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ABSTRACT 

Water Distribution Networks are a particularly critical infrastructure for the high energy costs and 
frequent failures. Variable Speed Pumps have been introduced to improve the regulation of water pumps, 
a key for the overall infrastructure performance. This paper addresses the problem of analyzing the effect 

of the VSPs regulation on the pressure distribution of a WDN, which is highly correlated to leakages and 
energy costs. Due to the fact that water network behavior can only be simulated, we formulate the 
problem as a black box feasibility determination, which we solve with a novel stochastic partitioning 
algorithm, the Feasibility Set Approximation Probabilistic Branch and Bound, that extends the algorithm 
previously proposed by two of the authors. We use, as black box, EPANet, a widely adopted hydraulic 
simulator. The preliminary results, over theoretical functions as well as a water distribution network 

benchmark case, show the viability and advantages of the proposed approach. 

1 INTRODUCTION 

Water Distribution Networks (WDNs) are large and complex cyber-physical infrastructures, crucial for 
social, industrial and environmental aspects of our life. Water utilities that manage WDNs must ensure 
the satisfaction of service supply in terms of quality and quantity of water, while simultaneously 
achieving customer performance goals. A recent report by Copeland and Carter (2017), reveals that 

energy consumption by public drinking water and wastewater utilities, which are primarily owned and 
operated by local governments, can represent 30%-40% of a municipality’s energy bill. Also, water 
infrastructures are known to be characterized by frequent leakages that oftentimes lead to failures of the 
network which are difficult to identify and, therefore, recover (Candelieri et al. 2017; Candelieri et al. 
2015a; Candelieri et al. 2015b; Candelieri et al. 2014). It is of uttermost important to operate these 
infrastructures in a way that prevents failures, which clearly has impact on the energy costs.  In this 
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direction, one of the key components responsible for safe operations are the pumps, whose functioning is 
responsible for 80% of the overall energy cost. Pumps are also responsible for the pressure distribution 
across the infrastructure, which is a key to understanding location and diffusion of potential leakages. The 
engineering community has carefully looked into this problem proposing the design of a new technical 
solution to control water pumps, the Variable Speed Pump (VSP). Any VSP can be programmed to run at 
many different rotational speed settings, each with a different related pump curve. Specifically, it is 

possible to regulate the pump speed by controlling the relative speed parameter, e.g., when running the 
pump at half speed, the relative setting is 0.5 (Rossman 2000). Potentially, VSPs can save up to 90% of 
annual energy cost when compared to traditional binary pumps. 

Regulating VSPs to achieve cost savings and efficient pressure distribution is a challenge, due, in 
part, to the difficulty of analyzing the system. Indeed, computationally costly and extensive computer 
simulations are required to analyze the behavior of a WDN. Available simulation packages include: 

EPANet, Finesse, H2Onet, and WaterCAD (Rossman 2000; Balut and Urbaniak 2011; Paluszczyszyn et 
al. 2015; Schmid 2002). In light of this, the goal of this research is to provide a novel methodology that 
makes an intelligent use of simulation to enable water utilities to better understand appropriate working 
conditions for a WDN in terms of pump regulation focusing on the pressure distribution profile. 

1.1 Solution Approach  

In this paper we explore the problem of determining safe working conditions for a large water network as 

a stochastic feasibility determination problem. In particular, we formalize the problem of safe working 

condition characterization as the problem of determining a set of configurations of pump speeds such that 

the profile pressure across the network is appropriately bounded within values defined by the engineering 

experts. Our approach can then be coupled with an optimizer/control algorithm according to the process 

summarized in Figure 1. 

 

Figure 1: Process of pump scheduling optimization. 

2 BACKGROUND 

The background of this research is vast and we focused on two main areas: (1) simulation of WDNs, and 
(2) approaches for the control and analysis of WDNs. In Section 2.1, we introduce in detail an open-
source hydraulic simulation software, EPANet. Then, the algorithms proposed in the literature to solve 
the Pump Scheduling Optimization, are presented in Section 2.2. 

