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Abstract

The Sox2 transcription factor is expressed in different neural tumors. In particular, it is active within the “cancer stem
cell” (CSC) subpopulation of tumor cells, able to reinitiate tumorigenesis after conventional chemotherapy (to which it
is usually resistant). This led to hypothesize that Sox2 (and its downstream regulated genes) may qualify as promising
targets for therapeutic strategies directed against CSC. However, the potential relevance of Sox2 in this regard depends
on whether it is functionally important to maintain CSC. Here, we comparatively examine the effects of Sox2 genetic
ablation within mouse models of different neural tumor types. Sox2 ablation in mouse glioma (and in human glioblastoma-
derived CSC) demonstrated a critical function for Sox2 in the maintenance of CSC. Surprisingly, however, Sox2 ablation
in two different mouse models of melanoma (a neural crest-related tumor), and in a mouse model of medulloblastoma of
the Sonic Hedgehog subgroup, showed that, in these contexts, Sox2 is dispensable for tumorigenesis. This heterogeneous
situation has a parallel in the normal development of the nervous system, where generalized Sox2 ablation in neural stem/
progenitor cells selectively affects the development of some neural regions, but not other ones. Molecular mechanisms
underlying these specificities may involve the regulation, by Sox2, of different sets of target genes in different tumors, but
also a redundant regulation of the same targets by different Sox transcription factors, differentially coexpressed with Sox2
in different tumors. Collectively, these findings point to the need to experimentally address the requirement for Sox2, and
its downstream targets, within different tumor types, as a prerequisite to fully exploit its potential as a target for novel
therapeutic approaches.

Keywords

Sox2, Cancer stem cells, Cancer, Glioblastoma, Oligodendroglioma, Medulloblastoma, Melanoma, Mouse genetic models

Abbreviations

CSC: Cancer Stem Cells; ESFT: Ewing Sarcoma Family Tumors; MB: Medulloblastoma; NSC: Neural Stem Cells; SCC:
Squamous Cell Carcinoma; SCLC: Small Cell Lung Carcinoma

Introduction produce “pseudo-differentiated” cells, constituting the
tumor bulk [6-8]. While most of the tumor bulk cells are
typically proliferating (though they are called “differen-
tiated” from the CSC perspective), CSC can be slowly
proliferating and even “quiescent” [6,8], making the use

Stem cells are “cells that have the ability to perpet-
uate themselves through self-renewal and to generate
mature cells of a particular tissue through differentia-
tion” [1]. “Cancer stem cells” (CSC) were identified in
human brain tumors [1-3], as a minority subpopulation
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of drugs hitting proliferating cells uneffective in killing
them.

Sox2 is a member of the Sry-related HMG-box (SOX)
family of transcription factors; the Sox2 gene is locat-
ed on chromosome 3, in both humans and mice, and
in both species it is constituted by a single coding exon
[9]. Sox2 was first studied in the context of normal em-
bryonic development, where knock-out experiments in
mouse demonstrated its essential role to maintain the
pluripotent stem cells of the early embryo [10], as well as
its function in several tissue-specific stem cells, including
neural stem cells (NSC); NSC cultured in vitro from the
mutant neonatal mouse brain fail to self-renew in long-
term culture, and, in vivo, postnatal hippocampal NSC
are impaired [11-14].

The discovery of CSC in tumors focused attention on
Sox2 also from the point of view of this pathological stem
cell type. Indeed, Sox2 is expressed in different tumors
of neural origin, such as gliomas (the most common pri-
mary brain tumors, whose most malignant and lethal
subtype is glioblastoma multiforme), medulloblastomas
(the most common brain tumor in childhood), and mel-
anoma (a tumor arising from neural crest type cells); In
all of these tumors, CSC have been identified, and found
to express Sox2 [2,8,15].

