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We derive a point-mass (nonspinning) frequency-domain TaylorF2 phasing approximant at quasi-
5.5 post-Newtonian (PN) accuracy for the gravitational wave from coalescing compact binaries. The
new approximant is obtained by Taylor-expanding the effective-one-body (EOB) resummed energy
and and angular momentum flux along circular orbits with all the known test-particle information
up to 5.5PN. The -yet uncalculated- terms at 4PN order and beyond entering both the energy flux
and the energy are taken into account as free parameters and then set to zero. We compare the
quasi-5.5PN and 3.5PN approximants against full EOB waveforms using gauge-invariant phasing
diagnostics Qω = ω̂2/ ˙̂ω, where ω̂ is the dimensionless gravitational-wave frequency. The quasi-
5.5PN phasing is found to be systematically closer to the EOB one than the 3.5PN one. Notably,
the quasi-5.5PN (3.5PN) approximant accumulates a EOB−PN dephasing of ∆ΨEOBPN ∼ 10−3 rad
(0.13 rad) up to frequency ω̂ ' 0.06, 6 orbits to merger, (ω̂ ' 0.086, 2 orbits to merger) for a
fiducial binary neutron star system. We explore the performance of the quasi-5.5PN approximant
on the measurement of the tidal polarizability parameter Λ̃ using injections of EOB waveforms
hybridized with numerical relativity merger waveforms. We prove that the quasi-5.5PN point-mass
approximant augmented with 6PN-accurate tidal terms allows one to reduce (and in many cases

even eliminate) the biases in the measurement of Λ̃ that are instead found when the standard 3.5PN
point-mass baseline is used. Methodologically, we demonstrate that the combined use of Qω analysis
and of the Bayesian parameter estimation offers a new tool to investigate the impact of systematics
on gravitational-wave inference.

I. INTRODUCTION

The data-analysis of GW170817 [1] relied on gravita-
tional waveform models that incorporate tidal effects.
The latter allow one to extract information about the
neutron star equation of state (EOS) via the inference of
the mass-weighted averaged tidal polarizability parame-
ter Λ̃ [2–6]. The understanding of the systematic uncer-

tainties on the measurement of Λ̃ due to the waveform
model/approximants have been the subject of intensive
investigation in recent years. For example, building on
the work of Favata [7], Wade et al. [8] investigated the
performance of different PN inspiral approximant within
a Bayesian analysis framework for the advanced detectors
and found that the choice of approximant significantly
biases the recovery of tidal parameters. Later, a simi-
lar Bayesian analysis in the case of LIGO and advanced
LIGO detectors was carried out by Dudi et al. [9] who
concluded that the TaylorF2 3.5PN waveform model can
be used to place an upper bound on Λ̃. The same con-
clusion was drawn also by the study of the LIGO-Virgo
collaboration [5].

Beside interesting per se’ because done in the pre-
cise setup that is relevant for data analysis, these stud-
ies collectively stress the paramount need of having an
analytically reliable description of the phasing up to
merger. The tidal extension of the effective-one-body
(EOB) [10, 11] description for coalescing compact bi-

naries was introduced in [12] and developed during the
last ten years [13–18] with the goal of providing robust
binary neutron stars (BNS) waveforms to be used in
gravitational-wave inference. While analytically more ac-
curate, EOB waveform generation is usually slower than
PN. Different routes have been explored to speedup EOB
approximants. One possibility is to construct surrogate
waveform models [19, 20]. Another possibility is to conju-
gate the efficiency of a PN approximant with the physical
completeness of the EOB model; the NRTidal family of
approximants partly answers to this question [21, 22]. A
third approach relies on the development of fast approx-
imations for the solution of EOB equations, for example
using the high-order post-adiabatic approach of Ref. [23]
(See also [17, 18].) However, none of the methods de-
scribed above provide us with waveform generation al-
gorithms faster than PN. Although it is well known that
inspiral PN approximants might be problematic, they re-
tain the advantage of being the most efficient for Bayesian
inference.

One important source of systematics in BNS inspiral
waveforms resides in the description of the nontidal part
(see e.g. [24]). The practice that became common af-
ter the observation of GW170817 is to augment standard
point-mass model with the tidal part of the phasing. A
natural step is thus to improve the accuracy point-mass
PN approximant beyond the current available. In this
paper we introduce a nonspinning, point-mass, closed-

ar
X

iv
:1

90
4.

09
55

8v
1 

 [
gr

-q
c]

  2
1 

A
pr

 2
01

9



2

form frequency-domain TaylorF2 waveform approximant
at quasi-5.5PN order (Sec. II). The new approximant is
obtained by PN-expanding the adiabatic EOB dynamics
along circular orbits. As such, it delivers a phasing repre-
sentation that improves the currently known 3.5PN one.
We show that, when applied in the GW data analysis con-
text, the new phasing description allows one to strongly
reduce the biases in the recovery of the tidal parame-
ters that are usually present with the 3.5PN TaylorF2
point-mass (Sec. III).

