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Novel carboxylate-based 
glycolipids: TLR4 antagonism, 
MD-2 binding and self-assembly 
properties
Florent Cochet   1, Fabio A. Facchini1, Lenny Zaffaroni1, Jean-Marc Billod2, Helena Coelho   3,4,5,  
Aurora Holgado6,7, Harald Braun6,7, Rudi Beyaert6,7, Roman Jerala   8, Jesus Jimenez- 
Barbero   9,10,11, Sonsoles Martin-Santamaria2 & Francesco Peri1

New monosaccharide-based lipid A analogues were rationally designed through MD-2 docking studies. 
A panel of compounds with two carboxylate groups as phosphates bioisosteres, was synthesized with 
the same glucosamine-bis-succinyl core linked to different unsaturated and saturated fatty acid chains. 
The binding of the synthetic compounds to purified, functional recombinant human MD-2 was studied 
by four independent methods. All compounds bound to MD-2 with similar affinities and inhibited in 
a concentration-dependent manner the LPS-stimulated TLR4 signaling in human and murine cells, 
while being inactive as TLR4 agonists when provided alone. A compound of the panel was tested in 
vivo and was not able to inhibit the production of proinflammatory cytokines in animals. This lack of 
activity is probably due to strong binding to serum albumin, as suggested by cell experiments in the 
presence of the serum. The interesting self-assembly property in solution of this type of compounds was 
investigated by computational methods and microscopy, and formation of large vesicles was observed 
by cryo-TEM microscopy.

The Toll-like Receptor 4 (TLR4) is the mammalian receptor responsible for the Gram-negative bacterial endo-
toxin recognition (lipopolysaccharide, LPS and lipooligosaccharide, LOS). TLR4 is mainly expressed on the 
cells surface of innate immune1 and epithelial cells2, allowing them to sense minute amounts of LPS released by 
the Gram-negative bacteria. An ordered series of interactions among the lipophilic portion of LPS and LBP3,4, 
CD145,6 and MD-27–10 co-receptors allows the formation of the activated membrane heterodimeric complex (LPS/
MD-2/TLR4)2

11 that triggers an intracellular signal12 inducing the production of pro-inflammatory cytokines 
and chemokines13,14. TLR4-mediated cytokine production is an essential mechanism by which the host organ-
ism responds to infections, however, excessive stimulation of TLR4 by pathogen-associated molecular patterns 
(PAMPs) can cause uncontrolled cytokine production leading to serious life-threatening syndromes such as acute 
sepsis and septic shock15. Recently, TLR4 activation by endogenous factors (DAMPs) has been associated to 
several inflammatory disorders and auto-immune diseases affecting a variety of organs and body functions16–18. 
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In this context, the development of hit or lead compounds that are able to modulate TLR4 signaling is attracting 
increasing interest for a wide range of possible therapeutic settings19. TLR4 antagonists of synthetic or natural 
origin can block TLR4 signaling by interacting with the natural TLR4-bound co-receptor MD-220, thus com-
peting with the natural ligand LPS. Other TLR4 inhibition mechanisms are based on preventing LPS-induced 
receptor co-localization and dimerization (MGCs)21, on interfering with cytosolic adaptor protein recruitment 
(TAK242)22, or on the direct binding with other co-receptors such as the CD14 co-receptor23–26.

The type of modulation (agonism or antagonism) and the potency of TLR4 modulation by lipid A (phospho-
lipidic part of LPS recognized by TLR4) and lipid A analogues not only depends on the interaction with CD14 
and MD-2 receptors, but also on the aggregation state in solution of such amphiphilic molecules. The size and 3D 
shape of aggregates directly influences early stages of ligand recognition, namely the interaction with LBP and 
CD14 receptors27. Large lamellar or spherical aggregates have been associated respectively to the antagonist and 
agonist behavior of the lipid A variants26,28–30.

Compound E5564 (Eritoran, Fig. 1)31 is one of the most potent TLR4 inhibitors so far. The activity of this 
molecule is associated to its capacity to mimic the lipid A moiety, thus competing with LPS for MD-2 binding. 
Eritoran consists of a glucosamine disaccharide with two phosphate groups, in C1 and C4′ positions, and four 
lipophilic chains. Other TLR4 antagonists have glycolipid structures, as in the case of Gifu monosaccharides32, 
Lipid X and compound FP7 (Fig. 1)25,33 or have a chemical structure unrelated to lipid A34. Eritoran and FP7 are 
the only lipid A mimetics whose direct binding to MD-2 and the competition with natural MD-2 ligands LPS and 
LOS have been reported20,26,35,36.

With the aim of obtaining lipid A mimetics with drug-like features, including increased metabolic stability, the 
anionic phosphate group has been replaced by the bioisosteric carboxylate group (Fig. 1)37–43 and different Lipid 
A analogues have been reported presenting different acylation patterns together with a carboxymethyl37–40 or a 
carboxyl group linked to the anomeric carbon41. In the case of aminoalkyl glucosaminide-4-phosphates (AGPs, 
or Corixa compounds, CRX)44, the whole reducing sugar and phosphate have also been replaced by an acylated 
diethanolamine bound to a phosphate or a carboxylic acid42,43.

