
NIPBL: a new player in myeloid cells differentiation

by Mara Mazzola, Gianluca Deflorian, Alex Pezzotta, Laura Ferrari, Grazia Fazio, 
Erica Bresciani, Claudia Saitta, Luca Ferrari, Monica Fumagalli, Matteo Parma, 
Federica Marasca, Beatrice Bodega, Paola Riva, Franco Cotelli, Andrea Biondi, Anna Marozzi,
Gianni Cazzaniga, and Anna Pistocchi

Haematologica 2019 [Epub ahead of print]

Citation: Mara Mazzola, Gianluca Deflorian, Alex Pezzotta, Laura Ferrari, Grazia Fazio, Erica Bresciani,
Claudia Saitta, Luca Ferrari, Monica Fumagalli, Matteo Parma, Federica Marasca, Beatrice Bodega, 
Paola Riva, Franco Cotelli, Andrea Biondi, Anna Marozzi, Gianni Cazzaniga, and Anna Pistocchi. 
NIPBL: a new player in myeloid cells differentiation. 
Haematologica. 2019; 104:xxx
doi:10.3324/haematol.2018.200899

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science.
Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that
have completed a regular peer review and have been accepted for publication. E-publishing
of this PDF file has been approved by the authors. After having E-published Ahead of Print,
manuscripts will then undergo technical and English editing, typesetting, proof correction and
be presented for the authors' final approval; the final version of the manuscript will then
appear in print on a regular issue of the journal. All legal disclaimers that apply to the
journal also pertain to this production process.

 Copyright 2019 Ferrata Storti Foundation.
Published Ahead of Print on January 10, 2019, as doi:10.3324/haematol.2018.200899.



1 

 

NIPBL: a new player in myeloid cells differentiation  

 

Mara Mazzola1, Gianluca Deflorian2, Alex Pezzotta1, Laura Ferrari2, Grazia Fazio3, Erica 

Bresciani4, Claudia Saitta3, Luca Ferrari1, Monica Fumagalli5, Matteo Parma5, Federica Marasca6, 

Beatrice Bodega6, Paola Riva1, Franco Cotelli7, Andrea Biondi3, Anna Marozzi1, Gianni Cazzaniga3 

and Anna Pistocchi1 

 

1Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di 

Milano, L.I.T.A., Segrate (MI), Italy. 

2 Istituto FIRC di Oncologia Molecolare, IFOM, Milano, Italy. 

3 Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia 

Verga, Monza (MB), Italy. 

4 Oncogenesis and Development Section, National Human Genome Research Institute, National 

Institutes of Health, Bethesda, MD, USA.  

5 Haematology Division and BMT Unit, Ospedale San Gerardo, Monza (MB), Italy. 

6 Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy.  

7Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy. 

 

Statement of equal authors’ contribution: M.M. and G.D.F. equally contributed to this work  

 

Running head: NIPBL/NPMc+ interplay in myeloid differentiation 

 

Correspondence: Anna Pistocchi: anna.pistocchi@unimi.it 

 

Abstract word count: 206 

Main Text word count: 4015 



2 

 

Tables: 0 

Figures: 6 

Supplemental file: 1 

 

Acknowledgements 

We thank Monteiro R., (University of Birmingham), for the Tg(CD41:GFP/kdrl:dsRED) zebrafish 

line, N. Bolli, (University of Milan) for useful discussion of the data, the cytometry desk staff 

(IFOM, Milan) for technical help in FACS experiments, Crosti M.C. of the INGM FACS-sorting 

facility for sorting experiments and Spreafico M. and Cafora M. (University of Milan) for their 

priceless support in experimental procedures. This work was supported by the AIRC, Associazione 

Italiana per la Ricerca sul Cancro (MFAG#18714). The funders had no role in study design, data 

collection and interpretation, or the decision to submit the work for publication. 

 

  



3 

 

Abstract 

 

NUCLEOPHOSMIN1 (NPM1) is the most frequently mutated gene in acute myeloid leukemia. 

Notably, NPM1 mutations are always accompanied by additional mutations such as those in cohesin 

genes RAD21, SMC1A, SMC3, STAG2 but not in the cohesin regulator NIPBL. In this work, we 

analyze a cohort of adult patients with acute myeloid leukemia and NPM1 mutation and we observe 

specific reduction in the expression of NIPBL but not in other cohesin genes. In our zebrafish 

model, the overexpression of the mutated form of NPM1 also induced the down-regulation of 

nipblb, the zebrafish orthologue of the human NIPBL. To investigate the hematopoietic phenotype 

and the interaction between mutated NPM1 and nipblb, we generate a zebrafish model with nipblb 

down-regulation that shows an increased number of myeloid progenitors. This phenotype is due to a 

hyper activation of the canonical Wnt pathway: the rescue of myeloid cells blocked in an 

undifferentiated state is possible when the Wnt pathway is inhibited by ddk1b mRNA injection or 

indomethacin administration. Our results reveal for the first time a role for NIPBL during zebrafish 

hematopoiesis and suggest that NIPBL/NPM1 interplay may regulate myeloid differentiation in 

zebrafish and humans through the canonical Wnt pathway and that dysregulation of these 

interactions may drive to leukemic transformations. 
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Introduction 

 

Acute Myeloid Leukemia (AML) is a hematologic aggressive malignancy of bone marrow 

characterized by the accumulation of immature myeloid blasts defective in their differentiation and 

function.1,2 The advances in cancer genomics results in the identification of relatively few recurrent 

somatic mutations giving rise to human AML, with an average of 5 mutations in each case of de 

novo AML.3 These somatic mutations, that collectively determine the malignant phenotype, are 

serially acquired in clones of self-renewing hematopoietic stem cells (HSCs), termed pre-leukemic 

HSCs.4 The gene mutated in HSCs that are relevant for AML pathogenesis have been divided in 

nine categories, including transcription-factor fusions, NUCLEOPHOSMIN (NPM1), tumor-

suppressor genes, DNA-methylation–related genes, signaling genes, chromatin modifying genes, 

myeloid transcription-factor genes, cohesin-complex genes and spliceosome-complex genes.5  

NPM1, the most frequently mutated gene in AML, is a phosphoprotein that normally resides into 

the nucleolus.6,7 More than fifty different reported human mutations in NPM1, result in aberrant 

cytoplasmic translocation of the protein, named NPMc+, that functions as an oncogene in vitro8 and 

has a role in aberrant hematopoiesis in vivo. Indeed, murine models expressing NPMc+ in the 

hematopoietic lineage develop myeloproliferative disease9 and leukemia10,11 while the forced 

expression of human NPMc+ in zebrafish causes an increase in primitive early myeloid cells and 

definitive hematopoietic stem cells (HSCs).12,13 It has also been demonstrated, with similar results 

in zebrafish and human AML blasts, that the expression of NPMc+ activates canonical Wnt 

signaling providing insight into the molecular pathogenesis of AML bearing NPM1 mutations.12 

Indeed, the canonical Wnt/β-catenin pathway has been shown to be crucial for the regulation of 

HSCs proliferation, differentiation and apoptosis.14  

Recently, it has been found a strong correlation between mutations in cohesin genes and NPM1 

mutations but they seem to not affect AML patient prognosis.15 The cohesin complex is composed 

by different proteins that form a complex (SMC1, SMC3, RAD21, STAG1 and STAG2), and by 
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additional regulator proteins (NIPBL, MAU2, ESCO1, ESCO2 and HDAC8). This multifunctional 

complex regulates the cohesion of sister chromatids during cell division, but also gene transcription 

and chromatin architecture. Recently, the genes of the cohesin complex have been found mutated in 

almost 10% of patients with myeloid malignancies, while in an additional 15% of patients has been 

found a reduced expression of cohesin transcripts, suggesting a role for the cohesin-complex in the 

pathogenesis of AML.5 In the patient cohort of Thota and colleagues 15, the most frequently mutated 

genes of the cohesin complex are STAG2 (5.9%), RAD21 (2%), and SMC3 (2%), whereas mutations 

in the other cohesins are less than 1%. Somatic mutations in cohesin subunits are mutually 

exclusive and result in predicted loss-of-function phenotype being mainly nonsense and frameshift 

mutations.16 It is to note that in AML neoplasms but not in other kind of tumors17, cohesin 

mutations are associated with a normal karyotype in malignant cells, therefore the role for cohesins 

in the tumor development is not correlated with their function in sister chromatid cohesion rather 

than with their role in mediating DNA accessibility to gene regulatory elements.15
 Indeed, in vitro 

and in vivo models for cohesin haploinsufficiency display a delay in the differentiation of HSCs that 

are expanded in an immature state18–21. 