In the following, the total gravitational mass of the
binary is M = m1 + m2, with the two bodies labeled
as (1, 2). We adopt the convention that that m1 ≥ m2,
so to define the mass ratio q ≡ m1/m2 ≥ 1 and the
symmetric mass ratio ν ≡ m1m2/M

2, that ranges from
0 (test-particle limit) to ν = 1/4 (equal-mass case). The
dimensionless spins are addressed as χi ≡ Si/m

2
i . We

also define the quantities Xi ≡ mi/M and X12 ≡ X1 −
X2 =

√
1− 4ν, which yields X1 = 1

2 (1 +
√

1− 4ν) and
X2 = 1 − X1. Following Refs. [16, 18, 25], it is also
convenient to use the following spin variables or spin-
related quantities: ãi ≡ Si/(miM) = Xiχi; ã0 ≡ ã1 + ã2

and ã12 ≡ ã1 − ã2. If not otherwise specified, we use
geometric units c = G = 1. To convert from geometric
to physical units we recall that GM�/c

3 = 4.925491 ×
10−6 sec.

II. QUASI-5.5PN-ACCURATE ORBITAL
PHASING

Building upon Damour et al. [2], Ref. [25] illustrated
how to formally obtain a high-order PN approximant by
PN-expanding the EOB energy EEOB and energy flux
FEOB along circular orbits. Stopping the expansion at
4.5PN, allowed one to obtain a consistent 4.5PN approxi-
mant with a few parameters needed to formally take into
account the yet uncalculated ν-dependent terms in the
waveform amplitudes at 4PN. Here we follow precisely
that approach, but we extend it to 5.5PN accuracy. To
get the waveform phase in the frequency domain along
circular orbits, we start with the gauge-invariant1 de-
scription of the adiabatic phasing given by the function

Qω ≡ EEOB(x)

(
dFEOB

dx

)−1

, (1)

where x ≡ (MΩ)2/3, with Ω the orbital frequency along
circular orbits. The high-order phasing approximant is
obtained by Taylor-expanding the above equation and
then by solving the equation

d2Ψ5.5PN

d2f̂
=
Qω(f̂)

f̂2
, (2)

1 In the sense that it is independent of time and phase arbitrary
shifts.

where f̂ ≡ Mf ≡ Ω/2π. The double integration of

Eq. (2) delivers Ψ5.5PN(f̂) modulo an affine part of the

form p + qf̂ , where (p, q) are two arbitrary integration
constants that are fixed to be consistent with the usual
conventions adopted in the literature for the 3.5 PN ap-
proximant [26].

We consider here only nonspinning binaries (the reader
is referred to Appendix B for the discussion of the spin
case). The corresponding, circularized, EOB Hamilto-

nian reads HEOB
0 = M

√
1 + 2ν(Ĥeff − 1) where Ĥeff ≡

Heff/µ =
√
A(u)(1 + u2j2), where j is the orbital an-

gular momentum along circular orbits, u ≡ M/R the
inverse radial separation and A(u) is the EOB interac-
tion potential kept with a 5PN term ν(ac6 + aln

6 lnu)u6

with ac6 an analytically unknown coefficient. The orbital
angular momentum along circular orbits j is obtained
solving ∂uĤeff = 0. By PN-expanding one of Hamil-
ton’s equations, MΩ = ∂ϕH

EOB, one obtains x(u) as a
5PN truncated series in u, that, once inverted, allows to
obtain the (formal) 5.5 PN accurate energy flux as func-
tion of x by PN-expanding its general EOB expression
F =

∑∞
`=2

∑m
`=−m F

Newt
`m F̂`m, where FNewt

`m is the New-

tonian (leading-order) contribution and F̂`m is the rela-
tivistic correction. Each multipolar contribution within
the EOB formalism comes written in factorized and re-
summed form as

F̂`m =
(
Ŝ

(ε)
eff

)2

|T`m|2(ρ`m)2`. (3)

Here, Ŝ
(ε)
eff is the effective source, that is the effective EOB

energy Êeff(x) ≡ Eeff/µ when ε = 0 (` + m=even) or
the Newton-normalized orbital angular momentum when
ε = 1 (`+m=odd). The square modulus of the tail fac-
tor T`m resums an infinite number of PN hereditary loga-
rithms [27, 28]. We use the relativistic residual amplitude
(ρ`m) information reported in Eqs (7)-(18) of Ref. [25],
where the unknown high-PN coefficients (polynomials in
ν) have been parametrized by some coefficients c`m. We
include for consistency all the coefficients to go up to the
` = 7, m = even multipoles.

From Eq. (1) one obtains the following PN-expanded
expression

Q̂PN
ω = 1 + b2x+ b3x

3/2 + b4x
2 + b5x

5/2

+ b6x
3 + b7x

7/2 + b8x
4 + b9x

9/2 + b10x
5 + b11x

11/2.
(4)

The coefficients of this expansion, that are reported
in full in Appendix C, have the structure bi ≡ b0i +
bi(ν), where b0i is the ν-independent (test-particle) part,
fully known analytically, while the bi(ν) encode the ν-
dependence that is completely known at 3PN, while
only partially known at 4PN because the correspond-
ing waveform calculation is not completed yet. The ν-
dependence beyond 3PN is formally incorporated by ex-
tending the analytically known ρ`m function with addi-
tional ν-dependent coefficients and then reflects in the
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FIG. 1. Comparison between the point-mass (nonspinning)
orbital phasing for q = 1 QEOB

