IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 8, 2019, accepted June 22, 2019, date of publication July 1, 2019, date of current version July 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2925855

Field Monitoring With Delayed Saving

OSCAR CORNEJO ™, DAVIDE GINELLI, DANIELA BRIOLA,
DANIELA MICUCCI~, AND LEONARDO MARIANI

Department of Informatics, Systems and Communication, University of Milano-Bicocca, 20126 Milan, Italy
Corresponding author: Oscar Cornejo (oscar.cornejo@unimib.it)

This work was supported in part by the ERC Consolidator Grant 2014 Program through the EU H2020 Learn Project under
ERC Grant 646867.

ABSTRACT Field monitoring techniques can collect data about the behavior of software applications while
running in the field, with real users and real data. Developers can exploit the information extracted from the
field to timely improve, tune, and fix their systems, anticipating feedback by users. It is, however, challenging
to extract a relevant amount of information from field executions without introducing significant overhead.
This paper addresses this challenge by studying how to inexpensively trace data in-memory while postponing
save operations to idle time, so that the operations requested by users are exposed to a negligible overhead
only. In particular, this paper presents delayed saving, a technique that efficiently traces references to objects,
opportunistically saving information only when the monitored application is not serving any user request.
Storing references and postponing save operations may introduce inaccuracy in the collected data, that is,
a lately saved object might be in a different state compared to the state of the object at the time it was traced.
Our evaluation shows that the level of inaccuracy introduced by delayed saving is limited compared to its

efficiency and low intrusiveness.

INDEX TERMS Monitoring, tracing, dynamic analysis.

I. INTRODUCTION

Collecting data from the field, that is, while applications run
in a real environment with real users, is extremely important
because it can reveal how programs are actually used. For
instance, field monitoring techniques can be used to extract
frequent usage scenarios [1], profiling data [2], popular con-
figurations [3], behavioral information [4], [5], and failure
reports [6], [7]. Using field data as part of the development
process is increasingly popular, especially with the grow-
ing adoption of DevOps practices [8], which systematically
exploit automation and monitoring tools to reduce the gap
between development and operation [9], [10].

Monitoring the software directly in the field is however
challenging. Indeed, the monitoring activity may interfere
with the user activity causing annoying slow downs, which
may negatively affect the quality of the user experience.
It is thus important to be able to collect data non-intrusively,
balancing the amount of collected information with its com-
pleteness and accuracy. This is particularly true for interactive

The associate editor coordinating the review of this manuscript and
approving it for publication was Mervat Adib Bamiah.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

applications, that is, reactive applications designed to contin-
uously interact with users.

Existing techniques reduce the impact of monitoring by
limiting the information that is collected from the field [4],
[5], [11]-[14]. Although this might preserve the quality of
the user experience [15], it significantly reduces the amount
of collected data, slowing down the extraction of knowledge
from the field while introducing the significant risk of miss-
ing rare events in the collected observations. In this paper,
we propose to reduce the intrusiveness of field monitoring
using a radically different approach: reducing the accuracy of
the collected data instead of reducing the amount of collected
data. This can be particularly beneficial to all those tech-
niques that do not require perfect observations but can work
with almost correct data, such as user profiling techniques [2],
which focus on statistically relevant evidence rather than
perfect evidence, failure reproduction techniques [16], which
can work with inaccurate data as long as it is sufficient to
reproduce failures, and mining techniques [17], [18], which
focus on the generation of accurate, but not necessarily per-
fect, models.

Following this intuition, this paper presents Delayed Sav-
ing, a technique that exploits the characteristics of interactive

85913

https://orcid.org/0000-0002-9243-8071
https://orcid.org/0000-0003-1261-2234
https://orcid.org/0000-0001-9527-7042

IEEE Access

0. Cornejo et al.: Field Monitoring With Delayed Saving

applications to collect sequences of function calls and the
associated objects (e.g., the set of objects that can be reached
from the parameters and the reference to the receiving object)
introducing negligible overhead, at the cost of a limited loss
of accuracy. Delayed Saving collects minimal information
while the user is effectively interacting with applications
(e.g., it just traces the sequence of methods that are executed
and the references to the associated objects), and postpones
data recording to idle time.

In particular, Delayed Saving observes the status of
an interactive application, which can be either idle
(i.e., the application is not serving a user request) or working
(i.e., the application is serving a user request), by capturing
user interactions and sampling the CPU consumption. This
information is exploited to optimally activate and deactivate
data recording, thus minimizing its intrusiveness.

Opportunistically saving the data while the application is
idle has the advantage of not affecting the user experience
because users do not experience any significant slow down.
On the other hand, data is saved asynchronously compared to
the time when the recording should actually happen and this
may introduce a loss of accuracy. For instance, if the value of
a parameter is recorded sometime after a method is invoked,
the value of the parameter at the time of the recording could
be different than the value at the time the method was called,
and thus the resulting trace might be inaccurate.

We evaluated Delayed Saving with two popular open
source applications, Eclipse [19] and Open Hospital [20],
and discovered that in practice it can introduce a huge gain
in performance at the cost of a limited loss of accuracy.
We also confirmed the possibility of exploiting the collected
data in relevant tasks by applying the Daikon data mining
technique [17] to the collected data and demonstrating that
the loss of accuracy has minor impact on the resulting models.

In a nutshell, the major contributions of this paper are:
(i) Delayed Saving, a novel monitoring technique that can
save a significant amount of data about function calls and
the associated objects without annoying users, at the cost
of a small loss of accuracy; (ii) an evaluation that assesses
Delayed Saving in terms of performance and data accuracys;
(iii) an investigation of the impact of the inaccuracy in the
collected data when exploiting the Daikon mining technique.

The paper is organized as follows. Section II presents a
simple study that quantifies the saving that can be achieved
by temporary storing values in memory instead of immedi-
ately persisting them, as Delayed Saving does. Section III
describes the Delayed Saving technique. Section IV discusses
how the technique can be configured to address a specific
application. Section V presents the empirical validation we
conducted to assess our technique. Section VI discusses the
results. Finally, Sections VII and VIII discuss related work
and provide final remarks, respectively.

II. IN-MEMORY TRACING VS SAVING TO FILES
To quantify the gain that can be obtained by saving data to
file during idle time and tracing values in-memory during

85914

= Saving data in memory Saving data in file

350
300

@200

£
E 150
100
50

0 2.73% 2.53% 3.

=3
=
N
o
N
B
©
2
B

%. 2.22%

10MM points
toString
25MM points
toString
50MM points |
toString
10MM points
toString+
25MM points |§
toString+
50MM points |5
toString+

FIGURE 1. Time performance comparison when saving to memory and
to file.

working time, we designed a small and simple motivating
experiment.

We implemented a small program in Java that creates a list
of objects of a Point class with attributes x and vy, and then
saves them either in memory or into a file. We extract data
about the points using the t oSt ring method. To study what
happens when a non-trivial amount of data has to be collected,
we also produced a modified version of the toString
method that returns a string with a long message in addition
to the x and y coordinates of the point.

