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Thermoelastic properties of a-iron from first-principles
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We calculate the thermomechanical properties of «-iron, and in particular its isothermal and adiabatic elastic
constants, using first-principles total-energy and lattice-dynamics calculations, minimizing the quasiharmonic
vibrational free energy under finite strain deformations. Particular care is made in the fitting procedure for the
static and temperature-dependent contributions to the free energy, in discussing error propagation for the two
contributions separately, and in the verification and validation of pseudopotential and all-electron calculations.
We find that the zero-temperature mechanical properties are sensitive to the details of the calculation strategy
employed, and common semilocal exchange-correlation functionals provide only fair to good agreement with
experimental elastic constants, while their temperature dependence is in excellent agreement with experiments
in a wide range of temperature almost up to the Curie transition.
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I. INTRODUCTION

Elemental iron is a material of great scientific and economic
interest: it is the major constituent of steels, it determines the
properties of the earth core, and its complex phase diagram
is driven by the subtle interplay between vibrational and
magnetic contributions, making it particularly challenging to
describe accurately from first-principles. This is especially
relevant as temperature increases, since magnetic excitations
become important and a dramatic change in the magnetic
nature of the system takes place. At ordinary pressures, iron
turns from a bcc ferromagnet to a bcc paramagnet with a
second-order transition (¢« — B) at a Curie temperature of
~1043 K. This transition is then followed by two structural
transitions, a bcc—fcc (8 — ) transition at 1185 K and a
fcc—bee (y — §) transition at 1670 K, before finally melting
at ~1814 K.

First-principles simulations can be a key technique and
a valid alternative to experiments in order to get accurate
predictions of phase diagrams without the need of phenomeno-
logical parameters, and they become essential at conditions
that are challenging to reproduce in real life, such as those
inside the earth’s core [1]. For the case of pressure-temperature
phase diagrams, zero-temperature first-principles equations of
state can be supplemented with finite-temperature vibrational
entropies, which can be derived directly from the knowledge
of the phonon dispersions. These latter can be calculated from
finite differences, or more elegantly and less expensively with
density-functional perturbation theory (DFPT) [2,3]. When
coupled to the quasiharmonic approximation [4] (QHA), these
techniques allow us to calculate thermal expansion and vibra-
tional properties at finite temperatures, often well above the
Debye temperature [5—11]. While there have been numerous
first-principles calculations of elastic properties of solids by
either total energy, stress-strain [12,13], or density-functional
perturbation theory approaches [14-16], a relatively limited
number of them have been focused on the thermomechanical
properties of metals or minerals [17-20].

In this paper, we calculate the adiabatic and isothermal
finite-temperature elastic properties of ferromagnetic a-iron
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in its temperature range of stability and at ambient pressure
using the QHA and DFPT. We also carefully explore multi-
dimensional fitting procedures for the static and vibrational
contributions to the free energy, and we analyze the quality of
the fit and the source of errors of both contributions, providing
a confidence interval of each elastic constant as a function of
temperature.

The paper is organized as follows: In Sec. II we introduce
the finite strain framework used to calculate the elastic
constants, and in Sec. III we give the computational details of
our first-principles density-functional theory (DFT) and DFTP
calculations. We present our results and their comparison to
experiments in Sec. IV. Finally, Sec. V is devoted to summary
and conclusions.

II. FINITE-STRAIN METHOD

In the limit of small deformations, the energy of a crystal at
an arbitrary configuration can be Taylor-expanded in terms of
a symmetric matrix & describing a uniform linear deformation
A such that

A=1+e, ey

and any position vector 7 in the reference configuration is
transformed into (1 + &) - 7. The isothermal elastic constants at
zero pressure are then defined as the second-order coefficients
of this expansion according to [21]

;1 9°F
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where F is the Helmholtz free-energy, and ¢;,6;, i,j =
1,...,6, are the components of the strain tensor & (we adopt
here the Voigt notation). Also, note that the second derivatives
are evaluated at the thermodynamic equilibrium configuration
with volume Vj, and at constant temperature 7 .

