ·108*
R79 G6P F6P 1.151 ·103

R80 F6P G6P 2.676 ·103

R81 MgATP + pfkER pfkERMgATP 1.000 ·109

R82 pfkERMgATP MgATP + pfkER 1.000 ·109

R83 F6P + pfkERMgATP pfkERMgATPF6P 1.000 ·109

R84 pfkERMgATPF6P F6P + pfkERMgATP 1.000 ·109

R85 pfkERMgATPF6P pfkERMgADPFDP 1.000 ·109

R86 pfkERMgADPFDP pfkERMgATPF6P 8.475 ·104

R87 pfkERMgADPFDP FDP + pfkERMgADP 1.000 ·109

R88 FDP + pfkERMgADP pfkERMgADPFDP 1.000 ·109

R89 pfkERMgADP MgADP + pfkER 1.000 ·109

R90 MgADP + pfkER pfkERMgADP 1.000 ·109

R91 pfkER + AMP pfkERAMP 1.000 ·109

R92 pfkERAMP pfkER + AMP 1.000 ·109

R93 AMP + pfkERAMP pfkERAMP2 1.000 ·109

R94 pfkERAMP2 AMP + pfkERAMP 1.000 ·109

R95 AMP + pfkERAMP2 pfkERAMP3 1.000 ·109

R96 pfkERAMP3 AMP + pfkERAMP2 1.000 ·109

R97 AMP + pfkERAMP3 pfkERAMP4 1.000 ·109

R98 pfkERAMP4 AMP + pfkERAMP3 1.000 ·109

R99 F6P + pfkER pfkERF6P 1.000 ·109

A.3 A human intracellular core metabolic pathway in a red blood cell 305

R100 pfkERF6P F6P + pfkER 1.000 ·109

R101 F6P + pfkERF6P pfkERF6P2 1.000 ·109

R102 pfkERF6P2 F6P + pfkERF6P 1.000 ·109

R103 F6P + pfkERF6P2 pfkERF6P3 1.000 ·109

R104 pfkERF6P3 F6P + pfkERF6P2 1.000 ·109

R105 F6P + pfkERF6P3 pfkERF6P4 1.000 ·109

R106 pfkERF6P4 F6P + pfkERF6P3 1.000 ·109

R107 ATP + pfkET pfkETATP 1.000 ·109

R108 pfkETATP ATP + pfkET 1.000 ·109

R109 ATP + pfkETATP pfkETATP2 1.000 ·109

R110 pfkETATP2 ATP + pfkETATP 1.000 ·109

R111 ATP + pfkETATP2 pfkETATP3 1.000 ·109

R112 pfkETATP3 ATP + pfkETATP2 1.000 ·109

R113 ATP + pfkETATP3 pfkETATP4 1.000 ·109

R114 pfkETATP4 ATP + pfkETATP3 1.000 ·109

R115 pfkET + Mg pfkETMg 1.000 ·109

R116 pfkETMg pfkET + Mg 1.000 ·109

R117 Mg + pfkETMg pfkETMg2 1.000 ·109

R118 pfkETMg2 Mg + pfkETMg 1.000 ·109

R119 Mg + pfkETMg2 pfkETMg3 1.000 ·109

R120 pfkETMg3 Mg + pfkETMg2 1.000 ·109

R121 Mg + pfkETMg3 pfkETMg4 1.000 ·109

R122 pfkETMg4 Mg + pfkETMg3 1.000 ·109

R123 FDP DHAP + GAP 1.457 ·102

R124 DHAP + GAP FDP 1.181
R125 DHAP GAP 7.926
R126 GAP DHAP 4.529 ·10−1

R127 Phosi + GAP + NAD DPG13 + NADH 1.425 ·105

R128 DPG13 + NADH Phosi + GAP + NAD 5.280 ·106

R129 DPG13 + ADP ATP + PG3 2.606 ·104

R130 ATP + PG3 DPG13 + ADP 1.448 ·101

R131 DPG13 + dpgmE dpgmEDPG13 2.880 ·108

R132 dpgmEDPG13 DPG13 + dpgmE 1.510 ·106

R133 dpgmEDPG13 dpgmEDPG23 1.000 ·108

R134 dpgmEDPG23 dpgmEDPG13 1.000 ·105

R135 dpgmEDPG23 DPG23 + dpgmE 6.480 ·106