Figure 1 shows the time necessary to save a variable
number of objects and variable amount of information in
memory and into file (toString+ indicates the modified
toString method). The number on top of each bar rep-
resenting the cost for saving data in memory indicates the
percentage of time needed to save to memory with respect
to the time needed to save to file. As expected, the reduction
is impressive, ranging from 97% to 98%, and is independent
on the amount of information that is recorded. This example
further confirms the intuition behind Delayed Saving, that
is, since the difference between writing to file and saving in
memory is definitely large, we could exploit the idle phase
to save the data collected by the monitoring activity, while
exploiting the in-memory tracing during the working phase,
drastically reducing the overhead introduced by monitoring.

Ill. DELAYED SAVING

The concept of Delayed Saving is exemplified in Figure 2.
The figure shows the time evolution of a typical execution in
an interactive system, distinguishing the working (grey area)
and idle (white area) states. The solid line represents an exe-
cution without monitoring: the CPU usage level significantly
increases when the application is working and significantly
decreases when the application is idle. When we introduce
a monitoring approach that directly saves the observed data,
a significant overhead can be experienced during the working
state since data is saved synchronously with the execution,
while almost no overhead is experienced in the idle state.
The resulting behavior is represented by the thin dotted line
shown in Figure 2. Delayed Saving completely changes this
scenario by collecting minimal amount of information during
the working state, to postpone the time consuming saving

VOLUME 7, 2019

0. Cornejo et al.: Field Monitoring With Delayed Saving

IEEE Access

Overhead
introduced by
Direct Saving

CPU usage level

Execution without
monitoring

Execution with
Direct Saving

Execution with
Delayed Saving

Idle

No impact on
users

Working

Impact on users

Working

Impact on users

Idle

No impact on
users

FIGURE 2. Comparison of performances for different monitoring approaches.

new method call/
processMethodCall ()

new method call/
processMethodCall ()

user interaction/
detectUserInteraction ()

Idle

—‘ Working

sample time elapsed [getCpuConsumption () <CPU_THRESHOLD]/
enableReading ()

/saveValues ()

sample time elapsed [getCpuConsumption () 2CPU_THRESHOLD]

FIGURE 3. Statechart capturing the behavior of delayed saving.

operations to the idle state, when they do not interfere with
the user activity. The resulting behavior is represented by the
thick dotted line shown in Figure 2.

In the working state, Delayed Saving maintains a collection
of references to the data structures and objects that will
be later saved (In-memory tracing). Since the collection is
hosted in memory and the traced data does not require any
manipulation beyond saving references, the collection can be
populated with a large number of references in a computa-
tionally inexpensive way.

When the monitored application enters the idle time,
the data traced in memory is saved into a persistent storage.
This operation is typically expensive because both a signif-
icant amount of data has to be written and the access to
persistent storage is orders of magnitude slower than access to
memory. However, since this operation is performed during
idle time, the user of interactive applications do not experi-
ence any slowdown.

Although the concept behind Delayed Saving is valid for
different kinds of events and data that can be monitored,
let us specifically consider the case of a monitor that must
collect the sequence of method calls that are executed by an
application, to later reconstruct and analyze its internal

VOLUME 7, 2019

behavior. Tracing method calls is common to many tech-
niques and applications (e.g., reproducing failures [16],
detecting malicious behaviors [21], debugging applica-
tions [22], profiling software [2], optimizing applica-
tions [23], and mining models [18], [24], [25] which is also
the case we studied empirically in our evaluation). In such a
case, Delayed Saving collects the sequence of methods that
are executed and stores the references to the objects used as
parameter during the working state.

Listing 1 shows the pseudocode of the algorithm. It is
composed of five main functions: processMethodCall,
which is executed every time a method call is inter-
cepted; getCpuConsumption, which is executed accord-
ing to the sampling rate to detect changes in the
CPU consumption; enableReading, which is executed
to enable the access to the buffer when the application is
detected to be idle; detectUserInteraction, which
is executed every time the user performs an action; and
saveValues, which keeps running to save values to a
file. The behavior of these functions is illustrated in the
statechart reported in Figure 3, which visually shows the
functions activated in each state and the events that cause the
transitions.

85915

IEEE Access

0. Cornejo et al.: Field Monitoring With Delayed Saving

-

Buffer buffer = new Buffer();
concurrent access */
Sample lastSample;

/+ Allows

)

4 /+ Executed when a method call is
intercepted */
void processMethodCall (MethodCall call) {
Event event = new Event ();
event .addSignature (call.getSignature());
event .addRefToArgs (call.getArgs());
buffer.addEvent (event) ;

® - ® o

©

10 }

11

12 /+ Executed according to sampling rate =/
13 double getCpuConsumption () {

14 Sample currSample = getSample();

15 double cpuConsumption =

16 (currSample.cputime-lastSample.cputime)
/ (currSample.time-lastSample.time) ;
17 lastSample = currSample;

18 return cpuConsumption;

19 }

20

21 /x Executed when cpuConsumption<
CPU_THRESHOLD «/

22 void enableReading() {

23 buffer.setReadable (true);

24 }

25

26 /* Executed when the user performs an
action */

27 void detectUserInteraction() {

28 buffer.setReadable (false) ;

29 }

30

31 /+ Saves values from buffer to file x/

32 void saveValues () {

33 while (true) {

34 /+ Blocking read: it reads a value only
if the buffer is readable and not

empty */

35 Event event = buffer.readEvent();

36

37 /* It retrieves parameter values using
the refs in the event =*/

38 FileWriter.write (event);

39 }
40 }

Listing 1. Delayed Saving pseudocode.

The Idle state inexpensively traces in-memory the method
calls that may occur by running the processMethodCall
function, which stores the signatures of the invoked methods
and the references to parameter values. In the Idle state,
the function saveValues is continuously executed to read
values from the buffer and write them in a file. The reading
operation is blocking, that is, the call to the function does
not return until the buffer is readable and includes values
to be written. A user interaction causes the execution of the
function detectUserInteraction, which in turns sets
the buffer as not readable, since the monitored application is
now in the Working state.

In the Working state, events are still inexpensively
traced in-memory by the processMethodCall function.
In addition, the CPU consumption is regularly sampled by
activating the function get CpuConsumption, and when a
value below the threshold is detected, the buffer is marked as
readable by the enableReading function and the current
state changes into the Idle state.

Depending on the size, number, and complexity of
objects, writing values to a file may require some time and

85916

computational resources, but it does not interfere anyway
with the user activity. Thus compared to directly saving
the collected data to file, Delayed Saving still collects the
required data (in this example the sequence of method calls
together with the values of the objects passed as parameters)
while having negligible impact on the overhead, as reported
in our evaluation.

Of course, postponing data saving may imply recording
values that are not the same than at the time they were traced,
which is at the time a method was invoked in the example.
We studied this aspect in our evaluation and demonstrated
that the degree of inaccuracy introduced by Delayed Saving
is still compatible with relevant usage scenarios of field data.