In this paper, we focus on the comparative review of
recent experiments, that made use of conditional muta-
tion of Sox2 in different mouse models of neural tumors
(and of genetic Sox2 ablation in human CSC-enriched
cultures of the same tumor types), to investigate the func-
tional relevance of Sox2 in tumorigenesis, and, in par-
ticular, in the maintenance of CSC. These experiments
demonstrated an absolute requirement for Sox2 of CSC
able to reinitiate tumorigenesis of gliomas (glioblastoma
and oligodendroglioma) in mouse; unexpectedly, how-
ever, they also showed that Sox2 is dispensable for tu-
morigenesis in a model of Sonic Hedgehog (SHH)-sub-
group medulloblastoma, and in two different models of
melanoma. We discuss a parallel of this situation with
the identification of region-specific Sox2 functions in the
context of the development of the normal neuroepitheli-
um, and possible molecular mechanisms underlying the
context-specificity of Sox2 functions. Finally, we discuss
the need and approaches to identify functional down-
stream effectors of Sox2 in Sox2-dependent CSC, that
could complement Sox2 as targets of therapeutic strate-
gies directed against CSC.

Sox2-dependent neural cancer stem cells in gliomas

Gliomas are the most common cerebral neoplasias
(86%) [16-18]. Glioblastoma multiforme (GBM), the
most aggressive and deadly among gliomas (average pa-
tients’ survival is about 15 months), was one of the first

tumor types in which CSC were originally described (re-
viewed in [2]. The development of serum-free in vitro
cultures of tumor-derived cells has allowed to expand
CSC (in equilibrium with more differentiated proge-
ny) from GBM tissue of many different patients; these
cells retain the ability to re-form a tumor with the same
characteristics of the tumor of origin following trans-
plantation into a host mouse brain (xenograft), and thus
represent important in vitro models of CSC. GBM, and
CSC-enriched cultures derived from it, consistently ex-
press Sox2 [19].

Gangemi, et al. [20] first addressed the consequences
of lowering Sox2 levels in some patient-derived CSC-en-
riched cell cultures, by expressing anti-Sox2 shRNAs
causing strong reduction of Sox2 mRNA levels. This re-
sulted in reduced cell proliferation and reduced clono-
genicity in vitro, and to loss of tumorigenicity in vivo, in
mouse xenografts [20]. A role for Sox2 in maintaining
other patient-specific GBM CSC was further supported
in additional important work by other laboratories [15].

In mouse cells, complete Sox2 ablation was obtained
in vitro by conditional knockout in a genetically defined
model of glioma: a high-grade oligodendroglioma in-
duced by overexpression of Platelet-derived growth fac-
tor B (PDGF-B) [21]. Oligodendroglioma is the second
most common tumor in adults; patients with high-grade
oligodendroglioma have a median survival of 3-4 years
[16,22]. Alterations of PDGF-B signalling are common
molecular lesions in human gliomas, including oligo-
dendrogliomas: PDGF and PDGF receptor have both
been found overexpressed in glial tumor-derived cells
and glioma surgical samples, and amplification of the
gene encoding the PDGF receptor-A occurs in high-
grade oligodendrogliomas [23-25]. In addition, PDGF
can initiate the “reprogramming” of normal, committed
O2A oligodendrocyte progenitors to neural stem-like
cells, in a process that requires Sox2 [26]. PDGF-B was
used to induce tumor development in embryonic brain;
cells cultured from such tumors would re-initiate tumor
development following transplantation, thus behaving as
CSC. Sox2 ablation was achieved by conditional knock-
out, in which Cre recombinases delete the endogenous
Sox2 gene, that has been previously flanked by loxP sites,
the Cre substrate (“Sox2 flox” allele) [13]. Sox2 Cre-me-
diated ablation in vitro in such glioma cells completely
prevented tumor reinitiation following in vivo trans-
plantation; over the time window in which non-delet-
ed cells developed deadly tumors, mice transplanted
with Sox2-deleted cells remained tumor free. The only
two tumors developing from Cre-treated cells were
SOX2-positive, demonstrating they were derived from
non-deleted cells. In vitro, Sox2 ablation caused prolif-
eration reduction, apoptosis activation, and aberrant
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differentiation into cells expressing oligodendrocyte and
astrocyte markers [21]. Counterintuitively, Sox2, or pep-
tide fragments of it, though being a nuclear protein, can
be found exposed on the cell surface of tumor cells, in
association with the Major Histocompatibility Complex
(MHC), presumably as a result of tumor cell lysis and
processing of its proteins; based on this, immunotherapy
against SOX2 protein was attempted, which resulted in a
doubling of survival time of mice transplanted with oli-
godendroglioma cells [21].

