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a b s t r a c t

Motivated by problems in comparative genomics and paleogenomics, we study the
computational complexity of the Gapped Consecutive-Ones Property ((k, δ)-C1P) Problem:
given a binary matrix M and two integers k and δ, decide if the columns of M can be
permuted such that each row contains at most k blocks of ones and no two neighboring
blocks of ones are separated by a gap of more than δ zeros. The classical C1P decision
problem, which is known to be polynomial-time solvable is equivalent to the (1, 0)-C1P
problem. We extend our earlier results on this problem [C. Chauve, J. Mauch, M. Patterson,
On the gapped consecutive-ones property, in: Proceedings of the European Conference
on Combinatorics, Graphs Theory and Applications (EuroComb), in: Electronic Notes in
Discrete Mathematics, vol. 34, 2009, pp. 121–125] to show that for every k ≥ 2, δ ≥

1, (k, δ) ≠ (2, 1), the (k, δ)-C1P Problem is NP-complete, and that for every δ ≥ 1, the
(∞, δ)-C1P Problem is NP-complete. On the positive side, we also show that if k, δ and the
maximum degree ofM are constant, the problem is related to the classical Graph Bandwidth
Problem and can be solved in polynomial time using a variant of an algorithm of Saxe
[J.B. Saxe, Dynamic-programming algorithms for recognizing small-bandwidth graphs in
polynomial time, SIAM Journal on Algebraic and Discrete Methods 1 (4) (1980) 363–369].

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let M be a binary matrix with m rows and n columns. A block in a row of M is a maximal sequence of consecutive
entries containing 1. A gap is a sequence of consecutive zeros that separates two blocks; the size of the gap is the length of
this sequence of zeros. Matrix M is said to have the Consecutive-Ones Property (C1P) if its columns can be permuted such
that each row contains at most one block (there are no gaps in this case). We call a permutation of the columns of M that
witnesses this property a consecutive-ones ordering of M , and the resulting matrix of such a permutation is consecutive,
and we say that M has the C1P or that M is a C1P matrix. The Consecutive-Ones Property was introduced, at least under
this name, by Fulkerson and Gross [10] in 1965, motivated by applications in genetics. It has since then been the subject of
intense research. From a combinatorial point of view, the structure of C1Pmatrices has been described in terms of forbidden
submatrices and asteroidal triples by Tucker in [20]. The set of all consecutive-ones orderings of a C1P binarymatrix can also
be encoded in linear space using a data structure called a PQ-tree. From an algorithmic point of view, efficient algorithms
have been developed to decide if a binary matrixM is a C1P matrix [2,12,17,16,15].

The C1P has also been widely used in molecular biology, in relation with physical mapping [1] and the reconstruction
of ancestral genomes [6]. These applications aim at reconstructing genomes that cannot be sequenced. They rely on the
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following encoding of genomic information in a binary matrix: each column of the matrix represents a genomic marker
(in general a DNA sequence, but other kinds of data can be used) that is believed to have been present and unique in the
considered unsequenced genome, and each row of the matrix represents a set of markers that are believed to have been
contiguous along a chromosome of the unsequenced genome. The goal is then to find one (or several, if possible) total
order on the markers that respects all rows (i.e., that keeps all entries 1 together in each row). We refer the reader to [11]
for a discussion of physical mapping and to [6] for a discussion of ancestral genome reconstruction. Hence, given a binary
matrix M encoding such data, if each row of M encodes true information regarding the unsequenced genome (i.e., a set of
markers that were really contiguous in this genome), sinceM is a C1P matrix, the PQ-tree of its consecutive-ones orderings
represent all possible orders of the markers that respect all rows ofM . However, a common problem in such applications is
that matrices obtained from experiments do not have the C1P [11,6], due to some rows that do not encode sets of markers
that were contiguous in the unknown genome.

A first general approach to handle a matrix M that does not have the C1P consists of transforming M into a matrix that
has the C1P, while minimizing the modifications toM; such modifications can involve either removing rows, or columns, or
both, or flipping some entries from 0 to 1 or 1 to 0. In all cases, the corresponding optimization problems have been proven
NP-hard [8,9,14]. A second approach, that we follow here, consists of relaxing the condition of consecutivity of the ones of
each row, by allowing gaps, with some restriction on the nature of these gaps. The question is then to decide if there is an
ordering of the columns ofM that satisfies these relaxed C1P conditions. As far aswe know, the only restriction that has been
considered is the number of gaps, either per row or inM . In [11], the authors introduced the notion of the k-Consecutive-Ones
Property (k-C1P). A binary matrixM has the k-C1P when its set of columns can be permuted such that each row contains at
most k blocks. They call a permutation of the columns ofM that witnesses this property a k-consecutive-ones ordering ofM ,
and the resulting matrix of such a permutation is k-consecutive. In [11], the authors show that deciding if a binary matrixM
has the k-C1P is NP-complete, even if k = 2. Also, finding an ordering of the columns that minimizes the number of gaps in
M is NP-complete even if each row ofM has at most two ones [13].

In the present work, we follow the second approach, motivated by the problem of reconstructing ancestral genomes
using max-gap clusters [6]: the restrictions to the allowed gaps are that both the number of gaps per row and the size of
each gap are bounded. Formally, let k and δ be two integers. A binary matrix M is said to have the (k, δ)-Consecutive-Ones
Property, denoted by (k, δ)-C1P, if its columns can be permuted such that each row contains at most k blocks and no gap is
larger than δ. If any of the two parameters is unbounded, we replace k or δ with ∞. For instance, the k-C1P is equivalent
to the (k, ∞)-C1P. Here, we call a permutation of the columns of M that witnesses this property a (k, δ)-consecutive-ones
ordering of M , and the resulting matrix of such a permutation is (k, δ)-consecutive. The (k, δ)-C1P Problem is to decide if a
given matrix M has the (k, δ)-C1P. This problem is naturally related to the classical Graph Bandwidth Problem, that asks,
given a graph G and an integer δ, if the vertices of G can be linearly ordered in such a way that no edge spans more than δ
vertices. Indeed, ifM has two entries 1 in each row, it can be viewed as the incidencematrix of a graphG andG has bandwidth
δ if and only if it satisfies the (∞, δ)-C1P. From an application point of view (i.e., paleogenomics and the reconstruction of
ancestral genomes), answering the (k, δ)-C1P Problem for small values of both k and δ is very relevant. Indeed, inmost cases,
it is errors in computing the initial matrix M that results in M not having the C1P; these errors correspond to small gaps
in some rows of this matrix that are due to small overlapping genome rearrangements or mistakes in identifying proper
ancestral genomic markers.