2.1 EPANet 

In this work, we adopted a state-of-the-art hydraulic simulator, EPANet 2.0 (Rossman 2000), an open-

source freeware that is widely adopted in the literature, that describes the detailed workings of a complex 
hydraulic system. The main network components considered within EPANet are pipes, nodes (junctions), 
pumps, valves and storage tanks or reservoirs. With these components, EPANet performs an extended 
period simulation of the hydraulic and water quality behavior. The user can construct the network by 
setting object properties (i.e., pipe diameter, pump efficiency curve). As output, EPANet provides 
information about the flow of water in each pipe, the pressure at each node, the height of water in each 

tank and the concentration of a chemical throughout the network during a user-defined time period 
characterized by a user-defined demand profile. In addition to running the simulation of the various 
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complex hydraulic systems configuration, EPANet can also compute the energy cost for keeping the 
network pumps active during the simulated horizon. 

The minimum set of data needed to create a model of a WDN consists of: (a) coordinates and 
altimetry for each node; (b) demand profile (i.e., a “pattern”) over the simulation time horizon of the 
water request for each consumption node in the network; (c) size and shape of each tank, with an initial 
level; (d) connectivity of the WDN (links connecting nodes); (e) length, diameter and roughness of each 

pipe; (f) efficiency curve of each pump (which can be binary or VSPs); and (g) energy tariff over the 
simulation period. A simple example of a WDN model (named Net1) is presented in Figure 2(a). This 
network has one variable speed pump, one reservoir, one storage tank, and nine nodes. Examples of the 
input to EPANet for hourly demand pattern and pump curve are illustrated in Figure 2(b) and Figure 2(c), 
respectively. Outputs from the EPANet Net1 example are shown in Figure 3. In particular, Figure 3(a) 
illustrates the pressure at two junctions in the network (red and green curves) over a time period of 24 

hours, while Figure 3(b) shows the time series for the tank level. 

   
(a) A simple example of a 
WDN model as represented 
in the EPANet interface. 

(b) An EPANet hourly demand 
pattern. 

(c) An EPANet pump efficiency 
curve. 

Figure 2: EPANet screen shots of inputs to the Net1 example. 

  

(a) Pressure measured at two nodes of the WDN. (b) Tank level. 

Figure 3: EPANet screen shots of outputs from the Net1 example over the simulation time period (24 
hours). 

2.2 Control and Analysis of WDNs 

Most of the operations research literature on operation of WDNs focuses on the Pump Scheduling 

Optimization (PSO) problem (Mala-Jetmarova et al. 2017). PSO tries to identify the optimal pumps’ 
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operating conditions in terms of hourly pump regulation (e.g., speed ratio in case of Variable Speed 
Pumps, on/off in case of binary pumps) in order to identify the regulation that guarantees a water supply 
that meets the demand and minimizes the energy cost. In order to model the network behavior and 
formulate the energy cost several approximation to the highly non-linear flow dynamics of WDNs have 
been proposed. These approximations transform the PSO problem to a classic optimization problem for 
which traditional deterministic algorithms apply. In this direction, (Mala-Jetmarova et al. 2017) reports 

several classes of existing approaches, including linear programming (Pasha and Lansey 2009), nonlinear 
programming (Chase and Ormsbee 1989), and dynamic programming (Sterling and Coulbeck 1975). 
Mathematical programming-based approaches try to formalize the problem by linearizing/convexifying 
the equations regulating flow, thus greatly simplifying the complex water distribution system. As a result, 
most of the applications are limited to solve the optimization problem only on simple water distribution 
networks.  