Sox2 cooperating genes

Recent experiments investigated transcription fac-
tors cooperating with Sox2 in cell “reprogramming” to
tumor-propagating cells (cancer stem cells). In recent
work [7], SOX2 was able to reprogram “differentiated”
GBM cells from human tumors (DCGs) to stem-like
tumor-propagating cells (TPC), when transduced into
the DCGs together with transcription factors POU3F2
(BRN2), SALL2, and OLIG2. In GBM-derived CSC-en-
riched cultures grown in serum-free conditions, genom-
ic mapping (by ChIPseq) of H3K27Ac, a histone modi-
fication carried by active enhancers and promoters, had
initially revealed regulatory elements specific of TPC
(versus DCGs), and these were enriched in the DNA se-
quence recognized by SOX proteins. RNA seq showed
that expression of SOX2 (and of SOX1, SOX5, SOXS,
SOX21) was higher in TPC than in DCGs (“differenti-
ated” by serum or BMP4 addition). Similarly, transcrip-
tion factors SALL2, POU3F, and OLIG2 were selected
based on two considerations: enrichment, in TPC versus
DCGs, of their expression, and the presence of H3K27Ac
(an epigenetic mark of transcriptionally active state)
on their binding sites on gene promoters and enhanc-
ers. The combination of SOX2 (but not SOX1), SALL2,
POU3F and OLIG2 (or Rest Corepressor 2, RCOR2, a
transcriptional corepressor) could reprogram DCGs to
TPCs, that carried a genome-wide pattern of H3K27Ac
sites superimposable to that of the TPCs that had been
directly grown from the tumor. Further, the 4 factors co-
bind to a large number of distal regulatory elements spe-
cifically active in TPCs. Interestingly, a minority of cells
coexpressed the 4 transcription factors in the tumor,
as demonstrated by immunofluorescence. Looking for
therapeutic implications, two mediators acting down-
stream to the 4 transcription factors were also identified:
RCOR?2 (that can replace OLIG2 in the reprogramming
cocktail) and histone demethylase LSD1, whose repres-
sion caused cell death specifically in TPCs. Interestingly,
it had previously been found that LSD1-specific inhib-
itors impaired the growth of Sox2-expressing, but not
that of Sox2-negative, lung squamous cell carcinomas
(SCC), and Sox2 expression was associated with sensitiv-
ity to LSD1 inhibition in lung, breast, ovarian, and other

carcinoma cells [27]. This indicates that LSD1 is a medi-
ator of tumorigenic effects downstream to Sox2, but not
other tumorigenic factors.

In a related study, ChIPseq in GBM cells showed that
DNAase hypersensitive sites in patient-derived GBM
cells, mapped by ATAC-seq (a technique that allows to
map DNA regions that are more accessible in chromatin,
usually in correlation with the binding of transcription
factors), are enriched in DNA recognition sequences for
SOX2 and FOXG], a transcription factor active in em-
bryonic brain development; ectopic expression of SOX2
and FOXGI in postmitotic astrocytes reactivated pro-
liferation and stem cell properties. The coexpression of
FOXG1 with SOX2 in GBM led to hypothesize that they
could, together, contribute to cell “reprogramming” to
stemness in gliomagenesis [28].

Sox2 relevance for non-neural tumors. Common
downstream Sox2 effectors?

