A Hierarchical Receding Horizon Algorithm
for QoS-driven control of Multi-laaS Applications

Danilo Ardagna, Michele Ciavotta, Riccardo Lancellotti, Michele Guerriero

Abstract—Cloud Computing is emerging as a major trend in ICT industry. However, as with any new technology, new major challenges
lie ahead, one of them concerning the resource provisioning. Indeed, modern Cloud applications deal with a dynamic context that
requires a continuous adaptation process in order to meet satisfactory Quality of Service (QoS) but even the most titled Cloud platform
provide just simple rule-based tools; the rudimentary autoscaling mechanisms that can be carried out may be unsuitable in many
situations as they do not prevent SLA violations, but only react to them. In addition, these approaches are inherently static and cannot
catch the dynamic behavior of the application and are unsuitable to manage multi-Cloud/data center deployments required for mission
critical services. This situation calls for advanced solutions designed to provide Cloud resources in a predictive and dynamic way. This
work presents capacity allocation algorithms, whose goal is to minimize the total execution cost while satisfying some constraints on
the average response time of multi-Cloud based applications. This paper proposes a joint load balancing and receding horizon capacity
allocation techniques, which can be employed to handle multiple classes of requests. An extensive evaluation of the proposed solution
against an Oracle with perfect knowledge of the future and well-known heuristics proposed in the literature is provided. The analysis
shows that our solution outperforms the heuristics producing results very close to the optimal ones, and reducing the number of QoS
violations (in the worst case QoS constraints violation rate is 4.259% versus up to 17.245% of other approaches and can easily
reduced by roughly a factor of four by exploiting the receding horizon approach). Furthermore, a sensitivity analysis over two different
time scales indicates that finer grained time scales are more appropriate for spiky workloads. Analytical results are validated through

simulation, which also analyzes the impact of Cloud environment random perturbations. Finally, experiments on a prototype
environment demonstrate the effectiveness of the proposed approach under real workloads.

Index Terms—Auto-Scaling, Load Sharing, Capacity Allocation, Multi-Cloud, Optimization, QoS

1 INTRODUCTION

Cloud computing has been a major driving force for the evolution
of the Information and Communication Technology (ICT) industry
over the last years. The main ICT players (e.g., Google [1],
Amazon [2], and Microsoft [3]) have constantly improved cost-
effectiveness, reliability as well as the overall computing power
consumption of Cloud systems. This effort has made the Cloud
a tool mature and suitable for business (outside ICT): it is no
longer surprising to see companies operating in very different
fields shifting their business models in order to benefit from the
advantages associated with this paradigm, which are mainly due
to high elasticity, scalability and cost savings [4].

Nonetheless, Cloud computing, despite the massive popularity
gained over the years, still entails several challenges, especially
in the area of resource provisioning. In particular, it has emerged
evident the need for Cloud providers to guarantee adequate levels
of Quality of Service (QoS) to their customers [5]. For this to
be achieved, advanced operations solutions are needed to provide
support to performance prediction, monitoring of Service Level
Agreements (SLAs), and adaptive configuration while satisfy-
ing requirements on cost-effectiveness, reliability, and security.
Current solutions for enforcing SLAs mainly address single
Clouds [6], [7], [8]; however, providing SLA guarantees with a

e D. Ardagna and M. Guerriero are with the Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.
Email: {name.lastname} @polimi.it

o Michele Ciavotta is with the Dipartimento di Informatica, Sistemistica e
Comunicazione, Universitd di Milano-Bicocca, Milano, Italy.
Email: michele.ciavotta@unimib.it

e Riccardo Lancellotti is with the Dipartimento di Ingegneria “Enzo Fer-
rari”, Universitd di Modena e Reggio Emilia, Modena, Italy.
Email: riccardo.lancellotti @unimore.it

multi-Cloud scope is fundamental when availability is a major
requirement (e.g., mission critical services). Still, when a multi-
Cloud scenario is contemplated, in which several applications are
running simultaneously on data centers belonging to different
providers or, alternatively, on separate data centers belonging
to the same provider, only basic solutions are available. These
usually implement a purely reactive approach (e.g., the Amazon
autoscaling rules [9]) where scaling actions are blindly triggered
when a threshold on some monitoring metric is exceeded (e.g.,
CPU utilization is above 60%).

