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1
I N T R O D U C T I O N

1.1 xenobiotic receptors

Most animals are constantly exposed to a multitude of chemicals
derived from the air they breath, the water they drink and the food
they eat. Many of these chemicals provide useful information about
the world surrounding them or are healthful and nutritive, while
others are toxic and harmful. If, for any reason, some of the last ones
start to circulate inside the animal body, they must be eliminated.
Animals, including humans, have both constitutive expressed and
inducible enzymes to facilitate the biotransformation and elimination
of toxic compounds [Parkinson and Ogilvie, 2001]. Inducible enzymes
are expressed only in the presence of an activating molecule, otherwise
the constitutive ones are always expressed.

The biotransformation, or detoxification, enzymes are usually di-
vided into three groups: phase I, bioactivation; phase II, conjugation;
phase III, transport [Omiecinski et al., 2011]. Phase I reactions involve
hydrolysis, reduction, and oxidation. These reactions expose or in-
troduce a functional group, and usually result in a small increase in
hydrophilicity; on the contrary, phase II reactions result in a large
increase in xenobiotic hydrophilicity, promoting the transport and
the excretion (phase III) of foreign chemicals [Parkinson and Ogilvie,
2001]. The main protein family responsible for the phase I reactions
is the cytochrome P450 (CYP) monooxygenases enzyme family. The
regulation of the expression level of CYP is mediated by transcrip-
tor factors activated by ligands; because some of them can interact
and be activated by xenobiotics, they are designed as xenosensors or
xenobiotic receptors [Nakata et al., 2006].

1.1.1 Functions and mechanisms

We can say that the first step of the detoxification mechanism is the
xenobiotic detection by the receptors, that include: Aryl hydrocarbon
Receptor (AhR), Pregnane X Receptor (PXR or NR1I2) and Constitutive
Androstane Receptor (CAR or NR1I4).

AhR belongs to the bHLH-PAS (basic helix-loop-helix/Per-ARNT-SIM)
protein family and is the only one of its family that is activated by
ligand binding [Perdew et al., 2018]. Family members can be grouped
in two classes: class I neither homodimerize nor heterodimerize with
other class I factors, it includes AhR and its repressor AhRR, hypoxia
inducible factors α (HIFα), single minded proteins (SIM) circadian
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introduction

Figure 1.1 AhR activation mechanism. AhR in complex with chaperon
proteins is activated by ligand binding that causes the nuclear
translocation; into the nucleus AhR heterodimerizes with ARNT and
the dimer binds DNA in the XRE region leading to gene transcription
(modified from Bonati et al. [2017]).

locomotor output cycles kaput (CLOCK), and neuronal PAS proteins
(NPAS); class II can both homodimerize and heterodimerize regardless
the class of the protein partner, it includes AhR Nuclear Translocator
(ARNT and ARNT2) and brain muscle ARNT like protein 1 (BMAL1)
[Kewley et al., 2004].

The mechanism of action of AhR (Figure 1.1) is the prototypical
of the transcription factors: it is located into the cytosol in complex
with two heat shock proteins 90 (HSP90), one X-associated protein 2

(Xap2) and one p23 co-chaperon. The binding of the ligand leads to a
conformational change and the cytosolic complex migrates into the
nucleus. In the nucleus AhR heterodimerizes with its homologous
ARNT and this dimer finally binds to DNA in a specific recognition site:
the xenobiotic responsive element (XRE). The binding to DNA starts
the transcription of some target genes, including the cyp1a1 and the
repressor AhRR [Ma, 2011].

The mechanism above described is usually referred to as “canonical”,
“classical” or “adaptive” because it is the first that was understood and
it arose from the adaptation of the organisms to xenobiotics. In addi-
tion to the canonical pathway, the AhR appears to act through several
non-canonical pathways [Denison et al., 2011], including, for example:
the dimerization with other protein partners, e. g. the Krüppel-like
Factor 6 (KLF6); the interaction of AhR:ARNT dimer directly with unli-
ganded estrogen receptor to promote formation of a transcriptionally

2



1.1 xenobiotic receptors

Figure 1.2 PXR, as a dimer with RXR, silences the target genes. The
chemical activation is mediated by a ligand that interacts with
PXR, the conformational change triggers the release of co-repressors
and the recruitment of co-activators (inspired by Hernandez et al.
[2009]).

active complex binding to estrogen response elements [Wright et al.,
2017]; and the cross-talk between AhR transcription and Nuclear Factor-
κB (NF-κB) which controls immune and inflammatory responses [Vogel
et al., 2014]. AhR seems to be a very important cellular hub and it is
almost impossible to describe the full spectrum of biological processes
it mediates.

PXR and CAR are nuclear receptors (NRs), in particular they belong to
the NR1I subfamily [Reschly and Krasowski, 2006] and their structure
and mechanism of action is quite similar to other famous member of
the super-family (e. g. estrogen receptor, androgen receptor) [Omiecin-
ski et al., 2011].

Unlike steroid hormone receptors, which are highly selective and
work under narrow concentration of their cognate hormone, PXR and
CAR are orphan receptors, i. e. their physiological ligands are not
known or do not exist [Gallastegui et al., 2015]. PXR is activated
by a large variety of steroids, xenobiotics and therapeutic drugs,
thus playing a central role in steroid hormone homeostasis and drug
metabolism [di Masi et al., 2009]. CAR is constitutively active although
it can bind different molecules, as a consequence the ligands of CAR

are usually antagonists or “superagonists” [Mackowiak and Wang,
2016]. Because CAR is constitutively activated we will focus on the PXR

mechanism.
It has been suggested that the human PXR acts as a gene silencer, i. e.

it is constitutively bound to DNA in the PXR response element (PXRE)
as heterodimer with the Retinoid X Receptor (RXR) and in this form
it silences transcription of target genes (Figure 1.2). Ligand binding
causes a conformational change leading to the release of co-repressors
(e. g. silencing mediator of retinoid and thyroid hormones, SMRT) and
the recruitment of co-activators (e. g. the steroid receptor co-activator 1,
SRC-1) [di Masi et al., 2009].

3
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Figure 1.3 Functional domains of AhR and PXR. Regions nomenclature is
derived by the protein family and the functions have been accorded
to the literature [Ma, 2011, Laudet and Gronemeyer, 2002].

1.1.2 Analogies and differences between AhR and PXR

Both PXR and AhR are transcription factors activated by xenobiotics and
start transcription of different CYPs to detoxify the organism. Though
for decades the scientific community searched the endogenous ligand
for AhR [Nguyen and Bradfield, 2008], it remains an orphan receptor
with many endogenous candidate molecules. Also PXR is an orphan
receptor [Blumberg et al., 1998], known for binding many endogenous
and exogenous molecules [Chai et al., 2016]. In order to bind a large
variety of the chemicals present in the environment, AhR and PXR are
very promiscuous and can bind both small and hydrophobic ligands,
and large and polar ones [Denison et al., 2011, Hernandez et al., 2009].
It is likely that both receptors have a large, hydrophobic and buried
cavity able to accommodate different molecules. Not only PXR and
AhR are activated by different ligands, but also they are species- and
tissue- specific, i. e. ligands that activate transcription into a certain
species or tissue might not be effective into another one. It was also
found that they interact with common partners, for example both
AhR and PXR interact directly with SRC-1 [Kumar and Perdew, 1999,
di Masi et al., 2009]; otherwise they interfere with the regulation of
NF-κB [Vogel et al., 2014, Banerjee et al., 2015], but also of estrogen
receptor [Wright et al., 2017, Biswas et al., 2009].

PXR and AhR have different lengths: PXR contains ∼400 aminoacids,
while AhR is twice longer. AhR is a bHLH-PAS protein: the bHLH is a
common motif that consists of 4-6 DNA binding basic amino acids that
are attached to a HLH dimerization domain [Bersten et al., 2013]; PAS

domains are important signaling modules that monitor changes in
light, redox potential, oxygen, small ligands, and overall energy level
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1.1 xenobiotic receptors

of a cell and are located in the cytosol [Taylor and Zhulin, 1999]. In
bHLH-PAS proteins the PAS domain is repeated twice: PASA and PASB
(Figure 1.3) and, together with bHLH, PAS domains are located at the
N-terminus region. In AhR the PASB is the ligand binding domain
(LBD), while HLH is responsible for dimerization; HLH together with
PASB enable the association with HSP90, and together with PASA al-
low dimerization with ARNT although PASB domain is important for
initiation of AhR:ARNT dimerization and seems to have a modulatory
role. At the C-terminus is located the Q-rich region that is the trans-
activation domain. AhRR lacks both PASB and the Q-rich, so it can
compete with AhR for dimerization with ARNT but do not start any
transcription activity [Kewley et al., 2004].

PXR is a NR, a family of transcription factors that share a modular
structure of three conserved functional domains:

1. ligand binding/dimerization domain;

2. DNA-binding/weak dimerization domain;

3. transactivation domains (activation function 1 and 2 [AF-1, AF-2]).

The LBD is located at the C-terminus of the receptor. The DNA-binding
domain (DBD) is at the N-terminus and is responsible for recognition
of a receptor-specific response element in the promoter region of
the target genes. Finally, the transactivation domains consist of one
ligand-independent AF-1 domain at the N-terminal and one C-terminal
ligand-dependent transcription AF-2 domain. These domains serve as
protein-protein interfaces that guide the recruitment of transcriptional
coregulators to the target gene [Laudet and Gronemeyer, 2002].

Both protein families (bHLH-PAS and NR) have a inner highly con-
served structure despite low sequence identity.

Whereas the single domains of the two proteins have similar func-
tions: LBD, DBD and transactivation domain; they are differently ar-
ranged in the protein (Figure 1.3). While the functional domains in PXR

are along the whole length of the protein, in AhR they are concentrated
on the N-terminal region.

Because AhR and PXR belong to different protein families, the xenobi-
otic detoxification mechanism might be a case of molecular convergent
evolution; these two proteins evolved to detect and metabolize xenobi-
otics independently and on different time. Convergent evolution may
explain both the molecular similarities and differences observed for
these two systems.

1.1.3 Ligands and modulators

The best known and most studied ligands for the AhR are the en-
vironmental contaminants encompassing halogenated organic com-
pounds. Of these, halogenated aromatic hydrocarbons (HAH), com-
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posed by polychlorinated dibenzo-p-dioxins, dibenzofurans and biphe-
nyls PCDD, PCDF, PCB), together with polycyclic aromatic hydrocarbons
(PAHs) are particularly important due to their toxicity and widespread
distribution in the environment [Perdew et al., 2018].

Dioxins consist of two benzene rings connected by two oxygen
atoms and contain four to eight chlorines (Figure 1.4), for a total of
up to 75 congeners [Schectera et al., 2006]. This family also include
one of the most potent toxicants the world has ever seen: 2,3,7,8-
tetrachlorodibenzo-para-dioxin or TCDD [Mandal, 2005]. Dioxins are
unwanted contaminants almost exclusively produced by industrial
processes, including incineration, chlorine bleaching of paper and
pulp, and the manufacture of some insecticides, herbicides, and fungi-
cides. Dioxins did not exist prior to industrialization except in very
small amounts due to natural combustion and geological processes
[Schectera et al., 2006]. The prototype chemical for dioxin is TCDD,
which induces a broad spectrum of toxic responses: disruption of nor-
mal hormone signaling pathways, reproductive and developmental
defects, immunotoxicity, liver damage, wasting syndrome, and cancer
[Schectera et al., 2006, Perdew et al., 2018, Mandal, 2005]. Although a
great deal is known about AhR-driven transcriptional regulation, much
less is known about the mechanisms by which TCDD causes toxicity
and disease [Mandal, 2005].

While the exact mechanism leading to toxicity for TCDD and HAHs
remains to be clarified, in the case of PAH the genotoxicity has been
better described. The conversion of PAHs into carcinogenic interme-
diates depends on enzyme-catalyzed biotransformation; CYPs play a
pivotal role in PAHs metabolism converting them into epoxide species
[Henkler et al., 2012]. The hydrolysis of the primary epoxide into a
diol, and further epoxidation produces the carcinogenic metabolites of
PAHs [Luch and Baird, 2010]. The prototypical carcinogenic PAH that
serves as lead compound now since decades is benzo[a]pyrene (BaP)
(Figure 1.4), which has been judged carcinogenic for humans (group 1)
in 2012 by the International Agency for Research on Cancer (IARC), it
remains the only PAH in the group 1 [IARC, 2012].

Because of their aromaticity and lack of polar substituents, parent
PAHs behave as lipophilic and chemically inert compounds. Differ-
ent congeners are present in the environment due to their natural
occurrence in crude oil depositories; although a more relevant source,
especially in cities and industrial districts, is their generation through
all kinds of incomplete combustion processes [Henkler et al., 2012].

There are also non-toxic/naturally occurring ligands that are as-
sumed from the diet and are commonly found in vegetables, fruits,
berries, teas and herbal food extracts such as ginseng, ginkgo biloba
and liquorice [Safe et al., 2011]. An example may be flavonoids, a
large family of compounds that are widely present in vegetables and
generally consumed in significant amounts; the prototypical flavonoid

6



1.1 xenobiotic receptors

that is an agonist for AhR is β-naphthoflavone (BNF) (Figure 1.4). They
have anti-inflammatory activity, and many are antioxidants [Safe et al.,
2011].

Some decades after the first identification of the ahr gene, it was
found that AhR has also many physiological functions [Gasiewicz and
Henry, 2011]. This hypothesis is supported by the marked degree of
conservation among species and the constitutive expression during
development and in adult tissues of the AhR, as well as, even more im-
portantly, by the developmental aberrations observed in AhR knockout
animal models [Guyot et al., 2013]. As a consequence it seems appar-
ent that there must be one or several major endogenous activators of
the AhR. Endogenous molecules can derive from the metabolism of
the heme or the arachidonic acid [Denison and Nagy, 2003].

Halfway between exogenous and endogenous ligands there are
the tryptophan derived compounds [Hubbard et al., 2015], which in-
cludes indole (Figure 1.4), indigoids, UV photoproducts of tryptophan
[Nguyen and Bradfield, 2008], but also kynurenine (Figure 1.4) and
its metabolites, and 6-formylindolo[3,2-b]carbazole (FICZ) (Figure 1.4)
the endogenous ligand with highest affinity and, for this reason, sus-
pected to be the physiological ligand [Wincent et al., 2009]. These
compounds may derive from the organism metabolism, from dietary
intake, or from the microbiota, in fact it has been suggested that the
indole-like AhR ligands are the chemical mediator between the host
and the microbiota [Hubbard et al., 2015].

In recent years AhR has been considered as a new intriguing phar-
maceutical target, and the scientific community started to look for
selective AhR modulators (SAhRMs) [Denison et al., 2011]. The rationale
for this is based on the notion that some of the biological impacts of
even TCDD are such that they would be beneficial in the treatment
of certain diseases if they could be separated from the toxicity. The
term SAhRM has not been unambiguously defined, but it is generally
used to describe compounds that exhibit tissue- or species-specific
AhR activation or inactivation, and are able to only induce some of
the typical responses of AhR activation, but not others (for example
toxicity).

Modulation of AhR activity has been related to inflammation and
regulation of other immune pathways [Denison et al., 2011, Guyot
et al., 2013], moreover antagonists could be used in cancer treatment
[Murray et al., 2014]. But all the physiological functions and its po-
tential pharmaceutical use are difficult to imagine, they start from
Crohn’s disease [Benson and Shepherd, 2011] ending to retina pro-
tection [Gutierrez et al., 2016]. Moreover many drugs approved by
the Food and Drug Administration (FDA) are AhR ligands and could
be used as SAhRMs for different purposes, e. g. carbidopa, a drug for
treating Parkinson’s disease, inhibits pancreatic cancer cell and tumor
growth [Safe, 2017]. As a consequence we should start consider the tox-

7
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Figure 1.4 Some ligands that activate AhR and PXR. While some are
pollutants: PCDDs, PCBs, BaP; some others come from the diet of
from metabolism: indole, kynurenine, FICZ, BNF, pregnane; and
others are used as drugs: rifampicin, hyperforin, SR12813, RU486

and tamoxifen.

icological and pharmacological consequences of these FDA approved
drugs.

The name of PXR derives from its activation by the 21-carbon stero-
ids (also known as pregnanes) (Figure 1.4). Subsequently to the first
PXR discovery, researchers cloned the human PXR and called it steroid
and xenobiotic receptor (SXR) because they found could also bind
various xenobiotics [Blumberg et al., 1998].

Agonists of PXR have been extensively studied because the activation
of PXR leads to the metabolization of many important drugs. Only to
mention a few: the antibiotics rifampicin (Figure 1.4), clotrimazole,
and the antiretroviral ritonavir; the antineoplastic drugs cyclophos-
phamide, cyproterone acetate, taxol and tamoxifen (Figure 1.4); the
anti-inflammatory agent dexamethasone; the anti-type 2 diabetes drug
troglitazone; the antihypertensive drugs nifedipine and spironolac-
tone; and the sedatives glutethimide and phenobarbital; choleste-
rol-lowering drug SR12813 (Figure 1.4); and also RU486 (Figure 1.4)
[Hernandez et al., 2009]. Moreover also molecules contained in com-
monly used herbal medicines activates PXR, e. g. hyperforin (Figure 1.4)

8



1.2 molecular modeling of ligand binding to receptors

from St. John’s wort [Banerjee and Chen, 2013]. In fact, in the clinic,
people are cautioned about using PXR agonists because they may cause
adverse drug-drug or diet-drug interactions during drug therapy; de-
creasing the bioavailability of the agonist, or accelerating the formation
of reactive metabolites and causing undesired interactions or even tox-
icity [Banerjee et al., 2015]. In cancer growth and carcinogenesis, it has
been suggested that PXR induces cell growth and is pro-carcinogenic,
thereby acting as a possible oncogene [Biswas et al., 2009]. Different
mechanisms were proposed and all support the PXR role as a pro-
tector against tissue damage, a role that may be pathophysiologic in
neoplastic cells. In addition PXR has been shown to induce cancer
drug resistance [Chai et al., 2016]. However the therapeutic approach
of targeting PXR is disease specific. For inflammatory diseases, PXR

activation has suppressive effects on NF-κB, implying the therapeutic
potential of PXR agonists in treating inflammatory bowel disease. PXR

antagonists are of potential therapeutic utility owing to the role of
PXR in promoting tumor cell growth, chemoresistance and malignancy
[Banerjee et al., 2015].

1.2 molecular modeling of ligand binding to xenobiotic

receptors

Toxicology in the broadest sense is the study of the adverse effects
of drugs or chemicals on living systems. The questions posed by
this discipline include what compounds are toxic, how and why
toxicity is manifested, and how might toxicity be predicted, treated,
or prevented [Ekins et al., 2007]. Some of the toxicity effects are
receptor-mediated, i. e. the toxic chemical binds to a receptor that
initiates a cellular response. Ligand-induced modifications of the
physicochemical properties or conformational changes of the receptor
can trigger transcription processes or signal-transduction cascades
[Perdew et al., 2010].

Computational toxicology aims to use rules, models and algorithms
based on prior data for specific endpoints, to enable the prediction of
whether a molecule is or is not toxic. Computational molecular mod-
eling methods are at the core of mechanistic toxicology, allowing to
understand the mechanisms through which a given chemical induces
an Adverse Outcome Pathway (AOP) [Goldsmith et al., 2012, Ankley
et al., 2010].

In the specific receptor-mediated toxicity the interest is focused on
the pair-wise interactions between the small molecule and the target
macromolecule. To evaluate these interactions certain methods are
too computationally expensive/intensive and scale poorly with sys-
tem size, i. e. Quantum Mechanics, for which the smallest units are
electrons. If we consider the atoms as the smallest unit of relevance
and represent them as spheres connected by springs (representing the
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Figure 1.5 The exponential growth of the PDB. From its establishment in
1971, when contained 7 protein structures, until the update of Au-
gust 29

th
2018, when it contained 143,840 biological macromolecular

structures.

bonds), it is sufficient a classical physics formalism, precisely a Molec-
ular Mechanics (MM) framework to describe these systems [Goldsmith
et al., 2012]. In MM methods the classical physics formalism is used
to predict the energy of a molecule as a function of its conformation
[Leach, 2001]. In this framework the potential energy can be expressed
as the sum of bonded and non-bonded terms; the first is represented
by three terms: bond stretching, bond angle bending and torsional
potentials; the second as the sum of electrostatic and van der Waals
interaction terms.

Receptor-mediated toxicity can be studied using computational
(or in silico) methods based on MM, but they require a wide exper-
imental knowledge of the biological system. This knowledge can
derive from in vitro experiments, but often it is necessary to know the
three-dimensional structure of the receptor to start the study.

The number of proteins with a known three-dimensional structure is
increasing rapidly (Figure 1.5), and structures produced by structural
genomics initiatives are available on public databases, e. g. the Protein
Data Bank (PDB) [Berman et al., 2000]. With the exponential growth
of structures also methodologies which use structural information
had increased. Some structural bioinformatics tools, e. g. Homology
Modeling, exploit the information contained in both sequences and
structures of proteins to obtain a model representing a homologous
protein which structure is not already crystallized, or that cannot be
solved by experimental techniques. Molecular modeling encompasses
all methods used to model the behavior of molecules, from their struc-
tures and physico-chemical properties, to dynamics and interactions.
A relevant point to consider is the computer resources needed for mod-
eling large molecular systems at the atomistic level with MM methods
(a simple rule of thumb for the length of the “typical” protein might
be ∼400 aminoacids, i. e. > 7000 atoms).
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1.2 molecular modeling of ligand binding to receptors

Computational methods have become a crucial component of many
drug discovery programs, from hit identification to lead optimization
and beyond [Kitchen et al., 2004], and are also emerging as valuable
assets for in silico toxicology [Raunio, 2011]. Both the advancement
of in vitro and in silico toxicology and the 3R principles inspired
the last European legislation about chemicals, REACH (Registration,
Evaluation, Authorization and Restriction of Chemicals). The 3R were
proposed in 1959 by William Russell and Rex Burch; the Authors
proposed the principles of Replacement, Reduction and Refinement
as the key strategies to provide a systematic framework to achieve
the goal of “humane” experimental techniques [Russell and Burch,
1959]. Even if the Authors originally referred to in vitro techniques,
in silico toxicology can be easily inserted into this framework and
molecular modeling tools can provide mechanistic information helping
the explanation of the underling systems. It is interesting to recall the
case of Benzo[a]pyrene; this chemical has been classified into group 1

by IARC based on “mechanistic and other relevant data”; this suggests
that, in the near future, we will see more and more results of in silico
methods being included in risk assessment documents as supporting
data [Raunio, 2011].

1.2.1 Theoretical aspects in predicting ligand binding

Ligand binding is a complex biological event that involves both ther-
modynamics and kinetic properties.