Importantly, conditional knockout and RNA inter-
ference experiments showed that SOX2 controls CSS
functions also in some non-neural tumours, such as in
skin, lung, and aesophagus squamous cell carcinomas
(SCC), osteosarcomas, Ewing sarcoma, and small cell
lung carcinomas (SCLC) [29-33]. This suggests that
some downstream effectors of Sox2 function may be
conserved between different tumors. In this regard, in
osteosarcoma-initiating cells, Sox2 directly represses the
genes encoding two activators of the “hippo” signalling
pathway, Nf2 (Neurofibromin 2, also called Merlin, en-
coding a protein involved in connecting the cytoskeleton
with proteins of the cell membrane) and WWCI1 (also
called Kibra, encoding a cytoplasmic phosphoprotein),
which in turn negatively regulate the transcriptional co-
activator YAP, important for promoting tumor growth;
interestingly, Sox2 depletion led to upregulation of Nf2
and WWC1, downregulation of YAP, and to reduced
cell clonogenicity, in both osteosarcoma and GBM cells,
indicating that these effectors may be shared between
these tumor types [30]. In osteosarcomas, as well as in
laryngeal cancer cells, Sox2 was also proposed to control
migration and invasion via the Wnt/beta-catenin signal-
ling pathway [34,35], though enforced Sox2 expression
in lung adenocarcinoma was reported to promote cell
migration and invasion, but to inhibit Wnt/beta-cat-
enin signalling activity [36]. Thus, Sox2 might regulate
the Wnt/beta-catenin pathway in different tumor types,
though not necessarily with the same functional out-
come. In hematopoietic tumors, Sox2 expression was
detected in cultured cells isolated from ALK-positive an-
aplastic large cell lymphoma, and Sox2 downregulation
impaired their clonogenicity and tumorigenic ability;
oxidative stress increased Sox2 expression and cancer
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stem cell properties in a subpopulation of cells, and Sox2
was reported to bind DNA more efficiently [37]. It is pos-
sible that specific partners had become available in oxy-
gen-stressed cells, or that increased levels of Sox2 were
important for binding; alternatively, posttranslational
modifications of Sox2 were proposed to be involved in
this “activation” following oxidative stress [38].

Interestingly, some papers reported Sox2 expression
and some functional effects of Sox2 downregulation also
in human mammary cancer cell lines [39,40]. However,
in a widely studied mouse model of breast cancer, pro-
duced by expression of a transgene encoding a mutated
ErbB2/Neu oncogene driven to mammary tissue by the
MMTYV promoter [41,42], and activated by a mamma-
ry-specific Cre recombinase [43], Sox2 ablation had no
effect on tumorigenesis (A.B.S. and S.K.N., unpublished
observations). It is possible that breast tumors are heter-
ogeneous regarding functional requirements for Sox2 in
tumorigenesis. Indeed, Sox2 expression was observed in
some breast tumors (mostly belonging to early stages of
tumor progression), but not in others, and some, but not
all breast tumor-derived stem cell-enriched cultured cell
lines are reported to express Sox2 [39]. A future char-
acterization of the gene regulatory networks acting in
breast cancer CSC might allow to better categorize them
with respect to Sox2 function.

It is interesting to note that Sox2 is important also
in the normal cell counterparts of CSC within several
of the non-neural tissues (see above) known to develop
Sox2-dependent tumors, as previously seen with NSC
[13]: indeed, normal osteoblasts, dermal papilla cells,
and cells of the developing foregut (giving rise to lung,
esophagus and trachaea) require Sox2 function [44-46].
This indicates that Sox2 function, already present in tis-
sue-specific stem/progenitor cells, is retained by CSC of
(atleast some) tumors of the same tissue type. A different
situation was documented in Ewing Sarcoma Family Tu-
mors (ESFT), mesenchimal tumors thought to arise from
primary mesenchymal stem cells. Here, SOX2 expression
is strongly activated de novo by the oncogenic transcrip-
tion factor that characterizes a high proportion of ESFT,
encoded by the EWS-FLI-1 fusion gene. EWS-FLI-1 ac-
tivates SOX2 (together with OCT4 and NANOG), and
SOX2 is a key factor in the emergence of a ESFT CSC
population; its downregulation in ESFT cells antagonizes
cell proliferation and tumorigenesis [32].