AGPs act as TLR4 agonists or antagonists depending on the acylation patterns and the fatty acids chains 
lengths, and the variants with agonist properties (CRX 526, Fig. 1) were subsequently developed as vaccine adju-
vants45. The TLR4 agonistic/antagonist activity of AGPs is a good indication that the bioisosteric substitution of 
the phosphate group in C1 by a carboxylic acid, preserves the ability to bind to MD-2 and triggers or inhibits 
TLR4 dimerization. While some of carboxylic acid synthetic variants of lipid A have been characterized for their 

Figure 1.  Chemical structures. Natural E. coli lipid A, lipid X, synthetic antagonist E5564 (Eritoran) and 
monosaccharide FP7. Synthetic Lipid A mimics with carboxylic acids replacing phosphates, active as TLR4 
modulators.
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immunomodulating activity in cells and in animal models, no data are available on the characterization of their 
direct binding to MD-2.

We report here a small series of monosaccharide-based lipid A mimetics resembling FP7, with carboxyl moi-
eties mimicking phosphates and with unsaturated fatty acid chains. We tested the capacity of this variety of mol-
ecules to interact with the MD-2 co-receptor in multiple binding assays and we evaluated their biological activity 
on different cellular models. Compounds FP13- FP17 (Fig. 2) have been rationally designed as lipid A mimetics 
where the phosphates have been replaced by succinate moieties, while the distance between the two carboxylate 
groups has been kept similar to that of the two phosphates groups in lipid A (distance of 11 to 15 Å for E. coli Lipid 
A and 8 to 15 Å for FP13-17)37–39,41–43. Moreover, unsaturated chains (also present in Eritoran) have also been 
inserted to enhance the binding into the MD-2 hydrophobic pocket46.

All compounds are based on a glucosamine scaffold, and present two units of succinic acid condensed to the 
hydroxyl groups at C1 and C4. As the TLR4 antagonist Eritoran presents an unsaturated chain (C18, cis-11) that 
has the role to increase the binding affinity for the MD-2 hydrophobic pocket47, we aimed to investigate the effect 
of unsaturated chains linked to glucosamine C2 and C3. FP13 contains two oleic chains (C18, cis-9), FP14 two 
linoleic chains (C18, cis, cis-9,12), FP15 myristic at C3 (C14) and oleic at C2, FP16 myristic at C3 and linoleic at 
C2 and FP17 two myristic chains (Fig. 2).

Results
Computational studies of the binding of FP13-17 to TLR4/MD-2.  Designed monosaccharides 
FP13-17 were computationally studied to predict their TLR4/MD-2 binding properties. To explore their pos-
sible binding modes, the compounds were computationally docked in a 3D model of the TLR4/MD-2 complex 
in antagonist conformation previously reported by us48, by means of the Vina docking program49. Compounds 
FP13-17 were predicted to bind inside the MD-2 hydrophobic pocket (Fig. 3) with favorable predicted binding 
scores (ranging from −8.2 to −6.7 kcal/mol for the 20 best predicted poses). Two different binding orientations 

Figure 2.  (A) Monosaccharide FP13-17 are lipid A mimetics. (B) FP13 contains two oleic acid chains (C18, cis-9),  
FP14 two linoleic acid chains (C18, cis, cis-9,12), FP15 myristic acid at C3 (C14) and oleic acid at C2, FP16 
myristic acid at C3 and linoleic acid at C2 and FP17 two myristic acid chains.
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were identified: one similar to that for E. coli lipid A in PDB ID 3FXI, and a second one similar to that for antag-
onist lipid IVa in PDB ID 2E59 (rotated by 180 degrees along the lipid chains axis compared with agonist E. coli 
LPS in PDB ID 3FXI, Supp. Inf. Fig. S1). In all case, the fatty acid chains were inserted inside the MD-2 pocket 
establishing interactions with the aliphatic and aromatic residues. In particular, Phe151 was found to interact with 
the unsaturated moiety of oleic and linoleic acids in compounds FP13-17, while other hydrophobic interactions 
were found with side chains from Phe121, Phe147, Ile44 and Ile46 residues (Fig. 3). Regarding the polar moieties 
of FP13-17 (pyranose ring of the sugar and esters groups), they were participating in a variety of polar interac-
tions with the polar residues at the MD-2 rim, such as Tyr102 and Glu92. The carboxylate groups were predicted 
to establish ionic interactions with Arg96 and Arg264 (TLR4) in most of the docked poses for all the compounds 
(Fig. 3).