For cubic crystals, such as a-iron, only three elastic con-
stants are needed to completely determine the stiffness tensor
and, therefore, fully characterize the mechanical response of
the system in the linear elastic regime. As a consequence, only
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TABLE I. Deformations and corresponding strain vectors in the
Voigt notation: hydrostatic, @tetragonal, and ®trigonal deforma-
tions are governed by a single parameter. Note that the trigonal
deformation reported here is the first-order expansion of the full strain
tensor €® with nonzero off-diagonal terms (denoted by an asterisk).

e® £ & & &4 &5 £
e &4 &4 &4 0 0 0
e® 0 0 & 0 0 0
e 0 0 0 £4/2 ) £a/2

three independent deformations are sufficient, and we choose
here the hydrostatic, tetragonal, and trigonal deformations,
shown in Table 1. Each deformation fully determines one of
the cubic elastic constants (or elastic moduli).

To compute finite-temperature properties and, therefore,
to calculate the Helmholtz free energy F, the vibrational
contribution must be added to the static energy term. The
QHA [4] provides an analytical expression for the vibrational
contribution to the free energy:

1
F(lai},T) = Esallai) +5 D hog (i)

static 9.
ZPE
_ ﬁ,wqy;h((ai b
+ kT E ln(l—e kpT ), 3)
q,A
thermal

where the sum is performed over all the phonon modes A and all
the phonon wave vectors q spanning the Brillouin zone (BZ).
Here, k is the Boltzmann constant and e, are the vibrational
frequencies of the different phonon modes, where in the QHA
their explicit dependence on the geometry of the system via the
primitive lattice vectors {a;} is accounted for. The vibrational
part, coming directly from the analytic partition function of a
Bose-Einstein gas of harmonic oscillators, can be split into
a zero-point energy term plus a contribution that depends
explicitly on the temperature 7. We neglect here the thermal
electronic effects, because they are believed to be relatively
small compared to the quasiharmonic vibrational contribution
[11,22] in the range of stability of the o phase. Magnetic
effects are also not considered, except for the longitudinal
relaxation of the total magnetic moment as a function of strain,
but they are known to be important approaching the Curie point
[23-25], and their influence on the elastic properties is briefly
discussed in Sec. IV C in the light of previous studies.

Equation (2) is used to calculate the isothermal elastic
constants at finite temperature; however, in order to com-
pare results with experimental data obtained from ultrasonic
measurements [26], we also calculate the adiabatic elastic
constants, using the following relations [21]:

S) _ (1) _ ) _ ~T)
Cll _Cll _C12 _C12

TVa2B™?
Cy
Ciy — €y =0, )

= B® _ p(M —

9
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where the heat capacity at constant volume Cy and the
volumetric thermal expansion coefficient « are both calculated
from the QHA. The superscripts (S) and (7") define the
adiabatic and isothermal elastic constants C;; and bulk
modulus B, respectively.

III. COMPUTATIONAL DETAILS AND
PSEUDOPOTENTIAL SELECTION

We calculate the first-principles elastic constants using
DFT, as implemented in the PWSCF and PHONON packages
of the QUANTUM-ESPRESSO distribution [27] for the static and
lattice dynamical calculations, respectively. The calculations
are spin-polarized and the magnetic moment is free to vary
collinearly in order to minimize the total energy. In all cal-
culations, the exchange-correlation effects have been treated
within the generalized-gradient approximation (GGA) with the
PBE functional [28]. We use an ultrasoft pseudopotential [29]
(USPP) from pslibrary.0.3.0 [30], which includes also 3s and
3p semicore states [31] (i.e., 16 valence electrons) along with
a plane-wave basis with a wave-function kinetic-energy cutoff
of 90 Ry and a cutoff of 1080 Ry for the charge density. We
sampled the BZ with an offset 24 x 24 x 24 Monkhorst-Pack
k-mesh, with a Marzari-Vanderbilt smearing [32] of 0.005 Ry.