ω − QPN
ω difference up to (ap-

proximate) merger time. The vertical lines mark the 10Hz,
20Hz, 718Hz or 1024Hz for a (1.35 + 1.35)M� binary. The
quasi-5.5PN curve is always much closer to the EOB one than
the standard 3.5PN approximant.

coefficients bi(ν). Among these coefficients, those that
depend on the parameters that we have introduced in
the computation are

b8 = b8(c3PN
21 , c4PN

22 ) (5)

b10 = b10(c3PN
21 , c4PN

22 , c5PN
22 ) (6)

b11 = b11(c3PN
21 , c4PN

22 ) . (7)

In the following analysis, we fix to zero ac6 as well as
all the yet uncalculated, ν-dependent, PN waveform co-
efficients entering Eq. (4) above. This entitles us to use
the definition of quasi-5.5PN approximant (this PN-order
choice is discussed in Appendix A and resumed in Fig. 5).
Note however that in the NR-informed EOB model, that
we shall use to check the reliability of this quasi-5.5PN
approximant, all the waveform coefficients are equally
fixed to be zero; on the contrary, ac6 is informed by NR
simulations and, as such, effectively takes into account,
to same extent, all this missing analytical information.
The importance of the ν-dependent waveform coefficients
is, a priori, expected to be low, as suggested in Table II
of [29]. This is in accord with the fact that an eventual
tuning of some free parameters is better when they tend
to be small (see Appendix A).

TABLE I. EOB/PN phase difference accumulated between
[f0, f1]. It is obtained by integrating the ∆QEOBPN

ω ’s in Fig. 1
between the corresponding values of log(ω̂). The limits of
integration are denoted in Hz as we want to ideally refer to
the fiducial (1.35 + 1.35)M� binary system.

ω̂0 × 104 ω̂1 f0[Hz] f1[Hz] ∆φEOBPN
3.5PN ∆φEOBPN

5.5PN

8.35 0.086 10 1024 0.2718 0.1364

8.35 0.060 10 718 −0.1916 1.45× 10−3

16.7 0.086 20 1024 0.3009 0.1354

16.7 0.060 20 718 −0.1625 4.54× 10−4

20.0 0.086 24 1024 0.3110 0.1348

A. Assessing the 5.5PN phasing accuracy

Let us now study the performance of TaylorF2 at
5.5PN versus the full EOB phasing. We do so by com-
paring the corresponding Qω functions and taking the
differences, similarly to what was done in Ref. [22] for iso-
lating the tidal part of the EOB phasing and in Ref. [18]
for isolating the quadratic-in-spin part. Since we have
in mind an application to a paradigmatic BNS system,
Fig. 1 only focuses on the q = 1 case. We show our re-
sults in terms of differences between the EOB and the
PN curves, QEOB

ω − QPN
ω . The top panel of the figure

illustrates the full phasing acceleration evolution, up to
the peak of the EOB orbital frequency that is identified
with the merger. The bottom panel is a close up on the
inspiral part. The vertical lines corresponds (from left
to right) to 10Hz, 20Hz, 718Hz and 1024Hz for a fidu-
cial equal-mass BNS system with (1.35 + 1.35)M�. The
718Hz line corresponds to ω̂ = 0.06, that roughly cor-
responds to the NR contact frequency [30]. The figure
highlights that the quasi-5.5PN approximant delivers a
rather good representation of the point-mass EOB phas-
ing precisely up to ω̂ = 0.06. Table I reports the phase
difference

∆φ(ω̂0,ω̂1) =

∫ ω̂1

ω̂0

∆Qωd log ω̂ , (8)

accumulated between the frequencies [ω̂0, ω̂1] (or equiva-
lently [f0, f1] in physical units) marked by vertical lines
in the plots. The numbers in the table illustrate quanti-
tatively how the 5.5PN phasing approximant delivers a
phasing description that is, by itself, more EOB compat-
ible than the standarly used 3.5PN one. Note that this
is achieved even if the EOB incorporates the effective,
NR-informed, a6

c(ν) parameter, that is not included in
the TaylorF2 approximant.

III. APPLICATION TO Λ̃ INFERENCE

We focus now on a BNS system to study the impli-
cation of changing the PN-accuracy of the point-mass
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FIG. 2. 1.35M� +1.35M� binary with Sly EOS. Inference of
Λ̃ with different waveform model on different frequency inter-
vals [fmin, fmax] with different SNR. The vertical line corre-

sponds to the injected value Λ̃SLy = 392.231. Irrespectively of
the value of SNR, the 3.5PN baseline introduces a strong bias
(and spread) in the measure of Λ̃. By contrast this is practi-
cally reabsorbed when using the quasi-5.5PN point-mass base-
line. The dashed vertical lines corresponds to 90% confidence
level.

baseline on the estimate of the tidal polarizability pa-
rameter

Λ̃ =
16

13

(m1 + 12m2)m4
1Λ1 + (m2 + 12m1)m4

2Λ2

M5
, (9)

where Λi ≡ 2/3ki2
[
c2/(GCi)

]5
where Ci ≡ mi/Ri is

the compactness of each star and ki2 the corresponding
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FIG. 3. 1.35M� +1.35M� binary with Sly EOS. Inference of
Λ̃ with different waveform model on different frequency inter-
vals [fmin, fmax] with different SNR. The vertical line corre-

sponds to the injected value Λ̃SLy = 1020.5. Irrespectively of
the value of SNR, the 3.5PN baseline introduces a strong bias
(and spread) in the measure of Λ̃. By contrast this is practi-
cally reabsorbed when using the quasi-5.5PN point-mass base-
line. The dashed vertical lines corresponds to 90% confidence
level.

quadrupolar Love number [31–34].