Selected docked binding poses obtained with Vina were submitted to re-docking with AutoDock50, another 
well-known docking program with a different scoring function. Fittingly, the best poses obtained for each ligand 
were in good agreement with those obtained through Vina, which supported the appropriateness of the employed 
approach. Predicted scores ranged from −7.38 to −4.53 kcal/mol across all the ligands with a score for the best 
predicted poses ranging from −7.38 to −4.69 kcal/mol. No major score or binding differences were observed 
among the set of ligands suggesting similar binding properties.

To study in detail the binding interactions of each ligand to the TLR4/MD-2 system, we performed molecular 
dynamics (MD) simulations of the complexes of TLR4/MD-2 with the best docked pose for each ligand. The 
dynamics of the ligands and of key residues of MD-2 were analyzed. MD-2 is stable over the trajectory as shown 
by the RMSD and RMS fluctuation per residues analysis (Supp. Inf. Fig. S2). Polar interactions are maintained 
along the simulation and residue Phe126 does not undergo major conformational change (Supp. Inf. Fig. S3), 
indicating that all the ligands are able to retain the antagonist conformation of MD-2, previously associated with 
antagonist properties11. Interestingly, the starting docked poses relocate, after 50 ns of MD simulation, from a 
slightly deep position inside the MD-2 rim towards a binding mode closer to that for lipid IVa (depicted for FP13 
in Supp. Inf. Fig. S4). These similar modes of TLR4/MD-2 binding were in agreement with a similar antagonist 
activity (see below).

The solubility of the ligands, which is a critical property for cellular assays, was also analyzed by calculating the 
logP parameter (Supp. Inf. Fig. S5). The results point toward relatively high logP values. However, they are in the 
range of a previously reported family of FP7 analogues51. Despite the high calculated logP it was however possible 
to dissolve all compounds in aqueous buffers and test them on cells and animals.

MD-2 binding properties of synthetic compounds.  Compounds FP13-17 were synthesized according 
to multistep synthesis (Fig. S6, Supp. Info). and were tested for their capacity to bind to purified human MD-2 
(hMD-2) Four different techniques were used: two ELISA-type plate-based assays with immobilized protein, a 
fluorescence displacement assay, and surface plasmon resonance (SPR)52,53.

Direct binding of LPS and synthetic molecules FP13-17 to hMD-2 was determined by using a monoclo-
nal antibody that binds to free hMD-2 but not to LPS bound to the hMD-2 binding site54. Monoclonal mouse 
anti-hMD-2 (9B4) antibody specifically binds to an epitope close to the rim of the hMD-2 pocket, available for the 
binding only when the hMD-2 pocket is empty. This assay detected a decrease in binding to hMD-2 in the pres-
ence of LPS (Fig. 5A), similar to what has previously been reported55. A dose-dependent inhibition of antibody/

Figure 3.  Best AutoDock Vina docked poses of FP13-17 within the TLR4/MD-2 complex. TLR4 and MD-2 
are respectively represented in black and grey cartoon. Ligands FP13 to FP17 are in yellow, cyan, pink, blue and 
green sticks, respectively (left: general view; right: detailed view showing selected interacting residues, only 
FP13 in yellow and FP16 in blue are shown).
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MD-2 interaction was observed when adding molecules FP13-17, with a 85−95% decrease in binding obtained 
at concentrations of molecules FP13-17 of 20 μM (Fig. 4A). This indicates that the synthetic molecules bind the 
cavity of MD-2.

The ability of synthetic molecules FP13-17 to displace LPS from the hMD-2 pocket was assessed by 
ELISA. FP13-17 molecules were added at increasing concentrations to hMD-2 that was previously incubated 
with biotinylated LPS. FP13-17 molecules were able to displace biotin-LPS from the hMD-2 pocket in a simi-
lar dose-dependent manner, with the highest displacement of 40−55% obtained at a concentration of 160 μM 
(Fig. 4B). As a control, LPS at a concentration of 40 μM gave the highest displacement of biotin-LPS of 70% 
(Fig. 4B).

It has been previously shown that the fluorescent probe 1,1′-Bis(anilino)−4,4′-bis (naphthalene)−8,8′ disul-
fonate (bis-ANS) binds to hMD-2 and it is displaced by LPS53. bis-ANS binds the same hMD-2 binding pocket 
that accommodates the fatty acid chains of lipid A and of other lipid A-like ligands, so that TLR4 modulators 

Figure 4.  Binding studies on purified hMD-2 receptor. (A) FP13-17 prevent anti-human hMD-2 monoclonal 
antibody binding in a dose-dependent manner; (B) FP13-17 compete with biotin-LPS for hMD-2 binding; 
(C) FP13-17 dose-dependently inhibit the binding of bis-ANS to hMD-2;(D)-(H). SPR analysis show direct 
interaction between FP13-17 and hMD-2; KD values are reported.
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interacting with MD-2 in a lipid A-like manner, compete with bis-ANS and displace it from hMD-2. Synthetic 
compounds FP13-17 caused a similar concentration-dependent decrease of bis-ANS fluorescence, indicating 
competitive binding of molecules FP13-17 to hMD-2 (Fig. 4C).