In an attempt to bridge this gap, a novel resource allocation
solution able to dynamically adapt Cloud resources to satisfy
SLAs and to minimize cloud usage costs is proposed, facing the
wider scenario where different applications are hosted across mul-
tiple geographically distributed Clouds. The proposed approach
aims at unleashing the full potential of the Cloud paving the
way to a class of services featuring mission-critical availability
at minimum cost. The resource allocation scheme operates at
two levels, optimally balancing the incoming requests at inter-
cloud level while optimally allocating the computational capacity
at intra-cloud one. More in details, this paper proposes a dual time
scale approach working on different scales, both temporal and
spatial (single vs. multi-Cloud). At a coarse-grained time scale
(e.g., about one hour), an innovative technique for the distribution
of requests among multiple Cloud providers is proposed. At the
fine-grained time scale (e.g., every 5 or 10 minutes) a receding
horizon algorithm allocates virtual machines (VMs) in each data
center meeting QoS constraints (extending [10]). In both cases,
the algorithms exploit predictive models for workload forecasting.
Both the long- and short-term problems are formulated as mixed
integer linear programming (MILP) problems.

The contribution of this paper is not only limited to the

algorithmic proposal but validates the resource allocation tech-
niques demonstrating that the proposed solutions save costs
without incurring significant SLA violations through three types
of scenarios. First, analytical models are used to compare the
proposed solution with an Oracle with perfect knowledge about
the future [11] and with well-known heuristics proposed in the
literature [12], [13], [14] based on utilization thresholds. Second, a
new simulator that captures the data center behavior including the
presence of exogenous effect on the overall performance, modeled
through random environments [15], has been developed to analyze
the behavior of the resource allocation solutions under a number
of scenarios of interest (e.g., cloud resource contention, queue
length effect, workload spikes). In this way, the simulator allows
evaluating the SLA violations in realistic situations. Furthermore,
the simulator is used for a thorough sensibility analysis with
respect to the time granularity of the control strategy, the random
environments parameters and the workload scenarios. Third, the
results achieved on a prototype environment, developed within the
scope of the MODAC]Iouds project [16], [17] are also presented,
which demonstrate the viability of the proposed algorithms.

Results demonstrate that our solution outperforms the heuris-
tics based on utilization thresholds producing results very close
to the optimal ones, which can be achieved by the Oracle (cost
savings range is [30, 80]%) and reducing the number of SLA
violations (in the worst case QoS constraints violation rate is
4.259% versus up to 17.245% of other approaches and can easily
reduced by roughly a factor of 4 by exploiting the receding horizon
approach). A scalability analysis also demonstrates that both the
long- and short-term resource allocation problems can be solved
in less than two minutes even for large size instances. Therefore,
the solutions can be computed according to the time granularity (1
hour and 5-10 minutes, respectively) which characterizes the prob-
lems themselves leaving to the Cloud infrastructure enough time
to actuate the changes in the system configuration (e.g., to start
additional VMs before the next control time horizon). Moreover,
results demonstrated that the solution time grows almost linearly
with the problem instance size.

Furthermore, a sensitivity analysis over the two time scales
indicates that finer grained time scales are more appropriate for
spiky workloads, whereas smooth traffic conditions are better
handled by coarser grained time scales. The simulation shows that
the overall solution is robust to Cloud environment random pertur-
bations. Finally, the results achieved in the prototype environment
demonstrated that the percentage of SLA violations in a Cloud
deployment under a real workload is less than 2%.

In our previous contribution [10], we presented the early
receding horizon approach used for the fine-grained time scale
short-term problem. In this paper the previous work is extended
by: (1) integrating the receding horizon technique with a long-term
and coarse-grain workload management strategy, (2) extending the
model by embracing a multi-Cloud vision, (3) providing a more
in-depth validation that includes also experiments on a real Cloud
deployment.

The remainder of this paper is organized as follows: In
Section 2 the global problem of managing the delivery of web-
based services over multiple Cloud infrastructures is presented
and discussed. Section 3 provides the mathematical programming
formulation of the long- and short-grained resource allocation
problems. Section 4 describes the algorithms used for both the
request distribution over multiple data centers and for the VM
allocation at the level of a single data center. Section 5 evaluates

the quality of our solution through experiments and simulation.
In Section 6 other literature approaches are reviewed. Finally,
Section 7 reports concluding remarks.

2 PROBLEM STATEMENT AND ASSUMPTIONS

This section aims at introducing the design assumptions and sys-
tem models used as a reference throughout the paper. In particular,
a hierarchical modeling of the problem is proposed working on
the two different temporal and scope granularities, namely long-
term (introduced in Section 2.2) and short-term (discussed in
Section 2.3).