R136 DPG23 + dpgmE dpgmEDPG23 8.800 ·107

R137 dpgmEDPG23 dpgmEPhosiDPG3 1.980 ·103

R138 dpgmEPhosiDPG3 dpgmEDPG23 3.600 ·107

306 Reaction-based models

R139 dpgmEPhosiDPG3 PG3 + dpgmEPhosi 3.600 ·1011

R140 PG3 + dpgmEPhosi dpgmEPhosiDPG3 6.660 ·108

R141 dpgmEPhosi Phosi + dpgmE 6.840 ·102

R142 Phosi + dpgmE dpgmEPhosi 1.000 ·10−20

R143 PG3 PG2 5.383 ·101

R144 PG2 PG3 7.916
R145 PG2 PEP 5.822 ·102

R146 PEP PG2 3.435 ·102

R147 ADP + PEP ATP + PYR 5.169 ·102

R148 ATP + PYR ADP + PEP 5.169 ·10−1

R149 NADH + PYR NAD + LAC 1.045 ·103

R150 NAD + LAC NADH + PYR 2.340
R151 AMP Phosi + ADO 3.278
R152 Phosi + ADO AMP 3.278
R153 ADO INO 7.450 ·102

R154 INO ADO 7.450 ·102

R155 ADO + akE akEADO 1.000 ·107

R156 akEADO ADO + akE 1.000 ·105

R157 MgATP + akEADO akEADOMgATP 2.000 ·105

R158 akEADOMgATP MgATP + akEADO 1.000 ·105

R159 akEADOMgATP akEAMPMgADP 5.000 ·107

R160 akEAMPMgADP akEADOMgATP 1.000 ·105

R161 akEAMPMgADP MgADP + akEAMP 2.493 ·103

R162 MgADP + akEAMP akEAMPMgADP 1.000 ·105

R163 akEAMP AMP + akE 5.230 ·106

R164 AMP + akE akEAMP 1.000 ·105

R165 AMP + akEADO akEAMPADO 6.090 ·104

R166 akEAMPADO AMP + akEADO 1.000 ·105

R167 ADO + akET akETADO 1.841 ·104

R168 akETADO ADO + akET 1.000 ·105

R169 akETADO akEADO 2.050 ·108

R170 akEADO akETADO 1.000 ·105

R171 akET akE 4.000 ·105

R172 akE akET 1.000 ·105

R173 2ADP AMP + ATP 7.820 ·101

R174 AMP + ATP ADP 4.739 ·101

R175 AMP IMP 6.174
R176 IMP AMP 6.174 ·101

R177 ATP Phosi + ADP 9.742 ·10−1

A.3 A human intracellular core metabolic pathway in a red blood cell 307

R178 Phosi + ADP ATP 9.740 ·10−4

R179 PRPP + ADE Phosi + AMP 3.481 ·103

R180 2Phosi + AMP PRPP + ADE 3.481 ·10−2

R181 NADP + g6pdER g6pdERNADP 3.960 ·108

R182 g6pdERNADP NADP + g6pdER 3.130 ·106

R183 G6P + g6pdERNADP g6pdERNADPG6P 9.360 ·107

R184 g6pdERNADPG6P G6P + g6pdERNADP 1.080 ·106

R185 g6pdERNADPG6P g6pdERNADPHGL6P 2.700 ·106

R186 g6pdERNADPHGL6P g6pdERNADPG6P 7.200 ·106

R187 g6pdERNADPHGL6P GL6P + g6pdERNADPH 3.960 ·1012

R188 GL6P + g6pdERNADPH g6pdERNADPHGL6P 7.920 ·105

R189 g6pdERNADPH g6pdER + NADPH 1.400 ·1012

R190 g6pdER + NADPH g6pdERNADPH 3.600 ·104

R191 GL6P GO6P 1.223 ·102

R192 GO6P GL6P 1.223 ·10−1

R193 NADP + GO6P NADPH + RU5P 2.929 ·104

R194 NADPH + RU5P NADP + GO6P 2.929 ·101

R195 NADPH GSH + NADP 6.385
R196 2GSH + NADP NADPH 6.385 ·10−2

