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THE ERDŐS-KO-RADO THEOREM FOR THE DERANGEMENT GRAPH OF THE

PROJECTIVE GENERAL LINEAR GROUP ACTING ON THE PROJECTIVE SPACE

PABLO SPIGA

Abstract. In this paper we prove an Erdős-Ko-Rado-type theorem for intersecting sets of permutations. We show
that an intersecting set of maximal size in the projective general linear group PGLn+1(q), in its natural action on
the points of the n-dimensional projective space, is either a coset of the stabiliser of a point or a coset of the stabiliser
of a hyperplane. This gives a positive solution to [15, Conjecture 2].

Keywords derangement graph, independent set, Erdős-Ko-Rado theorem, projective general linear group

1. Introduction

The Erdős-Ko-Rado theorem [5] is one of the most fundamental theorems of extremal combinatorics; this result
determines the cardinality and also describes the structure of a set of maximal size of intersecting k-subsets from
{1, . . . , n}. This theorem consists of two parts: the first part determines the maximal size of intersecting k-subsets;
the second part classifies the sets attaining this maximum. There are various applications of the Erdős-Ko-Rado
theorem, for example to qualitatively independent sets, problems in finite geometry and in statistics. The importance
of the Erdős-Ko-Rado theorem is mainly due to its ubiquity: there are many different proofs and extensions of this
theorem and we refer the reader to [3, 7] for a full account. In fact, the book [7] is dedicated primarily to various
incarnations of the Erdős-Ko-Rado result.

In this paper, we are concerned with an extension, due to Erdős, of the Erdős-Ko-Rado theorem to permutation
groups. Let G be a permutation group on Ω. A subset S of G is said to be intersecting if, for every g, h ∈ S, the
permutation gh−1 fixes some point of Ω. This definition is very natural: writing Ω = {ω1, ω2, . . . , ωn} and identifying
the permutations g and h with the n-tuples (ωg

1 , ω
g
2 , . . . , ω

g
n) and (ωh

1 , ω
h
2 , . . . , ω

h
n), g and h are intersecting if their

corresponding tuples coincide in some coordinate, that is, ωg
i = ωh

i , for some i ∈ {1, . . . , n}. As with the Erdős-Ko-
Rado theorem, in this context we are interested in finding the cardinality of an intersecting set of maximal size and
classifying the sets that attain this bound.

As in most Erdős-Ko-Rado-type of results, this problem can be formulated in a graph-theoretic terminology.
We denote by ΓG the derangement graph of G, the vertices of this graph are the elements of G and the edges
are the pairs {g, h} such that g−1h fixes no point. (A fixed-point-free permutation is sometimes referred to as a
derangement, this term goes back to the 1708 teasing question of Montmort at the end of his book [18, page 185]
concerning the “jeu du treize”.) An intersecting set of G is simply an independent set of ΓG.

The finite symmetric group Sym(n) of degree n is possibly the most interesting permutation group for com-
binatorialists. Here, the natural extension of the Erdős-Ko-Rado theorem for Sym(n) was independently proved
by Cameron and Ku in [1], and by Larose and Malvenuto in [13]. These papers, using different methods, showed
that every intersecting set of Sym(n) has cardinality at most (n − 1)!. They both further showed that the only
intersecting sets meeting this bound are the cosets of the stabiliser of a point. (Actually, the results in [13] are
slightly more general.) The same result was also proved by Godsil and Meagher in [6] using the character theory of
Sym(n). The Godsil-Meagher proof is of paramount importance in this area; in fact, the proof is entirely algebraic
and flexible, in the sense that it can be used as a “template” and it can be applied to any permutation group where
the character theory is either sufficiently easy or sufficiently well-understood (the symmetric group is a perfect
candidate for meeting both requirements). Recently, this method was used in [17] to prove a weak form of the
Erdős-Ko-Rado theorem of every 2-transitive group; to the best of our knowledge this is the only result concerning
the Erdős-Ko-Rado theorem for groups covering simultaneously a large class of permutation groups.

Currently, it is not clear for which families of permutation groups the complete analogue of the Erdős-Ko-Rado
theorem holds.

In this paper we are interested in the q-analogue of the Erdős-Ko-Rado theorem proved in [1, 13]:

Theorem 1.1. The independent sets of maximal size in the derangement graph of PGLn+1(q) acting on the points of
the projective space PGn(q) are the cosets of the stabiliser of a point and the cosets of the stabiliser of a hyperplane.

2010 Mathematics Subject Classification. Primary 05C35; Secondary 05C69, 20B05.
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2 PABLO SPIGA

This result was first conjectured in [15, Conjecture 2] and hence Theorem 1.1 gives a positive solution to this
question. Prior to this paper, the only evidence towards the veracity of [15, Conjecture 2] was given in [15] settling
the case n = 1, and in [16] settling the case n = 2.

It is said that “the work of the righteous is done by others” and, to some extent, we feel that this citation fits
our proof of Theorem 1.1. Indeed, our proof uses all the ideas in [15–17], specifically we combine the character-
theoretic arguments developed in [15] with the combinatorial arguments used in [16]. The role of [17] is slightly
more marginal. It is remarkable that by combining both methods our proof here works only when n ≥ 3, hinting
to the fact that possibly the cases n ∈ {1, 2} show peculiar behaviour and had to be treated separately. Actually,
we could adapt our proof to include the case n = 2, but this would make our arguments unnecessarily long, and we
opted for a shorter and more unified proof for n ≥ 3 (for clarity, in the course of our argument we point out where
our proof breaks when n = 1 and when n = 2).

1.1. Comments on Theorem 1.1 and structure of the paper. We thank Alex Zalesski for some discussions on
this paper and for proving [19, Theorem 1.1] for us. Our approach in proving Theorem 1.1 (and hence settling [15,
Conjecture 2]) was adapting the Godsil-Meagher proof for Sym(n) to PGLn+1(q), and Theorem 1.1 in [19] is the
natural q-analogue of one of the tools used in [6].

Recently, Long, Plaza, Sin and Xiang [14] have proved the Erdős-Ko-Rado theorem for the derangement graph
of PSL2(q) in its action of on the projective line: this result was conjectured in [15]. In their work, these authors
have developed some new ideas and they posed a beautiful conjecture [14, Section 6] concerning the stability of
extremal intersecting families in PSL2(q), in the same spirit as the results proved by Ellis [4] on the stability of
the extremal intersecting families in Sym(n). Now that [15, Conjecture 2] is proved, we remark the relevance and
importance of the work in [14] for a possible strengthening of Theorem 1.1, and we encourage investigations on the
stability of extremal intersecting families for general projective linear groups.

The structure of this paper is straightforward. In Section 2, we set some notation that we use throughout the
whole paper. In Section 3 we prove Theorem 1.1, assuming the veracity of two facts: Propositions 3.1 and 3.2. The
rest of the paper is dedicated in proving Propositions 3.1 and 3.2. In Section 4, we gather some information on the
characters of PGLn+1(q), here the result of Zalesski [19] is fundamental. We prove Proposition 3.1 in Section 5 and
we prove Proposition 3.2 in Section 6.

2. Notation and preliminary comments

We let q be a power of a prime, we let n ≥ 3 be an integer, we denote by GF(q) a field of size q, and by GF(q)n+1

the (n+ 1)-dimensional vector space over GF(q) of row vectors with basis (ε1, ε2, . . . , εn+1). We denote by PGn(q)
the desarguesian projective space over GF(q)n+1, by P its set of points, by L its set of lines and by H its set of
hyperplanes. Recall that PGn(q) is the collection of all subspaces of GF(q)n+1 with incidence relation given by the
usual set inclusion. Thus P , L and H consist of the 1-, 2- and n-dimensional subspaces of GF(q)n+1, respectively.
In what follows, for denoting the points we will use Greek letters, and for the lines roman letters.

Given two distinct points α and α′, we denote by α∨α′ the line spanned by α and α′, that is, the line of PGn(q)
containing both α and α′. Moreover, for simplicity, given two distinct lines ℓ and ℓ′ with ℓ ∩ ℓ′ 6= ∅, we denote by
ℓ ∧ ℓ′ the point of the intersection of ℓ and ℓ′.

For not making the notation too cumbersome to use, we denote the projective general linear group PGLn+1(q)
simply by G; however, sometimes we break this rule when we want to emphasise some property of PGLn+1(q). The
subgroup of G that fixes the point α ∈ P is denoted by Gα; similarly, given ℓ ∈ L and π ∈ H, we denote by Gℓ and
Gπ the setwise stabiliser of ℓ and π in G.

