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Abstract. In this paper we are interested in lifting a prescribed group of
automorphisms of a finite graph via regular covering projections. Let Γ be a
finite graph and let Aut(Γ) be the automorphism group of Γ. It is well known

that we can always find a finite graph Γ̃ and a regular covering projection
℘ : Γ̃ → Γ such that Aut(Γ) lifts along ℘. However, for constructing peculiar
examples and in applications it is often important, given a subgroup G of
Aut(Γ), to find ℘ along which G lifts but no further automorphism of Γ does,

or even that Aut(Γ̃) is the lift of G. In this paper, we address these problems.

1. Introduction

Covering projections of graphs and lifting automorphisms along them is a clas-
sical tool in algebraic graph theory that goes back to Djoković and his proof of
the infinitude of cubic 5-arc-transitive graphs [5]. Moreover, several theoretical
aspects of lifting graph automorphisms along covering projections, together with
their remarkable applications, are considered in a number of papers, for example
in [9, 18, 20, 30], to name a few of the most notable ones.

One of many applications of lifting automorphisms along covering projections is
the construction of graphs with a prescribed type of symmetry. For example, cover-
ing techniques are used to find new peculiar examples of semisymmetric graphs (see
[19, 21, 31, 33]), half-arc-transitive graphs (see [10, 13, 26]), and arc-regular graphs
(see [7, 14, 15]), to name a few.

In these papers, a typical strategy is to start with a graph Γ and a group G ≤
Aut(Γ) with a prescribed type of action on Γ (such as edge-transitive, vertex-
transitive, s-arc-transitive for s ≥ 1, locally primitive, etc.) and then trying to find

regular covering projections ℘ : Γ̃ → Γ along which G lifts. In many applications,
it is desirable for the lift to have the following two additional properties:

(1) G is the largest subgroup of Aut(Γ) that lifts along ℘;

(2) every automorphism of Γ̃ projects along ℘.

If both these requirements are fulfilled, then Aut(Γ̃) is precisely the lift of G.
The problem of finding regular covering projections satisfying (1) has been ad-

dressed in an ad hoc way for some fixed pairs (Γ, G) (see, for example, [21, 31, 33])
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and determining conditions under which a covering projection satisfies (2) was con-
sidered by several authors in the very specific context of canonical double covers
(see [29, 32]). There have been some attempts to determine covering projections
satisfying simultaneously (1) and (2), but again only for a small number of very
specific pairs (Γ, G) (see, for example, [9, 17, 28]).

The aim of this paper is to address the problem of existence of a regular covering
projection satisfying (1) and (2) for arbitrary pairs (Γ, G).

In Theorem 6 we prove that if Aut(Γ) acts faithfully on the integral cycle space
H1(Γ;Z), then a regular covering projection onto Γ fulfilling (1) always exists; see
Section 2 for notation and terminology. The condition of Aut(Γ) acting faithfully
on H1(Γ;Z) is very mild: in the most interesting cases Aut(Γ) does act faithfully
on H1(Γ;Z); see Lemma 7 and Corollary 8. Moreover, there are examples where
Aut(Γ) does not act faithfully on H1(Γ;Z) and where a regular covering projection
as in (1) does not exist: the easiest example is when Γ is a cycle and G is the
transitive cyclic subgroup of Aut(Γ).

In Theorem 9 we prove that if Aut(Γ) acts faithfully on H1(Γ;Z) and (Γ, G)
satisfies an additional condition, then there exists a regular covering projection
onto Γ satisfying (1) and (2). The extra condition on (Γ, G) is slightly technical
and requires some notation and terminology, thus we refer the reader to Section 4
for its definition and details. Here we simply observe that the condition is satisfied
by many interesting classes: for instance, when G acts transitively on the 2-arcs of
Γ, or when G acts transitively on the arcs of Γ and the valency of Γ is prime.

In Conjecture 11, we conjecture that the additional requirements we put on Γ
and G in Theorem 9 are not needed, that is, a regular covering projection satisfying
(1) and (2) exists whenever Aut(Γ) acts faithfully on the integral cycle space of Γ.

Both Theorems 6 and 9 do apply to graphs that are not necessarily simple and
we refer to Subsection 2.1 for the precise definition of graph in our paper.