R197 GSH 3.111 ·10−1

R198 GSH 1.556 ·10−1

R199 RU5P R5P 1.854 ·103

R200 R5P RU5P 7.212 ·102

R201 RU5P X5P 2.253 ·104

R202 X5P RU5P 7.510 ·103

R203 R5P + X5P GAP + S7P 1.842 ·103

R204 GAP + S7P R5P + X5P 1.535 ·103

R205 X5P + E4P F6P + GAP 1.521 ·103

R206 F6P + GAP X5P + E4P 1.477 ·102

R207 GAP + S7P F6P + E4P 1.179 ·103

R208 F6P + E4P GAP + S7P 1.123 ·103

R209 IMP Phosi + INO 6.661 ·10−2

R210 Phosi + INO IMP 6.700 ·10−5

R211 Phosi + INO HX + R1P 2.044 ·103

R212 HX + R1P Phosi + INO 1.858 ·104

R213 R1P R5P 3.777
R214 R5P R1P 2.840 ·10−1

R215 ATP + R5P AMP + PRPP 7.081
R216 AMP + PRPP ATP + R5P 1.170 ·10−2

308 Reaction-based models

R217 PRPP + HX Phosi + IMP 1.450 ·104

R218 2Phosi + IMP PRPP + HX 1.450
R219 ATP + Mg MgATP 1.000 ·108

R220 MgATP ATP + Mg 1.230 ·109

R221 Mg + ADP MgADP 1.000 ·108

R222 MgADP Mg + ADP 1.230 ·108

R223 AMP + Mg MgAMP 1.000 ·108

R224 MgAMP AMP + Mg 4.500 ·106

R225 DPG23 + Mg MgDPG23 1.000 ·108

R226 MgDPG23 DPG23 + Mg 5.990 ·107

Table A.6 Initial concentrations of the species of the model of human intracellular core
metabolic pathways in a red blood cell.

Species Baseline Knock-down 50 Knock-down 75 Knock-down 100
hkE_0 5.150 ·10−8 5.150 ·10−8 5.150 ·10−8 5.150 ·10−8

hkE_1 1.545 ·10−7 1.545 ·10−7 1.545 ·10−7 1.545 ·10−7

hkE_2 3.090 ·10−7 1.545 ·10−7 7.725 ·10−8 0.000
MgATP 3.167 ·10−2 3.167 ·10−2 3.167 ·10−2 3.167 ·10−2

hkEMgATP_0 1.620 ·10−9 1.620 ·10−9 1.620 ·10−9 1.620 ·10−9

hkEMgATP_1 4.860 ·10−9 4.860 ·10−9 4.860 ·10−9 4.860 ·10−9

hkEMgATP_2 9.720 ·10−9 4.860 ·10−9 2.430 ·10−9 0.000
GLC 5.000 5.000 5.000 5.000
hkEMgATPGLC_0 1.730 ·10−7 1.730 ·10−7 1.730 ·10−7 1.730 ·10−7

hkEMgATPGLC_1 5.190 ·10−7 5.190 ·10−7 5.190 ·10−7 5.190 ·10−7

hkEMgATPGLC_2 1.038 ·10−6 5.190 ·10−7 2.595 ·10−7 0.000
hkEGLC_0 5.490 ·10−6 5.490 ·10−6 5.490 ·10−6 5.490 ·10−6

hkEGLC_1 1.647 ·10−5 1.647 ·10−5 1.647 ·10−5 1.647 ·10−5

hkEGLC_2 3.294 ·10−5 1.647 ·10−5 8.235 ·10−6 0.000
hkEMgADPG6P_0 3.010 ·10−9 3.010 ·10−9 3.010 ·10−9 3.010 ·10−9

hkEMgADPG6P_1 9.030 ·10−9 9.030 ·10−9 9.030 ·10−9 9.030 ·10−9

hkEMgADPG6P_2 1.806 ·10−8 9.030 ·10−9 4.515 ·10−9 0.000
hkEG6P_0 4.240 ·10−8 4.240 ·10−8 4.240 ·10−8 4.240 ·10−8

hkEG6P_1 1.272 ·10−7 1.272 ·10−7 1.272 ·10−7 1.272 ·10−7

hkEG6P_2 2.544 ·10−7 1.272 ·10−7 6.360 ·10−8 0.000
MgADP 5.553 ·10−2 5.553 ·10−2 5.553 ·10−2 5.553 ·10−2