2.1 Problem overview

This paper strives to capture the perspective of a Software as a
Service (SaaS) provider that runs a suite of applications, in form
of Web Services (WS), across multiple Infrastructure-as-a-Service
(IaaS) systems. Such applications are heterogeneous in terms of
resource demands, workload profiles they are subject to, and SLA
requirements.

Figure 1 depicts the reference multi-Cloud environment con-
sidered in this paper. The system serves a set C of WS classes,
where each class corresponds to a specific web application (here-
inafter the terms WS application and request class will be used
interchangeably). For each class k£ €), the incoming workload
arrival rate is denoted by Ay (expressed in terms of number of
requests/s). Applications are deployed on virtual machines (VMs),
which are instantiated on-demand and on a pay-per-use basis by
a set Z of TaaS providers. For the sake of simplicity, this work
assumes that a VM cannot be shared, that is it can only host
a single WS application (this hypothesis can be easily relaxed).
Services can be replicated across multiple Clouds or, equivalently,
across different data centers of the same provider (e.g., regions or
availability zones of the Amazon EC2 platform [18]).

Let us assume that, within the scope of a single Cloud, all
the VMs instances are homogeneous in terms of their computing
capacity C;, and share evenly the incoming workload. This is
a legitimate assumption as it corresponds, within a reasonable
range, to the solution currently implemented by laaS providers
(e.g., [19]). As far as costs are concerned, two pricing models
are offered by every provider: They supply reserved and on-
demand VMs. Let 6; and p; denote the hourly fees for on-
demand and reserved instances (p; < J;), respectively, whereas
W, indicates the overall number of available reserved instances.
As for the service rate, let p; represent as the maximum service
rate (measured in requests/s) featured by a VM of unitary capacity
hosting the WS application k.

Furthermore, let us assume that an SLA contract associated
with each WS class & € IC is established between the SaaS
provider and her/his customers. This contract specifies the QoS
levels expressed as a bound on the average response time Ry
for each class k. More in details, given a threshold Ry on the
average response time, the SLA in force for WS application &k can
be expressed as R, < Rj. However, to avoid large disparities
in response times across customer classes (as a result of sticky
sessions the flow of requests from certain customers could be
consistently redirected to the Cloud with the poorest or best
performance [20]), a reinforced constraint balancing mechanism
was introduced requiring that 12, ; < R, for each provider <.

In this work, the problem of minimizing SaaS operations costs
is modeled as a joint multi-Cloud Capacity Allocation (CA) and

,—"::/T'lvflz +di2 AN

.

Load Balancer
Manager

W o
\\ [

Virtual Machine Monitor] i

Hardware

e e ____

laaS Provider i =1

Total incoming workload

-5 Tk Arrival rate of local requests

Data synchronization

Load balancer

Virtualized servers

Local data store

laaS Provider i =3

laaS Provider i = 2

Fig. 1. Cloud infrastructures and data migration and synchronization system.

Load Sharing (LS) problem and efficiently solved by means of a
hierarchical optimization approach that considers the two different
long and short-term time scales.

At long-term, the inter-cloud load sharing problem is ad-
dressed; at this level, a decision is made on how the next-hour
total expected workload is allocated to different IaaS providers
with the objective of minimizing the compound VM leasing costs.
In other words, every hour the long-term algorithm splits, for
each application k, the prediction for the global incoming request
flows Ay' into the request flows for each laaS provider zy ;
k € K,i € T taking into account the costs for allocating VMs on
the different providers. This is a long-term problem because the
algorithm is executed on about an hourly basis to avoid control
instability issues; moreover, when it comes to reacting sudden
spikes in the workload one-hour horizon is considered a very
long time [21], [22]. The long-term problem time horizon will be
denoted by T}, that represents the number of hours for which
the workload allocation is calculated. It is worth noticing that in
order to calculate the workload shares, optimized with respect to
the allocation costs, the long-term algorithm solves both LS and
CA problems. More details can be found in Sections 2.2 and 3.1.

The short-term problem, in turn, deals with the intra-Cloud
CA optimization, where the time-scale is in the order of 5 or
10 minutes, which considers as incoming workload the load
distribution share wy ; resulting from the long-term problem. It
operates on a time horizon denoted by 7.+ (one hour), as well
as on time slots of duration T;,; The objective is to determine,
for each Cloud 7, the minimum-cost number of VM to serve the
assigned percentage of the incoming workload while guaranteeing
the average response time is below a given threshold Ry, i.e.,
Ry < Rj,. More details are available in Sections 2.3 and 3.2.

The problem considered in this work entails two types of
decisions, with a strong liaison with phenomena observable in

1. In the following ~ is used to denote the prediction of a given parameter.
For example, Ay denotes the real incoming workload while Ay denotes its
prediction.