As usual, C[G] is the group algebra of G over the complex numbers C. For the first part of our argument, we
only need the vector space structure on C[G]: a basis for C[G] is indexed by the group elements g ∈ G. Given a
subset S of G, we denote by 1S ∈ C[G] the characteristic vector of S, that is, (1S)g = 1 if g ∈ S, and (1S)g = 0
otherwise. Observe that when S is a subgroup of G, we may consider 1S as the class function of S mapping each
element of S to 1, that is, we view 1S as the principal character of S.

There is a natural duality [2] between the points and the hyperplanes of PGn(q) and this duality is preserve by
G = PGLn+1(q). Hence, for each g ∈ G, the number of elements of P fixed by g coincides with the number of
elements of H fixed by g. In particular, we have the equality

(2.1)
∑

α∈P

1Gα
=
∑

π∈H

1Gπ
.
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EKR THEOREM FOR PGLn+q(q) IN ITS ACTION ON PROJECTIVE POINTS 3

3. Proof of Theorem 1.1

Let P2 := P ×P be the set of ordered pairs of projective points. Let A be the {0, 1}-matrix where the rows are
indexed by the elements of G, the columns are indexed by the elements of P2 and

Ag,(α,β) =

{

1 if αg = β,

0 otherwise.

In particular, A has |G| rows and |P|2 columns. Of course, some ordering must be chosen for the rows and columns.
We fix a particular ordering of the rows of A so that the first rows are labelled by the derangements D of G, and
the remaining rows are labelled by the elements of G \ D. With this ordering, we get that A is the following block
matrix

A =

(

M
B

)

.

In particular, the rows of M are labelled by elements of D and the columns of M are labelled by the elements of
P2. Since the columns of A have coordinates indexed by the elements of G, we can view each column of A as an
element of C[G]. Similarly, the rows of A can be viewed as characteristic vectors in a suitable vector space, which
we now introduce.

Define V to be the C-vector space whose basis consists of all eαβ, where (α, β) ∈ P2. Given two subsets X and
Y of P , we write

eXY :=
∑

(α,β)∈X×Y

eαβ.(3.1)

When X has cardinality one, say X = {α}, we write simply eαY , a similar comment applies when Y has cardinality
one.

We now state two pivotal properties of the matrices A and M ; we postpone the technical proofs of the two
properties to Sections 5 and 6.

Proposition 3.1. If S is an independent set of maximal size of ΓG, then 1S is a linear combination of the columns
of A. Moreover, given ᾱ ∈ P, the subspace

〈eᾱP − eαP , ePᾱ − ePα | α ∈ P〉

of V is the right kernel of A.

Proposition 3.2. Given ᾱ ∈ P and π̄ ∈ H, the subspace

〈eαα, eᾱP − eαP , ePᾱ − ePα, eπ̄π̄ − eππ | α ∈ P , π ∈ H〉

of V is the right kernel of M .

Before proving Theorem 1.1, using these two yet unproven propositions, we need to show an elementary fact
about PGLn+1(q).

Lemma 3.3. For every α ∈ P and for every π ∈ H, there exists g ∈ G with g fixing only the element α of P and
only the element π of H.

Proof. Observe that G acts transitively on the sets {(α, π) ∈ P × H | α ∈ π} and {(α, π) ∈ P × H | α /∈ π}. In
particular, replacing α and π by αh and πh for some h ∈ G, we may assume that either α = 〈ε1〉 and π = 〈ε1, . . . , εn〉,
or α = 〈ε1〉 and π = 〈ε2, . . . , εn+1〉. In the first case, the unipotent regular element

g =















1
1 1

1 1
. . .

. . .

1 1















∈ G

fixes only the element α of P and only the element π of H. In the second case, let C ∈ GLn(q) be a Singer cycle,
that is, an element of GLn(q) of order q

n − 1. Then
[

1
C

]

∈ G

fixes only the element α of P and only the element π of H. �
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4 PABLO SPIGA

Proof of Theorem 1.1. Let S be an independent set of maximal size of ΓG. We aim to prove that S is a coset of
the stabiliser of a point or of a hyperplane of PGn(q). Up to multiplication of S by a suitable element of G, we
may assume that the identity of G is in S. In particular, we have to prove that S is the stabiliser of a point or of a
hyperplane of PGn(q).

From Proposition 3.1, the characteristic vector 1S of S is a linear combination of the columns of A, and hence,
for some vector x ∈ V , we have

1S = Ax =

(

M
B

)

x =

(

Mx
Bx

)

.

As the identity of G is in S, there are no derangements in S. Hence, by our choice of the ordering of the rows of A,
we get

1S =

(

0
t

)

and thus Mx = 0 and Bx = t. Hence x lies in the right kernel of M . Therefore, by Proposition 3.2, given ᾱ ∈ P
and π̄ ∈ H, we have

x =
∑

α∈P

cαeαα +
∑

α∈P\{ᾱ}

c1α(eᾱP − eαP) +
∑

α∈P\{ᾱ}

c2α(ePᾱ − ePα) +
∑

π∈H\{π̄}

cπ(eπ̄π̄ − eππ),

for some scalars cα, c
1
α, c

2
α, cπ ∈ C.

From Proposition 3.1, the vectors eᾱP−eαP and ePᾱ−ePα are in the right kernel of A, and hence B(eᾱP−eαP) =
B(ePᾱ − ePα) = 0. In particular,

t = Bx = B





∑

α∈P

cαeαα +
∑

π∈H\{π̄}

cπ(eπ̄π̄ − eππ)



 ;

and hence we may assume that c1α = c2α = 0, for every α ∈ P .
For α ∈ P , we have

Beαα = 1Gα
.

Moreover, for π ∈ H and g and element of G that is not a derangement, we have

(3.2) (Beππ)g =
∑

α,β∈π

Bg,(α,β) =
∑

α∈π,αg∈π

1 = |{α ∈ π | αg ∈ π}| = |π ∧ πg−1

| =

{

qn−1
q−1 if g ∈ Gπ,
qn−1−1
q−1 if g /∈ Gπ.

For the last equality observe that π ∧ πg−1

has co-dimension 2 in GF(q)n+1 when π 6= πg. Thus

Beππ = qn−11Gπ
+
qn−1 − 1

q − 1
1G,

and it follows from (3.2) that

B(eπ̄π̄ − eππ) = qn−1(1Gπ̄
− 1Gπ

).

Putting these two facts together, we get

(3.3) t = Bx =
∑

α∈P

cα1Gα
+ qn−1

∑

π∈H\{π̄}

cπ(1Gπ̄
− 1Gπ

).

As the identity of G is in S, the coordinate of t corresponding to the identity of G is 1 and hence, using the formula
in (3.3), we get

(3.4)
∑

α∈P

cα = 1.

Applying Lemma 3.3 to α ∈ P and to the hyperplane π̄, we get g ∈ G that fixes only the point α and only the
hyperplane π̄. As t is a {0, 1}-vector, the coordinate of t corresponding to g is either 0 or 1; by taking the coordinate
corresponding to g on the right-hand side of (3.3), we get

(3.5) cα + qn−1
∑

π∈H\{π̄}

cπ ∈ {0, 1},

for every α ∈ P . Applying this argument to α ∈ P and to π ∈ H \ {π̄}, we obtain

(3.6) cα − qn−1cπ ∈ {0, 1},

for every α ∈ P and for every π ∈ H \ {π̄}.
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EKR THEOREM FOR PGLn+q(q) IN ITS ACTION ON PROJECTIVE POINTS 5

Write c :=
∑

π∈H\{π̄} cπ. From (3.5), we have cα = −qn−1c or cα = −qn−1c+1, for every α ∈ P . Define the sets

P−qn−1c := {α ∈ P | cα = −qn−1c}, P−qn−1c+1 := {α ∈ P | cα = −qn−1c+ 1}.

Case 1: Suppose that both P−qn−1c and P−qn−1c+1 are non-empty.

Let α ∈ P−qn−1c+1 and let β ∈ P−qn−1c. Applying (3.6) to α and β, we get

−qn−1c+ 1− qn−1cπ ∈ {0, 1}, −qn−1c− qn−1cπ ∈ {0, 1},

for each π ∈ H \ {π̄}. If −qn−1c + 1 − qn−1cπ = 0, for some π ∈ H \ {π̄}, then −qn−1c − qn−1cπ = −1 /∈ {0, 1},
but this is a contradiction. Thus −qn−1c + 1 − qn−1cπ = 1 and hence cπ = −c, for every π ∈ H \ {π̄}. Since
c =

∑

π∈H\{π̄} cπ, we obtain

c =
∑

π∈H\{π̄}

(−c) = −c(|H| − 1).

This implies c = 0, and hence cπ = 0, for each π ∈ H \ {π̄}. This shows that t =
∑

α∈P cα1Gα
. Now, (3.5) gives

cα ∈ {0, 1}, for every α ∈ P , and hence (3.4) implies that there exists a unique α′ ∈ P with cα′ = 1 and all other
scalars are zero. Thus t = 1Gα′

and S is the stabiliser of the point α′. �

Case 2: Suppose that P−qn−1+1 = ∅.