We construct equal-mass EOBNR hybrid BNS wave-
forms by matching the TEOBResumS EOB tidal model [16]
to state-of-the-art NR simulations of the CoRe collabo-
ration [22]. Note that the version of TEOBResumS used
here does not incorporate the analytical developments
of Refs. [17, 18]. Two fiducial waveforms are consid-
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ered here corresponding to two nonspinning, equal-mass
(1.35M� + 1.35M�) BNS models described by the SLy
and H4 EOS. The corresponding values of the tidal pa-
rameters are Λ̃ = 392.231 (Sly EOS) and Λ̃ = 1110.5 (H4

EOS) [For equal masses Λ̃ = Λ1 = Λ2.] The waveforms
are injected at SNR of 30 and 100 into a fiducial data
stream of the LIGO detectors [35]. We assume the pro-
jected noise curve for the Advanced LIGO detectors in
the zero-detuned high-power configuration (ZDHP) [36]
and no actual noise is added to the data.

The injected waveform is recovered with three ap-
proximants: (i) IMRPhenomD NRTidal [22], where the
point-mass orbital phasing is obtained by a suitable
representation of hybridized EOB/NR BBH waveforms,
the PhenomD approximant [37]; (ii) TaylorF2 where
the 3.5PN orbital phase is augmented by the 6PN
(next-to-leading) tidal phase [38]; (iii) the same as above
where the 3.5PN orbital, nonspinning, phase is replaced
by the quasi-5.5PN one. The models are implemented
in the LSC Algorithm Library Suite (LALSuite).
The LIGO-Virgo parameter-estimation algorithm
LALInference [39]) is then employed to extract the
binary properties from the signal. We use a uniform
prior distribution in the interval [1M�, 3M�] for the
component masses, and a uniform prior between −1
and 1 for both dimensionless aligned spins. We also
pick a uniform prior distribution for the individual tidal
parameters Λ1,2 between 0 and 5000.

The outcome of the analysis is illustrated in Fig. 2
for the SLy EOS and and Fig. 3 the H4 EOS. We com-
pare the inference of the tidal parameter done on two
frequency intervals, [24, 1024] Hz and [32, 1024]. Note
that we do not extend the analysis interval even further
because we know that the orbital part of the TaylorF2
approximants becomes largely inaccurate at higher fre-
quencies. For SNR = 30 one finds that the 3.5PN orbital
baseline induces a clear bias in Λ̃, while the quasi-5.5PN
one agrees much better with the PhenomD model as well
as the expected value (vertical line in the plots). Incre-
menting the SNR to 100, the statement only holds for the
softer EOS, since for the H4 case also the 5.5PN approx-
imant is biased, although still less than the 3.5PN one.
The two figures are complemented by Table II, that, for
each choice of configuration and SNR, lists the recov-
ered values with their 90% credible interval. The last
row of the table also reports the time needed to generate
a single waveform during the PE process: interestingly,
the timing of the quasi-5.5PN TaylorF2 is comparable
to the one of the 3.5PN approximant, i.e. it remains
approximately two times faster than PhenomD NRTidal
being consistent with this latter at SNR . 30. This sug-
gests that, for events similar to GW170817 or quieter, the
quasi-5.5PN TaylorF2 can effectively be used in place of
PhenomD NRTidal to get an even faster, yet accurate, es-
timate of the parameters.
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FIG. 4. Heuristic explanation of the bias on Λ̃: 1.35M� +
1.35M� binary, Sly EOS, Λ̃ = 392.231. Shown is the gauge-
invariant difference ∆QEOBPN

ω ≡ QEOB
ω − QPN

ω between the
EOB Qω and the PN Qω with the 3.5PN orbital baseline
augmented by the 6PN-accurate tidal phase. Increasing the
value of the tidal parameter to Λ̃ = 442.987 is very effective
in reducing the phase difference accumulated between in the
interval ω ∈ [0.02, 0.06] (dotted vertical line) to a negligible
value. Such ω̂ interval correponds to f ∈ [24, 718] Hz for this
binary. The upper frequency limit corresponds to 957.4 Hz.

A. Understanding waveform systematics of the
injections via the Qω analysis

Let us finally heuristically explain why the effect of the
3.5PN-accurate orbital baseline is to bias the value of Λ̃
towards values that are larger than the theoretical expec-
tation. Inspecting Fig. 1 one sees that the QEOB