We conclude this introductory section giving some applications. Theorem 9 and
Corollary 10 reprove, in a unified way, a number of results that have been proved
in the past using methods specific to the families of graphs under consideration.
For example, one of the consequences of Corollary 10 is a solution to three prob-
lems posed by Djoković and Miller [6, Problems 2, 3, and 4] about the existence of
finite cubic arc-transitive graphs with a prescribed type of the full automorphism
group, which were first solved in [8] by an ad hoc construction. Furthermore, as-
suming the correctness of Conjecture 11 one can answer a 2001 question of Marušič
and Nedela [22, Problem 7.7] about the existence of tetravalent half-arc-transitive
graphs of any given possible type, and a number of similar other problems, such as
the one of existence of graphs of every possible arc-type; see [11, 12].

2. Background material and notation

In this section, we give a brief overview of the definitions and results pertaining
to the theory of covering projections of graphs; see [18] and [20].

2.1. Graph, fundamental group, and integral cycle space. A graph is an
ordered 4-tuple Γ = (D,V ; beg, inv) where D and V are disjoint non-empty finite
sets of darts and vertices, respectively, beg : D → V is a mapping which assigns
to each dart x its tail beg(x), and inv : D → D is an involutory permutation
which interchanges every dart x with its inverse dart, denoted by x−1. The vertex
beg(x−1) is then called the head of the dart x.
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LIFTING A PRESCRIBED GROUP OF AUTOMORPHISMS OF GRAPHS 3789

An edge underlying a dart x is a pair {x, x−1} of mutually inverse darts, and
{beg(x), beg(x−1)} is the set of endvertices of that edge. An edge {x, x−1} with
beg(x) �= beg(x−1) is called a link. If beg(x) = beg(x−1), then the edge {x, x−1}
is a loop if x �= x−1, and is a semiedge if x = x−1. Two edges with the same set
of endvertices are called parallel. A graph without loops, semiedges, and parallel
edges is simple and the usual terminology about simple graphs applies in this case.

The neighbourhood of a vertex v of Γ, denoted Γ(v), is the set of darts having v
as its tail, and the cardinality of Γ(v) is called the valency of v.

A walk from a vertex v to a vertex u in Γ is a sequence of darts such that v is the
tail of the first dart, u is the head of the last dart, and the head of each dart in the
walk coincides with the tail of the next dart in the walk. When v = u, the walk is
said to be closed, whereas the walk is reduced provided no two consecutive darts are
inverse of each other. Note that if x is a dart and {x, x−1} is a loop or a semiedge,
then (x) is a reduced closed walk. The empty sequence of darts is considered a
walk and is called the trivial walk.

For a vertex b of Γ one can define the fundamental group at b, denoted π(Γ, b),
as the set of all closed reduced walks starting and ending in b, with the operation
being the concatenation (with the deletion of consecutive pairs of mutually inverse
darts, if necessary). Note that π(Γ, b) is a free product of infinite cyclic groups
and cyclic groups of order 2, the latter arising from walks consisting of a single
semiedge.

The abelianisation π(Γ, b)/[π(Γ, b), π(Γ, b)] of π(Γ, b), viewed as a Z-module, is
called the first homology group or the integral cycle space and denoted H1(Γ;Z).
When Γ is connected, H1(Γ;Z) is independent of the choice of the vertex b.

2.2. Graph morphism, regular covering projection, universal covering.
Let Γ̃ = (D̃, Ṽ ; begΓ̃, invΓ̃) and Γ = (D,V ; begΓ, invΓ) be two graphs. A morphism

of graphs, f : Γ̃ → Γ, is a function f : Ṽ ∪ D̃ → V ∪ D such that f(Ṽ ) ⊆ V ,

f(D̃) ⊆ D, f ◦ begΓ̃ = begΓ ◦f , and f ◦ invΓ̃ = invΓ ◦f . A graph morphism is an
epimorphism (automorphism) if it is a surjection (bijection, respectively). A graph

epimorphism ℘ : Γ̃ → Γ is called a covering projection provided that it maps the
neighbourhood Γ̃(ṽ) bijectively onto the neighbourhood Γ(℘(ṽ)) for every ṽ ∈ Ṽ .
(Note that if Γ is connected the surjectivity of ℘ follows from the local bijectivity.)

