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Abstract

It is well-known that the existence of more than two ends in the sense of J.R. Stallings

for a finitely generated discrete group G can be detected on the cohomology group

H1(G,R[G]), where R is either a finite field, the ring of integers or the field of ratio-

nal numbers. It will be shown (cf. Theorem A*) that for a compactly generated totally

disconnected locally compact group G the same information about the number of ends of

G in the sense of H. Abels can be provided by dH1(G,Bi(G)), where Bi(G) is the rational

discrete standard bimodule of G, and dH•(G, ) denotes rational discrete cohomology as

introduced in [6].

As a consequence one has that the class of fundamental groups of a finite graph of profi-

nite groups coincides with the class of compactly presented totally disconnected locally

compact groups of rational discrete cohomological dimension at most 1 (cf. Theorem B).

1. Introduction

For a totally disconnected locally compact (= t.d.l.c.) group G several cohomology

theories can be introduced, e.g., the Bredon cohomology with respect to the family of all

compact open subgroups of G and the continuous cohomology via cochain complexes. In

this paper we investigate the rational discrete first degree cohomology of a t.d.l.c. group

G as introduced in [6]. In Remarks 3.12 and 3.11 we provide a brief comparison of this

cohomology theory with Bredon and continuous cohomology, respectively.

A left Q[G]-module M is said to be discrete if the map · : G×M →M is continuous,

where M carries the discrete topology. The category Q[G]dis of discrete left Q[G]-modules

is an abelian category with both enough injectives and projectives. The right derived

functors of HomQ[G]( , ) have been denoted by dExt•G( , ), and, for any k ≥ 0, the

group

dHk(G, ) = dExtk(Q, )

is defined to be the kth rational discrete cohomology group of G with coefficients in Q[G]dis
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(a brief introduction to this cohomology theory and some properties we use further on

are given in §3·1).

In this paper we provide several results on the low-dimensional rational discrete coho-

mology of G by analogy with the discrete case. In section 3, we show that the functor

dH1(G, ) can be described by means of continuous derivations (cf. Propositions 3.9),

and consequently by the almost invariant functions when we consider coefficients in a

discrete permutation module (cf. Proposition 3.15).

In section 4, we prove the first main theorem of this paper (cf. Theorem A*), which pro-

vides a cohomological interpretation of Stallings’ decomposition theorem for compactly

generated t.d.l.c. groups (cf. Theorem A). A compactly generated t.d.l.c. group G is said

to split non-trivially over a compact open subgroup K if one of the following holds:

(S1) G is a free product with amalgamation H ∗K J , where H and J are compactly

generated open subgroups satisfying K 6= H and K 6= J ;

(S2) G is a HNN-extension H∗tK with stable letter t, where H is a compactly generated

open subgroup of G.

The space of rough ends of a compactly generated t.d.l.c. group G is defined to be the

end space of a rough Cayley graph of G (cf. [17, §3] and §2·2). Thus the analogue of

Stallings’ decomposition theorem for t.d.l.c. groups can be restated as follows.

Theorem A ([17, Theorem 13]). Let G be a compactly generated t.d.l.c. group, and

let e(G) denote the number of rough ends of G. Then the following are equivalent:

(a) e(G) > 1, i.e., G has more than one rough end;

(b) G splits non-trivially over a compact open subgroup.

This splitting theorem is essentially due to Abels [1, Struktursatz 5.7, Korollar 5.8]

and [17, §3.6] explains the relation with Abels’ work in detail. In particular, it has been

shown that the ideal points of the Specker compactification of a compactly generated

t.d.l.c. group G can be identified with the rough ends of G, which definition here is

recalled in §2.2.

The main purpose of this paper is to give the following cohomological reformulation

of Theorem A.

Theorem A*. Let G be a compactly generated t.d.l.c. group. Then (a) and (b) of

Theorem A are equivalent to

(c) dH1(G,Bi(G)) 6= 0.

Here Bi(G) denote the rational discrete standard bimodule introduced in [6] to be a suit-

able substitute of the group algebra Q[G] in the context of rational discrete cohomology.

The rational discrete standard bimodule is defined by

Bi(G) = lim−→
O∈CO(G)

(Q[G/O], ηU,V ), (1.1)

where CO(G) = {O ⊂ G | O compact open subgroup }, and the direct limit is taken

along the injective mappings

ηU,V : Q[G/U ]→ Q[G/V ], ηU,V (gU) =
1

|U : V |
∑
r∈R

grV, g ∈ G (1.2)
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where V ⊂ U are compact open subgroups of G and R is a set of coset representatives

of U/V .

Now the new condition (c) guarantees a non-trivial splitting of a compactly generated

t.d.l.c. group by knowing a single cohomology group as [8, Theorem IV 6.10] guarantees

for finitely generated discrete groups.

The presence of the cohomological condition (c) leads us to prove Theorem A* by means

of the chain of implications (a) ⇒ (b) ⇒ (c) ⇒ (a). Clearly, (a) ⇒ (b) has been already

proven in Theorem A. Nevertheless, we prefer to provide a similar but substantially

different proof (cf. Remark 4.3). Moreover, we obtain a new proof for (b) ⇒ (a) going

through (c) that clarify how the three different aspects of a compactly generated t.d.l.c.

group encoded in the conditions (a),(b) and (c) are related.

Stallings’ theory of ends for discrete groups had certainly a major impact on geometric

group theory. For example, his decomposition theorem - together with Bass-Serre’s theory

of groups acting on trees - was an essential tool for proving important results on groups

of (virtual) cohomological dimension 1 like the Stallings-Swan theorem (cf. [22, 23]) or

the Karrass-Pietrowski-Solitar theorem (cf. [15]). In particular, Stallings’ decomposition

theorem led naturally to the accessibility problem for finitely generated groups. Within

the framework of Bass-Serre theory, a finitely generated group is said to be accessible if

it is isomorphic to a fundamental group of a finite graph of groups such that every edge

group is finite and every vertex group is a finitely generated group with at most one end.