Meta-heuristic algorithms, such as Genetic Algorithms (Nicklow et al. 2009; Savic et al. 1997), and 
Harmony-Search Algorithm (De Paola et al. 2016) have also been proposed. Most of the approaches do 
not consider the presence of Variable Speed Pumps (VSPs). As a result, the problem is reduced to 
decision variables of binary pump statuses (0 = pump off, 1 = pump on) during a short time interval 
(Mala-Jetmarova et al. 2017). More recently, a Sequential Model Based Optimization (SMBO), more 
precisely Bayesian Optimization (BO) approach has been proposed to solve the PSO problem in both the 

VSPS and ON/OFF pumps settings (Candelieri et al. 2018). Also, as previously mentioned, most of the 
literature focuses on energy cost minimization, while fewer contributions look at the problem from a 
feasibility perspective. Most of the contributions consider the feasibility of pump operation settings by 
means of a penalty function added to the objective function (Biles et al. 2007). The main idea of 
penalization is to try to minimize the true objective while also driving the penalty to zero, thus leading to 
the identification of a feasible, optimal, solution. Lagrangian relaxation is among the most popular 

techniques used in this area (Bertsekas 2014). Although Lagrangian relaxation (Biles et al. 2007) can 
guarantee the identification of the optimal solution, it fails to provide insights into feasibility. This 
motivates us in the direction of studying multiple measures that can lead to characterizing the quality 
working conditions of a WDN. To do so, we propose an adaptation of a stochastic optimization method 
designed for level set approximation (Huang and Zabinsky 2013; Zabinsky and Huang 2018) in order to 
apply it for feasibility determination. Feasibility has been investigated in Szechtman and Yucesan (2008), 

but for Ranking and Selection problem. According to our approach, the output from the feasibility 
determination algorithm is a set of sub-regions with corresponding feasibility measures providing an 
approximation of the true, unknown feasible region. Such an approximation helps practitioners 
understand constraints and possible stressing working conditions/vulnerable nodes within the system, and 
improve the efficiency of the optimization process. 

3 METHODOLOGY 

We formulate the problem of identifying pump configuration with non-dangerous pressure profiles as a 
feasibility determination problem. We propose to adapt a stochastic optimization algorithm, Probabilistic 
Branch and Bound (PBnB) (Zabinsky et al. 2011; Huang and Zabinsky 2013; Zabinsky and Huang 2018), 
which approximates a level set with probabilities of being correct and incorrect (within α error). PBnB 
can be applied to mixed continuous-integer black box problems. While it has good performance in 
optimization settings, it has not been formally applied to feasibility determination, and this will be an 

outcome of this paper. 

3.1 Introduction of Probabilistic Branch and Bound 

The Probabilistic Branch and Bound (PBnB) algorithm is a partitioning-based random search simulation 
optimization approach, which is designed for optimizing noisy and deterministic functions over mixed 
continuous-integer domains (Zabinsky et al. 2011; Huang and Zabinsky 2013; Zabinsky and Huang 
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2018). Aiming to approximate a user-defined target level set, PBnB iteratively maintains, prunes and 
branches sub-regions to approximate the unknown target level set with a probabilistic guarantee of the 
accuracy. When the algorithm terminates, it provides sub-regions with a relatively high concentration of 
high quality solutions, and returns an estimation of the global optima. Many simulation optimization 
algorithms have been proposed but most of the approaches focus on finding location estimates for the 
local/global solution, rather than a set of high quality solutions. PBnB provides a set of solutions that 

capture the target level set, allowing decision makers to make analyze a broader set of good solutions. A 
summary of PBnB is presented in Figure 4. 

 

3.2 PBnB for Feasibility Determination: FSA-PBnB 

The PBnB algorithm assumes the feasible region is defined by box constraints (upper and lower bounds 
on the decision variables) and does not allow general constraints. However, we are interested in solving 
the feasibility determination problem, identifying the feasibility set 𝕏𝐹 inside the box constrained set 𝕏𝐵:  

 

𝕏𝐵 = {𝒙 ∈ ℜ𝑛, 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 = 1, … , 𝑛} 

                                                 𝕏𝐹 = {𝒙 ∈ 𝕏𝐵, 𝜗𝑐
𝑙 ≤ 𝑓𝑐(𝒙) ≤ 𝜗𝑐

𝑢, 𝑐 = 1, … , 𝐶}.                                         (1) 
 
Where 𝑙𝑖 and 𝑢𝑖  are lower and upper bounds on  𝑥𝑖, 𝑖 = 1, … , 𝑛,  𝑓𝑐(𝒙) is the c-th constraint value 