Collectively, these findings show that SOX2 is re-
quired by CSC in various gliomas, in mouse and human
(as well as by CSC of several non-neural cell types). This
raises the possibility that SOX2 may qualify as a target
for CSC-directed therapy strategies; note that, though
Sox2 is highly expressed in gliomas and CSC, its expres-
sion is very limited in normal brain tissue surrounding

the tumor. They further indicate that the identification of
new downstream mediators of Sox2 function in gliomas
may be of relevance for therapy approaches, not only in
glioma, but also in other Sox2-dependent tumor types,
where some relevant Sox2-controlled gene regulatory
networks may be conserved (see also the recent reviews
on the subject by [15,47].

Medulloblastoma Development in a Sox2-
ablated Mouse Model

Medulloblastoma (MB), the most common brain tu-
mor in childhood, was shown early on to harbour CSC
[2,3]. Quite some studies were devoted to the Sonic
Hedgehog (SHH) subgroup of MB, representing about
30% of total MB, presenting aberrant SHH signalling
because of loss of function of negative regulators (in-
cluding PTCH1, SUFU), activating mutations of positive
transducers (SMO), or amplification of transcriptional
effectors, like GLI2 [48]. SHH subgroup MB were shown
to originate from cerebellar granule neuron precursors,
that proliferate during normal development under the
physiological stimulus of SHH [49]. In these tumors,
SHH pathway inhibitors entered clinical trials, but re-
ports of resistance and relapse indicate the possibility
that an insensitive CSC might be spared [8].

In mouse, a model of the SHH subgroup MB is the ir-
radiated Ptch +/- mouse, where postnatal irradiation in-
creases tumor frequency from 20% to 80%. Recent work
in this model has shown that rare, quiescent cells, ex-
pressing Sox2, behave as tumor-propagating cells follow-
ing transplantation, and in primary tumors in situ [8].
Sox2-expressing cells, and their progeny, were labelled in
vivo through activation of a GFP transgene by an induc-
ible Cre (CreERT2) driven by the Sox2 locus, and char-
acterized through tumor development, by immunofluo-
rescence. This revealed that rare Sox2-positive cells (less
than 5% of total) produce rapidly proliferating progeni-
tors (marked by doublecortin, DCX), that, together with
their non-dividing progeny (positive for NeuN) consti-
tute the tumor bulk. The fraction of Sox2-positive cells
increased following anti-mitotic, or anti-SMO, therapy,
which kills dividing cells; this suggests that Sox2-pos-
itive cells were spared by these therapies and could be
responsible for the observed relapse. These findings in-
dicate Sox2-positive cells as a promising target for an-
ti-CSC therapy in SHH subgroup MB but leave open the
question of whether Sox2 itself is functionally relevant
for them.

Sox2 function in mouse MB tumorigenesis has been
tested by conditional Sox2 knockout within another mod-
el of SHH subgroup MB, the lox-stop-lox-SmoM2-YFP
mouse [50]. SmoM2 encodes a mutated version of the
Smo gene, encoding the SHH co-receptor; SmoM2 was
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originally discovered as an activating mutation of Smo
(ant thus of the SHH pathway) in basal cell carcinomas
[51]. In the mouse model, the SmoM2 transgene activates
SHH signalling following Cre recombinase-mediated ex-
cision of the stop sequence [49]. In hGFAPCre:SmoM-
21 mice, SmoM2 is activated throughout the neuroepi-
thelium, and MB develops [49]; these MB expresses Sox2,
with sparse cells showing particularly high expression
levels [51]. In hGFAPCre:Sox2%¥ox:SmoM21°¥* mice, tu-
mors developed, where SOX2 was not detected. Howev-
er, the development and morphology of the tumors were
not significantly altered by Sox2 loss; further, the survival
time was not significantly different between Sox2-positive
and Sox2-negative genotypes.

It should be noted that, in this model, SHH signalling
is activated uniformly within the many cells in which
SmoM2 is activated by Cre, which does not mirror the
pathological situation in which an oncogenic mutation
is first present in just one cell. However, in this model,

Sox2 ablation did not preclude MB tumorigenesis. It is
possible that, in MB, Sox2 is upstream to genes regulat-
ing SHH signalling, as seen in normal NSC [13]; in the
SmoM?2 model, Sox2 function might be bypassed by au-
tonomous, constitutive activation of the SHH pathway.