In [5], we introduced the (k, δ)-C1P Problem and gave preliminary complexity and algorithmic results. In particular we
showed that for every δ ≥ 2, the (2, δ)-C1P Problem is NP-complete and that the (3, 1)-C1P problem is NP-complete. In
the present work, we settle the complexity for all possible values of k and δ but one: we show that for every k ≥ 2, δ ≥

1, (k, δ) ≠ (2, 1), that testing for the (k, δ)-C1P is NP-complete (Section 4). We also prove that the (∞, δ)-C1P Problem
is NP-complete (Section 5). In both cases our proofs rely on reduction from 3SAT, although the techniques are relatively
different. This leaves only one case open: the (2, 1)-C1P Problem. On the positive side, in Section 6we show that if every row
of anm×nmatrixM has at most d entries 1, then the (k, δ)-C1P Problem can be solved in polynomial time O(mnd+(k−1)δ+1)
by a variant of an algorithm described in [19] for recognizing graphs with a constant bandwidth. This algorithm was also
described in [5].

2. Notation and conventions

First, we introduce some notation and conventions that we use throughout this paper. Given integers a, b, where a ≤ b,
⟨a, b⟩ denotes the set {a, a + 1, . . . , b}. LetM be a binarym × nmatrix with columns labeled by ⟨1, n⟩. In the constructions
used to show NP-completeness, we will divide columns of this matrix into ordered sequences of blocks B1, . . . , Bp by
designing rows enforcing the columns of each block to appear together and the blocks to appear in the orderB1, . . . , Bp (resp.,
in the reversed order), i.e., for any i < j, column c ∈ Bi and d ∈ Bj, c appears before (resp., after) d in any (k, δ)-consecutive
ordering ofM . The columns of a block Bi will be denoted B1

i , . . . , B
|Bi|
i and B⟨a,b⟩

i = {Ba
i , B

a+1
i , . . . , Bb

i }, where a ≤ b.
To specify a row in the matrix M , we use the convention of only listing in the square brackets, the columns that contain

1 in this row. For example, [1, 8, 5] represents a row with ones in columns 1, 5, and 8, and zeros everywhere else. We
will also use blocks of M to specify columns in the block, for example, if B1 = {1, 2, 3, 4, 5}, then [B1, 7] would mean
[1, 2, 3, 4, 5, 7], [B1 \ {B2

1}, 6, 7] would mean [1, 3, 4, 5, 6, 7], and [B⟨2,4⟩
1 , 6] would mean [2, 3, 4, 6].
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Fig. 1. Possible positions of columns 2δ + 2 and 2δ + 3.

3. Fixing the order of selected columns in a matrix

For every k ≥ 2, δ ≥ 1, we have the following important property of matrices that have the (k, δ)-C1P. Note that the
following construction does not depend on k as it uses only two ones per row.

Theorem 1. For every k ≥ 2 or k = ∞, δ ≥ 1 and s ≥ 2δ + 3, given binary matrix M on n ≥ s columns, s + δ + 1 rows can
be added to M to force s selected columns to appear together and in fixed order (or the reverse order) in any (k, δ)-consecutive
ordering of M.

Proof. Let k ≥ 2 (or k = ∞), δ ≥ 1, s ≥ 2δ + 3 and n ≥ s. Without loss of generality, let S = {1, . . . , s} be the subset of s
columns that we want to force to appear together and in this order (or the reverse order) in any (k, δ)-consecutive ordering
ofM . Wewill show by induction on s that there are s+δ+1 rows of the type [c, d], where 1 ≤ c < d ≤ s and |c−d| ≤ δ+1,
which force this order.

For the base case, let us assume that s = 2δ + 3. We will show the base case by induction on δ. If δ = 1, then
s = 2 · 1 + 3 = 5, and we add to M the following seven rows: [1, 2], [2, 3], [3, 4], [4, 5], [1, 3], [2, 4], and [3, 5]. It is
easy to check that the claim holds and that the number of rows used is exactly s + δ + 1. Now assume that the claim holds
for δ = δ0 and s = s0 = 2δ0+3, where δ0 ≥ 1.Wewill show that it holds also for δ = δ0+1 and s = 2δ+3 = 2δ0+5. Using
the induction hypothesis, there are s0 + δ0 + 1 = s− 2+ δ − 1+ 1 = s+ δ − 2 rows, which will force the correct order for
columns 1, . . . , 2δ + 1. Note that all of these rows [c, d] satisfy the condition |c − d| ≤ δ + 1, and hence, they can be added
toM for parameters δ = δ0 + 1 and s = 2δ0 + 5. In addition, we add toM three new rows: [δ + 1, 2δ + 2], [δ + 2, 2δ + 3]
and [2δ + 2, 2δ + 3]. The total number of rows added toM is now s+ δ + 1. Fig. 1 shows the possible positions of columns
2δ + 2 and 2δ + 3 forced by rows [δ + 1, 2δ + 2] and [δ + 2, 2δ + 3] if we assume that rows 1, . . . , 2δ + 1 appear in the
correct order. It is easy to see that the row [2δ + 2, 2δ + 3] is (k, δ)-consecutive only if columns 2δ + 2 and 2δ + 3 appear
in the correct positions as well. This completes the induction on δ and we have that the claim holds for any δ ≥ 1 and
s = 2δ + 3, i.e., the base case for the induction on s.