G6P 3.800 ·10−2 3.800 ·10−2 3.800 ·10−2 3.800 ·10−2

hkEMgADP_0 3.240 ·10−9 3.240 ·10−9 3.240 ·10−9 3.240 ·10−9

hkEMgADP_1 9.720 ·10−9 9.720 ·10−9 9.720 ·10−9 9.720 ·10−9

A.3 A human intracellular core metabolic pathway in a red blood cell 309

hkEMgADP_2 1.944 ·10−8 9.720 ·10−9 4.860 ·10−9 0.000
GSH 3.200 3.200 3.200 3.200
hkEGLCGSH_0 5.860 ·10−6 5.860 ·10−6 5.860 ·10−6 5.860 ·10−6

hkEGLCGSH_1 1.758 ·10−5 1.758 ·10−5 1.758 ·10−5 1.758 ·10−5

hkEGLCGSH_2 3.516 ·10−5 1.758 ·10−5 8.790 ·10−6 0.000
DPG23 4.500 4.500 4.500 4.500
hkEGLCDPG23_0 6.180 ·10−6 6.180 ·10−6 6.180 ·10−6 6.180 ·10−6

hkEGLCDPG23_1 1.854 ·10−5 1.854 ·10−5 1.854 ·10−5 1.854 ·10−5

hkEGLCDPG23_2 3.708 ·10−5 1.854 ·10−5 9.270 ·10−6 0.000
Phosi 1.200 1.200 1.200 1.200
hkEPhosi_0 4.390 ·10−6 4.390 ·10−6 4.390 ·10−6 4.390 ·10−6

hkEPhosi_1 1.317 ·10−5 1.317 ·10−5 1.317 ·10−5 1.317 ·10−5

hkEPhosi_2 2.634 ·10−5 1.317 ·10−5 6.585 ·10−6 0.000
hkEGLCG6P_0 6.260 ·10−6 6.260 ·10−6 6.260 ·10−6 6.260 ·10−6

hkEGLCG6P_1 1.878 ·10−5 1.878 ·10−5 1.878 ·10−5 1.878 ·10−5

hkEGLCG6P_2 3.756 ·10−5 1.878 ·10−5 9.390 ·10−6 0.000
F6P 1.600 ·10−2 1.600 ·10−2 1.600 ·10−2 1.600 ·10−2

pfkER 4.400 ·10−6 4.400 ·10−6 4.400 ·10−6 4.400 ·10−6

pfkERMgATP 1.380 ·10−7 1.380 ·10−7 1.380 ·10−7 1.380 ·10−7

pfkERMgATPF6P 1.110 ·10−9 1.110 ·10−9 1.110 ·10−9 1.110 ·10−9

pfkERMgADPFDP 2.970 ·10−9 2.970 ·10−9 2.970 ·10−9 2.970 ·10−9

FDP 7.600 ·10−3 7.600 ·10−3 7.600 ·10−3 7.600 ·10−3

pfkERMgADP 2.460 ·10−7 2.460 ·10−7 2.460 ·10−7 2.460 ·10−7

AMP 8.000 ·10−2 8.000 ·10−2 8.000 ·10−2 8.000 ·10−2

pfkERAMP 3.520 ·10−7 3.520 ·10−7 3.520 ·10−7 3.520 ·10−7

pfkERAMP2 2.820 ·10−8 2.820 ·10−8 2.820 ·10−8 2.820 ·10−8

pfkERAMP3 2.250 ·10−9 2.250 ·10−9 2.250 ·10−9 2.250 ·10−9

pfkERAMP4 1.800 ·10−10 1.800 ·10−10 1.800 ·10−10 1.800 ·10−10

pfkERF6P 7.040 ·10−8 7.040 ·10−8 7.040 ·10−8 7.040 ·10−8

pfkERF6P2 1.130 ·10−9 1.130 ·10−9 1.130 ·10−9 1.130 ·10−9

pfkERF6P3 1.800 ·10−11 1.800 ·10−11 1.800 ·10−11 1.800 ·10−11

pfkERF6P4 2.890 ·10−13 2.890 ·10−13 2.890 ·10−13 2.890 ·10−13

ATP 1.540 1.540 1.540 1.540
pfkET 3.080 ·10−6 3.080 ·10−6 3.080 ·10−6 3.080 ·10−6