Delayed Saving has to automatically detect when an inter-
active application switches between the idle and working
states. To do this, it exploits two information: the generation
of user events and the value of the CPU consumption. In par-
ticular, an application switches from idle state to working
state as soon as a user event (e.g., a click, a keyboard input,
a scroll, etc.) is detected. An application switches from a
working state to an idle state when the CPU consumption,
which is sampled at a given rate, decreases below a given
threshold value. We use the CPU time to compute CPU
consumption to avoid any interference with other processes
and I/O operations [26].

Both the value of the CPU consumption threshold and the
sampling rate are configurable parameters of the technique.
These parameters may determine the early, optimal, or late
activation and deactivation of data saving. We discuss in
the next section how the CPU consumption threshold is
empirically determined for a specific application so as to
minimize the interference between the monitoring system
and the application. We also empirically study different CPU
sampling rates to determine their impact on the performance
of the technique and accuracy of the data.

IV. CALIBRATION OF THE CPU CONSUMPTION
THRESHOLD

Delayed Saving requires the definition of a threshold on
CPU consumption that can be used to determine when the
monitored application has completed serving a request and is
thus moving from the working to the idle state. To calibrate
this value and to avoid both early activations, which may
cause the monitor to interfere with the user activity, or late
activations, which may cause the monitor to loose time that
can be exploited to save values, we defined a calibration
procedure.

The calibration procedure is defined as an optimization
problem that takes a set of perfectly classified samples in
input and experiments different threshold values until it iden-
tifies the optimal value that will be used in the field. To obtain
perfectly classified values, a subset of the application func-
tionalities are manually instrumented to collect when the
computation exactly starts and ends. Since this procedure
must be performed manually, it can be performed only for a
selection of the functionalities and not for the full application.

VOLUME 7, 2019

0. Cornejo et al.: Field Monitoring With Delayed Saving

IEEE Access

Thus it cannot be cost-efficiently used as general mechanism
to detect the transitions between the working and the idle
states.

The samples collected for the calibration have a timestamp,
a CPU usage level, and a ground truth classification derived
by the knowledge of when the user operation started and then
finished its computation. We actually run Delayed Saving
to associate a label that represents the status of the monitor
(saving or not saving data) with each sample. The ideal
behavior corresponds to a monitor that only saves data when
the sample belongs to an idle state, and does not save data
when the sample belongs to a working state. The accuracy
of the behavior of the monitor can thus be measured as the
combination of its accuracy with the idle samples and its
accuracy with the working samples.

More formally, given a threshold 7 and a set of samples S,
if idlePos is the number of idle samples associated with active
saving, idleNeg is the number of idle samples associated with
inactive saving, wkPos is the number of working samples
associated with inactive saving, and wkNeg is the number of
working samples associated with active saving, the accuracy
resulting from the application of the threshold 7 to the set of
samples S is:

idlePos +
idlePos + idleNeg

wkPos

lib(t,S) = 0.5 .5
calib(t, S * * wkPos + wkNeg

The calibration procedure returns the value of ¢ that maxi-
mizes calib(t,S).

V. EMPIRICAL VALIDATION
This section presents the design of our empirical evaluation:
we briefly describe the prototype tool that we used for the
assessment (Section V-A), we then discuss the research ques-
tions (Section V-B), the experimental subjects (Section V-C),
the calibration procedure (Section V-D), and finally the
design of the experiment (Section V-E). We discuss the results
in the next section.

In this evaluation we focus on the collection of method
calls and parameters values, which is an information com-
monly recorded by many techniques [2], [16], [18], [21]-[25].

A. PROTOTYPE TOOL

Our prototype tool is implemented in Java and uses
JNativeHook [27] to intercept user interactions (function
detectUserInteraction listedin Listing 1 is executed
when an interaction is intercepted) and OSHI [28] to sample
CPU consumption values.

We use Aspect] [29] to design the monitor that
collects method calls and parameter values (function
processMethodCall listed in Listing 1 is executed every
time a method call to be traced is intercepted). These values
are written in-memory and then saved by Delayed Saving.
They are otherwise directly written to file exploiting the
normal Java flushing policies by Direct Saving.

VOLUME 7, 2019

B. RESEARCH QUESTIONS
With this experimental evaluation, we aim to answer the
following research questions:

« RQ1: How do the overhead and memory consump-
tion introduced by Delayed Saving compare to Direct
Saving? This research question compares Delayed Sav-
ing, which delays save operations to idle time, to Direct
Saving, which does not delay operations, both in terms
of overhead and memory consumption.

« RQ2: Is the data collected by Delayed Saving accu-
rate? This research question quantifies the degree of
accuracy of the traces collected by Delayed Saving.

« RQ3: Can Daikon generate accurate models from the
data collected by Delayed Saving? This research ques-
tion studies if the traces collected by Delayed Saving
are accurate enough to use machine learning techniques,
such as Daikon, to mine information about the behavior
of the software.

C. EXPERIMENTAL SUBJECTS

To answer these research questions, we applied Delayed
and Direct Saving to two very diverse projects: the Eclipse
IDE [19] and the Open Hospital application [20]. In the case
of Eclipse, we monitored the execution of methods within the
JDT Plugin, which provides a number of views, editors, wiz-
ards, builders, and code merging and refactoring tools for Java
development. In the case of Open Hospital, we monitored
the execution of the methods within the packages managing
patients, hospital admissions, and accounting.

To run the applications we implemented two automatically
executable Sikulix [30] test cases exercising the monitored
functionalities. In the case of Eclipse, we designed a test
case that creates a new Java Project with three classes, gen-
erates getters, setters, constructor, toString, and main
method, performs multiple search operations, refactors the
code, cleans the project, and finally generates the documen-
tation of the project, for a total of 48 user operations. In the
case of Open Hospital, the test case adds three new patients to
the system, changes their information, creates a bill with the
exams to be performed for every patient, and finally deletes
all the patients and the related bills, for a total of 36 user
operations.

D. CALIBRATION

Since Delayed Saving is a technique whose performance
depends on the selected threshold level for CPU consumption,
we ran the test cases and applied the calibration procedure
presented in Section IV to both subject applications. Figure 4
shows the boxplot of the CPU consumption values observed
during the idle and working states for Eclipse and Open
Hospital. We can notice that the populations of values are
significantly different depending of the state of the applica-
tion, confirming the intuition that the CPU consumption value
can be reliably used to deactivate the monitor. The calibration
procedure finally identifies a threshold value equals to 2.75%
in Eclipse, and equals to 7.26% in Open Hospital.

85917

IEEE Access

0. Cornejo et al.: Field Monitoring With Delayed Saving

T T
Eclipse Open Hospital

CPU usage [%]
I
o

Application status B3 idle B3 working

FIGURE 4. CPU consumption values for Eclipse and Open Hospital in the
idle and working states.

1.00 A

Optimization [%)]
o °
g o

o
N
A

0.00 A

0 25 50 75 100
Threshold [%]

FIGURE 5. Threshold selection for Open Hospital.