Now, assuming that the claim holds for s − 1, where s − 1 ≥ 2δ + 3, we show that it holds also for s columns. By the
induction hypothesis, there are s+ δ rows which will force columns 1, . . . , s − 1 to appear in the correct order. We add one
new row: [s − δ − 1, s]. Since s− δ − 1 ≥ δ + 3, there is only one position where column s can appear: next to s − 1, i.e., all
columns in S appear in the correct order. The number of rows used is exactly s + δ + 1. This completes the induction on s,
and the claim follows. �

4. Complexity of the (k, δ)-C1P Problem

In this section we will show that for every k ≥ 2, δ ≥ 1, (k, δ) ≠ (2, 1), the (k, δ)-C1P Problem is NP-complete.

4.1. Complexity of the (k, δ)-C1P Problem for every k, δ ≥ 2

For every k, δ ≥ 2, we use Theorem 1 in a reduction from 3SAT to the problem of testing for the (k, δ)-C1P to show that
this problem is NP-complete.

Theorem 2. For every k, δ ≥ 2, testing for the (k, δ)-C1P is NP-complete.

Proof. Consider k, δ ≥ 2. Let φ be a 3CNF formula over the n variables {v1, . . . , vn}, with m clauses {c1, . . . , cm}. We
construct a matrix Mφ with 2n + d + 6m columns and n + 7m + d + δ + 1 rows, where d = max{2k − 1, 2δ + 3},
such thatMφ has the (k, δ)-C1P if and only if φ is satisfiable.

In [11], the authors show that for every k ≥ 2, given a 3CNF formula φ, they can construct a matrix Mφ that has the
k-C1P if and only if φ is satisfiable. Our construction is based on theirs. In our construction, we associate the first 2n columns
⟨1, 2n⟩ ofMφ with the variables {v1, . . . , vn}. In particular, we associate variable vi with the pair of columns bi = {2i−1, 2i},
for i ∈ ⟨1, n⟩. Variable vi equal to true represents the statement about the order of the columns: ‘‘2i − 1 is before 2i’’ (vi
equal to false represents statement: ‘‘2i − 1 is after 2i’’). Since a truth assignment to the formula φ represents a statement
about a permutation of the columns of Mφ , we want to relate Mφ to the clauses {c1, . . . , cm} of φ in such a way that only
the permutations of Mφ that are (k, δ)-consecutive correspond to truth assignments that satisfy φ and vice versa. This
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Fig. 2. The structure ofMφ and the five rows encoding clause c2 = {v2 ∨ ¬v3 ∨ v1}.

construction involves associating the last 6m columns ⟨2n+d+1, 2n+d+6m⟩with the clauses {c1, . . . , cm}. In particular,
we associate clause cj with the block of five columns Bj = ⟨2n + d + 6j − 4, 2n + d + 6j⟩, while each block Bj is preceded
by a column aj = {2n + d + 6j − 5}. Finally, the set ⟨2n + 1, 2n + d⟩ of columns in the middle will be used to ensure that
the construction works for parameters k and δ. The details are as follows.

The base of our construction is a subset of the columns ofMφ that we force to be together and in fixed order in any (k, δ)-
consecutive ordering ofMφ , and thenwewill build off this base a construction similar to that of [11]. In particular, we impose
this fixed order on this subset ⟨2n+1, 2n+d⟩ of the columns in the middle ofMφ by adding d+ δ +1 rows toMφ according
to Theorem 1.While these d columnsmust be together and in fixed order (or the reverse) in any (k, δ)-consecutive ordering,
we assume the former without loss of generality. We now build the remaining construction off this block of d columns.

To force the blocks b1, . . . , bn to appear together and in this order, and before the set ⟨2n + 1, 2n + d⟩ of d columns
in Mφ , we add the n rows [bi, bi+1, . . . , bn, 2n + 1, 2n + 3, . . . , 2n + 2k − 3, 2n + 2k − 1] to Mφ , for i ∈ ⟨1, n⟩.
Observe that, if block bn is not immediately to the left of the d columns, then there are more than k − 1 gaps in the row
[bn, 2n + 1, 2n + 3, . . . , 2n + 2k − 3, 2n + 2k − 1], while, for each i ∈ ⟨1, n − 1⟩, if block bi is not immediately to the left
of bi+1, then there are more than k − 1 gaps in the row [bi, bi+1, . . . , bn, 2n + 1, 2n + 3, . . . , 2n + 2k − 3, 2n + 2k − 1].

Next, to force the blocks a1, B1, . . . , am, Bm to appear together and in this order, and after the set ⟨2n + 1, 2n + d⟩
of d columns in Mφ , we add the 2m rows [2n + d − (2k − 2), 2n + d − (2k − 4), . . . , 2n + d − 4, 2n + d − 2, 2n +

d, a1, B1, . . . , aj−1, Bj−1, aj] and [2n+ d− (2k−2), 2n+ d− (2k−4), . . . , 2n+ d−4, 2n+ d−2, 2n+ d, a1, B1, . . . , aj, Bj]

to Mφ , for j ∈ ⟨1,m⟩.
Now the blocks of columns in any (k, δ)-consecutive ordering of the matrix Mφ are ordered as follows: the blocks

b1, . . . , bn associated with the variables of φ, followed by the d columns 2n + 1, . . . , 2n + d, followed by the blocks
a1, B1, . . . , am, Bm, where the blocks B1, . . . , Bm are associatedwith the clauses ofφ. Since the restrictions placed on variable
blocks {b1, . . . , bn} and the clause blocks {B1, . . . , Bm} are the same as in [11], we simply have to add rows, similar to those
in [11], toMφ to associate each clause to its three variables to properly simulate 3SAT. The difference from our construction
to that of [11], is what values the row takes within this segment ⟨2n+1, 2n+d⟩ of d columns and them columns a1, . . . , am.
We now present the details.