Let ℘ : Γ̃ → Γ be a covering projection of connected graphs, let g ∈ Aut(Γ), and

let g̃ ∈ Aut(Γ̃) be such that ℘(xg̃) = ℘(x)g for every vertex and for every dart

x of Γ̃. Then we say that g lifts along ℘ and that g̃ is a lift of g. Similarly, we
say that g̃ projects along ℘ and that g is a projection of g̃ along ℘. The set of all
automorphisms of Γ that lift along ℘ is called the maximal group that lifts along
℘. If G is a subgroup of the maximal group that lifts, then the set G̃ of all lifts of
elements of G forms a subgroup of Aut(Γ̃) and is called the lift of G. The lift of
the maximal group that lifts along ℘ is the maximal group that projects along ℘.

The lift of the identity group is called the group of covering transformations of
℘ and denoted CT(℘). Whenever the covering graph Γ̃ is connected, the group
CT(℘) acts semiregularly on each fibre, and if it is transitive (and thus regular) on
each fibre, then we say that the covering projection ℘ is regular.

Regular covering projections can also be defined in terms of graph quotients. Let
Γ̃ be a graph, let N ≤ Aut(Γ̃) with the stabiliser Nx being trivial for every vertex

of Γ̃, and let Γ̃/N be the graph whose vertices and darts are N -orbits of vertices
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and darts of Γ̃ and with the functions invΓ̃/N and begΓ̃/N mapping a dart xN of

Γ̃/N to the N -orbit of invΓ̃(x) and begΓ̃(x), respectively (see [20, Section 2.1]).

The quotient projection ℘N : Γ̃ → Γ̃/N , mapping each vertex or dart of Γ̃ to its
N -orbit, is a regular covering projection and N is the group CT(℘N ) of covering
transformations of ℘N . Every regular covering projection arises in this way.

Lemma 1 ([20, Sections 2.2 and 3]). If ℘ : Γ̃ → Γ is a regular covering projection,
then the maximal group that projects along ℘ equals the normaliser of N = CT(℘)

in Aut(Γ̃). Moreover, Γ is isomorphic to the quotient graph Γ̃/N , the quotient

projection Γ̃ → Γ̃/N is a covering projection isomorphic to ℘, and for a group

G ≤ Aut(Γ) and its lift G̃, we have G ∼= G̃/N .

2.3. Splitting of covering projections. Let ℘ : Γ̃ → Γ be a regular covering
projection between connected graphs with covering transformation group N , let G
be a subgroup of Aut(Γ) that lifts along ℘ to G̃, and let K be a normal subgroup

of N . Then one can consider the quotient projection ℘K : Γ̃ → Γ̃/K and define

℘N/K : Γ̃/K → Γ by ℘N/K(xK) = ℘(x) for every vertex and for every dart x of Γ̃.
Then the following lemma holds.

Lemma 2. The covering projection ℘N/K is regular with covering transformation

group N/K and ℘ = ℘N/K ◦ ℘K . Moreover, if K is normalised by G̃, then G lifts

along ℘N/K and its lift is G̃/K.

If T is an infinite tree and ℘ : T → Γ is a regular covering projection, then we
say that ℘ is universal. It is well known that for every finite graph there is, up to
equivalence of covering projections, a unique universal covering projection and that
it has the following property.

Lemma 3. If Γ is a finite connected graph and ℘ : T → Γ is the universal covering
projection, then Aut(Γ) lifts along ℘ and CT(℘) is isomorphic to the fundamental
group π(Γ, b) for some (every) vertex b of Γ. Moreover, CT(℘)x = 1 for every
vertex and for every edge x of T .

2.4. Graphs with no semiedges. In what follows we mention some facts con-
cerning graphs without semiedges relevant for our proofs.

First, if Γ has no semiedges, then the fundamental group π(Γ, b) is a free group.
Consequently, the first homology group H1(Γ;Z) is isomorphic to Z

mΓ where mΓ

is the Betti number of Γ, that is, the number of cotree edges relative to a fixed
spanning tree of Γ. In particular mΓ equals the number of edges minus the number
of vertices and plus one. Given a prime number p, we let Zp := Z/pZ be the finite
field of order p. The module H1(Γ;Z)⊗Z Zp

∼= Z
mΓ
p will be denoted by H1(Γ;Zp).