Web applications deployed in the Cloud. The decision made at
the higher level is of factical nature as it concerns the load
sharing over a long time period. This approach is legitimized
by the characteristics of the incoming workload when observed
at a coarse-grain scale (such as for example one hour). This is
generally smoothed and free of instantaneous peaks, and can,
therefore, be predicted with high accuracy and reliability. This
guarantee the validity of the decision made also for shorter time
periods with the undoubted advantage of simplifying the overall
decision-making process. At finer-grain, however, workload traces
generally exhibit an erratic behavior characterized by high vari-
ability due to the short-term changes of the typical Web-based
workload. For this reason, shorter time scales are used to made
decisions of operational and control nature as the allocation of new
VM instances with the purpose of avoiding saturation conditions
and exceeding the thresholds in QoS constraints. Concerning the
workload prediction, several methods have been adopted over
the last decades [21], [23] (e.g., ARMA models, exponential
smoothing, and polynomial interpolation), making them suitable to
forecast seasonal workloads, common at coarse time scales (e.g.,
day or hour), as well as runtime and non-stationary request arrivals
characterizing the time scales (few minutes) considered here. In
general, each prediction mechanism is characterized by several
alternative implementations, where the choice about filtering or
not filtering input data (usually a runtime measure of the metric
to be predicted) and choosing the best model parameters in a
static or dynamic way are the most significant. However, workload
prediction is out of the scope of this paper.

To conclude, it is worth remarking that the presented multi-
Cloud scenario is technologically feasible thanks to, for in-
stance, the software solutions developed within MODAC]louds
project [16], [17], which encompass full-stack modeling, de-
ployment, and runtime management of multi-Cloud applications,
removing technological limitations and lock-ins that have so far
prevented the full potential of this approach (high availability
and cost saving due to IaaS competition and workload redis-

tribution at runtime [24]) from being exploited. In particular,
since one of the main inhibitors to the multi-Cloud adoption
is the objective technological challenge of keeping updated the
geographically distributed and technologically distinct databases,
the above-mentioned project provides a distributed middleware
(see Figure 1) in charge of reliably synchronizing data among
(even technologically) different databases [25].

2.2 Long-term request distribution mechanism

The long-term problem concerns the distribution of the incoming
requests load Ag,k € K to the providers of the set Z, with a
time scale in the order of one hour, minimizing the cost for the
instances allocated. The problem is solved one hour in advance
based on the workload prediction; in this way, the outcome of the
long-term problem can be used to set up the inter-Cloud Load
Balancer Manager (see Figure 1), which distributes the load for
the short-term problem (one for each provider).

In the resolution of the long-term problem, the decision vari-
able considered are the number of reserved and on-demand VM
instances for each provider and for each class, denoted by 7, ;, and
dy,i, respectively, as well as the request rate forwarded to each
Cloud provider xj;. A performance model based on queueing
theory is used in order to evaluate the average response time
(Ry,;) given the number of VMs supporting a WS application
(rk,i + dg,i), and the incoming workload (z}, ;). More in details,
each WS application hosted on a VM is modeled as an M/G/1
queue in tandem with a delay center as in [26]. As delineated in
Figure 2 the model features multiple servers (i.e., VMs) running
in parallel to support the same WS application. The incoming re-
quests are assumed to be served according to the processor sharing
scheduling policy, which is frequently used by WS containers [27].
M/G/1 models are widely used in the literature to estimate WS
applications performance [28], [29]. The delay center Dy, ; is, in
its most general definition, an application and Cloud-dependent
parameter used to model network and protocol delays introduced
in establishing connections, indirect routing, etc.

Although system performance metrics have been evaluated
by adopting alternative analytical models (e.g., [28], [30]) and
accurate performance models exist in the literature for WS systems
(e.g., [31]), there is a fundamental trade-off between the accuracy
of the models and the time required to estimate system perfor-
mance metrics. Given the strict time constraints for evaluating
performance metrics in the present setting (especially for the
short-term problem), the high complexity of analyzing even small-
scale instances of existing performance models has prevented
us from exploiting such results here. It is important to note,
however, that highly accurate approximations for general queueing
networks [32], having functional forms similar to M/G/1 formula,
can be directly incorporated into the optimization frameworks.