(deterministic) of sample point 𝒙, 𝜗𝑐
𝑙 and 𝜗𝑐

𝑢 in (1) are the lower bound and upper bound reference values 

for the 𝑐𝑡ℎ constraint, and 𝐶 is the number of constraints. In order to identify the feasible set in (1), we 
propose the Feasibility Set Approximation-Probabilistic Branch and Bound (FSA-PBnB) method which 
uses the following metric as the main driver to indicate how far a solution is from feasibility:  

 

𝒟(𝒙) =  √∑ [𝑚𝑎𝑥 (0, 𝑓𝑐(𝒙) − 𝜗𝑐
𝑢, 𝜗𝑐

𝑙 − 𝑓𝑐(𝒙))]
2

𝐶
𝑐=1 .          (2) 

 

The metric introduced in (2) is the Euclidean distance between the point 𝒙 and the feasible frontier. If 

the sample point 𝒙 is feasible, the metric 𝒟(𝒙) =  0.  
For each sampled solution 𝒙, we measure the amount of infeasibility, and instead of just penalizing the 

value (as is traditional in Lagrangian-type approaches), we seek to approximate the set of feasible 
solutions. Approximating the feasible region, with a metric for infeasibility, provides more insight into 
the characterization of a given solution 𝒙.  

To manage the feasibility determination as a standard optimization problem, we can see the feasibility 

measure 𝒟(𝒙) as an objective function. Therefore, the problem becomes a single-objective optimization 

problem, the goal of which is to identify the feasible set of solutions that have 𝒟(𝒙) = 0.  Before 

providing the details of the algorithm, Table 1 contains the main inputs to the FSA-PBnB algorithm. 

 

 

 

Figure 4: Algorithm Flow. 
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Table 1: Notation of the main inputs to FSA-PBnB. 

Notation Description 

𝛼 0 < 𝛼 < 1 , control the quality of the 
feasible set approximation  

δ Define the δ-quantile for the  𝒟(𝒙) lower 
bound 

B Number of disjoint partitions to generate 
when branching any sub-region  

𝕏𝑩 Potential solution set considering only 
box constraints for the control parameters 

 

The main algorithm steps of FSA-PBnB are presented below. 

Step 0. Initialization Input the user defined parameters α, δ, B, 𝕏𝑩 . Initialize the feasible 𝑀 , 

infeasible 𝑃, and current 𝑈 sub-region sets, and the iterate counters: Σ̃𝑘
𝑀 = ∅, Σ̃𝑘

𝑃 = ∅, Σ̃𝑘
𝑈 = 𝕏,

k = 1.  Set 𝛼1 =
𝛼

2
. 

Step 1. Partition. Branch each current region into B disjoint sub-regions. Denote Σ̃𝑘
𝑈′

as the union of 

all newly generated sub-regions after partitioning. 

Step 2. Sample and Rank. Let 𝑁𝑖
𝑘 = ⌈

ln(𝛼𝑘)

ln(1−𝛿)
⌉, and uniformly sample 𝑁𝑖

𝑘 points in each current sub-

regions 𝜎𝑖,𝑘 ∈ Σ̃𝑘
𝑈′

, where 𝑖 is the index of the sub-region and 𝑘 is the index of the algorithm 

iteration. Evaluate the sampled points by the distance function 𝒟(𝒙𝑖,𝑗,𝑘) using (2), where 𝒙𝑖,𝑗,𝑘 ∈

 𝜎𝑖,𝑘  , 𝑖 = 1, … , |Σ̃𝑘
𝑈′

|  and for 𝑗 = 1, … , 𝑁𝑖
𝑘 , and calculate the average distance value for 𝜎𝑖,𝑘 

𝒟̅(𝜎𝑖,𝑘) =
∑ 𝒟(𝒙𝑖,𝑗,𝑘)

𝑁𝑖
𝑘

𝑗=1

𝑁𝑖
𝑘 . Rank the current sub-regions according to 𝒟̅(𝜎𝑖,𝑘) with  𝜎(𝑖) denoting the 