Equivalently, a compactly generated t.d.l.c. group can be defined to be accessible if it has

an action on a tree such that

(A1) the number of the G-orbits on the edges is finite;
(A2) the edge-stabilizers are compact open subgroups of G;
(A3) every vertex-stabilizer is a compactly generated open subgroup of G with at most

one rough end.

In 1991 M.J. Dunwoody [11] constructed an inaccessible finitely generated (discrete)

group with infinitely many ends. In [17] the authors related the accessibility of a com-

pactly generated t.d.l.c. group G to the accessibility of some (and hence all) rough Cayley

graph of G, which is the analogue of [24, Theorem 1.1]. In 1985 M.J. Dunwoody [10]

proved that every finitely presented (discrete) group has to be accessible. The analogue

of this result in the context of t.d.l.c. groups is due to Y. Cornulier [7]. By using this

accessibility result, we prove the second main theorem of this paper (cf. Theorem B).

Theorem B. For every t.d.l.c. group G, the following are equivalent:

(i) the group G is a compactly presented t.d.l.c. group with rational discrete cohomo-

logical dimension less or equal to one,

(ii) the group G is isomorphic to the fundamental group π1(G,Λ) of a finite graph of

profinite groups (G,Λ).

This result is the (compactly presented) analogue of [9, Theorem. 1.1] that characterizes

the (discrete) groups of cohomological dimension at most 1 over a commutative ring R

to be fundamendal groups of graphs of finite groups with no R-torsion.

Question 1. Is every compactly generated t.d.l.c. group of rational discrete cohomo-

logical dimension at most 1 isomorphic to a fundamental group of a graph of profinite

groups?



4 Ilaria Castellano

2. Preliminaries on ends

2·1. Graphs.

In this paper we use the notion of graph as introduced by J-P. Serre in [21], i.e., a

graph Γ consists of a set V(Γ), a set E(Γ) and two maps

E(Γ)→ V(Γ)×V(Γ) e 7→ (o(e), t(e)),

E(Γ)→ E(Γ) e 7→ ē,

satisfying the following condition: for each e ∈ E(Γ) we have ¯̄e = e, ē 6= e and o(e) = t(ē).

An element v ∈ V(Γ) is called a vertex of Γ; an element e ∈ E(Γ) is called an (oriented)

edge and ē is its inverse edge. The 2-set { e, ē } is called a geometric edge of Γ. The vertex

o(e) is called the origin of e and the vertex t(e) is called the terminus of e. A path from

a vertex v to a vertex w in Γ is defined to be a sequence of edeges p = (ei)1≤i≤r such

that o(e1) = v, t(er) = w and t(ei) = o(ei+1) for i = 1, . . . , r − 1. A path p = (ei)1≤i≤r
is said to be reduced if ei 6= ēi+1 for every i = 1, . . . , r− 1. A reduced path p = (ei)1≤i≤r
satisfying t(er) = o(e1) is called circuit of length r, and a loop is a circuit of length 1.

A graph Γ is said to be connected, if there exists a path from any vertex v to any other

vertex w. Every connected subgraph of Γ which is maximal with respect to this property

is called a connected component of Γ. Thus every graph Γ is the disjoint union of its

connected components and in this way one defines an equivalence relation ∼ on V (Γ),

which is called the connectedness relation. A connected non-empty graph without circuits

is said to be a tree.

For a graph Γ we denote by V(Γ) the free Q-vector space Q[V(Γ)] over the set of

vertices. If Q[E(Γ)] denotes the Q-vector space over the set E(Γ) we put

E(Γ) = Q[E(Γ)]/ spanQ{ e + ē | e ∈ E(Γ) } (2.1)

the Q-vector space freely generated by the geometric edges of Γ. Then one has the

canonical Q-linear map δ : E(Γ)→ V(Γ) given by

δ([e]) = t(e)− o(e), e ∈ E(Γ), (2.2)

where [e] denotes the canonical image of e ∈ E(Γ) in E(Γ). Let H•(|Γ|;Q) denote the

singular homology groups with rational coefficients of the topological realization |Γ| of

Γ. One has the following well known result.

Fact 2.1 ([21, Corollary 1]). Let Γ be a graph and let δ : E(Γ) → V(Γ) be the map

given by (2.2). Then

(a) ker(δ) ∼= H1(|Γ|;Q).

(b) coker(δ) ∼= Q[V(Γ)/ ∼], where ∼ is the connectedness relation.

In particular, Γ is a tree if, and only if, ker(δ) = 0 and coker(δ) ∼= Q.

Thus, given a connected graph Γ, one has an associated exact sequence

0 // H1(|Γ|;Q) // E(Γ)
δ // V(Γ) // Q // 0 (2.3)

of Q-vector spaces.

Example 2.2. Let G be a t.d.l.c. group, and let Q[G]dis denote the abelian category
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whose objects are the discrete left Q[G]-modules (i.e., left Q[G]-modules where the stabi-

lizers of any element are open in G).

(a) Suppose there exist open subgroups H,K and J such that G = H ∗K J , i.e., G splits

as free product with amalgamation in K. The group G is then acting discretely - i.e. with

open vertex stabilizers - without edge inversions on a tree with a segment as fundamental

domain (cf. [21, Theorem 6]). By applying the orbit-stabilizer theorem, the exact sequence

(2.3) yields

0 // Q[G/K]
δ // Q[G/H]⊕Q[G/J ] // Q // 0 ,

which is a short exact sequence in Q[G]dis.