Phonon calculations were carried out for each deformation
within DFPT [3]: the dynamical matrix and its eigenvalues are
calculated on a 4 x 4 x 4 mesh of special points in the BZ
and Fourier-interpolated on an extended 21 x 21 x 21 grid
for the integration of thermodynamic quantities. We arrived at
this computational setup (cutoff, smearing, and BZ sampling)
after a careful investigation of the convergence of total energy
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FIG. 1. (Color online) Equilibrium lattice parameter at 0 K for
the different iron pseudopotentials tested in this work. All the data
shown here are obtained with the PBE XC functional except for
the last three columns on the right, where we have used PBE4U
[37-40], WC [41], and a PBEsol [42], respectively (here we use
a Hubbard U correction, with U =3 eV). The data come from
a Birch-Murnaghan fit, do not include zero-point energy, and are
compared to all-electron WIEN2K [43], exciting [44], and VASP
[35] calculations from Refs. [45-47], respectively, and experiments
[36,48,49] (horizontal yellow line). The crosshatch dotted column
corresponds to the pseudopotential chosen for the production runs.
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and individual phonon frequencies for different deformations.
Also, we verified that individual total energies and phonon
frequencies do change smoothly as a function of strain.

Since the choice of the pseudopotential is of primary
importance for a clear comparison with computational and
experimental data in the literature, it is worth stressing that
the one used here has been chosen among different candidates
from the pslibrary [33] and GBRYV library [34] to reproduce,
as closely as possible, the all-electron FLAPW equilibrium
lattice parameter, bulk modulus at 0 K, and local magnetization
obtained from independent groups. Also, for the sake of
completeness, we compare against results obtained using the
VASP code and associated pseudopotentials [35].

The results for the lattice parameter and bulk modulus of
the different pseudopotentials herein considered are reported
in Figs. 1 and 2, and are obtained from a Birch-Murnaghan fit
of calculated E(V') data points. Interestingly, we have found
that the volume range of validity for fitting a Birch-Murnaghan
curve is limited on the expansion side due to anomalies in the
E(V) curve and its derivatives. These anomalies, also reported
for all-electron and other calculation methods in Ref. [52], are
more clearly visible as “shoulders” in the M (V') behavior (see
Fig. 3) and, as visible from Fig. 4, can be associated with a
smooth magnetic transition from a low to high spin state due
to the splitting of the majority and minority spin #,, electrons
upon increasing the volume. However, for the pseudopotential
chosen here, the expanded volumes at which this anomaly
is observed (above 9% [53]) are far beyond the theoretical
thermal expansion of the system in the thermodynamic region
considered in this work, thus enabling us to fit the energy
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FIG. 2. (Color online) Equilibrium bulk moduli at 0 K for the
different iron pseudopotentials tested in this work. All the data shown
here are obtained with the PBE XC functional except for the last
three columns on the right, where we have used PBE+4-U [37-40],
WC [41], and a PBEsol [42], respectively (here we use a Hubbard U
correction with U = 3 eV). The data come from a Birch-Murnaghan
fit, do not include zero-point energy, and are compared to all-electron
WIEN2K [43], exciting [44], and VASP [35] calculations from
Refs. [45-47], respectively, and experiments [50] (horizontal yellow
line). The crosshatch dotted column corresponds to the pseudopoten-
tial chosen for the production runs.
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surface with volume expansions up to ~9% still using a
standard Birch-Murnaghan equation.

IV. RESULTS

In this section we present results for selected thermo-
dynamic quantities and for the three strain deformations
(hydrostatic or volumetric, tetragonal, and trigonal). Each
deformation determines uniquely one of the three elastic
constants: B (bulk modulus), Cy;, and Cy4, respectively.

A. B—Volumetric strain

The volumetric deformation e can be described by a
single parameter &,, namely, the strain of the cubic lattice
parameter (see Table I). Thus, the lattice spacing is defined as

a = d()(l + 8(1)7 (5)