Thus P = P−qn−1c and cα = −qn−1c, for each α ∈ P . In particular, (3.4) gives −qn−1c|P| = 1, that is,

(3.7) c = −
q1−n

|P|
.

Moreover, (3.6) gives −qn−1c− qn−1cπ ∈ {0, 1}, that is,

cπ ∈ {−c,−c− q1−n},

for each π ∈ H \ {π̄}. Let a be the number of hyperplanes π ∈ H \ {π̄} with cπ = −c and let b be the number of
hyperplanes π ∈ H \ {π̄} with cπ = −c− q1−n. Thus a+ b = |H| − 1. Moreover, by the definition of c, we have

a(−c) + b(−c− q1−n) = c.

Putting these together, we have −c(|H| − 1)− bq1−n = c, which implies b = −cqn−1|H| = 1 by (3.7). In particular,
there exists a unique π′ ∈ H \ {π̄} with cπ′ = −c − q1−n and all other hyperplanes π ∈ H \ {π̄} have cπ = −c.
Therefore, using (2.1) and (3.7), we get

t = −cqn−1
∑

α∈P

1Gα
+ qn−1(−c)

∑

π∈H\{π̄}

(1Gπ̄
− 1Gπ

) + qn−1 · (−q1−n)(1Gπ̄
− 1Gπ′

)

= −cqn−1

(

∑

α∈P

1Gα
−
∑

π∈H

1Gπ

)

− qn−1c
∑

π∈H

1Gπ̄
− (1Gπ̄

− 1Gπ′
)

= −cqn−1|H|1Gπ̄
− (1Gπ̄

− 1Gπ′
) = 1Gπ̄

− (1Gπ̄
− 1Gπ′

) = 1Gπ′
.

In this case, S is the stabiliser of the hyperplane π′. �

Case 3: Suppose that P−qn−1c = ∅.

Thus P = P−qn−1c+1 and cα = −cqn−1 + 1, for each α ∈ P . In particular, (3.4) gives (−qn−1c+ 1)|P| = 1, that is,

(3.8) c = q1−n |P| − 1

|P|
.

Furthermore, (3.6) gives −qn−1c+ 1− qn−1cπ ∈ {0, 1}, that is,

cπ ∈ {−c,−c+ q1−n},

for each π ∈ H\{π̄}. Let a be the number of hyperplanes π ∈ H\{π̄} with cπ = −c+ q1−n and let b be the number
of hyperplanes π ∈ H \ {π̄} with cπ = −c. As in Case 2, we have the equations

a+ b = |H| − 1, a(−c+ q1−n) + b(−c) = c,
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6 PABLO SPIGA

and hence −c(|H| − 1) + aq1−n = c. Thus, by (3.8), a = cqn−1|H| = |H| − 1 and b = 0. Therefore, using (2.1)
and (3.8), we get

t = (−cqn−1 + 1)
∑

α∈P

1Gα
+ qn−1(−c+ q1−n)

∑

π∈H\{π̄}

(1Gπ̄
− 1Gπ

)

= (−cqn−1 + 1)

(

∑

α∈P

1Gα
−
∑

π∈H

1Gπ

)

+ (−cqn−1 + 1)
∑

π∈H

1Gπ̄

= (−cqn−1 + 1)|P|1Gπ̄
= 1Gπ̄

.

In this case, S is the stabiliser of the hyperplane π̄. �

4. Permutation characters

We let IrrC(G) be the set of the irreducible complex characters of G and we denote by 〈·, ·〉G the Hermitian form
on the C-space of the class functions of G. Given a subgroup H of G and a character η of H , we denote by ηG the
induced character.

4.1. Natural actions. We turn our attention to the permutation character π of the action of G = PGLn+1(q) on
the projective points P of PGn(q). Since G acts 2-transitively on P , we have

(4.1) π = 1G + χ0,

where χ0 is an irreducible complex character of G of degree |P| − 1 = (qn+1 − q)/(q − 1).
We let P(2) := {(α, β) ∈ P2 | α 6= β} be the set of distinct pairs of points from P . Let π(2) be the permutation

character of the action of G = PGLn+1(q) on P(2). We are interested in decomposing π(2) as a sum of irreducible
complex characters of G. (This could also be inferred by the work of Green [8], but we prefer a more elementary
approach.) To this end, observe that since G is transitive on P(2), from Frobenius reciprocity, we have

〈π(2), π(2)〉G = 〈(π(2))2,1G〉G = 〈(π(2))2|Gαβ
,1Gαβ

〉Gαβ
,(4.2)

where (α, β) ∈ P(2) and 1Gαβ
is the principal character of Gαβ . From the orbit counting lemma and (4.2), we

deduce that 〈π(2), π(2)〉 equals the number of orbits of Gαβ on P(2). An easy computation, using the geometry of
PGn(q) and the action of G = PGLn+1(q) on PGn(q), shows that

〈π(2), π(2)〉G =











q + 14 when n ≥ 3,

q + 13 when n = 2,

q + 4 when n = 1.

(4.3)

Indeed, the orbits of Gαβ on P(2) are (compare also with Figure 1):

Case 1: {(α, β)},
Case 2: {(α, δ) | δ ∈ α ∨ β \ {α, β}},
Case 3: {(α, δ) | δ /∈ α ∨ β} (this arises when n ≥ 2),
Case 4: {(β, α)},
Case 5: {(β, δ) | δ ∈ α ∨ β \ {α, β}},
Case 6: {(β, δ) | δ /∈ α ∨ β} (this arises when n ≥ 2),
Case 7: {(γ, α) | γ ∈ α ∨ β \ {α, β}},
Case 8: {(γ, β) | γ ∈ α ∨ β \ {α, β}},
Case 9: fix γ ∈ α∨β \ {α, β}, for each δ ∈ α∨β \ {α, β, γ}, {(γx, δx) | x ∈ Gαβ} (there are q− 2 orbits of this type,

in particular, when q = 2, there are none),
Case 10: {(γ, δ) | γ ∈ α ∨ β \ {α, β}, δ /∈ α ∨ β} (this arises when n ≥ 2),
Case 11: {(γ, α) | γ /∈ α ∨ β} (this arises when n ≥ 2),
Case 12: {(γ, β) | γ /∈ α ∨ β} (this arises when n ≥ 2),
Case 13: {(γ, δ) | γ /∈ α ∨ β, δ ∈ α ∨ β \ {α, β}} (this arises when n ≥ 2),
Case 14: {(γ, δ) | γ /∈ α ∨ β, δ ∈ α ∨ γ \ {α, γ}} (this arises when n ≥ 2),
Case 15: {(γ, δ) | γ /∈ α ∨ β, δ ∈ β ∨ γ \ {β, γ}} (this arises when n ≥ 2),
Case 16: {(γ, δ) | γ /∈ α ∨ β, δ ∈ α ∨ β ∨ γ \ {(α ∨ β) ∪ (α ∨ γ) ∪ (β ∨ γ)}} (this arises when n ≥ 2),
Case 17: {(γ, δ) | γ /∈ α ∨ β, δ /∈ α ∨ β ∨ γ} (this arises when n ≥ 3).



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

EKR THEOREM FOR PGLn+q(q) IN ITS ACTION ON PROJECTIVE POINTS 7

α = γ
β = δ

Case 1

α = γ δ
β

Case 2

α = γ
β

δ

Case 3

α = δ

β = γ

Case 4

α δ
β = γ

Case 5

α
β = γ

δ

Case 6

α = δ
γ β

Case 7

α
γ β = δ

Case 8

α γ
βδ

Case 9

α
γ β

Case 10

δ

α = δ

β

Case 11

γ

α
β = δ

Case 12

γ

α
β

Case 13

δ

γ

α
β

Case 14

γ

δ

α
β

Case 15

δ

γ

α
β

Case 16

δ

γ

α

δ

β

γ

Case 17

Figure 1. Configurations for the orbits of Gαβ on ordered pairs of distinct points

Let α and β be two distinct points of P , let H := {g ∈ G | (α ∨ β)g = α ∨ β} be the setwise stabiliser of the line
α ∨ β, let K := Gαβ and let

ψ := 1H
K .

Then ψ is the permutation character of the action of H on the right cosets of K. By definition of H and K, the
permutation group induced by this action is permutation isomorphic to PGL2(q) in its natural action on the ordered
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pairs of distinct points of the projective line PG1(q). Therefore, using the character table of PGL2(q) (see [12]), we
see that, when q is odd, ψ decomposes as

ψ = 1H + (2ψ1,q + ψ2,q) + (ψ1,q−1 + · · ·+ ψ q−1
2 ,q−1) + (ψ1,q+1 + · · ·+ ψ q−3

2 ,q+1)

and, when q is even, ψ decomposes as

ψ = 1H + 2ψ1,q + (ψ1,q−1 + · · ·+ ψ q
2 ,q−1) + (ψ1,q+1 + · · ·+ ψ q

2−1,q+1).