pfkETATP 4.740 ·10−6 4.740 ·10−6 4.740 ·10−6 4.740 ·10−6

pfkETATP2 7.310 ·10−6 7.310 ·10−6 7.310 ·10−6 7.310 ·10−6

pfkETATP3 1.130 ·10−5 1.130 ·10−5 1.130 ·10−5 1.130 ·10−5

pfkETATP4 1.730 ·10−5 1.730 ·10−5 1.730 ·10−5 1.730 ·10−5

Mg 2.539 ·10−1 2.539 ·10−1 2.539 ·10−1 2.539 ·10−1

310 Reaction-based models

pfkETMg 7.820 ·10−7 7.820 ·10−7 7.820 ·10−7 7.820 ·10−7

pfkETMg2 1.990 ·10−7 1.990 ·10−7 1.990 ·10−7 1.990 ·10−7

pfkETMg3 5.040 ·10−8 5.040 ·10−8 5.040 ·10−8 5.040 ·10−8

pfkETMg4 1.280 ·10−8 1.280 ·10−8 1.280 ·10−8 1.280 ·10−8

DHAP 1.400 ·10−1 1.400 ·10−1 1.400 ·10−1 1.400 ·10−1

GAP 6.700 ·10−3 6.700 ·10−3 6.700 ·10−3 6.700 ·10−3

NAD 5.840 ·10−2 5.840 ·10−2 5.840 ·10−2 5.840 ·10−2

DPG13 4.000 ·10−4 4.000 ·10−4 4.000 ·10−4 4.000 ·10−4

NADH 3.060 ·10−2 3.060 ·10−2 3.060 ·10−2 3.060 ·10−2

ADP 2.700 ·10−1 2.700 ·10−1 2.700 ·10−1 2.700 ·10−1

PG3 4.500 ·10−2 4.500 ·10−2 4.500 ·10−2 4.500 ·10−2

dpgmE 2.220 ·10−5 2.220 ·10−5 2.220 ·10−5 2.220 ·10−5

dpgmEDPG13 1.360 ·10−6 1.360 ·10−6 1.360 ·10−6 1.360 ·10−6

dpgmEDPG23 1.359 ·10−3 1.359 ·10−3 1.359 ·10−3 1.359 ·10−3

dpgmEPhosiDPG3 6.090 ·10−8 6.090 ·10−8 6.090 ·10−8 6.090 ·10−8

dpgmEPhosi 7.310 ·10−4 7.310 ·10−4 7.310 ·10−4 7.310 ·10−4

PG2 1.400 ·10−2 1.400 ·10−2 1.400 ·10−2 1.400 ·10−2

PEP 1.700 ·10−2 1.700 ·10−2 1.700 ·10−2 1.700 ·10−2

PYR 7.700 ·10−2 7.700 ·10−2 7.700 ·10−2 7.700 ·10−2

LAC 1.100 1.100 1.100 1.100
ADO 1.200 ·10−3 1.200 ·10−3 1.200 ·10−3 1.200 ·10−3

INO 1.000 ·10−3 1.000 ·10−3 1.000 ·10−3 1.000 ·10−3

akE 1.810 ·10−4 1.810 ·10−4 1.810 ·10−4 1.810 ·10−4

akEADO 2.050 ·10−5 2.050 ·10−5 2.050 ·10−5 2.050 ·10−5

akEADOMgATP 1.000 ·10−7 1.000 ·10−7 1.000 ·10−7 1.000 ·10−7

akEAMPMgADP 4.880 ·10−5 4.880 ·10−5 4.880 ·10−5 4.880 ·10−5

akEAMP 3.000 ·10−7 3.000 ·10−7 3.000 ·10−7 3.000 ·10−7

akEAMPADO 1.000 ·10−6 1.000 ·10−6 1.000 ·10−6 1.000 ·10−6

akET 4.530 ·10−5 4.530 ·10−5 4.530 ·10−5 4.530 ·10−5

akETADO 1.000 ·10−8 1.000 ·10−8 1.000 ·10−8 1.000 ·10−8

IMP 1.000 ·10−2 1.000 ·10−2 1.000 ·10−2 1.000 ·10−2

PRPP 5.000 ·10−3 5.000 ·10−3 5.000 ·10−3 5.000 ·10−3

ADE 1.035 ·10−3 1.035 ·10−3 1.035 ·10−3 1.035 ·10−3

NADP 2.000 ·10−4 2.000 ·10−4 2.000 ·10−4 2.000 ·10−4

g6pdER 5.920 ·10−6 5.920 ·10−6 5.920 ·10−6 5.920 ·10−6

g6pdERNADP 8.270 ·10−8 8.270 ·10−8 8.270 ·10−8 8.270 ·10−8

g6pdERNADPG6P 7.780 ·10−8 7.780 ·10−8 7.780 ·10−8 7.780 ·10−8

g6pdERNADPHGL6P 5.300 ·10−14 5.300 ·10−14 5.300 ·10−14 5.300 ·10−14

GL6P 1.754 ·10−3 1.754 ·10−3 1.754 ·10−3 1.754 ·10−3

A.4 The Prokaryotic auto-regulatory Gene Network 311

g6pdERNADPH 1.600 ·10−13 1.600 ·10−13 1.600 ·10−13 1.600 ·10−13

NADPH 6.580 ·10−2 6.580 ·10−2 6.580 ·10−2 6.580 ·10−2

GO6P 3.748 ·10−2 3.748 ·10−2 3.748 ·10−2 3.748 ·10−2

RU5P 4.937 ·10−3 4.937 ·10−3 4.937 ·10−3 4.937 ·10−3

R5P 1.267 ·10−2 1.267 ·10−2 1.267 ·10−2 1.267 ·10−2