where ag is the theoretical equilibrium lattice parameter
without zero-point contribution (see Table III). The static
part of the Helmholtz free energy of Sec. II is obtained
by fitting a Birch-Murnaghan equation of state [54] to a
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FIG. 3. (Color online) (Top panel) Equation of state as a function
of percent volume change with respect to the theoretical equilib-
rium configurations for three of the selected PBE pseudopotentials
considered in this work (circles). The yellow circles best match the
all-electron WIEN2K [43] (pentagons) and exciting [44] (triangles)
results from Refs. [46,51] and correspond to the rrkjus-0.2.1-16e
pseudopotential used in this work. Continuous lines are the best fit of
the Birch-Murnaghan equation. (Bottom panel) Total magnetization
as a function of percent volume change. The soft magnetic transition
discussed in the text is visible as a clear change in the average slope
of the different curves.
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series of well-converged total energy values calculated on a
one-dimensional regular grid with &, going from —0.02 to
+0.03 in steps of 0.001. The resulting static contribution to
the bulk modulus is reported in Table III. The vibrational
contribution, on the other hand, has been calculated on a
coarser grid via integration of the phonon dispersions as from
Eq. (3) (examples for the calculated phonon dispersion and
resulting Griineisen parameters can be found in Fig. 5), with
&, ranging from —0.012 to 40.020 in increments of 0.004
and fitted with a second-order polynomial as a function of
the strain parameter ¢,. The stability of the results has been
checked against a fit with lower- and higher-order polynomials
(see the Supplemental Material [55]).

The free energy is then obtained as an analytical function
of ¢, and T and is shown in Fig. 6. We then determined the
thermal expansion (Fig. 6), the thermal expansion coefficients
(Fig. 7), the heat capacity (Fig. 7), and the isothermal bulk
modulus B(T) from the analytic second derivative of the
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FIG. 4. (Color online) (a) DOS of majority (minority) [red
(blue)] spin channels at the equilibrium (solid line) and AV = 11%
(dashed line) where, for the pseudopotential used in the production
run, the magnetic transition takes place. (b) The contribution of the
t, electrons to the majority (minority) DOS [green (black)] is also
reported. To obtain a smooth DOS, a non-self-consistent calculation
with an offset 60 x 60 x 60 Monkhorst-Pack k-mesh is performed
on top of a SCF loop.
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free energy as in Eq. (1). The adiabatic correction of Eq. (4)
is then used to compute the adiabatic bulk modulus BS)(T).
Results are reported in Fig. 8 and compared to experimental
data from Refs. [26,50]. The agreement between experiments
and calculations in the thermal behavior of the bulk modulus is
remarkable, especially below the Debye temperature (®p =~
500 K). Above ®p, the small deviation from experiments can
be ascribed to magnetic fluctuations [25,26,63,64] that become
increasingly important approaching the Curie temperature
(1043 K), plus minor contributions from anharmonic effects
(beyond quasiharmonic) and from the electronic entropy. At
1000 K, the softening of the calculated B is nearly 15%
with respect 0 K. The calculated magnetic moment increases
from 2.17u p per atom (2.22u 5 from experiments [65]) at the
0 K equilibrium volume to 2.27up at the 1000 K equilibrium
volume. Obviously, transverse magnetic fluctuations are ne-
glected in these calculations, and we postpone to Sec. IV C
the discussion on the mismatch between experiments and
calculations in absolute values.

B. Cy1,Cy—Tetragonal and trigonal strains

The Helmholtz free energy F depends upon two strain
parameters: the isotropic lattice strain &, and a second strain
parameter ¢, or &4 according to the deformation considered
(see Table I).

The tensor &® is associated with a continuous tetragonal
deformation that stretches the edge c of the cubic undistorted
structure along the z axis while leaving unchanged the other
edges. The relation between the strain ¢, and the distorted edge
cis

Cc = a(l + gc)' (6)

The tensor & is associated with a continuous trigonal defor-
mation that stretches the main diagonal d of the undistorted
cubic structure along the (111) direction while tilting the
undistorted edges and preserving their length. In this case, the
relation between the strain ¢; and the distorted main diagonal
is

d =3a(l + &), (7

while the relation with the cosine of the angle between the
distorted edges is

1-— €d(2 + €4)
(ea = D(ea +3)

Both deformations do not conserve the volume per atom.
In particular, in the tetragonal one the volume increases as
a function of &., while in the trigonal case, the volume
decreases as a function of g;. Alternatively, we could have
chosen volume-conserving deformations as in Ref. [17], but
the advantage of the present scheme is that each deformation
determines uniquely one elastic constant at a time, and it
enables us to determine easily the confidence interval of each
elastic constant by error-propagation theory.