Results of SPR data experiments based on binding of compounds to the immobilized hMD-2, showed direct 
interaction of the hMD-2 receptor with LPS (control, Supp. Inf. Fig. S7) and with the tested synthetic compounds 
FP13-17. KD values derived from sensorgram analysis were 9, 35, 14, 21 and 12 μM for FP13, FP14, FP15, FP16 
and FP17, respectively (Fig. 4D–H). SPR experimental curve optimal fitting was obtained by assuming 1:1 ligand/
MD-2 binding stoichiometry.

Together, the results obtained from these in vitro cell-free studies clearly indicate that compounds FP13-17 
directly bind to hMD-2.

Cryogenic Transmission Electron Microscopy (Cryo-TEM).  We have recently described the aggre-
gation behavior of FP7 glycolipid, a related molecule to those described herein51. In particular, the analysis of 
the obtained NMR and TEM data (cryogenic and negative staining) permitted to show that FP7 forms micelle 
structures36. Indeed, previous investigations had demonstrated that FP7 has a CMC of about 9 µM56. Thus, 
the self-assembly in solution of one member of the series, namely compound FP15, was studied by Cryogenic 
Transmission Electron Microscopy (Cryo-TEM) (Fig. 5).

The detailed inspection of the cryo-TEM data shows that FP15 mainly forms spherical and homogeneous 
small unilamellar vesicles (SUVs), although with rather different size distributions, from 10 to 110 nm. Moreover, 
it was possible to detect the presence of fusion events (as highlighted in the zoomed picture in Fig. 5, dark red 
squares) as well as the existence of open bilayers. The use of vitrified samples allowed the trapping of the poten-
tially unstable structures associated with the formed intermediates in the solubilization process of the vesicles.

These experimental data show that FP15 is able to form vesicles/liposomes displaying a bilayer.

Molecular dynamics (MD) simulations of FP15 self-assembly.  As FP15 was experimentally shown 
to spontaneously form SUVs, observed through Cryo-TEM experiments, we were eager to understand this phe-
nomenon at an atomistic level by performing MD simulations of FP15 in water (see Experimental Section for 
details). A thorough explanation and discussion about all the self-assembly simulations performed is given in 
Supp. Inf., the following analysis is based on one unique selected long simulation of 1 µs in total. Starting from a 
random mixture of FP15 molecules and explicit water molecules, the system was observed to self-organize into 
a bilayer system, reaching a stable regime from 700 ns of simulation (according to the area per molecule graph, 
Supp. Inf. Fig. S8, left). For this reason, only the last 300 ns were considered for plotting electron density profile 
(Supp. Inf. Fig. S8, right) to estimate the thickness of the FP15 layer between 40 and 70 Å. It can be grasped from 
Fig. 6 that the membrane is slightly curved resulting in an electron density profile with soft delimitation between 
the water and the FP15 phases preventing us form precisely assessing the thickness. The graph also shows that 
water is present at all latitude of the membrane with a minimum at the center indicating that the vesicles might 
be highly permeable to water.

In each layer, FP15 is regrouped in small cluster surrounded by water accessible pores. The smallest, and what 
looks like the most stable cluster, is a face-to-face head group packaging assembly of two FP15 units, stabilized 
through hydrogen bonds and interactions between carboxylate anion from the succinate groups through Na+ 
ionic interactions. Two other assemblies of four FP15 are observed, one in which the saccharide rings are packed 
in parallel, being stabilized by hydrogen bonds and ionic interactions, the other one is an in-circle assembly of 
FP15, around a spot rich in Na+ ions, driven exclusively by ionic interactions between succinate groups and Na+ 
ions (Supp. Inf. Fig. S9). Additionally, we can observe that the unsaturation in the acyl chains induces a sharp turn 
at the center of the membrane, preventing the different units of FP15 to form highly organized bilayers.

Figure 5.  Cryogenic Transmission Electron Microscopy (Cryo-TEM) of FP15 (7 mg/mL) nominal 
magnification of 40,000× (0.26 nm/pixel).
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Inhibition of LPS-stimulated human TLR4 activation in HEK293-Blue cells.  Synthetic monosac-
charides were screened for their capacity to activate or inhibit LPS-stimulated TLR4 activation in HEK293-Blue 
hTLR4 cells. HEK293-Blue hTLR4 cells are HEK cells transfected in order to express the human receptors 
involved in LPS detection process (TLR4, MD-2 and membrane-bound CD14) and an inducible SEAP (secreted 
embryonic alkaline phosphatase) reporter gene placed under the control of NF-kB and AP-1-transcription fac-
tors. Activation of the MyD88-dependent TLR4 pathway promotes the production and secretion of SEAP in the 
cell culture media, which can be easily quantified. In order to evaluate the capacity of FP13-17 to trigger TLR4 
activation, cells were treated with increasing concentrations of the compounds (0.1 to 10 µM) and incubated for 
16 hours. On the other hand, to evaluate the antagonist activity, cells were pre-incubated with compounds FP13-
17 for 15 min. and stimulated with LPS for 16 hours. The results obtained revealed that none of the molecules 
induced TLR4 signaling up to a concentration of 10 μM, thus indicating lack of agonist activity (Data not shown). 
Conversely, FP13-17 did inhibit, in a dose-dependent manner, the LPS-induced TLR4 signaling (Fig. 7). All 
molecules showed similar antagonist potency (IC50 values is in the range 2.7 to 6.6 µM, also in the same order of 
magnitude than that of IC50 of FP7, range, 0.46-3.42 µM)51,56. An MTT assay revealed that the compounds did not 
affect cell viability at concentrations up to 10 μM (Supp. Inf. Fig. S10).