Suppose that clause cj contains the literal vα . We add the following (corresponding) row to Mφ: [b2α, bα+1, . . . , bn, 2n +

1, 2n + 3, . . . , 2n + 2k − 7, 2n + 2k − 5, ⟨2n + 2k − 3, 2n + d⟩, a1, B1, . . . , aj, B1
j ]. If vα is false, this forces B1

j to be
the first column of block Bj in any (k, δ)-consecutive ordering of Mφ . Any other ordering of the columns of Bj would
introduce a k-th gap in this row. If vα appears negated in cj, then we add the row [b1α, bα+1, . . . , bn, 2n + 1, 2n +

3, . . . , 2n + 2k − 7, 2n + 2k − 5, ⟨2n + 2k − 3, 2n + d⟩, a1, B1, . . . , aj, B1
j ] instead. Suppose another literal in cj is vβ .

We add the row [b2β , bβ+1, . . . , bn, 2n + 1, 2n + 3, . . . , 2n + 2k − 7, 2n + 2k − 5, ⟨2n + 2k − 3, 2n + d⟩, a1, B1, . . . ,

aj, B
⟨1,4⟩
j ]. If vβ is false, this forces B5

j to be the last column of block Bj. Suppose the third literal of cj is vγ . We add
the rows [b2γ , bγ+1, . . . , bn, 2n + 1, 2n + 3, . . . , 2n + 2k − 7, 2n + 2k − 5, ⟨2n + 2k − 3, 2n + d⟩, a1, B1, . . . ,

aj, B
⟨1,2⟩
j ] and [b2γ , bγ+1, . . . , bn, 2n + 1, 2n + 3, . . . , 2n + 2k − 7, 2n + 2k − 5, ⟨2n + 2k − 3, 2n + d⟩, a1, B1, . . . ,

aj, B
⟨1,3⟩
j ] to Mφ . If vγ is false, this forces B3

j to be the middle column of block Bj. Finally, we add the row [2n + 3, 2n +

5, . . . , 2n + 2k − 7, 2n + 2k − 5, ⟨2n + 2k − 3, 2n + d⟩, a1, B1, . . . , aj−1, Bj−1, B1
j , B

3
j , B

5
j ] toMφ . This last row is not (k, δ)-

consecutive exactly when B1
j , B

3
j , and B5

j are the first, middle and last columns of block Bj, as it contains k gaps then. This
fifth row enforces the constraint that not all three literals of cj can be false. Fig. 2 illustrates the structure of matrixMφ , along
with these five rows that would be added toMφ for clause c2 = {v2 ∨ ¬v3 ∨ v1}.

It remains to show that if any literal in cj is true, then there is some ordering of the columns of block Bj such that these
five rows are (k, δ)-consecutive. If vα (resp., vβ ) is true, we can order the columns B2

j , B
1
j , B

3
j , B

4
j , B

5
j (resp., B

1
j , B

2
j , B

3
j , B

5
j , B

4
j ).

If vγ is true, the columns can be in any order that places B1
j (resp., B

5
j ) in the first (resp., last) position, while placing B2

j , B
3
j , B

4
j

in any of the four orderings that avoids placing B3
j in the middle (as this fifth row would have k gaps in this case). Note that

these orderings work even when the corresponding variable is the only one that is true, and that in all of these orderings, no
row has a gap of size larger than two. Finally, we remark that if vγ is the only variable that satisfies clause cj, for example,
then in all of the four (possible) orderings of the columns where these five rows are (k, δ)-consecutive, there is a gap of size
two in the fifth row. Hence this construction does not work for δ = 1.



2764 J. Maňuch et al. / Discrete Applied Mathematics 160 (2012) 2760–2768

Since, for every k, δ ≥ 2, the (k, δ)-C1P Problem is clearly in NP, by the above reduction from 3SAT, it follows that for
every k, δ ≥ 2, the (k, δ)-C1P Problem is NP-complete. �

4.2. Complexity of the (k, 1)-C1P Problem for every k ≥ 3

We slightly modify the reduction from 3SAT in the proof of Theorem 2 to show that, for every k ≥ 3, testing for the
(k, 1)-C1P is NP-complete.

Theorem 3. For every k ≥ 3, testing for the (k, 1)-C1P is NP-complete.

Proof. Consider k ≥ 3. Let φ be a 3CNF formula over the n variables {v1, . . . , vn}, withm clauses {c1, . . . , cm}. We construct
a matrixMφ with 2n+ d+ 4m columns and n+ 4m+ d+ 2 rows, where d = 2k− 1, such thatMφ has the (k, 1)-C1P if and
only if φ is satisfiable. We do this as follows.

We again use Theorem 1 to force the columns ⟨2n + 1, 2n + d⟩ to appear together and in fixed order in any (k, 1)-
consecutive ordering ofMφ , and build a construction off this block. We again associate columns ⟨1, 2n⟩with the variables of
φ, and associate each clause cj with block Bj. However, Bj now has four columns rather than five, that is Bj = ⟨2n+ d+ 4j−
3, 2n+ d+4j⟩. Note also that we do not have the blocks aj in this construction. We again add the appropriate rows toMφ so
that the columns of any (k, 1)-consecutive ordering of thematrixMφ are ordered b1, . . . , bn, followed by 2n+1, . . . , 2n+d,
followed by B1, . . . , Bm. The only major difference from Theorem 2 of this reduction is the manner in which we associate
the clauses to their variables to properly simulate 3SAT. The details are as follows.