In the next subsections, we describe the calculation of the
static and vibrational contributions separately. The reason is
that we want to analyze their contributions to the global energy
landscape separately. This also allows us to sample the two
contribution landscapes with two different grids. Indeed, the

cos(a) =

®)
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FIG. 5. (Color online) (Left panel) Phonon dispersions along high-symmetry directions in the BZ calculated at the theoretical electronic
equilibrium volume (blue solid line) and at the quasiharmonic theoretical equilibrium volume at 300 K (red dashed line). The results (see also
Fig. 1 in the Supplemental Material [55] and Ref. [8] or Ref. [56] for comparison with previous theoretical data) are compared to experimental
data at room temperature from Ref. [57] (Expt. 1, squares) and Ref. [58] (Expt. 2, circles). (Right panel) Griineisen parameters calculated along
the same path in the BZ and the same equilibrium volumes used for the phonon dispersion (blue solid line for the 0 K case and red dashed
line for the 300 K case). The Griineisen parameters are obtained computing the first derivative with respect to the volume of a cubic fit of the

phonon frequencies.

static term displays a minimum as a function of the strain
parameters and has to be sampled with a dense grid, while, on
the other hand, the vibrational term is flat, monotonic, and can
be sampled with a coarse grid.

1. Static contribution

To evaluate the static contribution to the elastic constants,
we performed a series of well-converged total energy cal-
culations on a two-dimensional discrete grid [e4,6./4] (see
Fig. 9 for details on the grid). The ¢, grid is asymmetric with
respect to zero and with more points in the positive range of
the strain parameter, in order to sample accurately the values
of the static contribution to the free energy also in the thermal
expansion range. The resulting total energies are fitted with a
two-dimensional bivariate polynomial up to fifth degree using
a least-squares method [66].

The analysis of the quality of the fit of discrete data points
to a two-dimensional energy surface is crucial to resolve the
possible sources of error that could affect our elastic constants
and, therefore, for a reliable comparison with experiments and
the wide range of scattered data available in the literature.
Therefore, in addition to the visual inspection of the fit along
constant g./4 sections, we evaluated the adjusted coefficient
of determination (R?) and the average absolute error (AAE),
defined as

1 o o
AAE = =3 [ Pa(efel)y) — E (e eu)
ij

)

where N is the total number of [&,,¢./4] discrete values and P,
is the bivariate polynomial of degree n. Thus, R? is a measure
of the quality of the fitting model, i.e., how well the analytic
function approximates the calculated data points. The AAE is
a quantitative measure of the distance of the fitted curve from
the calculated points. We found that the AAE decreases by
increasing the degree n of the polynomial and R? approaches
unity, as shown in Table II. According to these results, in both

cases we considered the fourth-degree polynomial to provide
a sufficiently accurate fit (indeed the AAE is two orders of
magnitude smaller than the difference between the highest
and the lowest total-energy data points).

Figure 9 shows a plot of the static energy landscape for both
the tetragonal and trigonal deformations, with the minimum
elongated along the diagonal in the [e,,e.] space or along
constant &4 in the [g,,£4] space.

2. Vibrational contribution

To evaluate the vibrational contributions to the free energy,
we performed a series of linear-response phonon calculations
on a two-dimensional grid in the space of deformation scalars
€a,€c/q- Since the lattice dynamics calculations are one order
of magnitude more time-consuming than the total energy
calculations, we used a coarser grid (see Fig. 10 for details
on the grid).

The eigenvalues of each dynamical matrix are Fourier-
interpolated in order to obtain smooth and continuous
phonon dispersions. The zero-point energy and the thermal
contributions are calculated by numerical integration over
21 x 21 x 21 points in reciprocal space. This is essential
to obtain numerically accurate values of the vibrational
contribution.

