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The collected lectures summarize the contents of the course 
"Physical methods in Inorganic Chemistry". I first time gave 
this course in 1981 at the University of Milano, then from 
2000 to 2017 at the University of Milano-Bicocca.
The reader is here conducted, by using the symmetry prop-
erties of the molecules, to understand the chemical bond 
models of inorganic and coordination compounds. 
Special emphasis was given to the crystal field theory and to 
the possibility of designing the energy level trends by elec-
tronic spectra and magnetic measurements. In 1981 this was 
a research topic, which then became routine investigation to 
be regularly teached.
When I am preparing the course the first time, my daughter 
Diletta was 3 years and she asked me each evening to re-
peat the lecture of the day after, sat on her small bad. In two 
years she was able and want to directly write on the trans-
parency I reported here as cover, at that time used during 
the lecture. I dedicate this lecture collection her, who is now 
a young women, is an economist and fortunately she did 
not decide to follow the mother traces.

Preface
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The knowledge of the molecular nature of matter and of its 
changes constitutes at the present the necessary pathway 
to understand the chemical properties and the reactivity. 
The goal is, basing on molecular properties, also inclusive 
of the electronic properties, to reach more valuable and 
extensive laws in chemistry. The complexity of studying 
even a simple molecule suggests that approximate meth-
ods have to be used in the quantum mechanical treatment, 
taking also into account the macroscopic peculiarities of the 
chemicals, e.g. the shape.
In the case of inorganic molecules a convenient approxima-
tion comes from the symmetry, which constrains the elec-
tronic energies and the chemical bonds. Thus the present 
text will give special emphasis to the symmetry rules and 
will compare the use of symmetry operators with that of 
Hamiltonian operators. If possible, also the reactivity of the 
molecules will be rationalized in terms of symmetry proper-
ties. Electronic spectroscopy and magnetism will be used to 
provide experimental confirmation  of the electronic energy 
levels.
The book is a collection of lectures, thus it cannot be con-
sidered exhaustive for the exam preparation; however it 
constitutes a useful guideline to understand the essential 
role of symmetry in approaching the chemical properties of 
inorganic and coordination compounds. 

Introduction
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This is a peculiar physical problem, and only later in the 
time, with respect to the atomic structure determination by 
physical scientists, the chemists investigated the molecular 
case of study. Expectedly the preferential object for chem-
ists lies in the rationalization of the reactivity, where also a 
number of experimental data are considered. With this in 
mind the problem solving pathway is in the following:
i) The Schrodinger equation HΨn = EΨn is very difficult to be 
resolved for a molecular system, being the En values 
En= < Ψn*│H │Ψn >/ < Ψn*│Ψn> 

impossible to be calculated in the absence of H and Ψn ex-
pressions.
ii) Hypotheses on Ψn and/or H have to be made in order to 
optimize Ψn , by variation or perturbation methods.
iii) The eigenvalues of the Schrodinger equation are calcu-
lated by assuming approximated values of <Ψn*│H│Ψn> in 
agreement with the peculiar properties of the compound.
iv) The calculated eigenvalues are compared with the ex-
perimental ones, derived from electronic spectra, in order 
to obtain structure-chemical property relations.

1.1 Variation method (molecular orbital linear combina-
tion of atomic orbitals, MO LCAO)

The hypothesis on Ψn is that it consists in a linear combina-
tions of atomic orbitals
Ψj = ∑r cjr φr

1. The electronic
structure determination
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The hypothesis on H is absent
For a biatomic bielectronic system
Ψ= C1ϕ1+ C2ϕ2  E= E (C1 C2) 
E = ʃ Ψ*H Ψ dτ / Ψ* Ψ dτ  = 
ʃ(C1ϕ1+ C2ϕ2 )* H (C1ϕ1+ C2ϕ2 ) dτ / (C1ϕ1+ C2ϕ2 )* (C1ϕ1+ 
C2ϕ2 ) dτ =
ʃ [C1ϕ1* H C1ϕ1+ C1ϕ1* H C2ϕ2+ C2ϕ2* H C1ϕ1+ C2ϕ2* H C2ϕ2]/ 
[C1ϕ

*
1 C1ϕ1+ C1*ϕ1 C2ϕ2+ C2*ϕ2 C1ϕ1+ C1*ϕ2 C1ϕ2] dτ

if ʃ ϕi* H ϕj dτ = Hij and ʃ ϕi* ϕj dτ = Sij	 H21= H12   S21=S12

Hii= Coulomb integral

Hij= resonance integral

Sij= overlap integral
E = C1

2 H11+ 2 C1C2H12 + C2
2H22 / C1

2S11 +2C1C2S12 + C2
2S22

The energies have to be minimum varying C1 and C2 (varia-
tion condition)
dE/dc1= 0	 (A)
dE/dc2= 0
(A) is a two equation linear system, to derive E1,2 and C1,2 
values.
E1,2 are depending on the Coulomb, and on the Resonance 
and Overlap integrals, which are difficult to be calculated.
The system (A) becomes
C1 (H21– E S21) + C2 (H12– E S12) = 0
C1 (H21– E S21) + C2 (H22– E S22) = 0
One solution is  C1= C2= 0	 Ψ=0
The other ones may be obtained from the following deter-
minant: 

If the two atoms are the same
(H11 - E)2 – (H12 - S12E)2 = 0
Given S11= S22 = 1	 S12= S21	 H11= H22  H12= H21
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E1 = H11+ H12 /1 + S12	 E1 = H11- H12 /1 - S12

The determinant dimension is equal to the number of 
atomic orbitals used in the linear combination. The E energy 
values, substituted in (A) and combined with the additional 
equation C1

2 + C2
2 = 1 allow to calculate C coefficients

Sij is obtained from the molecular structure
Hij cannot be precisely determined for complex mole-
cules and all methods denominated MO LCAO differ in 
the different approximations to calculate the Hij integrals.
The calculations of both energies and the atomic orbital co-
efficients can be done by solving an eigenvalues eigenvec-
tor equation.
The most simple approximation is the Hückel approxima-
tion essentially based on symmetry properties and fre-
quently used for organic molecules 

1.2 Hückel requirements

1)	 Resonance integrals = 0 for unconnected atoms,
	 = β (scalar value) for connected ones
2)	 Coulomb integrals = α (scalar value)
3)	 Overlap integrals = 1 for connected atoms,
	 = 0 for unconnected ones
The results of calculation, obtained by solving the linear 
system (secular determinant), allow to express the ener-
gies as a function of α and β, then determined on the basis 
of the experimental absorption

1.2.1 The case of the allyl anion (MO-LCAO of π orbitals)
The Hückel method allows to obtain the energy of MO 
π orbitals, constituted by three p atomic orbitals of the 
three carbon atoms (Scheme 1), as eigenvalues of the sec-
ular determinant . At the same time the coefficients of the 
atomic orbitals within the molecular orbitals are obtained 
as eigenvectors. Being ϕ1 ϕ2 ϕ3 the three π atomic orbitals 
corresponding to the three carbon atoms, the three MO 
take the following increasing energies (eigenvalues):
α + β (2)1/2	 α	 α - β (2)1/2

The corresponding eigenvectors are:

Scheme 1 - The π sys-
tem of the allyl radical 
anion
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1/2ϕ1      +    1/(2)1/2ϕ2  + 1/2ϕ3     Bonding        2 electrons
1/(2)1/2ϕ1 -    1/(2)1/2ϕ3                  Non Bonding    2 electrons
1/2ϕ1       -    1/(2)1/2ϕ2 +  1/2ϕ3      Antibonding     empty
having increasing energy with the given order.
Basing on these results, the electron density on the allyl 
ion is concentrated on the terminal carbons, in fact:
If we define the electron density on the r atom as
qr= -∑j njcjr