𝑖𝑡ℎ best sub-region, that is, translate regions into feasibility rankings, 𝜎(1) being the most feasible 

sub-region. 𝒟̅(𝜎(1),𝑘) ≤ 𝒟̅(𝜎(2),𝑘) ≤. . . . ≤ 𝒟̅ (𝜎
(|Σ̃𝑘

𝑈′
|),𝑘

). Rank all the sample points 𝒙(𝑖),𝑗,𝑘 ∈

 𝜎(𝑖),𝑘 according to 𝒟(𝒙(𝑖),𝑗,𝑘) with  𝜎(𝑖),(𝑗),𝑘 denoting the 𝑗𝑡ℎ best point in the 𝑖𝑡ℎ best sub-region, 

𝒟(𝒙(𝑖),(1),𝑘) ≤ 𝒟(𝒙(𝑖),(2),𝑘) ≤. . . . ≤ 𝒟 (𝒙(𝑖),(𝑁𝑖
𝑘),𝑘

). From the ranking, define 𝜎(1),𝑘  as the most 

feasible sub-region and 𝒙
(1),(𝑁𝑖

𝑘),𝑘
 as the most infeasible point in 𝜎(1),𝑘. We arbitrarily break the 

ties in case we have multiple sub-regions that return the same value, e.g., 𝒟̅(𝜎(∙),𝑘) = 0. 

Step 3. Identify Feasible Sub-Region. Define the indicator functions ℐ𝑚,𝑘  for 𝑚 =

1, … , |Σ̃𝑘
𝑈′

|, ℐ𝑚,𝑘 = {
1, 𝑖𝑓 𝒟̅(𝜎(𝑚),𝑘) = 0

0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, where ℐ𝑚,𝑘 = 1 indicates 𝜎(𝑚),𝑘 can be categorized 

into feasible set Σ̃𝑘
𝑀. 

Step 4. Prune Infeasible Sub-Region 

Denote the most feasible sub-region 𝜎(1),𝑘 and the most feasible point 𝒙(1),(1),𝑘 as 𝜎𝑘
∗ and 𝒙(1),𝑘

∗ , 

respectively. Define the indicator functions ℐ𝑝,𝑘  for  𝑝 = 2, … , |Σ̃𝑘
𝑈′

| , ℐ𝑝,𝑘 =
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{
1, 𝑖𝑓 𝒟(𝒙(𝑝),(1),𝑘) > 𝒟(𝒙(1),𝑘

∗ ) 

0,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, where ℐ𝑝,𝑘 = 1  indicates 𝜎(𝑝),𝑘  can be categorized into 

infeasible set Σ̃𝑘
𝑃. 

Step 5. Update Current Region. Update the current sub-regions which are not classified as feasible 

or infeasible at the 𝑘-th iteration: 𝛴̃𝑘+1
𝑈 = Σ̃𝑘

𝑈′
 \ {𝜎(𝑚),𝑘 ∶ ℐ𝑚,𝑘 = 1} ∪ {𝜎(𝑝),𝑘 ∶ ℐ𝑝,𝑘 = 1}. Update 

the set of the feasible sub-regions: 𝛴̃𝑘+1
𝑀 = 𝛴̃𝑘

𝑀 ∪ {𝜎(𝑚),𝑘: ℐ𝑚,𝑘 = 1}. 
Terminate FSA-PBnB. If the criteria to terminate PBnB is met, output the sub-regions Σ̃𝑘+1

𝑈  and 

Σ̃𝑘+1
𝑀 . Otherwise, let 𝛼𝑘+1 =

𝛼𝑘

2
, 𝑘 ← 𝑘 + 1, and go back to Step 1.  

4 PRELIMINARY RESULTS 

In the following, we present the results of FSA-PBnB implementation on one test function in different 
dimensions (Section 4.1) and on one simple Water Distribution Network (Section 4.2). 