Of particular interest is the binding free energy (∆Gbind), which
measures the favorability of a given reaction, in this case the associa-
tion between ligand and receptor. The binding free energy (∆Gbind) is
defined as the difference between the free energy of the complex and
the sum of free energies of the ligand and the receptor:

∆Gbind = Gcomplex − (Gligand + Greceptor)

∆Gbind is a function of the temperature, pressure, ionic strength,
pH, solvent, and concentration of the chemical species. Given that
the most common measurement for ∆Gbind is through the equilibrium
constant for the complex (or association constant Ka):

∆Gbind = −RT ln Ka = RT ln Kd

where R is the gas costant and T is the temperature in Kelvin. By this
equation we linked the ∆Gbind with Ka that is a quantitative evaluation
of ligand affinity. It is also possible to use Kd, the dissociation constant,
which is simply the reciprocal of the equilibrium constant [Krumrine
et al., 2005].
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These thermodynamic parameters are connected to chemical kinet-
ics:

Ka = kon/koff

where kon is the forward rate of reaction between receptor and ligand
and koff is the dissociation rate.

∆Gbind can also be predicted by computational methods to obtain
an estimation of the ligand binding affinity.

We can also express the ∆Gbind in terms of changes in enthalpy (∆H)
and entropy (∆S) upon formation of the complex.

∆Gbind = ∆H − T∆S

Changes in enthalpy are due to the modification of van der Waals
and Coulomb interactions as the atoms of the complex replace atoms
from the solvent on complex formation. In fact both the ligand and
the receptor are fully solvated before the binding event. Changes in
entropy are linked to differences in translational and rotational de-
grees of freedom for the ligand, the receptor or the solvent molecules,
moreover is due to the loss of conformational and vibrational entropy
on binding for the receptor and ligand. The release of ordered water
molecules around both the ligand and the receptor’s active site and the
resulting increase in entropy of these water molecules favors binding
and is what underlies the hydrophobic effect. The binding event is a
delicate balance between exchange of hydrogen bonds, establishment
of van der Waals and Coulomb interactions, entropy losses of the
receptor and the ligand, and gain in entropy of the solvent [Krumrine
et al., 2005].

To determine the value of the ∆Gbind we can use molecular mechanic
force field to calculate the enthalpic term and the entropic term using
Boltzmann’s law:

S = −kB ∑
j

Pj ln Pj

where kB is the Boltzmann constant and Pj is the probabily of a
molecule to be in a particular microstate rather than another and is
defined as:

Pj =
eEj/kBT

∑j e−Ej/kBT

Macromolecules have a high number of degrees of freedom, for this
reason the entropic term is usually neglected and considered as con-
stant. In these particular case we can write:

∆Gbind ≈ ∆H

To estimate the enthalpic term we can use Molecular Mechanics.
The function useful to describe the energy is the sum of a term of
intramolecular interactions between atoms (all the bonds, the angles,
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1.2 molecular modeling of ligand binding to receptors

the dihedrals componing the molecule), and a term of non-bonded
interactions (van der Waals and Coulomb). Bonds and angles func-
tions derive from the force law for harmonic motion (stretching and
bending), while the dihedrals are described by a function which un-
derlines the periodicity of the force. The van der Waals interactions are
modeled by the Leonard-Jones function and the Coulomb interactions
are described by the Coulomb’s law.

EMM = ∑
bonds

Kr(r − req)
2+

+ ∑
angles

Kθ(θ − θeq)
2+

+ ∑
dihedrals

Vn

2
[1 + cos(nφ − γ)]+

+ ∑
i<j

[ Aij

R12
ij

−
Bij

R6
ij
+

qiqj

εRij

]
where Kr is the harmonic force constant, req is equilibrium bond length;
Kθ is the angle bending force constant and θeq is the reference bond
angle; Vn are the torsional rotation force constants, n is the periodicity,
φ is the current torsional angle and γ is the phase angle; A and B are
suitable constants, Rij is the distance between the i atom and the j
atom, ε is the permitivitty of free space and q is the charge quantity.

During the binding process, polar and nonpolar groups of the re-
ceptor and the ligand form van der Waals interactions on complex
formation, and charged groups strongly interact by Coulomb interac-
tions. The ligand binding event in buried cavities usually is driven by
van der Waals interactions and the ligand is anchored to the receptor
by hydrogen bonds among polar groups, because it is rare to find
charged species into buried cavities.

In addition to the direct interaction between ligand and receptor,
it is also relevant the role of the solvent. In case of biomolecules the
solvent is almost always water and covers two possible effects: a short-
range and a long-range one. The first derives from local solute-solvent
interactions. The nonpolar solvation free energies, accounting for
transferring a nonpolar solute from the gas phase to the solvent, are
usually assumed to be proportional to the solvent accessible surface
area (so that is more relevant for receptors which have a greater sur-
face than ligands). The second effect is due to long-range Coulomb
interactions and causes an attenuation of interactions between solvated
charges. This “screening”, usually described as a macroscopic dielec-
tric constant, reduces electrostatic interactions in water by 80-fold from
their vacuum values [Krumrine et al., 2005]. For this reason, if it is
not possible to explicitly include water molecules during calculation,
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solvent can be implicitly taken into account by a dielectric constant
equal to 80.

1.2.2 Molecular Docking

One key methodology to deal with binding of small molecules to
protein binding sites is molecular docking, that was pioneered during
the early ‘80s and remains a highly active area of research [Kitchen
et al., 2004]. The docking process involves the prediction of ligand
conformation and orientation (posing) within a targeted binding site.
Molecular docking can be thought as a combination of spatial sam-
pling methods with scoring functions, that search over many possible
interactions between a ligand and a receptor in order to identify a set
of ligand poses that represent local minimum-energy positions of the
ligand. If the sampling of ligand poses is adequate, and the energy
scoring function is sufficiently accurate, then the global minimum-
energy position of the ligand in the receptor can be selected from
the set of local energy minima [Moustakas, 2007]. Using molecular
docking we can estimate the active conformation of toxic compounds
and conduce an in-depth study and characterization of its interactions
with the receptor.

The standard docking protocol can be divided into four main com-
ponents, shown in Figure 1.6:

the target structure Many macromolecular structures have been
determined both using X-ray crystallography and nuclear mag-
netic resonance (NMR) and are available in the PDB. When no
experimental structure is known, or easily obtainable, homol-
ogy modeling can provide a valid alternative. Usually it is not
sufficient to have the target structures, they have to be carefully
prepared to ensure structural integrity, assign the correct residue
protonation and tautomeric states (especially concerning His),
and inspect Asn and Gln flips.

the compound library The ligands subject of the study may de-
rive from public available libraries (ZINC, DrugBank, ChEMBL),
or may be built in house with a subset of interesting ligands
for the investigated system. Also the ligands have to be pre-
pared, taking into account the most representative tautomers,
protomers and stereoisomers at the pH of interest.

the docking strategy It has to be defined the method which will
lead to the prediction of the binding geometry (pose) of the
ligand inside the prepared target. It is necessary to define the
level of flexibility inserted during calculation: both protein and
ligands as rigid (as in the original lock and key model); rigid pro-
tein with flexible ligands; or both systems flexible. It is possible
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to model the small molecules as fully flexible and only a few rel-
evant atoms (or even sidechains) of the protein as able to move.
Moreover also water molecules can be very important for the
binding event; in case there is no experimental information about
water molecules, some algorithms can implicitly include them
during calculation with an increased computational demand.
Docking sampling and scoring functions are selected depending
on the aim of the study, the computational resources available
and the dimension of both the target and the compound library.
Both sampling and scoring had been optimized in the years in
order to properly estimate the binding free energy (∆Gbind), or to
maximize the separation between potential ligands and inactive
compounds.

compound ranking or rescoring If the library is massive, mo-
lecules are ranked by docking score and chemically clustered,
examined for key interaction patterns, and visually inspected. In
case we are interested in the estimation of ∆Gbind, it is possible to
rescore the top selected poses using a more sophisticated method
to approximate the ∆Gbind, e. g. MM-PBSA or MM-GBSA (Molecular
Mechanics energies combined with the Poisson-Boltzmann or
Generalized Born and Surface Area continuum solvation models
to treat solvation/desolvation processes) [Greenidge et al., 2014].

Molecular docking offers a number of benefits compared to tradi-
tional high-throughput wet screening approaches, such as low set-up
cost, computational speed, and flexibility in changing the simulation
conditions. Virtual procedures are also not affected by ligand purity,
protein stability, or by the different samples and assays conditions
[Spyrakis and Cavasotto, 2015].

However there are a number of limitations and open issues con-
cerning docking. Regardind the phase of sampling, we know that we
always have to find the best compromise between speed and explo-
ration of the search space. The inclusion of flexibility and of all solvent
molecules that solvate the system, leads to the combinatorial explosion
of calculation. For this reason, flexibility of the receptor and solvation
effects are usually neglected explicitly. Moreover during scoring we
ignore the entropic term, and consider solvent as a dielectric constant.

Furthermore, it has been demonstrated that the input conformation
of the ligand affects the final pose [Feher and Williams, 2009], while
the final pose should ideally be unrelated to the initial conformation,
especially for what concerns the reproducibility of the results. It is
also known that larger ligands perform worse than smaller, more rigid
molecules, and it is commonly accepted that docking hydrophobic
molecules and predicting their activities using docking is quite a chal-
lenging task [Plewczynski et al., 2010]. Cross-docking experiments, i.
e. docking a ligand into a protein structure determined in the presence
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of a different ligand, also suggest that the binding site of the protein
is biased toward the native ligand [Lexa and Carlson, 2012]. In fact,
usually docking programs are able to find a “good” pose among the
top group, but because the reproduction of the geometry is not exact
(ligand-protein contacts are poorly reproduced), the scoring function
is unable to predict the true binding affinities and to select the best
pose [Warren et al., 2006]. But the debate about which would be the
limiting step of docking, scoring [Kitchen et al., 2004] or sampling
[Greenidge et al., 2014], is still open. It is certain that sampling and
scoring are deeply linked and it will not be easy to solve this issue.

Molecular simulations, such as molecular docking or molecular
dynamics, are everything but simple, and require a proper balance of
the most appropriate tools, the adequate expertise and, most of all,
an appropriate level of knowledge of the system under investigation
[Spyrakis and Cavasotto, 2015].

Dealing with promiscuity of receptor proteins requires additional at-
tention in the use of docking protocols, also because it is more difficult
to achieve a deep knowledge of these systems. Promiscuous proteins,
i. e. with alternative activities, can become important for the survival
of an organism, if the conditions in the environment change. This
can give a selective advantage to members of the population where
the secondary activity is higher, thus resulting in the incorporation
of such activity under evolutionary selective pressure [Nobeli et al.,
2009]. Perhaps the most important mechanism by which promiscuity
can be achieved is structural flexibility. Promiscuous proteins are
usually highly flexible, can display multiple binding sites with the
possibility of accommodating multiple ligands in a variety of ways. It
comes apparent that to deal with promiscuous proteins is necessary
to include as flexibility as possible in the computational simulation to
better describe the binding event.

1.2.3 Beyond classical molecular docking

In order to consider conformational dynamics during the binding
process, different models have been proposed. The first lock and key
model proposed by Fischer (1890) began to “rust” after a century
[Jorgensen, 1991]. Alternative models able to take into account flex-
ibility were proposed. The induced fit model found its theoretical
statement on the hypothesis that the bound protein conformation is
induced by ligand intervention [Koshland, 1958]. On the contrary the
conformational selection model considers the ligand as the selector of
the most complementary protein conformation among a pre-existing
ensemble of metastable states; the selection shifts the dynamic pop-
ulation equilibrium toward the selected conformation [Boehr et al.,
2009]. While “following 50 years of debate and experimentations,
the vast majority of the data support the conformational selection
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scheme of signal transduction” [Changeux and Edelstein, 2011], it
may be interesting to draw a parallel between this debate and the
Gould-Dawkins one about evolution of organism [Shanahan, 2017]. In
both debates it is reasonable to think that each case is a special case,
and the two proposed mechanisms may coexist in the same process,
with a mechanism being more relevant in one case and less in another.

The simplest way to include flexibility during binding calculation is
soft docking, that is based on the induced-fit model. In soft docking
the van der Waals radii of the protein are scaled to a certain percent, so
that more poses can be sampled preventing steric clashes; this first step
is usually followed by a local energy minimization to better accommo-
date the ligand and propose a more realistic complex [Jiang and Kim,
1991]. The flexibility of the protein was explicitly introduced in dock-
ing calculations at first using a library of sidechain rotamers instead of
a single conformation, and also considering their random movements
during calculation [Lexa and Carlson, 2012]. The generation of new
conformations of the binding site was implemented in the induced-fit
docking protocol as an iteration of sampling ligand orientation and
sampling protein conformations until the final score overcome a cer-
tain threshold [Sherman et al., 2006]. More sophisticated methods can
include not only sidechain- but also backbone-flexibility, coupling a
first raw placement of the ligand with a Monte Carlo refinement, in
this case the ligand library that can be analyzed is very limited in
number. These methods include the RosettaLigand and PELE [Davis
and Baker, 2009, Borrelli et al., 2005] approaches. Finally it is possible
to include flexibility a posteriori, performing a short Molecular Dynam-
ics (MD) simulation of a pose previously determined using docking. A
MD simulation numerically solves Newton’s equations of motion, thus
allowing to follow the evolution in time of structural fluctuations [De
Vivo et al., 2016].

There are also approaches based on the conformational selection
theory; the simplest is ensemble docking, which uses a pre-existing
ensemble of conformations to be submitted to docking [Totrov and
Abagyan, 2008, Amaro et al., 2018]. The ensemble can derive from
experiments (different PDB structures of the same protein), or from con-
formations extracted from a MD trajectory, or from multiple homology
models. Results obtained from ensemble docking show that without
a “correct” protein conformation included in the ensemble, ligands
cannot be docked well. Thus, it seems essential to better represent
protein flexibility in the quest for better docked ligands [Greenidge
et al., 2014, Motta and Bonati, 2017].

To explicitly study the molecular binding mechanism it would be
necessary to simulate the whole process using MD. Such approach
relies on the hypothesis that simulating “long enough” the unbound
system with the ligand, they will diffuse into water until they form
the energy favored protein-ligand complex.
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Even if the complex is thermodinamically favored, its formation is
associated to the overcome of a free-energy barrier that determines the
rate of transition, and thus the timescale of the process. The highest is
the barrier, the lowest is the probability to observe the transition. In
the case of a protein-ligand complex formation, the process can require
from milliseconds to even seconds to happen. Nowadays it is possible
to simulate until microseconds on high-performance computers, but
simulations of milliseconds are still rare. Despite these limitations,
long plain MD simulations actually were employed to study the ligand
binding events [Dror et al., 2012].

During last decades many methods have been designed to speed
up the conformational sampling, thus reducing the computational
demand. The simplest way is to raise the temperature of the simula-
tion; both simulated annealing and replica exchange methods exploit
this idea [Adcock and McCammon, 2006]. It is also possible to speed
sampling by introducing artificial biases into the model upon which
the simulation is based. Many of these methods need to define a
reaction coordinate a priori to correctly simulate the binding event; for
this reason it is important to reach an appropriate level of knowledge
of the system under investigation [Sinko et al., 2013]. The introduced
biases guide the sampling toward high energy states (rarely sampled).
For example, in steered MD a pulling force is used to facilitate the
conformational change along a selected reaction coordinate; in um-
brella sampling different simulations are run in parallel, each biased
to a specific range of the reaction coordinate; in accelerated MD, a bias
potential is added to raise low-energy states, reducing the energy re-
quired for the transition; in metadynamics, an history-dependent bias
is added to the system to fill up the valleys of the energy landscape
[Adcock and McCammon, 2006, Sinko et al., 2013].

All these techniques allow to compute the underlying free energy
landscape of the system analyzed, providing important information
about thermodynamics and kinetics of the process of interest, but also
mechanistic insights about the process under investigation.

1.3 aims and outline of the thesis

Aim of the studies performed in this thesis was to understand the
mechanism of action of some known agonists of both the AhR and
PXR proteins using molecular modeling methods, in the framework
of computational/mechanistic toxicology. The inclusion of flexibility
and plasticity of the protein during ligand binding was tackled in
different ways depending on the system investigated. Specific compu-
tational protocols were developed to overcome the known limitations
of classical docking.

In Chapter 2, I present the results on computational modeling of
ligand binding to the AhR. The studies performed on the receptors
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of different species, from the invertebrate C. elegans, to amphibians,
rodents and human, helped in elucidating the differences in ligand
binding to different species, which may lead to different biological
responses. I demonstrate how molecular modeling approaches con-
tributed to explain the species-specificity of AhR. Given that AhR is not
only species-specific, but also ligand-specific, I present the results of
an in-depth study of binding to AhR of a set of diverse ligands, aimed
to find the molecular determinants that differentiate their binding
modes inside the cavity of AhR. Here I describe a novel computational
protocol I developed to perform docking to homology models taking
into account receptor flexibility.

In Chapter 3, I present computational studies on binding to PXR.
Firstly I compare the results obtained with a classical docking protocol
with those derived using an ensemble docking approach, and I define
the specific limitations of docking in this study case. Secondly I
describe the use of enhanced MD methods to determine the path of
entrance into the binding cavity of the most studied agonist of PXR

and to try to define its preferred binding mode.
Finally, in Chapter 4, I draw some general conclusions about the use

of molecular modeling tools in computational toxicology with specific
comments about the two study cases here analyzed.
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Figure 1.6 General docking protocol. Target structures and ligands
have to be prepared before treating them with the selected docking
strategy (Image inspired by Spyrakis and Cavasotto [2015]).
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2
B I N D I N G O F D I V E R S E L I G A N D S T O D I F F E R E N T
A H R S

2.1 introduction

In order to understand how different ligands in different species act
in different ways, an in-depth study of the mechanism of action of
AhR is necessary. Molecular modeling can be crucial to rationalize ex-
perimental studies, or to model at a molecular level the AhR activation
and transformation events induced by ligands.

Unfortunately, to date, no experimental structure of the AhR-PASB
domain, where the LBD is located, is available. However, during
the last years structural information about the bHLH-PAS proteins has
rapidly increased and recently the full-length structure of the three
N-terminal domains, bHLH, PASA and PASB, has become available
for some members of the family. First the CLOCK:BMAL1 [Huang
et al., 2012], then the HIFα:ARNT [Wu et al., 2015], and finally the
NPAS:ARNT [Wu et al., 2016] dimer structures have been resolved; most
of these structures are bound to DNA. Recently also the AhR:ARNT

dimer has been partly solved, and the first X-ray depositions include
the bHLH and PASA domains of both AhR and ARNT [Schulte et al.,
2017, Seok et al., 2017]. It is also interesting to cite the AhRR:ARNT

dimer structure, that includes the ARNT PASB [Sakurai et al., 2017] and
shows an asymmetric intertwined domain organization.

Because our interest is focused on ligand binding, the lack of any
experimental structures of the AhR PASB domain (either isolated or in a
dimeric form) has hampered in depth studies for many years; however,
information derived from other bHLH-PAS proteins, when available,
has been exploited for modeling the LBD structure and interactions.

The first model of the mouse AhR (mAhR) was built in 2002 on the
basis of a distant PAS protein template structure [Procopio et al., 2002].
The deposition of the evolutionary closer templates HIF2α and ARNT

lead to a new and more reliable model, because both these structures
belong to bHLH-PAS family and have higher sequence identity to the
AhR. This model was validated with mutagenesis studies [Pandini
et al., 2007], and made possible to identify the “TCDD-binding finger-
print”, i. e. the group of residues associated to optimal TCDD binding
[Pandini et al., 2009].

These early approaches elucidated some structural feature of the
AhR-LBD, which shares the typical PAS fold shown in Figure 2.1, and
identified the internal cavity as the binding site for TCDD.
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Figure 2.1 The modeled mAhR-PASB domain. It shows the typical PAS
fold, composed by five strands, three small helices and a long
helical connector. The binding site is located between the β-sheet
and the helices and is a buried cavity, not exposed to solvent. The
secondary-structure nomenclature for PAS domains here reported
was proposed in Möglich et al. [2009].

Molecular docking to the homology models of mAhR was used in
a virtual screening campaign to identify ligands in a database of 498

natural compounds [Bisson et al., 2009]. The top-scored molecules
resulted flavonoids, a group of molecule already known as AhR lig-
ands. The same computational protocol was used also to rationalize
binding to AhR of: agonists, e. g. the anti-inflammatory drug lefluno-
mide [O’Donnell et al., 2010, Goodale et al., 2012] or ligands showing
anticancer properties [O’Donnell et al., 2014]; antagonists, like gnf351

[Smith et al., 2011]; and SAhRMs [Murray and Perdew, 2011].
Afterwards, to more effectively capture the features of the binding

site that are important for ligand recognition, our group set up new
computational protocols, which made use of proteins co-crystallized
with ligands as templates for homology modeling. This choice allowed
to take into account the conformational rearrangements induced by a
ligand (“induced-fit” effects, see section 1.2.3). The use of HIF2α bound
to ligands [Scheuermann et al., 2009, Key et al., 2009] as templates
to model the mAhR LBD structure improved the description of the
binding cavity [Motto et al., 2011]. Moreover, the employment of the
ensemble docking technique (section 1.2.3), based on docking to four
different AhR modeled conformations, allowed us to take into account
a certain degree of protein flexibility [Motto et al., 2011].

Flexibility was explicitly introduced performing MD simulations
on the docking poses in a study aimed at identifying differences
between AhR agonists and antagonists [Perkins et al., 2014] and, in
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another application, to refine the poses obtained from docking of some
agonists [Nuti et al., 2014]. Molecular modeling approaches were also
used to shed light on the role of AhR in the induction of endotoxin
tolerance [Bessede et al., 2014] and in the signaling between microbiota
and host [Moura-Alves et al., 2014].

Promiscuous proteins are known to be flexible; for this reason, one
of the main goals in treating systems like AhR is to include the protein
flexibility into the computational protocol in order to better describe
the process of protein-ligand binding.

The modeling support is essential also to rationalize the diversity
in ligand binding among AhRs in the metazoan taxa. The reconstruc-
tion of the evolutionary relationships among the living organisms can
give insights into the function and the role of AhR. AhR has existed
for more than 600 million years, it is present both in vertebrate and
invertebrate animals, but it is absent in plants. In living invertebrates,
AhR plays a role in the development of sensory structures, including
sensory neural systems; it could be supposed that these are the most
ancient roles of metazoan AhR. The adaptive functions seem to be
a vertebrate innovation, perhaps driven by a need to detoxify halo-
genated marine natural products, while invertebrates do not bind the
typical environmental pollutants (PCDDs, PCDFs, PCBs, PAHs) [Hahn
et al., 2017]. In fact AhR can also serve as a target for natural selection
in presence of pollutants, e. g. atlantic killifish population in contam-
inated sites possesses AhR variants adapted to respond to complex
toxicant mixtures [Reid et al., 2016]. Given that AhR can rapidly evolve
under selective pressure, it can be suggested that the presence of AhR

duplicates may relax evolutionary constraints on AhR function [Hahn,
2011]. For example four alleles have been described for the mouse
AhR (mAhR). One of them, the AhRd, has a lower binding affinity for
the TCDD; this difference is attributed to a single amino acid variation
inside the ligand binding cavity [Poland et al., 1994].