Here, (ψi,j)i,j denote irreducible complex characters of H having the pointwise stabiliser of the line α ∨ β in their
kernel and having degree j. Observe that this is consistent with (4.3) when n = 1, because regardless of whether q
is odd or even, we have 〈ψ, ψ〉H = q + 4. To include both cases in our argument, we write

(4.4) ψ := 1H + 2η + ψ1 + · · ·+ ψq−1,

where η is the only irreducible component of ψ having multiplicity 2, ψ1, . . . , ψq−1 are distinct irreducible characters
and η(1) = q.

From (4.4), we have

(4.5) π(2) = 1G
H + 2ηG + ψG

1 + · · ·+ ψG
q−1.

Recall n ≥ 3. As 1G
H is the permutation character of the action of PGLn+1(q) on the projective lines of PGn(q)

and since this action has rank three (when n ≥ 3), we have

1G
H = 1G + χ+ χ′,

for some χ, χ′ ∈ IrrC(G). Elementary considerations yield that the degrees of the constituents of 1G
H are

1,
qn+1 − q

q − 1
,
(qn+1 − 1)(qn − q)

(q − 1)(q2 − 1)
.

Replacing χ by χ′ if necessary, we may assume that χ has degree (qn+1 − q)/(q − 1). Observe that Gα has two
orbits on lines and hence 〈(1G

H)|Gα
,1Gα

〉Gα
= 2. Therefore, from Frobenius reciprocity, 〈1G

H , π〉G = 2 and we deduce
χ = χ0 from (4.1). Thus

1G
H = 1G + χ0 + χ′.

Now, for every i ∈ {1, . . . , q − 1}, using again the character table of PGL2(q), we deduce

(4.6) 〈ψG
i , χ0〉G = 〈ψi, (χ0)|H 〉H = 0.

Since G acts transitively on P(2), we have

(4.7) 〈π(2),1G〉G = 1.

From Frobenius reciprocity, 〈π(2), π〉G = 〈1Gαβ
, π|Gαβ

〉Gαβ
. Since Gαβ has four orbits on P (namely, {α}, {β},

α ∨ β \ {α, β} and P \ α ∨ β), we get

(4.8) 〈π(2), π〉G = 4.

Now, from (4.1), (4.7) and (4.8), we deduce

(4.9) 〈π(2), χ0〉G = 3.

From (4.5), (4.6) and (4.9), we deduce that χ0 is a constituent of ηG and hence ηG = χ0 + χ′′ for some
χ′′ ∈ IrrC(G). Since η has degree q, ηG has degree q|G/H | = q|L| = (qn+1 − 1)(qn+1 − q)/((q − 1)(q2 − 1)). Since
χ0 has degree (qn+1 − q)/(q − 1), we get

χ′′(1) = ηG(1)− χ0(1) = q3
(qn − 1)(qn−1 − 1)

(q − 1)(q2 − 1)
.

Moreover,

π(2) = 1G + 3χ0 + χ′ + 2χ′′ + ψG
1 + · · ·+ ψG

q−1.

Since 〈π(2), π(2)〉G = q + 16 from (4.3) and since 12 + 32 + 12 + 22 + (q + 1) · 12 = q + 16, we deduce that
1G, χ0, χ

′, χ′′, ψG
1 , . . . , ψ

G
q−1 are distinct irreducible complex characters of G and are the constituents of G.

We sum up in the following lemma what we have shown so far.
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Lemma 4.1. Let π be the permutation character of the action of G on P, let π(2) be the permutation character
of the action of G on P(2) and let πℓ be the permutation character of the action of G on L. Then, π, π(2) and πℓ
decompose as the sum of irreducible complex characters as follows:

π = 1G + χ0,

π(2) = 1G + 3χ0 + χ′ + 2χ′′ + ψG
1 + ψG

2 + · · ·+ ψG
q−1,

πℓ = 1G + χ0 + χ′,

where 1G, χ0, χ
′, χ′′, ψG

1 , ψ
G
2 , . . . , ψ

G
q−1 are distinct irreducible complex characters. The characters ψG

1 , ψ
G
2 , . . . , ψ

G
q−1

are induced from irreducible complex characters of the setwise stabiliser of a line. Moreover, χ′′ has degree q3((qn−
1)(qn−1 − 1))/((q − 1)(q2 − 1)).

4.2. Permutation character induced from a Singer cycle. We let c be an element of order qn+1−1
q−1 = |P| in

G, that is,

(4.10) c is a Singer cycle of the projective general linear group PGLn+1(q) and C := 〈c〉.

The proof of the following lemma is rather short, but it uses a deep result of Zalesski on 1G
C . (The author wishes

to express his gratitude to Alex Zalesski for proving [19, Theorem 1.1], our argument for proving Theorem 1.1
heavily depends on [19] via Lemma 4.2.)

Lemma 4.2. Suppose (n, q) 6= (2, 2). Let η ∈ IrrC(G) with 〈1G
C − 1G, η〉G = 0. Then either η(1) = 1 or η = χ0

(recall that χ0 is the non-principal constituent of the permutation character of G in its action on the points of
PGn(q)).

Proof. From [19, Theorem 1.1], we see that, when (n, q) 6= (2, 2), if 〈1G
C − 1G, η〉G = 0, then η(1) = 1 or η(1) =

(qn+1−q)/(q−1). In particular, to conclude the proof of this lemma, we need to consider the case that η(1) = (qn+1−
q)/(q − 1) and we need to show that η = χ0. Note that all irreducible characters of G of degree (qn+1 − q)/(q − 1)
differ by a multiple which is a linear character, see [19, page 524] or [9, Table II]. Therefore, η = ξχ0, where ξ is a
linear character of G.

Suppose ξ 6= 1G. As 1G is not a constituent of the irreducible character ξχ0, we have

〈1G
C − 1G, ξχ0〉G = 〈1G

C , ξχ0〉G = 〈1C , (ξχ0)|C〉C =
1

|C|

∑

x∈C

ξ(x)χ0(x) =
1

|C|





qn+1 − q

q − 1
−

∑

x∈C\{1}

ξ(x)





=
1

|C|

(

qn+1 − q

q − 1
+ 1−

∑

x∈C

ξ(x)

)

=
1

|C|

(

qn+1 − 1

q − 1
− 〈ξ,1C〉C

)

=
1

|C|

qn+1 − 1

q − 1
6= 0. �

Proposition 4.5 is yet another technical result concerning characters that we need to prove. This result seems
out of context, but it will be useful for computing the eigenvalues of a certain matrix. Let (α, β) ∈ P(2). We are
interested in

η(1)

|G|

∑

g∈GαβC

η(g−1),

where η ∈ IrrC(G). Here, the results in [11, Section 4] are relevant. For the reader’s benefit, we report some results
from [11] tailored to our application.

Lemma 4.3. Let χ be a character of G and let H be a subgroup of G with 〈1|H ,1H〉H = 1. Let X be a representation
affording χ such that X restricted to H has the form:

χ(h) =

(

1 0
0 Y(h)

)

,

for every h ∈ H, where Y is a representation of H. Let x ∈ G and suppose that the entry in row 1 and column 1
of X (x) is a ∈ C. Then

∑

h∈H

χ(xh) = |H |a.

Proof. This is Corollary 4.2 in [11]. �

Lemma 4.4. Let χ be a character of G, let H be a subgroup of G with 〈1|H ,1H〉H = 0 and let x ∈ G. Then
∑

h∈H

χ(xh) = 0.
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Proof. This follows from the proof of Lemma 4.1 and the proof of Corollary 4.2 in [11]. �

Proposition 4.5. Let η be a constituent of π(2) having multiplicity 1 with η 6= χ′ (see Lemma 4.1 for the definition
of χ′). Then

η(1)

|G|

∑

g∈GαβC

η(g−1) 6= 0.

Proof. Fix (α, β) ∈ P(2). Observe that 〈π(2), η〉G = 〈1G
Gαβ

, η〉G and hence 〈η|Gαβ
,1Gαβ

〉Gαβ
= 1 from Frobenius

reciprocity. Moreover,

(4.11)
η(1)

|G|

∑

g∈GαβC

η(g−1) =
η(1)

|G|

∑

x∈C





∑

h∈Gαβ

η(xh)



 .

Therefore we are in the position to apply Lemma 4.3 with χ = η and H = Gαβ . Before doing so, observe that
the statement of the lemma is obvious when η = 1G. Now, we assume η 6= 1G and we let X be a representation
affording η.