Second, if Γ has no semiedges and N is a subgroup of Aut(Γ) with Nx = 1
for every vertex as well as for every edge x of Γ, then the quotient Γ/N has no
semiedges.

Finally, if a graph Γ is simple, then every covering graph of Γ is again simple.
Hence the results of this paper apply to the important class of simple graphs.

3. Results and proofs

Given a group X and a subgroup Y , we denote by [X,Y ] the commutator sub-
group defined by [X,Y ] := 〈x−1y−1xy | x ∈ X, y ∈ Y 〉, by NX(Y ) the normaliser
of Y in X and we write Xp := 〈xp | x ∈ X〉. By Z(X), we denote the centre of X.
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LIFTING A PRESCRIBED GROUP OF AUTOMORPHISMS OF GRAPHS 3791

Recall that a ZpX-module V is regular if V is isomorphic to the group algebra
ZpX (seen as a ZpX-module). This means that dimZp

(V ) = |X| and that V has
a Zp-basis (vx | x ∈ X) such that the action of X on (vx | x ∈ X) is permutation
isomorphic to the action of X on itself by right multiplication. In other words,
vxy = vxy, for each x, y ∈ X. We start with a technical lemma.

Lemma 4. Let p be an odd prime, let Γ be a connected graph, and let H be a sub-
group of Aut(Γ) acting faithfully on H1(Γ;Z). Then H acts faithfully on H1(Γ;Zp).

Proof. A simple closed walk in Γ is a walk where no vertex is repeated.
Suppose that h ∈ H acts trivially on H1(Γ;Zp). Thus, for every W ∈ H1(Γ;Z),

Wh = W + pW ′, for some W ′ ∈ H1(Γ;Z). In particular, for every simple closed
walk C ∈ H1(Γ;Z), we have Ch = C + pC ′ for some C ′ ∈ H1(Γ;Z). Therefore,
Ch − C is a p-multiple of the element C ′ ∈ H1(Γ;Z). Clearly, this happens only
when Ch = −C and p = 2, or Ch = C. Since we are assuming p odd, we have
Ch = C for every simple closed walk C of Γ. Since these elements generate H1(Γ;Z),
we obtain h = 1. �
Theorem 5. Let p be an odd prime, let T be an infinite tree, let G ≤ Aut(T ), let
N be a non-identity normal subgroup of G of finite index such that Nx = 1 for every
vertex and for every edge x of T , and let H = NAut(T )(N ). If H/N acts faithfully
on H1(T /N ;Z), then there exists a normal subgroup P of N of finite index such
that NH(P) = G and that N/P is p-group.

Proof. The idea for the proof of this theorem is inspired by a surprisingly unrelated
problem solved by Bryant and Kovács in [3]. We closely follow [3] and we use some
of the observations therein. This is the second time that this paper on Lie algebras
has proved useful in the context of group actions on graphs; see for instance [24]
for another application.

As N �= 1 and Nv = 1 for every v ∈ V(T ), from the Bass-Serre theory, we
deduce that N is a non-identity free group; see [4, Proposition 4.5]. Following [3],
we construct a filtration of the free group N . Define N1 := N and, for i ∈ N \ {0},
Ni+1 := N p

i [Ni,N ]. By construction, Ni+1 is the smallest normal subgroup of N
contained in Ni such that Ni/Ni+1 has exponent p and is central in N/Ni+1, that
is, Ni/Ni+1 ≤ Z(N/Ni+1). Moreover, Ni+1 is normal in G because so is N .

Write G := G/N1 and H := H/N1. As G ≤ H, we have G ≤ H. Given
i ∈ N \ {0}, define Vi := Ni/Ni+1. As Ni is centralised by N = N1 modulo Ni+1,
the action of H by conjugation on Ni/Ni+1 = Vi defines a group homomorphism
H = H/N1 → Aut(Vi), that is, H acts as a linear group on the Zp-vector space Vi

and hence Vi is a ZpH-module. The inclusion G ≤ H allows us to regard, via the
restriction mapping, Vi also as ZpG-modules.