Delayed Saving is relatively sensitive to the choice of the
threshold. For instance, Figure 5 shows how the accuracy of
the technique changes for different values of the threshold
for Open Hospital. The vertical line corresponds to the value
returned by the calibration procedure that we also used in our
evaluation. We can notice that values up to 15% all produce
similar accuracy levels.

E. EXPERIMENT DESIGN
To answer RQ1, we executed the automatic test cases in mul-
tiple settings: (1) without having any monitoring technique in
place, (2) with Direct Saving, and (3) with Delayed Saving.
Each execution has been repeated five times. We computed
the overhead that Direct Saving and Delayed Saving intro-
duce in each single user operation (seen as any operation
starting with a request by the user to the application using the
GUI or using the keyboard, and ending when the application
giving a feedback to the user) with respect to executions with-
out monitoring. We expected Delayed Saving to introduce a
definitely lower overhead than Direct Saving, but still some
overhead might be observed also for Delayed Saving due
to in-memory tracing and possible delays in switching off
saving when the application moves from the idle state to the
working state.

To investigate the performance of the approaches for a
different amount of recorded data, we considered three cases
(called recording levels): Objects Recording, which records

85918

the values of the attributes in a monitored object without
exploring the referred objects recursively, Objects —+
Attributes Recording, which is the same than Objects Record-
ing but it also records the values of the attributes in the object
recursively for one level, and Objects + Attributes Recur-
sively Recording, which records the attributes in the referred
objects recursively for two levels. For instance, a same object
of type Person is recorded as Person = [age: 39; car = Car]
by Objects Recording, as Person = [age: 39; car = [brand =
Fiat; color = white; trans = Transmission]] by Objects +
Attributes Recording, and as Person = [age: 39, car = [brand
= Fiat; color = white; trans = [type = manual; nrGears =
5]]] by Objects + Attributes Recursively Recording.

For Delayed Saving we investigated the performance also
considering three CPU sampling rates (20ms, 200ms, 1s).
In total we studied 9 configurations for Delayed Saving
(3 recording levels for 3 sampling rates), and 3 configurations
for Direct Saving (3 recording levels, since this technique
does not use CPU sampling).

To investigate memory consumption, we sampled the
amount of consumed memory for the same configura-
tions considered for performance analysis, and we com-
pared memory consumption to the case no monitoring is in
place.

To answer RQ2, we computed the accuracy of the data
recorded by Delayed Saving in comparison to the data col-
lected by Direct Saving, which is accurate by definition.
To this end, we defined three quality metrics: Recorded,
Missing, and Unsound. Recorded indicates the percentage of
data collected by Delayed Saving that is in common with
the data collected by Direct Saving. Missing indicates the
percentage of data that Delayed Saving was not able to cap-
ture. The sum of Recorded and Missing is 100%. We also
compute Unsound, that is, we measure the percentage of data
reported by Delayed Saving that has no counterpart in the
traces collected by Direct Saving. For instance, an object
that changes the values of its attributes due to postponed
data recording causes the generation of both some Missing
values, because the original values are not present in the trace
recorded by Delayed Saving, and Unsound values, because
new values with no counterpart in the original file recorded
by Direct Saving are present.

Also in this case, we considered 9 configurations for
Delayed Saving (3 recording levels for 3 sampling rates).

To answer RQ3, we merged the data collected for the
execution of the same method and run Daikon to mine method
pre- and post-conditions.! We did this for both traces col-
lected by Direct Saving and by Delayed Saving considering
the three recording levels and we computed the percentage of
shared pre-conditions.

IDaikon is a mining technique [17] that can mine likely properties,
including invariants and method pre- and post-conditions, from execution
traces. Examples of expressions that Daikon can learn are x.field > abs(y),
z > 0, where x is a reference to an object, and y and z are numeric
variables.

VOLUME 7, 2019

0. Cornejo et al.: Field Monitoring With Delayed Saving

IEEE Access

1004

Overhead [%)]
3 o

N
a
1

=

Objects Recording Objects + Attributes Objects + Attributes
Recording Recursively Recording

M Direct [l Delayed 20ms [l Delayed 200ms Delayed 1s

(a) Eclipse

FIGURE 6. Performance results for all levels.

VI. RESULTS

In this Section we both present the results obtained for
the investigated research questions and discuss the threats
to validity. Since the monitored applications are normally
installed and executed in the end-user environment, we exe-
cuted all the experiments in a machine running Windows
10 Pro with a 3.20 GHz Intel Xeon E5 processor and 8 GB
of RAM.

A. RQI: HOW DO THE OVERHEAD AND MEMORY
CONSUMPTION INTRODUCED BY DELAYED SAVING
COMPARE TO DIRECT SAVING?

The results about the overhead introduced by Delayed Sav-
ing and Direct Saving for all the considered configurations
and subject applications are shown in Figure 6. We can
notice that in all the cases Delayed Saving introduces an
overhead that is significantly lower than Direct Saving,
and for some configurations the reduction reaches an order
of magnitude. The reduced overhead, which is already
remarkable when recording little information about
parameters (Objects Recording level), is more and more
significant with an increasing amount of recorded data.
Indeed, Objects + Attributes Recursively Recording level is
almost infeasible for Eclipse, where the slow down reaches
99.5% with Direct Saving, and even more for Open Hospital,
where the slow down can reach 229.39%. On the contrary,
Delayed Saving (with a CPU sampling rate of 200ms and 1s)
introduced an overhead that is always lower than 9%. Even
for the monitoring configurations that cannot be feasibly
addressed with Direct Saving the overhead introduced by
Delayed Saving with the two best configurations is lower
than 7%.

The sampling frequency has not a major impact on the
performance of the monitor, although it is possible to notice
that a 20ms sampling rate introduces a higher overhead com-
pared to the other two configurations, due to an excessively
fine grained sampling of the CPU consumption. In practice,
the ability to quickly react once the applications become
inactive caused an observable slow down during the working

VOLUME 7, 2019

2501

2001

o
S

Overhead [%]
3

o
=]
L

I

Objects Recording Objects + Attributes Objects + Attributes
Recording Recursively Recording

o
L

M Direct [l Delayed 20ms [Delayed 200ms Delayed 1s

(b) Open Hospital

phase. The results obtained for the 200ms and 1s sampling
rates are on the contrary extremely effective and comparable
across all configurations and subject applications.

In a nutshell, we can conclude that Delayed Saving can
reduce the overhead introduced by Direct Saving by one order
of magnitude depending on the application and configuration,
with a recommended sampling rate between 200ms and 1s.

Figures 8 and 7 present the results about memory con-
sumption. The collected data show that in both applications
and in all configurations there is no significant difference in
memory consumption between the idle and working states.
This is quite obvious, since applications keep consuming the
same amount of memory even if no operation is executed.

Naturally, monitoring always implies consuming addi-
tional memory. However, Direct Saving requires less memory
than Delayed Saving since it does not need to temporarily
store data in memory as Delayed Saving does. Indeed, Direct
Saving consumes about 0.1GB in Eclipse and between 0.2GB
and 0.5GB in Open Hospital. In contrast, Delayed Saving
requires between 0.3GB and 0.4GB in Eclipse and between
0.3GB and 1GB in Open Hospital.