We now use Lemma 4.1. Suppose η = ψG
i , for some i ∈ {1, . . . , q − 1}. It is clear from the definition of induced

character applied to ψG
i and to its representation X that the (1, 1)-entry of the matrix X (x) is zero, unless x = 1.

Therefore, from (4.11),

ψG
i (1)

|G|

∑

g∈GαβC

ψG
i (g

−1) =
ψG
i (1)

|G|

∑

h∈Gαβ

ψG
i (h) =

ψG
i (1)|Gαβ |

|G|
〈(ψG

i )|Gαβ
,1Gαβ

〉Gαβ
=
ψG
i (1)|Gαβ |

|G|
〈ψG

i , π
(2)〉G 6= 0,

where in the last equality we have used, as usual, Frobenius reciprocity. �

We were not able to prove Proposition 4.5 when η = χ′, although we have strong computational evidence that
the result holds also in this case. We pay this deficiency by having an ad-hoc argument for χ′ in Section 6.

5. Proof of Proposition 3.1

We start with an elementary observation.

Lemma 5.1. Let S be an intersecting set of maximal size of G. Then |S| = |G|/|P|.

Proof. Let C be as in (4.10). Then C is a clique and S is an independent set of ΓS . From the clique-coclique bound,
|G| ≥ |S||C| = |S||P| and hence |S| ≤ |G|/|P|. Since a point-stabiliser is an independent set of cardinality |G|/|P|,
the proof of the lemma follows. �

It is elementary to see that A has rank (|P| − 1)2 + 1, for instance, this can be shown exactly as in [15,
Proposition 3.2]. Here we present a slightly longer and difficult proof, however this detour has the advantage of
proving also the stronger statement in Proposition 3.1.

Let J be the subspace of C[G] spanned by the characteristic vectors 1S of the independent sets S of maximal
size of ΓG, and let Z be the subspace of C[G] spanned by the columns of A.

As each column of A is the characteristic vector of a coset of the stabiliser of a point, and hence the characteristic
vector of an independent set of maximal size by Lemma 5.1, Z is a subspace of J , that is, Z ≤ J.

We now use the algebra structure of C[G]. We claim that

J and Z are ideals of C[G].

Indeed, for every independent set S of maximal size of ΓG and for every g ∈ G, we have 1Sg = 1Sg and g1S = 1gS .
Since Sg and gS are both independent sets of maximal size of ΓG, we deduce 1Sg, g1S ∈ J . Therefore, J is an ideal
of C[G]. A similar argument yields that Z is also an ideal of C[G].

We now recall some basic facts on group algebras, see [10]. The minimal ideals (Iη)η∈IrrC(G) of C[G] are indexed
by the irreducible complex characters IrrC(G) and we have the direct sum decomposition

(5.1) C[G] =
⊕

η∈IrrC(G)

Iη.

For each η ∈ IrrC(G), we have dimC(Iη) = η(1)2 and the minimal ideal Iη contains the principal idempotent element

(5.2) eη :=
η(1)

|G|

∑

g∈G

η(g−1)g.
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In particular, for each η, η′ ∈ IrrC(G), we have

eηeη′ =

{

eη when η = η′,

0 when η 6= η′.

Since C[G] is a semi-simple algebra,

(5.3) J =
⊕

η∈J

Iη,

for some subset J of IrrC(G). Similarly,

Z =
⊕

η∈Z

Iη,

for some subset Z of IrrC(G).

Lemma 5.2. Z = {1, χ0} and A has rank (|P|− 1)2+1. In particular, 〈eᾱP − eαP , ePᾱ− ePα | α ∈ P〉 is the right
kernel of A.

Proof. Fix α ∈ P and x ∈ G. Let η ∈ IrrC(G). We have

eη · 1Gαx =
η(1)

|G|

∑

g∈G

η(g−1)1gGαx =
η(1)

|G|

∑

g∈G

η(g−1)





∑

h∈gGαx

h



(5.4)

=
η(1)

|G|

∑

h∈G





∑

g∈hGαx

η(g−1)



 h =
η(1)

|G|

∑

h∈G





∑

g∈hxGα

η(g−1)



h,

where in the last equality we used the fact that η is a class function and hence η((hyx)−1) = η(x−1y−1h−1) =
η(y−1x−1h−1) = η((hxy)−1), for every y.

If 〈η|Gα
,1Gα

〉Gα
= 0, then from Lemma 4.4 and (5.4), we deduce eη ·1Gαx = 0. As 1Gαx is an arbitrary generator

of Z, we deduce Z ⊆ {η ∈ IrrC(G) | 〈η|Gα
,1Gα

〉 6= 0}. From Frobenius reciprocity and (4.1), Z ⊆ {1G, χ0}.
When η = 1G, we have e1G

· 1Gαx = |Gα|e1G
6= 0. Finally, when η = χ0, an application of Lemma 4.3 to (5.4)

yields

eχ0 · 1Gαx =
χ0(1)

|G|

∑

h∈xGα





∑

g∈x−1hGα

χ0(g
−1)



h =
|P| − 1

|G|

∑

h∈xGα





∑

g∈Gα

χ0(g)



 h

=
|P| − 1

|G|

∑

h∈xGα

h =
|P| − 1

|G|
1xGα

6= 0.

Thus Z = {1G, χ0} and dim(Z) = deg(1G)
2 + deg(χ0)

2 = 1 + (|P| − 1)2.
Since A has |P|2 columns, the right kernel of A has dimension |P|2 − ((|P| − 1)2 + 1) = 2(|P| − 1).
An elementary computation shows that 〈eᾱP − eαP , ePᾱ − ePα | α ∈ P〉 is contained in the right kernel of A and

has dimension 2(|P| − 1); thus the lemma is proven. �

The argument for determining J , and hence J , is similar to the argument in Lemma 5.2.

Proof of Proposition 3.1. From Lemma 5.2 and the discussion above, it remains to show that Z = I.
Let I be the ideal of C[G] generated by 1G

C − 1G. From [10, Chapter 1], we have

(5.5) I =
⊕

η∈IrrC(G)

〈1G
C−1G,η〉G 6=0

Iη.

Let S be an independent set of maximal size of G. Then, from Lemma 5.1,

〈1S ,1
G
C − 1G〉G = 〈1S ,1

G
C〉G − 〈1S ,1G〉G = 〈(1S)|C ,1C〉C −

|S|

|G|
=

1

|C|
−

1

|C|
= 0.(5.6)

In particular, from (5.3), (5.5) and (5.6), we deduce

J ⊆ {η ∈ IrrC(G) | 〈1
G
C − 1, η〉 = 0}.

Now, Lemma 4.2 gives J ⊆ {χ0, ξ | ξ ∈ IrrC(G), ξ(1) = 1}.
Let ξ ∈ IrrC(G) with ξ 6= 1G and ξ(1) = 1, and let S be an independent set of maximal size of G. Let

T := PSLn+1(q), let Tx1, . . . , T xd be the right cosets of T in G, where d := gcd(n, q− 1), and let Si := Txi ∩ S for
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12 PABLO SPIGA

i ∈ {1, . . . , d}. Observe that Si := (S ∩ Txi)x
−1
i are intersecting sets for T = PSLn+1(q), for every i ∈ {1, . . . , d}.

From [17], an intersecting set of maximal size of T has cardinality |T |/|P|. Therefore,

|S ∩ Txi| = |Si| ≤
|T |

|P|
=

|G|

d|P|
.

As S = S1 ∪ S2 ∪ · · · ∪ Sd, we deduce |Si| = |S|/d for each i, that is, S is equally distributed among the cosets of
PSLn+1(q) in PGLn+1(q). Since ξ contains T in its kernel, an easy computation yields 〈ξ,1S〉G = 0. Since this
argument is independent on ξ and S, we obtain J ⊆ {1G, χ0} and hence J ≤= I1G

⊕ Iχ0 = Z. Since Z ≤ J , we
finally have Z = J . �

6. Proof of Proposition 3.2

For simplifying some of the notation later, we define

u :=
|G|

|P|(|P| − 1)
, v :=

|G|

|P|(|P| − 1)(|P| − q − 1)
.(6.1)

Recall that from (4.10), c is a Singer cycle of the projective general linear group PGLn+1(q) and C = 〈c〉. We
let C denote the PGLn+1(q)-conjugacy class of c.

Since C acts transitively on P , from the Frattini argument, we have

G = CGα = GαC,

for each α ∈ P . Moreover, since C is abelian, CG(C) = C and so C ∩Gα = CG(C) ∩Gα = 1, that is,

C = {cx | x ∈ Gα}, |C| = |Gα| =
|G|

|P|
.(6.2)

Given two distinct points α and β of PGn(q), we define

Cαβ := {g ∈ C | αg = β}.