We now require a few facts from [4] and from [3]. From [4, Theorem 9.2], the ZH-
module H1(T /N ;Z) is isomorphic to the ZH-module N1/[N1,N1]. Therefore the
ZpH-module H1(T /N ;Zp) = H1(T /N ;Z) ⊗ Zp is isomorphic to the ZpH-module
N/[N ,N ] ⊗ Zp

∼= N/[N ,N ]N p = N1/N2 = V1. Now, the hypothesis in the
statement of the theorem and Lemma 4 allow us to conclude that H acts faithfully
on V1 = N1/N2 and hence we can view H as a subgroup of Aut(N1/N2) = Aut(V1).
This fact will allow us to apply directly the results from [3]. Let Σ = Aut(V1).
From [3, page 416] it follows that the action of Σ on V1 induces an action on Vi

and, moreover, the embedding of H in Σ is compatible with the action of H defined
on Vi above.
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3792 P. POTOČNIK AND P. SPIGA

From [3, Theorems 2 and 3], we deduce that there exists a positive integer i such
that the ZpΣ-module Vi contains a regular submodule. Let R be a regular ZpΣ-
module contained in Vi and let (rσ | σ ∈ Σ) be a Zp-basis of R with rσδ = rσδ for
every σ, δ ∈ Σ. Let P := 〈rσ | σ ∈ G〉 and observe that P is a regular ZpG-module.

Since Vi = Ni/Ni+1, we may write P = P/Ni+1 for some subgroup P of Ni

containing Ni+1. Observe that N/P is a p-group because N/P is a quotient of
the p-group N1/Ni+1. Moreover, the index of P in N is finite because Ni+1 has
finite index in N1 = N . (Each Zp-vector space Vi is finite dimensional because N1

is finitely generated.)
Let x ∈ NH(P) = NAut(T )(N ) ∩ NAut(T )(P). Since x normalises N , x acts

by conjugation as a linear transformation of the vector spaces N1/N2 = V1 and
Ni/Ni+1 = Vi. Denote by τ ∈ Aut(V1) = Σ the linear transformation of V1 induced
by the conjugation by x. Now, τ fixes setwise R because R is a ZpΣ-submodule of
Vi. Since x normalises P, τ fixes setwise P/Ni+1 = P . Since r1 ∈ P , we see that
r1τ = rτ ∈ P = 〈rσ | σ ∈ G〉 and hence τ ∈ G. Let y ∈ G be an element projecting
to τ . Now, xy−1 projects to the identity element of Σ = Aut(V1). Therefore xy−1

centralises V1 = N1/N2. Observe that xy−1 lies in H because so does x and y.
By hypothesis, H/N acts faithfully on H1(T /N ;Zp) = V1. Therefore xy−1 ∈ N .
Since N ≤ G and y ∈ G, we obtain x ∈ G. We have thus shown NH(P) ≤ G; the
inclusion G ≤ NH(P) is obvious. �

Theorem 6. Let p be an odd prime, let Γ be a finite connected graph without
semiedges such that the induced action of Aut(Γ) on H1(Γ;Z) is faithful, and let

G ≤ Aut(Γ). Then there exists a regular covering projection ℘ : Γ̃ → Γ with Γ̃
finite, such that the maximal group that lifts along ℘ is G and that the group of
covering transformations of ℘ is a p-group.

Proof. Let μ : T → Γ be the universal covering projection; see Section 2. Then T
is an infinite tree and in view of Lemma 3, G lifts along μ to a group G ≤ Aut(T ).
Let N = CT(μ). Then N �= 1, Nx = 1 for every vertex and for every edge x of
T , T /N ∼= Γ, and we may identify Γ with T /N in such a way that G/N = G and
that the quotient projection ℘N : T → T /N is μ.

Let H = NAut(T )(N ). By Lemma 1, H is the largest group that projects along
μ and thus, since Aut(Γ) lifts along μ, H is the lift of Aut(Γ).

Since Aut(Γ) acts faithfully on H1(Γ;Z), by Theorem 5, there exists a normal
subgroup P of N of finite index such that NH(P) = G and N/P is a p-group.

Let Γ̃ = T /P and G̃ = G/P ≤ Aut(Γ̃). In view of Lemma 1, the quotient

projection ℘P : T → Γ̃ is a covering projection and there exists a regular covering
projection ℘ : Γ̃ → Γ such that μ = ℘ ◦ ℘P . Moreover, since G normalises P, the
group G lifts along ℘ and its lift is G̃.