In this model, expression of Sox3, a transcription fac-
tor belonging to a subgroup of Sox genes coexpressed
with Sox2 in the developing neuroepithelium [12], was
detected in the tumor, and found upregulated in mutant
cerebella following Sox2 ablation [51]. Sox transcrip-
tion factors co-bind to many target genes [52], so these
findings raise the possibility that Sox3 acts redundant-
ly with Sox2 to maintain MB tumorigenesis. Vice versa,
pro-differentiative Sox factors (Sox5, 6, 21) were found
to be downregulated during malignant glioma progres-
sion, their genetic ablation increased the ability of cells
to form glioma-like tumors, and expression of high levels
of Sox5/6/21 in primary human GBM cells antagonized
their tumorigenic capacity [53]. A similar, antagonistic
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Figure 1: Sox2 experimental ablation distinguishes Sox2-dependent from Sox2-independent CSC.

Oncogenic hits can convert normal cells to CSC. Sox2 ablation can antagonize CSC and tumor progression (left). Here,
Sox2 downstream genes can be identified, which vary their expression following Sox2 loss; downregulated as well as
upregulated genes are identified. Experimental manipulation of the activity of these targets can identify important mediators
of Sox2 effects on cancer cells, providing potential targets for therapy.
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function of Sox9 and Sox10 was also described in mela-
noma [54] (see below Figure 1). It is possible that the Sox
genes coexpressed with Sox2 in tumors and CSC may
represent a generally important factor conditioning Sox2
function in CSC. Their importance may be tested by ge-
netic ablation experiments, in combination with Sox2.

Sox2-independent Neural Cancer Stem Cells
in Melanoma

Melanoma is a skin tumor originating from malig-
nant transformation of melanocytes, cells derived from
the embryonic neural crest [55]. About 50% of human
melanomas express Sox2 [56]; further, Sox2 has func-
tional roles in normal melanocyte progenitors of the de-
veloping neural crest, as Sox2 gradual downregulation
permits the differentiation of neural crest (and Schwann
cells)-derived melanocyte progenitors into melanocytes
[57,58]. Sox2 has thus been considered a candidate to
play functional roles also in melanoma. A different Sox
factor, Sox 10, had been previously shown by conditional
knock-out to play an essential role in melanoma devel-
opment within a mouse genetic model of Nras®'*-driv-
en melanomagenesis [59], prompting related experi-
ments for Sox2.

The study of Sox2 function in human melanoma-de-
rived cells by RNAi-mediated knockdown approach-
es had given controversial results. Whereas some Sox2
knockdown experiments indicated a contribution of
Sox2 to the maintenance of patient-derived melanoma
spheres self-renewal and xenograft tumor development
[60], and Sox2 overexpression increased melanoma cell
invasion [61], in other reports Sox2 knockdown failed
to elicit effects [56]. In more recent experiments, Sox2
was fully ablated via CRISPR/Cas9-mediated mutagen-
esis in human patient-derived melanoma cells carrying
a N-Ras Q61L oncogenic mutation and expressing high
Sox2 levels [58]. Following xenotransplantation into im-
munocompromised mice, Sox2-deleted cells were equal-
ly capable of generating tumors than non-deleted cells
[58], pointing to a dispensable role for Sox2.

In mouse, Sox2 function in in vivo melanomagene-
sis was recently studied in two different genetic models
of melanoma, by conditional Sox2 knockout. The first
model is the Tyr:Cre®®"? :: NRas¥®'¥ Ink4a-/- mouse, in
which a transgene (Tyr:Cre®*™?), expressing the inducible
Cre™™ in melanocytes, is coupled to a Cre-activatable
transgene, carrying the oncogenic NRas®'* mutation,
together with a homozygous mutation of Ink4a [58].
This model recapitulates all phases of melanomagenesis
from benign nevi formation from melanocytes, to ma-
lignant transformation, metastases, and tumor dissemi-
nation at distant sites; in this model, the requirement for
Sox10 in melanomagenesis had previously been demon-