(b) Suppose G = H∗tK is an HNN-extension with stable letter t, where H,K are open

subgroups of G. Thus G is acting discretely and without edge inversions on a tree with

a loop as fundamental domain (cf. [21, Remark 1, pg. 34]). Thus one has the following

short exact sequence in Q[G]dis

0 // Q[G/K]
δ // Q[G/H] // Q // 0.

2·2. The number of rough ends

A graph Γ is said to be locally finite if the set

starΓ(v) = {e ∈ E(Γ)|o(e) = v}

is finite for every v ∈ V(Γ). From now on Γ will be a connected locally finite graph.

For a finite subset S ⊆ V(Γ) let ES(Γ) = { e ∈ E(Γ) | o(e) ∈ S }, i.e., the union of all

starΓ(v), v ∈ S. We denote by Γ−S the subgraph of Γ with vertex set V(Γ)−S and edge

set E(Γ)− (ES(Γ) ∪ES(Γ)), i.e., Γ− S is the subgraph obtained from Γ by removing S

and all the edges attached to S. Let cS be the number of infinite connected components

of Γ− S. For a connected locally finite graph Γ

e(Γ) = sup{ cS | S ⊂ V(Γ) finite } (2.4)

will be called the number of ends of Γ. In particular, the graph Γ is finite if, and only if,

Γ is 0-ended.

Fact 2.3. The number e(Γ) is greater than one if, and only if, there exists an infinite

connected subgraph C ⊂ Γ such that the set

δC = { e ∈ E(Γ) | either o(e) ∈ V (C) or t(e) ∈ V (C) but not both } (2.5)

is finite and the subgraph C∗ = Γ− V (C) contains an infinite connected component.

The set of vertices C = V (C) is called a cut of Γ.

Recall that two connected graphs (Γ, dΓ) and (Γ′, dΓ′) (with the geodesic metric) are

said to be quasi-isometric if there exist a map ϕ : V(Γ) → V (Γ′) and constants a ≥ 1

and b > 0 such that for all vertices v, w ∈ V(Γ)

a−1dΓ(v, w)− a−1b ≤ dΓ′(ϕ(v), ϕ(w)) ≤ a dΓ(v, w), (2.6)

and for all vertices v′ ∈ V (Γ′) one has

dΓ(v′, ϕ(V(Γ))) ≤ b. (2.7)

A map ϕ satisfying the above conditions is called a quasi-isometry of graphs. Moreover,
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the relation of being quasi-isometric is an equivalence relation among graphs and the

number of ends is a quasi-isometric invariant (cf. [18, Proposition 1]).

A t.d.l.c. group G is said to be compactly generated if there exist a compact open

subgroup K and a finite symmetric set S ⊂ G \K such that G is algebraically generated

by S ∪ K. Every such a pair (K,S) will be called a generating pair of G. The rough

Cayley graph Γ associated to G with respect to the generating pair (K,S) consists of the

following data:

V(Γ) = G/K, E(Γ) = { (gK, gsK), (gsK, gK) | g ∈ G, s ∈ S }, (2.8)

where the origin and terminus maps are given by projection onto the first and second

coordinate, respectively, while the edge inversion mapping permutes the first and second

coordinate.

Remark 2.4. In the literature these graphs are also known as Cayley-Abels graphs.

The definition we have chosen here follows the approach used in [17, §2], with the differ-

ence that the edges of a graph are directed in our setup.

A rough Cayley graph Γ is naturally endowed with a discrete G-action, i.e., G is acting

with open stabilizers. Moreover, the following fact holds.

Fact 2.5. Let G be a compactly generated t.d.l.c. group. Then
(a) every rough Cayley graph Γ of G is a vertex-transitive, connected and locally finite

graph;

(b) G has a continuous, proper and cocompact G-action on Γ;

(c) all rough Cayley graphs of G are quasi-isometric;

(d) all rough Cayley graphs of G have the same number of ends.

Thus the number of rough ends e(G) of a compactly generated t.d.l.c. group G can be

defined to be the number of ends of a rough Cayley graph Γ associated to G with respect

to some generating pair (K,S).

Example 2.6. (a) If G is a finitely generated discrete group, then the notion of rough

Cayley graph gives back the well-known notion of Cayley graph and its number of ends.

E.g. Z and D∞ are 2-ended groups.
(b) The group SL2(Qp) is a free product with amalgamation of two copies of SL2(Zp).

Hence SL2(Qp) has infinitely many rough ends.

3. First degree cohomology

3·1. Rational discrete cohomology

Here we collect some of the properties concerning the rational discrete cohomology for

t.d.l.c. groups we shall use further on. For the details the reader is referred to [6].

For a t.d.l.c.group G, let Q[G]dis denote the abelian full subcategory of Q[G]mod whose

objects are the discrete left Q[G]-modules, i.e., left Q[G]-modules with open stabilizers.

The category Q[G]dis has enough injectives, thus one may define

dExtkG(M, ) = Rk Hom Q[G]dis(M, ) (3.1)

the right derived functors of HomQ[G](M, ) in Q[G]dis, and the kth discrete cohomology

group of G with coefficients in Q[G]dis by

dHk(G, ) = dExtkG(Q, ), k ≥ 0, (3.2)
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where Q denotes the trivial discrete left Q[G]-module.

By using Maschke’s theorem, one may prove that the trivial Q[G]-module Q is pro-

jective whenever G is profinite. Consequently, for every t.d.l.c. group G, the discrete left

Q[G]-module Q[G/K] is projective in Q[G]dis whenever K is a compact open subgroup

of G. Moreover, one may stress further this property as follows.