2.3 Short-term receding horizon control mechanism

The short-term problem is managed at the local level of a single
Cloud provider (intra-Cloud). The data center performance is
modeled by means of the same queue system used for the long-
term problem (see Figure 2). Moreover, let us assume that the
performance parameters are continuously updated at run time
(see [26] for further details) in order to capture transient be-
haviors, VMs network, 1/O interference [33], and time-dependent
performance of Cloud resources [34], [35]. To model the time
in the short-term problem, multiple time slots of duration T,

Tiei + dii

Xk,i

\4

O

N

J G

Citk
Fig. 2. System performance model

are considered; furthermore, within the time horizon T's},,-+ (One
hour), the problem considers a sliding window of 7, future time
slots. Since the problem deals with time scales finer than one
hour, which is considered the minimum instance charging interval
T, it assumes to pay for an instance as soon as it is required. In
other words, the problem formulation assumes that a VM becomes
immediately available and it is deemed to be freely accessible
until the end of its lease term. One hour later, if the instance is
no longer needed it will be released; otherwise, the fee will be
charged again and the VM will remain available one more hour.
The overall number of time slots in the lease term (i.e., one hour)
is denoted by n. and it is assumed to be integer for simplicity.
In the problem formulation, the number of instances already paid
and available in each time slot of the time horizon is represented
by means of parameters (7}, ;,...,75) and (82’1., ., dy) for
reserved and on-demand instances, respectively.

The decision variables of the short-term problem are
(Thsr-- - 7iy) and (d} ,;,...,dp%), ie., the number of reserved
and on-demand VMs to be started up during the observation
window T, = {1,...,n,} that, in conjunction with available
instances of both types (that is those for which the lease has
not yet finalized), have to serve the predicted incoming workload
(f,lm-, ..., Zp"). The final goal is to minimize the aggregate
leasing costs to serve the predicted arrival rate while guaranteeing
that the average response time of each WS application is lower
than the SLA threshold.

The short-term solution algorithm follows the receding horizon
control principle [36], where the optimal solution is achieved
considering the whole time window, yet the algorithm enforces
only the decisions calculated for the nearest time slot. This means
that the values (1} ;,dj. ;) are calculated for every future time
interval of 7T, but the algorithm acts on the controlled system by
starting up the optimal number VMs calculated for the first time
slot, that is (r} ;,d}. ;). The short-term optimization process is
then repeated sliaing the time window and considering the second
time slot as the new starting point. 7. denotes the set of slots
within the VM lease term. Figure 3 graphically illustrates the
relationships between 7, T, and Ty;;. In this work, time slots of
5 and 10 minutes are considered as well as observation windows
with n,, from 3 up to 5 time slots, that is ranging from 15 to 50
minutes. As regarding the charging interval 7., having considered
the common VM lease term of one hour, it resulted composed of
6 or 12 time slots.

For sake of clarity, the notation adopted in this paper is

TABLE 1
Parameters of the Capacity Allocation Problem.

e
1: Ny
: Zé : Global parameters
T Set of IaaS providers
-t ttt+—++++—+—+—+F---t--» C; VM instance capacity at provider 4
t 0; Time unit cost (measured in dollars) for on-demand VMs at
pe 7 provider 4
pi Time unit cost (measured in dollars) for reserved VMs of provider
A
Fig. 3. Relationships between 7¢, T, and T, over time K< Set of WS classes
Dy, ;| Queueing delay (measured in s) for processing WS class k requests
at provider %
summarized in Tables 1 and 2. Ry ; Aver.age response time (measured in s) for WS class k request at
. provider ¢
Ry, Average response time threshold (measured in s) for WS class k
g P!
3 OPTIMIZATION PROBLEMS FORMULATION W lr\f/}qu‘?“ ber of Ji Labl der i
))))) f aximum number of reserved instances available at provider ¢
This section provides the mathematical formulation of the long- ik Maximum service rate (measured in requests/s) of a capacity 1 VM
term (Section 3.1) and short-term (Section 3.2) optimization for executing WS class k requests
problems. Long Term Problem
Tlong Long-term CA time horizon, measured in hours
31 Long-term problem A" Poditon of e ol xegencus sl e (nesed i -
The main focus of the long-term problem is to split the workload Vi Minimum percentage of traffic distributed to each provider i
prediction for application k& (denoted by Aj) among its replicas Short Term Problem
hosted on different Clouds with the objective of minimizing the Tw Duration of the time observation window
) g
resource leasing costs. The problem is solved hourly by means Te | Duration of the charging interval
. . . . Tsiot| Short-term CA time slot, measured in minutes
of a mathematical model, with the scope limited to the following n Number of time slots within the charging interval 7;
. c c
hour. In what remains of this section, the main principles and nw | Number of time slots within the time window 7y,
relationships underlying the model will be introduced briefly, 7, | Number of reserved VMs available for free for the time slot ¢ in
then the mathematical model associated with the problem will ~ _, | theinterval under analysis, for class requests at provider
be presented and discussed in detail. dy; Nurpber of on-demand VMs available for free for the time slpt tin
. . the interval under analysis, for class k requests, at provider 4
From the system performance model presented in Section 2.2 J Real local arrival . for WS class k
(i.e., M/G/1) the average response time for class k at provider ¢ T | -doca- arﬁwa e (lm casured In requests/s) for WS class Jv at
) provider 2 and at time slot 7
can be derived in closed form as: Z! . | Local arrival rate prediction (measured in requests/s) for WS class
R 1 D 0 i k at provider ¢ and at time slot ¢
k,i — Tk k,i
Cikk = 5 Fars TABLE 2
Moreover, enforcing the M/G/1 equilibrium condition, which Decision variables of the Capacity Allocation Problem.
avoids infinite queue lenght at VMs [29], [32] it holds:
Long Term Problem
Tg,i < Cipg (Tk,i + dk,i) dy.,; | Number of on-demand VMs to be allocated for WS class k request
at provider ¢
that can be rearranged as: Tk,; | Number of reserved VMs to be allocated for WS class k request at
Th provider ¢
Thi +dg,; > c : Tk,; | Arrival rate (measured in requests/s) assigned to provider i, for
il class k request
Consequently, the average response time, Ry, ;, can be expressed Short Term Problem
9 Y, g p v Sleyis P d}i ; | Number of on-demand VMs to be allocated for WS class k request
according to the formula: " | at time slot ¢ at provider i
i+ di ri ; | Number of reserved VMs to be allocated for WS class k request at
Ry ; = 2 2 + Dg; ' time slot ¢ at provider ¢