In this work, we have studied the expression of cohesin genes in a cohort of adult AML patients and 

found a specific down-regulation of NIPBL when NPM1 is mutated. Interestingly, we found that 

also in our zebrafish model for NPMc+ expression, nipblb was down-regulated. The zebrafish 

(Danio rerio) is a powerful model to study hematological diseases as it shares several hematopoietic 

genes with higher vertebrates, and mutations in human leukemia causative genes disrupt normal 

hematopoiesis in zebrafish, suggesting a functional conservation during evolution. Our zebrafish 

model with nipblb-loss-of-function showed dysregulation of myeloid cell differentiation with 

increased number of myeloid precursors and a decrease in myeloid mature cells. The hematopoietic 

phenotype presented by nipblb-loss-of-function zebrafish embryos recapitulated the myeloid defects 

presented by embryos with NPMc+ overexpression and it was due to the hyper activation of the 
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canonical Wnt pathway. Indeed, the overexpression of the dkk1b Wnt inhibitor or by indomethacin 

treatment rescued the phenotype. 

Our study provides new insights into the molecular mechanisms underlying NIPBL function, 

identifying the canonical Wnt pathway as one of its target and indicating it as a player with NPMc+ 

in AML development. Using the well-suited zebrafish model, we established a platform to further 

investigate the mechanisms through which NPMc+ and NIPBL might interact and contribute to 

leukemic transformation. 
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Methods  

 

Patients 

Bone Marrow (BM) diagnosis material of N=40 consecutive adult patients affected by AML or 

healthy subjects were collected and characterized as described in Supplementary Methods. Patient’s 

material has been collected after obtaining Informed Consent ASG-MA-052A approved on May 8th 

2012 by Azienda San Gerardo (ASG).  Clinical features have been reported in Supplementary Table 

S1. Human material and derived data has been used in accordance with the Declaration of Helsinki. 

 

Animals 

Zebrafish (Danio rerio) embryos were raised and maintained according to international (EU 

Directive 2010/63/EU) and national guidelines (Italian decree 4th March 2014, n.26) on the 

protection of animals used for scientific purposes as described in Supplementary Methods.  

 

Reverse transcription-PCR and real-time quantitative-PCR assays  

Human and zebrafish embryos RNA extraction was performed using TRIZOL reagents (Life 

Technologies, Carlsbad, CA, USA), following the manufacturer’s protocol. Quantitative RT-PCR 

experiments on human samples were performed with Universal Probe Library system (Roche 

Diagnostics, Basel, Swiss) as described in Supplementary Methods. Primers and probes are reported 

in Supplementary Table S2.  

 

Western Blotting 

Protein extracts were prepared, quantified and loaded as described in Supplementary Methods.  

Antibodies were listed in Supplementary Table S3. Imaging acquisition has been done with the 

Alliance MINI HD9 AUTO Western Blot Imaging System (UVItec Limited, Cambridge) and 
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analyzed with the related software. 

 

In situ hybridization and immunofluorescent analyses. 

Whole mount in situ hybridization (WISH) experiments, were carried out as described by Thisse 

and colleagues22 and in Supplementary Methods. Picture were acquired with the photo camera 

Leica DFC480 (Leica, Wetzlar, Germany). Immunostaining was performed as described23. 

Antibodies list in Supplementary Table S3. Images were acquired as described in Supplementary 

Methods.  

 

Sudan Black staining 

Sudan Black staining was performed as described in24  and in Supplementary Methods. 

 

FACS analyses 

Embryo dissociation was performed as described in25. FACS analysis were performed as described 

in Supplementary Methods from Tg(CD41:EGFP) zebrafish embryos at 3 dpf or Pu.1 stained cells 

derived from embryos at 3 dpf.  

 

Injections and indomethacin treatment 

Injections were carried out on 1- to 2-cell stage embryos. Morpholinos were injected as described in 

Supplementary Methods. Human NPM1 and NPMc+ and zebrafish dkk1b mRNAs were generated 

as previously described12 and injected as described in Supplementary Methods. Indomethacin 

(indomethacin, Sigma-Aldrich) treatment was done as described in.26 

 

Confocal imaging 

Previously immunostained 3 dpf embryos were equilibrated and mounted in 85% glycerol solution 

in PBS and imaged using a “TCS-SP2” confocal microscope (Leica), with 40X oil immersion 
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objective, 488 nm argon ion and 405 nm diode lasers. For each sample, single stack images were 

acquired. 

 

Statistical analyses 

For RT-qPCR experiments, data were statistically analyzed applying one-way ANOVA- or t-tests, 

setting p≤0.05 (*), p≤0.01 (**), and p≤0,001 (***) as significant.27 Data were analyzed using the 

comparative ΔΔCt method both t test and SD values refer to samples triplicates. In zebrafish at least 

three different experiments were done for each analysis. For cell count and phenotypical analyses, 

statistical analysis was performed by Chi square test, with Yates correction when needed. 
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Results 

Cohesin expression in subgroups of adult AML patients carrying mutation in NPM1 and in a 

zebrafish model of NPMc+ expression. 

Recently it has been reported that somatic mutations in cohesin genes are frequently associated with 

NPM1 mutations28, but not with other common AML mutations; however, the expression levels of 

cohesins has never been analyzed. Therefore, we decided to investigate the presence of alterations 

in the expression of cohesin genes in a cohort of N=40 adult AML patients stratified into two 

homogeneous molecular subgroups according to the absence or presence of NPM1 mutation 

(NPMc+). Each subgroup was analyzed by means of RT-qPCR analyses for the expression of the 

cohesin genes: SMC1A, SMC3, NIPBL and RAD21(Figure 1A-D). Interestingly, only NIPBL 

showed a significant decreased expression in AML patients carrying NPM1 mutation (Figure 1B). 

Conversely, when the same patients were divided into subgroups depending on the 

presence/absence of FLT3/ITD mutation, none of the cohesin gene analyzed was differently 

expressed between the two subgroups (Suppl. Figure S1).  

We further analyzed by RT-qPCR the expression of cohesin genes in a zebrafish model with human 

NPMc+ overexpression, previously generated and well characterized12,13. The injection of 100 

pg/embryo of NPMc+ transcript in zebrafish embryos, led to a significant down-regulation of nipblb 

in the whole embryo at 3 dpf, while the expression of other cohesin genes analyzed was unaltered or 

even increased (Figure 1E). We performed a stage-dependent analysis to dissect at which 

developmental stage the overexpression of NPMc+ started to down-regulate nipblb expression in 

the whole embryo. We observed a significant decrease of nipblb expression starting from 48 hpf, 

while no decrease between controls and NPMc+ mRNA injected embryos were observed at 24 and 

36 hpf (Figure 1F). To further verify that the down-regulation of zebrafish nipblb was strictly 

dependent to the forced expression of NPMc+, we injected different doses of the NPMc+ transcript 

(25 pg/embryo, 75 pg/embryo and 125 pg/embryo) and we showed a significant inverse correlation 

between nipblb reduced expression and NPMc+ increase (Figure 1G). Moreover, by Western blot 
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analyses on embryos at 3 dpf, we confirmed that at the dose of 100pg/embryo, the injection of 

NPMc+ mRNA determined a reduction of the Nipbl protein in comparison to control injected 

controls (Figure 1H). 

 

nipblb-loss-of-function and NPMc+ overexpression generates hematopoietic defects in zebrafish 

embryos. 