ω −Q3.5PN
ω

is negative. This means that the PN phase accelerates
less than the EOB one, namely the inspiral occurs more
slowly in the 3.5PN phasing description than in the EOB
one. Loosely speaking, one may think that the grav-
itational interaction behind the 3.5PN-accurate orbital
phasing is less attractive than what predicted by the EOB
model. Evidently, this effect might be compensated by
and additional part in the total PN phasing that stems
for a part of the dynamics that is intrinsically attrac-
tive and that could compensate for the inaccurate be-
havior of the 3.5 PN. Since eventually the phase differ-
ence is given by an integral, two effects of opposite sign
can mutually compensate and thus generate a PN-based
frequency phase that is compatible with the EOB one.
Since tidal interactions are attractive, the corresponding
part of the phasing is naturally able to compensate the
repulsive character of the orbital phasing. For this com-
pensation to be effective, it may happen that Λ̃ has to be
larger than the theoretically correct one that accounts
for the tidal interaction (at leading order) in the EOB
waveform.
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TABLE II. Data behind Figs. 2 and 3. For each measured quantity, chirp massM, symmetric mass ratio ν and tidal polarizabil-
ity Λ̃, the colums report: the injected value; the minimum value of frequency considered, either 24Hz or 32Hz; the combination
EOS-SNR; finally, the last three columns list the median values measured with the three different waveform approximants
with the 90% credible interval. The last row of the table shows the average waveform generation time for each approximant,
assuming starting frequency of 24Hz.

Injected Value fmin EOS SNR TaylorF2 3.5PN TaylorF2 5.5PN IMRPhenomD NRTidal

M 1.1752
24 Hz

SLy 30 1.17531.1755
1.1752 1.17531.1755

1.1752 1.17531.1755
1.1752

H4 30 1.17531.1755
1.1752 1.17531.1755

1.1752 1.17531.1755
1.1752

SLy 100 1.17531.1754
1.1752 1.17531.1754

1.1752 1.17531.1754
1.1752

H4 100 1.17531.1754
1.1752 1.17531.1754

1.1752 1.17531.1754
1.1753

32 Hz
SLy 30 1.17541.1757

1.1752 1.17541.1757
1.1752 1.17541.1756

1.1752

H4 30 1.17541.1756
1.1751 1.17541.1757

1.1752 1.17531.1756
1.1751

ν 0.25
24 Hz

SLy 30 0.246490.24996
0.23147 0.245580.24995

0.23135 0.246360.24997
0.23105

H4 30 0.247290.24997
0.2338 0.245810.24995

0.23162 0.24590.24996
0.23079

SLy 100 0.248570.24998
0.23744 0.247380.24995

0.23691 0.247030.24998
0.23292

H4 100 0.248770.24997
0.24083 0.247350.24995

0.23694 0.247020.24997
0.23307

32 Hz
SLy 30 0.246580.24996

0.23107 0.24670.24997
0.23247 0.245920.24997

0.23054

H4 30 0.246840.24997
0.23282 0.246020.24995

0.23194 0.245760.24996
0.23051

Λ̃

392

24 Hz

SLy 30 935.912547.71
245.40 517.88971.32

162.29 400.47761.30
135.47

1110 H4 30 1690.563589.6
632.12 987.291575.33

422.78 1044.271459.18
630.88

392 SLy 100 452.24694.52
180.44 301.87459.52

149.57 295.21410.31
162.62

1110 H4 100 1405.421726.90
1065.20 894.931069.01

711.92 1051.611195.12
837.18

392
32 Hz

SLy 30 1007.472743.87
267.25 572.291177.84

156.79 419.89803.14
144.15

1110 H4 30 1675.673464.08
660.31 1042.611713.99

416.23 1060.441509.45
633.25

Average Time 22.9 ms 32.68 ms 60.13 ms

Such intuitive explanation is put on more solid ground
in Fig. 4. The figure refers to the SLy model and
compares two EOB-PN Qω differences ∆QEOBPN

ω ≡
QEOB
ω − QPN

ω , where the QEOB
ω is the complete func-

tion, while QPN
ω is obtained summing together the 3.5PN

orbital phase and the 6PN-accurate tidal phase [40].

When we use the theoretically correct value of Λ̃ =
Λ1 = Λ2 = 392.231 the phase difference in the in-
terval ω̂ ∈ [ω̂0, ω̂1] = [0.002, 0.06], corresponding to
f ∈ [20, 718] Hz (dotted vertical line in the figure) for
this binary, is ∆φ(ω̂0,ω̂1) ' −0.276 rad. By contrast, if

the value of Λ̃ is progressively increased, the accumu-
lated phase difference between [ω̂0, ω̂1] gets reduced up

to ∆φ(ω̂0,ω̂1) ' 2.429× 10−4 for Λ̃ = 442.987. Note how-

ever that such analytically predicted “bias”in Λ̃ depends
on the frequency interval considered: if we extended the
integration up to ω̂1 ' 0.08 (corresponding to 957.4 Hz)
one finds that a similarly small accumulated phase differ-
ence ∆φ0.002,0.08 ' 5.0×10−5 is obtained for Λ̃ = 424.08,
i.e. the analytical bias is reduced. This fact looks coun-
terintuitive: a result obtained with a PN approximant is
not, a priori, expected to improve when including higher
frequencies. By contrast, the fact that the analytic bias
is (slightly) reduced increasing ω̂1 just illustrates the lack
of robustness as well as the lack of predictive power of the
approximant in the strong-field regime. Generally speak-
ing, one sees that the combination of 3.5PN orbital phase

with 6PN tidal phase may result in a waveform that is
effectual with respect the EOB one, in the sense that the
noise-weighted scalar product will be of order unity, but
with an incorrect value of the tidal parameter. This sim-
ple example is helpful to intuitively understand how the
incorrect behavior of the point-mass nonspinning phas-
ing can eventually result in a bias towards larger values
of Λ̃. Interestingly, this value is close to the value ob-
tained with SNR=100 (see left-bottom panel of Fig. 2).
Although the analysis of Fig. 4 certainly cannot replace
an injection-recovery study, it should be kept in mind as
a complementary tool to interpret its outcome within a
simple, intuitive but quantitative, framework.