Overall, Delayed Saving is more expensive than Direct
Saving, but the total amount of memory consumed can be
acceptable for modern execution environments, as long as
the monitored software is not a data-intensive application.
Delayed Saving thus offers the opportunity of seamlessly
collecting data in the field, as long as enough memory can
be allocated to the buffering mechanisms implemented in
Delayed Saving.

B. RQ2: IS THE DATA COLLECTED BY DELAYED SAVING
ACCURATE?
Figures 9 and 10 show the accuracy of the data col-
lected for Eclipse and Open Hospital for all the considered
configurations.

Considering the results obtained with Eclipse, we can
notice that Delayed Saving performs extremely well with the
Objects Recording level. Indeed, more than 95% of the data

85919

I EE E ACC@SS 0. Cornejo et al.: Field Monitoring With Delayed Saving

-

4
I
+

= T T

Ein;
- i o Bo i

o
©
!

RAM usage [GB]
o
~

N
0.34
=
0.1+
. A © © Gl A) 3 S > o o S
O o @ W o a0 e® 0 o e e ot
o W W\ o2 W\ N2 o W2 NS o°
$O“\ % 06\ @ =N ¢ =N

Application status — idle * working

FIGURE 7. Open Hospital: Memory consumption results for all levels.

1.74

el

- i- S = = — i A

*
T - .

119 o

-
[=2]
1

N
o
1

RAM usage [GB]
&

N
N
1

SV «® «® A AN N «®
A \ Q' O A N Q' N
% N 2 20 N% %) 3'7/ 20
oe\»\ o ooV oe\@ of o8 v

NS AN] ©
S (;\\0(\0 of v N rLQ«\ ,LQQ‘(\
«)
o %

Application status — idle * working

FIGURE 8. Eclipse: Memory consumption results for all levels.

. ¢ Objects + Attributes Objects + Attributes i i Objects + Attributes Objects + Attributes
Objects Recording Recording |Recursively Recording Objects Recording Recording Recursively Recording|

100 A 100 A

754 754

50 50 A

251 254 l

| | —— m I

[%)] (Average values)
[%)] (Average values)

S o (@ S © S o o IR s ® 8o o
SN GRS SN S R SO e NN RS 3® o0 SO IR
?&cp‘ \4\‘96 \)‘\90 ?&cp‘ \\k\% \)“90 ?&00‘ \‘\\56 0‘\%0 @6"0‘ VY“SB \y\eo @ecp‘ “\\56 \)‘\50 @ecp‘ \‘\\56 0‘\90
Sampling rate Ml 20ms [200ms 1s Sampling rate [l 20ms [200ms 1s
FIGURE 9. Eclipse: Quality comparison for all levels. FIGURE 10. Open Hospital: Quality comparison for all levels.

has been recorded accurately (Recorded), and less than 5% of slightly decreases with the Objects + Attributes Recording
the data is missing (Missing) from the traces. Also, Unsound and Objects + Attributes Recursively Recording levels: the
values are very limited. The accuracy of the Delayed Saving correctly recorded values (Recorded) amount, in both cases,

85920 VOLUME 7, 2019

0. Cornejo et al.: Field Monitoring With Delayed Saving

IEEE Access

~ o
o)
1 L

Accuracy [%]
3

254

Objects Recording Objects + Attributes Objects + Attributes
Recording Recursively Recording

Sampling rate [l 2oms [l 200ms 1s

FIGURE 11. Eclipse: Accuracy comparison for all levels.

to about 90% of the saved data, with a 10% of values
either missing (Missing) or replaced with Unsound values.
Although collecting more data may challenge the accuracy
of the results, still the large majority of the Recorded data
is accurate, and this still enables the application of different
techniques, such as machine learning techniques (as studied
in the next research question).

Open Hospital shows similar results, with a small decrease
of the accuracy of the Recorded data while the amount of
saved data increases. Coherently, the amount of Missing
values remains small across configurations. With respect to
Eclipse, in particular when considering the deepest level of
data collection, the Unsound data increases. This might be
due to the structure of the collected objects, which exploits
object references more than Eclipse, and consequently are
more exposed to changes, especially when multiple levels of
references are navigated to save data into files.

For both Eclipse and Open Hospital, the choice of the
sampling rate has a marginal impact on the accuracy of the
collected data, with a lower rate producing slightly better
results compared to a high rate, since they imply start record-
ing the date earlier when the monitored application enters
the idle state. Combining this evidence with the impact of
the sampling rate on the performance, a choice of 200ms
seems to well balance the performance of the technique and
the accuracy of the data.

In a nutshell, Delayed Saving achieved high accuracy with
the Objects Recording level, and good accuracy with higher
recording levels. The sampling rate demonstrated to have a
marginal impact on the accuracy of the data, with 200ms
representing a good trade-off between performance and
accuracy.

C. RQ3: CAN DAIKON GENERATE ACCURATE MODELS
FROM THE DATA COLLECTED BY DELAYED SAVING?
Figures 11 and 12 show the accuracy of the models produced
by Delayed Saving in comparison with those produced by
Direct Saving for Eclipse and Open Hospital for all the used
configurations.

Results for Eclipse show that the Daikon pre-conditions
mined from the traces collected by Delayed Saving are in

VOLUME 7, 2019

~ o
o S
1 L

Accuracy [%]
g

254

Objects Recording Objects + Attributes Objects + Attributes
Recording Recursively Recording

Sampling rate [l 20ms [l 200ms 1s

FIGURE 12. Open Hospital: Accuracy comparison for all levels.

average 95% accurate with respect to the pre-conditions
generated from traces collected by Direct Saving, when con-
sidering the Objects Recording level. The accuracy of the
pre-conditions decreases to 80% for the Objects + Attributes
Recording and Objects + Attributes Recursively Recording
levels, which is still a good result considering that the traces
obtained for these two levels are 2.4 times larger than the
traces obtained with the Objects Recording level.

For Open Hospital, the accuracy of the pre-conditions
obtained with Delayed Saving with respect to Direct Saving
is 96% for the Objects Recording level. Similarly to Eclipse,
the accuracy decreases to 88% for the other two levels.

During the experimentation with Eclipse and Open Hospi-
tal, we observed that the sampling rate had a little impact on
the accuracy of the produced models, with smaller sampling
rates producing better results.

In a nutshell, in line with the results obtained for RQ2 and
RQ3, a sampling rate of 200ms offers a good balance between
performance and accuracy of the data.

D. DISCUSSION

The empirical investigation shows clear complementarity
between Direct Saving and Delayed Saving. When appli-
cable, Direct Saving should be preferred, since it produces
perfectly accurate data. However, it may introduce significant
overhead already when a limited amount of information is
recorded (we observed a 25% slow down for the Objects
Recording level in our evaluation), and this overhead quickly
increases when more data is collected (up to 100%-200%
slow down in our evaluation for the Objects + Attributes
Recursively Recording level). This is indeed hardly accept-
able in the majority of the settings.