Recently, using phylogenetic analyses and information from shared
synteny, different genes of AhR in almost all metazoan (animal) taxa
were identified and classified. AhR is referred to vertebrate orthologs
of the AhR originally identified in mammals; AhR1 and AhR2 are par-
alogs derived from a tandem gene duplication; AhR3 is a novel AhR

found originally in elasmobranchs (a subclass of cartilaginous fishes
encompassing true sharks, skates, and rays); AhRR is distinct from
AhR, AhR1, AhR2, and AhR3 and acts as a repressor [Hahn et al., 2017],
its emergence was ascribed to one of the whole genome duplication
occurring early in vertebrate evolution (∼510-600 MYA) [Hahn and
Karchner, 2006].

The study of AhR in different species can help in reconstructing the
evolutive history of this pleiotropic protein, thus giving insights on
the physiological roles and ligands of AhR.
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Computational modeling was used to rationalize species-specific
differences in ligand binding affinity. For fishes, it was mainly studied
an environmental model: Danio rerio (zebrafish). Comparison between
the homology models of different isoforms of zebrafish AhRs (zfAhR1a
and zfAhR2) allowed the identification of a reduced volume of the
binding pocket in zfAhR1a, which does not bind TCDD, due to variation
of key amino acids lining the cavity. Once the residues were changed
as in zfAhR2 and mAhR, this mutant zfAhR1a bound TCDD [Fraccalvieri
et al., 2013]. Moreover a single point mutation, corresponding to
the single difference of the mouse AhRd allele, in sturgeon confers
resistance to PCDDs, PCDFs and PCBs [Doering et al., 2015]. Amphibian
AhRs have been investigated with the support of homology modeling,
in both Xenopus laevis, [Odio et al., 2013] and Ambystoma mexicanum
[Shoots et al., 2015]. For both these cases, three internal residues are
responsible for the relative insensitivity of amphibian AhRs to TCDD.
Also AhR in birds has been investigated with the help of molecular
docking to homology models: three avian species were compared and
ranked for PCDD, PCDF and PCB binding affinity, finding that chicken
AhR is more sensitive compared to albatross and cormorant [Hirano
et al., 2015, Kim et al., 2016]. To predict sensitivity of wild birds to
PCDDs, PCDFs and PCBs, the structures of the AhR LBDs of pheasant and
quail were modeled and investigated using mutagenesis [Farmahin
et al., 2013].

2.2 methods

2.2.1 Homology Modeling (Par. 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5)

Due to the lack of structural information about the AhR-PASB it was
necessary to exploit structures of homologous proteins belonging
to the same superfamily bHLH-PAS to obtain a model of its three-
dimensional structure.

As templates for modeling the AhR LBDs in different species (Par. 2.3.2,
2.3.3, 2.3.4), we used three different depositions of HIF2α (3f1o:A,
3h7w:A, 3h82:A) in complex with ligands, as proposed in [Motto
et al., 2011]. Given that C. elegans (ceAhR) is a distant homologous,
we proposed different templates to describe as good as possible its
LBD (Par. 2.3.1). The template structures were searched in the PDB
using PSI-BLAST until convergence and only proteins belonging to
bHLH-PAS class I proteins were selected. The final templates were:
NPAS3 (5sy7 chain B), CLOCK (4f3l:B), HIF2α (3h82:A, 4zp4:B, 3f1n:A)
and HIF1α (4h6j:A).

The model of mAhR to study binding to diverse ligands (Par. 2.3.5),
is obtained by a new protocol with homology modeling exploiting
also new deposition of HIF2α (PDB id: 3f1n:A, 3f1o:A, 3f1p:A [Scheuer-
mann et al., 2009]; 3h7w:A, 3h82:A [Key et al., 2009]; 4ghi:A [Scheuer-
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mann et al., 2013]; 4gs9:A [Rogers et al., 2013]; 4xt2:C [Scheuermann
et al., 2015]; 4zp4:B, 4zqd:B [Wu et al., 2015]).

The structures of the selected chains of the templates were down-
loaded from the PDB [Berman et al., 2000] and prepared using the
Protein Preparation Wizard [Schrödinger LLC, 2016b] included in
the Schrödinger suite. This tool adds the hydrogen atoms, optimizes
the hydrogen bond network, minimizes the energy with the OPLS3

force field [Madhavi Sastry et al., 2013], removes atomic clashes and
checks the most probable tautomer of histidines at a certain pH using
Epik [Shelley et al., 2007]. All the atoms inside the cavities were kept
(ligands for holo structures and water molecules able to form at least
one hydrogen bond with the protein for apo structures).

Then, it was necessary to build an alignment between the template
and the target protein.

We obtained the sequences of the target AhRs from our experimental
partners or from UniProt in case of mouse AhRb-1 (mAhR, id: P30561)
and human AhR (hAhR, id: P35869). To align all the sequences we used
MUSCLE; the algorithm includes fast distance estimation using k-mer
counting, progressive alignment using a profile function called the
log-expectation score, and refinement using tree-dependent restricted
partitioning [Edgar, 2004]. In case of need the alignment obtained by
MUSCLE was manually curated.

The aligned sequences obtained by MUSCLE were given as input
to MODELLER [Sali and Blundell, 1993], obtaining as output 100

models of the AhR (Par. 2.3.1, 2.3.2, 2.3.3, 2.3.4), and 500 for the mAhR

(Par. 2.3.5). MODELLER is a comparative protein modeling method
designed to find the most probable structure using spatial restraints
derived from the alignment and expressed as probability density
functions. Ligands and water molecules included in the template
structures were maintained during the modeling procedure using
the BLK function implemented in MODELLER. In Par. 2.3.5 we also
used the loop-model routine to refine loops; this routine combines
optimization steps and molecular dynamics with simulated annealing
[Fiser et al., 2000].

The best models were identified using the DOPE score. Then we
validated the models using both PROCHECK [Laskowski et al., 1993]
and ProSA-web [Wiederstein and Sippl, 2007]. PROCHECK inspects
the stereochemistry of a protein structure, thus giving an assessment
of its overall quality; in ProSA, the energy plots and the quality scores
of the modeled protein are displayed in the context of all known
protein structures, highlighting potential problems. Models were then
prepared using the Preparation Wizard tool.

To find internal cavities and calculate their volumes we used CASTp

[Dundas et al., 2006], a web server which characterizes geometric
and topological properties of protein structures using an analytical
approach [Tian et al., 2018]. To determine the secondary structures of
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a protein we used DSSPcont [Carter et al., 2003]. DSSPcont introduces
a continuous assignment of secondary structure by predicting the
hydrogen bond network; changing the hydrogen bond threshold you
get different states. A DSSPcont assignment for a particular residue is
a percentage likelihood of eight secondary structure states, derived
from a weighted average of the ten DSSP assignments.

The obtained models of mAhR in Par. 2.3.5 were subjected to energy
minimization with MacroModel [Schrödinger LLC, 2015b] (after re-
moval of ligand and water molecules). In this last step, the sidechains
of residues lining the cavity, identified by CASTp, were free to move,
while their backbone and the rest of the protein were constrained by
a force constant of 200 kJ mol−1 Å−2. We set up a protocol that did
not cause the collapse of the internal cavity and that tried to remove
the initial bias due to the presence of the template ligand (or water
molecules). The convergence is observed always after a maximum of
50 iterations.

2.2.2 Molecular Docking (Par. 2.3.3, 2.3.4 and 2.3.5)

The structures of the ligands were downloaded from PubChem and
then prepared with the LigPrep utility [Schrödinger LLC, 2015a]. Their
protonation states were determined with the Epik tool for pKa predic-
tion included in Maestro [Greenwood et al., 2010, Shelley et al., 2007,
Schrödinger LLC, 2016a], that is based on PROPKA as heuristic pKa
calculator. Ligand structures were then optimized using MacroModel
[Schrödinger LLC, 2015b] with the OPLS3 force field in implicit water.

In the case of three ligands with particularly complex conforma-
tional and electronic characteristics (Par. 2.3.4) we used Jaguar [Bochevarov
et al., 2013] to perform conformational analysis using ab initio Quan-
tum Mechanical (QM) calculations at the RHF/6-31G* level. The tor-
sional angle was increased of 15° each step and solvation was implicitly
included with the Poisson-Boltzmann (PB) model.

Performing docking to protein homology models may lead to accu-
rate prediction of the binding poses depending on the reliability of the
model. Homology models based on holo template structures are more
able to take into account the induced-fit effects in the description of the
binding region [McGovern and Shoichet, 2003]; they are particularly
performing if the sequence identity calculated on the internal residues
is high [Bordogna et al., 2010].

Docking calculations were performed using Glide XP with OPLS3

force field. Glide uses a series of hierarchical filters to search for
possible locations of the ligand in the binding-site region including
ligand flexibility. The properties of the protein are represented using
grids built with different probes; the description of the site by these
grids is progressively more accurate moving forward the hierarchy
[Friesner et al., 2004]. Glide performs exhaustive sampling through
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initial greedy positioning of the ligand and subsequent optimization;
Glide XP adds an anchor-and-grow sampling of the ligand and finally
include the explicit water description [Friesner et al., 2006]. Glide uses
empirical scoring functions designed to maximize separation between
high affinity ligands and low affinity ones. The scoring functions
include empirically-based functions that account for different interac-
tions (e. g. lipophilic- lipophilic, hydrogen-bond, metal-ligand terms)
and also incorporate force field-based functions describing Coulomb
and van der Waals contributions to the interaction energies [Halgren
et al., 2004].

The grid was centered on the center of mass of three conserved
internal amino acids: glutamine, histidine and threonine.

For mAhR, hAhR and rAhR (Par. 2.3.3 and 2.3.4) we clustered the out-
put models from MODELLER on the basis of the backbone structural
similarity using the Self Organizing Map (SOM) approach described
in Fraccalvieri et al. [2011] and found four clusters; the model with the
best DOPE for each cluster was selected as representative of a specific
conformation of the domain. The four representatives were then used
in the ensemble docking protocol as proposed in Motto et al. [2011].

2.2.3 Post-docking rescoring (Par. 2.3.3 and 2.3.4)

To rescore the docking poses we calculated the ∆Gbind using the
MM-GBSA approach implemented in Prime-MMGBSA [Jacobson et al.,
2002]. In this method, the ∆Gbind is obtained as the sum of energy
associated with complex formation in the gas-phase, calculated with a
MM force field, and the difference in solvation free energies between
the complex and the unbound monomers.

The solvation terms are calculated as a sum of an electrostatic con-
tribution (Generalized Born, GB) and a non-electrostatic contribution
(Surface Area, SA) [Homeyer and Gohlke, 2012]. We used the Single
Frame Protocol in Prime, i. e. both ligand and protein conformations
were obtained from the optimized structure of the complex instead of
performing distinct optimizations of the three different states (ligand,
protein, and complex). Therefore the strains of both the ligand and
the protein were neglected. We observed that the results obtained
with this approximation are more consistent in an ensemble docking
protocol, because considering the protein strain can lead to overesti-
mate the contribution of the different protein conformations within
the ensemble.

2.2.4 Molecular Dynamics Simulations (Par. 2.3.5)

Each selected docking pose was prepared for simulation using the
tleap module of the AMBER14 package [Case et al., 2005, Salomon-
Ferrer et al., 2013] and the ff14SB [Maier et al., 2015] force field with
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TIP3P [Jorgensen et al., 1983] water placed up to 12 Å from the so-
lute and neutralizing the system with 7 Cl− ions. Parametrization of
the ligands was performed using the Antechamber module of AM-
BER14, [Wang et al., 2006] using the Generalized Amber Force Field
[Wang et al., 2004] (GAFF) to assign the atom-types and the AM1-BCC
method [Jakalian et al., 2000, 2002] to assign charges. A prior multi-
stage equilibration approach was used to remove unfavorable contacts
and provide a reliable starting point for the simulations. The systems
were subjected to 1000 steps of steepest descent energy minimization,
followed by 1000 steps of conjugate gradient with restraint applied
to backbone and ligand atoms (100 kcal mol−1 Å−1). Subsequently, a
750 ps MD simulation was used to gradually heat the system from
0 K to 100 K in the NVT ensemble with backbone restraint lowered
to 10 kcal mol−1 Å−1 and from 100 K to 300 K in NPT ensemble with
backbone restraint lowered to 2 kcal mol−1 Å−1. Finally, the systems
were equilibrated with a 1.0 ns NPT simulation mantaining the back-
bone restraint of 2 kcal mol−1 Å−1. All the restraints were removed for
the production runs. In all the stages, the temperature was controlled
by the Langevin temperature equilibration scheme [Loncharich et al.,
1992] with a collision frequency of 2.0 ps−1 and pressure targeted to
1 bar using a Berendsen barostat [Berendsen et al., 1984]. A time step
of 2.0 fs was used, together with the SHAKE algorithm [Ryckaert et al.,
1977] to constrain the bonds connecting the hydrogen atoms. The
Particle Mesh Ewald method [Darden et al., 1993] was used to treat
the long-range electrostatic interactions with the cutoff distances set
to 9 Å. Production runs were carried out for 10 ns in the case of some
ligands, and 20 ns in the case of other ligands, to allow a complete
equilibration of the different poses.

MD trajectories were visually inspected using VMD [Humphrey
et al., 1996]. Images were generated with Pymol [Schrödinger LLC,
2010].

2.2.5 Binding Free Energy Calculations (Par. 2.3.5)

The binding free energy (∆Gbind) for complex formation was evaluated
in implicit solvent by means of the Molecular Mechanics Generalized
Born Surface Area (MM-GBSA) method [Kollman et al., 2000, Srinivasan
et al., 1998] implemented in the AMBER software package. The ∆Gbind
is determined omitting the entropic term and include an implicit sol-
vent model. The polar solvation term was approximated with the
Generalized Born (GB) model [Hawkins et al., 1996] using OBC re-
scaling of the effective Born radii [Onufriev et al., 2004]. The non-polar
solvation term was calculated as the product of the surface tension
parameter and the solvent accessible surface area (SA) evaluated us-
ing the Linear Combination of Pairwise Overlap (LCPO) algorithm
[Weiser et al., 1999]. The single-trajectory approach was selected, i e.
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the conformational ensemble was extracted from the single trajectory
of the complex, instead of the three-trajectory approach (that uses
the separate trajectories of the complex, receptor and ligand). The
per-residue energy decomposition analysis was used to extract the
contributions of single residues to the ∆Gbind, and those of residues
within the binding site allowed identification of the hotspot residues
for the different ligands. For this purpose, an ensemble of 500 confor-
mations regularly sampled in the last 8 ns of the different simulations
was used in calculations.

2.3 results

2.3.1 Modeling of the Caenorhabditis elegans AhR LBD

Although invertebrate proto-AhRs do not appear to bind typical verte-
brate ligands and there is some evidence in supporting a constitutive
and ligand-independent activity, it is also possible that some endoge-
nous molecules can effectively bind to the proto-AhR of C. elegans
(ceAhR) [Hahn et al., 2017]. Because invertebrate AhRs do not bind
PCDDs, PCDFs, PCBs or PAHs, they do not properly function as “aryl
hydrocarbon receptors”; anyway all the evidence currently available
is consistent with the idea that invertebrate and vertebrate AhRs are
orthologs, descending from the same gene in the most recent common
bilaterian ancestor.

It was recently found that AhR promotes aging phenotypes in an
evolutionarily conserved manner [Eckers et al., 2016]. Here it was
shown that ceAhR loss or its mutation extends healthy life span in
C. elegans. Moreover the treatment of C. elegans with curcumin also
extend its lifespan and it seems that could act similarly to what the
ahr-mutant does; in fact curcumin can not extend lifespan in the C.
elegans AhR mutant (Dr. Ventura, personal communication).

For these reasons it is interesting to study the ceAhR-LBD and to
determine while its activation could be mediated by direct ligand
binding. We identify PASB, where the LBD is located, from two isoforms
1a and 1b (http://www.worbase.com). The two putative AhRs are
identical in the PASB, but differ in total lenght; the ceAhR1b isoform
is truncated in N-terminus, but it maintains the PASB. This form
presumably could not bind DNA because it lacks a portion of the
bHLH domain. The PASB sequence was then compared to previously
studied vertebrate AhRs [Fraccalvieri et al., 2013, Shoots et al., 2015,
Odio et al., 2013]; it becomes clear how invertebrate and vertebrate
differ (Figure 2.2).

In the alignment were included some representatives of the main
vertebrate families that have been earlier studied, and two inverte-
brates: C. elegans and D. melanogaster (Figure 2.2). The main peculiarity
of invertebrates is a gap in the alignment in correspondence of the
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Figure 2.2 AhRs from different species are aligned and divided into mam-
mals, birds, fish, amphibians and invertebrates. The red asterisks
sign the candidate residues which may determine the non binding
of the invertebrate AhRs.
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Figure 2.3 Target and templates alignment used for homology model-
ing. Aminoacids are colored depending on their physico-chemical
properties. The first line represents the typical PAS fold with its
nomenclature: dark gray are strands and light gray helices.

most disordered region of the PAS fold: the helical bundle embracing
Dα, Eα and the short loops connecting these elements. It is interesting
to note also that between ceAhR and D. melanogaster AhR (dmAhR) the
sequence identity is not much higher than the one calculated between
the ceAhR and mAhR. While ceAhR and dmAhR share 41% of identical
residues (and 63% of similarity using the BLOSUM80 matrix), ceAhR

and mAhR share 36% of identity (and 56% similarity). Among the
vertebrates, the AhR-LBD is more conserved; between the mouse (Mus
musculus) and the frog (Xenopus laevis) AhRs we observe an identity of
80% (and a similarity of 91%). This is compatible with the hypothe-
sis that vertebrate AhRs evolved as a xenobiotic sensor, while in the
invertebrate AhR assumes a large variety of functions.

A specific multi-template approach was used for modeling ceAhR,
because it is very different from the previously modeled AhRs, for
which we used only HIF2α (with about 30% of sequence identity) as
template. The templates, chosen on the basis of their sequence identity
with the ceAhR (about 20%), belong to the bHLH/PAS class I family:
NPAS3, CLOCK, HIF2α and HIF1α. The alignment between the target
ceAhR and the templates is shown in Figure 2.3. While vertebrate AhR

are characterized by an insertion in the Dα/Eα loop, when aligned to
the template HIF2α, ceAhR has a deletion in the same site.

The output model of ceAhR presents the typical PAS fold (Figure 2.4),
with a shorter Dα compared to other AhRs because of the deletion
already mentioned. The internal cavity is truncated in half by the
hydrogen bond between H365 and H274, moreover the presence of
the side-chains of Y332, L363 and L302 further reduces the internal
volume of the cavity. We hypothesized that these residues are the
most relevant to explain the difference of ceAhR compared to other
AhRs. It is interesting also to point out that L363 corresponds to A375

in mAhRb−1 and V375 in mAhRd; this particular residue has a great
impact on the ligand binding ability of AhR, in fact mAhRd is known
to not bind “classical” ligands like PCDDs, PCDFs, PCBs and PAHs. Two
other differences noticeable differences in the ceAhR sequence are
L302 and G278: L302 corresponds to a glycine, and the G278 to a
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Figure 2.4 Three dimensional model of ceAhR LBD. The typical PAS
fold is maintained, but the internal cavity is truncated in half by a
hydrogen bond. The internal cavity is shown as blue surface and in
stick are displayed the residues that most likely contribute to the
uniqueness of this receptor.

phenylalanine in all other AhRs (Figure 2.2). These six residues are
highlighted by a red asterisk in Figure 2.2, and are the main candidate
to explain the different behavior of this receptor.

To date only one other AhR PASB domain has been described with
an internal cavity truncated in half by internal sidechains: zebrafish
AhR1a (Danio rerio).The zebrafish AhR1 (zfAhR1) was first identified
in [Andreasen et al., 2002], and subsequently renamed AhR1a due
to the identification of an other AhR1, called AhR1b [Karchner et al.,
2005]. According to recent discoveries it is likely that AhR1a is the
ortholog of mammalian AhRs [Hahn et al., 2017]. As already touched
on pag 24, zfAhR1a was previously modeled [Fraccalvieri et al., 2013],
and three residues were identified as a “barrier” truncating the cavity.
The mutation of these residues to the corresponding ones in zfAhR2

restored the TCDD binding ability. In the case of ceAhR, the differences
are presumably too many, so it is unlikely that this receptor could
bind the classical AhR ligands. Anyway there are small and flexible
ligands known to activate AhR, like leflunomide, which binds also
zfAhR1a. We can therefore speculate that ceAhR could bind small and
flexible ligands and activate transcription of target genes.

collaboration with Dr. Natascia Ventura, Institute of Clinical Chemistry and
Laboratory Diagnostic Medical Faculty, Heinrich Heine University

and the IUF-Leibniz Research Institute for Environmental Medicine,
Düsseldorf, Germany
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2.3.2 Modeling of the Gymnopis multiplicata AhR LBD

Amphibians are largely insensitive to the toxic effects of classical AhR

ligands like PCDDs, PCDFs, PCBs and PAHs. This phenotype is driven
by sequence and structural properties of the AhR-LBD. Fish, which
evolved prior to amphibians, typically possess high-affinity AhRs and
are sensitive to dioxin toxicity. Reptiles and birds, which arose af-
ter amphibians, also have high-affinity AhRs and high sensitivity to
dioxin toxicity. Thus, the loss of dioxin-binding capacity common to
amphibians AhRs seems to be lineage specific.

Amphibians are divided into three orders: Apoda (caecillians),
Caudata (salamanders), and Anura (frogs and toads). The Apoda
order is the first to diverge from the common amphibian lineage,
after amphibian divergence from the rest of vertebrates but before
the split between frogs and salamanders. Therefore, characterizing
caecilian AhR structure, function, and ligand binding is crucial to
determine when the low affinity binding phenotype evolved, and if it
is a fingerprint of all amphibians, or it is proper of salamanders and
frogs.

A representative of the Apoda order is G. multiplicata, a species
of caecilian in the family Dermophiidae found in central America.
Firstly it was necessary to identify the G. multiplicata AhR (gmAhR).
This was made in the prof. Powell laboratoris isolating a 3811 base
pair cDNA sequence from gmAhR, which includes an 843 residue open
reading frame encoding a 92.7 kDa AhR. Using degenerate primers it
was possible to determine a contiguous sequence of the gmAhR (Prof.
Powell, Kenyon College, Gambier, OH (USA), private communication).

Once obtained the gmAhR sequence it was possible to build a homol-
ogy model of the AhR-LBD; we built also the models of A. mexicanum
(amAhR, salamander; order Urodela), X. laevis 1β (xlAhR, frog; order
Anura), G. gallus (ggAhR, the common chicken), and M. musculus
(mAhR) with the same protocol (described in section 2.2) for an appro-
priate comparison (Figure 2.5).

Only three residues with sidechains protruding into the modeled
binding cavity of gmAhR differ from at least one of the sequences show-
ing high affinity for the TCDD (mAhR and ggAhR): N333, A362, A378

(Fig. 11). These residues are identical to the corresponding residues of
xlAhRs and amAhR that were already identified as responsible for low
TCDD affinity [Odio et al., 2013, Shoots et al., 2015].