IV. CONCLUSIONS

Our results can be summarized as follows:

1. Starting from the EOB resummed expressions for
the energy flux and energy along circular orbits, we
have computed a TaylorF2 point-mass, nonspin-
ning, approximant at formal 5.5PN order. Such
quasi-5.5PN approximant depends on some, yet un-
calculated, ν-dependent, PN parameters that are
set to zero.

2. Among various truncations of the 5.5PN approxi-
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mant (3.5PN, 4PN, 4.5PN, 5PN, see Appendix A,
we have found that the 5.5PN phasing performs
best when compared with the complete point-
mass phasing obtained with TEOBResumS. Such
phasing comparison was done exploiting its gauge-
invariant description through the Qω = ω̂2/ ˙̂ω func-
tion. The main outcome of this analysis is that the
EOB-derived quasi-5.5PN approximant is remak-
ably close to the complete EOB phasing up to the
late inspiral (e.g. ω̂ ' 0.06) and performs better
than the standard (analytically complete) 3.5PN
one. We tested that the performaces remain ro-
bust for unequal masses up to q = 2 and aligned
spin cases with dimensionless spin magnitudes up
to χ ∼ ±0.1.

3. To assess the use of the 5.5PN approximant in
GW parameter estimations, we considered injection
studies with hybrid waveforms of GW170817-like
sources. The improved TaylorF2 point-mass base-
line reduces (or even eliminates) the biases on the
measurability of the tidal polarizability parameter
Λ̃ instead produced by the use the standard 3.5PN
point-mass baseline. Therefore, the new 5.5PN ap-
proximant can be faithfully and effectively used in
matched filtered searches and Bayesian parameter
estimation.

We recommend to use the new quasi-5.5PN approx-
imant to improve the performance of the TaylorF2
and substitute it to the 3.5PN in searches/parameter
estimation. To ease this task, we have imple-
mented all the new PN terms up to 5.5PN in the
LSC Algorithm Library Suite (LALSuite).

The performances of the 5.5PN approximant could be
further improved towards higher frequencies by carefully
tuning some of the free parameters. A preliminary inves-
tigation based on a equal masses nonspinning BNS is pre-
sented at the end of Appendix A). We find that by tuning
the 5PN parameter ac6 and the 4PN coefficient c4PN

22 en-
tering the ` = m = 2 waveform amplitude, the phase
difference between such flexed PN approximant and the
EOB phasing is negligible essentially up to merger. This
indicates that, while the PN series keeps oscillating even
when high order terms come into play, future work might
be devoted to effectively minimize such oscillations by
suitably tuning such parameters.
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4.5PN ∆φEOBPN
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FIG. 6. Robustness of the quasi-5.5PN TaylorF2 approxi-
mant versus mass ratio. The vertical lines correspond to the
same four values of [ω̂1, ω̂2] listed in the first two columns of
Table III.

Appendix A: Why quasi-5.5PN?

Post-Newtonian expansion are truncated asymptotic
series, so it is not a priori granted that by increasing
the PN order one will automatically get a better ap-
proximation to the exact result. The choice of using the
quasi-5.5PN TaylorF2 for the injection study of Sec. III
was made after having carefully analyzed all the previ-
ous quasi-PN orders beyond 3.5PN and having compared
each PN-truncation of theQω function to the correspond-
ing outcome of TEOBResumS. The result of this analysis
is shown in Fig. 5, that illustrates how the quasi-5.5PN
QEOB
ω −QPN

ω difference remains consistently close to zero
for a frequency interval that is much longer than for any
other lower-PN truncation. This finding justifies our
choice of focalizing specifically on the quasi-5.5PN ap-
proximant in the main text.

With this PN order, the first natural question that fol-
lows is whether there is some simple way to improve the
accuracy of the approximant just by tuning some of its
(many) free parameters. Before entering this discussion,
the simplest thing to do is to incorporate more analytical
information ,e.g. instead of using ac6 = 0 incorporating
either the analytical gravitational self-force value ac6(0),
that was obtained in Refs. [41, 42]

ac6(0) = −1066621

1575
− 14008γ

105
+

246367π2

3072

− 31736 log(2)

105
+

243 log(3)

7
, (A1)
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FIG. 7. Robustness of the quasi-5.5PN TaylorF2 approxi-
mant versus spin: spins aligned (top) and spins anti-aligned
(bottom) with the orbital angular momentum. The EOB/PN
agreement is always improved by the use of the quasi-5.5PN
orbital phasing. The vertical lines correspond to the same four
values of [ω̂1, ω̂2] listed in the first two columns of Table III.

or even the numerical-relativity informed one [43]

ac6,NR(ν) = 3097.3ν2 − 1330.6ν + 81.38. (A2)

Although these two functions encode physically correct
effect (though only effectively for ac6,NR(ν)) they turn out,
both, to increase the repulsive character of the approxi-
mant, without any real advantage. In practice, when the
values above are used, one get an acceptable EOB/PN
agreement only up to ω̂ ≈ 0.02.