4.1 Test Functions 

To showcase the performance of FSA-PBnB over generally constrained optimization problems, we apply 

FSA-PBnB to a test function with varying dimensionality. In particular, we use a sinusoidal function in 

different dimensions. This is a well-known single-objective optimization problem function frequently 

used in the global optimization literature (Ali et al. 2005), namely: 

𝑓𝑥(𝒙) =  −2.5 ∏ sin (
𝜋𝑥𝑖

180
) − ∏ sin (

𝜋𝑥𝑖

36
)

𝑛

𝑖=1

𝑛

𝑖=1

.   

 

We added the following constraints: 

 

𝑓𝑥(𝒙) ≤ −2.3, 0 ≤ 𝑥𝑖 ≤ 180, 𝑖 = 1, … , 𝑛. 

 
The global optimum is located in 𝒙∗ = (90, . . . ,90) with a function value 𝑓(𝒙∗) = −3.5. FSA-PBnB 

algorithm parameters were: δ = 0.1, α = 0.25, B = 3.  FSA-PBnB terminates when the number of 
iterations reaches the maximum number K set by the user, the values adopted are displayed in Table 2 as a 
function of the problem dimension. For purposes of the experiment, we also estimated R(TV), the ratio of 
the true volume of the feasible region 𝑉(𝕏𝐹) to the initial volume 𝑉(𝕏𝐵). 

Table 2: Criteria to terminate the algorithm. 

Dimension 2 3 4 

Iteration (K) 10 13 15 

 
For each experiment, we collected the metrics in Table 3. Figure 5 shows the approximated feasible 

region resulting from FSA-PBnB for the 2-dimensional sinusoidal function. The undecided regions (in 
orange) and the maintained regions (in blue) are the result from 10 iterations of FSA-PBnB. The inner 
space of the black dashed line is the true feasible set for the constraint 𝑓𝑥(𝒙) ≤  −2.3. We can observe 
that the more inside the feasible boundary, the larger the blue rectangles are, that is, the regions are 

“maintained” earlier. Also, it is possible to observe how the undecided regions are mostly located at the 
boundaries of the feasible set, hinting that the regions around the boundaries require more iterations as 
more partitioning and sampling are needed to classify the regions. 
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Table 3: Definition of metrics for experiment results. 

Metric Definition 

𝛄̂ 
Estimated probability of the optimal solution being in the 

remaining region (remaining region: Σ̃𝑘
𝑈 ∪  Σ̃𝑘

𝑀) 

T_Pts Total number of points sampled at termination, iteration 𝐾 

R(PV) Ratio of the pruned volume to the initial volume 𝑉(𝕏𝐵) 

R(UV) Ratio of the undecided volume to the initial volume 𝑉(𝕏𝐵) 

R(MV) Ratio of the maintained volume to the initial volume 𝑉(𝕏𝐵) 

R(TV) Ratio of the true volume to the initial volume 𝑉(𝕏𝐵) 

 
We performed 100 macro replications for each experiment. The detailed performance is presented in 

Table 4. For each experiment, the top result for each metric represents the average performance obtained 
across the 100 macro-replications, while the values in parentheses are the coefficients of variation 

associated with the average performance. As an exception, 𝛄̂ does not report the variability, since this 
metric is the Monte Carlo estimate of the probability 𝛄 obtained by averaging the result (1 if optimum is 
remained 0 otherwise) across the macro-replications. 

 

From the numerical results it is possible to observe how, independently from the dimension of the 
problem, the true optimal solution is always included in the remaining region (union of the undecided and 
maintained sub-regions). Observing the metric R(PV), it is clear that the algorithm succeeded in pruning a 
large portion of the region in all the dimensional cases. Further observations can be made by observing 
the ratio R(Remaining)/R(TV). It is important to highlight that R(TV) was approximated by partitioning 
𝕏𝐵 using a grid with controlled granularity. For each hypercube generated by the grid, we evaluate the 

hypercube volume as feasible as long as the center point of the volume is feasible. We then compute the 
ratio of the volume of feasible hyper-cubes against the volume of all the hyper-cubes which is 𝑉(𝕏𝐵). 

Table 4: Results of FSA-PBnB on test function. 