Delayed Saving provides a different trade-off. It reduces
by one order of magnitude the overhead, keeping it below
9% for the 200ms and 1s sampling rate, even when recording
a large amount of data (e.g., we observed a 99.5% and a
229.39% slow down for the Objects + Attributes Recursively
Recording level). This capability is traded for some additional
memory consumed and a degree of inaccuracy introduced
in the recorded data. The additional memory consumption
ranged between 0.25GB and 0.9GB in our evaluation, and

85921

IEEE Access

0. Cornejo et al.: Field Monitoring With Delayed Saving

it is likely acceptable in the many settings where memory-
intensive applications are not executed. The data inaccuracy
is limited, as reported empirically. Although the presence
of inaccuracy is not acceptable by all the techniques, it is
indeed tolerable by several others, such as user profiling [2],
failure reproduction [16], and mining techniques [17], [18].
Our investigation based on the Daikon mining technique
confirmed a limited impact of data inaccuracy in the mined
properties.

E. THREATS TO VALIDITY

The main threats to internal validity concern with the mea-
surement of CPU consumption values and overhead. We mit-
igated this issue by using OSHI [28], which allows to pre-
cisely capture CPU consumption values, and repeating each
execution several times to reduce the impact of noise on our
results.

Another threat concerns with the instrumentation of the
program to collect ground truth data for the calibration proce-
dure. This was mainly manual effort. To mitigate any risk to
incorrectly collect data, we tested the instrumented applica-
tion multiple times before using the data for the experiment.

The main threat to external validity concerns with the
generalization of our findings. Although we cannot claim that
our results are valid for any software system, the usage of
two different end-user applications and the similarity in the
results, suggest that the reported empirical evidence can be
also valid for many other interactive applications that run on
client machines.

VII. RELATED WORK

In this section, we frame our work in the context of related
areas. We discuss how it relates to existing studies on efficient
field monitoring techniques, and how it relates to other works
about adaptive monitoring techniques.

Efficient field monitoring techniques implement different
strategies to limit the impact of monitoring on the moni-
tored system. Current approaches dealing with efficient field
monitoring can be classified in two main groups: distributive
monitoring and probabilistic monitoring.

Distributive monitoring assigns different monitoring tasks
to multiple instances of the same application running on
different client machines. This strategy decreases monitor-
ing overhead because it limits the amount of information
collected for each location. This strategy has been mainly
developed by Bowring et al. [11] and Orso et al. [31] through
the Gamma System, which divides a monitoring task into a
set of subtasks and assigns them to individual instances of
the software to be monitored, in order to minimize runtime
overhead. The data gathered from the several instances are
however independent from the other locations. This may
make the task of reconstructing the behavior of the whole
application extremely hard if data are not fully independent.
For instance, it is hard to collect and combine segments of
executions collected for different application instances under

85922

different situations. Delayed Saving is not affected by this
challenge since data is still collected from a same instance.

Briola et al. [32], [33] and Ancona et al. [34] developed a
framework for distributed runtime verification of protocols
for Multi-Agent Systems (MAS). Basically, the approach
splits the global interaction protocol into sub protocols and
then monitors the sub protocols by transforming agent mes-
sages into Prolog predicates suitable for runtime verification.
In the same line, Ferrando et al. [35] proposed to distribute
and simplify the load of monitoring by partitioning the agents
in several groups with one monitor per partition. The parti-
tioning system guarantees that distributed monitoring detects
all the protocol violations such as a centralized monitoring
system would. Differently from Delayed Saving, runtime
protocol verification aims at checking properties at runtime,
while Delayed Saving aims at collecting large amount of
behavioral data that can be later used to support several tasks.

Probabilistic monitoring accounts for lowering the impact
of monitoring by collecting runtime information within a
certain probability. Liblit et al. [36] have exploited this
strategy to isolate bugs by profiling a large, distributed
user community and using logistic regression to find the
important program predicates that could be faulty. Similarly,
Jin et al. [13] presented a monitoring framework called
Cooperative Crug (Concurrency Bug) Isolation to diagnose
production run failures caused by concurrency bugs. This
technique uses sampling to monitor different types of predi-
cates while keeping the monitoring overhead low. In the same
way, Hirzel and Chilimbi [14] developed Bursty Monitors,
which collect subsequences of events with ad-hoc strategies
to construct a temporal program profile. In general, Proba-
bilistic Monitoring is designed to collect partial information
about the execution, that is, the monitor is not always active
and the traces might be incomplete. On the contrary, Delayed
Saving aims at collecting traces that are complete, although
they may contain some inaccuracies.

Since monitoring requirements might change over time,
it is useful to implement Adaptive monitoring techniques, that
is, techniques with a monitoring logic that can adapt dynam-
ically to runtime events. Recently, Zavala et al. [37] worked
on a systematic mapping of adaptive monitoring techniques
to identify trends and approaches available in the literature.
Bartocci et al. [12] presented Adaptive Runtime Verification,
amonitoring technique that controls the overhead by enabling
and disabling runtime verification of events according to
certain overhead target levels. This framework determines
statistically the probability that an application property is
violated, and based on this number a higher or a lower level of
overhead for that property is assigned. When is not possible
to check a certain property (e.g., due to a high overhead level)
the framework estimates the probability that a property will
be satisfied, instead of monitoring the actual property, and
thus reducing the load of runtime verification.

Maurel et al. [38] defined an adaptive monitoring approach
for smart-home systems, where the monitoring system can
be dynamically activated and tuned based on the current

VOLUME 7, 2019

0. Cornejo et al.: Field Monitoring With Delayed Saving

IEEE Access

CPU usage: the tuning process consists of automatically
selecting the amount of behaviors to be monitored at runtime.

Adaptation in adaptive monitoring techniques can be trig-
gered not only by the amount of resources available but also
by human feedback. For instance, Nainar and Liblit [39] and
Whittle er al. [40] defined approaches that use human feed-
back to adapt the system’s instrumentation and the behavior
of the monitor. In the domain of service-based systems, Con-
treras and Zisman [41] studied how to adapt the monitor to
the characteristics of the user context.

In real-time systems, timing requirements such as response
time are essential and violations to these requirements are
not accepted. Moghadam et al. [42] proposed a self-adaptive
monitor technique that uses reinforcement learning to adapt
its behavior based on requirements about the response time.
Unlike these approaches, Delayed Saving focuses on auto-
matically adapting to the running environment so that the
introduced overhead cannot significantly affect users.

Finally, the idea of exploiting the unused resources to per-
form additional tasks has been already investigated in other
contexts, especially to build distributed volunteer computing
platforms. For instance, the project Folding@Home exploits
users’ unused resources to perform computations useful to
determine a cure to diseases [43], while SETI@home ana-
lyzes radio signals looking for evidence of extraterrestrial
life [44]. Differently from these platforms, Delayed Saving
originally exploits the idle time to opportunistically delay
data recording, offering a new trade-off between overhead
and data accuracy.