We need to introduce only three more rows to associate the clauses to their variables to properly simulate 3SAT.
Suppose that clause cj contains literals vα, vβ and vγ . We add the row [b2α, bα+1, . . . , bn, 2n + 1, 2n + 3, . . . , 2n + 2k −

9, 2n + 2k − 7, ⟨2n + 2k − 5, 2n + d⟩, B1, . . . , Bj−1, B
⟨1,2⟩
j ] to Mφ . If vα is false, this forces B1

j and B2
j to be among the

first three columns of block Bj in any (k, 1)-consecutive ordering of Mφ . Note that any other ordering of the
columns of Bj would introduce either a gap of size 2, or a k-th gap in this row. Similarly, we add the
rows [b2β , bβ+1, . . . , bn, 2n + 1, 2n + 3, . . . , 2n + 2k − 9, 2n + 2k − 7, ⟨2n + 2k − 5, 2n + d⟩, B1, . . . ,

Bj−1, B1
j , B

3
j ] and [b2γ , bγ+1, . . . , bn, 2n + 1, 2n + 3, . . . , 2n + 2k − 9, 2n + 2k − 7, ⟨2n + 2k − 5, 2n + d⟩, B1, . . . ,

Bj−1, B1
j , B

4
j ] to Mφ . If vβ is false, this forces B1

j and B3
j to be among the first three columns of block Bj, and if vγ is false, this

forces B1
j and B4

j to be among the first three columns of block Bj. Finally, since B1
j , B

2
j , B

3
j , B

4
j cannot simultaneously be among

the first three columns of block Bj, we have that not all three literals of cj can be false in any (k, 1)-consecutive ordering ofMφ .
It remains to show that if any literal in cj is true, then there is some ordering of the columns of block Bj such that these

four rows are (k, 1)-consecutive. If vα (resp., vβ , and vγ ) is true, we can order the columns B3
j , B

1
j , B

4
j , B

2
j (resp., B

2
j , B

1
j , B

4
j , B

3
j ,

and B2
j , B

1
j , B

3
j , B

4
j ). Note that these orderings work even when the corresponding variable is the only one that is true.

Since, for every k ≥ 3, the (k, 1)-C1P Problem is clearly in NP, by the above reduction from 3SAT, it follows that for every
k ≥ 3, the (k, 1)-C1P Problem is NP-complete. �

In summary, by Theorems 2 and 3, it follows that for every k ≥ 2, δ ≥ 1, (k, δ) ≠ (2, 1), the (k, δ)-C1P Problem is
NP-complete. Note that this leaves open only the case of the complexity of the (2,1)-C1P Problem, which we conjecture to
be polynomial-time solvable.

5. Complexity of the (∞, δ)-C1P Problem

Here we show that for every δ ≥ 1, the (∞, δ)-C1P Problem is NP-complete. The first step is to reduce 3SAT(3), the
version of the 3SAT Problem where no variable appears more than twice positively and more than once negatively to an
auxiliary version of the 3SAT Problem. We then reduce this auxiliary version to the (∞, δ)-C1P Problem for the result.

5.1. The 3SAT(L:2,R:2) Problem

First we reduce from 3SAT(3), the version of the 3SAT Problem with 2-clauses and 3-clauses, and where no variable
appears more than twice positively andmore than once negatively [18, p. 183, Prop. 9.3], to an auxiliary version of the 3SAT
Problem, namely 3SAT(L : 2, R : 2): the version of the 3SAT Problem with 2-clauses and 3-clauses, where each clause is
assigned the label L or R (for left or right) such that for each label, no variable appears more than once positively and more
than once negatively in the corresponding set of clauses.3

Lemma 4. The 3SAT(L:2,R:2) Problem is NP-complete.

3 We remark that the exact formulation of 3SAT(3) in [18] allows also variables with one positive and two negated occurrences, however these can easily
be converted to the other type of variables by replacing themwith their negations in all clauses. Clearly, this does not affect the complexity of the problem.
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Proof. We are given an instance to the 3SAT(3) Problem: a set V of variables and C of 2 and 3-clauses, such that for each
v ∈ V , v appears no more than twice in C and ¬v appears no more than once in C . For each v ∈ V with two positive
occurrences, we replace one of the occurrences of v with the new variable v′. We then label all the clauses of this new
instance with L. Note that in this set of clauses labeled with L, no variable appears more than once positively and once
negatively. Now, for each appearance of v′, we add the two new clauses c1v = v′

∨ ¬v and c2v = v ∨ ¬v′, and label them
both with R. These two clauses enforce the constraint that v = v′ in any satisfying assignment to this new instance of the
3SAT Problem, thus this new instance is satisfiable if and only if the original 3SAT Problem instance is satisfiable. This new
instance of the 3SAT Problem has 2- and 3-clauses, and for each of the labels L and R, no variable appears more than once
positively and once negatively. Thus we have transformed in polynomial time the instance of the 3SAT(3) Problem to an
instance of the 3SAT(L : 2, R : 2) Problem that is satisfiable if and only if the original 3SAT(3) instance is satisfiable. Since
the 3SAT(L : 2, R : 2) Problem is clearly in NP, it follows that the 3SAT(L : 2, R : 2) Problem is NP-complete. �

5.2. Complexity of the (∞, 1)-C1P Problem

We now show that that the (∞, 1)-C1P Problem is NP-Complete by giving a reduction from 3SAT(L : 2, R : 2). We will
later generalize this reduction to show that for every δ ≥ 1, the (∞, δ)-C1P Problem is NP-Complete.

Theorem 5. Testing for the (∞, 1)-C1P is NP-complete.

Proof. We are given an instance φ of the 3SAT(L : 2, R : 2) Problem: a set V of variables and the sets C L and CR of 2- and
3-clauses, such that for each v ∈ V , v and¬v each appear nomore than once in CS , for S ∈ {L, R}. We use φ to build amatrix
Mφ such that φ is satisfiable if and only ifMφ has the (∞, 1)-C1P.