2	 nj is the electron number in the jth MO
		  cjr is the coefficient of the rth atomic orbital 
(AO) in the jth MO
for the filled orbitals we obtain
	 q1= -3/2		 q2= -1		  q3= -3/2
The electronic charge located on the terminal C atoms is higher 
than on the intermediate one, thus we can expect that the reac-
tions involving a dipolar interaction are oriented in a way as the 
terminal atoms interact with the positive pole of the reactant e.g
CH3-CH=CH2+R-MgX+ → CH2=CH-CH2

─•+RH+MgX+ 
─•CH2-CH=CH2+MgX+ → CH2MgX-CH=CH2

1.3 Extended Hückel procedure

In this approximation for Hii is taken the valence state ioni-
zation potential. Hij is approximated by 1/2k Sij (Hii + Hjj) still 
obtained from the ionization data.
Tables 1 and 2 reports the atomic orbitals (AO) coefficient 
calculated by the extended Hückel approximation, for a sin-
gle molecular orbital (MO), in the allyl ion (Scheme 2)

Scheme 2 - Allyl anion
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Table 1- Extended Hückel coefficients for allyl anion
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Table 2 - Energy of MO in allyl anion. M.O. 12
Is the lowest energy occupied molecular orbital with π 
symmetry. It is composed by - 0.40 2pz(C2) - 0.56 2pz(C1) - 
0.40 2pz(C3)  E = -14.03 eV. This is in agreement with the 
results of the simple Hückel approach.

In all cases until now considered it is mandatory to select 
the atomic orbitals which have to be used in the linear com-
bination and give the MO. At the maximum limit all AO can 
be employed. However it is not convenient to consider all 
the orbitals, because some of them give no relevant contri-
bution to MO (see allyl anion Table of M.O and A.O.) 
How to select those which give the maximum contribu-
tion? Let we consider that the MO shape should reflect 
the symmetry of the molecule and the AO have to be com-
bined in agreement to this symmetry. In order to control 
the symmetry of MO we have to use the Group Theory.
WHY ?



15

Let we consider firstly the symmetry operations of a mol-
ecule, which are the motions of the molecule reproducing 
it unchanged.

Table 3 - Symmetry elements and associated operations

As example the clockwise rotation on the BCl3 molecule and 
the reflection by a mirror plane for the H2O molecule

Since the molecular energy is time invariant and independ-
ent of the position of the molecule, the Hamiltonian must 
be invariant under a symmetry operation. Thus any symme-
try operation is associated to a symmetry operator which 
commutes with the Hamiltonian i.e HR = RH ( R is the sym-
metry operator associated to the symmetry operation). If 
we take the wave equation HΨn = EΨn and multiply each 
side by the symmetry operator R, we get

reflection
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HRΨn = ERΨn	 thus RΨn is a eigenfunction
Being Ψn normalized, it is normalized also RΨn, that is  ʃ RΨn 
RΨn dτ = 1   dτ is the coordinate space
RΨn = ± 1Ψn

The molecular eigenfunction do not vary under the sym-
metry operators of the molecular point symmetry group, 
in analogy to the irreducible representation base function 
(see further details in the group theory chapter).

1.4 Group Theory

The point groups collect the possible symmetry operations 
for a given molecule.

Table 4 - Symmetry elements in some common point groups

Point Group Symmetry Elementsa Examples

C1 no symmetry SiBrClFI

C2 one C2 axis H2O2

Cnh one n-fold axis and a horizontal plane σh 
which must be perpendicular to the n-fold 
axis

trans-C2H2Cl2 (C2h)

C2v one C2 axis and two σv planes H2O, SO2Cl2, SiCl2Br2

C3v one C3 axis and three σv planes NH3, CH3Cl, POCl3

D2h three C2 axes all ⊥, two σv planes, one σh 
plane, and a center of symmetry

N2O4 (planar)

D3h one C3, three C2 axes ⊥ to C3, three σv pla-
nes and one σh

BCl3

D2d three C2 axes, two σd planes and one S4 
(coincident with one C2)

H2C=C=CH2

Td three C2 axes ⊥ to each other, four C3, six σ 
and three S4 containing C2

CH4, SiCl4

a All point group possess the identity element, E.

The followIng flow chart (Scheme 3) provides a systemat-
ic way to approach the classifications of molecules in their 
proper point groups, through identification of the symme-
try operations.
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Scheme 3 - Flow chart for assigning the group symmetry

1.4.1 Rules for the elements which constitute a group
1. the product of groups elements must still produce a 
group element.
For product is intended the combination of two operations, 
performed in a given order.  
e.g. C2 х σv or σv х C2

2. It is mandatory the existence of one operation commut-
ing with the others and leaving them unchanged. This is 
the identity element 
E х σ2 = σ2 х E = σ2

3. The associative property must be applicable
AB(C) = A(BC)
4. Each element must have a reciprocal among the group 
elements. For each symmetry operation there will be an-
other one which anneals the first. C3 has C3

2 as reciprocal 
element, thus C3 х C3

2 = E

1.4.2 Group multiplication tables
Let we consider the ammonia molecule NH3 and its symme-
try operations E, 2C3, 3σv in C3v group.
If we examine the combination of two symmetry operations 
the following matrix has been obtained.
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Table 5 - Combination of symmetry operations in NH3

The matrix elements (Table 5) indicate that the group can 
be decomposed in subgroups which are smaller groups of 
elements satisfying all the requirements of group theory, 
e.g  E  C3  C3

2 , σv σ
’
v  σ

”
v

1.4.3 Representation of symmetry operations by matrices
For the point P with cartesian x y z coordinates, when un-
dergone the identity operation, the following matrix nota-
tion can be assumed
where the ternary matrix corresponds to the identity oper-

ation, X’ Y’ Z’ represents the vector undergone the identity 
symmetry operation; that leads 
X= X’  Y=Y’  Z=Z’ 

N

H H

H

δI

v

δv

δII

v
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the result of the operation σyz is

That of σxz is

For the inversion operation the equation is

For the clockwise rotation of the point x,y (vector P) by a ϕ 
angle the rotation around the z axis does not change the z 
component

As for the x and y components each of them become a line-
ar combination of both x and y components.

Rotation of the y coordinate Rotation of the x coordinate

Rotation of the z coordinate
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In total for both coordinates

Writing in a matrix form these equations for a clockwise 
proper rotation of two coordinates

For all three coordinates

In the particular case of C2 rotation   

The multiplication of two symmetry operations can be asso-
ciated to the multiplication of the corresponding matrices

1.5 Irreducible representations

Let we consider a molecule belonging to C2v symmetry group 
(e.g. the H2O molecule) and the matrices representing the 
group operations based on the three cartesian coordinates
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E        C2        σxz        σyz

Each matrix is composed by three one dimension matrices, 
which lie on the diagonal. If we are concerned with a one 
dimensional vector like {x, 0, 0}, only the first row of the 
total set of the four matrices is necessary to represent the 
behaviour of vector (1, -1, 1, -1). The row is called irreduc-
ible representation and takes the denomination of B1. The 
irreducible representation for {0, y, 0} is (1, -1,-1, 1), labeled 
B2, that for {0, 0, z} is (1, 1, 1, 1) labeled A1.
If a different object (function or operation) is selected to be 
base of the C2v symmetry operations, e.g. the C2 rotation, 
also the behaviour of this object can be associated to an ir-
reducible representation, in this case (1, 1, -1, -1), labeled A2.

1.5.1 Character Table of groups
The table of Characters associated to the C2v group is
	      E             C2            σxz           σ’yz

where the first column reports the name of the irreduci-
ble representation of the corresponding row and the last 
column indicates the base objects undergoing the symme-
try transformations. As for the label of the irreducible rep-
resentations:
A and B refer to representations which have one single 
function as base of the symmetry operations, A in particu-
lar has +1 character and B has -1 for the Cn operation; 1 and 
2 refer to the symmetric and antisymmetric role of the the 
σxz operation.