Inhibition of LPS signaling in murine macrophages.  To characterize the effect of synthetic compounds 
FP13-17 on cells naturally expressing TLR4, we used the murine macrophage RAW 264.7-Blue cell line, which 
are murine RAW 264.7 macrophages with chromosomal integration of SEAP reporter construct described in the 
previous section. Also in this case, the compounds did not show agonist activity when provided alone to the cells, 
while they inhibited LPS-stimulated SEAP secretion in a dose-dependent manner (Fig. 8) and the potency in 
inhibiting TLR4 signal was similar for all synthetic compounds.

Figure 6.  Representation of the evolution of the FP15-water mixture over time, t = 0 ns (A), t = 50 ns (B), 
t = 200 ns (C) and t = 1000 ns (D). FP15 in represented in CPK colored sticks, ion Na+ in violet spheres and the 
water molecules in thin grey and red lines.

Figure 7.  Dose-dependent inhibition of LPS-triggered TLR4 pathway activation in HEK293-Blue hTLR4 cells. 
Cells were pre-incubated with increasing concentrations (0.1 to 10 µM) of compounds FP13-17 in serum-
free DMEM medium and stimulated with LPS (100 ng/mL) after 15 min. SEAP levels in cell culture media 
were quantified after 16 hours as indicator of TLR4 activation. Data were normalized to stimulation with LPS 
alone and fitted to a sigmoidal 4 parameter logistic equation to obtain dose-effect curves (left panel). IC50 
values for FP13-17 are reported in the right panel. points represent the mean of percentage ± SEM of at least 3 
independent experiments.
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In vivo experiments with compound FP13.  To further investigate whether carboxylate-based lipid A 
mimetics are able to inhibit LPS-induced signaling in vivo, we injected C57BL/6 mice i.p. with 200 µg of com-
pound FP13 followed by the LPS injection 30 min later. After 4 h mice were sacrificed and serum was analyzed 
for the presence of TNFα, which was strongly increased upon the LPS treatment (Supp. Inf. Fig. S11). However, 
in contrast to our cellular studies, FP13 did not affect LPS-induced serum TNFα levels. The reason for this was 
unclear and we hypothesized poor distribution and absorption of the compound upon i.p. injection.

We therefore also explored the antagonistic capacity of FP13 in a different in vivo model, where LPS and 
FP13 were both administered locally in the lungs. Intratracheal (i.t.) instillation of LPS is known to cause an 
acute inflammatory response in mice, characterized by transient infiltration of neutrophils into the airways57,58. 
However, also in this model, treatment with FP13 failed to suppress the LPS-induced effect (Supp. Inf. Fig. S12). 
These results demonstrate that FP13 is biologically inactive in mice when administered i.p. or i.t.

We next sought to determine the possible reason for the discrepancy in the observed effect of FP13 in vitro 
and in vivo. The plasma protein binding of therapeutic drugs is known to have a significant impact on their phar-
macokinetics and pharmacodynamics59. It should be noted that the above described in vitro experiments were 
done with HEK293-Blue and RAW 264.7-Blue cells cultured in the absence of serum. Therefore, we first analyzed 
whether the presence of serum has an effect on the in vitro biological activity of FP13. Indeed, the antagonistic 
activity of FP13 was completely neutralized when tested on RAW 264.7-Blue cells incubated in DMEM supple-
mented with 10% FBS (Fig. 9A). Serum albumin is the major soluble protein constituent of blood with mouse 
albumin serum concentrations being around 20 mg/mL60. In order to evaluate whether the presence of serum 
albumin protein is sufficient to neutralize the in vitro activity of FP13, we repeated the RAW 264.7-Blue cell assay 
in serum-free conditions but with the addition of 4 or 20 mg/mL BSA. Similar to addition of complete serum, 
also addition of BSA strongly decreased the antagonistic activity of FP13 in a dose dependent manner (Fig. 9B,C). 
Together, these data indicate that binding of FP13 to proteins interferes with its biological activity and that bind-
ing of FP13 to albumin or other proteins present in mouse blood and the bronchoalveolar lung environment is 
most likely responsible for the absence of an antagonistic effect of FP13 in vivo.