The idea of the construction is that for each variable vi ∈ V = {v1, . . . , vn}, the matrix Mφ will have the block of
columns bi, called the variable block, to represent the value of this variable. Matrix Mφ will also contain the blocks of
columns b0,1, . . . , bn,n+1 of dummy blocks that will interleave the variable blocks. We will add some rows to Mφ to force
the individual columns of each of the variable and dummy blocks to appear together and in fixed order, or the reverse order.
The direction of block bi will represent the value of the variable vi. Wewill then add some rows toMφ to force only the order
b0,1, b1, b1,2, . . . , bn−1,n, bn, bn,n+1 (or the reverse order) of these blocks, while the individual variable blocks may switch
direction relative to this order. If variable block bi is in the same order relative to this ordering of all of the blocks then its
corresponding variable vi has value true, otherwise it has value false. The matrix Mφ will also have an additional 2n free
columns. With each clause c ∈ C = {C L

∪ CR
} we associate a unique empty free column fc . This is possible since for every

S ∈ {L, R}, each variable appears no more than once positively and once negatively in CS , and each c ∈ CS contains at least
two variables, and hence |CS

| ≤ 2n/2 = n. Thus |C L
| + |CR

| ≤ 2n. We then add some rows to Mφ to force these 2n free
columns to fall (in any order) between the 2n pairs of adjacent bi−1,i, bi and bi, bi,i+1 blocks, for i ∈ ⟨1, n⟩, such that there is
one free column for each hole.

For a clause c ∈ C L (resp., CR) where c contains variables vα, vβ (and vγ for a 3-clause), we assign this clause to column fc
of the 2n free columns, andwe add a row toMφ that forces the column fc to be to the left (resp., right) of either block bα, bβ (or
bγ for a 3-clause). However, column fc can only go to the left (resp., right) of the block of a variable when its corresponding
literal is set to the value that satisfies clause c. Note by the construction that each variable can satisfy at most one left and
one right clause, which is sufficient because each literal appears at most once in a right (resp., left) clause. These properties
will imply that only when, for every c ∈ C L (resp., CR), column fc can be placed to the left (right) of a bi, for i ∈ ⟨1, n⟩, for a vi
that is set to a value that satisfies c , i.e., φ is satisfied, is there a (∞, 1)-consecutive ordering ofMφ , and vice versa. We now
give the full details of the construction in what follows.

For each variable vi ∈ V = {v1, . . . , vn}, we add the set of columns bi = {b1i , . . . , b
5
i } to Mφ . In addition, for every

i ∈ ⟨1, n⟩, we add the set of columns bi−1,i = {b1i−1,i, . . . , b
5
i−1,i} toMφ . For each set of columns bi for i ∈ ⟨1, n⟩, and bi−1,i for

i ∈ ⟨1, n+1⟩, we add toMφ the rows according to Theorem 1 to force the columns of each set to appear together and in fixed
order (or the reverse) in any (∞, 1)-consecutive ordering of Mφ , i.e., in any (∞, 1)-consecutive ordering of Mφ , set bi will
appear either as the sequence b1i , . . . , b

5
i or b5i , . . . , b

1
i of consecutive columns, and similarly for the columns in sets bi−1,i.

We will refer to the bi as variable blocks and the bi−1,i as dummy blocks. Note that Theorem 1 requires that a set of columns
must have size 2δ + 3 before such an ordering can be enforced on it, this is why each block is of size five. In addition, we
add 2n free columns toMφ .

Now, for each pair of blocks bi−1,i, bi and bi, bi,i+1 for i ∈ ⟨1, n⟩, we add rows [bi−1,i \ {b1i−1,i}∪bi] and [bi ∪bi,i+1 \ {b5i,i+1}]

to force these pairs to be together with at most one free column in between them. This enforces that the blocks appear in
the order b0,1, b1, b1,2, . . . , bn−1,n, bn, bn,n+1 (or the reverse) in any (∞, 1)-consecutive ordering ofMφ . The first (resp., last)
column of the dummy blocks is omitted to fix their direction (relative to the order of the blocks) under the assumption that
there is a free column between each pair of neighboring blocks, which we will now enforce with the following row. We
add to Mφ the row [B ∪ F ], where B = {b⟨2,4⟩

0,1 ∪ b⟨2,4⟩
1 ∪ · · · ∪ b⟨2,4⟩

n ∪ b⟨2,4⟩
n,n+1}, and F is the set of 2n free columns. It now

follows that between each bi−1,i, bi and bi, bi,i+1 pair for i ∈ ⟨1, n⟩, there must lie at least one column from F , in any (∞, 1)-
consecutive ordering of Mφ . Since we have exactly 2n pairs, between each pair there must be exactly one. Fig. 3 depicts all
(∞, 1)-consecutive orderings of the current matrixMφ . Note that the columns in each variable block can be oriented either
in the same direction as the order of all of the blocks, or in the reverse direction. If variable block bi is oriented in the same
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Fig. 3. The structure of matrixMφ .

direction as the order of all of the blocks, this corresponds to the setting of the variable vi to true, while the reverse direction
corresponds to vi being false. Now it remains to add rows to Mφ to force the free column associated with each clause to fall
next to only the blocks of variables that are set to a value that satisfies the clause.

Let c ∈ C L (resp., CR) contain the variables xα, xβ (and xγ for a 3-clause), and let fc ∈ F be the free column associated with
clause c .We add the row [B∪F\{fc}∪Sc] toMφ , where Sc is defined as follows. If c ∈ C L, then for each j ∈ {α, β} (j ∈ {α, β, γ }

for a 3-clause), if vj appears positively (resp., negatively) in c , set Sc contains the columns {b5j−1,j, b
1
j } (resp., {b5j−1,j, b

5
j }).