As for the case of the static contribution, we determined
the best polynomial necessary to fit our data over the entire
temperature range from 0 to 1000 K. Similarly, we used
the adjusted R? and the AAE as indicators of the quality
of the fit. Our choice of polynomial is dictated by the
need to minimize the AAE, maximize RZ, and minimize
the confidence interval (see Sec. IVB3 for details on its
calculation) at each temperature. We also checked a posteriori
the stability of the computed elastic constant curves against
different polynomial degrees (see the Supplemental Material
[55]). In the tetragonal case, a quadratic bivariate polynomial
(i.e., six parameters) is sufficient to accurately reproduce

104105-5



DANIELE DRAGONI, DAVIDE CERESOLI, AND NICOLA MARZARI

||® = Expt.1 ‘»A
1221, . Expt.2 e
— Calc. N -
12.0} shifted .A..’/,
--- scaled L
S u -
= "
> 11.8}
11.6
114

0 200 400 600 800 1000 1200
Temperature (K)

FIG. 6. (Color online) (Top panel) Free-energy landscape of cu-
bic bce iron as a function of volume V and temperature 7. The
dashed black line corresponds to the set of points that minimize the
free-energy surface at each temperature. The continuous green and
blue lines are the projections of the black dashed line in the T-V
and F-T planes, thus describing the volumetric thermal expansion
and the zero-pressure free energy as a function of 7. (Bottom
panel) Volumetric thermal expansion (green solid line) compared
to experimental data from Ref. [36] (Expt. 1, blue squares; note that
below room temperature, the data are extrapolated according to the
thermal expansion coefficient of Ref. [49]) and Ref. [59] (Expt. 2,
magenta triangles). As a guide to the eye, we also report in all plots
shifted and scaled quantities. The former are rigidly translated on the
vertical axis, while the latter are multiplied by a constant factor to
match the experimental 0 K value.

the distribution of data points. On the other hand, for the
trigonal deformation, a fourth-order bivariate polynomial (i.e.,
16 parameters) is needed. As an illustration, we report the
vibrational energy landscape at 750 K for the tetragonal and
for the trigonal distortions (Fig. 10).

3. Evaluation of the elastic constants

Next, we sum the static and vibrational energy landscapes
obtained in the previous sections and compute the Helmholtz
free energy. An example of the resulting landscape at 500 K
is displayed in Fig. 11. The second derivative with respect to
strain can be evaluated analytically at the minimum of the free
energy as a function of temperature.

Then, in order to understand if the discrepancy between the
experimental and calculated elastic constants could be ascribed

PHYSICAL REVIEW B 91, 104105 (2015)

to the fitting procedure, we have calculated the confidence
interval of Cy; and Cy4. Toward that end, we have computed
the covariance matrix of each best-fit contribution to the free
energy, defined as

cov(P) = a2(JT )71, (10

where P is the set of polynomial coefficients, o2 is the squared
residual, and J is the Jacobian matrix, which is provided
in output by the least-squares routine. The global variance
of each best-fit polynomial is then obtained by considering
both the diagonal and the off-diagonal elements of the
covariance matrix cov(P). Finally, we used error-propagation
theory to obtain the confidence interval of the elastic
constants.

The calculated Cy; and Cy4 elastic constants of bce w-iron
both decrease by increasing temperature, as shown in Fig. 12.
Our results are in reasonable accordance with those reported
in Ref. [67] (the exception is Cy44, Which in our case is fairly
underestimated) where, however, a direct detailed comparison
with experimental thermal softening is clearly more difficult.
In Table III, we report our calculated B, Cy;, and Cy4 values
with and without zero-point energy (ZPE) corrections, thus
comparing them to experimental data. Also, for the sake of
completeness, we report in Fig. 13 the temperature dependence
of the C’ and in Table IV the C;, = 3B — C;1)/2,C' =
1/2(Cy; — Cy2) = 3/4(Cy, — B), and anisotropy ratio Cy44/C’
as from standard theory of elasticity. The inclusion of the ZPE
results in a small decrease of the elastic constants and bulk
modulus. The confidence intervals at zero temperature are of
the order of 0.1 GPa and cannot account for the differences
with respect to experiments, so we will discuss other possible
sources for such discrepancies in the next section.