σxz σyzC2E
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Let we consider the NH3 molecule and its symmetry oper-
ations

For σv

For σ’v and σ”v 

The table of characters for the C3v group is
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In the first column is the representation label, where E is 
a bidimensional representation, that means has a double 
base function.
In the second there are the trace of matrices, in the third 
and forth the base functions

1.5.2 Factoring the total representation into irreducible 
representation 
Let we consider the H2O molecule, having C2v symmetry, 
and attribute 3 cartesian coordinates to each atom. Looking 
at the symmetry representations, for the E operation

For the C2 operation
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similarly complicated matrices can be constructed for σxz 
and σyz operations.
The traces of the matrices result

They can be more easily obtained with the following rules, as 
alternative to construct the complete representation matrices:
i) Any vector which is unchanged by the symmetry opera-
tions contributes +1
ii) Any vector which changes into its opposite by the sym-
metry operations contributes -1
iii) Any vector which changes in another one under the sym-
metry operations contributes 0.
By these rules it can be constructed the character of the to-
tal (reducible) representation. The character is used to de-
compose the reducible representation into irreducible ones 
by the following theorem.

Where ai is the number of irreducible representations of type i 
contained in the total one t, χi and χt are the characters under 
the different symmetry operations R added each other for all 
the operations, h is the number of the group operations, g the 
number of operations having the same character (class).
For the water molecule, having C2v symmetry group
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The total representation consists of the sum of 3A1 1A2 2B1 
3B2 irreducible representations, for a total number of 9 rep-
resentations.

1.5.3 Relation between molecular wave functions and irre-
ducible representations
Let we still consider that the energy of a molecule is un-
changed by carrying out a symmetry operation, as well as 
the Hamiltonian too. Thus a symmetry operator R com-
mutes with the Hamiltonian operator.
HR = RH
If we take the wave equation
HΨi = EΨi and multiply each side by the symmetry opera-
tion R, we obtain
HRΨi = ERΨi due to the commutation of operators
RΨi is the eigenfunction
RΨi = ±1Ψi and Ψi results basis of irriproducible representation

1.5.4 Obtaining molecular orbitals with a given symmetry
Given the symmetry properties of the molecular orbitals, it 
appears not mandatory but very convenient that the mo-
lecular eigenfunctions were choosen as symmetry adapted 
linear combination of atomic orbitals. They supply the op-
erative bases to perform the MO calculation, avoiding the 
long and unuseful calculations necessary in the case the 
eigenfunctions are not bases of irreducible representation. 
Let we consider the nitrite anion (Scheme 4).
Taking as operative basis the three p orbitals, in a C2v sym-
metry group, the following values are obtained

to describe the behaviour of the reducible representation. 
This later can be decomposed into A2 + 2B1 irreducible rep-
resentations. We can now use the projection operators, 

Scheme 4 - π orbitals in 
nitrite anion
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working on the basis set of the three p orbitals, and anni-
hilate any element in the basis set that does not contribute 
to a given irreducible representation. We generally work on 
an atomic orbital ϕi (i = 1, 2, 3) , e.g. the p orbital of the an 
atom i, with the operator

R̂ is the symmetry operation, χR is the character of the 
symmetry operator, l is the dimension of the irreducible 
representation, h is the group order (number of group op-
erations). The sum is extended over all the symmetry oper-
ations. If we operate on ϕ1 with the A2 symmetry operator

The numbers in parethesis are the elements of the A2 irre-
ducible representation, and ϕ1 is the atomic orbital to be 
modified under the symmetry operation

If we operate on the ϕ2 orbital

That means to remove (annihilate) the ϕ2 orbital from the 
linear combination having A2 symmetry.
The coefficient determination results
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2C1
2= 1  and the normalized function (1/2)1/2 (ϕ1 – ϕ3)

No eigenfunctions with A1 symmetry are expected from the 
decomposition of the reducible representation

Nor with B2

Instead two eigenfunctions with B1 symmetry are expected

These two eigenfunctions with identical symmetry can mix as

Significantly the magnitude of a and b cannot be deter-
mined by only symmetry considerations; we can picture 
however the three symmetry adapted molecular orbitals

Scheme 5 - Symmetry adapted orbitals of nitrite anion

B1
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in terms of B1 ligand orbital involving the in phase linear 
combination of three atomic p orbitals, B1 antiligand orbital 
involving the out of phase linear combination, A2 non ligand 
orbital involving the combination of only two p atomic or-
bitals located on non adiacent atoms. This can give a precise 
idea of the electronic distribution among the symmetry ei-
genfunctions built by π atomic orbitals.
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The description will involve the examples of H2 and the lin-
ear diatomic omonuclear molecules of the periodic table 
first row, of H2O , NH3, CO, CH4 molecules.
H2   The molecule belongs to the D∞h symmetry group, as 
well as all the diatomic omonuclear molecules of the pe-
riodic table first row, reported below. Assuming as atomic 
base function that constituted by two s orbitals, ϕ1 and ϕ2, 
the character tables for this base becomes:

D∞h	 E	 C∞
ϕ	 σv	 i	 S∞

ϕ	 C2v	
χ
t		  2	 2	 2	 0	 0	 0	

χ
t indicates the total representation of the base of the two 

s orbitals.
If the characters of the two irreducible representations ∑g

+ 
and ∑u

+ are considered, the total representation results the 
sum of both   χt = ∑g

+ + ∑u
+

By using the projection operator, new symmetry eigenfunc-
tions can be obtained

D∞h	 E	 C∞
ϕ	 σv	 i	 S∞

ϕ	 C2v	
∑g

+	 1	 1	 1	 1	 1	 1	
∑u

+	 1	 1	 1	 -1	 -1	 -1	
Φ1	 ϕ1	 ϕ1	 ϕ1	 ϕ2	 ϕ2	 ϕ2	
Φ2	 ϕ2	 ϕ2	 ϕ2	 ϕ1	 ϕ1	 ϕ1	

∑g
+ = ϕ1 + ϕ2 (bonding)  and  ∑u

+ = ϕ1 - ϕ2 (antibonding), in 
the following energy scheme

2. Symmetry orbitals
for different bis

and polyatomic molecules
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	 ∑u
+ = ϕ1 - ϕ2 (antibonding)

ϕ1		  ϕ2
	 ∑g

+ = ϕ1 + ϕ2 (bonding)

2.1 Omonuclear diatomic molecules A-A of the periodic ta-
ble first row
We assume the following base of atomic orbitals
For the 2s orbitals
ϕ1= 2sA   ϕ2= 2sB  leads to
 ∑g

+ = ϕ1 + ϕ2 (bonding)   ∑u
+ = ϕ1 - ϕ2 (antibonding) 

For the 2p  orbitals  ϕ1
A= 2px  ϕ2

A= 2py  ϕ3
A= 2pz ;   ϕ4

B = 2px  
ϕ5

B= 2py  ϕ6
B = 2pz

D∞h	 E	 C∞
ϕ	 σv	 i	 S∞

ϕ	 C2v	
χ
t	 6	 2+4 cos ϕ	 2	 0	 0	 0	

χt indicates the total representation of the base containing 
the six p orbitals.
Looking at the Character Tables of the linear groups

and considering the character table of the irreducible rep-
resentations of the  D∞h    group    
D∞h	 E	 C∞

ϕ	 σv	 i	 S∞
ϕ	 C2v

∑g
+	 1	 1	 1	 1	 1    	 1

∑u
+	 1	 1	 1	 -1	 -1	 -1

Πg	 2	 2cos ϕ	 0	 2	 -2cos ϕ	 0
Πu	 2	 2cos ϕ	 0	 -2	 2cos ϕ	 0
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the base of six p atomic orbitals allows to built the following 
symmetry orbitals reported in a general scheme 6 with the 
s based atomic orbitals where the number before the sym-
metry orbital indicates the progression of orbitals of analo-
gous symmetry.