Clearly, Cαβ 6= ∅. In fact, given g ∈ C, since Gα is transitive on P \ {α}, there exists x ∈ Gα with (αg)x = β, that

is, αx−1gx = β and x−1gx ∈ Cαβ . Fix, once and for all, an arbitrary element

gαβ ∈ Cαβ

and let x ∈ Gα. Then, gxαβ ∈ Cαβ if and only if αgx
αβ = β; as αx = α, this happens only when βx = β, that is,

x ∈ Gαβ . Combining this with (6.1) and (6.2), we have

Cαβ = {gxαβ | x ∈ Gαβ}, |Cαβ| = |Gαβ | =
|G|

|P|(|P| − 1)
= u.(6.3)

6.1. Two important matrices. We now introduce two matrices M and C of paramount importance for our
argument. The rows of M are index by the elements of C (or by the elements of Gα in view of (6.2)) and the
columns of M are indexed by the elements of P(2) and, given g ∈ C and (α, β) ∈ P(2), we have

Mg,(α,β) :=

{

1 if αg = β,

0 if αg 6= β.

Then we define

C := M
T
M .

Therefore C is a symmetric matrix with |P(2)| = |P|(|P| − 1) rows. Moreover, given (α, β), (γ, δ) ∈ P(2), we have

C(α,β),(γ,δ) = |{g ∈ C | αg = β, γg = δ}| = |{g ∈ Cαβ | γg = δ}|.(6.4)

In the rest of this section, we are interested in computing the entries of C . Before embarking in this task, some
remarks are necessary for simplifying some of the computations. It is clear from the definition that

C(α,β),(γ,δ) = C(γ,δ),(α,β).(6.5)

Although, C is not closed by inversion, that is, c is not necessarily conjugate to c−1 in G, we still have

C(α,β),(γ,δ) = C(β,α),(δ,γ).(6.6)

This can be shown observing that c is conjugate to c−1 via the inverse-transposed automorphism of G. Set

Gαβγδ := {x ∈ Gαβ | γx
−1gαβx = δ}. Then, by (6.3), we have

C(α,β),(γ,δ) = |Gαβγδ|.(6.7)
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An easy computation gives GαβγδGαβγδ := {gx | g ∈ Gαβγδ, x ∈ Gαβγδ} = Gαβγδ and hence

Gαβγδ is a union of left Gαβγδ-cosets.(6.8)

There is one more elementary fact we aim to observe:

if x ∈ Gαβγδ, then xGαβγδ = xGαβγ ∩ Gαβγδ = xGαβδ ∩ Gαβγδ = xGαγδ ∩ Gαβγδ = xGβγδ ∩ Gαβγδ.(6.9)

Proposition 6.1. Let (α, β) and (γ, δ) be two pairs of distinct points of PGn(q), and consider Figure 1. Then we
have

C(α,β),(γ,δ) =



















u when α, β, γ, δ are as in Case 1,

0 when α, β, γ, δ are as in Cases 2, 3, 4, 5, 7, 8, 9, 12,

v when α, β, γ, δ are as in Cases 6, 10, 11, 13, 14, 15, 17,
q−2
q−1v when α, β, γ, δ are as in Case 16.

Proof. When α, β, γ, δ are as in Case 1, the proof follows from (6.3).
When α, β, γ, δ are as in Cases 2, 3, 4, 5, 7, 8, 9, 12, the proof is clear because in each of these cases,

every element g of G, with αg = β and γg = δ, fixes a 1- or a 2-dimensional subspace of GF(q)n+1, but every element
of C acts irreducibly on GF(q)n+1 (observe that we are using n ≥ 2).

Suppose that α, β, γ, δ are as in Cases 6, 10, 11, 13, 14, 15, 17. The fact that in all of these cases
C(α,β),(γ,δ) equals v is a miracle in our opinion and we do not fully understand the reason of this behaviour.
We first consider Case 6. Let G(α∨β) := {x ∈ G | ξx = ξ, ∀ξ ∈ α ∨ β}. We claim that, for every x ∈ Gαβ , there
exists y ∈ G(α∨β) with xy ∈ Gαβγδ. Then, let x ∈ Gαβ . If γ

gαβ ∈ α∨β, then (α∨β)gαβ = (α∨γ)gαβ = αgαβ ∨γgαβ =
β ∨ γgαβ = α ∨ β and hence gαβ fixes α ∨ β setwise, a contradiction. Therefore γgαβ /∈ α ∨ β. Since x ∈ Gαβ , x

fixes setwise α ∨ β and hence γx
−1gαβx /∈ α ∨ β. As G(α∨β) is transitive on P \ α ∨ β and δ /∈ α ∨ β, there exists

y ∈ G(α∨β) with α
x−1gαβxy = δ. It is now immediate to check that xy ∈ Gαβγδ and hence our claim is proved.

From the previous claim, there exists a set x1, . . . , xq−1 of representatives for the cosets of G(α∨β) in Gαβ with
x1, . . . , xq−1 ∈ Gαβγδ. Therefore

Gαβγδ = Gαβ ∩ Gαβγδ =

(

q−1
⋃

i=1

xiG(α∨β)

)

∩ Gαβγδ =

q−1
⋃

i=1

(

xiG(α∨β) ∩ Gαβγδ

)

=

q−1
⋃

i=1

xiGαβγδ,

where in the last equality we used (6.9). Therefore

C(α,β),(γ,δ) = |Gαβγδ| = (q − 1)|Gαβγδ| = (q − 1)
|Gαβδ|

[Gαβδ : Gαβγδ]
= |Gαβδ|

=
|Gαβ |

[Gαβ : Gαβδ]
=

|Gαβ |

|P| − (q + 1)
=

|G|

|P|(|P| − 1)(|P| − q − 1)
= v.

When α, β, γ, δ are as in Case 11, the proof follows from Case 6 and (6.6).
Suppose that α, β, γ, δ are as in Case 10. The argument in this case does follow the argument above, but with

some slight differences. We claim that, for every x ∈ Gαβ , there exists y ∈ Gαβγ with xy ∈ Gαβγδ. Then, let
x ∈ Gαβ . Arguing as above, γgαβ /∈ α ∨ β, because otherwise gαβ fixes α ∨ β setwise, which is a contradiction.

Therefore γgαβ /∈ α ∨ β. Since x ∈ Gαβ , x fixes setwise α ∨ β and hence γx
−1gαβx /∈ α ∨ β. As Gαβγ is transitive on

P \α∨ β and δ /∈ α∨ β, there exists y ∈ G(α∨β) with α
x−1gαβxy = δ. It is now immediate to check that xy ∈ Gαβγδ

and hence our claim is proved. The rest of the argument follows verbatim the argument in Case 6.
When α, β, γ, δ are as in Cases 13, 14 and 15, the proof follows from Case 10 applying (6.5), or (6.6), or (6.5)

and (6.6).
It is remarkable (and in our opinion mysterious) that also in Case 17 C(α,β),(γ,δ) equals v. We denote by L the

set of lines of PGn(q) and we define L0 := {ℓ ∈ L | ℓ ∧ ℓgαβ = ∅} and L1 := {ℓ ∈ L | ℓ ∧ ℓgαβ 6= ∅}. We claim that

(6.10) |L0| =
(qn+1 − 1)(qn − q)

(q − 1)(q2 − 1)
.

To this end, consider S := {(ξ, ℓ) ∈ P ×L | ξ = ℓ ∧ ℓgαβ}. Observe that, if (ξ, ℓ) ∈ S, then ℓ = ξ ∨ ξgαβ and hence ℓ
is uniquely determined by ξ. This shows |S| = |P|. On the other hand,

|S| =
∑

ℓ∈L

|ℓ ∧ ℓgαβ | = |L1|.

Thus |L0| = |L| − |L1| = |L| − |P| and (6.10) follows.
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Write L0,α := {ℓ ∈ L0 | α ∈ ℓ}. Since each line contains q + 1 points, an elementary double counting argument
on the set {(ξ, ℓ) ∈ P × L | ξ ∈ ℓ} yields (q + 1)|L0| = |P||L0,α| and hence

|L0,α| =
qn − q2

q − 1
.(6.11)

An explicit computation with the matrices in Gαβ shows that, for every ξ, ξ′, ε, ε′ ∈ P with (α ∨ ξ) ∧ (β ∨ ε) = ∅
and (α ∨ ξ′) ∧ (β ∨ ε′) = ∅, there exists x ∈ Gαβ with ξx = ξ′ and εx = ε′.