Since NIPBL is down-regulated in AML patients in association with NPM1 mutation, we wonder 

whether nipblb knock-down might generate defects in myeloid cells differentiation. To investigate 

this hypothesis, we performed the down-regulation of nipblb in zebrafish by injecting a nipblb 

antisense oligonucleotide morpholino targeting the ATG region (nipblb-MO), as previously 

described for the knock-down of Nipbl protein29,30. In AML patients the HSCs and immature 

myeloid blasts are increased. Therefore, to screen for myeloid defects resembling AML patient 

conditions, we analyzed the same cell populations in nipblb-MO injected embryos. Knock-down of 

nipblb did not lead to significant differences in the HSCs, as shown by confocal images of the 

Caudal Hematopoietic Tissues (CHT) of Tg(CD41:GFP) embryos31 at 3 dpf (Figure 2A-C) and by 

cytofluorimetric analyses (FACS) to quantify the CD41:GFPlow HSCs cells in comparison to 

controls (Figure 2G). On the other hand, at the same stage, nipblb-MO injected embryos showed an 

increase of myeloid progenitors, positive for the Pu.1 antibody (Figure 2H-I; FACS in K-L-N). 

These observations were also confirmed by means of Whole Mount in situ-hybridization (WISH) 

techniques with the HSC marker cmyb and the myeloid progenitor marker spi1b with relative 

quantifications of the observed phenotypes, and RT-qPCR analyses (Suppl. Figure S2). Moreover, 

to verify if the increased myeloid cells were blocked in an undifferentiated state, we performed a 

Sudan black staining to visualize mature myeloid cells24. At 4 dpf we observed a reduction of 

neutrophils (Figure 2O-P).  
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It has been previously reported that the forced expression of human NPMc+ in zebrafish embryos 

increased HSCs population at 30-36 hpf13. To further analyze whether the hematopoietic defects are 

still present later during hematopoiesis and are extended to myeloid cells, we injected the embryos 

with NPMc+ mRNA (100 pg/embryo) and analyze the hematopoietic phenotype. The CD41:GFPlow                     

cells in the CHT of NPMc+-injected embryos were expanded in comparison to controls (Figure 2A-

C; FACS in D-F-G), as well as the Pu.1 positive myeloid precursors (Figure 2H-J; FACS in K-M-

N). Sudan black staining visualized a decrease in mature myeloid cells in NPMc+ injected embryos 

in comparison to controls (Figure 2O-Q). Moreover, the expression levels of cmyb and spi1b were 

tested also by WISH and RT-qPCR techniques which corroborated our previous findings (Suppl. 

Figure S3). 

To confirm the specificity of the hematopoietic defects obtained with nipblb-MO injection, we used 

a second morpholino targeting the 5’UTR region of nipblb (5’UTRnipblb-MO), previously used 

and validated29. The injection of this second morpholino reduced the Nipbl protein levels as 

observed by Western blot analyses, confirming its efficacy in blocking protein production. It also 

recapitulated the hematopoietic defects observed with the injection of the ATG morpholino, 

showing an increased number of myeloid precursors positive for spi1b and a decreased number of 

mature myeloid cells. Moreover, when co-injected at subcritical doses, the two nipblb-MOs 

cooperated to induce the myeloid phenotype (Suppl. Figure S4). 

 

Nipbl downregulation and NPMc+ overexpression both induce the hyper activation of the 

canonical Wnt pathway  

Previous experimental and clinical evidences suggested a close correlation between AML 

development and canonical Wnt pathway dysregulation, especially in patients with NPM1 

mutation12. To examine whether nipblb and NPMc+ regulate the activation status of canonical Wnt 

pathway, we used the Tg(TOPdGFP) transgenic line that bears the GFP reporter gene under the 

control of four enhancers and the basal promoter of lef1, a β-catenin dependent transcription 
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factor32. Tg(TOPdGFP) embryos were injected with nipblb-MO or NPMc+ mRNA and the 

expression of gfp and axin2, one of the direct targets of activated β-catenin, were analysed by RT-

qPCR at 3 dpf33. Both genes were upregulated following both nipblb knock-down or NPMc+ 

overexpression, indicating a hyper activation of the canonical Wnt pathway (Figure 3A-B). To 

determine whether the Wnt signaling was enhanced specifically in hematopoietic cells, confocal 

images of the CHT of Tg(TOPdGFP) embryos were analyzed (Figure 3C). GFP+ cells were 

increased either in nipblb-MO and NPMc+ injected embryos (10 increased/10 scored). Specifically, 

nipblb down-regulation almost duplicated the number of GFP+ cells in the CHT (N=27+5) in 

comparison to controls (N14+3), (Figure 3D-E, quantification in I). Also NPMc+ overexpression 

increased the number of GFP+ cells in the CHT (N=20+4) in comparison to controls (N=14+3), 

(Figure 3D-G, quantification in I). To further demonstrate that the increase of GFP+ cells in the 

CHT was due to hyper activation of the canonical Wnt pathway, we injected the Wnt inhibitor 

dkk1b mRNA (50 pg/embryo)12. We validated the efficiency of dkk1b mRNA injection as the GFP+ 

cells were diminished or absent in the hindbrain ventricle and in the CHT of the Tg(TOPdGFP) 

embryos in comparison to controls (Suppl. Figure S5). The co-injection of dkk1b in nipblb-MO or 

NPMc+ mRNA injected embryos rescued the number of GFP+ cells in the CHT (10 rescued/10 

scored for both) or even diminished the GFP+ cells (N=8+3 for nipblb-MO/dkk1b; N=10+3 for 

NPMc+/dkk1b) (Figure 3F-H, quantification in I). Moreover, using the Wnt reporter line 

Tg(TOPdGFP) we verified that, following nipbl-MO injection, the canonical Wnt pathway 

appeared downregulated at 24 hpf but was then hyper activated at 48 hpf (Suppl. Figure S6). This 

observation confirmed our previous work on a zebrafish model for nipbl-loss-of-function where we 

observed the dowregulation of the canonical Wnt pathway at 24 hpf and we correlated this with 

neurological defect presented by patients affected by Cornelia de Lange Syndrome (CdLS)30.  

Having seen a hyper activation of the canonical Wnt pathway in our zebrafish model with nipbl 

downregulation, we analyzed it also in AML human patients by measuring the expression of 

AXIN2, previously used as a reporter of canonical Wnt pathway activation in AML patients12. We 
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did not observe a significant increase in AXIN2 expression in our cohort of AML patients with 

NIPBL downregulation (NIPBL<1) in comparison to those with normal or increased expression of 

NIPBL (NIPBL>1) (Suppl. Figure S7). Further analyses in major cohorts will be necessary to 

underline the correlation between NIPBL expression and canonical Wnt pathway. 

 

 

Hyper activation of the canonical Wnt signalling in HSCs cells impairs myeloid differentiation. 

To dissect which hematopoietic cell type in the CHT showed a hyper activation of the canonical 

Wnt pathway following nipblb-MO or NPMc+ mRNA injections, we sorted the CD41:GFPlow cells 

(0.8% ctrl, 1% nipblb-MO, 1.1% NPMc+) from 3 dpf embryos injected with nipblb-MO or NPMc+ 

mRNA and we observed a modest increase in axin2 expression in comparison to CD41:GFPlow cells 

from controls (Figure 4A-A’’’). Moreover, we performed immunofluorescence staining with the 

Active β-catenin (Active β-cat) antibody for the Wnt pathway and GFP antibody for HSCs cells of 

the CD41:GFP embryos. An increased number of double positive cells GFP/Active β-cat was 

present in the CHT of embryos at 3 dpf injected with nipblb-MO or NPMc+ mRNA (5 double 

positive cells indicated by the arrows in the CHT of Figure 4C’’-D’’) in comparison to controls (2 

double positive cells indicated by the arrows in the CHT of Figure 4B’’), demonstrating that the 

Wnt pathway was activated specifically in HSCs cells (Figure 4B-D’’).  