Let Ω be a left G-set whose pointwise stabilizers are open. Clearly, Q[Ω] - the free

Q-vector space over the set Ω - is a discrete left Q[G]-module, which is also called a

discrete left Q[G]-permutation module.

Proposition 3.1 ([6, Prop. 3.2]). Let G be a t.d.l.c. group, and let Ω be a left G-

set with compact open stabilizers. Then Q[Ω] is projective in Q[G]dis. In particular, the

abelian category Q[G]dis has enough projectives.

The existence of projective resolutions in Q[G]dis naturally leads to several finiteness

conditions on G as usual. Firstly, the rational discrete cohomological dimension of G,

denoted by cdQ(G), is defined to be the smallest non-negative integer n such that there

exists a projective resolution (Pi, ∂i) of Q in Q[G]dis of length ≤ n. Analogously to the

discrete case, one has the following properties.

Proposition 3.2 ([6, Prop. 3.7]). Let G be a t.d.l.c. group.

(a) G is compact if, and only if, cdQ(G) = 0.

(b) If H is a closed subgroup of G, then

cdQ(H) ≤ cdQ(G).

Moreover, a discrete left Q[G]-module M is said to be finitely generated, if there ex-

ist a finite number of compact open subgroups K1, . . . ,Kn of G and an epimorphism

π :
∐

1≤j≤nQ[G/Kj ] → M . Consequently, a discrete left Q[G]-module M is said to be

of type FPn, n ≥ 0, if M satisfies one of the following equivalent properties:

(F1) there is a partial projective resolution

Pn
∂n // Pn−1

∂n−1 // . . .
∂2 // P1

∂1 // P0
ε // M // 0

of M in Q[G]dis such that Pj is finitely generated for all 0 ≤ j ≤ n;

(F2) M is finitely generated and for every partial projective resolution

Qk
ðk // Qk−1

ðk−1 // . . . // Q1
// Q0

// M // 0

in Q[G]dis with k < n such that Qj is finitely generated for all j = 0, . . . , k, one

has that ker(ðk) is finitely generated.

E.g., M is of type FP0 if, and only if, M is finitely generated. If M is of type FPn for

all n ≥ 0, then M is called to be of type FP∞. Accordingly, the group G is said to be of

type FPn, n ∈ N ∪ {∞}, if the trivial module Q is of type FPn in Q[G]dis.

Proposition 3.3. Let G be a t.d.l.c. group and A a discrete left Q[G]-module of type

FPn, n ≥ 0. Then for every direct limit lim−→M• in Q[G]dis the natural homomorphism

lim−→ dExtkG(A,M•)→ dExtkG(A, lim−→M•),

is an isomorphism for k ≤ n− 1 and a monomorphism for k = n.
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Proof. Let (P•, ∂•, ε) be a projective resolution of Q in Q[G]dis such that Pj is finitely

generated for 0 ≤ j ≤ n. By the Hom −⊗ identity provided in [6, §4.3], HomG(Pj , )

commutes with direct limits whenever 0 ≤ j ≤ n. Thus the proof of [4, Prop. 1.2] can be

transferred here.

Remark 3.4. If all of the canonical maps M• → lim−→M• are injective, then an easy

diagram chasing shows that lim−→ dExtnG(A,M•) → dExtn(A, lim−→M•) is an isomorpshism

as well.

Corollary 3.5. For a t.d.l.c. group G of type FP∞ the functors dH•(G, ) commute

with direct limits in Q[G]dis.

It is well known that a discrete group is finitely generated if, and only if, it is of type

FP1 (cf. [5, §VIII.4]). The analogue result for t.d.l.c. groups holds as well.

Proposition 3.6 ([6, Prop. 5.3]). Let G be a t.d.l.c. group. Then G is compactly gen-

erated if, and only if, G is of type FP1.

By combining the latter finiteness conditions, one defines a t.d.l.c. group G to be of

type FP, if G is of type FP∞ with cdQ(G) = d < ∞. In other words, the trivial left

Q[G]-module Q has a projective resolution which is finitely generated and concentrated

in degrees 0 to d.

Since the group algebra Q[G] is not a discrete Q[G]-module unless the group G itself

is discrete, in [6] a possible substitute has been introduced and studied. Namely, the

rational discrete standard bimodule Bi(G) (cf. (1.1)). The following are in analogy with

the discrete case.

Fact 3.7 ([6, Prop. 4.3]). Let G be a t.d.l.c. group. One has

HomG(Q,Bi(G)) '

{
Q if G is compact,

0 if G is not compact.

Proposition 3.8 ([6, Prop. 4.7]). Let G be a t.d.l.c. group of type FP. Then

cdQ(G) = max{ k ≥ 0 | dHk(G,Bi(G)) 6= 0 }. (3.3)

3·2. Derivations

Let Der(G,M) denote the group of all (algebraic) derivations d from a group G to a

left G-module M , i.e., d is a mapping of sets d : G→M satisfying d(gh) = gd(h) + d(g)

for all g, h ∈ G.

For a t.d.l.c. group G and a discrete Q[G]-module M , we define

DerK(G,M) = { d ∈ Der(G,M) | d(k) = 0, ∀k ∈ K } , (3.4)

PDerK(G,M) = { d ∈ DerK(G,M) | ∃m ∈MK s.t. d(g) = gm−m ∀g ∈ G } ,

where K is a compact open subgroup of G. Clearly every element d of DerK(G,M) is a

continuous map, where M carries the discrete topology.

By analogy to the discrete case, one may prove the following result and we include the

standard proof for reader’s convenience.