Dimension T_Pts 𝛄̂ R(PV) R(UV) R(MV) R(Remaining)/R(TV) 

2 71.475×103 
(14.38%) 

1 90.54% 
(1.13%) 

1.88% 
(3.43%) 

7.58% 
(1.13%) 

9.46% / 8.77% 
 

3 12.591×105 

(27.48%) 
1 97.43% 

(0.15%) 
1.33% 
(16.83%) 

1.25% 
(6.92%) 

2.58% / 1.92% 
 

Figure 5: Result of FSA-PBnB for 2-dimensional test function. 
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Dimension T_Pts 𝛄̂ R(PV) R(UV) R(MV) R(Remaining)/R(TV) 

4 47.607×105 

(20.63%) 
 

1 99.39 
(0.08%) 

0.5% 
(19.57%) 

0.1% 
(24.17%) 

0.6% / 0.3% 
 

 
From Table 4, we see that the ratio of the remaining volume against the true volume increases as the 

dimension of the problem grows, i.e., the algorithm accuracy is affected by the problem dimension. We 
also recall that R(remaining) consists of R(UV) and R(MV). By looking into the portion of R(UV) and 
R(MV) in R(remaining), the 2-dimensional case shows that R(MV) makes up 80% and R(UV) makes up 

20% of R(Remaining) at iteration 10. In the 3-dimensional case, at iteration 13, R(MV) makes up 52% 
and R(UV) makes up 48% of R(Remaining). These ratios suggest that the majority of the feasible regions 
are captured in the maintained regions. However, in the 4-dimensional case, R(MV) makes up only 17% 
of R(remaining), that is, R(UV) may contain a large portion of infeasible solutions. This reflects the 
increasing complexity of the function which translates into the need for a larger effort to lead to 
identification.  

4.2 Application to a Water Distribution Network: the Net1 Example 

In this section, we present preliminary results from the application of FSA-PBnB to a Water Distribution 
Network (WDN) example. In order to run FSA-PBnB, we exposed the simulator as a web service and we 
created the connection between the simulator and algorithm, which was programmed in Python 3.6. 
Preliminary results were obtained for the simple network case known as Net1 (refer to Figure 1). Results 
for Net1 were gathered for a 2 hour simulated time horizon, with two time slots of 1 hour each, where the 

variable pump speed can take on a value between zero and one for each hour, i.e., 𝑥𝑖 ∈ [0,1] for 𝑖 = 1,2. 
The electricity tariff is set to 0.0244 [$/kWh]. For the Net1 Example, feasibility is entirely determined by 
the pressure at each node of the network. EPANet tracks the pressure at each node over a time period and 
returns a unique pressure value for each node after every hour of simulated time. As an example, a 
simulation of two hours on Net1 results in a 9 × 2 pressure matrix, each column corresponding to an hour 
and each row corresponding to a node in the network. It is important, as specified within the manual of 

EPANet for this network, to guarantee that the minimum pressure across all nodes of the network is larger 
than the lower bound 𝜗𝑐

𝑙 = 0 [Pa], resulting in two constraints (one for each time slot). 
To construct a pressure benchmark for the Net1 as a function of the VSPs speed settings, we ran over 
10,000 regulations of the variable speed pump (uniformly sampled in the interval (0,1) for the two time-
slots referring to the regulations during the first and second hour, respectively).  
Formally, the constraint values of each sample point 𝒙 ∈ [0,1] × [0,1] can be defined as: 

 

 𝑓(𝒙) =  [
𝑓1(𝒙)

𝑓2(𝒙)
] . (3) 

 

Where 𝑓(𝒙) = min
𝑛=1,...,𝑁

𝓅𝑡,𝑛, where 𝓅𝑡,𝑛 is the pressure at the 𝑛-th node during time slot 𝑡 = 1,2 and 

𝑁 = 9 is the number of nodes in the network. From (3), we derive the Euclidean Distance from the lower 

bound 𝜗𝑐
𝑙 = 0 [Pa] as: 𝒟(𝒙) = √∑ ((𝜗𝑐

𝑙 − 𝑓𝑐(𝒙))+)
22

𝑐=1 .  