The EC50 value for TCDD deduced from the transactivation assays
with gmAhR is consistent with low binding affinity (see Par. A.1.1 for
experimental details). gmAhR had an EC50 value of 22.7 nM ± 0.2 nM,
which is similar to the xlAhR1β and amAhR EC50 values of 24.2 nM
± 0.2 nM and 34.1 nM ± 0.1 nM, respectively. As a comparison, the
EC50 of mAhR is 0.13 nM ± 0.2 nM, a value sharply lower meaning
much higher affinity for TCDD. If it is true that usually the range of
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Figure 2.5 gmAhR LBD model in comparison with the models of other
amphibian AhRs and of the high-affinity receptors of mouse (mAhR)
and chicken (ggAhR). a. Aligned sequences of the gmAhR, amAhR,
xlAhR, ggAhR and mAhR ligand binding domains. Only residues that
differ from the G. multiplicata AhR sequence are shown, while dots
indicate conservation. Blue boxes highlight the variable residues
which sidechains protrude into the modeled binding cavity. The
secondary-structures (SS) of each species are reported below the
sequence: dark gray are β-sheets, and light gray helices. b. Com-
parison of cartoon rendering for modeled gmAhR (dark magenta),
amAhR (green), xlAhR (yellow), ggAhR (blue) and mAhR (gray). c.
Cartoon representation of gmAhR showing as shaded surface the
internal ligand-binding cavity. The three residues that differ from
both mAhR and ggAhR are shown as sticks and labeled.
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nM affinity is considered good (for example many pharmaceutical
drugs fall in this range), for AhR we know that frogs are insensitive to
TCDD toxicity [Collier et al., 2008] and show an EC50 of approximately
20 nM ([Odio et al., 2013] and the present study). Moreover a com-
parison among the four different alleles of mAhR demonstrated that
the equilibrium dissociation constants (KD) ranged from 6 to 1O pM
for AhRb, whereas for the AhRd allele the KD was 37 pM, roughly 4-5
times larger, enough to greatly reduce the sensitivity to TCDD [Poland
et al., 1994].

Taken together, these data predict that G. multiplicata is insensitive
to dioxin toxicity. Moreover we can conclude that low-affinity AhR

arose before the divergence of amphibians from the common lineage;
this indicates that dioxin insensitivity is shared among all amphibians.

Collaboration with prof. Wade H. Powell, Kenyon College 202 N. College
Rd.; Gambier, OH 43022 USA

Paper in preparation

2.3.3 Comparison of ligand binding to the human and murine AhR LBDs

A parallel analysis of the human AhR (hAhR) and the mouse AhR (mAhR)
was conduced on two different type of ligands: the endogenous
indirubin and the exogenous naphthoquinones.

Indirubin (IR) belongs to the class of indigoids that have been sug-
gested to be endogenous AhR agonists. Indirubin is the most potent of
this chemical class and is particularly intriguing to study because it
shows different potency on mAhR and on hAhR. IR has been shown to
have a 10-fold greater potency as an inducer of AhR-dependent gene
expression than TCDD in human hepatoma cells, but it is ∼10-fold
less potent than TCDD in mouse hepatoma cells. Additionally, IR was
shown to be a more efficacious activator than TCDD of the hAhR in vitro
and in cell culture [Faber et al., 2018].

Naphthoquinones are secondary metabolites of naphthalene, a ubiq-
uitous air pollutant to which humans and animals are widely exposed
via numerous anthropogenic sources. Naphthalene is a probable
human carcinogen and it activates the CYPs leading to epoxides. Sec-
ondary metabolites are a mixture of different naphthoquinones (NQs),
which result in a varied biochemical, pharmacological and toxico-
logical effects [IARC, 2002]. 1,2-naphthoquinone (1,2-NQ) and 1,4-
naphthoquinone (1,4-NQ) not only produce toxicity via redox cycling
and oxidative stress, but they can modulate cell signaling pathways
and gene expression [Abiko et al., 2016, 2015].

Indirubin binding

We hypothesized that the enhanced potency of IR as an agonist of the
hAhR, compared to the mAhR, results from species-specific differences
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in the interaction of IR with residues within the human and mouse
AhR LBDs.

To examine this hypothesis, our experimental collaborators (Prof.
Denison laboratory) first compared the ability of IR and TCDD to stim-
ulate in vitro transformation and DNA binding of the mAhR and hAhR

by gel retardation analysis. Actually IR can stimulate transformation
and DNA binding of both in vitro synthesized mouse and human AhRs
and is a more potent and efficacious activator than TCDD of the hAhR,
similar to the gene expression results.

To confirm that the increased responsiveness of the hAhR is due
to its LBD and not to other regions of the AhR, they examined the
ability of TCDD and IR to stimulate DNA binding of a chimeric mAhR

in which the mAhR-LBD has been replaced with the corresponding
region of the hAhR-LBD.The relative potency of IR in the chimeric AhR

was not dramatically different from that of TCDD, as observed with
the hAhR, but it resulted still more potent (Figure A.1). These results
suggest that the hAhR-LBD plays a role in ligand-selective activation
by IR. However, since the chimeric AhR do not completely recapitulate
the potency difference in IR activation of the hAhR, it is conceivable
that additional regions of the hAhR play a role and/or that protein-
protein interactions of the hAhR with ARNT or other partners contribute
to enhancing IR-dependent hAhR transformation efficiency and DNA

binding.

Given the highly conserved nature of the AhR across species among
vertebrates and the role of the hAhR LBD in ligand-selective activation
by IR, it is likely that amino acid differences within the hAhR are
responsible for the enhanced activation by IR. Sequence analysis of
the LBDs of the mouse and human AhRs identified 13 nonconserved
residues (refer to Figure 2.2 for the alignment and to Figure 2.6 for the
three dimensional model). Among these, only the mAhR A375 (V381

in the hAhR) has the sidechain directly pointing into the AhR binding
cavity.

Sequence identity and similarity between hAhR and mAhR are high
(87% and 93%, respectively). As can be seen in Figure 2.6, the physico-
chemical nature of the non-conserved residues is almost always con-
served. For this reason to determine which of the different residues
play a role in the enhanced response of the hAhR to IR, we mutated
the residues in the mAhR-LBD to the corresponding hAhR-LBD residues
(Figure A.2). The relative ability of increasing concentrations of IR

and TCDD to stimulate transformation and DNA binding of the mutant
mAhRs was determined by gel retardation analysis.

These experiments identified two mAhR to hAhR mutations (H326Y
and A349T) that enhanced the efficacy of IR-dependent DNA binding of
the mAhR by IR, and one mutation (A375V) that increased the relative
potency, but not efficacy, of IR, such that IR was now equipotent to that
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Figure 2.6 Comparison between mAhR (gray) and hAhR (orange) LBD
models. The 13 residues that differ are shown as sticks and la-
beled. Only A375/V381 lines the binding cavity, while all the other
differences are located outside.

of TCDD (Figure A.2). All the other mutations did not significantly
alter IR activation from that of wild-type mAhR.

Mutation of histidine 326 to tyrosine (H326Y) and alanine 349 to
threonine (A349T) enhanced the ability of IR to stimulate transforma-
tion of the mAhR into its high-affinity DNA binding form (efficacy) and
increased the relative potency of IR for the mAhR to greater than that
of TCDD. The A349T mutation also resulted in the greatest increase in
the relative potency of IR as compared to TCDD and this appeared to
result primarily from a significant decrease in the ability of TCDD to
stimulate AhR DNA binding.

The enhancement of response of A349T to IR may be due to lig-
and binding ability or to other subsequent biological processes. To
determine if A349T alters the relative binding ability of TCDD or IR

prof. Denison research team used a competitive [3H]TCDD ligand bind-
ing analysis. [3H]TCDD binding to the A349T mutant mAhR was not
significantly different from that of the wild-type mAhR, indicating
that this hAhR specific mutation had no significant effect on overall
[3H]TCDD specific binding, confirming our molecular modeling pre-
diction that A349 cannot be directly associated with ligand binding.
While A349 is not involved in AhR ligand binding, the increased DNA

binding response suggests that it plays a role in ligand-stimulated AhR

transformation/DNA binding.
Despite the fact that IR maintains the characteristic planarity of

TCDD and other dioxin-like AhR ligands, it shows different molecular
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Figure 2.7 Docking poses of TCDD (green) and IR (blue) in a. mAhR and
in b. hAhR. The only nonconserved residue is shown and labeled.

dimensions and shape, higher polarity, and has functional groups
that may form hydrogen bonds. To better understand how these
differences might modify the ligand binding pose within the LBD we
predicted both TCDD and IR binding geometries in mAhR and hAhR.

Docking analysis revealed binding geometries of IR in the mAhR LBD

distinctly different from that of TCDD (Figure 2.7a).

While TCDD showed stabilizing interactions with residues both in
the middle and in the inner part of the cavity (Cα/Dα), the IR binding
site was predicted to be closer to the entrance of the cavity and
this resulted in different stabilizing interactions of IR with internal
residues. Interestingly, docking to the hAhR revealed that the V381

residue, known to adversely affect the binding of TCDD, perturbs both
the TCDD and IR binding poses causing a similar placement of the two
ligands within the cavity (Figure 2.7b).

V381 residue does not hinder the binding of IR, but induces a
rotation of the molecular plane. Taken together, these findings suggest
that alanine or valine similarly affect the binding affinity of IR to the
AhR in agreement with experimental evidence and suggest that IR may
have a higher relative binding affinity to the hAhR compared to TCDD.
This prediction is consistent with the [3H]TCDD competitive binding
results that suggest higher binding affinity of IR to the hAhR LBD.

The differential binding poses of IR and TCDD within the cavity also
likely contribute, along with other sequence and structural differences
in the AhRs, to the subsequent transformation events responsible for
the enhanced potency and efficacy of IR.

Collaboration with prof. Michael S. Denison Department of Environmental
Toxicology, University of California Davis, CA (USA)

This work on IR was published in Faber et al. [2018].
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Naphthoquinones

To test the hypothesis that NQs interact with residues within the AhR

ligand binding cavity differently compared to TCDD, we predicted their
binding geometries using molecular modeling methods. Ligand dock-
ing to the mAhR LBD generated by homology modeling showed that
both 1,2-NQ and 1,4-NQ fit within the binding cavity but with different
arrangements and interactions compared to TCDD (Figure 2.8).

TCDD occupies the central part of the cavity and its chlorine atoms
reach the most internal hydrophobic region (L302 and L309 residues).
In contrast, both NQs are predicted to bind at the entrance of the
cavity with the highest contribution to their stabilization provided by
F289, M334 and M342 residues (Figure 2.8b). While it was demon-
strated that F289 also contributes to TCDD binding to the mAhR, the
two methionine residues lie far from the TCDD-binding region. NQ

placements are similar in both species and the same residues (F295,
M340, M348) contribute to the complex stabilization. However, higher
NQ binding affinities for this receptor than for the mAhR have been
determined, which could be due to the additional stabilization given
by both hydrophobic interactions with V381 (corresponding to A375

in mAhR) and hydrogen-bonding of a carbonyl oxygen atom with S365

(Figure 2.8d).
To examine the role of each of the amino acids (F289, M334, and

M342) that were predicted to be involved in NQ-selective AhR activation
by molecular modeling, our experimental collaborators (Prof. Denison
research team) determined the effect of their mutation to alanine
on ligand-AhR-dependent gene transcription in COS-1 cells. COS-1
cells were transiently co-transfected with pGudLuc6.1, an AhR-respon-
sive reporter gene plasmid and wild-type mAhR or mutant mAhR

(F289A, M334A, or M342A) and induction by TCDD, 1,2-NQ, or 1,4-NQ

determined (see A.1.1 and 2.9 for experimental details).
Interestingly, while F289A negatively affected ligand-inducible, AhR-

dependent gene expression by TCDD and both NQs, only NQ-dependent
gene expression was reduced by the M334A and M342A mutations
(Figure 2.9). F289A was previously shown to negatively affect ligand-
dependent AhR transformation and DNA binding by diverse ligands.
The NQ-selective reduction in AhR-dependent gene expression by the
M334A and M342A mutations is consistent with differential binding
of TCDD and NQ within the AhR ligand binding cavity. Additionally,
the greater reduction in activation by 1,4-NQ compared to 1,2-NQ (Fig-
ure 2.9) also suggests differences in their specific binding interactions
within the binding cavity, consistent with the modeling results.

Naphthalene is a known environmental contaminant and probable
human carcinogen that is activated by various CYPs in a tissue-specific
manner to generate metabolites involved in redox cycling and oxida-
tive stress. As secondary naphthalene metabolites, 1,2-NQ and 1,4-NQ

have been shown to influence oxidative status in rodent models and
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Figure 2.8 Predicted binding poses of TCDD, 1,2-NQ and 1,4-NQ in mAhR
and hAhR LBDs. The models are shown as cartoons (mAhR in gray,
hAhR in orange); ligands and residues that mainly contribute to
∆Gbind are shown as sticks. a. TCDD pose in the mAhR LBD, taken as
reference: the key role of the residues shown has been previously
validated by mutagenesis. b. NQs bind differently in the mAhR LBD
compared to TCDD: the main interactions are with M334, M342, and
F289. c. TCDD pose in the hAhR: due to the steric hindrance of V381

both the position and the laying plane of the molecule within the
cavity are different compared to the pose in mAhR. d. The NQs
poses in the hAhR are in the same binding site as in the mAhR LBD,
but additional stabilization is provided by ligand interactions with
V381 and S365.
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Figure 2.9 Key mAhR ligand binding domain residues are involved
in stabilizing 1,2-NQ and 1,4-NQ within the pocket. COS-1 cells
transiently transfected with wild-typfraccalvierie or mutant mAhR
and XRE-containing reporter pGudLuc6.1 were treated with solvent
control DMSO (0.1%, v/v), TCDD (10 nM), 1,2-NQ (5 µM), or 1,4-NQ
(5 µM) for 18 to 20 h. Cells were lysed, and lysates were analyzed
for firefly luciferase activity. Asterisks indicate the values that are
significantly lower than the mAhR, as indicated by Two-Way ANOVA
with P < 0.05. Luciferase activity (relative light units; RLU) was
measured and corrected for background (DMSO) and normalized to
mAhR TCDD levels. Values represent the mean ±SD of triplicates
from three independent experiments.
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cells in culture, and have been linked to toxicity. Their potential to
activate the AhR signaling pathway in vivo could lead to increased
production of reactive metabolites as a result of increasing expression
of AhR-responsive CYPs (e. g. CYP1A1, CYP2A5) and other enzymes
known to be important in the metabolism and activation of naph-
thalene. This study shed some lights on the possible mechanism of
toxicity of these compounds combining the molecular modeling and a
mutagenesis validation.

Collaboration with prof. Michael S. Denison Department of Environmental
Toxicology, University of California Davis, CA (USA)

Submitted paper

2.3.4 Comparison of binding of SAhRMs to the human and rat AhR LBDs

Two novel SAhRMs in Sprague Dawley rats have been recently character-
ized: IMA-08401 (N-acetyl-N-phenyl-4-acetoxy-5-chloro-1,2-dihydro-1-
methyl-2-oxo-quinoline-3-carboxamide; later referred to as C2 for sim-
plicity; Figure 2.10) and IMA-07101 (N-acetyl-N-(4-trifluoromethylphe-
nyl)-4-acetoxy-1,2-dihydro-5-methoxy-1-methyl-2-oxo-quinoline-3-car-
boxamide; later C4) [Mahiout et al., 2017]. C2 and C4 represent di-
acetyl prodrugs of N-hydrogen metabolites of the immunomodulatory
drug compounds laquinimod and tasquinimod, of which laquinimod
has been studied in phase II/III clinical trials for treatment of multiple
sclerosis and Chron’s disease, and is currently in phase II studies for
treatment of Huntington’s disease. In vivo, it was demonstrated that
even at the highest doses practically achievable, C2 and C4 appeared
considerably less toxic than TCDD (at a some 1000-fold lower single
dose) after acute and subacute (repeated 5-day) dosing, while acting as
effective activators of the AhR, as evaluated by cyp1a1 gene induction
[Mahiout et al., 2017].

Some major characteristic toxicities of dioxins that C2 and C4 lacked,
at least at the dose levels tested, were hypercholesterolemia, reduced
plasma thyroxine levels, acute lethality, wasting syndrome, grave liver
and testis lesions, hypoglycaemia, and elevated plasma free fatty acid
levels. The main adverse effects seen with high doses of C2 and C4

in vivo were thymic atrophy, alterations in serum triglyceride and
3-hydroxybutyrate levels, and changes in liver and kidney retinol and

Figure 2.10 Chemical structures of TCDD and the novel SAhRMs C1

and C3.
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Figure 2.11 The SAhRM C1 is formed in vivo by hydrolysis of the diacetate
prodrug C2, but also in small amounts from the drug compound
laquinimod by N-dealkylation. C3 is similarly formed in vivo from
the prodrug C4 and the drug compound tasquinimod.

retinyl palmitate concentrations. Furthermore, there were modulations
in the expression of selected genes of the AhR battery. Intriguingly, all
of the dioxin-like effects observed in vivo fell into the “type I” cate-
gory previously demonstrated to be largely indifferent to structural
variation at the transactivation domain of the AhR in TCDD-treated rats
[Pohjanvirta et al., 2011].

To gain further understanding of the effects and potency of these
compounds, it is presented here a computational study of binding to
the rat AhR (rAhR) of the respective active deacetylated metabolites of
C2 and C4, named C1 and C3 (Figure 2.10). For comparative purposes,
the computational study of binding of the laquinimod (Laq) is also
presented, despite the possible activation of AhR by Laq is still under
study. To give more insights and to evaluate the impact of these
compounds on human AhR, molecular modeling was carried out also
on hAhR and the results are here compared to those on rAhR.

The chemical relationships between C2, Laq and C1 are depicted in
Figure 2.11.

C1 and C3 are characterized by an extended electron conjugation.
For this reason, we carried out conformational analysi susing ab initio
Quantum Mechanical (QM) calculations at the RHF/6-31G* level. The
minimum energy conformations were obtained by systematic search
of the torsional angle highlighted in red for C1 in Figure 2.11 with
complete geometry optimization at every step (scan at every 15°).
Geometry optimization was carried out in water solution using a
continuum solvent model.

For both C1 and C3 compounds, the absolute minimum corresponds
to a value of 0° for this torsional angle and a planar geometry for most
of the molecular structure, due to electron conjugation. Moreover there
are two intra-molecular hydrogen-bonds stabilizing this conformation.
Indeed, energy starts to increase while overcoming 30°, which is the
common cut-off for H-bonding. In correspondence of 180° the steric
clash between the two hydrogen atoms causes a maximum in the
energy profile.

In the case of laquinimod, the global minimum corresponds to a
value of 30° for the same torsional angle; this allows formation of
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Figure 2.12 Systematic conformational search of the torsional angle C4-
C3-C11-O for C1, C3 and Laq. The relative energy to the global
minimum is shown.

one intra-molecular H-bond (the amidic carbonyl with the hydroxyl
group) but prevents steric clashes of the ethyl group. We found a
very good agreement with a previous QM analysis [Jansson et al.,
2006]. On the basis of these results, to assure a correct treatment of
these molecular structures, in the subsequent docking calculations
geometric constraints derived from the QM analysis were imposed to
the torsional angles analyzed and the QM net atomic charges were
used in describing the ligand electron distribution.

The models of human and rat AhRs were obtained as described in
section 2.2; for each species we selected four representative modeled
conformations as input for the ensemble-docking protocol. It is inter-
esting to point out that rAhR and mAhR LBDs are very similar, indeed
they share the 97% of identity and 99% of similarity in the alignment
(Figure 2.2). The ligand binding cavity of hAhR is smaller than the rAhR

one, mainly because of the different internal residue (valine instead of
alanine, that is present in both rAhR and mAhR, in Figure 2.6).

Docking calculation for these ligands was slightly modified to con-
sider additional flexibility of the protein during binding simulations.
To this aim we applied a scaling factor of 0.8 to the van der Waals
radii of the protein atoms (soft docking). The final pose for each
ligand was selected on the basis of the best ∆Gbind calculated using
Prime-MMGBSA.

Docking to the rAhR LBD predicted that all the three ligands oc-
cupy the central region of the binding cavity (Figure 2.13). C1 and
laquinimod lie on a plane very similar to that of the TCDD (Figure 2.7)
and orient the main axis of the molecule in the same way, so that
the phenyl groups are in the same position within the cavity. The
methoxy and the three-fluoromethyl functional groups of C3 bring
the molecule nearer to the helical connector, thus translating the rest
of the molecule forward compared to the other ligands. It is also
interesting to note that we found two poses of laquinimod in the rAhR

(Figure 2.13c-d) with approximately the same binding free-energy but
with opposite orientations in the cavity: one is very similar to that of
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Figure 2.13 Docking poses of C1, C3 and Laq in rat AhR. a. C1 (green),
b. C3 (cyan), c. and d. laquinimod (yellow). Residues that mainly
contribute to the pose stabilization are shown and labeled.

C1 (Figure 2.13c), the other is nearer to the helical connector and is
turned upside down (Figure 2.13d). The molecule adopts two different
conformations (Z and E, described for the unbound molecule in Jans-
son et al. [2006]) in the two poses. It is conceivable that the binding
cavity of rAhR is big enough to host the ligand in both the orientations
and to allow conformational flexibility. The bound ligands maintain
the intramolecular H-bonds of the unbound form, so their stabilization
within the binding cavity is mainly due to hydrophobic interactions
(van der Waals, and aromatic stacking) with residue sidechains.

Most of the residues that were found to be involved in the C1, C3,
and Laq stabilization belong to the group of highly conserved residues
found in the binding cavities of several mammalian AhRs with high
affinity for the TCDD (including rAhR) that were proved to be necessary
for optimal TCDD binding by mutagenesis and functional analysis
studies (“TCDD binding-fingerprint”) [Pandini et al., 2009]. Therefore
these computational results support the hypothesis that these novel
SAhRM metabolites effectively bind to the AhR and act as agonists.

Docking studies of the three ligands in the hAhR (Figure 2.14) pre-
dicted that C1 lies on the same plane in the AhR of both species
(Figure 2.13a and Figure 2.14a), but the molecule is rotated of 180°
around the main axis, so that in hAhR the chlorine atom points toward
the β-sheets instead of toward the helical boundle (as observed in
rAhR); however the polar groups of the ligand are maintained in the
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Figure 2.14 Docking poses of C1, C3 and Laq in human AhR. a. C1

(green), b. C3 (cyan), c. and d. laquinimod (yellow). Residues that
mainly contribute to the pose stabilization are shown and labeled.

same position within the cavity, we can say the C1 binds in the same
way in both the species. The shift of C3 toward the helical connector
due to the three-fluoromethyl group, observed in the rAhR pose, is
maintained in hAhR (Figure 2.13b and 2.14b). We also observed that
the phenyl ring is rotated, thus slightly perturbing the planarity of the
molecule.

In contrast, Laq adopts a more planar conformation in hAhR com-
pared to the pose in rAhR, with the ethyl group pointing toward the
helices and the phenyl ring toward the back of the cavity, similarly
to what observed in one of the poses in rAhR (Figure 2.13c). While
C1 and laquinimod interact with the residues at the bottom of the
cavity (L308, Y310 and L315), C3 interacts more with the residues of
the helical connector. Both C3 and Laq are predicted to form a H-bond
with Q383 (yellow dashes in Figure 2.14b and Figure 2.14c). On the
whole, the interactions with the residues internal to the binding cavity
result very similar for the three ligands.