Discussion
This study presents a new series of monosaccharide lipid A mimetics containing two carboxylates replacing lipid 
A phosphates. The structure of these compounds is based on a glucosamine scaffold that has been functionalized 
with two succinate esters in C1 and C4, and therefore expose two carboxylic acids at a mutual distance similar to 
that of lipid A phosphates. Saturated and/or unsaturated fatty acid chains are attached to the C2 and C3 positions 
of the sugar.

The structure-based design of these compounds was done by molecular docking within the TLR4/MD-2 
receptor and MD simulations. All compounds showed favorable predicted binding scores and interesting binding 
poses into hMD-2 that suggested their putative MD-2 binding properties and their possible activity as TLR4 

Figure 8.  Inhibition of LPS-induced TLR4 signaling in RAW 264.7-Blue cells. Cells were pre-incubated with 
the indicated concentrations of monosaccharides FP13-17 and stimulated with 1, 10 or 100 ng/mL E. coli 
O111:B4 LPS 30 min. later in serum-free DMEM medium. SEAP reporter levels in the cell supernatant were 
determined by QuantiBlue Assay 24 h later. Error bars represent the standard deviation of the mean of technical 
triplicates. The graph is representative of at least three independent experiments.
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modulators. Compounds were synthesized starting from commercial glucosamine through a divergent strategy 
from a common intermediate.

For the first time in the case of carboxylic-acid-based lipid A analogues, the interaction with functional 
hMD-2 receptor was directly measured by using a recombinant hMD-2 expressed in yeast (P. pastoris).

In a first set of in vitro experiments, we studied the SAR of these carboxylic-acid-based lipid A analogues 
(FP13-17). Four different binding experiments between synthetic compounds FP13-17 and hMD-2 were carried 
out. These were competition (displacement) experiments in which the synthetic glycolipids FP13-17 competed 
with biotin-LPS, with the fluorescent MD-2 ligand bis-ANS, and with anti-MD-2 antibody for MD-2 binding. 
SPR measurements allowed to analyze directly the binding between synthetic glycolipids and hMD-2. All binding 
experiments consistently provided a similar order of affinity among hMD-2 and synthetic molecules FP13-17.

The biological activity was assessed on cellular models expressing human and murine TLR4/MD-2. All mole-
cules turned out to be inactive as agonists on human and murine TLR4. However, when administered with LPS, 
all the carboxylate-based lipid A mimetics were able to inhibit the LPS/TLR4 signal (antagonism) in both human 
(HEK293) and murine (RAW 264.7) TLR4-expressing cells with a similar potency, also similar to the previously 
characterized monosaccharide FP7.

FP13-17 present very similar IC50 in a range from 2.7 to 6.6 µM, which is a slightly higher value compared to 
the IC50 of FP7 (2.0 µM).

Although our results reveal FP13 and related compounds as strong antagonists of TLR4, their biological activ-
ity is abrogated by serum albumin, which most likely explains the absence of an antagonistic effect in the two 
different in vivo models of LPS activity. We propose that direct binding of FP13 to albumin or other proteins in 
serum and lungs neutralizes its biological activity in vivo. Definitive prove will require in vitro binding studies of 
FP13 with albumin. Together, these data demonstrate the need for additional chemical optimization or formula-
tion of the current compounds.

The analysis of the cryo-TEM data of one compound of the series, FP15, indicates that this molecule mainly 
generates circular and homogeneous small unilamellar vesicles (SUV), with rather different size distributions, 
from 10 to 110 nm of diameter, with the presence of fusion events as well as open bilayers. The fact that FP15 
forms stable aggregates is an important information for the pharmacological formulation of this type of com-
pounds in the perspective of clinical development. Interestingly, the formation of large vesicles does not abrogate 
the biological activity, at least at cellular level.

MD simulation shows the self-assembly with formation of clusters. Succinate groups seems to stabilize com-
plexes to form 3 main assemblies, “face-to-face” and “packed in parallel” clusters might be the reason for the 
strong stability of the membrane vesicles while “in-circle assembly” cluster suggests a high permeability to water.

The main achievement of this is work is demonstrating that this type of new carboxylate-based monosaccha-
ridic lipid A analogues strongly interact with co-receptor MD-2 displacing the natural ligand LPS and forming 
stable complexes.

MD-2 strong interaction and binding is very likely the main mechanism of TLR4 antagonism for this series 
of compounds.

Concerning the molecular design, we confirm that the carboxylic acid represents an effective bioisostere of 
phosphoric acid and can be used in this type of lipid A mimetics retaining MD-2 molecular recognition and 
binding. The replacement of phosphates with carboxylates is an important step towards druggability, as carbox-
ylates are metabolically more stable and easier to synthesize. On the contrary, the presence of an unsaturation in 
the fatty acid chains seems to play a minor role since the in vitro affinity for the purified hMD-2 receptor and the 
activity on cells is almost identical for saturated (FP17) and unsaturated (FP13-16) compounds.