The myeloid differentiation defects presented by nipblb-MO and NPMc+ injected embryos at 3 dpf 

were caused by the hyper activation of the canonical Wnt pathway. In this regard, the inhibition of 

this pathway performed both with dkk1b mRNA injection or by treatment with the Wnt 

pharmacological inhibitor indomethacin,26 rescued the hematopoietic phenotype. Indeed, by WISH 

we showed that the increased number of myeloid precursors positive for spi1b observed in nipblb-

MO or NPMc+ mRNA injected embryos, returned to levels comparable to controls (Figure 5A-G).  
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NPMc+ and nipblb cooperation in the hyper activation of the canonical Wnt signaling and myeloid 

defects 

Our evidences so far showed that NPMc+ down-regulates NIPBL, both in human AML patients and 

in zebrafish. We also demonstrated that dysregulation of both genes impairs myeloid differentiation 

through the hyper activation of the canonical Wnt pathway. To further address a possible 

cooperation between the two genes, we performed dose-response assays. We injected subcritical 

doses of nipblb-MO (0,6 pmol/embryo) or NPMc+ mRNA (50 pg/embryo) that singularly did not 

cause an increased in GFP+ cells in the CHT of Tg(TOPdGFP) embryos or in the spi1b positive 

myeloid progenitors (Figure 6B-D) in comparison to controls (Figure 6A, quantification in E). 

When co-injected, subcritical doses of nipblb-MO/NPMc+ recapitulated the phenotype previously 

observed by means of full doses injections, with an increased number of GFP+ cells in the CHT of 

the Tg(TOPdGFP) embryos and an enhanced expression of spi1b (Figure 6F-I, quantification of the 

phenotypes in J), indicating a cooperation between NPMc+ and nipblb down-regulation. 
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Discussion 

In this work, we rely on the observation that, in addition to the cohesin mutations detected in 10% 

of patients with myeloid malignancies, low expression of cohesin genes was present in an additional 

15% of patients showing similar expression signatures as those with somatic cohesin mutations28. 

Therefore, we investigated the expression of cohesin genes in our cohort of 40 adult AML patients 

divided for the absence/presence of NPM1 mutation. We chose to analyze NPM1 mutations as they 

are pivotal in AML but likely insufficient by their self to cause malignant transformation, requiring 

the co-occurrence of other mutations such as FLT3-ITD or RAS9,34. In addition, it has been already 

reported a correlation between NPM1 mutations and somatic mutations in cohesin genes,28 but the 

specific loss-of-function of cohesins has never been investigated in association with NPM1 

mutations. Among the cohesin genes analyzed in our AML adult patient cohort, we found that only 

NIPBL showed a lower expression when NPM1 was mutated. NIPBL is a regulator of the cohesin 

complex deputed to the loading of the complex onto the double-strand DNA. However, previous 

studies suggested a specific activity of NIPBL in gene transcription regulation and NIPBL binding 

sites, which do not overlap with those of cohesins, were in vitro identified.35 Therefore, we decided 

to analyzed the effects of NIPBL down-regulation on myeloid differentiation. Zebrafish represents 

an ideal model for the study of cohesin genes function as it is possible to generate knock-down with 

the injection of specific oligonucleotide antisense morpholino.30 Therefore, we investigate the 

effects of nipblb-loss-of-function during zebrafish definitive hematopoiesis and we observed an 

increased number of myeloid progenitors. Similar results have been obtained in different models of 

cohesins loss-of-function. For example, in murine models the use of shRNAs against Stag2 and 

Smc3 generated a maturation block, delayed differentiation, and enhanced renewal of HSCs, similar 

to myeloid neoplasms.36 In another work, RNAi mouse models have created with inducible knock-

down of Rad21, Smc1a and Stag2 leading to a shift in the hematopoietic stem compartment, an 

increased replating capacity and, over time, the development of clinical features of 



17 

 

myeloproliferative neoplasms.18 NIPBL is not a recurrently mutated gene in AML such as STAG2, 

SMC3, SMC1A, and RAD21.28 In humans, heterozygous loss-of-function mutations of NIPBL cause 

the Cornelia de Lange Syndrome (CdLS).37 Nevertheless, CdLS patients with mutations in NIPBL 

or in other cohesin genes are not predisposed to myeloid neoplasms. Rare cases of leukemia have 

been reported in CdLS probably caused by other physiological aspects of the pathology.38–40 The 

mutations in cohesin genes responsible for CdLS and leukemia insurgence are considered different 

for their physio-pathological output: cohesin mutations in tumors occur in somatic an adult cells 

while germline cohesin mutations in CdLS patients occur in an embryonic tissue. Moreover, 

cohesin mutations in cancer might not trigger, but contribute to tumorigenesis only with other 

mutations such as TET241, NPM19,42, DNMT3A43 or FLT3-ITD44. As a matter of fact, we speculate 

that the decrease in NIPBL expression observed in AML patients, might not be due to specific 

somatic mutations occurred at the gene level, rather than a secondary effect caused by genetic 

lesions arisen elsewhere (i.e. NPM1). 

In nipblb-loss-of-function embryos we observed defects in myeloid differentiation with increased 

number of myeloid progenitors and decreased myeloid mature cells. These hematopoietic defects 

share similarities with the myeloproliferative phenotype of NPMc+ embryos12,13. Indeed, we also 

confirmed that the forced expression of NPMc+ generated a phenotype with an expansion of HSCs 

and myeloid precursors. However, the main difference in the hematopoietic phenotype generated by 

nipblb knock-down and NPMc+ forced expression, was in the HSCs population. In this regard, 

while in NPMc+ embryos the HSCs were significantly increased, in nipblb-MO injected embryos 

they were almost comparable to controls. This result is not surprising as we demonstrated that 

nipblb acts downstream of, and is regulated by, NPMc+. Therefore, it is conceivable that, also in the 

hematopoietic cascade that drives to myeloid differentiation, the effects of nipblb are directed on a 

population that derived from HSCs, such as myeloid progenitors.  

We further observed that in nipblb knock-down and NPMc+ overexpressed zebrafish embryos, the 

Wnt/β-catenin pathway was hyper activated. In the hematopoietic process many signaling pathways 
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are critical during different developmental stages of HSCs and for their maturation into 

differentiated lineages. In particular, the canonical Wnt pathway exerts its action on specific cell 

populations being fine-tuned in a dosage-dependent fashion45. We demonstrated that Nipbl is an 

active player in this modulation. Indeed, in a previous work, we showed that the downregulation of 

nipblb in zebrafish embryos at 24 hpf, caused a decreased activation of the canonical Wnt 

pathway30. In this work we demonstrated that, from 48 hpf, Nipbl acts in an opposite way by hyper 

activating the Wnt pathway in the whole embryo. It is conceivable that, given its double effects of 

on Wnt pathway, Nipblb might be considered a new player for canonical Wnt pathway modulation. 

Recently several Wnt inhibitors have been identified as potential drugs to reduced tumor cell 

viability in lymphoma and myeloma cell lines in vitro and in vivo46. Thus, Wnt/β-catenin inhibitors, 

such as indomethacin that is already used in clinical trials26 and is effective also in our study for the 

rescue of the hematopoietic phenotype, could be an attractive candidates for the development of 

new therapeutic treatments for NPMc+ AML patients.  

Further analyses are necessary to investigate the mechanisms through which NPMc+ interact with 

NIPBL and they regulate the canonical Wnt pathway and the hematopoietic phenotype. One 

hypothesis that raised by previous and our analyses is the involvement of other members of the 

cohesin complex such as Rad21 that is negatively regulated by Nipbl both in murine fibroblast47 

and zebrafish (see Figure 1F). Alternatively, the aberrant cytoplasmic dislocation of mutant NPM1 

might alter the normal regulation of NIPBL expression in the nucleus, similarly to what happens in 

the important PU.1-NPM1 mediated regulation in myeloid precursors48. Large scale transcriptomic 

and/or proteomic analyses will be useful to unravel the mechanism and, at this purpose, the use of 

the zebrafish platform with cohesin knock-down might be a suitable model system.  