From the comparison of the binding poses, we concluded that C1,
C3 and Laq could similarly bind the rat and human AhRs, because
we observed the same type of interaction in both the AhRs. These
similarities could be a starting point or a clue that these SAhRMs have
similar effects on rats and humans.

Altogether, the results of computational and experimental studies
on the rAhR [Mahiout et al., 2018] demonstrated that while C1 and
C3 show negligible in vitro toxicity, they are potent and effective AhR

agonists, and bind to the AhR in a manner similar to that of TCDD.
Therefore these SAhRMs appear interesting candidates for therapeutic
uses, and could also be valuable tools in further elucidating the multi-
faceted physiological roles of the AhR, and the underlying molecular
mechanisms.

Collaboration with prof. Raimo Pohjanvirta, Dept. of Food Hygiene &
Environmental Health, Faculty of Veterinary Medicine,

University of Helsinki, Helsinki
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Part of this work was published in Mahiout et al. [2018]

2.3.5 Modeling the binding of diverse ligands within the mAhR LBD

Several docking studies coupled with experiments were performed
during the last years (Par. 2.1 and Bonati et al. [2017]), but it is still
lacking a systematic analysis of the binding modes associated with
different classes of chemicals. The rationalization of common interac-
tion patterns between ligands and binding cavity of AhR LBD would
contribute to understand the differential modulation of AhR function.

We performed a comparative analysis of different ligand-binding
modes obtained by applying molecular docking to a group of chemi-
cals representative of the major classes of AhR ligands, with the aim of
classifying ligands into groups according to their binding characteris-
tics. For this purpose, we proposed a novel computational protocol
for ligand docking to AhR homology models, specifically developed to
take into account the receptor flexibility involved in binding process
as well as to obtain a more comprehensive view of the key ligand-
receptor interactions within the LBD. The residues that are predicted
to play a critical role in binding of a group of ligands were then vali-
dated by site-directed mutagenesis and functional analysis followed
by ligand binding analysis of the mutant AhRs.

A set of 10 representative ligands belonging to different chemical
classes were selected for detailed analysis (Figure 2.15 and Table A.1).
TCDD, TCDF and PCB126 belong to the class of HAHs, prototypical and
high affinity AhR ligands. While TCDD and TCDF show elongated
and planar structures, the shorter PCB126 molecule is characterized
by rotation of the chlorinated rings around the central bond, that
leads to a higher three-dimensional hindrance. BaP, 3MC and DBA are
PAHs characterized by bulky planar structures with extended electron
conjugation. BNF is a synthetic flavonoid, FICZ is a photoproduct of
tryptophan, IR is a naturally-occurring indole-containing compound,
and LEFL is an immuno-modulator. In contrast to the very hydropho-
bic HAHs and PAHs, these latter compounds contain several functional
groups (carbonylic, aminic, heteroaromatic) that confer a certain de-
gree of polarity to the molecules. All these compounds are known to
be AhR agonists [Soshilov and Denison, 2014].

To develop homology models of the AhR LBD useful to study bind-
ing of ligands with a wide range of diverse structural and physico-
chemical characteristics, they must take into account the flexibility
and plasticity of the domain, and thus cannot be described with a
single structural model. To this end, we built homology models of the
LBD of mAhR using ten different HIF-2α depositions (PDB id: 3f1n:A,
3f1o:A, 3f1p:A [Scheuermann et al., 2009]; 3h7w:A, 3h82:A [Key et al.,
2009]; 4ghi:A [Scheuermann et al., 2013]; 4gs9:A [Rogers et al., 2013];
4xt2:C [Scheuermann et al., 2015]; 4zp4:B, 4zqd:B [Wu et al., 2015]) and
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Figure 2.15 2D representation of the set of ligands analyzed in this study.
On top: HAHs; in the middle: PAHs; on bottom: polar ligands.

these were employed in a multi-template ensemble docking approach
to study ligand binding. During homology modeling, ligands and
water molecules present in each HIF-2α PASB structure (Table A.3) were
retained inside the binding cavity in order to take into account the
induced fit effects of the different compounds [Fan et al., 2012]. Only
water molecules falling directly inside the ligand cavity and displayed
hydrogen bonds with the protein.

The sequence of the mAhR LBD (Uniprot id: P30561, residues 276-
384) was aligned to the human and mouse HIF-2α PASB sequences
(Uniprot id: Q99814 and P97481, residues: 239-349), that are identical
in the PASB region. Sequence identity of mAhR with the template
is 31% and similarity 52% (BLOSUM62), with only two indels (one
insertion and one deletion) in the alignment (Figure A.5).

For each template, we generated 500 putative models using MOD-
ELLER and selected one with the best DOPE score. Indels were further
refined using the loop-modeling routine, obtaining 500 loop confor-
mations per model and again selecting the best one by DOPE score
(Table A.4). The models obtained were validated using PROCHECK
and ProSa and all were identified as good-quality models (Table A.5).
For the 4ghi template, two good models with comparable DOPE scores
were identified and both were included in the analysis.

The structures of the eleven models obtained are very similar in
their backbone geometry (Figure 2.16), confirming the highly con-
served 3D structure of the templates used. Also the backbone of
the refined loops tends to converge into a similar structure in all the
models (Figure 2.16), and does not affect the cavity volume. What
makes each model different from the others are the sidechain confor-
mations. In fact, the binding cavity volumes, a good measure of the
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Figure 2.16 Cartoon representation of all the mAhR PASB models super-
imposed. The region refined by loop modeling is colored according
to the model. Secondary structure elements are labeled according
to the PAS domain nomenclature [Möglich et al., 2009].

conformational characteristics of the residues inside the cavity, present
very different values (Table A.4) and thus the modeled cavities show a
wide spectrum of sizes and shapes (Figure 2.17). Part of the variability
is due to the different ligands present in the template structures and
maintained during the modeling step: the smallest cavities derive
from the template apo structures (4zp4 and 3f1p) and the largest one
from the holo structure with the bulkiest co-crystallized ligand (4xt2).

Before performing molecular docking in the prepared mAhR models,
the structures of the test ligands in Figure 2.15 were prepared. The
analysis performed with Epik led to identification of the most probable
conformers for all the molecules in water solution at pH 7. Three
possible forms were predicted for IR: trans, cis, and a charged form
(Figure A.6), and all of them were submitted to docking calculations.
For each of the other ligands, a single conformer was identified and
analyzed by docking.

To take into account the LBD flexibility involved in binding, we
selected the ensemble-docking approach, that consists of repeating
ligand docking to an ensemble of different receptor conformations
[Totrov and Abagyan, 2008, Fan et al., 2009]. We previously used
this approach to study TCDD binding to the AhR, but in that case
only a limited conformational variability of the LBD was considered
[Motto et al., 2011]. In order to study binding of ligands that have a
variety of structural and chemical characteristics, we extended this
approach by including a larger set of different conformations of the
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Figure 2.17 Internal surfaces of the binding cavities for the HIF-2α tem-
plates (gray and transparent with the ligand inside) and for the
mAhR models (colored and solid). Models are ordered by increasing
cavity volumes (Table A.4).

AhR LBD. This was obtained by using the eleven homology models
derived from different experimental template structures, including
both apo and holo forms with different ligands in the binding cavities.
Ensemble-docking results for the set of ligands investigated here are
recapitulated in Figure A.3, that presents the poses obtained for each
ligand in all the models as a matrix.

All the ligands bind in the modeled cavity, consistent with the
experimental data that confirms their competitive binding with TCDD.
In fact, previous experimental ligand binding analysis revealed that
all ten ligands could effectively compete with [3H]TCDD for binding
to the mAhR (see section A.1.1 at page 89 for the details), and that
these chemicals are relatively potent AhR agonists, and that exists a
relationship between ligand binding affinity and potency to stimulate
AhR transformation/DNA binding (Figure A.4).

For all the ligands, we obtained several alternative docking poses
depending on the size, shape and conformational characteristics of the
receptor model used. This confirms the importance of the ensemble-
docking approach to analyze alternative ligand binding possibilities
allowed by receptor flexibility. As we expected, we observed that as the
cavity volume increases, the less selective the model becomes. In fact,
we obtained docking poses for all the ligands into the largest cavity
(AhR-4xt2). In contrast, there is one model that did not produce any
docking poses for any ligands (AhR-3f1p), and three models that gave
poses only for the smallest ligand, LEFL; these models were derived
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either from apo template structures or have a very small binding
cavity (AhR-3h82). However, the size of the binding cavity by itself
is not sufficient to explain the results reported in the matrix. In fact,
we obtained few poses for rigid ligands, regardless of the cavity size.
Therefore, also shape complementarity between ligand and cavity,
that is related to the arrangement of internal sidechains, has a role in
determining the ligand binding ability.

We visually inspected and manually selected two representative
poses for each ligand (red rounds in Figure A.3) suitable to summa-
rize its alternative binding geometries in the most optimal way. The
selected poses are shown in Figure A.7. For IR, only two representa-
tive poses obtained for the IR-trans tautomeric form are shown here
because the subsequent ∆Gbind calculation demonstrated that the IR-
trans form is the most stable inside the cavity. It can be observed that,
in some cases (e. g. TCDD, TCDF and DBA), the poses of the same ligand
differ depending on a translation of the molecule inside the cavity
and, in other cases (e. g.
PCB126, BaP, BNF and LEFL) depending on the ligand rotation of 180°
around the minor molecular axis, that inverts the molecular “head”
and “tail”.

Given that the obtained docking scores (XP GlideScore, in Table A.6)
were not able to clearly discriminate among the alternative poses
of the same ligand on the basis of the approximate evaluation of
their stability, the two representative poses were further analyzed by
short MD simulations. We used MD as a short refinement of the poses
obtained by docking and to evaluate if this approach could overcome
the encountered limitations of docking scores.

This was accomplished by calculating the ∆Gbind values on the basis
of the MD trajectory to analyze the dynamic behavior of the poses into
the cavity and verify possible convergence of similar poses toward a
unique geometry, as well as to find the most stable pose, in cases of
distinctly different poses and similar docking scores.

While we did not observe the convergence of the MD simulations
of the two representative poses into a single pose for most of the
ligands, for TCDD, BaP and IR-trans the poses sampled during the two
simulations tended to overlap. Moreover, different behaviors occurred
during the simulations. Some ligands (TCDF, BNF, LEFL) remain quite
close to the docked conformation, while others (BaP, IR, DBA) rapidly
modify their initial conformation and then remain stable for the rest
of the time; for example, BaP moves away from the docking pose,
reaching the bottom of the cavity in both the simulations. Finally,
other ligands move away from the initial binding geometry but then
come back to the original pose. An example is a docking pose of TCDD

at the center of the cavity (TCDD-3h7w in Figure A.7) that reaches 4 Å
RMSD during the MD simulation while it is located at the Bβ, Cα, Dα
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site (at the bottom of the cavity, see Figure 2.16) and then comes back
to 2 Å RMSD, nearer to the initial region (green graph in Figure A.8).

A possible explanation of the changes introduced by MD simulations
in the docking poses is that the modeled AhR conformations used
did not completely describe the binding site flexibility (e. g. they
prevented the AhR ligands from reaching the bottom of the cavity) as
a consequence of the different binding regions and related induced
fit effects of the template ligands. In fact, HIF-2α shows a PASB cavity
smaller than the AhR one in both the apo and holo structures (Table S4)
and its ligands bind mostly in the central part or near to the entrance
of the cavity (at the Fα/Gβ site). Therefore, the final MD refinement,
that allows for local deformations induced by the AhR ligands in the
binding cavity, was needed to reach a more complete description of
binding.

To identify the most stable pose between the two selected, we
calculated the binding free energy (∆Gbind) with the MM-GBSA method.
In particular, for the comparison we used the average value of ∆Gbind
in the last 8 ns of the simulations (Table A.7), which represent a stable
portion of simulation for all the complexes (Figure A.8). The pose
with the most favorable ∆Gbind was further analyzed to rationalize the
binding mode.

MD simulations gave us also the opportunity to obtain a dynamic
view of ligand behavior inside the cavity, thus improving the descrip-
tion of the binding modes and the identification of all the interacting
residues.

Our previous docking studies predicted a TCDD binding mode inside
the mAhR cavity that was validated by extensive mutagenesis studies
[Pandini et al., 2007, 2009, Motto et al., 2011]. With the MD simulations
here performed we obtained a new dynamic representation of TCDD

binding, that we can compare to the previous static view [Motto et al.,
2011] (Figure 2.18). During MD, TCDD moves inside the cavity by
translating from one side (the inner part) to the other (the center of
the cavity) and samples also the previously determined pose, lying in
an average position compared to those obtained by MD.

The consistency of the TCDD results encouraged us to further char-
acterize the poses obtained with the new “dynamic” protocol for all
the diverse ligands, to obtain a comprehensive description of all the
protein-ligand interactions. To this aim, we analyzed the different
profiles obtained by per-residue decomposition of the ∆Gbind for each
ligand pose (Figure 2.19a). It was possible to identify a set of residues
that are present in all the ligand energetic profiles, most of them be-
longing to the TCDD-binding fingerprint originally published [Pandini
et al., 2009]. In the present study we especially highlight the impor-
tance of T283, F289, F318, I319, F345, L347 and Q377 in binding of
almost all the ligands under investigation. Moreover, we found addi-
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Figure 2.18 Dynamic view of a TCDD pose inside the binding cavity;
ligand is shown as sticks, protein as gray cartoons. In blue, the
pose previously obtained by docking [Motto et al., 2011]; in dark
green, one of the docking poses obtained in this work; in green, 10

snapshots taken from the last 8 ns of the MD simulation.

tional interactions that characterize binding of each ligand and these
were used to gather ligands into three different groups (Figure 2.19).

The first group includes TCDD, TCDF and BaP, that bind at the bottom
of the cavity (Bβ, Cα, Dα region) and are stabilized by hydrophobic
interactions. In the second group, 3MC, PCB126, and DBA bind nearer
to the Fα/Gβ site and also have hydrophobic interactions. Finally,
ligands of the third group (BNF, FICZ, IR, LEFL) lie in the same site as
group 2, but establish hydrogen-bonds and polar interactions with
several residues (Figure 2.19).

In particular, ligands in group 1 are stabilized both by hydrophobic
interactions common to all the ligands of this study, in the central part
of the cavity (F289, F318, I319, F345 and L347), and by others typical
of this group with residues at the bottom of the cavity: L302, L309 and
P291. In fact, as already pointed out, TCDD moves inside the cavity
(Figure 2.18 and Figure 2.19a) interacting with residues near to the Cα

and Dα (L302 and L309) and near to the Aβ and Bβ (F289 and P291).
Similar movements are observed for TCDF (Figure 2.19b), that however
mostly occupies the Cα, Dα site, as in the original docking pose, and
BaP (Figure 2.19c).

Ligands in group 2 are very stable in the Fα/Gβ site, except for
PCB126 that moves also at the center of the cavity, where it assumes
planar conformations (Figure 2.19e). The two residues that can better
describe these binding modes are M334 (on Fα) and M342 (on Gβ). As
evident in Figure 2.19a, all the per-residue ∆Gbind profiles of group 2

have few high bars related to key interactions, and stabilization can
be attributed to many residues in the whole cavity (except in the
zone at the bottom of the cavity). In fact, 3MC and DBA are bulky
ligands and tend to occupy almost the entire volume of the cavity, and
PCB126 can contact many residues due to its conformational flexibility
around the central bond and the hindrance of five chlorine atoms. It is
also interesting the role of H331, because during the simulations this
histidine sidechain flips inside the cavity giving stabilizing interactions
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Figure 2.19 Ligands are gathered into three groups defined by the occu-
pancy of different sites inside the AhR cavity and by characteristic
residue interactions during MD simulations. a. Per-residue decom-
position of ∆Gbind. Values are obtained as the averages on the last
8 ns of simulation. In the plots, only residues lining the internal
cavity are shown. b. Ten snapshots sampled during the last 8 ns of
simulation are shown for each ligand belonging to the three groups;
ligands are represented as sticks.
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Figure 2.20 Dynamic view of the binding poses of ligands in group 1,
a. TCDD, b. TCDF, c. BaP and group 2, d. 3MC, e. PCB126, f. DBA.
Ligands are represented as sticks and 10 snapshots extracted during
the last 8 ns of MD simulation are shown in transparency; solid
sticks indicate the most sampled poses in the MD simulations. The
most relevant residues identified by per-residue decomposition of
∆Gbind are shown as lines and labeled.
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Figure 2.21 Dynamic view of the binding poses of ligands in group 3,
a. BNF, b. FICZ, c. IR, d. LEFL. Ligands are represented as sticks and
10 snapshots extracted during the last 8 ns of the MD simulation
are shown in transparency; solid sticks are the most sampled poses
in the MD simulations. The most relevant residues identified by
per-residue decomposition of ∆Gbind are shown as lines and labeled.

with the ligand (e. g.
with 3MC, Figure 2.20d), or outside, exposed to the solvent.

Group 3 is the most heterogeneous, and like group 2, they occupy
the Fα/Gβ site where ligands are stabilized by interactions with some
residues belonging to the Fα (C327 or S330) and Gβ (M342). Moreover,
the peculiarity of this group is given by the polar interactions and
hydrogen-bonds established by ligands with two internal sidechains:
Q377 and S359. Given that the mAhR cavity is hydrophobic, polar
residues (S359, Q377, T283, H285) tend to interact with each other or
with water molecules by hydrogen bonding. Some ligands are able to
interfere with this interaction chain (BNF and IR in Figure 2.21a and
Figure 2.21c); in contrast, others act as hydrogen-bond donor toward
S359 while preserving the H-bond between S359 and Q377 (FICZ and
LEFL, Figure 2.21b and 2.21d). For LEFL we also observed a water-
bridged H-bond between the oxygen atom of its amidic group and the
hydroxyl of Y316.

To obtain an experimental validation of the different binding modes
predicted by our analysis for ligands with different characteristics, for
each group we selected a small set of residues to be tested in mutage-
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nesis studies. Non-selective residues that give stabilizing interactions
with all the ligands under study were not included in this validation.
Therefore, for group 1 we selected L302, L309 and P291; for group 2,
M334 and M342 (in addition H331 for 3MC, and C327 for DBA), and
for group 3, C327, M342 and S359 (in addition S330 for LEFL).

Mutagenesis is often used to validate docking results, but it is
also important to note that the mutation of some sidechain could
change receptor conformation or leads to unexpected interactions,
that are absent in the wild type. To be as consist as possible prof.
Denison laboratories performed both the DNA and the ligand binding
assay. We obtain a rough proof that the mutant receptor maintains its
conformation by the fact that it still binds the XRE. Using a competitive
assay for ligand binding we verify that no other binding sites are
explored by the ligands under investigation, neither with mutant
receptors.

The ligand-dependent transformation/DNA binding demonstrated
that six out of the eight amino acid mutations (P291L, C327A, H331A,
M334A, M342A, and S359A) resulted in ligand-dependent AhR:ARNT:XRE

specific complex formation greater than 50% of wt/mAhR activated
by TCDD. The ligand dependency demonstrates that the mutant AhRs
are not constitutively induced and that probably the mutations do not
alter the receptor conformation. Two mutations (L302A and L309A)
eliminated ligand-stimulated AhR DNA binding or resulted in less than
25% TCDD-induced AhR. Therefore L302A and L309A could not be
used for the subsequent competitive binding analysis.

To assess the influence of the remaining six residues in binding
diverse ligands within the AhR ligand binding pocket, [3H]TCDD com-
petitive ligand binding was carried out with increasing concentrations
of each ligand and their relative affinity (IC50) calculated from the
competitive binding curves (Table A.8 and Figure 2.22). Interestingly,
ligand binding analysis revealed that P291L substitution dramatically
enhanced the relative affinity of TCDF for the AhR (compare 20 nM for
wild-type AhR (Table A.2) to 0.04 nM for the P291L AhR (Table A.8)),
but while the mutation suggests an increase in BaP binding, the result
was not statistically significant. The relative binding affinity of PCB126,
IR and 3MC were reduced with the M342A substitution, but the rela-
tive affinity of LEFL and FICZ were significantly increased. In contrast,
DBA and BNF were not affected by the M342A mutation. The M334A
substitution significantly reduced the relative affinity of PCB126 and
decreased 3MC binding, but had no significant effect on the binding of
DBA. Interestingly, while the H331A mutation dramatically increased
the relative affinity of 3MC for the AhR, S330A had no significant effect
on LEFL AhR binding. The results with the S359A substituted AhR were
similar to that of M342A in that it significantly increased the relative
binding affinity by one ligand (BNF) and suggests a decrease in the
binding of another (FICZ). Similarly, the C327A mutation significantly
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decreased BNF, but had no significant effect on that of IR, DBA or
FICZ. Overall, the results of these mutational analysis reveal significant
differences in ligand-specific, amino acid-dependent binding to the
AhR.

Comparison between computational and experimental results al-
lowed us to analyze in detail each group of ligand.

Group 1 (formed by TCDD, TCDF and BaP) is stabilized within the
AhR LBD mainly by several interactions with residues in the central
part of the cavity, belonging to the “TCDD-binding fingerprint” previ-
ously determined [Pandini et al., 2009], that we detected for all the
ligands under investigation (Figure 2.19). Additional characteristic
contributions to the binding free energy of these ligands are provided
by interactions with some hydrophobic residues at the bottom of the
cavity, in particular L302 and L309 (Figure 2.20a, 2.20b, 2.20c). These
were identified thanks to the MD refinement of the docking poses, that
allowed us to describe a local deformation of the inner part of binding
cavity induced by these ligands. In fact, previous docking analyses
indicated the TCDD placement at the center of the cavity [Pandini et al.,
2009, Bisson et al., 2009, Motto et al., 2011, Xing et al., 2012, Perkins
et al., 2014, Nuti et al., 2014], whereas our simulations suggested that
this ligand can move inside the cavity by translating from the center
to the inner part and vice versa (Figure 2.18). Also the initial docking
pose of BaP, that we found in the center of the cavity consistently with
other docking studies [Xing et al., 2012], was dramatically changed
by MD simulations, that allowed the ligand to reach the bottom of
the cavity. Conversely, TCDF was already predicted to reach the inner
region by docking calculations, and MD refinement did not alter this
placement.

Mutagenesis studies supported the predicted binding geometry
of the group 1 ligands. We previously observed that the L302A,
L309A mutations dramatically reduced TCDD binding activity, whereas
C327A, M334A and S359A, at the entrance of the cavity, only partially
affect it [Motto et al., 2011]. In the present work we demonstrated
that these two mutations eliminated or greatly reduced the AhR DNA

binding induced by TCDD, TCDF and BaP (Figure A.9). Given the
correlation observed between binding affinity and potency to stimulate
AhR DNA binding (Figure A.4) we could confirm the role of the long
hydrophobic leucine sidechains in the inner part of the cavity in
stabilization of these three ligands. The P291L mutant was designed to
further validate the predicted binding poses through direct evaluation
of the relative ligand binding affinities. The IC50 data (Figure 2.22)
revealed that indeed P291, lying at a lateral side of the hydrophobic
region, is not deeply involved in the stabilization of this group of
ligands. In fact, the P291L mutation had limited effect on BaP binding
and the observed enhancement of the TCDF affinity could be related
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Figure 2.22 Relative binding affinity for group 1, 2 and 3 ligands relative
to wild-type and mutant AhRs. The relative affinity (−logIC50)
of each test chemical for the AhR ligand was determined from
concentration-dependent inhibition curves obtained using [3H]TCDD
ligand binding analysis. The mean IC50 ± standard deviation was
determined using three-parameter non-linear regression of nine
independent reactions. (*) Represents a significant (p ± 0.05) change
in ligand binding affinity relative to wild-type mAhR in One-Way
ANOVA Multiple Comparison Test.
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to the more effective stabilization produced by the longer leucine
sidechain.