In conclusion, the novelty and importance of our work is the description of new carboxylate-based monosac-
charidic lipid A analogues that strongly interact with the co-receptor MD-2, displacing the natural ligand LPS 
and forming stable complexes. The interaction and binding with MD-2 is most likely the main mechanism of 
TLR4 antagonism for this series of compounds. FP13-17 showed to bind MD-2, are active on cells as TLR4 antag-
onists in the absence of serum proteins and are non-toxic at a concentration of 10 μM. The lack of in vivo activity 

Figure 9.  Presence of serum or BSA neutralizes the antagonistic activity of monosaccharide FP13 on 
LPS-induced TLR4 signaling in RAW 264.7-Blue cells. A-C. Cells were pre-incubated with the indicated 
concentrations of monosaccharide FP13 in DMEM supplemented with 10% FBS (A), 4 mg/mL BSA (B) or 
20 mg/ml BSA (C). 30 min later cells were stimulated with 1, 10 or 100 ng/mL E. coli O111:B4 LPS. SEAP 
reporter levels in the cell supernatant were determined by QuantiBlue Assay 24 h later. Error bars represent the 
standard deviation of the mean of biological triplicates. The graph is representative of at least three independent 
experiments.
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is probably due to strong interaction with serum albumin and further structure optimization is in progress to 
improve the pharmacokinetic of these promising hit compounds.

The biological activity of this panel of compounds as TLR4 antagonists, combined with the tendency to spon-
taneously form vesicular aggregates, make this type of carboxylate-based lipid A analogues interesting in the 
perspective to exploit the self-assembled aggregates structures to modulate their pharmacokinetic and biodistri-
bution properties in biomedical and pharmacological contexts61–64.

Methods
All methods were performed in accordance with the relevant guidelines and regulations. Methods for the chemi-
cal synthesis of monosaccharides and computational methods are provided at the Supp. Inf.

Preparation of recombinant MD-2 in Pichia pastoris and purification.  MD-2 was produced 
in Pichia pastoris, analyzed by SDS–PAGE and its biological activity tested on 293/hTLR4a cells as described 
before51.

Antibody-sandwich ELISA for the detection of binding of compounds to MD-2.  The method 
of antibody-sandwich ELISA for the detection of the binding of compounds to MD-2 was modified from a pre-
vious study51. A microtiter plate was coated overnight at 4 °C with 100 μL/well of 5 μg/mL of chicken polyclonal 
anti-hMD-2 antibodies, diluted in 50 mM Na2CO3 buffer, pH 9.6 and blocked with 1% BSA in PBS. After washing, 
1 μM hMD-2 with tested compounds was added and incubated for 2 hours. 0.1 μg/mL mouse anti-hMD-2 MAb 
(9B4) and 0.1 μg/mL goat anti-mouse IgG conjugated with HRP in PBS were added, followed by detection at 
420 nm after the addition of 100 μL of ABTS (Sigma). Chicken anti-hMD-2 polyclonal antibodies were prepared 
against recombinant hMD-2 by GenTel (Madison, WI, USA), monoclonal mouse anti-hMD-2 9B4 antibodies 
were from eBioscience (San Diego, CA, USA), and secondary goat anti-mouse IgG conjugated with horseradish 
peroxidase were from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Fluorescence spectroscopy assay.  Fluorescence was measured on Perkin Elmer fluorimeter LS 55 
(Perkin Elmer, UK) as previously described51. All measurements were done at 20 °C in a 5 × 5 mm quartz glass 
cuvette (Hellma Suprasil, Müllheim, Germany). hMD-2 protein (200 nM) and 1,1′-Bis(anilino)−4,4′-bis (naph-
thalene)−8,8′ disulfonate (bis-ANS, 200 nM) were mixed and incubated until reaching stable relative fluores-
cence units (RFUs) emitted at 420–550 nm under excitation at 385 nm. Compounds, at different concentrations, 
were then added, followed by relative fluorescence unit (RFU) measurement at 420–550 nm.

LPS displacement assay.  The ability of the compounds to displace LPS from hMD-2 hydrophobic pocket 
was determined by ELISA. A microtiter plate was coated overnight at 4 °C with 100 μL/well of 5 μg/mL of chicken 
polyclonal anti-hMD-2 antibodies, diluted in 50 mM Na2CO3 buffer, pH 9.6 and blocked with 1% BSA in PBS. 
After washing, 1 μM of hMD-2 with biotin-labeled LPS was added and incubated for 2 hours. After washing, 
the compounds were added at different concentration and incubated for 1.5 hours. After washing, 0.5 μg/mL 
HRP-conjugated streptavidin (Sigma) in PBS was added, followed by detection at 420 nm after the addition of 
100 μL ABTS (Sigma). Chicken anti-hMD-2 polyclonal antibodies were prepared against recombinant hMD-2 by 
GenTel (Madison, WI, USA).