C. Discussion

The temperature dependences of the bulk modulus and of
the elastic constants display an overall good agreement with
the available experimental data, showing how lattice vibrations
alone provide a robust description of the thermoelastic prop-
erties of the material, especially below the Debye temperature
®p. The agreement is still valid above ®p, for the Cyq, which
shows a near-linear behavior generally expected for metallic
systems according to the semiempirical Varshni equation [68].
On the other hand, approaching the Curie temperature (1043 K)
from below, the results are not able to reproduce the anoma-
lous nonlinear softening that is observed in experimental
C /, B and C11.

According to previous work, e.g., based on a tight-binding
approximation coupled to a single-site spin-fluctuation theory
of band magnetism [63], effective spin-lattice couples models
[64], as well as experiments [25,26], the origin of these
anomalies is inherently related to magnetic fluctuations and,
ultimately, to their influence on the free-energy landscape
(via modulation of the exchange couplings, configurational
disorder, and magnon-phonon interaction). In support of this
conclusion, previous ab initio papers [11,23] suggest that the
electronic entropy and phonon-phonon anharmonic effects
beyond the quasiharmonic approximation play a minor role
in determining the thermodynamics of the system below T¢.
Given the strong indications of the pivotal role of magnetism
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FIG. 7. (Color online) (Left panel) Linear (green solid line) coefficient of thermal expansion compared to experimental data from Ref. [60]
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in the description of thermoelastic properties of a-iron close
to the Curie temperature, further ab initio calculations taking
into account magnetic disorder would be of paramount interest
(see, for instance, Ref. [24]).

Focusing instead on the 0 K structural and elastic properties,
we now discuss the possible origin of the mismatch between
the calculated and experimental values. As we showed earlier,
our calculated points are numerically accurate, and the errors
associated with the fit are fairly small. As a consequence, we
propose and analyze here three further plausible sources of the
mentioned discrepancy, namely, (i) the presence of magnetic
domain walls, (ii) the pseudopotential approximation, and (iii)
the approximate XC functional.

First, we inspected the possible effects on the equilibrium
volume at 0 K of the bce crystal in the presence of magnetic
domain walls. We focus our attention on the collinear
magnetic domain wall case, considering a configuration of
8-atoms-thick ferromagnetic layers stacked in the z direction
having alternating antiparallel magnetic polarization. The
effect of the sharp interfaces replicated via periodic boundary

conditions along z results in an increase of about 0.7% of the
lattice parameter and, conversely, in a decrease of about 9% of
the bulk modulus. However, since the density of domain walls
in real materials is expected to be an order of magnitude lower
than our simulations, the effect on the lattice parameter should
be rescaled accordingly, thus suggesting that this kind of sharp
domain walls affects only marginally the O K lattice parameter.

Next, we have observed that, for a given XC functional,
details of the pseudopotential can have a large impact on the
calculated quantities (see Figs. 1 and 2). For instance, for the
PBE functional, the bulk modulus at 0 K ranges from 170 to
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TABLEII. Average absolute error (AAE) and adjusted coefficient
of determination (R?) of the two-dimensional fit of the static energy
landscape, for the tetragonal and trigonal deformations, as a function
of the order of the polynomial.

tetragonal trigonal
Order AAE (Ry) R? AAE (Ry) R?
2 1.894 x 1075 0.997259  9.163 x 107> 0.971580
3 1.997 x 1075 0999975  7.369 x 10°°  0.999819
4 1.002 x 107®  0.999993  2.933 x 10 0.999968
5 9.150 x 1077 0.999995  1.693 x 10°®  0.999990

200 GPa depending on the pseudopotential generation scheme:
ultrasoft or PAW pseudopotentials, with or without semicore
electrons in valence, using the same electronic configuration
but different pseudization methods, or even different versions
of the pslibrary [33].