Let x ∈ Gαβγδ. Then (α∨γ)x
−1gαβx = β∨ δ. As (α∨γ)∧ (β ∨ δ) = ∅, we deduce ((α∨γ)x

−1

)gαβ ∧ (α∨γ)x
−1

= ∅,

that is, (α ∨ γ)x
−1

is a line, let us call it ℓ, in L0,α. From (6.11) we have (qn − q2)/(q − 1) possibilities for ℓ. Next,

γx
−1

∈ ℓ \ {α} and hence we have q possibilities for the point γx
−1

. From the previous paragraph, we deduce

|Gαβγδ| = |Gαβγδ|
qn − q2

q − 1
q =

|Gαβγ |

|P| − (q2 + q + 1)

qn+1 − q3

q − 1
= |Gαβγ | =

|G|

|P|(|P| − 1)(|P| − q − 1)
= v.

Suppose finally that α, β, γ, δ are as in Case 16 and define κ := C(α,β),(γ,δ). Clearly, Cαβ =
⋃

ξ∈P{g
x
αβ | x ∈

Gαβγξ} and hence

|Cαβ | =
∑

ξ∈P

|Gαβγξ| =|Gαβγα|

+
∑

ξ∈α∨β\{α,β}

|Gαβγα|+
∑

ξ∈α∨γ\{α,γ}

|Gαβγα|+
∑

ξ∈β∨γ\{β,γ}

|Gαβγα|

+
∑

ξ/∈α∨β∨γ

|Gαβγα|

+
∑

ξ∈α∨β∨γ\(α∨β∪α∨γ∪β∨γ)

|Gαβγξ|.

The summands that we have singled out in the first three lines correspond to Cases 11, 13, 14, 15 and 17,
whereas the summand in the fourth line correspond to the configuration in Case 16. Thus

u = |Cαβ | = v
(

1 + (q − 1) + (q − 1) + (q − 1) +
(

|P| − (q2 + q + 1)
))

+ κ(q − 1)2

and the result follows by expressing κ using the remaining terms. �

6.2. Eigenvectors of C . We determine some eigenvectors of C . Since the rows and the columns of C are indexed
by the elements of P(2), just for this section, for simplifying some of our equations, we slightly modify the definition
in (3.1). Given two subsets X and Y of P , we write

eXY :=
∑

(x,y)∈X×Y
x 6=y

exy.

Lemma 6.2. Let ℓ ∈ L and let γ ∈ ℓ. Then

C eγℓ = ueγℓ + qv(e(P\ℓ)P + e(ℓ\{γ})(P\ℓ))− v
∑

α∈P\ℓ

(eα(α∨ℓ) − eα(α∨γ)).

Proof. Let α, β be two distinct points of P and define r := α ∨ β. We have

(C eγℓ)(α,β) =





∑

δ∈ℓ\{γ}

Ceγδ





(α,β)

=
∑

δ∈ℓ\{γ}

C(α,β),(γ,δ).

The value of this sum depends on the geometric configuration of the lines ℓ and r. Geometrically, that is, up to
G-conjugation, we have one of the ten cases depicted in Figure 2. Now, from Figure 1, Proposition 6.1 and Figure 2,
we deduce

(6.12) (C eγℓ)(α,β) =



















u in Case (i),

0 in Cases (ii), (iii), (iv),

qv in Cases (v), (vi), (vii), (x),

(q − 1)v in Cases (viii), (ix).

These computations are straightforward and we do not include them all here, we only discuss Case (ix), that is,
ℓ and r meet in a point different from α, β and γ. Let δ ∈ ℓ \ {γ}. If δ ∈ r, then α, β, γ, δ are as in Case 13 of
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Figure 1 and hence C(α,β),(γ,δ) = v by Proposition 6.1. If δ /∈ r, then α, β, γ, δ are as in Case 16 of Figure 1 and
hence C(α,β),(γ,δ) = (q − 2)v/(q − 1) by Proposition 6.1. Therefore, when ℓ and r are as in Case (ix), we find

(C eγℓ)(α,β) = v + (q − 1)
q − 2

q − 1
v = (q − 1)v.

All other cases are similar.
The proof now follows easily from (3.1) and (6.12). �

α = γ
β

Case (i)

ℓ = r

α
β = γ

Case (ii)

ℓ = r

α
γ β

Case (iii)

ℓ = r

α = γ
β

ℓ

Case (iv)

r

α
β = γ

ℓ

Case (v)

r

α
γ β

Case (vi)

ℓ

r

α
β

Case (vii)

ℓ γ

r

α
β

Case (viii)

ℓ
γ

r

α
β

Case (ix)

ℓ γ

r

α
β

γ

Case (x)

ℓ

r

Figure 2. Figure for the proof of Lemma 6.2

Corollary 6.3. Let ℓ ∈ L and let γ and γ′ be two distinct points in ℓ. Then

C (eγℓ − eγ′ℓ) = u(eγℓ − eγ′ℓ) + qv(eγ′(P\ℓ) − eγ(P\ℓ))− v
∑

α∈P\ℓ

(eα(α∨γ′) − eα(α∨γ)).

Proof. From Proposition 6.1, we have

C (eγℓ − eγℓ′) =u(eγℓ − eγ′ℓ)

+ qv(e(P\ℓ)P + e(ℓ\{γ})(P\ℓ) − e(P\ℓ)P − e(ℓ\{γ′})(P\ℓ))

− v





∑

α∈P\ℓ

(eα(α∨ℓ) − eα(α∨γ))−
∑

α∈P\ℓ

(eα(α∨ℓ) − eα(α∨γ′))



 .

Let us call the summand in the second row A and the summand in the third row B. From (3.1), we immediately
have

A =qv(e(ℓ\{γ})(P\ℓ) − e(ℓ\{γ′})(P\ℓ)) = qv(eγ′(P\ℓ) − eγ(P\ℓ)).
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In B many summands readily cancel:

B =− v
∑

α∈P\ℓ

(eα(α∨γ′) − eα(α∨γ)).

�

We are now ready to obtain some eigenvectors of C . For each α ∈ P , β ∈ P \ {α} and γ ∈ P \ α ∨ β, define

e1αβγ := eα(α∨β) − eβ(α∨β) + eβ(β∨γ) − eγ(β∨γ) + eγ(α∨γ) − eα(α∨γ), W 1 := 〈e1αβγ | α, β, γ〉,

e2αβγ := e(α∨β)α − e(α∨β)β + e(β∨γ)β − e(β∨γ)γ + e(α∨γ)γ − e(α∨γ)α, W 2 := 〈e2αβγ | α, β, γ〉.

Proposition 6.4. The subspaces W 1 and W 2 are two eigenspaces of the matrix C for the eigenvalue u+ (q + 1)v
and W 1 ∩W 2 = 0.

Proof. We first consider e1αβγ ; we apply Corollary 6.3 three times: to the line α ∨ β and to the points α, β ∈ α ∨ β,
to the line α ∨ γ and to the points α, γ ∈ α ∨ γ, and to the line β ∨ γ and to the points β, γ ∈ β ∨ γ. We obtain:

C e1αβγ =ue1αβγ

+ qv(eβ(P\α∨β) − eα(P\α∨β) + eγ(P\β∨γ) − eβ(P\β∨γ) + eα(P\α∨γ) − eγ(P\α∨γ))

− v





∑

ξ∈P\α∨β

(eξ(ξ∨β) − eξ(ξ∨α)) +
∑

ξ∈P\β∨γ

(eξ(ξ∨γ) − eξ(ξ∨β)) +
∑

ξ∈P\α∨γ

(eξ(ξ∨α) − eξ(ξ∨γ))





Let us call the summand in the second row A and the summand in the third row B.
From (3.1), we immediately have

A =qv((eβ(P\α∨β) − eβ(P\β∨γ)) + (eα(P\α∨γ) − eα(P\α∨β)) + (eγ(P\β∨γ) − eγ(P\α∨γ)))

=qv((eβ(β∨γ) − eβ(α∨β)) + (eα(α∨β) − eα(α∨γ)) + (eγ(α∨γ) − eγ(β∨γ))) = qve1αβγ .

In B, many summands readily cancel. Indeed, if ξ /∈ (α ∨ β) ∪ (β ∨ γ) ∪ (α ∨ γ), then

(eξ(ξ∨β) − eξ(ξ∨α)) + (eξ(ξ∨γ) − eξ(ξ∨β)) + (eξ(ξ∨α) − eξ(ξ∨γ)) = 0.

Therefore, the only summands in B that potentially can give a non-zero contribution arise when ξ ∈ (α∨ β)∪ (β ∨
γ) ∪ (α ∨ γ). Thus, we may write

B =− v









∑

ξ∈α∨γ\{α}

(eξ(ξ∨β) − eξ(ξ∨α)) +
∑

ξ∈β∨γ\{β,γ}

(eξ(ξ∨β) − eξ(ξ∨α))





+





∑

ξ∈α∨β\{β}

(eξ(ξ∨γ) − eξ(ξ∨β)) +
∑

ξ∈α∨γ\{α,γ}

(eξ(ξ∨γ) − eξ(ξ∨β))





+





∑

ξ∈α∨β\{α}

(eξ(ξ∨α) − eξ(ξ∨γ)) +
∑

ξ∈β∨γ\{β,γ}

(eξ(ξ∨α) − eξ(ξ∨γ))







 .