T Cipk (i +diyi) — Tk

which, by imposing the QoS condition Ry, ; < Ry, leads to the

Hence, being d; and p; the costs of on-demand and reserved
VM instances for provider ¢, respectively, the joint Capacity
Allocation and Load Sharing problem can be formulated as:

ZZ (piTk,i + 6idk.;) Q)

i€ZkeEK

following inequality after some algebra:

Ty + dii < (R — D) [Cipr (i + diyi) — Ty

and then: min
Tk,i Ak, i Tk,i

(Pre)

Tki+dki+ﬂfki< —Rk_Dk’i)>0
' ' "\ 1= (Rk — D) Cip
Subject to the conditions:
Note that it can be safely presumed that 1 —
(Rk i — Dii) Cipy < 0 smce C; > 0, up > 0, whereas P+ i — Thi S0 VieIVkek, @)

Rii > Dy, and Ry > =+ are well-accepted assumptions _ iHk
(i.e., the QoS threshold has to be hlgher than the queueing network i+ di i+ k,i(Rk — Di,i)

22 >0 VicI,VkeK, &
delay Dy, ; and the request service time CLI% . 1 — (R — Di.;) Cipu

Sari=Ay VEEK,)
1€T
api > vl Vi€ I,VkEK,)
Z“m’ <W; Vi €T, 7
kel
ki >0, e EN Vie I,Vk €K, (8)
dg; >0,dp; €N VieIVkeK. ©)

(Pj4) can be classified as a Mixed Integer Linear Programming
(MILP) problem, since the variables of the problem are integer
or float and the objective function and constraints are linear. In
particular, it minimizes the total leasing costs considering both
on-demand 1y, ; and reserved dy, ; over a time-period of one hour;
to achieve this goal the model has to decide not only the number
of instances but also the optimal load sharing policy, x, ; (Which
does not contribute directly to the value of the objective function,
though). As a result of the problem, the workload of the system
for the next hour is redirected to each provider ¢ and application k
according to the probability defined by %

As far as the constraints are concerﬂed, iﬁequalities 3), as
discussed earlier, impose the equilibrium distribution to the un-
derlying M/G/1 queue models (one per application k and provider
). This constraint set strongly relates to (4), which implements
the response time bounds defined in the service level agreements.
The equilibrium conditions (3), in fact, imply the positivity of the
denominator in the response time formula (1).

Constraints (5) (6) define how the model can split the predicted
workload; on the one hand, constraints (5) ensure that the traffic
assigned to individual providers equals the overall load predicted
for application k. Thus, the model is forced to assign the whole
traffic. On the other hand, constraints (6) guarantee that every IaaS
receives at least a fraction ; of workload, preventing scenarios
where all the workload is simply forwarded to the minimum-cost
provider featuring the most economically advantageous offer.