Proposition 3.9. For a compact open subgroup K of a t.d.l.c. group G there is a
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natural isomorphism

dH1(G,M) ∼= DerK(G,M)/PDerK(G,M),

where M ∈ ob(Q[G]dis).

Proof. Let

0 // N // Q[G/K]
ε // Q // 0 (3.5)

be the short exact sequence in Q[G]dis provided by the augmentation map ε. Thus the

set {gK −K | g ∈ G \K} is a generating set of N as Q-vector space. Firstly, notice that

HomG(N,M) ∼= DerK(G,M),

for every M ∈ ob(Q[G]dis). Indeed for every Q[G]-map ϕ : N →M let

Dϕ : G→M, Dϕ(g) = ϕ(gK −K) ∀g ∈ G. (3.6)

Clearly, Dϕ ∈ DerK(G,M). Thus the formula (3.6) defines a natural homomorphism

from HomG(N,M) to DerK(N,M). This homomorphism admits the inverse D 7→ ϕD
given by ϕD(gK −K) = D(g), which is well-defined since D ∈ DerK(G,M) is constant

on the cosets of K in G.

By applying the long exact cohomology functor to (3.5) with coefficients in M , one

has

0 // MG // MK // DerK(G,M) // dH1(G,M) // 0 , (3.7)

since Q[G/K] is projective in Q[G]dis and HomG(Q[G/K],M) ∼= HomK(Q,M) (cf.

Proposition 3.1 and [6, §2.9]). Finally, as PDerK(G,M) ∼= MK/MG by definition, (3.7)

yields the claim.

Corollary 3.10. For a t.d.l.c. group G and M ∈ ob(Q[G]dis), let Dertop(G,M) be

the group of all continuous derivations from G to M and PDertop(G,M) the subgroup of

the principal one. Thus

dH1(G,M) ∼= Dertop(G,M)/PDertop(G,M),

naturally.

Proof. Let d be a continuous derivation from G to M . Then ρ : G×M →M given by

ρ(g,m) = gm+ d(g) defines a continuous affine transformation of M . For every compact

open subgroup K of G, the K-orbit is finite, by continuity. So the average of this orbit is

a K-fixed point, say x. Let d′ ∈ PDerK(G,M) be the principal derivation associated to

x. Since d−d′ ∈ DerK(G,M), every continuous 1-cocycle is cohomologous to a 1-cocycle

vanishing on K.

Remark 3.11. One can chose to develop a cohomology theory for a t.d.l.c. group

G directly via cochain complexes. For M ∈ ob(Q[G]dis) let Cn(G,M) be the set of all

continuous functions from Gn to M , where M carries the discrete topology. By equipping

this with the usual coboundary operators, one has a cochain complex whose cohomology

can be defined to be the continuous cohomology of G, e.g. [13, 19]. By Corollary 3.10,

the rational discrete cohomology of G turns out to be equivalent to the continuous one in

degree 0 and 1, but at this stage we do not know if this is true for n ≥ 2.
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Remark 3.12. Let C be the family of all compact open subgroups of a t.d.l.c. group G.

By van Dantzig’s Theorem, C is non-empty. Furthermore C is closed under conjugation

and taking finite intersections. Let OC(G) be the orbit category of G w.r.t. C. Namely,

the objects are the G-sets G/K, for K ∈ C, and the morphisms are the G-maps between

them. Thus one may define the category of Bredon modules over OC(G) as usual. The

Bredon cohomology of G is not equivalent to the rational discrete cohomology of G. Indeed

a necessary condition for a t.d.l.c. group G to be of type FP0 in the Bredon cohomology

is the following: there are finitely many compact open subgroups K1, . . . ,Kn of G such

that any compact open subgroup of G is subconjugated to one of the Kis (cf. [16, Lemma

2.3]). On the other hand, being of type FP0 for a t.d.l.c. group in the rational discrete

cohomology is an empty condition.

Remark 3.13. We are aware of a possible connection between rational discrete coho-

mology and the cohomology of the Hecke algebra (cf. [20, §2]) but it will be not discussed

in this paper.

3·3. The almost invariant functions

In order to connect the rational discrete cohomology of G to the number of rough ends

as clearly as possible, we provide another representation of dH1(G,M) whenever M is a

transitive discrete permutation module.

Let G be a compactly generated t.d.l.c. group and let (K,S) be a generating pair of

G. Clearly, the set HomQ(Q[G/K],Q) of all functions from G/K to Q is a G-set with

action given by

(g · α)(x) = α(g−1x) ∀α ∈ HomQ(Q[G/K],Q), ∀g ∈ G, ∀x ∈ G/K. (3.8)

Following [9], we say that two maps α, β ∈ HomQ(Q[G/K],Q) are almost equal, and

denote this by α =a β, if α(x) = β(x) for all but finitely many elements x ∈ G/K.

Example 3.14. Every element m ∈ Q[G/K] can be expressed as formal sum

m =
∑

x∈G/K

qxx

with qx ∈ Q being 0 for almost all x ∈ G/K. Then m can be identified with the projection

pm : G/K → Q given by pm(x) = qx, showing that pm =a 0. Thus Q[G/K] is the set of

all almost zero functions in HomQ(Q[G/K],Q).

An element α ∈ HomQ(Q[G/K],Q) is called an almost (G,K)-invariant function if

g · α =a α for all g ∈ G and k · α = α for all k ∈ K. Denote by AInvK(G,Q) the space

of all almost (G,K)-invariant functions.

Proposition 3.15. For every compact open subgroup K of a t.d.l.c. group G one has

dH1(G,Q[G/K]) ∼=
AInvK(G,Q)

C(G/K) + Q[G/K]K
,

where

C(G/K) = {α ∈ HomQ(Q[G/K],Q)|α constant},

and Q[G/K]K denotes the largest K-invariant submodule of Q[G/K].