In conclusion, our study correlates for the first time NIPBL with NMP1 mutations in adult AML 

patients and demonstrates their interplay in myeloid cell differentiation in zebrafish throughout an 

involvement of the canonical Wnt pathway. The results obtained will foster the identification of 

new potential targets for treatments of AML subgroups.  
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Figure Legends 

 

Figure 1: Expression analyses of cohesin genes in AML adult patient Bone Marrow samples 

divided in two subgroups for the absence/presence of NPM1 mutations and in a zebrafish 

model for NPM1 mutation (NPMc+). (A-D) RT-qPCR analyses in N=40 AML adult patients 

indicated that the expression of NIPBL was decreased when NPM1 was mutated. The other cohesin 

genes analyzed did not present a correlation with the presence of NPM1 mutations. (E) RT-qPCR 

analyses of cohesin genes expression in a zebrafish model with overexpression of human NPMc+, 

showed that nipblb was down-regulated in comparison to controls at 3 dpf. (F) RT-qPCR time 

course analyses at 24, 36 and 48 hpf of nipblb expression in embryos injected with NPMc+ 

transcript. nipblb was significantly down-regulated at 48 hpf. (G) RT-qPCR analyses of nipblb 

expression in zebrafish embryos at 3 dpf overexpressed with different doses of human NPMc+. The 

down-regulation of nipblb was significantly dependent to the NPMc+ injection doses. (H) Western 

blot analyses of Nipbl protein expression in embryos at 3 dpf injected with 100 pg/ embryo of 

NPMc+ transcript. Vinculin marker was used for normalization. Western blot images were 

processed as described in Supplementary Methods. Asterisks represent *= p<0.05, **= p<0.01 and 

***=p<0.001 (B, E, F, G, H). ns: non-significant; AML: Acute Myeloid Leukemia; MO: 

morpholino; RT: Retro Transcription. 

 

 

Figure 2: Myeloid cell differentiation is affected in nipblb-MO and NPMc+ mRNA injected  

embryos. (A, B, C) Confocal analyses of CD41:EGFP HSCs of controls, nipblb-MO and NPMc+ 

mRNA injected embryos at 3 dpf. The GFP positive HSCs cells were slightly increased in nipblb-

MO, but significantly increased in NPMc+ embryos in comparison to controls. (D-G) FACS 

analyses on GFPlow HSCs positive cells. (H, I, J) Confocal analyses of Pu.1 positive myeloid 
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precursor cells of controls, nipblb-MO and NPMc+ mRNA injected embryos at 3 dpf. The GFP 

positive myeloid precursors cells were increased in both nipblb-MO and NPMc+ embryos in 

comparison to controls. (K-N) FACS analyses on Pu.1 GFP positive cells. (O-Q) Sudan black 

staining for mature myeloid cells on controls, nipblb-MO and NPMc+ mRNA injected embryos at 4 

dpf. The mature myeloid cells were diminished in both nipblb-MO and NPMc+ embryos in 

comparison to controls. Images were processed as described in Supplementary Methods. Scale bar 

represents 100 μm. Asterisks in (G) represent ***=p<0.001. ns: non-significant; HSCs: 

Hematopoietic Stem Cells; FACS: Fluorescence-Activated Cell Sorting; MO: morpholino; GFP: 

Green Fluorescent Protein; CHT: Caudal Hematopoietic Tissue. 

 

 

Figure 3: Canonical Wnt signaling is hyper activated in nipblb-MO and NPMc+ 

Tg(TOPdGFP) injected embryos at 3 dpf. (A, B) RT-qPCR analyses of gfp and axin2 expression 

in nipblb-MO and NPMc+ Tg(TOPdGFP) injected embryos indicated an increase of canonical Wnt 

activation status in comparison to controls. (C) Scheme of trunk-tail region of embryos. Confocal 

images were always performed in the same embryo region, comprising the tip of the yolk sack 

extension (YSE) between the dorsal aorta (DA, red line) and the vein (V, blue line) as indicated by 

pink brackets. (D-H) Confocal images of the CHT of Tg(TOPdGFP) embryos injected with nipblb-

MO (E) and NPMc+ (G) showed an increase of GFP+ cells in comparison to controls (D). The co-

injection of the Wnt inhibitor dkk1b mRNA rescued the number of GFP+ cells (F-H). (I) 

Quantification of GFP+ cells in the selected region of the CHT. Images were processed as described 

in Supplementary Methods. Scale bar represents 100 μm. Asterisks in (A, B, I) represent *=p<0.05, 

**=p<0.01 and ***=p<0.001. ns: non-significant; MO: morpholino; GFP: Green Fluorescent 

Protein; CHT: Caudal Hematopoietic Tissue. 
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Figure 4: Canonical Wnt pathway is hyper-activated specifically in HSCs cells. 

(A-A’’) FACS sorting of CD41:GFPlow cells from controls (A), nipblb-MO (A’) and NPMc+ mRNA 

(A’’) embryos at 3 dpf and RT-qPCR axin2 expression analyses on sorted cells (A’’’). (B-D’’) 

Immunofluorescence staining with GFP for HSCs (B, C, D) and Active β-catenin for Wnt activation 

(Active β-cat) (B’, C’, D’) antibodies. Merge of the two signals (B’’, C’’, D’’) showed an increased 

number of double positive cells GFP/Active β-cat cells (arrows) in the CHT of embryos at 3 dpf 

injected with nipblb-MO or NPMc+ mRNA in comparison to controls. Images were processed as 

described in Supplementary Methods. Scale bar represents 100 μm. Asterisk in (A’’’) represents 

*=p<0.05. ns: non-significant; HSCs: Hematopoietic Stem Cells; FACS: Fluorescence-Activated 

Cell Sorting; MO: morpholino; RT: Retro Transcription; GFP: Green Fluorescent Protein; CHT: 

Caudal Hematopoietic Tissue. 

 

Figure 5: Myeloid cell differentiation impairment in nipblb-MO and NPMc+ injected embryos 

is caused by hyper-activation of the canonical Wnt signaling. (A-G) WISH analyses of spi1b. 

The expression of spi1b was increased in nipblb-MO (B) and NPMc+-injected embryos (E) in 

comparison to controls (A). Rescue of the myeloid phenotype was obtained with the injection of the 

Wnt inhibitor dkk1b mRNA (C; F) and with indomethacin treatment (D; G). Quantifications of the 

observed phenotypes in (H) and (I). Images were processed as described in Supplementary 

Methods. Scale bar represents 100 μm. Asterisks (H and I) represent *=p<0.05 and ***=p<0.001. 

MO: morpholino; WISH: Whole Mount In Situ Hybridization. 
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Figure 6: Co-injection of subcritical doses of nipblb-MO and NPMc+ that singularly do not 

have effects, indicates cooperation between NPMc+ and nipblb in myeloid differentiation. (A-

D) The number of GFP+ cells in the CHT was increased when embryos at 3 dpf were co-injected 

with subcritical doses of nipblb-MO/sub-NPMc+ (D) in comparison to single injection of a 

subcritical dose of controls (A), nipblb-MO (B) and NPMc+ (C). (E) Quantification of GFP+ cells in 

the CHT. (F-I) WISH analyses of the myeloid precursor marker spi1b. spi1b expression was 

increased in embryos co-injected with subcritical doses of nipblb-MO and NPMc+ (I) in 

comparison to the control and sub-nipblb-MO or sub-NPMc+ injected embryos (F-H). (J) 

Quantification of the embryos presenting a spi1b increased expression. Images were processed as 

described in Supplementary Methods. Scale bar represents 100 μm. Asterisks in (E) represent 

***=p<0.001, (J) represent **=p<0.01. MO: morpholino; GFP: Green Fluorescent Protein; CHT: 

Caudal Hematopoietic Tissue; WISH: Whole Mount In Situ Hybridization. 
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Supplementary Methods 

 

Patients 

Patients were previously characterized for specific molecular aberrancies, such as mutations for 

NPM1 and FLT3-ITD, in addition to translocations t(9;22), t(8;21) and inv(16), in accordance to 

specific clinical protocol requirements. Patients enrolled belong to different French–American–

British (FAB) classification systems (FABs), excluding M3, therefore all patients were negative for 

translocation t(15;17). BM of were collected as controls for gene expression assays, upon appropriate 

Informed Consent ASG-MA-052A approved on May 8th 2012 by Azienda San Gerardo (ASG).   