Otherwise, if c ∈ CR, then for each j, if vj appears positively (resp., negatively) in c , set Sc contains the columns {b5j , b
1
j,j+1}

(resp., {b1j , b
1
j,j+1}). Adding these extra ones around the variable blocks bj for each j forces fc to fall only to the immediate left

(resp., right) of these bj in any (∞, 1)-consecutive ordering ofMφ . Furthermore, fc can only fall to the immediate left (resp.,
right) of a bj if it is oriented in a direction such that corresponding variable vj is set to a value that sets its literal to true, i.e., if
vj satisfies c. Hence, the satisfying assignments of any individual clause c correspond to the (∞, 1)-consecutive orderings
of the submatrix of Mφ consisting of the row added for clause c , and all of the rows previously added to Mφ for the blocks
bi for i ∈ ⟨1, n⟩, and bi−1,i for i ∈ ⟨1, n + 1⟩. Clearly, the (∞, 1)-consecutive orderings of two rows added for clauses c and
c ′ are independent of each other (unless c and c ′ have variables in common). We now show the correspondence between
satisfying assignments of φ and (∞, 1)-consecutive orderings ofMφ .

After adding the row for all clauses c ∈ C L
∪ CR, the set of remaining (∞, 1)-consecutive orderings of Mφ (if there exist

any) correspond to the caseswhere for every clause c ∈ C L (resp., CR), its corresponding column fc is placed to the immediate
left (resp., right) of a block of a variable that is set to a value (true or false) that satisfies c , that is, to satisfying assignments
of φ. Conversely, if φ has a satisfying assignment, then we can assign each c ∈ C L (resp., CR) to a unique v ∈ V that satisfies
c , in the sense that either v or ¬v satisfies c , i.e., each v ∈ V will satisfy at most one clause from C L and at most one clause
from CR. We can make this claim because v and ¬v each appear no more than once in C L (resp., CR), and at most one of v
and¬v satisfies a given clause c. Thus we can assign each column fc ofMφ to a unique slot to the immediate left (resp., right)
of block bi for i ∈ ⟨1, n⟩, for the corresponding vi that satisfies the clause c. Thus Mφ has an (∞, 1)-consecutive ordering.
Hence, φ is satisfiable if and only ifMφ has the (∞, 1)-C1P.

In summary, given a 3SAT(L : 2, R : 2) formula φ with n variables andm ≤ 2n clauses, we have constructed a matrixMφ

with 12n + 5 columns and 16n + m + 8 rows such thatMφ has the (∞, 1)-C1P if and only if φ is satisfiable. Given that the
(∞, 1)-C1P Problem is clearly in NP, and Lemma 4, it follows that the (∞, 1)-C1P Problem is NP-complete. �

5.3. Complexity of the (∞, δ)-C1P Problem

We now generalize the construction given in Section 5.2 to show that for every δ ≥ 1, the (∞, δ)-C1P Problem is NP-
complete by reduction from 3SAT(L : 2, R : 2).

Theorem 6. For every δ ≥ 1, testing for the (∞, δ)-C1P is NP-complete.

Proof. Consider δ ≥ 1. Here, given an instance φ of 3SAT(L : 2, R : 2), we build a matrixMφ such that φ is satisfiable if and
only ifMφ has the (∞, δ)-C1P. The idea of the construction is the same as that of the proof of Theorem 5: it will again have
the blocks bi for i ∈ ⟨1, n⟩, and bi−1,i for i ∈ ⟨1, n + 1⟩ as well as 2n free columns for the clauses, only the blocks will need
more columns, and we will need to add more rows toMφ in order for it to behave in the same way for arbitrary δ.

For each block bi for i ∈ ⟨1, n⟩, and bi−1,i for i ∈ ⟨1, n + 1⟩ we again add to Mφ the rows according to Theorem 1 to
force each individual block to be in fixed order (or the reverse) in any (∞, δ)-consecutive ordering of Mφ . Thus, each block
will contain 2δ + 3 columns. In order to force each pair of blocks bi−1,i, bi and bi, bi,i+1 for i ∈ ⟨1, n⟩, to be together, with
at most one free column in between them, thus enforcing a total order on the blocks, we add the rows [b⟨δ+1,δ+4⟩

i−1,i ∪ bi] and
[bi ∪ b⟨δ,δ+3⟩

i,i+1 ]. Note here, that the first (resp., last) δ columns of the dummy blocks are omitted to fix their direction (relative
to the order of the blocks) under the assumption that there is a free column between each pair of neighboring blocks, which
we enforce by adding to Mφ the row [B ∪ F ], where B = b⟨δ+1,δ+3⟩

0,1 ∪ b⟨δ+1,δ+3⟩
1 ∪ · · · ∪ b⟨δ+1,δ+3⟩

n ∪ b⟨δ+1,δ+3⟩
n,n+1 , and F is a set
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of 2n free columns. NowMφ again has the desired structure, as depicted in Fig. 3. Now it remains to add rows toMφ for the
clauses.

Let c ∈ C L (resp., CR) contain the variables xα, xβ (and xγ for a 3-clause), and let fc ∈ F be the free column associated
with clause c . We add the row [B ∪ F \ {fc} ∪ Sc] to Mφ , where Sc is defined as follows. If c ∈ C L, then for each j ∈ {α, β}

(j ∈ {α, β, γ } for a 3-clause), if vj appears positively (resp., negatively) in c , set Sc contains the columns {b2δ+3
j−1,j , b

1
j } (resp.,

{b2δ+3
j−1,j , b

2δ+3
j }). Otherwise, if c ∈ CR, then for each j, if vj appears positively (resp., negatively) in c , set Sc contains the columns

{b2δ+3
j , b1j,j+1} (resp., {b

1
j , b

1
j,j+1}). Now this matrix Mφ will have the same behavior as in the proof of Theorem 5, hence φ is

satisfiable if and only ifMφ has the (∞, δ)-C1P.
In summary, for every δ ≥ 1, given a 3SAT(L : 2, R : 2) formula φ with n variables and m ≤ 2n clauses, we have

constructed a matrix Mφ with (4δ + 8)n + 2δ + 3 columns and (6δ + 10)n + m + 3δ + 4 rows such that Mφ has the
(∞, δ)-C1P if and only if φ is satisfiable. Given that for every δ ≥ 1, the (∞, δ)-C1P Problem is clearly in NP, and Lemma 4,
it follows that for every δ ≥ 1, the (∞, δ)-C1P Problem is NP-complete. �

6. An algorithm for matrices with lowmaximum degree

A binary matrix M has maximum degree d if every row contains at most d entries 1. We show now that, when d and
δ are constant (which implies that k is also constant, since k ≤ d), then the (k, δ)-C1P Problem is tractable. We rely on a
connection to graph bandwidth.