The constraint set (7), creates of a liaison between different
classes of applications making the problem much harder to solve:
At the same provider, in fact, the model is allowed to allocate the
maximum number W; of reserved instances, considering all whole
set of applications deployed; without this constraint, the problem
would be separable in |K| independent sub-problems.

3.2 Short-term problem

The short-term problem is addressed starting with the solution of
the long-term one. However, the time granularity of the problem
is much finer, thus motivating the differences in the problem
model. The Capacity Allocation (CA) problem is solved over an
observation window 7, of n,, time slots and aims at minimizing
the overall costs for reserved and on-demand instances to serve
the predicted arrival rate 502 ; while guaranteeing SLA constraints.
The ** notation highlights that the arrival rate prediction does not
refer to the overall arrival rate from the long-term problem, but it
is a prediction of the local workload for time slot ¢. That said, the
CA problem can be formulated as:
min

Ny Nw
(Pst) min Z (Pzzril + 512d21>
t=1

ki %,i kelC t=1
Subject to the conditions:

~t
Tk,

(10
Cipg

t
Z (r;i + d;i) + T +Efm > Vt € Tuw,Vk € K,
T=1

t
_ —t _
Z(’"Z,i +dp;) + Tz,i +dp i+ > xfmAlm

T=1

Vvt € Tw,Vk € K, (11)

S ki +TR) SWi VEETw, (12)
kel

Vt € Tw,Vk € IC, (13)
YVt € Tw,VE € K. (14)

riyi >0, r,tm- eN
di,; >0, dj, €N

_ Ry — Dy >0
(Rik,i — Dr,i) Cipe — 1

where Ay ; =

It is worth noticing that problem (Ps;) shares several similari-
ties with the (P); in particular, the objective function is designed
to catch the effects of on-demand and reserved instances on the
overall leasing costs, whereas constraints (10), (11) and (12) are
semantically equivalent to (3), (4) and (7), respectively. The main
differences compared to the (Py;) lie in explicitly considering time
(and therefore system state) and not implementing a load sharing
policy (i.e., j}&m” Vk,1,t are parameters of the model).

More in detail, the inequality set (10) derives from the per-
formance models of Figure 2 and it corresponds to the M/G/1
equilibrium condition; the average response time is given by:

1

R, = +Dpi (15)

it

T oAdn i+ (0L AR)

Cipg —

Constraints (11), instead, can be obtained after some algebra
from the QoS conditions R}fm < Ry, and (10) and (15) as follows:

¢
ﬁm‘ ‘*‘32,1' + Z (Tl:z + de) <

T=1

t
(Rk,z’ — Dkz) |:C”J,k <7’7}£€‘i +EZ,1 + Z (Tg,i + d;;,z)> — izﬂ] =

=1
@}, ;(Rk,i — Di,q)
1 — (Ri, — D) Cipk

¢
_ —t
Z(Tg,i +dp ;) + Thi +dii +

T=1

>0 (16)

Note that, for the reasons discussed in the previous section, it
can be safely assumed that 1 — (Rk,i — D;”) Cipg < 0.

Lastly, inequalities (12) impose for each time slot ¢ a budget
constraint on the overall number of available reserved VMs, that
can not be greater than W; (i.e., the number of VMs for which the
SaaS subscribed a long-term contract with provider 7).

To conclude notice that, overall, problem (Pst) is also a MILP,
and it can be efficiently solved by commercial solvers even for
large instances (the scalability analysis is discussed in Section

5.5).

4 SOLUTION ALGORITHM

In this section are presented the two algorithms used to solve the
long- and short-term problems, respectively.

4.1

The long term problem algorithm is rather straightforward as it
lies directly on the solution of the model presented in Section
3.1. As matter of fact, since the model (F;;) does not consider
the state of the system at any point, that is the solutions of
two consecutive hours are totally unrelated, the algorithm (as
defined in Algorithm 1) does not store information or keep track
of previous solutions, ultimately resulting in a lean and easy to
implement algorithm.