 

Animals 

The fish were maintained under standard conditions in the fish facilities of Bioscience Dept, 

University of Milan, Via Celoria 26 - 20133 Milan, Italy (Aut. Prot, n. 295/2012-A -  20/12/2012); 

and Cogentech s.c.a.r.l. (Aut. Prot. n. 007894 - 29/05/2018), via Adamello 16 - 20139 Milan, Italy).  

We express the embryonic ages in hours post fertilization (hpf) and days post fertilization (dpf). 

Zebrafish AB strains obtained from the Wilson lab (University College London, London, UK) were 

maintained at 28°C on a 14 h light/10 h dark cycle. The zebrafish transgenic TOPdGFP line was 

described previously.1 The zebrafish transgenic CD41:GFP/kdrl:dsRED line was described 

previously.2  Embryos were collected by natural spawning, staged according to Kimmel and 

colleagues,3 and raised at 28°C in fish water (Instant Ocean, 0,1% Methylene Blue) in Petri dishes, 

according to established techniques. After 24 hpf, to prevent pigmentation 0,003% 1-phenyl-2-

thiourea (PTU, Sigma-Aldrich, Saint Louis, MO, USA) was added to the fish water. Embryos were 

washed, dechorionated and anaesthetized, with 0.016% tricaine (Ethyl 3-aminobenzoate 

methanesulfonate salt; Sigma-Aldrich), before observations and picture acquisitions.  

 

 



Reverse transcription-PCR and real-time quantitative-PCR assays  

For human sample RT-qPCR experiments, Superscript II enzyme (Life Technologies) was used for 

cDNA synthesis. For this set of experiments, a Light Cycler 480II (Roche Diagnostics, Basel, Swiss) 

was used. Primers and probes were selected according to the Software Probe Finder (Roche 

Diagnostics) and are reported in Supplementary Table S2. hGUS gene was used as reference and 

healthy patients cells as standard control. After DNase I RNase-free (Roche Diagnostics) treatment 

to avoid possible genomic contamination, 1μg of RNA was reverse-transcribed using the “ImProm-

II™ Reverse Transcription System” (Promega, Madison, Wisconsin USA) and a mixture of oligo(dT) 

and random primers according to manufacturer’s instructions. RT-qPCRs were carried out in a total 

volume of 20 µl containing 1X iQ SYBR Green Super Mix (Promega), using proper amount of the 

RT reaction. RT-qPCRs were performed using the BioRad iCycler iQ Real Time Detection System 

(BioRad, Hercules, CA, USA). For normalization purposes, rpl8 expression levels4 were tested in 

parallel with the gene of interest. Expression levels in the Y axis were relative to the control. 

 

Western Blotting 

At least 30 zebrafish embryos were used for protein preparation and the yolk was previously removed 

from embryos to avoid yolk protein contamination. Protein extracts were classically prepared in RIPA 

buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 150 mM NaCl, 0.25% sodium deoxycholate, 1mM 

EDTA, 1mM PMSF, protease inhibitors Roche) (2 l/embryo or 1l/ tail).  The protein concentration 

was determined using a Quantum Micro BCA protein assay kit according to the manufacturer's 

instructions (Euroclone, Pero, MI, Italy).  30-40 g of each sample were loaded onto a 7.5% or 10% 

polyacrylamide gels and subjected to electrophoresis. The proteins were then transferred onto PVDF 

membranes which were blocked using a blocking solution at room temperature for 1 hour prior to 

incubation with the primary antibodies: Nipbl (anti rabbit 1:200, Novus Biologicals Littleton, 

Colorado, USA) and Vinculin (anti mouse 1:6000, Sigma-Aldrich). After incubation with the HRP-

conjugated secondary antibodies for 1 h at room temperature (mouse Santa Cruz Biotechnology, 



Dallas, TX, USA, rabbit Thermofisher, Waltham, MS, USA), the protein bands were detected using 

ECL detection systems. Imaging acquisition has been done with the Alliance MINI HD9 AUTO 

Western Blot Imaging System (UVItec Limited, Cambridge) and analyzed with the related software. 

Images were processed using the Adobe Photoshop software and when necessary, different parts of 

the same image have been took separately and later merged in a single image.  

 

In situ hybridization and immunofluorescent analyses. 

For quantification of the observed phenotypes, WISH experiments were done at least in 2 batches of 

embryos (minimum 15-20 embryos for each category). Embryos were fixed overnight in 4% 

paraformaldehyde (Sigma-Aldrich) in Phosphate Buffer Saline (PBS) at 4 °C, then dehydrated 

stepwise to methanol and stored at −20 °C. Antisense riboprobes were previously in vitro labelled 

with modified nucleotides (i.e. digoxigenin, fluorescein, Roche Diagnostics). cmyb and spi1b probes 

have been previously described (myl7, Zebrafish Information Network5). Primary antibody was anti-

GFP (1:1000, Torrey Pines Biolab, Houston, TX, USA), anti Active-cat (Clone 8E7, 1:50 Merck, 

Darmstadt, Germany) and anti PU.1 (1:100, Merck); the secondary antibodies was Alexa 488-

conjugated goat anti-rabbit IgG and Alexa 546-conjugated goat anti-mouse IgG (1:400, Invitrogen 

Life Technologies, Carlsbad, CA, USA). Images were acquired as described in using a microscope 

equipped with a digital camera with LAS Leica imaging software (Leica). Images were processed 

using the Adobe Photoshop software and when necessary, different focal images planes of the same 

image have been took separately and later merged in a single image.  

 

Sudan Black staining 

Embryos were fixed with 4% PFA-PBS for 2 hours at room temperature, rinsed in PBS, incubated in 

Sudan Black (Sigma-Aldrich) for 20 minutes, washed in 70% ethanol in water, then rehydrated to 

PBS+0.1% Tween 20 (PBT). 

 



FACS analyses 

Embryos were anesthetized with 1X Tricaine/E3 and dissociated with 0.25% trypsin-EDTA 

(Ethylenediaminetetraacetic acid) and Collagenase from Clostridium (Sigma-Aldrich C9891) 

100mg/ml (500 µl dissociation mix/tube of embryos) by pipetting. 1 ml of DMEM (Dulbecco's 

modified of Eagle medium)-10% FBS (fetal bovine serum) was added and centrifuged 5’ at 3000 

rpm. Dissociated cells were washed twice in PBS 1X, filtered through 70 µm nylon mesh and 

transferred into a FACS (Fluorescence-activated cell sorting) tube. For Pu.1 staining, cells were 

harvested as described above and incubated for 20’ on ice in PBS 1X and formaldehyde 2%, washed 

in PBS 1X + 1% BSA (bovine serum albumin), resuspended in 100 µl TritonX100 0.1 % in PBS 1X 

and incubated 10’ at room temperature. Then, cells were washed once in PBS 1X + 1% BSA and 

incubated for 45’ at 4°C in BSA 5% in PBS 1X. Cells were spinned-down and the pellet was 

resuspended in 100 µl of anti PU.1 (1:100, Merck) diluted in PBS 1X + 1% BSA and incubated for 1 

hour at room temperature, washed once in PBS 1X + 1% BSA; the secondary antibody was Alexa 

488-conjugated goat anti-rabbit IgG (1:400, Invitrogen Life Technologie) diluted in PBS 1X + 1% 

BSA and incubated for 1 hour at room temperature. The pellet was washed and kept stained at 4°C 

until FACS analysis. 

 

FACS sorting, RNA extraction and cDNA synthesis of GFP low cells 

To sort the low and high GFP positive cells, 40 embryos for control, nipblb-MO and NPMc+ mRNA 

condition were collected and dissociated as in6, suspended in 0.4 ml of PBS and sorted with the 

FACSAria cell sorter. GFP low positive cells were subjected to TRIZOL extraction following 

manufacturer instruction a resuspended in 5 uL of Nuclease free water. Half of the RNA obtained 

was used for retro-transcription using Superscript IV VILO. In retro-transcription procedure, 

EzDNAse digestion step has been included, time of reverse transcription was increased to 30 minutes. 