The second group of chemicals sharing common binding features
includes 3MC, PCB126 and DBA. Docking analysis followed by MD re-
finement predicted that the two bulky PAHs tend to occupy almost the
entire space within the cavity except the inner region, with a number
of stabilizing hydrophobic interaction with the internal sidechains
(Figure 2.19). The PCB126 molecule, with very different structural char-
acteristics, occupies the same region thanks to a certain translational
freedom into the cavity and its adaptability given by rotation around
the central bond. On the whole, all the three ligands, in addition
to interactions with central residues, showed characteristic interac-
tions with hydrophobic residues at the entrance of the cavity: M334

and M342 at the Fα/Gβ site. Moreover, 3MC contacts several times
the flexible sidechain of H331, on the Fα, during the MD simulation
(Figure 2.20d, 2.20e, 2.20f).

Mutagenesis studies supported the predicted binding poses of 3MC

and PCB126. In fact, the lower binding affinities measured for the
M334A and M342A mutants in comparison with the wt AhR (Fig-
ure 2.22) confirmed the hypothesis that substitution of the long hy-
drophobic methionine sidechains with alanine decreases stabilization
of the two ligands. Contrary to expectations, the H331A mutation
increased the 3MC affinity. This is probably due to the removal of
unfavorable interactions with a polar sidechain. Evaluations of IC50

for DBA binding to M334A and M342A (Figure 2.22) revealed that
computational predictions in that case were incorrect; in fact, the
DBA binding affinity for the wt AhR remained unaltered upon both
mutations. It is conceivable that the alternative docking pose in which
the DBA molecule reaches the inner part of the cavity (similarly to
group 1 ligands), that was discarded during the selection of the best
pose, might be more reliable.

The third group of ligands, including BNF, FICZ, IR and LEFL, shows
completely different physico-chemical characteristics. Accordingly,
while docking calculations predicted their binding at the Fα/Gβ site
similarly to ligands of group 2, their stabilization derived from differ-
ent contributions, (i e. electrostatic interactions and hydrogen-bonds
with the polar residues located in this region: C327, S330, S359, Q377)
(Figure 2.21). MD refinement indicated that these strong interactions
determine poor mobility of the ligands into the cavity. MD simulations
also revealed that BNF and IR are able to break an inter-residue hydro-
gen bond between S359 and Q377 by establishing new ligand-residue
H-bonds, and that FICZ and LEFL partially interfere with the same
H-bond network.

Given that the mutation of Q377 to alanine was proved to abolish
TCDD specific binding [Pandini et al., 2007], this mutant could not
be used to evaluate the relative affinity of BNF and IR by competitive
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binding analysis with [3H]TCDD. However, the observed lowering of
the BNF and IR affinities for the S359A and C327A mutants compared
to the wt AhR (Figure 2.22) confirmed both the predicted binding
poses and the key role of the electrostatic interactions in ligand sta-
bilization. While the S359 residue appeared to play a less important
role in stabilization of FICZ binding, the observed higher affinity of
this ligand for M342A compared to the wt AhR (Figure 2.22) could
confirm its placement in the same binding site of the other ligands of
this group (at the Fα/ Gβ site). In fact, it is conceivable that the long
hydrophobic methionine sidechain in the Gβ strand could interfere
with ligand stabilization. Noticeably, experiments for determination
of the relative binding affinity of LEFL for S359A from concentration-
dependent inhibition curves resulted not converging (Table A.8), thus
indicating a very low affinity of LEFL for this mutant in agreement
with our prediction. A further confirmation of the LEFL binding pose
could derive from the significant increase of LEFL binding affinity
upon mutation of M342 to alanine, similar to that observed for FICZ

(Figure 2.22).
While other investigators predicted binding characteristics simi-

lar to those here described for FICZ and IR using different docking
approaches, but they suggested that these ligands share the same
binding site of TCDD [Bisson et al., 2009, Perkins et al., 2014, Nuti et al.,
2014]. Here we demonstrated that, while TCDD can reach the inner
hydrophobic region of the AhR cavity thanks to induced-fit effects,
FICZ, IR and the other group 3 chemicals bind nearer to the entrance
of the cavity and form H-bonds with residues in this region.

Another confirmation of differential binding of TCDD (group 1) and
LEFL (group 3) ligands derives from a study on ligand binding to
different zebrafish AhR paralogues (isoforms: 1a, 1b and 2), where
it was found that the zebrafish AhR1a (zfAhR1a) was unable to bind
TCDD but can bind and be activated by LEFL [Goodale et al., 2012]. Our
previous comparative analysis of the AhR LBDs homology models of
different species revealed that zfAhR1a has a dramatically shortened
binding cavity compared to the mouse AhR [Fraccalvieri et al., 2013]
and this is due to the sidechains of three residues at the center of the
cavity, which reduce the available internal space only to the region at
the entrance of the cavity (here called the Fα/Gβ site). A confirmation
of the role of this reduction on differential binding was provided by the
evidence that mutation of these residues in zfAhR1a to those present
in mouse AhR restored the zfAhR1a ability to bind TCDD [Fraccalvieri
et al., 2013]. These findings, in addition to the mutagenesis data here
presented, confirm our prediction that the binding site of LEFL (and of
the other group 3 chemicals) is located near to the entrance of the AhR

binding cavity.

We can conclude that our novel approach for ligand docking to the
AhR homology models, that includes ensemble-docking to different
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modeled conformations of the LBD and post-docking refinement by
MD simulations, was effective in capturing the differences in binding
of diverse agonists. Structure-driven site-directed mutagenesis fol-
lowed by evaluation of the relative ligand binding affinities for the
obtained mutants provided confirmation of most of the computational
predictions.

Three groups were identified with different binding sites and in-
teractions with residues within the binding site. The main difference
was observed between groups 1 and 3, that show completely different
physico-chemical characteristics and accordingly yield interactions
with hydrophobic residues in the inner part of the cavity (group 1,
including TCDD, TCDF and BaP) or alternatively with polar residues at
the Fα/Gβ site (group 3, including BNF, FICZ, IR and LEFL). Another
characteristic of group 3 chemicals revealed by MD simulations was
the ability of these ligands to break an inter-residue H-bond network
existing at the center of the cavity. An additional determinant of
group 1 binding was their ability to penetrate deeply into the cavity
using the flexibility and plasticity of the inner zone of the cavity. In
contrast, 3MC and PCB126 (group 2), despite the hydrophobic stabiliza-
tion similar to that of group 1, cannot reach the inner part of the cavity
due to their high steric hindrance and thus they occupy a binding site
nearer to the entrance of the cavity.

While we were able to demonstrate differences in ligand binding
of this set of chemicals, what remains to be determined is whether
the different pattern of interactions with residues within the AhR

binding cavity can result in differential effects on AhR conformational
changes and interactions with protein partners that may propagate
downstream in the AhR signaling pathway. It is conceivable that
ligands that bind near to the entrance of the cavity could have a
more favorable dissociation kinetics (high koff constants) that could
lead to a lower stability of the complexes or reduced rates of AhR

transformation. On the other hand, our modeling studies on the
AhR:ARNT dimer, based on the HIF-2α:ARNT template, predicted that
the Fα/Gβ site may be involved in the dimerization interface [Corrada
et al., 2016, 2017]. Therefore, specific perturbation effects on the
dimer structure and stability could be produced by ligands that are
in contact with this interface, similarly to what suggested for the
HIF-2α:ARNT dimer [Motta et al., 2018b]. These and other hypotheses
will be addressed in future studies aimed at analyzing the effects of
differential ligand binding on the ligand-specific AhR transformation
and dimerization. Understanding the effects of differential binding
in modulating the AhR functionality would allow the design of new
ligands targeted to promote specific alterations of the AhR mechanism
useful for medicinal chemistry.
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B I N D I N G O F L I G A N D S T O H U M A N P X R

3.1 introduction

The Pregnane X Receptor (PXR or NR1I2) is a nuclear receptor (NR) that
has important roles in drug metabolism and drug-drug interactions.
In particular it binds the PXR response element (PXRE) in the promoter
region of cyp3a4. In humans, CYP3A4 is involved in the metabolism of
more than 50% of all drugs as well as a variety of other xenobiotics
and endogenous substances, including steroids [Jones et al., 2000]. The
activation of the CYPs metabolizing enzymes may lead to an undesired
decrease in the bioavailability of many prescribed drugs [Banerjee
et al., 2015]. For this reason, elucidation of the exact molecular mech-
anism that underlies PXR activation has important implications for
drug development processes [Willson and Kliewer, 2002]. Moreover,
PXR has been strongly associated with cancer and with metabolic and
inflammatory diseases, [Banerjee et al., 2015] making PXR an intrigu-
ing new target for drug design studies aimed at developing both
antagonist [Biswas et al., 2009] and agonist molecules.

The high promiscuity and the divergence evolution of PXR were a
very hot topic [Jones et al., 2000] until the first crystal structures came
out in 2001 [Watkins et al., 2001], finally elucidating some features of
this receptor.

After that first structures, several others were deposited in the PDB

and to date we count 20 depositions of this human LBD both in the
apo and holo forms, in complex with different ligands. The PXR-LBD

is an α-helical sandwich, reproducing the typical NR fold, composed
of three layers: α1/α3, α4/α5/α8, and α7/α10 (Figure 3.1). Unlike
other NRs, PXR has the small β-sheet expanded to a five-stranded
antiparallel β-sheet and the α6 helix is often converted to a loop. The
latter characteristic is thought to be responsible for the accommodation
of different ligands within the internal cavity of the domain [Watkins
et al., 2001]. The αAF helix represents the AF-2 domain involved
in binding of co-activators and co-repressors (see Figure 1.3 for the
scheme of functional domains).

Ligand binding causes a conformational change leading to the
release of co-repressors; then the exposure of the hydrophobic surface
of αAF implies the recruitment of co-activators e. g. the steroid receptor
co-activator, SRC-1) and the transcriptional activation [Chai et al., 2016].

The large majority of the holo crystal structures of human PXR in-
clude ligands of pharmaceutical interest: the St. John’s wort compound
hyperforin [Watkins et al., 2003b]); the antibiotic rifampicin [Chren-
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Figure 3.1 The PXR LBD structure is constituted by an α-helical sandwich.
Secondary structure elements are colored from N-terminus (blue) to
C-terminus (red) and labeled according to the NR LBD nomenclature
proposed in Glass and Rosenfeld [2000].

cik et al., 2005]; some drug-like ligands [Xue et al., 2007, Hennessy
et al., 2015, Khan et al., 2015]; the anti-HIV drug PNU-142721 [Cheng
and Redinbo, 2011]. Rifampicin is widely used to treat tuberculosis
at doses that induce CYP3A4 expression, and it was known that it
directly binds to PXR into the ligand binding pocket before the crystal
structures had been available [Jones et al., 2000]. It is interesting to
note that the experimental structure could not be fully solved, but it
lacked the α2 and a part of the ligand. Rifampicin is the largest ligand
ever described for PXR, and probably for the NRs. Other studies [Xue
et al., 2007, Hennessy et al., 2015] were aimed at searching a molecular
scaffold to develop PXR antagonists, but the unique characteristics of
the ligand binding cavity made antagonist design particularly difficult.
Indeed PXR does not rely on the usual NR paradigm, in which both
agonists and antagonists compete for the same binding site causing
a different conformational change. To find antagonists of PXR it is
necessary to look outside the ligand binding cavity and target the
αAF surface. It is conceivable that antagonists bind αAF preventing
the recruitment of co-activators; this model was confirmed by compu-
tational coupled with mutagenesis studies [Wang et al., 2006, Ekins
et al., 2007].

Another interesting structure of PXR is the one able to explain the
synergistic activation of PXR by the 17α-ethinylestradiol, the active
substance of contraceptive pills, and the persistent organochlorine pes-
ticide, trans-nonachlor [Delfosse et al., 2015]. It was demonstrated that
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each ligand enhances the binding affinity of the other, so the binary
mixture induces a substantial biological response at doses at which
each chemical individually is inactive. The Authors suggested the
formation of a “supramolecular ligand”, which could explain the syn-
ergistic toxic effect of chemical mixtures, with implications for studies
of endocrine disruption, toxicology and chemical risk assessment. This
structure provideed an example of how molecular structural infor-
mation can elucidate the molecular mechanism underling observable
biological effects and greatly improve the understanding of biological
and toxicological processes.

The most extensively studied ligand of PXR is SR12813. It was the
first ligand to be co-crystallized with PXR [Watkins et al., 2001] and
did not identify a unique geometry for SR12813, but proposed that
SR12813 could occupy different binding sites inside the cavity. SR12813

is a cholesterol-lowering drug known to be a high-affinity ligand of
PXR (dissociation constant Kd = 41 nM). Four X-ray depositions of PXR

in complex with SR12813 have been available: the first identified three
different orientations inside the ligand binding cavity [Watkins et al.,
2001]; the same Authors proposed a new geometry two years later and
suggested that the co-activator SRC-1 contributes to the stabilization of
that single geometry [Watkins et al., 2003a]; other Authors confirmed
that hypothesis finding exactly the same ligand orientation with the co-
activator [Wang et al., 2008]; finally the structure of the dimeric form
of PXR:RXR LBDs was determined [Wallace et al., 2013], characterized by
SR12813 bound in a different orientation (although the ligand Electron
Density Map is less defined compared to the previous studies).

The crystal structures of the PXR-LBD allowed identification of a
buried ligand binding cavity with a remarkable volume of more than
1300 Å3, that makes this pocket the largest known to date [Gallastegui
et al., 2015]. The special insertion of about 60 aminoacids (compared to
other NRs), the presence of a flexible loop in helix 6, and the unwinding
of helix 7 are believed to be responsible for PXR ability to bind ligands
of different sizes. In particular, the longer loop may contract or
expand in order to accommodate different chemicals, including the
big Rifampicin, inside the pocket [Chrencik et al., 2005]. The cavity
is mainly hydrophobic, it is lined by only four polar residues and
four charged (or potentially charged) and two of them, E321 and
R410, constitute a salt-bridge that effectively neutralizes their charges.
Mutagenesis studies also suggested that this salt bridge could be
critical for the receptor response to ligands [Chrencik et al., 2005].

After the first structures of hPXR-LBD became available, many molec-
ular docking studies were performed on them. One of the most
important predicted the agonist binding site inside the ligand bind-
ing cavity, and the antagonist site on the αAF surface [Ekins et al.,
2007]. Others not only tried to answer some fundamental questions
regarding ligand binding and activation of the receptor, but also to
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impact on drug-discovery programs by solving potential drug-drug
interaction issues [Gao et al., 2007]. To the same aim also machine
learning algorithms were used [Khandelwal et al., 2008]. Molecular
modeling was also used to predict the binding of different environ-
mental pollotants. For example, binding of some endocrine-disrupting
chemicals (EDC) were investigated to analyze how they interfere with
the body endocrine system. producing harmful effects. These studies
were conduced in particular on bisphenol A (BPA) [Sui et al., 2012] and
phthalates [Sarath Josh et al., 2016], compounds that have attracted
attention during the last decades. In addition to Molecular Dock-
ing, also the QSAR approaches were used to try to predict ligand-PXR

interactions [Ekins et al., 2009].

In this thesis, we tested and compared different approaches for com-
putational modeling the ligand binding to PXR all aimed at taking into
account the LBD flexibility involved in the process. To this aim, at first
we exploited the experimental information available using the most
updated PXR X-ray structures to set up an ensemble-docking protocol
and applied it to study the binding of a set of known ligands with dif-
ferent structural and physico-chemical characteristics. Subsequently,
we focused our attention on the controversial binding mechanism of
the most studied PXR ligand, SR12813, and used advanced methods
based on MD simulations to model the process and obtain mechanistic
information.

3.2 methods

3.2.1 Receptor and ligands preparation for docking

We downloaded the PXR structures from the PDB [Berman et al., 2000]
and removed the protein partners. We used Prime [Jacobson et al.,
2002, 2004], in the Schrödinger suite, to determine the 3D structure of
the unresolved aminoacids ranging from 178 to 192 (the α1/α2 loops).
No template was given to the software, so the loops were built ab
initio using the Prime Energy to select the best model. Prime energy
includes all force field parameters plus the GBSA solvation terms. The
models were validated using PROCHECK [Laskowski et al., 1993],
and prepared using the Preparation Wizard with OPLS3 force field.

3.2.2 Molecular Docking

We extracted the ligands from the PDB structures and prepared them
using LigPrep and Epik to get the more reliable tautomer. Rifampicin
was downloaded from PubChem.

Docking was performed using Glide XP with OPLS3 force field
[Friesner et al., 2004, Halgren et al., 2004]. Glide XP scales ligands
vdW radii to 0.8 as default; in this case we scaled them to 0.7 on
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the basis of redocking calculation trials where this scaling factor lead
to better reproduction of the experimental binding geometries. The
grid was centered on the SR12813 ligand in the 4j5x structure. After
structural alignment of all the proteins, the grids were calculated using
the same coordinates of the first one on SR12813.

For ensemble docking we used the Emodel function to select the
best pose among the ones sampled in the different receptor structures.
RMSD was calculated on the ligand heavy atoms after alignment of the
Cα atoms of the protein structures.

3.2.3 System preparation for MD simulations

Crystal structures for PXR in its unbound (PDB ID: 4j5w [Wallace et al.,
2013]) and SR12813-bound (PDB ID: 1ilh [Watkins et al., 2001], 1nrl
[Watkins et al., 2003b], 4j5x [Wallace et al., 2013]) forms were obtained
from the PDB [Berman et al., 2000], and protein partners were removed.
The PXR structures have unresolved regions between the α1 and α2

helices, that was modeled using Prime [Jacobson et al., 2004] within
the Schrödinger Suite, as described in section 3.2.1. Proteins were
prepared with the Protein Preparation Wizard as previously described
(section 3.2.1). The SR12813 ligand was parametrized using the BiKi
suite [Decherchi et al., 2018] with the AM1-BCC [Jakalian et al., 2002]
level of theory. Partial charges were derived using the RESP method
[Bayly et al., 1993] in Antechamber [Wang et al., 2006], while a GAFF

[Wang et al., 2004] parametrization was used to achieve the complete
topological description of each ligand. Sensible torsion parametriza-
tion of the C=C-Ca-Ca angle was compared with QM calculations
performed at the HF/6-31G* level using the Jaguar [Bochevarov et al.,
2013] program in Maestro to adjust the ambiguous parametrization of
GAFF.

3.2.4 Plain MD simulation

The plain MD simulations were performed using GROMACS 4.3 [Abra-
ham et al., 2015]. The protein was solvated in an orthorhombic box
with TIP3P water molecules [Jorgensen et al., 1983], ad neutralized
with Na+/Cl− ions within BiKi basics [Decherchi et al., 2018]. The
minimal distance between the protein and the box boundaries was set
to 12 Å. The Amber ff14SB force field [Maier et al., 2015] was used for
the proteins and a multistage equilibration protocol was applied to
remove unfavorable contacts and provide a reliable starting point for
the production runs: the system first underwent 5,000 steps of steep-
est descent energy minimization, and then four different consecutive
equilibration steps were performed: (1) 100 ps in NVT ensemble at
100 K using a time-step of 1 fs, (2) 100 ps in NVT ensemble at 200 K
and time-step increased to 2 fs, (3) 100 ps in NVT ensemble at 300 K,
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and (4) 1,000 ps in NPT ensemble at 300 K. In all the stages the atoms
belonging to the protein backbone (and to the ligand, if present) were
restrained with a force constant of 1,000 kJ mol−1 nm−2. Electrostatics
was treated with the cut-off method for short-range interactions and
with the particle mesh Ewald method (PME) [Darden et al., 1993] for
long-range interactions (rlist = 1.1 nm, cut-off distance = 1.1 nm, vdW
distance = 1.1 nm, PME order = 4). The constant temperature condi-
tions were provided using the velocity rescale thermostat [Bussi et al.,
2007] (coupling constant of 0.1 ps), while pressure was coupled with
the Parrinello-Rahman barostat [Parrinello and Rahman, 1981] (cou-
pling constant of 2 ps). All bonds were constrained with the LINCS
algorithm [Hess et al., 1997].

3.2.5 MD-Binding simulations

The MD-Binding method within the BiKi suite uses an additive external
force that is summed to the regular potential energy of the system
to enhance the probability to observe the binding event. The bias
consists in external electrostatic-like forces acting between a subset
of the residues of the binding site and the ligand. The intensity of
the biasing force is regulated by the adaptivity rules and gradually
switches off as the process moves forward so that, after the conjectured
passing of the transition state has occurred, it slowly recovers the
behavior of classical unbiased MD.

In the standard protocol for MD-Binding, the possible entrances for
the ligand are computed using Nanoshaper [Decherchi and Rocchia,
2013], and the ligand is positioned with a random orientation at a
predetermined distance from the residues that form the entrance. In
the present work, we used two selected frames extracted from the apo
simulation, to calculate the ligand entrance with Nanoshaper for the
ligand positioning. The protein attractive atoms were selected as the
list of residues that belong to the internal cavity of PXR according to
Nanoshaper calculations (C207, S208, L209, K210, V211, L239, H242,
M243, M246, S247, F251, F281, C284, Q285, F288, W289, Y306, L308,
E309, T311, A312, G313, L318, E321, M323, L324, F326, H327, I403,
H407, R410, L411, F420, M425, F429); for the ligand, we used all the
heavy atoms. As switch-off residue we selected the S247, with a cut-off
distance of 4 Å. This residue was found to interact with the ligand
in most of the experimental structures and is placed at the opposite
side of both the entrances so that, when the ligand approaches this
residue, the transition state for the binding process can be considered
overcome. 50 independent simulation runs were launched in parallel
per entrance gate, each of them lasting 20 ns, starting from the 4j5w
apo protein conformation.

68



3.2 methods

3.2.6 Scaled MD

In the SMD approach implemented in BiKi [Mollica et al., 2015], the
potential energy terms are scaled by a scaling factor λ to reduce
the energetic barrier and enhance sampling during the simulations.
In the present work we used the value λ = 0.5 and applied low
restraints (50 kJ mol−1 nm−2) to the protein backbone atoms, excluding
the residues around the binding site (within 8 Å from the ligand) that
were unrestrained. Simulations of 30 ns were carried out for each
replica in the NVT ensemble.