Solution of the long-term problem

Algorithm 1 Request distribution algorithm

1: procedure REQUEST DISTRIBUTION
for all k£ € K do
Ay, < GetNextHourPrediction (k)
end for
Solve (Pyt)
Redirect global workload according to zj, ; results
end procedure

A o

From the architectural and deployment perspective, within the
MODACIouds vision Algorithm 1 is executed by a component
hosted by any of the Clouds that make up the execution context.
This is necessary because the model around which the algorithm
pivots is centralized. The algorithm consists of three main steps:
workload prediction, model solution, load balancer manager set-
ting up. It basically invokes a prediction function to forecast the
incoming flow of requests for the next hour (Ag). The flows of
real requests, needed for the prediction, are monitored locally to
each data center on an hourly basis and then shared with the
data center running Algorithm 1. The output of the forecasting
function is a vector of future requests that is fed into a solver that
computes an optimal solution for the Pj; optimization objective
defined previously. The result is the partition of the incoming
workload across the multiple Cloud providers. The enforcement
of the problem solution is performed by properly changing the
weights (according to Thi__) of the of the MODACIouds

TTg it

[637] or of DNS servers of each Cloud

/

multi-Cloud load balanceri
provider [38].

4.2 Solution of the short-term problem

The short-term problem is addressed using a controller imple-
menting a receding horizon policy, outlined in Figure 4. A replica
of this controller component resides in every Cloud provider
(data center) and operates independently from the other providers,
unlike the solution for the long-term problem, which is centralized.
At each time slot (marked by a clock spike) the monitoring
platform at Cloud provider ¢ provides the new workload predic-
tions (&}, ;,..., &%) for the current time window 7,, and new
estimates for the pefformance parameters Dy, ;, (.. The optimizer
component feeds the optimization model using the current ap-
plication state expressed in terms of allocated VMs. Afterwards,
the optimizer harnesses the model to calculate the most suitable
number of VM instances to allocate during the whole time window
in order to guarantee the arranged SLAs. Finally, the optimizer
operates on the running Cloud applications, through [aaS APIs,
enacting only the first time slot of the attained allocation plan.
Notice that performance parameters are continuously updated at
runtime in order to capture transient behavior, VMs network and
I/O interference [33], and performance variability of the Cloud
provider [34].

Algorithm 2 is a high-level description of the receding horizon
approach implemented to solve the short-term problem. The algo-
rithm consists in four main steps, iteratively applied to cover the
overall time horizon. The first step (lines 2-8) initializes the main
model parameters representing the system state and the predicted
workload for the considered time window. In particular, the system
state is defined by the number of reserved and on-demand VMs
already available for each time slot of the observation window.
It is worth noticing that, in order to manage the state of the
system (?’,;7,; , E;i) in the execution of the algorithm for different
time slots, a set of global parameters (i.e., Ny o 1 ;s Npoa i)

First slot configuration (r},d}.)

3 [|

: Solve

: .. Optimization !

: Optimizer :

i SR k| Model :

' Optimal !

! solution 3

1 Receding Horizon controller i laaS

”””””””””””””””””””””””””””””””” Interface
Clock Update Model Pridlicmd workload
I— Parameters Ty ooy Ty, w)

Monitoring Cloud
Platform Application

Fig. 4. Receding horizon controller.

Algorithm 2 Receding Horizon Algorithm

procedure SOLUTION ALGORITHM
for all £ € K do
for w < 1,1, do
:%}:’ ; < GetPrediction (w, k)
t+w

1:

2

3

4.

5: Y.+ N Initialization
7'1312 t+w

6 dkai A Nond,k,i

7 end for

8 end for

9 Solving the

Solve (Pst) « current model

10: for all £ € K do
Applying the changes

11: Scale (k, r,lm., d,lm.) «— according to the first
time slot decisions
12: for j <—_‘_1,nC do N
. t+j t+j 1
13: Nzis,k,i — Nrtef,_k,i + Tk,z‘
. 7 J 1
14: Nona ki < Nondkei T i State update
15: end for
16: end for

17: end procedure

has been introduced, which store the number of VM instances,
inherited from previous time slots, whose charging period has not
yet ended and, therefore, still available at time slot ¢. The second
step (line 9) is the solution of problem Py; to optimality using a
third-party solver. The third step (line 11) implements the receding
horizon paradigm by modifying the application deployment using
only the values calculated for the first time slot of the considered
time window (to avoid greedy decisions and to exploit a better
prediction for the steps not in the near future). Note that most
of other literature approaches [6], [12], [30], [39] consider only
a single step time instant in the future that can be obtained with
Ny, = 1. Finally, (lines 12-15), the algorithm updates accordingly
the system state, Nf,:stk, i,Ng:j - Since the VMs allocated
at time ¢ are available until the end of their charging period,
the algorithm only updates the state from ¢ to ¢ + n.. As a
consequence, at time slot ¢ + n. + 1 these instances will be
switched off, if no longer needed.

5 EXPERIMENTAL CAMPAIGN

In this section, the paper contribution will be compared with the
state-of-the-art techniques currently used in Cloud systems, with a
focus on the auto-scaling policies that ar