As discussed in Sec. III, the pseudopotential used in this
work was chosen as being closest in its equation of state and its
magnetization as a function of volume to all-electron FLAPW
calculations [45-47,51]. As a result, the discrepancy at 0 K
with respect to experiments found in this work and in all-
electron calculations seems ascribable mainly to the exchange-
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5 0.010 @ =
e, 001 T oo S8

FIG. 10. (Color online) Vibrational quasiharmonic contribution
to the Helmholtz free energy at 7 = 750 K in the [e,,&.] space
(top panel) and the [e,,&4] space (bottom panel). A second- and
fourth-order bivariate polynomial are used, respectively, to fit the
tetragonal and trigonal data sets.
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FIG. 11. (Color online) Free-energy landscape of the tetragonal
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[e4.€4] and [g,,e4] plane, respectively, at 500 K. The green squares
represent the minima of the energy landscapes.

correlation functional used. For this reason, we explored the
effect of the XC functional on the 0 K properties, keeping
the pseudopotential generation scheme and parameters un-
changed. We performed test calculations with the WC [41] and
PBEsol [42] functionals, and we found that the disagreement
with the experimental data is increased (see Figs. 1 and 2).
Eventually, we observe that the QHA thermal contribution
to the energy landscape is almost linear (see Fig. 10) and
does not contribute too much to the total curvature in the
energy landscape. Moreover, its change in second derivative
along with temperature is even smaller, and contributes only
marginally to the temperature dependence of the total curvature
of the energy landscape (its main effect is to shift the minimum
of the free energy as a function of temperature). Therefore,

TABLE III. Calculated 0 K elastic constants for iron with and
without zero-point energy contributions. Results are compared to
experimental data extrapolated to 0 K.

T (K) a(A) B(GPa) Ci (GPa) Cu (GPa)

0 (no ZPE) 2834 199.8+0.1 2967403 104.7£0.1
0 (ZPE) 2.839 1946403 287.9404 1022405
0 (Expt.) [36,50] 2.856 1703+1 2395+1 120.7+0.1
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we conclude first that the mismatch with experiments at
finite temperature is dominated by the 0 K static contribution
discussed above, and second that the temperature dependence
of the elastic constants is driven, in first approximation, by
the curvature of the 0 K energy landscape at the equilibrium
expanded volumes. Our finding suggests that one could try
and employ more computationally expensive methods (such
as DFT+U+1J [40,69], hybrid functionals [70], RPA [71,72],
or DMFT [73,74]) to explore possible improvements in the

TABLE IV. C; and C’ elastic constants, and Cy4/C’ anisotropy
ratio, derived from Table III with and without zero-point energy.
Results are compared to experimental data extrapolated at O K. Errors
are obtained according to propagation of uncertainties.

T (K) Ci, (GPa) C’ (GPa) Cu/C’
0 (no ZPE) 1514 +£0.2 72.7£0.3 1.44
0 (ZPE) 148.01 £0.5 70.0 £ 0.4 1.46
0 (Expt.) [50] 135.7 51.9 2.32
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FIG. 13. (Color online) Thermal behavior of the C’ elastic con-
stant calculated as a linear combination of B(T) and C(T') (blue
continuous line). Two sets of experimental data are reported: Expt.
1 (green circles) from Ref. [50] and Expt. 2 (yellow triangles) from
Ref. [26]. The calculated interval of confidence is displayed as a
shaded area. As a guide to the eye, we also plot the elastic constants
rigidly shifted (dotted line) and scaled (dashed line) to match the
experimental values at zero temperature.

description of the 0 K mechanical properties of «-iron,
while thermal properties can be determined using lattice
dynamics calculations performed with standard semilocal
GGA functionals.

V. CONCLUSIONS

We have calculated the isothermal and adiabatic elastic
constants of a-iron as a function of temperature from first-
principles, using pseudopotential total energy calculations
based on DFT and lattice-dynamics calculations based on
DFPT, out of which we calculate free energies in the
quasiharmonic approximation and finite-temperature elastic
constants from small strain deformations. Great care has been
put into the verification of the pseudopotentials, and the vali-
dation of the results against experiments. Common semilocal
DFT functionals such as PBE reproduce only fairly elastic
constants at zero temperature; on the other hand, their thermal
behavior, originating from the changes in phonon dispersions
upon crystal expansion, is very well described by the same
functionals and in the quasiharmonic approximation, with a
softening of the elastic constants and bulk modulus that is in
excellent agreement with experiments up to ®p and above.
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