With this new expression for B, we see now that all summands with ξ 6∈ {α, β, γ} cancel. For instance, when
ξ ∈ α ∨ β \ {α, γ}, the term eξ(ξ∨β) in the first sum cancels the term −eξ(ξ∨β) in the fourth sum. Using this
observation, we find

B =− v((eγ(γ∨β) − eγ(γ∨α)) + (eα(α∨γ) − eα(α∨β)) + (eβ(β∨α) − eβ(β∨γ))) = ve1αβγ .

Therefore C e1αβγ = (u + (q + 1)v)e1αβγ and hence e1αβγ is an eigenvector for C for the eigenvalue u + (q + 1)v.

From (6.6), we deduce that also e2αβγ is an eigenvector for C for the eigenvalue u+ (q + 1)v.
We skip the proof that W1 ∩W2 = 0; in fact, now that we have shown that W1 and W2 are eigenspaces of C ,

the argument follows the ideas in the proof of the analogous statement in [16, Lemma 5.9]. �
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6.3. Proof of Proposition 3.2. From Proposition 3.1, 〈eᾱP − eαP , ePᾱ − ePα | α ∈ P〉 is the right kernel of A
and hence is contained in the right kernel of M . If α ∈ P , then Meαα = 0 because no derangement of G fixes α.
Therefore 〈eαα | α ∈ P〉 is contained in the right kernel of M . Let π ∈ H and let g be a derangement of G. Then,
the definition of M gives

(M(eπ̄π̄ − eππ))g = |π̄ ∧ π̄g−1

| − |π ∧ πg−1

| =
qn − 1

q − 1
−
qn − 1

q − 1
= 0.

Hence 〈eπ̄π̄ − eππ | α ∈ P , π ∈ H〉 is also contained in the right kernel of M .
We have shown that

〈eαα, eᾱP − eαP , ePᾱ − ePα, eπ̄π̄ − eππ | α ∈ P , π ∈ H〉

is contained in the right kernel ofM . Moreover, it is easy to prove that this subspace of CP2 has dimension 4|P|−3.
By definition, M is a submatrix of M ; namely, M is the submatrix of M obtained by considering the rows of

M labelled by the elements of C and the columns of M labelled by the elements of P(2). Therefore, to conclude
the proof, it suffices to show that M has rank at least |P|2 − 4|P|+ 3. Observe that M and C = M TM have the
same rank.

Consider the permutation modules CP(2) and CC for the natural action of G on P(2) and for the action of G on
C by conjugation, respectively. Moreover, consider the function:

CP(2) CCm :

eγδ M eγδ =
∑

g∈C
γg=δ

eg

As M(gx,(αx,βx)) =Mg,(α,β) for every g ∈ C and for every (α, β) ∈ P(2), m is a CG-module homomorphism and the
rank of M is the dimension of the image of this mapping.

From (5.1) and (5.2),

(6.13) CG =
⊕

η∈IrrC(G)

Iη =
⊕

η∈IrrC(G)

CG · eη.

Now, fix (α, β) ∈ P(2) with β = αc, recall the definition of c in (4.10). As CP(2) is generated by eαβ as a CG-module,

we have CP(2) = CG · eαβ, and from (6.13) we deduce

CP(2) =
⊕

η∈IrrC(G)

CG · eηeαβ =
⊕

η∈IrrC(G)

〈η,π(2)〉G 6=0

CG · eηeαβ,

where in the last equality we used some standard facts on G-modules, see [10, Chapter 1 and 2]. Analogously, we
have

Im(m) = m(CP(2)) =
⊕

η∈IrrC(G)

〈η,π(2)〉G 6=0

CG ·m(eηeαβ).

From (5.2), we have

eηeαβ =
η(1)

|G|

∑

g∈G

η(g−1)eαgβg

and hence

m(eηeαβ) =
η(1)

|G|

∑

g∈G

η(g−1)M eαgβg =
η(1)

|G|

∑

g∈G

η(g−1)
∑

h∈C
αgh=βg

eh =
η(1)

|G|

∑

h∈C









∑

g∈G

αgh=βg

η(g−1)









eh.

Therefore the ec-coordinate of m(eηeαβ) is

(6.14)
η(1)

|G|

∑

g∈G
αgc=βg

η(g−1).

Consider the set S := {g ∈ G | αgc = β} indexing the summation in (6.14). Since αc = β, we have 1 ∈ C. Since
C = CG(c) is transitive on P , we have G = GαCG(c). Let g ∈ S. Then, we may write g = xy, for some x ∈ Gα

and some y ∈ CG(c) = C. Thus

β = αgc = αxyc = αyc = αcy = βy
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and we infer y ∈ Gαβ . This shows that S = GαβC and the ec-coordinate of the vector m(eηeαβ) becomes

(6.15)
η(1)

|G|

∑

g∈GαβC

η(g−1).

We now refer to Lemma 4.1 for the constituents η of π(2) and their multiplicities.

Case η = χ0. From what we have shown at the beginning of this proof, we deduce that 〈eᾱP − eαP , ePα −
ePα, eπ̄π̄−eπ,π

| α ∈ P , π ∈ H〉 has dimension 3(|P| − 1) = 3χ0(1), is contained in the right kernel of M (and hence
in the kernel of m), and equals CG · eχ0eαβ . Therefore, CG ·m(eχ0eαβ) = 0. �

Case η = 1G or η = ψG
i . As η has multiplicity 1 in π(2), the module CG ·eηeαβ is a simple CG-module. Therefore,

from Schur’s lemma, either m(eηeαβ) = 0 or m maps injectively CG ·eηeαβ into CC. We deduce from Proposition 4.5
that m(eηeαβ) 6= 0 because its ec-coordinate is non-zero from (6.15). This shows that dimC(CG·m(eηeαβ)) = η(1). �
Case η = χ′. Since we were not able to prove Proposition 4.5 when η = χ′, we need an ad-hoc argument here. For
each line ℓ ∈ L, define

εℓ :=
∑

γ,δ∈ℓ
γ 6=δ

eγδ ∈ CP(2).

Then, define L := 〈εℓ | ℓ ∈ L〉 ≤ CP(2). As usual, let CL be the permutation module for the action of G on P with
standard bases (eℓ)ℓ∈L indexed by the elements of L. The mapping

CL CP(2)

eℓ εℓ

is an injective CG-module homomorphism and hence CL ∼= L. Therefore, from the decomposition of the permutation
character πℓ in Lemma 4.1, we deduce L = CG · e1G

eαβ ⊕ CG · eχ0eαβ ⊕ CG · eχ′eαβ . Thus

m(L) = CG ·m(e1G
eαβ)⊕ CG ·m(eχ0eαβ)⊕ CG ·m(eχ′eαβ) = CG ·m(e1G

eαβ)⊕ CG ·m(eχ′eαβ).

As χ′ has multiplicity 1 in π(2), the module CG · eχ′eαβ is a simple CG-module. Therefore, from Schur’s lemma,
either CG · eχ′eαβ is contained in the kernel of m or m maps injectively CG · eχ′eαβ into CC. If the first possibility
happens, then m(L) equals the one-dimensional trivial module CG · e1G

eαβ . However this is impossible; in fact, a
computation shows that, given ℓ ∈ L, the vector m(εℓ) is not a scalar multiple of the all ones vector in CC. Thus
m maps injectively CG · eχ′eαβ into CC, that is, dimC(CG ·m(eχ′eαβ)) = χ′(1). �

Case η = χ′′. Consider the eigenspaces W 1 and W 2 in Proposition 6.4. From their definition, we see that
W 1 and W 2 are isomorphic CG-submodules of CP(2). From the decomposition of the permutation character π(2)

in Lemma 4.1, we are forced to have W 1 ⊕ W 2 = CG · eχ′′eαβ (no other CG-submodule X of CP(2) allows a
decomposition X = Y ⊕ Z with Y ∼= Z).

Since W 1 ⊕W 2 is an eigenspace for C = M TM for a non-zero eigenvalue, we deduce that W 1 ⊕W 2 is mapped
injectively by m to a submodule of CC, that is, dimC(CG ·m(eχ′′eαβ)) = 2χ′′(1). �

Summing up,

dimC(Im(m)) =1G(1) + χ′(1) + 2χ′′(1) + ψG
1 (1) + · · ·+ ψG

q−1(1) = π(2) − 3χ0(1)

=|P(2)| − 3(|P| − 1) = |P|2 − 4|P|+ 3

and the proof is completed.
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