Surface plasmon resonance (SPR) analysis.  The binding affinity of the compounds to recombinant 
hMD-2 was determined using a Biacore X100 with an NTA sensor chip (Biacore, GE Healthcare, Uppsala, 
Sweden). Briefly, 0.5 μM hMD-2 (in 50 mM TRIS, 150 mM NaCl, 0.5% Tween 20, pH 7.5) was immobilized onto 
the sensor chip previously activated with 1-min. pulse of 10 mM NiSO4. First flow cell was used as a reference sur-
face to control non-specific binding. Both flow cells were injected with the analyte (in PBS, 5% DMSO, 5% EtOH, 
pH 7.5) at a flow rate of 10 μL/min at 25 °C in increasing concentrations. The data were analyzed with Biacore 
Evaluation software. KD values were calculated by global fitting of the equilibrium binding responses from various 
concentrations of analytes using a 1:1 Langmuir binding model.

HEK-Blue hTLR4 cells assay.  HEK-Blue hTLR4 cells (InvivoGen) were cultured according to manufactur-
er’s instructions. Briefly, cells were cultured in DMEM high glucose medium supplemented with 10% fetal bovine 
serum (FBS), 2 mM glutamine, antibiotics and 1 × HEK-Blue Selection (InvivoGen). Cells were detached using a 
cell scraper, counted and seeded in a 96-well multiwell plate at a density of 4 × 104 cells per well. After overnight 
incubation (37 °C, 5% CO2, 95% humidity), supernatants were replaced with new medium w/o FBS supple-
mented by the compound to be tested and incubated for 16 hours. For the antagonism evaluation, cells were 
stimulated with LPS (100 ng/mL, E. coli O55:B5, Sigma-Aldrich) after compounds pre-treatment and incubated 
for 16 hours as above. The SEAP-containing supernatants were collected and incubated with para-nitrophenyl 
phosphate (pNPP) for 2−4 h in the dark at room temperature. The wells optical density was determined using a 
microplate reader (labtech LT-4000) set to 405 nm.

MTT cell viability assay.  HEK-Blue hTLR4 cells were grown in DMEM supplemented with 10% FBS, 2 mM 
glutamine and antibiotics. Cells were seeded in 100 μL of DMEM w/o Phenol Red at a density of 4 × 104 cells per 
well and incubated overnight (37 °C, 5% CO2, 95% humidity). Cells were treated with the higher dose of com-
pound used in the previous experiments (10 μM) and incubated overnight. MTT solution (5 mg/mL in PBS) was 
added to each well and after 3 hours incubation, HCl 0.1 N in 2-propanol solution was used to dissolve formazan 
crystals. Formazan concentration was determined by measuring the absorbance at 570 nm.
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Experiments on RAW 264.7-Blue cells.  Murine RAW 264.7-Blue cells (Invivogen) derived from the 
murine RAW 264.7 macrophages and stably expressing an NF-κB-inducible secreted alkaline phosphatase 
(SEAP) reporter gene were cultured in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% 
Fetal bovine serum (FBS), L-Glutamine (2 mM) and sodium pyruvate (0.4 mM), in the presence of selection 
antibiotic Zeocin (200 μg/mL). E. coli O111:B4 LPS was purchased from Invivogen. Bovine serum albumin (BSA) 
was purchased from Sigma-Aldrich. Compounds FP13-17 were reconstituted in DMSO/ethanol to provide a 
10 mM stock solution. Further dilutions were made in cell culture medium so that the final amount of DMSO in 
the cell culture did not exceed 0.05%. C57BL6/J mice were obtained from Janvier. All animal experiments were 
approved by the animal ethical committee of Ghent University, Faculty of Sciences. All methods were performed 
in accordance with the relevant guidelines and regulations. Salmonella enterica LPS used for in vivo studies was 
purchased from Sigma-Aldrich.

Biological activity assay.  5 × 104 RAW 264.7-Blue cells were pre-treated with compounds FP13-17 in a total 
volume of 200 µl serum-free DMEM supplemented with L-Glutamine (2 mM) and sodium pyruvate (0.4 mM). In 
some experiments DMEM was supplemented with 10% FBS or BSA at the concentrations of 4 mg/mL and 20 mg/
mL. 30 min. later, cells were stimulated with E. coli O111:B4 LPS, as indicated. 24 h later cell supernatants were 
analyzed for SEAP production by the QUANTI-Blue Assay (Invivogen).

Cryo-TEM sample preparation.  All samples were prepared in 10 mM buffer phosphate (pH 7.4) with 16% 
of DMSO. Cryo-TEM data were collected on a JEM-2200FS/CR transmission electron microscope (JEOL, Japan), 
equipped with an UltraScan 4000 SP (4008 × 4008 pixels) cooled slow-scan CCD camera (GATAN, UK). Three 
microliters of the compound were vitrified on Quantifoil 2/2 grids, using Vitrobot (FEI) and were analyzed at 
nitrogen liquid temperature with a TEM operated at 200 kV in low dose conditions.

Ethical Approval.  All animal experiments were approved by the Ethical Committee for Animal 
Experimentation of Ghent University – Faculty of Sciences.
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