VIIl. CONCLUSIONS

Field monitoring techniques can be extremely useful to
extract data about the behavior of software applications when
interacting with real users and processing real data. However,
collecting significant amount of data is in conflict with the
need of introducing a small overhead, so that users are not
annoyed by the presence of monitoring features.

This paper presents Delayed Saving, a novel approach
that offers a complementary opportunity to field monitoring,
compared to approaches that collect partial data or distribute
monitoring features. The idea developed in Delayed Saving is
to significantly reduce the monitoring overhead by postpon-
ing the time when values are saved in a persistent memory to
the idle phase of the monitored application. In this way, only
inexpensive in-memory value tracing is performed while the
monitored application is active, reducing overhead by orders
of magnitudes compared to directly saving values, as demon-
strated in our evaluation. On the other hand, Delayed Saving
may produce inaccurate data. Thus monitoring techniques
exploiting the Delayed Saving principle must be able to
tolerate it.

As part of future work, we are currently investigating how
to further elaborate Delayed Saving and manage to discrimi-
nate between the data that must be immediately saved and the
one that can be saved during the idle phase, to reduce or even
eliminate data inaccuracy and make the approach applicable

VOLUME 7, 2019

also to those techniques that require perfectly accurate data
extracted from the field.

REFERENCES

[1] M. El-Ramly, E. Stroulia, and P. Sorenson, ‘“From run-time behavior to
usage scenarios: An interaction-pattern mining approach,” in Proc. 8th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2002,
pp. 315-324.

[2] S. Elbaum and M. Diep, “Profiling deployed software: Assessing strate-
gies and testing opportunities,” IEEE Trans. Softw. Eng., vol. 31, no. 4,
pp. 312-327, Apr. 2005.

[3] E. Kowalczyk, M. B. Cohen, and A. M. Memon, “Configurations in
Android testing: They matter,” in Proc. Int. Workshop Adv. Mobile App
Anal. (A-Mobile), 2018, pp. 1-6.

[4] P. Ohmann, D. B. Brown, N. Neelakandan, J. Linderoth, and B. Liblit,

“Optimizing customized program coverage,” in Proc. Int. Conf. Auto-

mated Softw. Eng. (ASE), 2016, pp. 27-38.

C. Pavlopoulou and M. Young, “Residual test coverage monitoring,” in

Proc. Int. Conf. Softw. Eng. (ICSE), May 1999, pp. 277-284.

L. Gazzola, “Field testing of software applications,” in Proc. IEEE/ACM

39th Int. Conf. Softw. Eng. Companion (ICSE), May 2017, pp. 429-432.

L. Gazzola, L. Mariani, F. Pastore, and M. Pezze, “An exploratory study

of field failures,” in Proc. Int. Symp. Softw. Rel. Eng. (ISSRE), Oct. 2017,

pp. 67-77.

S. Sharma, The DevOps Adoption Playbook: A Guide to Adopting DevOps

in a Multi-Speed IT Enterprise. Hoboken, NJ, USA: Wiley, 2017.

T. Schlossnagle, “Monitoring in a DevOps world,” Commun. ACM,

vol. 61, no. 3, pp. 58-61, Mar. 2018.

[10] L. Baresi and C. Ghezzi, “The disappearing boundary between
development-time and run-time,” in Proc. FSE/SDP Workshop Future
Softw. Eng. Res. (FoSER), 2010, pp. 17-22.

[11] J. Bowring, A. Orso, and M. J. Harrold, “Monitoring deployed software
using software tomography,” in Proc. ACM SIGPLAN-SIGSOFT Work-
shop Program Anal. Softw. Tools Eng. (PASTE), 2002, pp. 2-9.

[12] E.Bartocci, R. Grosu, A. Karmarkar, S. A. Smolka, S. D. Stoller, E. Zadok,
and J. Seyster, “‘Adaptive runtime verification,” in Proc. Int. Conf. Runtime
Verification (RV), 2012, pp. 168—182.

[13] G. Jin, A. Thakur, B. Liblit, and S. Lu, “Instrumentation and sam-
pling strategies for cooperative concurrency bug isolation,” ACM Sigplan
Notices, vol. 45, no. 10, pp. 241-255, 2010.

[14] M. Hirzel and T. Chilimbi, “Bursty tracing: A framework for low-overhead
temporal profiling,” in Proc. ACM Workshop Feedback-Directed Dyn.
Optim. (FDDO), 2001, pp. 117-126.

[15] O.Cornejo, D. Briola, D. Micucci, and L. Mariani, ““In the field monitoring
of interactive application,” in Proc. IEEE/ACM Int. Conf. Softw. Eng., New
Ideas Emerg. Technol. Results Track (ICSE-NIER), May 2017, pp. 55-58.

[16] W.Jin and A. Orso, “BugRedux: Reproducing field failures for in-house
debugging,” in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012,
pp. 474-484.

[17] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,” IEEE
Trans. Softw. Eng., vol. 27, no. 2, pp. 99-123, Feb. 2001.

[18] L. Mariani, M. Pezze, and M. Santoro, “GK-tail4 an efficient approach
to learn software models,” IEEE Trans. Softw. Eng., vol. 43, no. 8,
pp. 715-738, Aug. 2017.

[19] Eclipse. (2019). Eclipse Community. [Online]. Available: http://www.
eclipse.org

[20] (2019). Open Hospital. [Online]. Available: https://www.open-
hospital.org/en/

[21] A. Gorji and M. Abadi, “Detecting obfuscated javascript malware using
sequences of internal function calls,” in Proc. ACM Southeast Regional
Conf. (SE), 2014, p. 64.

[22] S. S. Murtaza, A. Hamou-Lhadj, N. H. Madhavji, and M. Gittens,
“Towards an emerging theory for the diagnosis of faulty functions in
function-call traces,” in Proc. SEMAT Workshop Gen. Theory Softw.
Eng. (GTSE), 2015, pp. 59-68.

[23] Z. Zhao, B. Wu, M. Zhou, Y. Ding, J. Sun, X. Shen, and Y. Wu, “Call
sequence prediction through probabilistic calling automata,” in Proc. ACM
Int. Conf. Object Oriented Program. Syst. Lang. Appl. (OOPSLA), 2014,
pp. 745-762.

[24] L. Mariani, A. Marchetto, C. D. Nguyen, P. Tonella, and A. I. Baars,
“Revolution: Automatic evolution of mined specifications,” in Proc. IEEE
23rd Int. Symp. Softw. Rel. Eng. (ISSRE), Nov. 2012, pp. 241-250.

[5

—

[6

—

17

—

8

—

[9

—

85923

IEEE Access

0. Cornejo et al.: Field Monitoring With Delayed Saving

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

F. Pastore, D. Micucci, and L. Mariani, ‘“Timed k-tail: Automatic inference
of timed automata,” in Proc. IEEE Int. Conf. Softw. Test., Verification
Validation (ICST), Mar. 2017, pp. 401-411.