Proof. The second part of the proof of Lemma 1.1 in [3] can be easily adapted to our
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context. Thus for every compact open subgroup K of G there exists the following short

exact sequence

0 −→ C(G/K) −→ AInvK(G,Q)
∂−→ DerK(G,Q[G/K]) −→ 0, (3.9)

where for each α the map ∂α : G→ Q[G/K] is given by

∂α(g) =
∑

x∈G/K

(g · α(x)− α(x))x. (3.10)

As PDerK(G,Q[G/K]) ∼= Q[G/K]K , applying Proposition 3.9 concludes the proof.

4. The decomposition theorem

The aim of this section is to prove Theorem A*. Clearly, the proof of Theorem A* can

be shortened considering that the equivalence between a) and b) is well-known, but here

we prove the result via the chain of implications (a)⇒ (b)⇒ (c)⇒ (a).

Recall that a t.d.l.c. group G acts discretely on a graph if the stabilizers are open

subgroups of G.

Proposition 4.1. Let G be a compactly generated t.d.l.c. group. Suppose that G acts

discretely on a tree T such that

(i) the group G is acting without edge inversions;

(ii) the quotient graph G\T is finite;

(iii) the edge stabilizers Ge are compact open subgroups of G.

Then the vertex stabilizers Gv are compactly generated.

Proof. Recall that a t.d.l.c. group is compactly generated if, and only if, it is of type

FP1 (cf. Prop. 3.6). Thus it is sufficient to prove that the trivial module Q is of type

FP1 in Q[Gv]dis, for all v ∈ V (T ). By property (i) and (2.3), one has that the following

sequence

0 // ∐
e∈RE(T ) Q[G/Ge] // ∐

v∈RV (T ) Q[G/Gv] // Q // 0 (4.1)

is exact in Q[G]mod, whereRV (T ) is a set of representatives of the G-orbits on V (T ), and

RE(T ) is a set of representatives of the C2×G-orbits on E(T ). In particular, RV (T ) and

RE(T ) are finite by (ii). Moreover, G is acting discretely on T , i.e. with open stabilizers,

thus (4.1) is a short exact sequence in Q[G]dis. Thus one may consider the induction

functors indGG∗ : Q[G∗]dis →Q[G] dis, where ∗ ∈ {v, e | v ∈ RV (T ), e ∈ RE(T )} (cf. [6,

§2.4]). In particular (4.1) can be reformulated as follows

0 // ∐
e∈RE(T ) indGGe

(Q) // ∐
v∈RV (T ) indGGv

(Q) // Q // 0. (4.2)

For G is a compactly generated t.d.l.c. group, the trivial module Q is of type FP1 in

Q[G]dis. The permutation module
∐

e∈RE(T ) indGGe
(Q) with compact open stabilizers is a

finitely generated projective discrete Q[G]-module, and so of type FP1 as well (cf. Propo-

sition 3.1). By applying the horseshoe lemma to (4.2), one has that
∐
v∈RV (T ) indGGv

(Q)

is of type FP1 in Q[G]dis. Hence indGGv
(Q) is of type FP1 for every v ∈ RV (T ) (cf. [4,

Prop. 1.4 (a)]). As the induction functor is exact and it is mapping projectives to pro-

jectives (cf. [6, Proposition 3.4]), one deduces that the trivial module Q is of type FP1

in Q[Gv ]dis, since indGGv
(Q) is of type FP1 in Q[G]dis for every v ∈ RV (T ).

By conjugation, the statement holds.
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Remark 4.2. It is possible to extend the previous result to actions with edge inver-

sions. In such a case, one has to consider the stabilizers G{e} of the geometric edges

{e, ē} (cf. [6, Prop. 5.4]). On the other hand, it is well-known that the condition about

the action without edge-inversions is not properly a restriction, since it is always possible

to consider the barycentric subdivision of the tree.

Proof of (a)⇒ (b) Starting from a rough Cayley graph associated to G, one may use

different techniques to construct a tree satisfying the hypothesis in the previous result

whenever G has more than one rough end (cf. [12], [8]). Thus the result follows by

Proposition 4.1 and Bass-Serre theory.

Remark 4.3. In [17], to prove that a compactly generated t.d.l.c. group G with more

than one rough end splits non-trivially over a compact open subgroup (namely, (a)⇒ (b))

the authors applied the following technique. Firstly, by using the theory of structure trees

developed in [8], they construct a directed tree acted on by G with finitely many orbits

such that the edge stabilizers are compact and open and the vertex stabilizers are (open)

subgroups of G. Secondly, they applied Bass-Serre theory of groups acting on trees to

conclude that G has to split. Finally, they had to prove that every vertex stabilizer Gα
is compactly generated, which is the main part of the proof. They achieve this final step

by constructing a connected locally finite graph acted on transitively by Gα with compact

open stabilizers (cf. [17, Theorem 1]). This graph is obtained by means of a construction

developed in [24, Section 7]. By Proposition 4.1 instead, one directly deduces that the

vertex stabilizers are compactly generated.

Proof of (b)⇒ (c) Let G split non-trivially over the compact open subgroup K, i.e.,

either (S1) or (S2) holds. The proof is split up as follows.