 

Injections  



Two different morpholino against nipblb: the ATG-nipblb-MO (nipblb-MO) and the 5’UTR-nibpblb-

MO (5UTRnibpblb-MO) were used (Gene Tools LLC, Philomath, OR, USA) both previously 

described and validated.7 nipblb-MO was injected at the concentration of 1 pmol/embryo in 1x 

Danieau buffer (pH 7,6) for full dose experiments, and at a concentration of 0,6 pmol/embryo for 

subcritical doses. 5UTRnibpblb-MO was injected at the concentration of 0,5 pmol/embryo in 1x 

Danieau buffer (pH 7,6) for full dose experiments, and at a concentration of 0,3 pmol/embryo for 

subcritical doses. As a control, we injected a standard control morpholino oligonucleotide (ctrl-MO, 

Gene Tools). Human NPM1 and NPMc+ and zebrafish dkk1b mRNAs were injected at the following 

concentrations: 120 pg/embryo of NPM1 mRNA, 100 pg/embryo of NPMc+ mRNA and 50 

pg/embryo of dkk1b mRNA. For dose-depended assays, NPMc+ mRNA was injected at 25-75 and 

125 pg/embryo. For subcritical doses, NPMc+ was injected at 50 pg/embryo. 

 

Statistical analyses 

For RT-qPCR experiments, data were statistically analyzed applying a two-tailed t-test setting p≤0.05 

(*), p≤0.01 (**), and p≤0,001 (***) as significant.27 Data were analyzed using the comparative ΔΔCt 

method both t test and SD values refer to samples triplicates. In zebrafish at least three different 

experiments were done for each analysis. For cell count and phenotypical analyses, statistical analysis 

was performed by Chi square test, with Yates correction when needed. 
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Supplementary Figure Legends and Tables 

 



Suppl. Figure S1: Expression analyses of cohesin genes in AML adult patient Bone Marrow samples 

divided in two subgroups for the absence/presence of FLT3/ITD mutations. (A-D) RT-qPCR analyses 

in AML adult patients indicated that the expression level of cohesin genes analyzed was not modified 

with FLT3/ITD mutation. ns: non-significant; AML: Acute Myeloid Leukemia, RT: Retro 

Transcription. 

 

 

Suppl. Figure S2: Myeloid cell differentiation is affected in nipblb-loss-of-function embryos. (A-

B, E-F) WISH analyses of cmyb, marker of HSCs and spi1b, marker of myeloid precursors at 3 dpf. 

(A-D) The expression of cmyb was comparable in nipblb-MO-injected embryos (B) and controls (A); 

quantification of the observed phenotypes in (C). RT-qPCR analyses of cmyb expression were 

performed on the tails of the embryos at 3 dpf (D). (E-H) The expression of spi1b was increased in 

nipblb-MO-injected embryos (F) in comparison to controls (E); quantification of the observed 

phenotypes in (G). RT-qPCR analyses of spi1b expression were performed on the tails of the embryos 

at 3 dpf (H). Scale bar represents 100 m. Asterisks in (G and H) represent *=p<0.05. ns: non-

significant; WISH: Whole Mount In Situ Hybridization; MO: morpholino; RT: Retro Transcription. 

 



 

 Suppl. Figure S3: HSCs and myeloid cell differentiation are affected in NPMc+ injected 

embryos. (A-B) WISH analyses of cmyb, marker of HSCs, (E-F) spi1b, marker of myeloid 

precursors. The expression of cmyb and spi1b were increased in NPMc+-injected embryos (B) and 

(F) in comparison to controls (A) and (E); quantification of the observed phenotypes in (C-G). RT-

qPCR analyses of cmyb expression (D), and spi1b expression (H), were performed on the tails of the 

embryos. Scale bar represents 100 m. Asterisks in (D-H) represents *=p<0.05, in (C) **=p<0.01 

and in (G) ***=p<0.001. WISH: Whole Mount In Situ Hybridization; MO: morpholino; RT: Retro 

Transcription. 

 



 

Suppl. Figure S4: Myeloid cell differentiation is affected in 5’UTRnipblb-loss-of-function 

embryos. (A) Western blot analyses, repeated twice, of Nipbl protein expression in embryos at 24 

hpf injected with 5’UTRnipblb-MO. Vinculin marker was used for normalization. (B, C, E, F) WISH 

analyses of cmyb, marker of HSCs (B-C) and spi1b, marker of myeloid precursors (E-F). The 



expression of cmyb was comparable in 5’UTRnipblb-MO-injected embryos (C) and controls (B); 

quantification of the observed phenotypes in (D). The expression of spi1b was increased in 

5’UTRnipblb-MO-injected embryos (F) in comparison to controls (E); quantification of the observed 

phenotypes in (G). (H-I) Sudan black staining of mature myeloid cells of controls. The mature 

myeloid cells were diminished in 5’UTRnipblb-MO injected embryos (I) in comparison to controls 

(H); quantification of the observed phenotypes in (J). (K) Quantification of embryos with increased 

number of myeloid precursor cells positive for spi1b. The co-injection of subcritical doses of the two 

morpholinos against niplbl, but not that of the single morpholino, recapitulated the myeloid 

phenotype observed with the injection of morpholino full doses. Scale bar represents 100 m. 

Asterisks in (G, J, K) represent ***=p<0.001. ns: non-significant; UTR: UnTranslated Region; 

WISH: Whole Mount In Situ Hybridization; MO: morpholino; HSCs: Hematopoietic Stem Cells; RT: 

Retro Transcription. 

 

 



Suppl. Figure S5: Validation of inhibition of canonical Wnt pathway by means of dkk1b mRNA 

injection in the zebrafish Wnt reporter line TOPdGFP. (A-D) Confocal images of TOPdGFP 

zebrafish embryos at 3 dpf. The GFP+ cells in the hindbrain (h, arrow) and in the eye of controls (A), 

were not present in dkk1b mRNA injected embryos (B). (C-D) Also in the CHT region, the GPF+ 

cells were absent in dkk1b injected embryos (D) in comparison to controls (C) (arrows). Scale bar 

represents 100 m. GFP: Green Fluorescent Protein; CHT: Caudal Hematopoietic Tissue. 

 

 

Suppl Figure S6: Different canonical Wnt pathway modulation during zebrafish development 

following nipblb downregulation. (A-H) analysis of canonical Wnt pathway activation at 24 hpf in 

nipblb-loss-of-function zebrafish embryos. (A) Image of a 24 hpf embryo, the head region was 

selected for confocal images in (B-C). The GFP expression in the Central Nervous System of 

TOPdGFP nipblb-MO injected embryos (C) was decreased in comparison to controls (B). (D) Image 

of a 24 hpf embryo, the Aorta Gonad Mesonephric (AGM) tissue was selected for confocal images 

in (E-F’). The GFP expression of Wnt positive cells in AGM of controls (E-E’) and nipblb-MO 

injected embryos (F-F’) was indistinguishable from blood cells autofluorescence at this 

developmental stages. (G) Western blot analyses confirmed the GFP protein reduction in 24 hpf 

nipblb-MO injected embryos in comparison to controls. Vinculin was used as normalizer. (H) RT-



qPCR analyses of axin2 expression, a marker of the status of canonical Wnt pathway. A representative 

experiment was shown. (I-L) Analyses of canonical Wnt pathway activation at 48 hpf. (I-J) The GFP 

expression in the CHT of TOPdGFP nipblb-MO injected embryos (J) was increased in comparison 

to controls (I). (K) Western blot analyses confirmed the GFP protein increase in 48 hpf nipblb-MO 

injected embryos at in comparison to controls. Vinculin was used as normalizer. (L) RT-qPCR 

analyses of axin2 expression, a marker of the status of canonical Wnt. DAPI staining was used in B, 

C, E’, F’. A representative experiment was shown. Scale bars represent 100 m. RT-qPCR and 

Western blot experiment were replicated twice and the data in the figure are the average of the two 

different experiments. MO: morpholino; GFP: Green Fluorescent Protein; CHT: Caudal 

Hematopoietic Tissue; RT: Retro Transcription. 