From the PN point of view, we expect from Table II
of [29] that the order of magnitude of the various cPN

`m
coefficient is small. This is the rational behind our con-
servative choice of simply setting then to zero. Still, one
could think to use some of these coefficients, as well as ac6
as tunable parameter and investigate whether it is possi-
ble to flex the quasi-5.5PN TaylorF2 approximant so as
to reduce the EOB/PN disagreement even to frequencies
higher than 0.06.

As a proof of principle, we explored that this is the case
considering the q = 1 case and flexing, at the same time,
both ac6 and c4PN

22 , that are, in sense, the lowest-order
unknown coefficients in the model. One easily finds that
fixing ac6 = 49 and c4PN

22 = 10.45 the integrated EOB/PN
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phase difference in the point-mass sector accumulated on
the interval [ω̂0, ω̂1] = [0.002, 0.08] can be reduced from
0.085 rad to ' 10−4 rad.

Appendix B: Mass ratio and spin

Increasing the mass ratio or the spins (to mild values)
of the binary does not affect the robustness of the quasi-
5.5PN, untuned, approximant. In Fig. 6 we see that the
difference between the “exact” numerical Qω and the an-
alytical one is still approximately flat for a qualitatively
wide range of frequencies. Beyond that, for what con-
cerns the spin, we show in Figs. 7 a qualitative point-mass
BNS case with realistic positive and negative spins. In
this case we put to zero the quadrupole-monopole inter-
action terms, CQ1 = CQ2 = 0, removing the quadratic-

in-spin PN corrections both in the numerical TEOBResumS
model and in the analytical approximant. So contribu-
tion of the mixed χ1χ2 terms and the spin-orbit inter-
action is tested, including for completeness also the new
4PN spin-orbit Taylor-F2 term computed in Ref. [18],
i.e. the Qω analogue of Eq. (48) there. While the spin-
orbit terms are already contained in TEOBResumS in a re-
summed form, we neglect the spin cube and spin quartic
PN corrections (see [18]) for simplicity, since their effect
does not affect our preliminary robustness test.

Appendix C: Quasi-5.5PN phasing coefficients

We report in this appendix the explicit expressions for
the coefficients entering Eq. (4). For simplicity, we put
to zero all the cPN

`m ’s except c4PN
22 and c3PN

21 . We have:

b2 =
11ν

4
+

743

336
b3 = −4π (C1)

b4 =
617ν2

144
+

5429ν

1008
+

3058673

1016064
(C2)

b5 = π

(
13ν

8
− 7729

672

)
(C3)

b6 =
25565ν3

5184
− 15211ν2

6912
+

(
−451π2

48
+

3147553127

12192768

)
ν

+
856 log(x)

105
+

3424 log(2)

105
+

32π2

3
+

1712γ

105
− 10817850546611

93884313600
(C4)

b7 = π

(
14809ν2

3024
− 75703ν

6048
− 15419335

1016064

)
(C5)

b8 = c3PN
21

(
4

9
ν2 − 1

9
ν

)
+

73893895655ν4

14239120896
− 102008296205ν3

11650189824
+

(
79909π2

24192
− 300600673165997

2563041761280

)
ν2

+

(
−4c4PN

22 +
332683 log(x)

2205
− 1860443π2

48384
+

6252765829282087

5695648358400

)
ν

+ γ

(
665366ν

2205
+

9203

210

)
+

9203 log(x)

420
+

(
47385

1568
− 47385ν

392

)
log(3)

+

(
177586ν

245
+

50551

882

)
log(2) +

9049π2

252
− 2496799162103891233

3690780136243200
(C6)
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b9 = π

[
2064751ν3

399168
+

9058667ν2

254016
+

(
451π2

12
− 298583452147

268240896

)
ν

− 3424

105
log(x)− 13696

105
log(2)− 64π2

3
− 6848γ

105
+

90036665674763

187768627200

]
, (C7)

b10 =
1

−1 + 3ν

[
c3PN
21

(
121

189
ν − 2815

756
ν2 +

599

252
ν3 +

191

21
ν4

)
+

(
−12c5PN

22 + 54ac6 +
349c4PN

22

42

− 415795517π2

3612672
+

99239192119γ

18336780
+

3592581310185992768897549

292602096577251901440
+

58330935 log(3)

21952

+
117340379713 log(2)

18336780

)
ν2 +

(
−18ac6 +

311c4PN
22

42
+ 4c5PN

22 +
5451429547π2

32514048

− 63787407527γ

36673560
− 2749231177355819921781277

216742293760927334400
− 8924175 log(3)

12544
− 159943397077 log(2)

73347120

)
ν

+

(
−641c4PN

22

7
+

460519π2

6144
+

3073896571γ

3056130
+

655042586669421296014259

137157232770586828800

− 1279395 log(3)

392
+

10777949417 log(2)

1528065

)
ν3 − 2425066585102052979797ν6

3428930819264670720
+

12721434740371951621ν5

2705270863325184

+

(
9434797π2

75264
− 11160810800663155149913

1088549466433228800

)
ν4 − 578223115π2

12192768
− 6470582647γ

110020680

+
1412206995432957982751

505226791983513600
+

5512455 log(3)