When this aggregated pressure measure satisfies 𝒟(𝒙)  = 0, the corresponding pump speed 
configuration is infeasible. The 𝒟(𝒙) projected plot resulting from the simulation study is shown in 
Figure 6, where “x_time_slot1” and “x_time_slot2” represent each control value set for the pump in the 

two hour long time-slots of 𝒙 ∈ [0,1]  × [0,1] , respectively. The “Pressure_distance” refers to the 
aggregated pressure measure. It is apparent that most of the pump configurations end up being critical 
(𝒟(𝒙) > 0) and that feasible configurations can quickly turn into bad solutions with small variations in 
the control decisions. 
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Figure 6 shows the projection of the distance measure onto x1_time_slot1and x2_time_slot2, the blue 
dots refer to the configurations satisfying 𝒟(𝒙) = 𝟎 and the red dots those such that 𝒟(𝒙) > 𝟎. Only 
3,876 out of 10,000 points are feasible from the simulation study. Hence, the Monte Carlo estimate of the 
percentage of the true feasible region to the initial box is 39%. Figure 7 and Figure 8 present the results 
obtained by FSA-PBnB at the 6th and 7th iteration, respectively, of FSA-PBnB. The feasible sub-regions 
are in blue, infeasible in red, and undecided in orange. From Figure 7 and Figure 8, it can be observed that 

the leftmost red rectangle is pruned at the 1st iteration, which indicates the search space is reduced by 1/3, 
saving substantial sampling effort over the following iterations. Also, we can see that the approximation 
of the feasible region, (in blue) in Figure 7, is close to the one in Figure 6. Figure 7 shows that, at iteration 
6, after 3,707 simulation runs have been executed, the algorithm identifies the profile of the feasibility. 
The feasible region is small compared to the overall search space and the undecided regions form an 
orange belt which can be represented as the feasibility boundary in terms of the pressure. After the 7th 

iteration, the number of simulation runs grows up to 8025 but only a small part of undecided sub-regions 
shifts to the maintained/pruned sub-regions. 
 

Table 5 shows the quantitative results related to Figure 8. Through the comparison of R(Remaining) 
and R(TV), we can see that the approximated feasible set by FSA-PBnB is very close to the true feasible 
region. 

Table 5: Experiment results on Net1. 

Iteration T_Pts R(PV) R(MV) R(UV) R(Remaining)/R(TV) 

6 3,707 59% 36% 5%  41% / 39% 

7 8,025 60% 38% 2% 40% /39% 

5 CONCLUSIONS 

We propose FSA-PBnB extending Probabilistic Branch and Bound (PBnB) for the solution of a black box 
feasibility determination problem. This algorithm allows us to tackle a pressing problem in the analysis of 
complex water distribution networks, i.e., the analysis of feasible working conditions in water networks 

with Variable Speed Pumps. From the results on a test function in different dimensions as well as the 
results from a benchmark example, the largest portion of the infeasible region is identified very early in 
the search thus making the approach very promising. Nevertheless, the results suggest that a better 
management of the budget later in the search could help in dramatically reducing the amount of 
simulations required. This research only considers the pressure measure to evaluate the feasibility of 
pump operation. However, to achieve long-term planning as well as short-term (hourly) control of 

networks, it is necessary to explore more feasibility measures, such as, load and supply. Also, more 

 

Figure 6: Projection of pressure 
distance.  

 

Figure 7: Approximation of 
feasible region (iteration=6). 

 

Figure 8: Approximation of 
feasible region (iteration=7). 
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effective partitioning schemes different from hyperplane partitioning are being investigated. In this 
direction, advanced machine learning techniques can be applied to create non linear separation planes 
thus possibly improving the performance of the overall algorithm. Applying the algorithm to different 
setups is also interesting such as investigating risk scenarios for critical infrastructures where the control 
dimensions are not only regulation but also external uncontrollable factors. Such an application will make 
the work impactful in important areas such as disaster response. 
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