Let M ≤ Aut(Γ) be the maximal group that lifts along ℘ and let M̃ ≤ Aut(Γ̃) be

its lift. Clearly, G ≤ M and thus G̃ ≤ M̃ . Since T is a tree, ℘P is a universal cov-
ering projection, and in view of Lemma 3, M̃ lifts along ℘P to some M ≤ Aut(T ).
But then M is the lift of M along μ = ℘◦℘P , and thus M ≤ NAut(T )(N ) = H. On

the other hand, M normalises P and so M ≤ NH(P) = G. But then M̃ = M/P ≤
G/P = G̃, and hence M̃ = G̃. Therefore, M = M̃/(N/P) = G̃/(N/P) = G, and
thus G is the maximal group that lifts along ℘, as required. �

Let us now discuss the condition of G acting faithfully on H1(Γ;Z).
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Lemma 7. If Γ is a simple 3-edge-connected graph, then Aut(Γ) acts faithfully on
H1(Γ;Z).

Proof. Suppose to the contrary that the action of Aut(Γ) on H1(Γ;Z) is not faithful.
Then there exists an automorphism g fixing every element of H1(Γ;Z) and a vertex v
such that vg �= v. Let u,w, and z be three neighbours of v. By 3-edge-connectivity
of Γ it follows that there is a cycle C1 through the 2-path uvw and a cycle C2

through the 2-path uvz. Now fix an orientation of C1 and C2 in such a way that
u is a predecessor of v in both C1 and C2. Consider C1 and C2 as elements of
H1(Γ;Z). By assumption, g preserves C1 and C2 together with their orientation. In
particular, the vertex vg lies on C1 and on C2. For i ∈ {1, 2}, let Pi be the path from
vg to u following the cycle Ci in the positive direction with respect to the chosen
orientation. Note that, since g preserves the orientation, ug belongs to neither P1

nor P2. Now consider the closed walk C obtained by concatenating P1 with the
reverse of P2 and consider it as an element of H1(Γ;Z). By assumption, C is fixed
by g. However, the vertex u belongs to C, while ug does not, a contradiction. �

Since in connected vertex-transitive graphs the edge connectivity equals the va-
lency (see for instance [16, Lemma 3.3.3]), we get the following corollary.

Corollary 8. If Γ is a simple connected vertex-transitive graph of valency at least
3, then Aut(Γ) acts faithfully on H1(Γ;Z).

4. A corollary

In this section we strengthen Theorem 6 in the case of certain arc-transitive
graphs. Recall that an s-arc of a graph Γ is an ordered (s + 1)-tuple of vertices
of Γ such that any two consecutive vertices are adjacent and any three consecutive
vertices are pairwise distinct. Thus a 1-arc is simply an ordered pair of adjacent
vertices and is also called an arc. If a group G ≤ Aut(Γ) acts transitively on the
set of s-arcs of Γ, we say that Γ is (G, s)-arc-transitive (or simply, G-arc-transitive
if s = 1). The symbol G can be dropped from this notation if G = Aut(Γ).

Given a graph Γ, G ≤ Aut(Γ) and a vertex v of Γ, we let G
Γ(v)
v denote the permu-

tation group induced by the action of the vertex-stabiliser Gv on the neighbourhood
Γ(v) of the vertex v. A finite transitive permutation group L is graph-restrictive
provided there exists a constant c = c(L) such that whenever Γ is a connected G-

arc-transitive graph with G
Γ(v)
v being permutationally isomorphic to L, the order

of the stabiliser Gv is at most c(L). This notion was introduced and studied in [23]
and is relevant in the context of the Weiss conjecture: using this terminology, Weiss
conjecture states that every primitive group is graph-restrictive.