D. A. Patterson and J. L. Hennessy, Computer Organization and Design
MIPS Edition: The Hardware/Software Interface. Boston, MA, USA:
Newnes, 2013.

(2019). JNativeHook. [Online]. Available: https://github.com/kwhat/

jnativehook
(2019). OSHI. [Online]. Available: https://github.com/oshi/oshi
Eclipse Foundation. (2019). Aspectj. [Online]. Available:

https://www.eclipse.org/aspectj/

R. Hocke. (2019). Sikulix Capture and Replay Tool. [Online].
Available: http://sikulix.com

A. Orso, D. Liang, M. J. Harrold, and R. Lipton, “Gamma system: Con-
tinuous evolution of software after deployment,” in Proc. ACM SIGSOFT
Int. Symp. Softw. Test. Anal. (ISSTA), 2002, pp. 65-69.

D. Briola, V. Mascardi, and D. Ancona, “Distributed runtime verification
of JADE multiagent systems,” in Proc. Intell. Distrib. Comput. (IDC),
2015, pp. 81-91.

D. Briola, V. Mascardi, and D. Ancona, “Distributed runtime verification
of JADE and Jason multiagent systems with prolog,” in Proc. Italian Conf.
Comput. Logic (CILC), 2014, pp. 319-323.

D. Ancona, D. Briola, A. El Fallah Seghrouchni, V. Mascardi, and
P. Taillibert, ““Efficient verification of MASs with projections,” in Engi-
neering Multi-Agent Systems (Lecture Notes in Computer Science),
vol. 8758. Cham, Switzerland: Springer, 2014, pp. 246-270.

A. Ferrando, D. Ancona, and V. Mascardi, “Decentralizing MAS mon-
itoring with DecAMon,” in Proc. 16th Conf. Auton. Agents Multiagent
Syst. (AAMAS), 2017, pp. 239-248.

B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation
via remote program sampling,” ACM SIGPLAN Notices, vol. 38, no. 5,
pp. 141-154, 2003.

E. Zavala, X. Franch, and J. Marco, “Adaptive monitoring: A systematic
mapping,” Inf. Softw. Technol., vol. 105, pp. 161-189, Jan. 2019.

Y. Maurel, A. Bottaro, R. Kopetz, and K. Attouchi, ‘‘Adaptive monitoring
of end-user OSGI-based home boxes,” in Proc. 15th ACM SIGSOFT Symp.
Compon. Based Softw. Eng. (CBSE), 2012, pp. 157-166.

P. A. Nainar and B. Liblit, “Adaptive bug isolation,” in Proc. ACM/IEEE
32nd Int. Conf. Softw. Eng. (ICSE), May 2010, pp. 255-264.

J. Whittle, W. Simm, and M.-A. Ferrario, “On the role of the user in
monitoring the environment in self-adaptive systems: A position paper,”
in Proc. ICSE Workshop Softw. Eng. Adapt. Self-Manag. Syst. (SEAMS),
2010, pp. 69-74.

R. Contreras and A. Zisman, “A pattern-based approach for monitor
adaptation,” in Proc. IEEE Int. Conf. Softw. Sci., Technol. Eng. (ICSTE),
Jun. 2010, pp. 30-37.

M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, and B. Lisper,
“Adaptive runtime response time control in PLC-based real-time systems
using reinforcement learning,” in Proc. IEEE/ACM 13th Int. Symp. Softw.
Eng. Adapt. Self-Manag. Syst. (SEAMS), May/Jun. 2018, pp. 217-223.
Pande Lab, Find Home. (2019). [Online]. Available: https:/
foldingathome.org/

Seti Home. (2019). [Online]. Available: https://setiathome.berkeley.edu/

OSCAR CORNEJO received the M.Sc. degree in
computer science engineering from the Federico
Santa Marfa Technical University, in 2014, and
the Ph.D. degree in computer science from the
University of Milano-Bicocca, in 2019, where he is
currently a Postdoctoral Researcher with the LTA
Group.

He has been working mainly on software engi-
neering, studying how to develop non-intrusive
monitoring techniques, always in the sight of sup-

porting software testing and analysis processes.

85924

DAVIDE GINELLI received the M.Sc. degree
in computer science from the University of
Milano-Bicocca, in 2017, where he is cur-
rently pursuing the Ph.D. degree in computer
science.

His research interests include software
engineering, in particular self-healing and self-
repairing systems, real-time monitoring of interac-
tive applications without interfering with the user
experience, and software architectures. He is also

interested in the mobile and web development.

DANIELA BRIOLA received the Ph.D. degree in
computer science from the University of Genoa,
in 2009. She is currently an Assistant Professor
with the University of Milano-Bicocca.

Her research interests include software engi-
neering, with a focus on real-time monitoring
of interactive applications, and artificial intelli-
gence, in particular multiagent systems and knowl-
edge representation. She is regularly involved in
the program committees of many international
conferences in her areas of interest.

DANIELA MICUCCI received the Ph.D. degree
in mathematics, statistics, computational sciences
and computer science from the University of
Milano, in 2004. She is currently an Assistant
Professor with the University of Milano-Bicocca.

Her research interest includes software engi-
neering, in particular software architectures, real-
time systems, and self-healing and self-repairing
systems. She is currently active in several Euro-
pean and National projects. She is also regularly

involved in the program committees of workshops and conferences in her

areas of interest.

LEONARDO MARIANI received the Ph.D.
degree in computer science from the University
of Milano-Bicocca, in 2005, where he is currently
a Full Professor.

His research interests include software engi-
neering, in particular software testing, program
analysis, automated debugging, and self-healing
and self-repairing systems. He has authored more
than 100 papers appeared at top software engineer-
ing conferences and journals.

He has been awarded with the ERC Consolidator Grant, in 2015, and an
ERC Proof of Concept Grant, in 2018, and he is currently active in several
European and National projects. He is regularly involved in organizing and
program committees of major software engineering conferences.

VOLUME 7, 2019

	INTRODUCTION
	IN-MEMORY TRACING VS SAVING TO FILES
	DELAYED SAVING
	CALIBRATION OF THE CPU CONSUMPTION THRESHOLD
	EMPIRICAL VALIDATION
	PROTOTYPE TOOL
	RESEARCH QUESTIONS
	EXPERIMENTAL SUBJECTS
	CALIBRATION
	EXPERIMENT DESIGN

	RESULTS
	RQ1: HOW DO THE OVERHEAD AND MEMORY CONSUMPTION INTRODUCED BY DELAYED SAVING COMPARE TO DIRECT SAVING?
	RQ2: IS THE DATA COLLECTED BY DELAYED SAVING ACCURATE?
	RQ3: CAN DAIKON GENERATE ACCURATE MODELS FROM THE DATA COLLECTED BY DELAYED SAVING?
	DISCUSSION
	THREATS TO VALIDITY

	RELATED WORK
	CONCLUSIONS
	REFERENCES
	Biographies
	OSCAR CORNEJO
	DAVIDE GINELLI
	DANIELA BRIOLA
	DANIELA MICUCCI
	LEONARDO MARIANI