Case 1. According as the splitting type (i.e., either (S1) or (S2)), suppose H and J are

both compact. By Bass-Serre’s theory, G is acting on the universal covering tree Γ̃, thus

(2.3) yields a short exact sequence

0 // E(Γ̃)
δ // V(Γ̃) // Q // 0 , (4.3)

(cf. Example 2.2). Since the vertex stabilizers are conjugated to H (and J respectively),

G is acting on Γ̃ with compact open stabilizers. Hence (4.3) is a projective resolution of

Q of length 1 in Q[G]dis, since it has discrete permutation Q[G]-modules with compact

stabilizers in degree 0 and 1 (cf. Proposition 3.1). Therefore cdQ(G) = 1, as G is non-

compact (cf. Proposition 3.2(a)). By Proposition 3.6, since G is compactly generated, G

is a t.d.l.c. group of type FP1 with cdQ(G) = 1, so G is of type FP. Thus Proposition 3.8

yields the claim.

Case 2. Assume G = H∗tK and H is non-compact. As shown in Example 2.2(b), one

has the following short exact sequence in Q[G]dis

0 // Q[G/K]
δ // Q[G/H] // Q // 0. (4.4)

Recall that for every open subgroup O of G one has

Q[G/O] ∼= Q[G]⊗Q[O] Q = indGO(Q),

where indGO( ) : Q[O]dis → Q[G]dis is the induction functor (cf. [6, §2.4]). By the

Eckmann-Shapiro type lemma [6, §2.9], applying the long exact cohomology functor
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with coefficients in Bi(G) yields the long exact sequence

0 // Bi(G)G // Bi(G)H
δ∗ // Bi(G)K

��
dH1(G,Bi(G))

��
...

(4.5)

As H is not compact, Bi(G)H = 0 (cf. Fact 3.7). Thus (4.5) gives an injective map from

Bi(G)K to dH1(G,Bi(G)). For K is compact, Bi(G)K 6= 0 and then dH1(G,Bi(G)) 6= 0.

Case 3. Let G = H ∗K J and H non-compact. The sequence

0 // Q[G/K]
δ // Q[G/H]⊕Q[G/J ] // Q // 0, (4.6)

is exact in Q[G]dis (cf. Example 2.2(a)).

Now for H is not compact, applying the long exact cohomology functor with coefficients

in Q[G/K] yields the long exact sequence

0 // Q[G/K]G // HomG(Q[G/J ],Q[G/K])
δ∗ // EndG(Q[G/K])

��
dH1(G,Q[G/K])

��
...

(4.7)

It follows that dH1(G,Q[G/K]) 6= 0. Indeed suppose firstly J to be non-compact. Thus

[6, Fact 3.5] implies that

EndG(Q[G/K])→ dH1(G,Q[G/K])

in (4.7) is injective.

On the other hand, if J is compact, we claim that δ∗ cannot be surjective, and so

dH1(G,Q[G/K]) 6= 0 as well.

Let us prove the claim. Recall that the map δ in (4.7) is given by

δ : Q[G/K]→ Q[G/H]⊕Q[G/J ], δ(gK) = gH − gJ, ∀g ∈ G.

Let ϕ ∈ HomG(Q[G/J ],Q[G/K]), thus one has

δ∗(ϕ)(g1K) = δ∗(ϕ)(g2K), (4.8)

for all g1, g2 ∈ G such that g1g
−1
2 ∈ J . If δ∗ is surjective, then there exists ϕ such that

idQ[G/K] = δ∗(ϕ). But g1K 6= g2K for all g1, g2 ∈ G such that g1g
−1
2 ∈ J \K 6= ∅, and

the claim follows.

Finally, by Proposition 3.6 and Remark 3.4, one has

dH1(G,Bi(G)) = lim−→CO(G)
dH1(G,Q[G/U ]), (4.9)

where U is ranging over all compact open subgroups of G. Let COK(G) be the set of all
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compact open subgroups of G contained in K. One has

dH1(G,Bi(G)) = lim−→COK(G)
dH1(G,Q[G/U ]) 6= 0, (4.10)

since the map

dH1(ηU,V ) : dH1(G,Q[G/U ])→ dH1(G,Q[G/V ])

is injective for all compact open subgroups V ⊆ U ⊆ K of G (cf. Proof of [6, Proposition

4.7]) and dH1(G,Q[G/K]) 6= 0.

In order to conclude the proof of Theorem A* let us provide two Lemmas that concur

to clarify the expected connection between number of ends and degree–1 cohomology.

Let K be a compact open subgroup of G. Following [9], a subset B ⊂ G/K is called an

almost (G,K)-invariant set if the characteristic function χB of B is an almost (G,K)-

invariant function (cf. §3·3). In other words, B is an almost (G,K)-invariant set if gB =a

B (i.e. the symmetric difference is finite) for all g ∈ G and kB = B for all k ∈ K. Thus we

reformulate a result of C. Bamford and M.J. Dunwoody (cf. [3, Lemma 1.1]) as follows.

Lemma 4.4. Let G be a compactly generated t.d.l.c. group and let (K,S) be a generat-

ing pair. Then the Q-vector space AInvK(G,Q) of all almost (G,K)-invariant functions

is generated by

{χB |B almost (G,K)-invariant set}.

Note that if B is an almost (G,K)-invariant set, then its complement B∗ is also an almost

(G,K)-invariant set. An almost (G,K)-invariant set B ⊂ G/K is said to be proper if

B,B∗ are both infinite.

Lemma 4.5. Let G be a compactly generated t.d.l.c. group and let (K,S) be a gener-

ating pair of G. If there exists a proper almost (G,K)-invariant set, then e(G) > 1.

Proof. Let Γ = Γ(G,K, S) be the rough Cayley graph of G with respect to the gen-

erating pair (K,S). If B ⊂ G/K is an infinite almost (G,K)-invariant set, in particular

one has kB = B for all k ∈ K. Thus one defines

CB = { gK ∈ G/K | g−1K ∈ B } ⊂ V(Γ).