The scheme 7 shows the different energy trends for the first 
row biatomic molecules labeled (a) and for those labeled (b), 
and indicates that for the molecules (b) an energy inversion 
of σ+

g  and πu is active. This is connected to the small energy 
difference between s and p orbitals of the interacting atoms.

Scheme 6 – General 
energy trend for the 
first raw biatomic mol-
ecules

Scheme 7 – Energy 
trend for the first row 
biatomic molecules as 
a function of the atom-
ic species

(b)

(a)
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On proceeding along the first raw of the periodic table, in-
creasing the atomic number, the electronic population in 
Table 6 is expected, where the bond stregth of the mole-
cules is associated to the number and the type of populated 
symmetry orbitals.
Table 6 - Orbital population for the first row biatomic molecules

The overlap detail for the different orbitals is represented as

2.2 Water molecule, as example of triatomic molecule

We assume the following base of atomic orbitals ϕ1 = 1sH1   
ϕ2 = 1sH2  ϕ3 = 1sO   ϕ5 =  2pOx   ϕ6 =  2pOy   ϕ7 =  2pOz (Scheme 8)
                         

Scheme 8 – Water mol-
ecule representation
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In C2v symmetry        E    C2    σv(xz)   σ’v(yz
χT	 6	 0	 2  	 4	
A1	 1	 1	 1	 1	
A2	 1	 1	 -1	 -1	
B1	 1	 -1	 1	 -1	
B2	 1	 -1	 -1	 1	
χT  =  3 A1+ 2 B2 + B1

the ϕ3 orbital has energy too different from the other ones 
to be conveniently combined by symmetry rules. The re-
maining ones give rise, by the use of the projection opera-
tor, to symmetry adapted conbinations associated to the C2v 
symmetry of H2O.
Considering the representation table for the six base orbitals

C2v
ϕ1	 ϕ1	 ϕ2	 ϕ2	 ϕ1	
ϕ2	 ϕ2	 ϕ1	 ϕ1	 ϕ2	
ϕ4	 ϕ4	 ϕ4	 ϕ4	 ϕ4	
ϕ5	 ϕ5	 ─ϕ5	 ϕ5	 ─ϕ5	
ϕ6	 ϕ6	 ─ϕ6	 ─ϕ6	 ϕ6	
ϕ7	 ϕ7	 ϕ4	 ϕ7	 ϕ7	

and having as objective the construction of the six symme-
try adapted linear combinations of atomic orbitals (SALC)     

2A1           ϕ1 + ϕ2  ;   ϕ4   ;   ϕ7        →    ϕ1 + ϕ2 +ϕ4    

1B2           ─ ϕ1 + ϕ2 + ϕ6    
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3A1            ϕ1 + ϕ2 ─ ϕ7 ─ ϕ4

1B1             ϕ5

4A1         ϕ1 + ϕ2 + ϕ7 ─ ϕ4  

2B2             ϕ1 - ϕ2 + ϕ6 

The numbers before the symmetry indicate the progression 
of orbitals of a given symmetry. The grey color indicates the 
negative sign of the function.
In the case we tentatively adopt a linear D∞h symmetry 
(Scheme 9 ), the irreducible representation will be 2σg, 
1 σu , πu, 3 σg, 2 σu, a lower number than C2v, due to de-
generacy of πu. The lack of πu induces stabilization of 
3a1.

Scheme 9 – H2O linear 
symmetry versus the 
bent one (the real one)

↑↓

↑↓

↑↓

↑↓
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(A)

(B)

Scheme 10 – (A) energy level trend of the water symmetry orbitals (B) the 
same against HOH angle amplitude. b1 and b2 are exchanged from (A to (B)

The HOH angle of 105.5 °amplitude is the best convenient 
to minimize the energy of the water molecule. In Scheme 
10 is reported the energy trend (A) and the H-O binding en-
ergy (B) against HOH angle.
The Photoelectron spectrum of the water molecule (Figure 
1) confirms the symmetry energy trend, excluding the pres-
ence of degenerate πu states.
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Fig. 1 - Photoelectron spectrum of water, indicating the electronic transitions

2.3 Ammonia molecule, as example of tetratomic molecule

We assume the following base of atomic orbitals  ϕ1 = 2sN   
ϕ2 = 2px  ϕ3 = 2py   ϕ4 =  2pz   ϕ5 = 1s (H5)   ϕ6 = 1s (H6)    ϕ7 = 1s 
(H7)   (Scheme 11)
Referring to C3v symmetry, the characters of the reducible 
representation under the related symmetry operations are

E	 2C3	 3σv	

7	 1	 3	

Decomposed into the irreducible ones:

3A1 + 2 E 

Scheme 11 – NH3 molecule
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In order to apply the projection operator the following 
transformation table is compiled
Transformation table of the base function

C3v E C3 C3
2 σv(H5) σv(H6) σv(H7)

ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1

ϕ2 ϕ2 (-1/2 ϕ2-√3/2 
ϕ3)

(-1/2 
ϕ2+√3/2 ϕ3)

ϕ2 (-1/2 
ϕ2+√3/2 ϕ3)

(-1/2 ϕ2-
√3/2 ϕ3)

ϕ3 ϕ3 (√3/2 ϕ2 -1/2 
ϕ3)

(-√3/2 ϕ2 
-1/2 ϕ3)

- ϕ3 (√3/2 ϕ2 

+1/2 ϕ3)
(-√3/2 ϕ2 

+1/2 ϕ3)

ϕ4 ϕ4 ϕ4 ϕ4 ϕ4 ϕ4 ϕ4

ϕ5 ϕ5 ϕ6 ϕ7 ϕ5 ϕ7 ϕ6

ϕ6 ϕ6 ϕ7 ϕ5 ϕ7 ϕ6 ϕ5

ϕ7 ϕ7 ϕ5 ϕ6 ϕ6 ϕ5 ϕ7

By using the projection operator, applied to either not de-
generate or degenerate representations (A1 and E) the fol-
lowing symmetry orbitals are obtained.

2A1 =   ϕ2 +  ϕ5 + ϕ6 + ϕ7

1Ex  = - ϕ2 -2ϕ5 + ϕ6+ ϕ7       
1Ey  =  ϕ3 +  ϕ6 - ϕ7
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3A1 =  - ϕ1 + ϕ5 + ϕ6 + ϕ7 - ϕ4 

4A1 =  - ϕ1 + ϕ5 + ϕ6 + ϕ7 + ϕ4 

2Ex =   2ϕ5 + ϕ6+ ϕ7 - ϕ2     
2Ey =    ϕ3 - ϕ6 + ϕ7

Scheme 12 - Energy levwel trend of NH3 symmetry orbitals

↑↓↑↓

↑↓

↑↓

↑↓↑↓↑↓

↑↓↑↓

↑↓

↑↓↑↓
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The scheme 12 reports the energy level trends of ammonia for 
different possible symmetries. The stablilization of 3a1 energy 
level in C3v symmetry, due to interaction with the ground state, 
is responsible for the stability of the pyramidal C3v structure. 