 

 

Suppl. Figure S7: AXIN2 increased expression in AML patients with NIPBL downregulation. 

RT-qPCR analyses of AXIN2 expression in N=40 AML adult patients divided in two subgroups 

depending on NIPBL expression: NIPBL>1 and NIPBL<1 in comparison to healthy donors. We did 

not observe a significant increase in AXIN2 expression when NIPBL was downregulated. ns: non-

significant; RT: Retro Transcription. 

 

 



Suppl. Table S1 

 
 

 
 
 

Supplementary	Table	S1.	Clinical	Features	of	patients'	cohort.

AGE	AT	ONSET KARYOTYPE FAB	CLASSIFICATION NPM FLT3-ITD t(9;22) t(8;21) 	inv(16)

1 47 46,XX,t(10;11)(p11;p15)[20] M0 NEG NEG NEG NEG NEG

2 49 46,XY[20] M0/M1 NEG NEG NEG NEG NEG

3 48 46,XX[20] M1 NEG NEG NEG NEG NEG

4 70 45,X,-Y,t(8;21)(q22;q22)[5]/46,XY[5] M2 NEG NEG NEG NEG NEG

5 72 47,XY,+mar[10]/46,XY[10] M2 NEG NEG NEG NEG NEG

6 58 46,XX,t(3;5)(q25;q34)[20] M2 NEG NEG NEG NEG NEG

7 70

44~45,XX,?+X,t(1;22)(q12;q11),+1,del(5)(q13q34),?inv(7)(q14q22),tas(8;15)(q24;p13),-17,-

21,del(22)(q11)der(22)t(1;22)(q12;q11),+mar[cp18]/45,XX,t(1;22)(q12;q11),+1,del(5)(q13q34),-

7,der(17)t(7;17)(q11;q25),-21,del(22)(q11)der(22)t(1;22)(q12;q11)[7]

M4 NEG NEG NEG NEG NEG

8 48 45,X,-X,t(8;21)(q22;q22)[20]/45,X,-X[3] M2 NEG NEG POS NEG NEG

9 47 45-46,XY,del(3)(q?22q?26),der(4)t(?1;4)(p36;p16),add(11)(p14),-12,del(12)(p11),add(21)(q22)[cp13]/46,XY[7] nk NEG NEG nk NEG NEG

10 37 43,XY,?del(2)(q?33),-4,der(6)t(?4;6)(q?22;q21),i(11)(q10),-17,-18[19]/46,XY[2] M1 NEG NEG NEG nk nk

11 59 46,XY[20] nk NEG POS NEG NEG NEG

12 33 46,XY[15] M1 NEG POS NEG NEG NEG

13 30 46,XY[20] M5 NEG POS nk NEG NEG

14 20 46,XY,t(8;21)(q22;q22)[21]/46,XY[1] nk NEG POS nk POS NEG

15 58 46,XY,inv(16)(p13q22)[20] M4 NEG POS nk POS NEG

16 76 nk M5 NEG POS nk NEG NEG

17 78 46,XX[27] M4 NEG POS nk NEG NEG

18 53 46,XY[22] M4 NEG POS nk NEG NEG

19 64 46,XX[20] M5 NEG POS nk NEG NEG

20 75 46,XY[26] M4 NEG POS nk NEG NEG

21 39 46,XY[20] M1 POS	(A) NEG NEG NEG NEG

22 47 46,XX[20] M5 POS	(A) NEG NEG NEG NEG

23 63 46,XY,t(8;14)(q24;q32),add(13q34)[18]/46,XY[9] nk POS	(D) NEG nk NEG NEG

24 58 46,XY/47,XY,+8[7/10] nk POS	(QM) NEG nk NEG NEG

25 50 46,XX[20] M4 POS	(A) NEG nk NEG NEG

26 77 46,XY[20] nk POS	(A) NEG nk NEG NEG

27 54 46,XX,t(9;22)(q34;q11)[14]/46,XX[6] M4 POS	(A) NEG POS NEG NEG

28 60 46,XX[6] nk POS NEG nk NEG NEG

29 62 46,XX[25] M5 POS	(A)
NEG	ITD/POS	

D835/D836
nk NEG NEG

30 58 46,XX[20] nk POS	(A) NEG nk NEG NEG

31 48 46,XX[20] M4 POS	(A) POS NEG NEG NEG

32 51 46,XX[20] M5 POS	(A) POS NEG NEG NEG

33 68 46,XX[20] M4 POS	(A)
POS	ITD/POS	

D835/D836
NEG NEG NEG

34 46 46,XY[20] M2 POS POS NEG NEG NEG

35 39 46,XX[22] M1 POS	(A) POS nk NEG NEG

36 58 46,XY M5 POS	(A) POS nk NEG NEG

37 35 46,XY,?r(18)(?)[16]/47,idem,+8[3]/46,XY[1] nk POS	(B) POS nk NEG NEG

38 58 46,XY[24] M1 POS	(A) POS nk NEG NEG

39 70 46,XY[20] M5 POS	(A) POS nk NEG NEG

40 12 46,XY[24] nk POS	(A) POS NEG NEG NEG



Suppl. Table S2 

Human primers sequence and probe number used in qPCR experiments. 

PRIMER lenght sequence PROBE 

hGUS-L 20 CGCCCTGCCTATCTGTATTC 57 

hGUS-R 20 TCCCCACAGGGAGTGTGTAG   

hNIPBL-L 19 CTATGCGAACAGCCCAAAA 55 

hNIPBL-R 24 TTCACCTTGCTTACTACCACATTT   

hSMC1A-L 21 CGACATCTAGCCCTGAATCTG 78 

hSMC1A-R 20 ATTAATGCGAGGCCCAAAGT   

hRAD21-L 20 ATTGACCCAGAGCCTGTGAT 62 

hRAD21-R 20 GGGGAAGCTCTACAGGTGGT   

hSMC3-L 22 TGCACTGAATGATGAGATTCGT  18 

hSMC3-L 27 TTAATTCTTTCATTTAGCAACTGTCTG    

hAXIN2-L 19 CCACACCCTTCTCCAATCC 36 

hAXIN2-R 20 TGCCAGTTTCTTTGGCTCTT  

 
 
 
Suppl. Table S3 

Zebrafish primers sequence used in qPCR 
experiments. 
PRIMER lenght sequence 

zrpl8-L 21 CTCCGTCTTCAAAGACCATGT 

zrpl8-R 21 TCCTTCACGATCCCCTTGATG 

znipblb-L 20 TGGAAGAAAAGACTCCTGGG 

znipblb-R 20 ACGTCCGTGGCTTCCACGGT 

zsmc1a-L 20 AAATGTGGAGGACGCTCGTA 

zsmc1a-R 20 AGGTCACTAGCTCCTCCAGA 

zrad21-L 20 AGGAAGGACAGGGAGGAGAT 

zrad21-R 20 GTTGTTTCTGCACAGCTCCA 

zsmc3-L 20 CCCTTCGGCTCAAAACACAA 

zsmc3-R 20 TGGCCGAAGATGACTGAACT 

 zspi1b-L  19 GCCATTTCATGGACCCAGG 

 zspi1b-R  19 ACACCGATGTCCGGGGCAA 

 zcmyb-L  20 GACACAAAGCTGCCCAGTTG 

 zcmyb-R  20 GCTCTTCCGTCTTCCCACAA 



 zaxin2-F  20 GGCCACTGTAGTGGGTCTGT 

 zaxin2-R  20 ATTAGGATTTCCGGGGTCAC 

 
 

Suppl. Table S4 

 

 

 

 

 

Antibodies  Specie Concentration Technique 
Vinculin mouse 1:6000 WB 
NIPBL rabbit 1:200 WB 

Active-cat mouse 1:50 IF 

Pu.1 rabbit 1:100 IF/FACS 
Alexa anti mouse 546 goat 1:400 IF 