strated [59]. In the second model, a Braf"®t mutation
cooperates with Pten loss to induce melanoma [62].
Both tumors express Sox2, at least in a fraction of cells.
In both cases, Sox2 ablation was obtained by combining
these oncogenic mutations with a homozygous Sox21*
allele; this caused Sox2 deletion, by the same Cre recom-
binases that activated the oncogenic transgenes. In both
cases, Sox2 ablation did not prevent tumor formation,
and the kinetics and characteristics of tumor growth did
not differ detectably in Sox2-negative and Sox2-positive
(control) tumors, nor did the survival; further, to test for
Sox2 requirement in different phases of tumorigenesis,
deletion was induced before the appearance of primary
melanomas, or when metastases formed, and again no
difference was observed with controls, despite efficient
Sox2 deletion [58,62]. This indicates that, at least in
these models, Sox2 is dispensable for tumor develop-
ment from melanocytes. It is possible that the different
findings in some human cell lines and in the two in vivo
mouse models (see above) reflect a previously unappre-
ciated heterogeneity in melanomas regarding Sox2 re-
quirement. Functional experiments will be important in
discriminating, among melanomas, those requiring Sox2
function for tumorigenesis.

A Parallel: Different Requirements for Sox2
by Stem/Progenitor Cells of Different Regions
of the Normal Developing Nervous System

It may be interesting to note that Sox2 function is
highly context-dependent also in the development of
the normal nervous system. Following Sox2 deletion
throughout the developing neural tube at embryonic
day 11.5 (E11.5) (via a nestin-Cre transgene), develop-
ment of the hippocampus is severely perturbed, whereas
neural development in general is comparatively spared
[13]. Following even earlier Sox2 ablation throughout
the developing telencephalon, at E9.5 (via a FoxG1Cre
transgene), the ventral telencephalon (medial gangli-
onic eminences, the primordium of the basal ganglia)
is essentially lost, as is the olfactory neuroepithelium,
whereas the dorsal telencephalon (cortex primordium) is
comparatively less affected [63,64]. Sox2 ablation in the
developing midbrain/hindbrain led to impaired develop-
ment of the cerebellar vermis, and of postnatal cerebellar
Bergmann glia, but not (or much less) of other cerebellar
regions and cell types [65]. These findings indicate that
Sox2 normally functions in a stage-, region-, and cell
type-specific way in neural cells, driving context-specific
gene regulatory networks.

Conclusions and Perspective

We have summarized evidence showing that Sox2 is es-
sential for the maintenance of CSC and tumorigenesis in
some neural tumor types, while being dispensable in others.
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What molecular mechanisms could be involved in this
context-specificity of functions in CSC? It is possible that
different stem cell programs control the maintenance of,
for example, glioma versus melanoma stem cells, and
that only the first one requires Sox2. Alternatively, it is
possible that, at least in some cases, Sox2 acts redundant-
ly with other Sox factors, coexpressed with it in some tu-
mor types (e.g. Sox3 in MB, see above). The combined
ablation, in model systems, of the Sox genes potentially
involved, by conditional knockout or CRISPR-Cas-me-
diated mutagenesis, should clarify these points.

On the other hand, we noted that a requirement for
Sox2 is found not only in neural CSC within gliomas, but
also in very different, non-neural tumors, such as skin
and esophagus SCC, lung SCLC, and osteosarcomas.
Perhaps, although they differ by histology and by cell of
origin, these tumors share a “core”, Sox2-controlled gene
regulatory network, active in their CSC. Thus, it will be
important to comparatively characterize the gene regula-
tory networks controlled by Sox2 in these CSCs.

These findings have implications for therapy ap-
proaches. On one hand, they suggest it might be ad-
vantageous to “classify” tumours according to the gene
regulatory networks that function in the maintenance of
their CSC, that in turn might involve shared efficacy of
CSC-targeting drugs. On the other hand, they empha-
size the need for functional experiments, to address the
importance of specific gene products (here, Sox2, and its
downstream targets), to distinguish driver from bystand-
er roles, in order to appropriately target future CSC-di-
rected therapy approaches.
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