We will call a transitive permutation group L acting on a set Ω strongly graph-
restrictive if every group T with L ≤ T ≤ Sym(Ω) is graph-restrictive. Examples
of strongly graph-restrictive permutation groups are provided by certain classes
of primitive groups. As the culmination of work of Weiss and Trofimov, every 2-
transitive group is graph-restrictive and, as an overgroup of a 2-transitive group is
still 2-transitive, we deduce that 2-transitive groups are strongly graph-restrictive.
The proof of the Weiss conjecture for 2-transitive groups is scattered over many
papers and hence this result is somewhat part of folklore; see [23, Section 6] and
the references therein for an overview of the argument. Other examples of strongly
graph-restrictive groups are provided by primitive groups with abelian socle, that
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is, primitive groups of affine-type. Recently in [27] it was proved that Weiss conjec-
ture does hold for this class of primitive groups. In many interesting cases, every
overgroup of a primitive group of affine-type is either affine or 2-transitive and
hence these groups are strongly graph-restrictive. (For instance, most affine groups
whose point stabilisers are primitive linear groups satisfy this property.) Now, it
would take us too far astray to describe the primitive groups of affine-type where
each overgroup is either affine or 2-transitive, thus we simply refer to [1, 2] or [25]
for a thorough analysis of the inclusions among primitive groups. Here we simply
observe that every primitive group of prime degree is strongly graph-restrictive. In
conclusion, if the Weiss conjecture proved to be true, then every primitive group is
strongly graph-restrictive.

For a strongly graph-restrictive group L, we let c∗(L) denote the maximum of
all constants c(T ) with L ≤ T ≤ Sym(Ω).

Theorem 9. Let Γ be a finite connected G-arc-transitive graph without semiedges

of valency at least 3 such that G
Γ(v)
v is strongly graph-restrictive. Then there exists

a regular covering projection ℘ : Γ̃ → Γ with Γ̃ finite, such that the maximal group
that lifts along ℘ is G and every automorphism of Γ̃ projects along ℘.

Proof. Let n be the order of Γ and let p be a prime with p > nc∗(G
Γ(v)
v ). By

Corollary 8, Aut(Γ) acts faithfully on H1(Γ;Zp), and then by Theorem 6, there

exists a regular covering projection ℘ : Γ̃ → Γ with Γ̃ finite, such that the maximal
group that lifts along ℘ is G and that the group of covering transformations of ℘
is a p-group.

Let Ã be the automorphism group of Γ̃, let G̃ be the lift of G along ℘, and let
N = CT(℘). From Lemma 1, G̃/N ∼= G and G̃ = NÃ(N). Let ṽ be a vertex of Γ̃, let

v = ℘(ṽ), and set c = c∗(G
Γ(v)
v ). Since G

Γ(v)
v

∼= G̃
Γ̃(ṽ)
ṽ is strongly graph-restrictive

and G̃
Γ̃(ṽ)
ṽ ≤ Ã

Γ̃(ṽ)
ṽ , we have |Ãṽ| ≤ c. Since G̃ is transitive on the vertices of Γ̃,

we have Ã = ÃṽG̃ and hence [Ã : G̃] = [Ãṽ : G̃ṽ] ≤ |Ãṽ| ≤ c < p. Moreover,

[G̃ : N ] = |G| = n|Gv| ≤ nc < p. Therefore, [Ã : N ] = [Ã : G̃][G̃ : N ] is not

divisible by p and hence N is a Sylow p-subgroup of Ã.
By the Sylow theorem, the number of Sylow p-subgroups of Ã is [Ã : NÃ(N)] =

[Ã : G̃] < p and is congruent to 1 modulo p. Therefore, Ã = NÃ(N) and hence

Ã = G̃. �

Corollary 10. Let Γ be a finite connected G-arc-transitive graph of valency at least
3. If G acts transitively on the 2-arcs of Γ or if the valency of Γ is prime, then there
exists a regular covering projection ℘ : Γ̃ → Γ with Γ̃ finite, such that the maximal
group that lifts along ℘ is G and every automorphism of Γ̃ projects along ℘.

We conclude by daring to conjecture that the requirement ofG
Γ(v)
v being strongly

graph-restrictive in Theorem 9 is not necessary.

Conjecture 11. Let Γ be a finite connected graph such that the induced action of
Aut(Γ) on H1(Γ;Z) is faithful, and let G ≤ Aut(Γ). Then there exists a regular

covering projection ℘ : Γ̃ → Γ with Γ̃ finite, such that the maximal group that lifts
along ℘ is G and such that Aut(Γ̃) projects along ℘.
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