Clearly, CB is infinite. Moreover, the set CB has finite boundary. Indeed,

δ̄CB = { gsK /∈ CB | gK ∈ CB , s ∈ S } = { s−1g−1K /∈ B | g−1K ∈ B, s ∈ S }.

Rearranging, we have

δ̄CB = { gK ∈ G/K | ∃s ∈ S s.t. χB(gK) 6= s · χB(gK) },

which is a finite set by the almost invariance of χB and |S| <∞. Clearly, if B is proper

then CB contains at least a cut of Γ. Thus Fact 2.3 completes the proof.

Proof of c)⇒ a) Since

dH1(G,Bi(G)) = lim−→CO(G)
dH1(G,Q[G/U ]) 6= 0, (4.11)

(cf. Proposition 3.6 and Remark 3.4), it suffices to prove that e(G) > 1 if there exists a

compact open subgroup K of G such that dH1(G,Q[G/K]) 6= 0.

Let K be such a subgroup. By Proposition 3.15, there is a non-trivial map d ∈
AInvK(G,Q) which is neither constant on G/K nor almost zero. Since AInvK(G,Q)
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is Q-generated by the characteristic functions of the almost (G,K)-invariant sets of G

(cf. Lemma 4.4), there exists an infinite almost (G,K)-invariant set B ( G/K. We claim

that B is proper. Then the statement follows by Lemma 4.5.

Let us prove the claim. Set B∗ = G \ B and d∗ = ∂χB∗ (cf. (3.10)). Clearly, d∗ ∈
dH1(G,Q[G/K]) and B∗ is an infinite almost (G,K)-invariant set, i.e. B is proper.

5. Compactly presented t.d.l.c. groups of rational discrete cohomological dimension one

Following [6], a graph of profinite groups (G,Λ) based on the graph Λ consists of the

following data:

(G1) a profinite group Gv for every vertex v ∈ V (Λ);

(G2) a profinite group Ge for every edge e ∈ E(Λ) satisfying Ge = Gē;

(G3) an open embedding ιe : Ge → Gt(e) for every edge e ∈ E(Λ).

The fundamental group of a graph of profinite groups carries naturally the structure of

t.d.l.c. group. Indeed a neighbourhood basis of the identity is given by

B := {O ≤co gGvg−1 | v ∈ V(Λ), g ∈ π1(G,Λ) } ,

where O is a compact open subgroup of the vertex stabilizer gGvg−1. We recall that a

generalized presentation of a t.d.l.c. group G is a graph of profinite groups (G,Λ) together

with a continuous open surjective homomorphism

φ : π1(G,Λ) −→ G, (5.1)

such that φ|Gv is injective for all v ∈ V (Λ). In particular, every t.d.l.c. group G admits

at least one generalized presentation (G,Λ0) based on a graph with a single vertex (cf.

[6, Proposition 5.10]). A t.d.l.c. group G is said to be compactly presented, if there exists

a generalized presentation ((G,Λ), φ), such that

(i) Λ is a finite connected graph, and

(ii) K = ker(φ) is a finitely generated as normal subgroup of the fundamental group

Π = π1(G,Λ).

Clearly, the fundamental group of a finite graph of profinite groups is a compactly pre-

sented t.d.l.c. group.

Remark 5.1. The notion of being compactly presented we use here is equivalent to the

usual one defined for compactly generated locally compact groups (cf. [2, Prop. 1.1.3]).

Recall that a compactly generated t.d.l.c. group G is accessible if, and only if, it has an

action on a tree T such that:

(A1) the number of orbits of G on the edges of T is finite;

(A2) the stabilizers of edges in T are compact open subgroups of G;

(A3) every stabilizer of a vertex in T is a compactly generated open subgroup of G and

has at most one rough end.

Theorem B. Let G be a t.d.l.c. group. Thus the following are equivalent:

(i) G is a compactly presented t.d.l.c. group with cdQ(G) ≤ 1,

(ii) G is isomorphic to the fundamental group π1(G,Λ) of a finite graph of profinite

groups (G,Λ).
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Proof. Clearly, the fundamental group Π of a finite graph of profinite groups is a

compactly presented t.d.l.c. group. Moreover Π acts on its universal covering tree without

inversion of edges and with compact open vertex stabilizers. Then cdQ(Π) ≤ 1 (cf. (2.3)

and Proposition 3.1).

Conversely, let G be a compactly presented t.d.l.c. group. By (a) of Proposition 3.2,

if cdQ(G) = 0, then G is profinite and there is nothing to prove. Let cdQ(G) = 1. As

G is compactly presented, by [7, Theorem 4.H.1] G is accessible. Thus G is acting on a

tree T with finitely many orbits on the set of edges and compact open edge stabilizers.

Moreover every vertex stabilizer Gv is a compactly generated open subgroup of G with

at most one end. By Theorem A*, for all v ∈ V (T ) one has dH1(Gv,Bi(Gv)) = 0. By

Propositions 3.6 and 3.2(b), Gv is of type FP1 with cdQ(Gv) ≤ 1, i.e., Gv is of type FP

for any vertex v. Hence Proposition 3.8 together with the fact that Gv has at most one

end implies cdQ(Gv) = 0, i.e., Gv is compact for all v ∈ V (T ) (cf. Proposition 3.2(a)).

Finally, Bass-Serre’s theory yields the claim.

Remark 5.2. Clearly Theorem B can be regarded as the analogue for t.d.l.c. groups

of the Karrass-Pietrowski-Solitar theorem for virtually free groups, and in particular of

Dunwoody’s result [9, Thm. 1.1] on accessibility of discrete groups of cohomological di-

mension one.
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