2.4 Methane molecule, as example of pentatomic molecule

Td symmetry (Scheme 13) guaranties the highest stability 
for the CH4 unit due to the decrease of b1g eigenfunction 

Scheme 13 – Energy level trend of methane symmetry orbitals

2.5 Considerations about the models of chemical bond in use 
before the adoption of the symmetry molecular orbital model

In the time before the introduction of the molecular orbit-
al model, two different models were proposed to rational-

↑↓

↑↓↑↓

↑↓↑↓

↑↓ ↑↓↑↓
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ize the molecular shape, the reactivity and the electronic 
configuration. 1) the primitive Lewis model that does not 
consider any molecular shape and takes into account only 
the filling of the valence shell (8 electrons model); 2) the va-
lence electron pair repulsion (VSEPR) theory which ration-
alizes the molecular shape in terms of the minimum pair 
repulsion, keeping the couples of bound atoms each ones 
separated in their interaction (also using hybrid orbitals).
The symmetry adapted molecular orbitals takes as molecu-
lar orbitals those which are base of the symmery group of 
the molecule.
Step by step the model implementation goes from the only 
consideration of the electron number, to the total consider-
ation of electrons and orbitals of the molecules, assessing 
that the bonding is in charge to all the atomic orbitals, not 
only to those bonding two atoms. By this way (see water 
molecule) both the shape and some reactivity can be ra-
tionalized. The spectroscopic experimental data (XPS) are in 
agreement with this symmetry approach.
It can be suggested that the symmetry constitutes a unify-
ing approach to treat the chemical bond, as well as the mo-
lecular symmetry has the function of including all the con-
stituents of the chemical bonds in the entire molecule. No 
energy is implied in the symmetry operations, thus the sym-
metry is only a way to describe in easy way the electronic 
properties, and to suggest that the symmetry is a condition 
to whom the electrons must obey.
On the purpose of the unique value of the symmetry, it 
has been invoqued also in the music composition; it was 
suggested that several composers, mainly Ludwing Van 
Beethoven, assembled the musical text by using measures 
related by symmetry operations. This guaranties the corre-
lation among the various sections of the text.
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The hypothesis on Ψn is that they consist of known solu-
tions Ψn

0 of the equation

H0 Ψn
0 =  E0

n Ψn
0

 The hypothesis on H  is that 
H =  H 0 + H’  where H’ is the operator associated to the per-
turbation energy with respect to pristine H 0

The following equation has to be solved

H Ψn =  En Ψn

En= En
0+ < Ψ0

n| H’ | Ψ0
n>

Ψn= Ψ0
n+ ∑k≠n< Ψ0

k| H’ | Ψ0
n> × Ψ0

k / En
0- E0

k

Evidently the perturbed energy is the addition of the unper-
turbed one and of the perturbation energy obtained by the 
H΄ operator. 
The perturbed eigenfunctions are the unperturbed ones 
modified by the perturbation energy, weighted on the en-
ergy differences between the ground state and the excited 
interacting states. 
Assuming as example a system whose unperturbed eigen-
functions are Ψ0

1 and Ψ0
2, corresponding to energies E0

1 and 
E0

2
the determinant 
	 H11 - E	 H12	

	 H21	 H22 – E	
where   H11  =  <Ψ0

1| H |Ψ0
1>                  H22  =   <Ψ0

2| H |Ψ0
2>

3. Perturbation theory
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has H11 and H22 as solutions, when H21= H12 , thus
E1 = H11= <Ψ0

1| H 0+ H ΄ |Ψ0
1> = <Ψ0

1| H 0|Ψ0
1> + <Ψ0

1|H 
΄|Ψ0

1>
 = E0

1+ <Ψ0
1|H ΄|Ψ0

1>

E2 = H22 = E0
2+ <Ψ0

2|H ΄|Ψ0
2>

In a similar way as LCAO method, it is still a great difficul-
ty to calculate the Hij integrals. We will evaluate them by a 
semiempirical method, using the experimental parameters 
from spectroscopic measurements.
The perturbation method can be positively applied when 
the perturbation energy is well lower than the energies of 
the unperturbed system and it never describes the covalent 
bond.
Basing on this assumption, in the following we will describe 
the perturbations that modellize the atomic  electronic 
structure.

3.1 Interelectronic repulsion perturbation 
If an atomic system has one electron there is no energy dif-
ference whatever is the occupied orbital by the electron. 
See for example one electron in the five d orbitals named 
by its ml value

When the system contains two electrons, the energy lev-
el is depending on the relative occupation of the orbit-
als. It is necessary to combine all the possible electronic 
distributions by using the so called atomic vector model. 
The following table reports all possible combinations of 
two electrons into d orbitals (microstates), with their as-
sociated ml value. In the columns there is the sum of ml 
values (ML) relatable to the sum of l values (L). Also ms 
values of the individual electrons are reported as well as 
in the line there is the sum of the individual ms (MS).
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Table 7 - Electronic microstates for the d2 configuration 

In table 7, the same brackets include the terms of a given L.
The letters S, P, D, F, G, H, I  corresponding to L = 0, 1, 2, 3, 4, 
5, 6 indicate the effects of the electron-electron repulsion. 
Also the spin multiplicity 2S+1 is reported at the left top of 
the letter and it results from the table.

In the case of d1 electronic system
mL = ML = 2, 1, 0, -1, -2            D term

mS = MS  = -1/2 , +1/2               S = ½  doublet term  2D
In the case of d2 electronic system
ML = 4, 3, 2, 1, 0  L = 4, 3, 2, 1, 0          

L = 4  ML =  -4, -3, -2, -1, 0, 1, 2, 3, 4   G term  

L = 3  ML =  -3, -2, -1, 0, 1, 2, 3            F term

L = 2  ML =  -2, -1, 0, 1, 2                       D term

L = 1  ML  =  -1, 0, 1                                P term

L = 0  ML =  0                                          S term

S = 1  MS = -1, 0, +1                              3F and 3P   terms

S = 0  MS =  0                                        1 G 1S  1 D  terms

Scheme 14 - Energy 
levels obtained for a d2 
configuration 
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Although the vector atomic model allows to predict the type 
of energy states (Scheme 14), that is the orbital and spin 
multiplicity, the scheme does not give the relative energies 
of the states. In order to calculate them it is needed to apply 
the electronic repulsion operator. How does it work?
The perturbation operator is 

H´= ∑i<j e
2/rij               rij  is the distance between the two electrons

The energies for all of the terms associated to the electronic 
configuration can be calculated and expressed by the Con-
don-Shortley parameters F0 F2 and F4. These parameters 
are abbreviations for the various repulsion integrals in the 
perturbation determinant and allow the values can be de-
termined by detecting the experimental atomic transitions. 
The energy expression as a function of these parameters 
are independent of the atom but the parameter values 
there are. The entire atomic spectrum is fitted by the same 
parameter values.
For the V(III) ion d2

Racah redefined the Condon-Shortley parameters to simpli-
fy the energy separation between the states

Still for the V(III) ion

The free ion terms for the different electronic configura-
tions are in Table 8.



45

Table 8 - Free ion terms for various electronic configurations

Look at the analogy between the configurations comple-
mentary in 10. This originates from the analogy of the re-
pulsion energy between two electrons and two holes. The 
magnitude of the electro-electron perturbation energy is 
few thousand cm-1.

3.2 Spin orbit coupling perturbation 
This perturbation describes the energy modification in 
an atom due to interaction of the angular spin magnetic 
moment with the angular orbital magnetic moment. Two 
schemes are used to treat the effect: the L.S scheme (Rus-
sel –Saunders) and the j-j scheme; the first one is the most 
common and it is used when the spin-orbit perturbation 
is lower than the electronic repulsion (the major part of 
atoms); the second one is suitable to treat rare earth ele-
ments and the third raw transition elements.
The first case will be described in detail as it is the most 
common. The individual mL values of the single electrons 
undergo coupling and produce the angular momentum L ; 
the spin mS values give the S value. The resultant momen-
tum is called J, and it takes all consecutive integer values 
spanning from L-S to L+S.
By still using the vectorial atomic model, it is easy to predict 
the type of spin orbit coupled states. In fact for the carbon 
atom

L = 1  S = 1   L-S = 0   L+S = 2   J = 0, 1, 2  the term is 3P0, being 
the shell less than half filled
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The scheme 15 describes the spin orbit coupling effects for 
d2 configuration

Scheme 15 - Spin orbit coupling effect in d2 configuration

As for the spin orbit coupling energy perturbation, two pa-
rameters, λ and ξ, are used to describe the energy magnitude. 

where r-3 is the average value of the atomic radius, Zeff is the 
nuclear charge, m is the electron mass. The operator is 

ξ L●S
Using the parameter λ where
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and if the shell is less than half filled λ is positive the oper-
ator becomes λ L●S
The spin orbit effects, as in the Scheme 15, are given by

The magnitude of the spin orbit effect is generally few han-
dred cm-1.