87808
− 53992839431 log(2)

220041360

]
+

(
−6431890181ν2

18336780
− 2968141499ν

12224520
+

6470582647

220041360

)
log(x) , (C8)

b11 = π

[
c3PN
21

(
−8

3
ν2 +

2

3
ν

)
+

131525414689ν4

64076044032
− 216119565695ν3

11650189824
+

(
−2129581π2

16128
+

5120314955146397

1398022778880

)
ν2

+

(
−673331 log(x)

1260
+

9003157π2

64512
+ 16c4PN

22 − 471473599592788087

76891252838400

)
ν

+ γ

(
−673331ν

630
− 3558011

17640

)
− 3558011 log(x)

35280
+

(
47385ν

196
− 47385

784

)
log(3)

+

(
−10504813ν

4410
− 862549

2520

)
log(2)− 9439π2

126
+

1795505143426433771

615130022707200

]
. (C9)

The GW phase in the SPA is computed from the Qω
using (2) and it is given by the Taylor series

Ψ(f) =
3(πMf)−5/3

128ν

∑
i

ϕi(πMf)i ; (C10)

with the coefficients:
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ϕ0 = 1 (C11)

ϕ1 = 0

ϕ2 =
3715

756
+

55

9
ν

ϕ3 = −16π

ϕ4 =
3085ν2

72
+

27145ν

504
+

15293365

508032

ϕ5 = π

(
38645

756
− 65ν

9

)
[1 + log(πfM)]

ϕ6 = −6848

63
log(πfM)− 127825ν3

1296
+

76055ν2

1728
+

(
2255π2

12
− 15737765635

3048192

)
ν − 640π2

3
− 6848γ

21

+
11583231236531

4694215680
− 13696 log(2)

21

ϕ7 = π

(
−74045ν2

756
+

378515ν

1512
+

77096675

254016

)
ϕ8 = [1− log(πfM)]

[
c3PN
21

(
40ν

81
− 160ν2

81

)
+

160c4PN
22 ν

9
− 369469478275ν4

16019011008
+

510041481025ν3

13106463552

+

(
300600673165997

576684396288
− 399545π2

27216

)
ν2 +

(
−5679872289503527

1281520880640
− 5322928γ

3969
+

9302215π2

54432

− 1420688 log(2)

441
+

26325 log(3)

49

)
ν − 90490π2

567
− 36812γ

189
+

2550713843998885153

830425530654720
− 26325 log(3)

196

− 1011020 log(2)

3969

]
+

(
2661464ν

11907
+

18406

567

)
log2(πfM)

ϕ9 = π

[
−13696

63
log(πfM) +

10323755ν3

199584
+

45293335ν2

127008
+

(
2255

6
π2 − 1492917260735

134120448

)
ν

− 640

3
π2 − 13696γ

21
+

105344279473163

18776862720
− 27392 log(2)

21

]



12

ϕ10 =
1

1− 3ν

[
ac6(72ν − 216ν2) + c3PN

21

(
−764ν4

21
− 599ν3

63
+

2815ν2

189
− 484ν

189

)
+ c4PN

22

(
2564ν3

7
− 698ν2

21
− 622ν

21

)
(C12)

+ c5PN
22

(
48ν2 − 16ν

)
+

(
12863780362ν3

4584195
+

13849493129ν2

13752585
− 24279431641ν

27505170
+

6470582647

82515510

)
log(πfM)

+
2425066585102052979797ν6

857232704816167680
− 12721434740371951621ν5

676317715831296
+

(
11160810800663155149913

272137366608307200

− 9434797π2

18816

)
ν4 +

(
−857104076559310860540851

34289308192646707200
− 6147793142γ

1528065
− 460519π2

1536

− 43111797668 log(2)

1528065
+

1279395 log(3)

98

)
ν3 +

(
−18736399363805057301105217

365752620721564876800
− 99239192119γ

4584195

+
415795517π2

903168
− 117340379713 log(2)

4584195
− 58330935 log(3)

5488

)
ν2 +

(
569935181259668744781113

10837114688046366720

+
63787407527γ

9168390
− 5451429547π2

8128512
+

159943397077 log(2)

18336780
+

8924175 log(3)

3136

)
ν +

578223115π2

3048192

+
6470582647γ

27505170
− 1433006523295407126559

126306697995878400
− 5512455 log(3)

21952
+

53992839431 log(2)

55010340

]
ϕ11 = π

[
c3PN
21

(
−160ν2

27
+

40ν

27

)
+

320c4PN
22 ν

9
−
(

1346662ν

1701
+

3558011

23814

)
log(πfM)

+
657627073445ν4

144171099072
− 1080597828475ν3

26212927104
+

5120314955146397ν2

629110250496
+ π2

(
−10647905ν2

36288
+

45015785ν

145152

− 94390

567

)
+

(
−1346662γ

567
− 430383707398397047

34601063777280
+

26325

49
log(3)− 21009626 log(2)

3969

)
ν − 3558011γ

7938

+
1857541407236594411

276808510218240
− 26325 log(3)

196
− 862549 log(2)

1134

]
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X. Jiménez Forteza, and A. Bohé, Phys. Rev. D93,
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