X5P 1.478 ·10−2 1.478 ·10−2 1.478 ·10−2 1.478 ·10−2

S7P 2.399 ·10−2 2.399 ·10−2 2.399 ·10−2 2.399 ·10−2

E4P 5.075 ·10−3 5.075 ·10−3 5.075 ·10−3 5.075 ·10−3

HX 2.000 ·10−3 2.000 ·10−3 2.000 ·10−3 2.000 ·10−3

R1P 6.000 ·10−2 6.000 ·10−2 6.000 ·10−2 6.000 ·10−2

MgAMP 4.509 ·10−1 4.509 ·10−1 4.509 ·10−1 4.509 ·10−1

MgDPG23 1.908 1.908 1.908 1.908

A.4 The Prokaryotic auto-regulatory Gene Network

The Prokaryotes Gene expression Network (PGN) [460] is a simple example of gene regu-
lation mechanism, whereby a gene (DNA) coding for a protein (P) is inhibited by binding
with a dimer of the protein itself (DNA:P2). The reaction-based model of the PGN consists
of 8 reactions among 5 chemical species. Gene expression represents a good example of
the stochastic phenomenon in biological systems, since the transcriptional regulators appear
in few copies, making possible to describe the binding and release of the regulators in
probabilistic terms. Table A.7 describes the reactions composing this simple model. The
initial condition considered in this work corresponds to 500 molecules of the DNA species,
while the amount of all other species is initially equal to zero.

Table A.7 List of the reactions of the PGN model.

No. Reagents Products Constant
R1 DNA + P2 DNA:P2 0.1
R2 DNA:PP2 DNA + P2 0.7
R3 DNA DNA + mRNA 0.35
R4 mRNA /0 0.3
R5 2P P2 0.1
R6 P2 2P 0.9
R7 mRNA mRNA + P 0.2
R8 P /0 0.1

312 Reaction-based models

A.5 The Ras/cAMP/PKA pathway

The Ras/cAMP/PKA signaling pathway in yeast Saccharomyces cerevisiae is fundamental in
regulating cell growth and proliferation in response to nutritional sensing and stress conditions
[383, 486]. In yeast, normal activity of the protein kinase A (PKA) directly affects cellular
growth and cell cycle progression. Indeed, a reduction of PKA activity, related to a decrease
in intracellular cyclic adenine mono-phosphate (cAMP), leads to growth and cell cycle
arrest. cAMP is synthesized by the adenylate cyclase Cyr1 and induces the activation of the
cAMP-dependent PKA protein. The adenylate cyclase activity is controlled by Ras and Gpa2
proteins. Ras proteins cycle between an inactive state and an active state, positively regulated
by Cdc25—a Guanine Nucleotide Exchange Factor (GEF)—and negatively regulated by
Ira1 and Ira2. Finally, two phosphodiesterase (Pde1 and Pde2) constitute the major feedback
mechanisms in the pathway and are able to degrade cAMP.

The list of the reactions that describe the interactions among the species composing the
Ras/cAMP/PKA pathway and the values of the associated constants are depicted in Table
A.8. More details can be found in [44, 75, 339]. In Table A.9 are shown the initial molecular
amounts whose value is different to 0.

Table A.8 List of the reactions included in the RBM of the Ras/cAMP/PKA pathway.