3.3 Crystal field perturbation

The perturbation described in this paragraph is able to 
model the bonding interaction between a central metal ion, 
with a given electronic confguration, and the surrounding 
groups (either ions or polar molecules). Thus we shift from 
the atomic to a molecular context. Interestingly the infor-
mation on the bond is not related to the energy decrease of 
the metal electrons, but it involves the electronic repulsion 
between the electrons of the metal ion and the negative 
charge of the surrounding groups.
The base for the electronic perturbation in the case of tran-
sition metal ions are the following eigenfunctions

Alternatively in a real form, the more common called d or-
bitals are

The complete hamiltonian for the perturbed systems is 
H = H0 + V 
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where H0 is the free-ion hamiltonian and V the perturba-
tion operator which describes the electronic repulsion be-
tween the ion electrons and the ligands, these simplified 
as point charges. For an octahedral interaction the pertur-
bation is

where e is the electron charge, Zi the effective ligand charge, 
rij the distance between elecron and ligand. The form of the 
integrals in the perturbation determinant is <ML |V | ML’>. 
When the integration is done, many quantities related to 
the radial part of the matrix elements appear in the deter-
minant and have the form 1/6 (Ze2r-4a-5) where r is the av-
erage radius of the d elecrons of the central ion and a the 
metal-ligand distance.
This quantity is referred to as 10 Dq and is an energy. With 
this considerations the determinant for an octahedral com-
plex having a d1 central ion is

Still having the roots  -4Dq   +6Dq
Thus the crystal field effect separates the d orbitals in two 
sets, 10 Dq distant, as in the Scheme 16.
For the correlation between terms and d orbitals, see the 
beginning of the paragraph.

Scheme 16 - Energy 
diagram of d1 config-
uration in octahedral 
crystal field
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If we consider the d2 configuration, several times discussed 
in the previous chapters, more free ion terms can be consid-
ered for the interaction with the octahedral crystal field. Let 
we start with the perturbation of the 3F ground state. The 
secular determinant results

The denomination of the terms uses the group theory, in 
the way described in the next paragraph.

3.3.1 Use of the group theory to predict the orbital spitting 
in a given symmetry
The target is how to be able assigning the terms obtained 
by the octahdral perturbation to the irreducible representa-
tions of the octahedral group itself. Given that the symme-
try of the crystal field perturbation decides the form of the 
perturbation operator, it can be expected that the eigen-
functions of both singly or multi electronic ions belong to 
the symmetry group of the complex . We begin by examin-
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ing the effect of an octahedral field on the total representa-
tion whose the d orbitals form the basis. Since all d orbitals 
have symmetry center, no new information arises from the 
symmetry inversion operation. Thus it is easier to use the 
simple rotational group, the O group, which contains only 
the rotations present in the Oh group.

The vector contains as terms the five d orbitals, wich un-
dergo the rotation; notably only the ϕ angle varies, as the 
remaining polar coordinates, θ and ρ are not changed by 
the symmetry operation.
The symmetry rotation is represented by the following matrix

more in general, whatever the base orbitals
The sum of the diagonal elements is
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In the case of a 120° rotation (C3)

Using the above formula we will represent the various oper-
ations in the O rotational group

ΧT  is decomposed in T2 + E, in the case of Oh, T2g + Eg.
The results obtained by the only symmetry considerations 
are the same as those deriving from the application of the 
perturbation operator, that is the d orbitals split in two sets 
of orbitals, one three times degenerate (T2g) and the other 
two times (Eg). The symmetry considerations allow to pre-
dict the number and type of energy levels, but do not give 
any quantitative energy measure. See in the following table 
the prevision

Table 9 - Association between orbitals and their symmetry properties in Oh

Let consider that the correlation among the type of orbital 
(l value) and the irreducible representations are valid also 
for the states (L values) and the irreducible representations 
of the states.
The prevision of the states both in the case of monoelec-
tronic and multielectronic states can be transferred from 
the octahedral symmetry to the different ones. In fact the 
same wave functions, in different point groups, are base of 
different irreducible representation.
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Table 10 - Correlation between the spectroscopic states in different sym-
metries

The crystal field perturbation can have different weight on 
the perturbed energy, that is it can be stronger (strong field) 
or weaker (weak field) than the inter-electronic perturbation.  
If we suppose the dn electronic configurations in a strong 
crystal field perturbation, for the d1 configuration the two 
perturbed terms are  2T2g and 2Eg. In the case of d2, we have  
t2g

2 , t2g
1eg

1, eg
2  orbital arrangements and the terms are giv-

en by the direct product of the single arrangements (direct 
product of the irreducible representations).
t2g x t2g	 	 =	 T1g + T2g + Eg + A1g
t 1

2g x e 1
g	 =	 T1g + T2g 

e g  x eg		  =	 Eg + A1g + A2g
However, while the terms are easy to be obtained by the 
group theory, the related spin states are not. In fact the d2 
configuration allows two spin states, the singlet and the tri-
plet, and their attribution to the terms is not immediate.  We 
will use the method of descending symmetry. If the eg

2 config-
uration is considered, when we lower the symmetry from Oh 
to D4h, the determination of the spin state becomes straight-
forward, and the following configurations are expected

b1g
2 (S=0) , a1gb1g (S=0 and S=1), a1g

2 (S=0) which give the 
terms A1g (S=0)  B1g (S=0 and S=1)  A1g (S=0) 
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Given the following correlations:

The spin state and the orbital degeneracy can be assigned

The method of descending symmetry thus consists in re-
writing the electronic configuration in a symmetry where 
all the orbital degeneracies disappear. By this way the 
spin state can be definitely associated to the orbital. It 
results a complete correlation diagram between the one 
electron configurations, that correspond to very strong 
crystal field perturbation, and terms, where the elec-
tronic repulsion is stronger than the crystal field one 
(weak field). 
The Scheme 17 proposes the correlation between ener-
gies of weak and strong field, and shows that these ener-
gies vary very much with the field strength, until to fully 
change the energy trend of the free ions states. However 
there is a full correspondence among high field and low 
spin terms.
It is important to observe that no crossover is possible, 
along the field variation, between the states which have 
the same symmetry and spin state, as the same energy of 
two states which derive from different configurations is non 
sense.
Looking at the d2 diagram the configurations are associated 
to a number of electronic transitions which, under excita-
tion energy, can change the electronic state of the ion and 
also assign to the ion a given electronic configuration and 
field symmetry. 
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Scheme 17 - Energy diagram for d2 configuration in different field strengths

Based on the possibility of experimentally detecting the 
electronic transitions and consequently assigning the crys-
tal field symmetry and the ion electronic configuration, tak-
ing also into consideration that the most probable (strong) 
transitions are those spin allowed, Orgel proposed the 
schemes on the left (Schema 18, A and B)

The transition energies reported by these schemes, plot-
ted for increasing Dq values, are between states with the 
same spin multiplicity and refer to octahedral and tetrahe-
dral symmetries. They allow to assign the crystal field of the 
spectra from d1 to d9 configurations and to recognize both 
symmetry and electronic configuration of the ion.
Tanabe and Sugano alternatively described the cubic (octa-
hedral and tetrahedral) configurations by diagrams which 
report all the states for a single electronic configuration, 
independently of the similarity of their spin multiplicity. 
The diagrams plot the electronic energies of the ions states 
against the Dq energy values. All energy values are meas-
ured in B (Racah) units in order to make the values inde-

Scheme 18 – Orgel 
diagrams

(A)

(B)
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pendent of the different ions. On the left hand of the dia-
grams we read the free ion energies, on the right hand the 
energy for an infinitely strong field. When the strong field 
configuration is not indicated it is intended that it remains 
the same as the lower energy state. 