3.2.7 Analysis of MD simulations

For the comparison of binding modes, we calculated the dRMSD be-
tween the ligand-site distances in the simulated complex and the
corresponding ligand-site distances in the X-ray structures:

dRMSD =

√
∑i ∑j(dx

ij − dm
ij )

2

N

where x and m are the experimental and calculated complexes, re-
spectively; d are the vectors of the distances between the ligand and
the binding-site heavy atoms; i and j are the indices of the atoms;
and N is the number of comparisons performed. We defined all the
protein atoms within 6 Å from the ligand heavy atoms as binding-site
heavy atoms. Calculations were performed with PLUMED [Tribello
et al., 2014]. Using the dRMSD index, the distance calculation takes
into account only the deviation of the relative position of the ligand
with respect to the residues belonging to the binding site; it is a better
index to evaluate the accuracy of the binding geometry than the RMSD

calculated on the absolute positions of the ligand atoms, because this
last one neglects the difference in the positions of protein residues in
the simulated and reference geometries.

To evaluate the stability of a ligand binding conformation with
SMD, we measured the time required for the ligand to reach 4 Å of
RMSD (computed on heavy atoms) from the initial geometry in each
replica, and we evaluated the resulting boxplot. The cut-off value of
4 Å was chosen analyzing different RMSD graphs to assure that it was
a good cut-off value to discriminate when the ligand definitively left
its starting conformation.

The ligand orientation within the binding site were represented in
the sub-space of two selected collective variables (CVs) that correspond
to the polar coordinates θ and φ in a reference system centered in
the oxygen atom of the hydroxyl group of the ligand, relative to the
vector connecting this atom and the carbon atom joining the two
phosphate groups (Figure 3.2). These coordinates were computed for
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Figure 3.2 Representation of the CVs describing the ligand orientation
inside the cavity. The angles θ and φ are computed for the vector
connecting the oxygen of the hydroxyl group of the ligand and the
carbon atoms between the two phosphate groups.

each conformation in the trajectory, upon alignment of the protein Cα

atoms.
In this way we correctly described the ligand rotation inside the cav-

ity, neglecting the possible translations. The conformational sampling
performed in each simulation was then represented in the sub-space
described by these two coordinates as a probability density surface
in which the counting of each bin was reweighted to account for the
different dimensions of the bins due to the spherical shape of the
surface.

After structural alignment on protein Cα atoms, ligand conforma-
tions sampled during the SMD simulations starting from the final MD-
Binding geometries were clustered using the GROMOS RMSD-based
clustering tool applied to the ligand heavy atoms, using a cut-off value
of 2 Å.

3.3 results

3.3.1 Modeling the PXR ligand binding event by molecular docking

Structural information on the PXR LBD in both the apo and holo forms
has increased during the last years. To evaluate if this information
is able to capture the conformational variability of PXR involved in
ligand binding, we initially compared a standard docking protocol to
an ensemble docking protocol based on the available structures. To
this aim we used a set of ligands for which the binding geometry is
known from X-ray crystallography (Figure 3.3).

The backbone structure of hPXR is well conserved among the differ-
ent depositions (the RMSD is under 3 Å on Cα), but also the internal
sidechains do not vary much their conformations (RMSD on complete
internal residues is under 2 Å). The loop modeling involved 14 residues
that connect α1 and α2; the modeled part is shown in Figure 3.4. We
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Figure 3.3 The co-crystallized ligands used in the docking and ensemble-
docking studies. It is reported the common name (or the PDB id of
the ligand) and below the PDB code for the structures which contain
the depicted ligand.

did not observe a significant convergence of the loop in a single con-
formational state; this is in agreement with the experimental evidence
that this highly flexible region could not be resolved. The 3D position
of this insertion, however, does not affect the internal volume of the
ligand binding cavity (Figure 3.4), which is instead influenced by few
sidechains e. g. L209 and H407). Volumes range from about 1000 Å3 in
the apo structure 4j5w, to about 1500 Å3 in 5a86.

To obtain a spectrum of the conformational characteristics of the
PXR LBD as wide as possible, we chose five representative structures,
among all the depositions, that are the most up to date and include
complexes with different ligands: 4j5w is in the apo form, 4j5x is
complexed with the very flexible ligand SR12813, 4s0t is the structure
that has most of the residues solved and it is in complex with 40U (a
inhibitor of GCR-CCR1), 4x1g has both the hormone and the pesticide
bound into the cavity, and finally 5a86 has the greatest volume and is
complexed with 40U (an antagonist of S1P1 receptor).

The shape of the internal cavities (Figure 3.4) differ only in some
details, but maintain a certain similarity, especially if we compare
4j5w and 4j5x (obtained by the same laboratories under the same
experimental conditions), despite 4j5w is in the apo form and 4j5x is
bound to SR12813.

Molecular docking calculations were performed with a standard
protocol for all the available co-crystallized ligands shown in Figure 3.3
using the apo 4j5w receptor structure to evaluate if the description of
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Figure 3.4 The structure of PXR is shown as gray cartoons and the
modeled loops are colored according to the model; the ligand
binding cavities are shown as solvent accessible surface calculated
using CASTp.
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the ligand binding cavity provided by a single structure is sufficient
to describe such different binding modes.

Docking poses and crystallographic geometries are compared in
Figure 3.5. For both Rifampicin and Hyperforin the software did not
obtain any poses; but docking results were insufficient for most of the
ligands. In some cases neither the binding site could be reproduced,
e. g. 2Q4, 40U, 17α-ethinylestradiol and D7E; in other cases the binding
site was identified, but the pose was not correct, e. g. Colupulone and
trans-nonachlor; finally docking to the apo structure worked well with
two ligands, 444 and PNU-142721, that have smaller molecular size
than the other ligands. It is possible that the biggest ligands could
not find their ideal site because the apo cavity is too small and rigid to
accommodate them at the best.

The case of SR12813 is different because it is co-crystallized in six
different geometries; we compared the obtained pose for this ligand
with the six depositions in Figure 3.6. It is difficult to evaluate how
good were these results because of the multiple reference geometries.
Docking tended to reproduce the 1ilh B/1nrl/3hvl geometries, which
are all very similar. The docked pose inverts the molecular “head”
and “tail” if compared to 1ilh A/4j5x and it is rotated of 90°compared
to 1ilh C. While the binding site that was mostly sampled in the crys-
tallographic structures (1ilh B/1nrl/3hvl) was identified by docking,
the parts of the molecule that are more flexible (the two phosphate
substituents) were not well reproduced.

Therefore, we concluded that it is not sufficient to use only one
structure of the receptor to describe binding to hPXR of diverse ligands
using molecular docking.

To include more flexibility during calculations we tested the ensem-
ble docking approach based on the previously described hPXR X-ray
structures.

Ensemble docking gave better results compared to docking on a
single structure; in fact for most of the ligands the crystallographic
geometry was reproduced (Figure 3.7). It is interesting to note that
we found three poses for Hyperforin, for which we did not sample
any one using the standard docking protocol. On the contrary, we
could not obtain any poses for Rifampicin, but it is known that to
accommodate this ligand inside the binding cavity it is necessary a
massive rearrangement of the secondary structure elements. We can
observe that the best poses were obtained when the ligand re-docked
to the experimental structure to which it was co-crystallized, if present
in the considered ensemble. This was the case of 40U in 4s0t, 17α-
ethinylestradiol and trans-nonachlor in 4x1g, and D7E in 5a86; all
these poses perfectly reproduced the experimental binding geometries.
It could be concluded that the "memory" of the original ligand is
maintained into the receptor used for docking.

73



binding of ligands to human pxr

Figure 3.5 Docking to the apo structure of hPXR (4j5w). The crystal-
lographic geometries of the ligands are colored in gray and the
docked pose is colored in light orange.

Figure 3.6 Docking of SR12813 to the apo structure of hPXR (4j5w). The
crystallographic geometries are colored according to the deposition
(labeled), the docked pose is colored in gray.
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Figure 3.7 Ensemble docking on hPXR. The crystallographic geometries
of the ligands are colored in gray and the docked poses are colored
in light orange.

Figure 3.8 Ensemble docking of SR12813. The crystallographic geome-
tries are colored according to the deposition (labeled), the docked
pose is colored in gray.
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The ligand for which we did not include the corresponding receptor
structure docked into other protein conformations; e. g. 2Q4 is very
similar to 40U and docked inside 4s0t, 444 and Colupulone found
the best pose inside the apo structure 4j5w, while Hyperforin and
PNU-142721 docked inside 4j5x. The observed preference of these
latter ligands for the 4j5x and 4j5w structures among those available in
the ensemble might be a clue that these give a better description of PXR

in its biological environment, because they include the dimerization
partner RXR. The inability of finding the experimental geometries
of the very flexible Hyperforin and Colupulone could be explained
with limitations of the docking sampling phase. Treatment of trans-
nonachlor binding, for which the right binding site was identified but
not the correct orientation of the chlorine atoms, probably posed some
difficulties in the treatment of halogen atoms by the force field.

The results for SR12813 remained essentially unchanged compared
to those obtained with the standard docking protocol in the apo 4j5w
structure. In fact, the best pose for this ligand was found in the 4j5x
structure, originally in complex with SR12813 (Figure 3.8), that does
not differ much compared to the one found in 4j5w (Figure 3.6).

In conclusion, the approach of ensemble docking solved many of
the problems that arose in docking to a single apo structure. This
protocol seemed particularly suitable for docking to PXR of small
molecules with a few conformational degrees of freedom and few
stereocenters. But whenever the interest is focused on ligands with
many stereocenters, with high flexibility or high molecular weight, it
shows many limitations.

It is conceivable that the hPXR, a promiscuous protein which can
bind very diverse molecules in a number of different orientations,
undergoes large conformational rearrangements of the LBD during
binding; therefore it represents a very demanding study case that
requires an explicit treatment of the protein flexibility involved in the
ligand binding process.

This work was accomplished also thanks to Dr. Lara Callea.

3.3.2 Exploring the PXR ligand binding mechanism using advanced MD

In the recent years, novel methods have been proposed for a fully
dynamic description of the ligand binding event based on MD [De
Vivo et al., 2016]. Given that the sampling issue is pivotal for the
description of these slow processes, enhanced sampling methods are
usually employed. Among these Steered MD [Colizzi et al., 2010] and
metadynamics [Gervasio et al., 2005, Limongelli et al., 2010] were
used to simulate the drug-binding events, with the ligand moving into
and/or out of the binding pocket.

Given the limitations observed for both standard docking and en-
semble-docking approaches in the study of the SR12813 binding to
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Figure 3.9 SR12813 is co-crystallized in different binding modes depend-
ing on the PDB deposition.

the hPXR (section 3.3.1), we tested one of these new approaches. We
were aimed both at elucidating the controversial description of the
SR12813 orientation into the binding cavity and at investigating the
ligand entrance path inside the LBD to shed light into the mechanism
underling the activation of PXR by ligands.

The buried nature of the cavity suggests significant conformational
rearrangements of the LBD upon ligand entrance. Moreover, the pres-
ence of different binding modes implies a high degree of flexibility
and plasticity of the domain during the binding process. Therefore,
we propose to explicitly include the dynamic description of the bind-
ing event using recent MD-based tools implemented in the BiKi suite
[Limongelli et al., 2013]. In particular, we employed the MD-Binding
method [Decherchi et al., 2018] to analyze the binding mechanism
and gain insights into the ligand entrance pathway. Moreover, we
propose the use of the scaled MD (SMD) approach [Spitaleri et al., 2018,
Tsujishita et al., 1993] to extensively sample the conformational space
available to the PXR-ligand complex, thus allowing elucidation of the
SR12813 dynamic behavior within the binding cavity. The characteris-
tics of the system required the development of specific methodological
approaches that may be insightful also for investigation of other ligand
binding processes.

Among the X-ray structures for the PXR-LBD in complex with SR12813,
1nrl and 3hvl include SRC-1, 4j5x both SRC-1 and RXR, while 1ilh does
not present any co-crystallized partners. The two protein partners
bind in different regions: RXR dimerizes with the α9/α10 PXR helices,
while SRC-1 binds to the αAF helix. The 1ilh deposition proposes three
different ligand binding modes: 1ilh A, 1ilh B, and 1ilh C. In Figure 3.9
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all the five different binding geometries are shown; as already pointed
out, 1nrl and 3hvl are extremely similar (Figure 3.6).

Overall the residues within the cavity of the different depositions
lie in similar geometries (pairwise RMSD on binding site heavy atoms:
1ilh-1nrl = 1.10 Å, 1ilh-4j5x = 1.40 Å, 1nrl-4j5x = 1.23 Å), with the ligand
contacting the same set of residues, but with different orientations.
In both the 1ilh A and 4j5x structures the ligand phosphate groups
are directed toward the W299 residue, while the hydroxyl group
orientations are slightly different: in 1ilh A it is involved in a H-bond
with the S247, while in 4j5x this interaction is absent and the hydroxyl
group is shifted toward the α10 helix. In the 1ilh B structure the ligand
orientation is opposite to the previous ones, with a phosphate group
forming a H-bond with H407, and the hydroxyl group pointing toward
the W299 residue. In 1nrl the ligand maintains the same interactions,
with the addition of another H-bond between S247 and the second
phosphate group. Finally, in 1ilh C the phosphate groups establish
H-bonds with S247 and Q285, while the hydroxyl group points toward
the R410. The 3hvl structure presents a ligand orientation identical
to that in 1nrl; for this reason, only the latter deposition, with better
resolution and few missing residues, was retained for the analysis.

Firstly we investigated the relative stability of the experimental
ligand binding geometries using the SMD approach [Sinko et al., 2013,
Mollica et al., 2016]. In SMD simulations, the potential energy of the
system is scaled, thus lowering the energy barriers and facilitating
the barrier-crossing events. This method was proposed for the study
of the whole ligand unbinding process and the prediction of kinetics
constant [Mollica et al., 2015, Decherchi et al., 2015], but has already
been used to evaluate the stability of different binding poses [Tsujishita
et al., 1993, Decherchi and Rocchia, 2013].

All the simulations were carried out in absence of protein partners,
and we measured the time that was necessary to reach a value of
ligand RMSD of 4 Å from the crystallographic geometry. These results
are shown as boxplots in Figure 3.10, values are representative of 23

replicas.
The binding mode in 1nrl resulted the most stable, in fact almost

half of the replicas never reached the cut-off limit of 4 Å. Also 4j5x
is quite stable, but in this case only one replica never reached the
cut-off. The other 1ilh structures were all not very stable and drifted
away from the initial crystallographic geometries. Anyway we never
observed a solvated state of the ligands, neither for these unstable
structures, this means that the high RMSD values can be ascribed to
internal ligand reorientations. d in the simulation time.

The ligand binding site of PXR is buried like the one of AhR, conse-
quently they do not present channels connecting the internal cavity
and the solvent. For this reason the path of entrance is debatable for
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Figure 3.10 Time required to leave the ligand crystallographic geometry.

Figure 3.11 Possible entrances of wa-
ter molecules into the PXR cav-
ity. Solid and blue surface rep-
resents the solvent-accessible vol-
umes, entrance B is preferred over
entrance A.

both cases. Having available high quality structures, we computa-
tionally simulated the entrance of the ligand toward the cavity. We
used the MD-Binding method that uses an additive external force to
enhance sampling of the binding event.

Before performing MD-Binding, we used 100 ns of plain MD simu-
lation of the apo protein structure (PDB ID: 4j5w) in explicit solvent
to characterize the possible channels through which water molecules
were most frequently exchanged. We identified two possible entrances
connecting the bulk solvent and the binding pocket (Figure 3.11).

Entrance A is defined as the channel formed between α2 and α3 and
entrance B the one between α2 and α6. We observed that the residues
of both the entrances are not involved in the interaction interfaces
with RXR and SRC-1. We further evaluated both entrances as possible
entrances for the ligand.

The simulation campaign comprehends 50 replicas of 20 ns for each
entrance, all started from the apo structure. Only 8 simulations starting
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Figure 3.12 Two possible path of entrance for the ligand. Protein is
represented as gray cartoons, the first and last frames in the ligand
trajectory as solid blue sticks, and the trajectory as transparent
sticks.

Figure 3.13 The breakdown of the salt-bridge between E321 and R410

upon ligand entrance. The steric hindrance of the ligand clearly
breaks the interaction.

from point A, against the 42 starting from point B, reached the binding
site. Despite the proximity of the two entrances, all simulations
starting from point A passed through entrance A and those starting
from point B through entrance B. Examples of the binding paths
associated to the two entrances are shown in Figure 3.12.

The results confirmed the preference of SR12813 for entrance B, with
84% of simulations overcoming the energetic barrier and reaching the
buried binding site. Interestingly, we found that during most of the
simulations of the path through the B entrance, the ligand causes a
shift of the α6 helix (RMSD on Cα atoms of the α6 helix ranging from
4 to 8 Å), thus producing the disruption of a salt-bridge between the
E321 and R410 residues (see Figure 3.13). It was reported not only
that this α6 is often converted into loop and thus particularly unstable,
but also that the mutation of these residues (E321 and R410) alters
the basal activity of PXR, highlighting their relevance in the binding
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Figure 3.14 Simulation time required to leave the initial MD-Binding
poses.

process [Watkins et al., 2001]. This conformational change was not
found in the simulations of water entrance; therefore the salt-bridge
acts as a gate for SR12813 and its breaking may be interpreted as the
rate-determining step for the recognition process.

Despite the high success rate in overcoming the energetic barrier for
ligand binding obtained by MD-Binding simulations, the final geome-
tries were highly heterogeneous. The distance RMSD (dRMSD) values,
calculated on the last frames show that only few replicas reached a
geometry similar to one of the five crystallographic structures. While
only 1ilh A was reproduced with high accuracy (dRMSD value for the
replica B22: 1.1 Å) and acceptable results were obtained for 1ilh B and
4j5x (dRMSD < 2 Å), none of the replicas approached 1ilh C and 1nrl,
despite the latter structure was predicted as the most stable one by
SMD (Figure 3.10).

Therefore, to enhance sampling of the ligand conformational changes
inside the binding cavity, we performed SMD simulations, instead of
plain MD, starting from the final frames of MD-Binding. We selected
the frames in which the distance between ligand and the switch-off
residue was smaller than 5.5 Å(obtaining 16 different starting points)
and performed 20 replicas of 30 ns collecting a total of 9.6 µs of simula-
tions. None of these starting binding geometries showed high stability
and most of the simulations rapidly drifted away (Figure 3.14; as a
comparison, see the 1nrl stability in Figure 3.10). Interestingly, one of
the most stable replicas was the B22 was very close to the 1ilh A X-ray
structure.

To investigate the conformational space explored by the SMD sim-
ulations, we designed two CVs (θ and φ) representing the ligand
orientation within the cavity in polar coordinates (see Figure 3.2 in
the Methods section). The conformational sub-space explored by the
ligand during the SMD simulations is well represented by the probabil-
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Figure 3.15 The two CVs define a sub-space of conformational state
probabilities. a. Simulations started from MD-Binding poses (black
dots); b. simulations started from the X-ray structures (white dots)

.

ity distribution map depending on these variables, that highlights the
most sampled regions (Figure 3.15a).

Most of the MD-Binding poses are traceble to a ligand orientation
similar to that in the X-ray 1ilh C, with the phosphate groups toward
the F288 and S247 residues in the internal region of the cavity, and the
hydroxyl group pointing toward R410 at the entrance B. Moreover, it
confirmed that the B22 simulation approached the 1ilh A geometry,
with the phosphate groups directed toward W299 and the hydroxyl
group toward the αAF helix. The remaining MD-Binding poses were
not close to any experimental structures.

The similarity between the two maps in Figure 3.15 indicates that the
method well sampled the whole conformational sub-space. The main
difference was observed in the region nearby 1ilh C, that was highly
sampled by SMD starting from the MD-Binding poses (Figure 3.15a),
while it was poorly sampled starting from any X-ray structures (Fig-
ure 3.15b). This finding can however be explained considering the
high number of MD-Binding poses falling in that region, representing
similar ligand orientations. Another difference concerns the most
sampled region in the two maps: while in SMD simulations starting
from the X-ray structures it is close to 1nrl structure, in those starting
from the MD-Binding poses it is shifted of about 20°toward higher θ

values.
We extracted a limited number of poses from the whole ensemble

representing the most sampled regions of the map using cluster analy-
sis. The seven most populated clusters, out of the 227 obtained, well
represent the regions with high conformational probability in the CVs
sub-space (Figure 3.16).

In particular, the three most populated clusters contain ligand ori-
entations similar to those observed in three experimental structures
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Figure 3.16 Centroids of the seven most populated clusters projected
onto the conformational state probability surface obtained by SMD
simulations starting from the MD-Binding poses. For the three
most populated cluster, the 3D structure of the cluster centroid is
reported.
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(1nrl, 1ilh C, and 4j5x, respectively). Despite the dRMSD from the X-ray
structures registered for the centroid of the most populated clusters
were not very low, at least one conformation close to each of the
X-ray ones (dRMSD < 1.5 Å) was found within the whole set of cluster
centroids.

In conclusion, the investigation of the binding mechanism of the
most studied PXR ligand, SR12813, here reported allowed elucida-
tion of a number of important methodological issues. The intrinsic
flexibility of the domain involved in ligand binding and the buried
nature of the cavity, as well as the lack of information about the ligand
path of entrance, make this system a challenging task. To obtain a
mechanistic description of the association process, we suggest the use
of MD-Binding method to simulate the ligand entrance into the cavity
and SMD simulations to extend the sampling of the bound states and
to evaluate their relative stability.

The combination of different methods can produce a complete pic-
ture of the binding event. Overall, the obtained results provide several
insights into the binding mechanism of SR12813. The ligand preferen-
tially enters the binding cavity through the B entrance, between the
α2 and α6 helices. We speculate that the rate-determining step of the
binding process is the breakdown of the salt bridge between E321 and
R410 by the ligand. Moreover we can consider the 1ilh C geometry as
a relative minimum in the free energy surface, but the 1nrl one as the
most energy stable (in addition to our SMD calculations, this particular
ligand orientation was the only one found in two PDB depositions,
obtained from two different experimental groups).

It was proposed that the two protein partners co-crystallized with
PXR in some of the available structures might play a role in the sta-
bilization of a particular conformation of the SR12813-PXR complex
[Watkins et al., 2003b]. In fact, the 1nrl/3hvl binding geometry was
found in presence of SRC-1 and the 4j5x geometry corresponds to PXR

bound to both SRC-1 and RXR, while the most miscellaneous deposition
1ilh, that depicts a more flexible image of the SR12813 binding, is
associated to the PXR LBD crystallized without protein partners.

Our simulations were based on PXR LBD structures with no partners,
and accordingly they describe the ligand binding event as charac-
terized by high flexibility and plasticity of the protein domain. Our
results provide further insights in addition to the hypotheses based on
experimental data. They support the presence of multiple pre-existing
conformational states of the SR12813-bound LBD also in absence of
the protein partners. This could be considered as a particular case of
conformational-selection, in which RXR or SRC-1 can select one among
these different metastable states of the complex thus shifting the dy-
namic population equilibrium toward a specific bound state. The
analysis of the multiple accessible states detected in our simulations
can explain the different binding modes observed by X-ray crystallog-
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raphy for the SR12813 ligand and support the hypothesis that the 1ilh
binding geometries are kinetically favored states, while 1nrl represent
the most thermodynamically favored state.

The approaches here proposed to study ligand binding to PXR effec-
tively treated the dynamics of this system during binding and shed
light on some of the unresolved mechanistic issues. On the basis of
this positive outcome, these methods appear suitable for analyzing
the mechanistic features of other ligand binding processes involving
promiscuous protein domains.