No. Reagents Products Constant
R1 Ras2-GDP + Cdc25 Ras2-GDP-Cdc25 1.0
R2 Ras2-GDP-Cdc25 Ras2-GDP + Cdc25 1.0
R3 Ras2-GDP-Cdc25 Ras2-Cdc25 + GDP 1.5
R4 Ras2-Cdc25 + GDP Ras2-GDP-Cdc25 1.0
R5 Ras2-Cdc25 + GTP Ras2-GTP-Cdc25 1.0
R6 Ras2-GTP-Cdc25 Ras2-Cdc25 + GTP 1.0
R7 Ras2-GTP-Cdc25 Ras2-GTP + Cdc25 1.0
R8 Ras2-GTP + Cdc25 Ras2-GTP-Cdc25 1.0
R9 Ras2-GTP + Ira2 Ras2-GTP-Ira2 0.01
R10 Ras2-GTP-Ira2 Ras2-GDP + Ira2 0.25
R11 Ras2-GTP + Cyr1 Ras2-GTP-Cyr1 1.0 ·10−3

R12 Ras2-GTP-Cyr1 + ATP Ras2-GTP-Cyr1 + cAMP 2.1 ·10−6

R13 Ras2-GTP-Cyr1 + Ira2 Ras2-GDP + Cyr1 + Ira2 1.0 ·10−3

R14 cAMP + PKA cAMP-PKA 1.0 ·10−5

R15 cAMP + cAMP-PKA (2cAMP)-PKA 1.0 ·10−5

R16 cAMP + (2cAMP)-PKA (3cAMP)-PKA 1.0 ·10−5

R17 cAMP + (3cAMP)-PKA (4cAMP)-PKA 1.0 ·10−5

R18 (4cAMP)-PKA cAMP + (3cAMP)-PKA 0.1

A.5 The Ras/cAMP/PKA pathway 313

R19 (3cAMP)-PKA cAMP + (2cAMP)-PKA 0.1
R20 (2cAMP)-PKA cAMP + cAMP-PKA 0.1
R21 cAMP-PKA cAMP + PKA 0.1
R22 (4cAMP)-PKA C + C + R-2cAMP + R-2cAMP 1.0
R23 R-2cAMP R + cAMP + cAMP 1.0
R24 R + C R-C 0.75
R25 R-C + R-C PKA 1.0
R26 C + Pde1 C + Pde1p 1.0 ·10−6

R27 cAMP + Pde1p cAMP-Pde1p 0.1
R28 cAMP-Pde1p cAMP + Pde1p 0.1
R29 cAMP-Pde1p AMP + Pde1p 7.5
R30 Pde1p + PPA2 Pde1 + PPA2 1.0 ·10−4

R31 cAMP + Pde2 cAMP-Pde2 1.0 ·10−4

R32 cAMP-Pde2 cAMP + Pde2 1.0
R33 cAMP-Pde2 AMP + Pde2 1.7
R34 C + Cdc25 C + Cdc25p 1.0
R35 Cdc25p + PPA2 Cdc25 + PPA2 0.01
R36 Ira2 + C Ira2p + C 1.0 ·10−3

R37 Ras2-GTP + Ira2p Ras2-GTP-Ira2p 1.25
R38 Ras2-GTP-Ira2p Ras2-GDP + Ira2p 2.5
R39 Ira2p Ira2 10.0

Table A.9 Initial molecular amounts of the RBM of Ras/cAMP/PKA pathway.

Species Initial amount
Cyr1 200
Cdc25 300
Ira2 200
Pde1 1400
PKA 2500
PPA2 4000
Pde2 6500
Ras2-GDP 20000
GDP 1.5 ·106

GTP 5.0 ·106

ATP 2.4 ·107

Notice that the amounts of the species GDP, GTP and ATP are kept constant during the
simulation. According to the data presented in [151] and described in [44, 75], the values of
the molecular amounts of the species are expressed as number of molecules per cell.

314 Reaction-based models

A.6 The Schlögl model

The Schlögl model [451, 465] [342, 354] represents one of the simplest prototypes describing
biochemical systems characterized by bistability. This phenomenon consists in having two
different stable steady states that can be reached in response to some chemical signaling (for
further details, see [94, 345, 464]). As shown in Table A.10, this model is composed of 3
reactions that involves 4 molecular species. The initial molecular concentrations of the 4
species are listed in Table A.11.

Table A.10 List of the reactions of the Schlögl model.

No. Reagents Products Constant
R1 A + 2X 3X 3 ·10−7

R2 3X A + 2X 1 ·10−4

R3 B X 1 ·10−3

R2 X B 3.5

Table A.11 Initial molecular amounts of the Schlögl model.