Scheme 19 – Tanabe-Sugano Diagrams for different electronic configurations
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From the d4 to d7 configuration, the diagrams contain a ver-
tical line which separates the high spin from the low spin 
region for the same ion. The two regions are different in the 
ground and the other states.
The transitions in Tanabe Sugano diagrams can be read by 
the same way as for the Orgel diagrams and show the com-
plete spectrum of the absorption bands.
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3.4 Examples of attribution of the absorption bands

Let we consider the absorption maxima of some Ni(II) octa-
hedral complexes (Fig.2 Table 11)

Table 11 – Crystal field transitions of Ni(II)octahedral complexes

Three bands are evident, whose assignment is obtained by 
the Orgel diagram for the d8 electronic configuration. The 
shapes of all the spectra are similar and indicate that the 
electronic configuration and the symmetry are similar. Only 
the energy of the transitions is different (see table) and can 
be associated to the different crystal field strength.  

Figure 2 – Electronic absorption spectra of Ni(II) complexes

As expected the presence of N in the first coordination Ni(II) 
sphere induces higher field strength, due to the stronger 
basicity of the ligand. 
In the following (Fig 3) we report and assign the electronic 
transitions of a number of octahedral coordination com-
pounds, by using the Tanabe Sugano diagrams.
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͢
(A)	   Co3+   d6    5T2g

    →   5Eg
(B)	   Cr3+   d3    4A2g   →    

4T2g                  
4A2g

  →  4T1g (F) 
(C)	   Cr2+   d4       5Eg    →    

5T2g
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(D) Fe2+    d6      5T2g 
 →  5Eg

(E) Mn2+   d5   no spin allowed electronic transitions
(F) Ti3+   d1      2T2g 

   →   2Eg

(G) V3+     d2      3T1g(F) →      
3T2g           

3T1g(F)  →   
3T1g(P)

(H) Ni2+   d8     3A2g     →      
3T2g           

3A2g  →  
3T1g →(F)       

3A2g   →  
3T1g (P)    

(I) Cu2+   d9    2Eg    →    2T2g

Fig. 3 - Electronic spectra of different dn configurations. The transitions 
are assigned basing on Tanabe Sugano diagrams.

3.5 Crystal field limits

Several limitations affect the crystal field theory, due to the 
simplified model which considers the ligands as negative 
spheres and the interaction between valence electrons and 
the negative ligand charge a mere Coulomb repulsion. No 
covalent interaction is admitted.
For this reason the experimental Dq value results different 
from that expected from the simple crystal field approxi-
mation. The following diagrams show the variations of Dq 
when the overlap between σ or π ligand orbitals and d or-
bitals is taken into account.
In Scheme 19  (A) indicates the overlap of d orbitals with 
empty π orbitals (B) with the filled ones and cause respec-
tively an increase of Dq (Δ) and a decrease with respect to 
the crystal field value.

Scheme 19 - Ligand field effect by π orbitals
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Scheme 20 indicates the overlap of d orbitals with the σ 
ligand orbitals

Scheme 20 - Ligand field effect by σ orbitals

The covalent interaction leads to an increase of Dq value.
Thus it is possible to order the effects of the different ligand 
molecules basing on the π and σ interactions they display. 
The trend is called spectrochemical series and the compar-
ison among the ligand effect have to be made only for the 
same crystal field effect of the metal ion

Crystal field trend (magnitude of 10 Dq) for different metal ions
By this way we change the crystal field theory in ligand field 
theory.
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3.6 Effect of distortion from cubic symmetry

The group theory allows an easy indication of the crystal 
field effects on the atomic states and we reported the exam-
ples in the previous chapters. However the extensive treat-
ment was for cubic symmetry. It is expected that in the case 
of lower symmetry, or distortion from the cubic one, the 
perturbation field effects on the ion states are different. In 
fact for a d1 ion in distorted octahedral symmetry (elongated 
tetragonal), the pristine Oh states split as shown on the left.
For a low spin Co(III) d6 the ground state splits into.
Fig 4 reports as example the electronic spectra of three 
Co(III) complexes with different symmetries (Fig 4)  (A) oc-
tahedral (B) cis-difluoro bis ethylenediamine (C) trans-dif-
luoro bis ethylenediamine. On passing from (A) to (B) and 
(C) the two bands gradually broaden and at the end split 
in (C) where the distortion from the octahedral symmetry 
is highest. More in general looking at the change of ener-
gy in the absorption spectra, as a function of the percent 
(Scheme21) of distortion in Ni(II) complexes.

Scheme 21 - Electronic spectra of Ni(II) complexes,
as a function of the distortion from Oh

Figure 4 - Electronic spectra
of Co(III) complexes
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Large variations both in the number and in the energy of 
the states are observed by lowering the symmetry. Thus it is 
not so easy to assign the symmetry and the electronic con-
figuration in the presence of large distortion from the cubic 
symmetry. Instead it is sometimes simple to distinguish the 
tetrahedral from the octahedral symmetry of a given ion 
(Co(II) in Fig 5), basing on the intensity of transitions. These 
are much more intense in tetrahedral symmetry, due to the 
mixing between d and p orbitals allowed in Td symmetry. By 
this mixing the d-d transition is no more pure and no more 
forbidden.

Figure 5 - Electronic spectra of octahedral and tetrahedral Co(III) complexes

In conclusion the group theory allows the prevision of the 
type of the electronic states due to the crystal field pertur-
bation and of the expected transitions. By this approach 
both the coordination geometry and the electronic configu-
ration of the ion can be hypothesized.



3.7 Table of Characters to be used in the reported molecules   
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The magnetic properties play a fundamental role in the un-
derstanding of the electronic structure of ions and molecules. 
In fact starting from the energy of interaction between the 
electrons and the magnetic field it becomes possible to locate 
the unpaired electrons of the ground state and to hypothesize 
the energy trend of the remaining electronic states. The mag-
netic data come from measurements of magnetic suscepti-
bility and from electron spin resonance spectra. When a ma-
terial is immersed between the polarities of a magnetic field, 
different modifications affect the magnetic flux lines, depend-
ing on the vacuum presence (A), the presence of a paramag-
netic solid (B), the presence of a diamagnetic solid (C). 

In order to quantify this effect it is convenient to define a 
quantity called magnetic induction expressed as vector B

H0 is the external field and M the intensity of magnetization 
per unit volume. Dividing by H0

4. Magnetism

→

→

→

→
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Χv is the magnetic susceptibility for unit volume, dimension-
less
Χv/d = Χg gram susceptibility (cm3/gr)    Χg • MW (cm3/mole) 
molar susceptibility

Table 12 - Different types of magnetic behavior

For our purposes is specially important the origin of the 
magnetic behavior, as it is this aspect that can be relatable 
to the electronic properties. The variation of the magnetic 
properties with the temperature is also indicative of the dif-
ferent behavior. Consider that the diamagnetic behavior is 
independent of the temperature.
Diamagnetism arises from field induced electron circulation of 
paired electrons, which generates a field opposed to the applied 
field. Thus all the molecules have contributions from diamagnet-
ic effects. The diamagnetic susceptibility of an atom is propor-
tional to the number of electrons n and to the sum of the square 
value of the average orbital radius of the i th electron 

The molar diamagnetic susceptibility can be obtained by 
the sum of the diamagnetic contributions of all the atoms χA 
and of the functional groups χB, as indicated in the table 13. 
When a magnetic measurements is performed  the mag-
netic susceptibility is the difference between the measured 
value and the value of the diamagnetic susceptibility.