This work was published in Motta et al. [2018a].
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C O N C L U S I O N S

During my PhD, I applied molecular modeling methods to face envi-
ronmental relevant problems. These methods were used to describe
biological systems and processes at a molecular level, in particular
ligand binding to xenobiotic receptors.

Xenobiotic receptors are highly promiscuous, because they have to
bind a large variety of chemicals in order to eliminate toxic compounds,
which can be very diverse. Promiscuity is often achieved increasing
protein flexibility and plasticity.

In case of AhR, we modeled the LBD by homology modeling and
managed to include flexibility during both the docking step, by the
ensemble docking approach using different homology models, and the
post-docking step, by a short MD simulation (section 2.3.5). This new
protocol allowed the identification of three groups of ligands, each
binding in a specific site inside the cavity. The differences observed
in the ligand-protein interactions could result in differential effects
downstream in the AhR signaling pathway, thus these findings could
help to explain the toxicity of some agonists.

In case of PXR, given that many experimental structures are available,
we included flexibility using the ensemble docking approach with
different X-ray structures (section 3.3.1). The comparison between
docking and ensemble docking results confirmed that it is necessary
to include a variety of protein conformations, but that often these
structures are biased toward the native co-crystallized ligand geom-
etry. In contrast, the explicit inclusion of flexibility using MD-based
methods with enhanced sampling exhibited no initial bias and lead
us to identify the entrance path of ligands to the PXR binding cavity
and to rationalize the multiple SR12813 binding modes (section 3.3.2).

Promiscuous receptors often display species-specificity; the model-
ing of these protein structures shed light on the molecular determi-
nants of the observed different responses among different species. We
built the first homology models of the invertebrate C. elegans and the
amphibian G. multiplicata AhR LBDs. The first one showed a peculiar
internal cavity, that is probably unable to bind any of the classical AhR

ligands. The second helped in elucidating that the low-sensitivity of
amphibians to TCDD arose before their divergence from the common
lineage. Finally, the direct comparison between mouse/rat and human
AhR LBDs highlighted the differences and similarities in binding to the
different receptors of both agonists and SAhRMs.

The goal of computationally predict the potential activity of a ligand
given a protein sequence or structure is clearly a big challenge. We
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already pointed out some known limitations of in silico approaches
(section 1.2), but we should also consider that function itself is not
simply a product of the laws of physics and chemistry, which we can
model, but primarily of those of evolution, which remain harder to
predict.

Despite these limitations, we observed that homology modeling can
give structural information that greatly helps in the understanding
of species-specific AhRs features. Instead, the application of molecu-
lar docking on homology models remains a challenging task, with
problems already pointed out. The inclusion of protein flexibility in
docking calculations improved the reliability of the results, but the
lack of an experimental structure of the LBD still hampers a detailed
molecular description. The results obtained using the X-ray structures
for PXR underline the difference between using a homology model and
a crystal structure. Finally, the use of enhanced sampling techniques
in MD simulations of the binding process can give, more than other
methods, mechanistic explanation of the entrance path of the ligand
into the binding site.

We can conclude that molecular modeling, coupled with experimen-
tal techniques, is extremely useful to give mechanistic insights about
biological and toxicological events. The elucidation of these events
will greatly improve the possible application of in silico methods in
ecological and human risk assessment. Moreover, the understanding
of the mechanism of action could contribute to a better estimation
of interspecies translation between animal models (both in vivo and
in vitro) and human, increasing the reliability of prediction based on
these data.
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a.1 binding of diverse ligands to different ahrs

a.1.1 Experimental session

Chemicals

TCDD was obtained from Dr. Stephen Safe (Texas A&M University),
[3H]TCDD (14.3 Ci/mmol) was obtained from ChemSyn Laboratories
(Lenexa, Kansas), and TCDF, PCB126 and DBA were from Accustan-
dard (New Haven, CT). [32P]-ATP (∼6,000 Ci/mmol) was from Perkin
Elmer Life & Analytical Sciences. The structures of the specific AhR

ligands used in these studies are shown in Figure 2.15. 3MC, BNF, LEFL,
and dimethyl sulfoxide (DMSO) were from Sigma-Aldrich (St. Louis,
MO) and FICZ were from Tocris Bioscience (Minneapolis, MN) and
Indirubin (IR) from AmplaChem (Carmel, IN). All chemical stocks and
dilutions were prepared in DMSO. Please refer to Table A.1 for IUPAC

nomenclature.

Plasmids

The mAhR and mouse ARNT expression plasmids, mβAhR/pcDNA3 and
mβARNT/pcDNA3, have been previously described [Soshilov and Deni-
son, 2014]. Point mutations of mβAhR/pcDNA3 were carried out using
the QuikChange Lightning Mutagenesis Kit (Agilent Technologies)
and all constructs were verified by sequencing.

Hydroxyapatite [3H]TCDD Ligand Binding Assay

[3H]TCDD specific binding to wild-type or mutant mAhRs synthesized
in vitro using the Promega TNT Quick coupled transcription/trans-
lation rabbit reticulocyte lysate kit (Madison, WI) was carried out as
previously described [Soshilov and Denison, 2014]]. [3H]TCDD spe-
cific binding was determined by subtracting the amount of [3H]TCDD

bound to unprogrammed lysate (nonspecific binding) from the total
amount of [3H]TCDD binding to lysate containing in vitro expressed
AhR. The amount of [3H]TCDD specific binding remaining in the pres-
ence of the indicated competitor chemical was expressed as a percent
of the total [3H]TCDD specific binding. The relative binding affinity
(IC50) of each chemical was determined from concentration-dependent
competitive inhibition curves obtained using [3H]TCDD and in creas-
ing concentrations of each test chemical and the mean IC50 value was
determined using three-parameter non-linear regression.
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AhR DNA Binding (Gel Retardation) Assay

Wild-type and mutant mAhRs and mARNT were synthesized in vitro
in the presence of unlabeled L-methionine, the resulting mAhRs and
mARNT translation mixtures and MEDGK (25 mM MOPS (3-(N-mor-
pholino)propanesulfonic acid; pH 7.5), 1 mM EDTA, 1 mM dithiothre-
itol, 10% (v/v) glycerol, 150 mM KCl) were mixed in a 1:1:8 (v/v/v)
ratio and incubated with DMSO (1% final concentration) or the in-
dicated concentration of TCDD or test chemical for 2 hours at room
temperature. An aliquot of each incubation was mixed with [32P]-
labeled double-stranded oligonucleotide containing the mouse AhR

DNA binding site XRE3 (a dioxin responsive element from the upstream
region of the murine cyp1a1 gene [Denison et al., 1988] and protein-
DNA complexes resolved by gel retardation analysis as previously
described in detail [Soshilov and Denison, 2014]. Gels were visual-
ized using a FLA9000 Fujifilm Imager and protein-DNA complexes
quantitated with Fujifilm MultiGauge software. For potency measure-
ments, reactions were incubated with increasing concentrations of the
test chemical and the chemical concentration producing half maximal
AhR:ARNT:XRE complex formation (EC50) determined.

Transactivation assay

Transactivation assays were performed in the Kenyon College, Gam-
bier, OH (USA) by the Prof. Powell laboratories. COS-7 cells were
transfected using Lipofectamine 2000 (Invitrogen). Cells were co-
transfected with 13.4 ng of pGudLuc6.1 (reporter construct), 1.0 ng of
Renilla (transfection control construct), 33.4 ng of X. laevis ARNT and
AhR expression constructs. AhR protein expression was detected using
polyclonal antibody SA-210 (1:500, Enzo) and five hours after transfec-
tion, cells were treated with TCDD, FICZ, or DMSO. Luminescence was
measured 18 hours after dosing. Nonlinear regression curves of the
average fractional induction values were used to calculate EC50 values
(n=3).

DNA binding (gel retardation) assay

The DNA binding assays were performed in the Dept. of Environmental
Toxicology, University of California, Davis, CA (USA) by the Prof.
Denison research team.

Wild-type and mutant AhRs and ARNT were synthesized in vitro in
the presence of unlabeled l-methionine, the resulting AhR and ARNT

translation mixtures and MEDGK (25 mM MOPS (3-(N-morpholino)
propanesulfonic acid; pH 7.5), 1 mM EDTA, 1 mM dithiothreitol, 10%
(v/v) glycerol, 150 mM KCl) were mixed in a 1:1:8 (v/v/v) ratio and
incubated with DMSO (1% final concentration) or the indicated concen-
tration of TCDD or IR for the indicated periods of time at room tem-
perature. An aliquot of each incubation was mixed with [32P]-labeled
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double-stranded oligonucleotide containing the AhR-ARNT XRE3 DNA

binding site (a dioxin responsive element from the upstream region
of the murine cyp1a1 gene and protein-DNA complexes resolved by
gel retardation analysis. Gels were visualized using a FLA9000 Fu-
jifilm Imager and protein-DNA complexes quantitated with Fujifilm
MultiGauge software (FujiFilm Corporation, Valhalla, NY, USA).

Transient transfection assays

The transient transfection assays were performed in the Dept. of
Environmental Toxicology, University of California, Davis, CA (USA)
by the Prof. Denison research team.

COS-1 cells were plated at a density of 75,000 cells/well and al-
lowed to attach overnight in a 24-well plate. Cells were transiently
transfected (per well) with the following amounts per well: 2 µL Lipo-
fectamine 2000 (Invitrogen, Carlsbad, CA, USA), 20 ng wild-type
(mβAhR/pcDNA3) or mutant AhR expression plasmids (in pcDNA3.1),
20 ng of mβARNT/pcDNA3 or pcDNA3.1(+) and 200 ng pGudLuc6.1.
Twenty-four hours after transfection, cells were incubated with DMSO

(0.1%, v/v), TCDD (10 nM final concentration) or IR (1 µM final con-
centration) for 18 to 22 h, followed by washing with PBS, lysis and
measurement of luciferase activity in 50 µL aliquots.

a.1.2 Figures and tables

Figure A.1 The human AhR LBD plays a major role in ligand-selective
activation by IR
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Figure A.2 Enhanced signaling of the hAhR by IR is associated with
selected residues within the hAhR PASB LBD. In vitro synthesized
mutant mAhRs and wild-type mARNT were incubated in the presence
of DMSO (1%, v/v) or AhR agonists in DMSO (TCDD (0.001-100 nM) or
IR (0.001-10,000 nM) for 2 h, followed by analysis of AhR DNA binding
by gel retardation analysis. The amount of inducible protein-DNA
complex at each TCDD or IR concentration was quantitated, and
values normalized to the amount of complex formed with a maximal
activating concentration of TCDD (20 nM)
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Figure A.3 Docking matrix; each sign indicates that a pose was found
for that ligand in that model. Red rounds stand for the two poses
chosen as representative of the binding mode variability of each
ligand. Ligands and cavities are ordered by increasing occupancy
or volume, respectively.

Figure A.4 Relationship between the relative affinity (LogIC50) of each
test compound to bind to the AhR and their relative potency to
stimulate AhR DNA binding (LogEC50).

93



appendix

Figure A.5 Sequence alignment between HIF-2α and mAhR used for
Homology Modeling. Amino acid residues are colored by physico-
chemical properties, secondary structures attributed by DSSPcont
to the AhR-3h7w model are reported. Internal residues are marked
by asterisks and residues subjected to loop-modeling refinement
(Dα-Eα: 310-314 and Hβ-Iβ: 365-370) are underlined.

Figure A.6 The three possible forms of IR at pH = 7 found by Epik.

Figure A.7 Three-dimensional representation of the two representative
docking poses selected for each ligand. Protein is shown as cartoons,
ligands as sticks.
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Figure A.8 RMSD graphs in the MD simulations of the two representa-
tive poses of each ligand (the pose with the lowest ∆Gbind is shown
in green). RMSD is calculated against the initial docking pose.
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Figure A.9 Relative ability of test chemicals to stimulate AhR trans-
formation/DNA binding of wild-type and mutant AhRs. Single
concentrations of AhR ligands were used to assess AhR transfor-
mation/DNA binding measured as specific protein-DNA complex
(% mAhR TCDD) by Gel Retardation Analysis as described in the
Material and Methods section. Maximal concentrations of AhR
ligands were used and include BNF (10 µM), BaP (10 µM), 3MC
(10 µM), IR (1 µM), DBA (10 µM), FICZ (1 µM), PCB126 (100 nM),
LEFL (100 µM), TCDD (20 nM), and TCDF (100 nM). Values rep-
resent the Three-parameter non-linear regression performed with
nine independent reactions for mean specific protein-DNA com-
plex (%mAhR TCDD) ± standard deviation of two independent
reactions.
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Table A.1 Ligands used in the study. Common names, IUPAC names and
CID are reported.

Ligand id name IUPAC name CID

TCDD tetrachlorodibenzo dioxin
2,3,7,8-tetrachlorodibenzo-p-
dioxin

15625

TCDF tetrachlorodibenzofuran
2,3,7,8-
tetrachlorodibenzofuran

39929

PCB126 polychlorobiphenyl
1,2,3-trichloro-5-(3,4-
dichlorophenyl) benzene

63090

BaP benzo[a]pyrene benzo[a]pyrene 2336

3MC 3-methylcholanthrene
3-methyl-1,2-
dihydrobenzo[j]aceanthrylene

1674

DBA dibenzanthracene naphtho[1,2-b]phenanthrene 5889

BNF beta-naphthoflavone
3-phenylbenzo[f]chromen-1-
one

2361

FICZ 6-formylindolo carbazole
5,11-dihydroindolo[3,2-b]car-
bazole-12carbaldehyde

1863

IR trans indirubin
(3Z)-3-(3-oxo-1H-indol-2-
ylidene)-1H-indol-2-one

5318433

LEFL leflunomide
5-methyl-N-[4-(trifluorome-
thyl)phenyl]-1,2-oxazole-4-
carboxamide

3899

Table A.2 Relative affinity and potency of test chemicals determined
in AhR ligand binding (AhR lb) and DNA binding (AhR dnab)
assays. The relative potency of each test chemical for AhR ligand
binding (IC50) and transformation/DNA binding (EC50) was de-
termined from concentration-inhibition or concentration-response
curves obtained using [3H]TCDD ligand binding and gel retardation
analysis, respectively, as described under Materials and Methods.
The mean IC50/EC50 ± standard deviation (sd) was determined
using three-parameter non-linear regression with nine independent
reactions.

Ligand id
lb IC50
[M]

lb sd [M]
lb -
LogIC50

dnab

EC50 [M]
dnab sd
[M]

dnab

-LogEC50

TCDD 1.00E-09 - 9.00 7.53E-09 1.10E-09 8.12

TCDF 2.01E-08 2.24E-09 7.70 4.55E-09 5.37E-10 8.34

PCB126 5.89E-09 3.29E-09 8.23 6.51E-09 9.45E-10 8.19

BaP 6.17E-07 8.41E-08 6.21 3.89E-08 4.65E-09 7.41

3MC 1.58E-09 1.27E-09 8.80 6.00E-09 4.87E-10 8.22

DBA 7.60E-09 4.20E-09 8.12 4.02E-09 3.80E-10 8.40

BNF 7.24E-09 2.30E-09 8.14 1.38E-07 3.06E-08 6.86

FICZ 1.02E-09 7.86E-10 8.99 4.25E-09 5.85E-10 8.37

IR 2.17E-09 1.02E-09 8.66 2.39E-08 9.90E-09 7.62

LEFL 2.19E-06 1.03E-06 5.66 2.68E-05 1.75E-06 4.57
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Table A.3 Ligands in the holo X-ray structures of HIF-2α used as tem-
plates for homology modeling.

ligand id name IUPAC name CID PDB id

2XY THS-044

N-[2-nitro-4-(trifluoromethyl)-
phenyl]morpholin-4-amine

12318718 3f1o

018 THS-017

2-nitro-N-(thiophen-3-ylmethyl)-4-
(trifluoromethyl)aniline

43805017 3h7w

020 THS-020

N-(furan-2-ylmethyl)-2-nitro-4-(tri-
fluoromethyl)aniline

4080866 3h82

0X3 0X3

N-(3-chloro-5-fluorophenyl)-4-nitro-
2,1,3-benzoxadiazol-5-amine

70697712 4ghi

0XB 0XB
N-(3-fluorophenyl)-4-nitro-2,1,3-ben-
zoxadiazol-5-amine

2836648 4gs9

43L 43L
(5S,7R)-5,7-bis(3-bromophenyl)-
1,5,6,7-tetrahydrotetrazolo[1,5-
a]pyrimidine

51551597 4xt2

0X3 0X3

N-(3-chloro-5-fluorophenyl)-4-nitro-
2,1,3-benzoxadiazol-5-amine

70697712 4zqd

Table A.4 Comparison of the internal cavity volumes (calculated by
CASTp) in the HIF2α template structures and in the mAhR models.

PDB id resolution [Å] vol [Å3] ligand id model name vol [Å3] DOPE score

4zp4 2.35 375 water AhR-4zp4 417 -1146.24

3f1p 1.17 364 water AhR-3f1p 478 -1222.75

3h82 1.50 439 020 AhR-3h82 489 -1216.72

3f1n 1.48 383 EDO AhR-3f1n 491 -1213.07

4gs9 1.72 424 0XB AhR-4gs9 533 -1192.83

3f1o 1.59 425 2XY AhR-3f1o 568 -1186.26

4ghi 1.50 443 0X3 AhR-4ghi 575 -1160.52

4ghi 1.50 443 0X3 AhR-4ghi.2 629 -1159.28

3h7w 1.65 421 018 AhR-3h7w 689 -1283.28

4zqd 2.87 569 0X3 AhR-4zqd 712 -1153.25

4xt2 1.69 561 43L AhR-4xt2 808 -1187.60
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Table A.5 Validation scores of PROCHECK and ProSA for the mAhR
models.

model PROCHECK G-factor ProSA Z-Score

AhR-4zp4 -0.15 -0.15

AhR-3f1p -0.14 -0.14

AhR-3h82 -0.30 -0.30

AhR-3f1n -0.19 -0.19

AhR-4gs9 -0.25 -0.25

AhR-3f1o -0.26 -0.26

AhR-4ghi -0.35 -0.35

AhR-4ghi.2 -0.35 -0.35

AhR-3h7w -0.22 -0.22

AhR-4zqd -0.24 -0.24

AhR-4xt2 -0.36 -0.36
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Table A.6 XP GlideScore for all the docking poses. The two selected
representative poses are highlighted in light-gray.

ligand model XP Score ligand model XP Score

TCDD AhR-4ghi -7.9 BNF AhR-4zqd -8.8
AhR-3h7w -7.3 AhR-3h7w -8.7
AhR-4xt2 -6.9 AhR-4gs9 -8.3
AhR-3f1o -4.9 AhR-4xt2 -8.2

TCDF AhR-4ghi -8.5 AhR-4ghi.2 -7.5
AhR-4zqd -7.6 AhR-4ghi -7.1
AhR-4gs9 -7.5 AhR-3f1o -6.5
AhR-3h7w -7.1 FICZ AhR-4ghi -10.1
AhR-3f1o -6.2 AhR-3h7w -8.1
AhR-4xt2 -6.1 AhR-4xt2 -7.8

PCB126 AhR-4ghi.2 -8.5 AhR-4zqd -7.5
AhR-4ghi -8.1 IR trans AhR-3h7w -8.0
AhR-4zqd -7.5 AhR-4xt2 -7.5
AhR-3h7w -7.4 AhR-4zqd -7.0
AhR-4gs9 -7.4 AhR-4ghi -6.9
AhR-4xt2 -6.6 AhR-4gs9 -6.9
AhR-3f1o -4.7 AhR-3f1o -6.3

BaP AhR-3h7w -8.8 LEFL AhR-4ghi -9.1
AhR-4zqd -7.6 AhR-3h82 -8.1

AhR-4ghi.2 -7.4 AhR-4zqd -7.4
AhR-4xt2 -6.5 AhR-4gs9 -6.4

3MC AhR-4zqd -8.3 AhR-4ghi.2 -6.3
AhR-3h7w -7.9 AhR-3f1o -6.0
AhR-4xt2 -7.5 AhR-3f1n -5.7

DBA AhR-3h7w -9.2 AhR-3h7w -5.6
AhR-4xt2 -8.8 AhR-4xt2 -5.4
AhR-4gs9 -8.6 AhR-4zp4 -4.9
AhR-4zqd -8.4
AhR-4ghi -8.3
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Table A.7 MM-GBSA ∆Gbind mean values in the last 8 ns of MD sim-
ulations for the selected docking poses. The pose with the lowest
∆Gbind value is highlighted in light gray

ligand ∆Gbind mean [kcal mol−1] sd [kcal mol−1]

TCDD-3h7w -36.8 1.9
TCDD-4ghi -34.8 1.8
TCDF-4ghi -34.0 1.8
TCDF-4gs9 -32.7 1.9
PCB126-4ghi.2 -38.0 2.0
PCB126-4xt2 -36.1 1.9
BaP-4ghi.2 -34.7 2.3
BaP-3h7w -30.0 2.1
3MC-4zqd -38.3 3.0
3MC-4xt2 -31.0 2.3
DBA-4gs9 -37.6 2.6
DBA-4ghi -34.1 1.9
BNF-3h7w -38.7 2.0
BNF-4ghi.2 -37.0 2.4
FICZ-4ghi -40.4 2.3
FICZ-4xt2 -35.9 3

IR trans-4zqd -39.5 3.0
IR trans-4ghi -34.0 4.0
LEFL-3f1n -36.6 2.0
LEFL-4gs9 -31.0 2.0
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Table A.8 Relative ligand binding affinity of test chemicals for mutant
AhRs. The relative affinity (IC50) of each test chemical for the AhR
ligand was determined from concentration-dependent inhibition
curves obtained using [3H]TCDD ligand binding analysis, as de-
scribed under Materials and Methods. The mean IC50 ± standard
deviation was determined using three-parameter non-linear regres-
sion with nine independent reactions.

AhR Mutant AhR Ligand IC50 [M] SD [M] -LogIC50

P291L
TCDF 4.35E-11 2.20E-10 10.36

BaP 6.04E-07 1.82E-07 6.22

M342A

3MC 2.48E-07 2.93E-08 6.61

PCB126 9.33E-09 1.76E-07 8.03

DBA 6.72E-09 1.13E-08 8.17

BNF 9.60E-09 4.38E-09 8.02

FICZ 2.07E-11 5.86E-11 10.68

IR 1.26E-08 4.60E-09 7.90

LEFL 9.03E-09 2.74E-08 8.04

M334A
3MC 3.47E-08 1.74E-08 7.46

PCB126 7.41E-08 5.79E-09 7.13

DBA 7.33E-09 1.56E-08 8.13

H331A 3MC 1.41E-10 3.83E-11 9.85

S330A LEFL 6.29E-06 1.64E-06 5.20

S359A

BNF 4.71E-08 3.75E-10 7.33

FICZ 4.10E-09 1.30E-09 8.39

IR 9.20E-08 1.98E-09 7.04

LEFL non-converged non-converged non-converged

C327A

DBA 1.46E-08 3.15E-09 7.83

BNF 4.05E-08 8.92E-09 7.39

FICZ 4.32E-09 2.59E-08 8.36

IR 7.58E-09 2.16E-08 8.12
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