Species Initial amount
A 1 ·105

B 2 ·105

X 250

Notice that the amounts of the species A and B are kept constant during the simulation.
All the values of the molecular amounts of the species are expressed as number of molecules
per cell.

	Table of contents
	List of figures
	List of tables
	Introduction
	1 Complex problems in Life Sciences
	1.1 Modeling biochemical systems
	1.1.1 Mechanistic modeling

	1.2 Simulation algorithms for mechanism-based models
	1.2.1 Deterministic simulation
	1.2.2 Stochastic simulation
	1.2.3 State-of-the-art

	1.3 Parameter Estimation in Systems Biology
	1.3.1 State-of-the-art

	1.4 The Haplotype Assembly problem in Genome Analysis
	1.4.1 Current trends in sequencing experiments
	1.4.2 State-of-the-art

	1.5 Medical image enhancement and segmentation
	1.5.1 State-of-the-art

	2 Optimization techniques
	2.1 Classic optimization techniques
	2.1.1 Simplex Method
	2.1.2 Gradient Descent
	2.1.3 Other classic optimization techniques

	2.2 Evolutionary Computation
	2.2.1 Evolution Strategies
	2.2.2 Covariance Matrix Adaptation Evolution Strategy
	2.2.3 Differential Evolution
	2.2.4 Estimation of Distribution Algorithm
	2.2.5 Genetic Algorithms

	2.3 Swarm Intelligence
	2.3.1 Ant Colony Optimization
	2.3.2 Artificial Bee Colony
	2.3.3 Bat Algorithm
	2.3.4 Particle Swarm Optimization
	2.3.5 Proactive Particles in Swarm Optimization

	3 High-Performance Computing
	3.1 Introduction
	3.2 Message Passing Interface
	3.3 Many Integrated Cores
	3.4 General-Purpose Computing on GPUs
	3.4.1 Compute Unified Device Architecture

	4 High-Performance Computing for the simulation of Reaction-Based Models
	4.1 SMGen
	4.2 LASSIE
	4.2.1 GPU implementation
	4.2.2 Results
	4.2.3 Conclusion

	4.3 FiCoS
	4.3.1 GPU implementation
	4.3.2 Results
	4.3.3 Computational performance
	4.3.4 Simulation accuracy
	4.3.5 Autophagy/Translation model
	4.3.6 Treg-Teff cross regulation in multiple sclerosis
	4.3.7 Conclusion

	4.4 SSA accelerated on MIC coprocessors
	4.4.1 Results
	4.4.2 Conclusion

	5 Parameter Estimation of biological systems
	5.1 Fitness function definition
	5.2 Single swarm PE of small-scale models
	5.2.1 Comparison of the performance of PPSO with PSO
	5.2.2 Comparison of the performance of DBLA with PSO
	5.2.3 Reboot strategies in PSO
	5.2.4 Comparison between PE and benchmark functions

	5.3 Multi-swarm PE of small-scale models
	5.3.1 Master-Slave approach
	5.3.2 Results
	5.3.3 Conclusions

	5.4 PE of a human intracellular metabolic pathway
	5.4.1 Results and discussion
	5.4.2 Conclusions

	6 Computational method based on Genetic Algorithms for Haplotype Assembly
	6.1 Problem formulation
	6.2 Implementation strategy
	6.3 Results
	6.3.1 GenHap accuracy
	6.3.2 Computational performance

	6.4 Conclusions

	7 Evolutionary method for the analysis of medical images
	7.1 Image thresholding
	7.2 MedGA
	7.2.1 Implementation strategy

	7.3 Evaluation metrics and data
	7.3.1 Image enhancement metrics
	7.3.2 Image segmentation metrics
	7.3.3 MRI data

	7.4 Results
	7.4.1 GA setting analysis
	7.4.2 Enhancement results
	7.4.3 Segmentation pipeline
	7.4.4 Medical image segmentation results

	7.5 Conclusions

	Conclusions
	Bibliography
	Appendix A Reaction-based models
	A.1 The Brusselator model
	A.2 The eukaryotic Heat Shock Response model
	A.3 A human intracellular core metabolic pathway in a red blood cell
	A.4 The Prokaryotic auto-regulatory Gene Network
	A.5 The Ras/cAMP/PKA pathway
	A.6 The Schlögl model