A graph G = (V , E) is said to have bandwidth at most b if there exists a total order on its vertices V = {v1, . . . , vn} such
that every edge {vi, vj} satisfies |i − j| ≤ b. Let M be an m × n binary matrix and GM = (VM , EM) be the undirected graph
defined as follows: VM = {1, . . . , n} (each vertex of GM represents a column of M), and there is an edge {i, j} in EM if and
only if there is a row ofM with entries 1 in columns i and j.

The following property then follows immediately from this definition: IfM has maximum degree d andM has the (k, δ)-
C1P, then GM has bandwidth at most d + (k − 1)δ − 1.

In [19], Saxe describes an algorithm that decides if a graph has bandwidth at most b with complexity O(nb+1), in time
and space. We now describe how it can be modified to test for the (k, δ)-C1P. This algorithm uses the property that, given a
prefix of a total order on the vertices of a graph, if one wants to test that the bandwidth remains at most b after the addition
of some new vertex (from the suffix), only the last b elements of the prefix are useful; the active region of this prefix is then
composed of its last b vertices, and it defines unambiguously the content of its prefix. The principle of the algorithm is to
consider, in a breadth-first search, only the active regions, each of them defining an equivalence class of prefixes, and given
a current active region, to extend it by a vertex if it does not violate the bandwidth condition. In our problem, this algorithm
needs only to be augmented by testing, each time an active region is extended, if this extension does not violate the gap
conditions in any row, which adds an O(mn) time and space cost factor to the algorithm.

Theorem 7. Let M be an m × n binary matrix such that every row has at most d entries 1. Deciding if M has the (k, δ)-C1P can
be done in time and space O(mnd+(k−1)δ+1).

7. Conclusion

In this work, we have shown that for every k ≥ 2, δ ≥ 1, (k, δ) ≠ (2, 1), testing for the (k, δ)-C1P is NP-complete, and
also that for every δ ≥ 1, testing for the (∞, δ)-C1P is NP-complete. Testing for the k-C1P, or equivalently the (k, ∞)-C1P,
for k ≥ 2 has been proved NP-complete in [11]. Hence, we have closed in the present work most questions that were open
in [5], and the only remaining open problem related to the case of considering both the number of gaps and their size is the
problem of testing for the (2, 1)-C1P. Since the two NP-completeness constructions presented here force either a gap of size
two, or at least two gaps of size one in any legal configuration of M , if testing for the (2, 1)-C1P is NP-complete, it would
certainly require a different type of construction. We conjecture that this problem is polynomial-time solvable.

A natural extension of thisworkwould be to consider an additional parameter d, namely themaximumnumber of entries
1 that can be present in any row of M , or the maximum degree of M , defining the (d, k, δ)-C1P problem. This problem is
motivated by the fact that in the framework described in [6], it is possible to constrainmatrices used to reconstruct ancestral
genomes to have small maximum degree. Note that withmatrices of maximum degree 2, the number of gaps can be at most
1, and the (2, δ)-C1P problem is then equivalent to the problem of deciding if the graph whose incidence matrix is M has
bandwidth at most (δ + 1). For δ = 1, the graph bandwidth problem can be solved in linear time [3], while in [19] a
dynamic programming algorithm with time and space complexity exponential in δ was described. We showed in Section 6
that whenever d and δ are constant, the (d, k, δ)-C1P problem is tractable. We have implemented the algorithm described
in Section 6 and used it to analyze yeast genome data. Preliminary results suggest that it can handle data with small values
of d and δ, although its space complexity is an issue and raises non-trivial algorithm engineering challenges [7]. The design
of efficient algorithms, both in time and space, for deciding the gapped consecutive-ones property for matrices of small
maximum degree is a natural research avenue, with immediate applications in genomics. From a theoretical point of view,
the complexity of testing for this property when δ is unbounded, namely the (d, k, ∞)-C1P is still open (work in progress).
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From a purely combinatorial point of view, there has been a renewed interest in the characterization of non-C1Pmatrices
in terms of forbidden submatrices introduced by Tucker [20]. It has recently been shown that this characterization could be
used in the design of algorithms related to the C1P [8,4]. The question then is the following: is there a nice characterization
of non-(k, δ)-C1P matrices in terms of forbidden matrices?

Finally it is also natural to ask if there exists a structure that can represent all orderings that satisfy some gaps conditions
related to the consecutive-ones property. Such a structure exists for the ungapped C1P: for a matrix that has the C1P, its
PQ-tree represents all its valid consecutive-ones orderings, and it can be computed in linear time [16]. This has even been
extended to matrices that do not have the C1P through the notion of the PQR-tree [17,16]. Although the existence of such
a structure with nice algorithmic properties is ruled out by the hardness of solving the Gapped C1P Problems, it remains
open to find classes of matrices such that testing for the Gapped C1P is tractable, and in such a case, to represent all possible
orderings in a compact structure. Here again, this question is motivated both by theoretical considerations (for example
representing all possible layouts of a graph of bandwidth 2), but also by computational genomics problems [6].
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