Scheme 22 - Variation 
of the magnetic prop-
erties with temperature
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Table 13 - Diamagnetic contributions

An example, the pyridine molecule

The calculation of the diamagnetic contribution allows, after 
the experimental measure of the total magnetic contribu-
tion, the determination of the paramagnetic contribution. 
The goal is at this point to relate the value of the paramag-
netic contribution to the electronic properties.

4.1 Interaction between electrons and magnetic field

The effect of the magnetic field on the electronic spin is 
better explainable in terms of the quantum mechanical ap-
proach than by the magnetic field classical interaction. It is 
well known that each system having discrete energy levels 
may be associated to the equation (1)

Λiψi =  λi ψi         (1) 

where Λ is the operator describing the potential energy of 
the system to which we associate the energy states i, ei-
genvalues, and the wave functions i, eigenfunctions. The Λ 
determination is a delicate point, to be done by attempts.
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We will proceed through the following considerations:
a) By immersing a magnetic dipole µ in a magnetic field H 
(fig.5) the energy of the system is given by the expression (2)

W = -μ . H = -μ . H cos(μH)          (2)
b) Both the orbital and the spin angular momentum under-
go quantization (Fig 6,7), as well as their components in a 
space direction, being their values

L(L+1)1/2 h/2π    S(S+1)1/2 h/2π
ML  2L+1 values from  –L to +L
MS  2S+1 values from  –S to +S
c) The moment of the magnetic dipole is proportional both 
to the orbital and the spin angular momentum.
The property associated to the rotation of the electron neg-
ative charge, and the related relations are
µz   =  γ ML h/2π 
µz   =  γ MS h/2π    and if γ = - ge/2mc     β = eh/4 πmc  →
µz   =   -gβ MS    

From the a and c considerations the energy of one electron 
with MS = ± ½ is  

W = g β H MS = ± ½ g β H        Δ = g β H 
Based on points  a – c, the spin properties of the system 
under investigation determine its behavior; thus the Hamil-
tonian equation for a spin only case results

Sz ψi = Ms ψi                  Sz ψi (Ms ± ½)= ± ½ Ms ψi(Ms ± ½)
As Sz is commutative with the Hamiltonian operator H, 

H ψi (Ms ± ½)= W± ½ ψi (Ms ± ½)
By associating to the magnetic moment µ z the correspond-
ing operator

µ z=  - g β Ms 

µz =  - g β Sz

and to the energy           W =  - µzH  
The corresponding Hamiltonian         H =   g β H Sz      

W1/2   =  ½ gβH
W-1/2 =  -½ gβH

ΔW = gβH  (Fig. 8)

→ → → →
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The energy transition is  ΔW and is tuned by H, provided
Δ Ms = ± 1 as selection rule   g is a value peculiar of the 
electron behavior
See the comparison between quantum mechanical and 
classical approaches: 

Fig.6 - Energy interaction of one electron in a magnetic field

Fig 7 - Quantum mechanical effect on the spin angular momentum

Allowed values of the total spin angular momentum [S(S+1)]1/2 and 
of the component Ms (in units ħ) in a fixed direction

Energy of a classical magnetic dipole in a magnetic field as a function 
of the angle Ɵ between the magnetic field and the axis of the dipole

S=1/2 S=1 S=3/2
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Fig 8 - Energy changes induced by the magnetic field on one electron

4.2 Magnetic susceptibility expression for S=1/2

Considering that for a given electron  n  µn  = -gβ MS  and 
Wn = g β H MS = ± ½ g β H and that the energy difference 
between the spin states is lower than KT, both the states of 
S=1/2 are populated at room temperature. The probability 
Pn for populated states with energy En is given by

Nn refers to the population of the state n, while N to the total 
population of all the existing states.The population-weighted 
sum of magnetic moments over the individual states gives 
the macroscopic magnetic moment M. For a mole of material

Where N is the number of Avogadro. Substituting Pn
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Substituting μn ed En

in general given the short distance between the magnetic 
levels gβH/KT <<1, thus

since     χpara = M/H

Which is the Curie law. This expression gives the para-mag-
netic susceptibility for spin only systems
If we define a new scalar quantity

→ →
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Thus the μeff value allows to detect the number of unpaired 
electrons in spin only systems. If the systems include mag-
netic contribution  different from that of the spin one, the 
μeff values are different. In this case the system is associat-
ed to the Hamiltonian

By replacing in the Curie expression exp(-En/KT) with

Being M=0 for H=0

Neglecting the terms higher than E(2)
n and E(2)

n x E
(1)

n  

This is the Van Vleck equation, where the magnetic suscepti-
bility contains different contributions to the interaction with 
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the magnetic field, that field independent and that first order 
dependent.  The difference of μeff with respect to the spin only 
value is due to the contribution of the orbital magnetic mo-
ment. It is mainly this difference to contribute the assignment 
of the electronic state. If an electron can occupy degenerate 
orbitals that permit circulation of the electron about an axis, 
an orbital angular momentum can result. Table 14 reports the 
cases where the angular momentum is active or quenched.
The behavior depends on the electronic configuration and 
on the crystal field symmetry, thus the quenching or not 
gives an indication of the coordination geometry and of the 
electronic configuration.

Table 14 - Relations between magnetism and crystal field properties for different dn

Let you consider the d3 electronic configuration: in octa-
hedral field symmetry the three electrons lie in t2g orbitals, 
with parallel spins and no orbital circulation is allowed. Thus 
the quenching of the orbital momentum is fully justified. In-
stead in tetrahedral symmetry field there is one electron in 
t2g orbitals and the orbital circulation is active.

4.3 Electron spin resonance 

The resonance condition (energy of the magnetic transi-
tion) for one electron is
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W = g β H MS = ± ½ g β H        Δ = g β H   resonance condition
g = hν/βHr where  ν  is the irradiation frequency and Hr is the 
magnetic field where the absorption happens. 
The experimental choice is to fix the frequency  ν and to 
measure the field Hr. The g value depends on the electronic 
surrounding of the unpaired electron, thus it is typical of 
a given paramagnetic center. In the case of a free electron  
g = 2.0023. Different values are due to spin-orbit coupling 
interaction and  can show anisotropic behavior ( g is repre-
sented by a tensor) in the form of cubic, axial or rhombic 
symmetry. In order to precisely measure  the g value it is 
mandatory to precisely measure

ν and Hr

In general the measure is obtained by using a precise ν and 
calibrating the magnetic field by a standard sample with 
known g value 

gs = h ν/β Hs      gx = h ν/β Hx              gs/ gx = Hx / Hs

A used standard molecule used is diphenyl pycrilhydrazil 
(DPPH)  g = 2.0037.
The shape of the spectrum corresponds to Gaussian or 
Lorenzian lines (Fig.11) and is taken mostly as a derivative 
curve, to identify the overlapping absorptions .The most 
common used frequencies of the microwave source are:

	 9.417  GHz   (X band)	 35    GHz   (Q band)

Fig 9 - Energy changes 
induced by the magnet-
ic field on one electron

Fig.10 - Scheme of the 
ESR apparatus

Block diagram of a typical X-band ESR spectrometer em-
ploying 100 gHz phases-sensitive detection is as it follows
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Fig. 11 - Spectra general shape

Fig.12 - Electron Spin Resonance spectrometer 

4.3.1 Hyperfine Nuclear Interaction
The electron magnetic moment and the nuclear magnetic 
moment interact, modifying the microwave absorption. The 
number of single resonances increases, although they are 
centered on a unique resonance field Hr ,which corresponds 

a) Absorption spectrum
b) First-derivative spectrum
c) Second-derivative spectrum

a) Absorption spectrum
b) First-derivative spectrum
c) Second-derivative spectrum
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to the absorption field in the absence of electron-nucleus 
interaction.
Heff  =  H  +  Hlocal                Hlocal is due to nuclear interaction
From the quantum mechanical approach for the spin nu-
clear momentum I , 2I+1 components are expected. In the 
case of hydrogen atom I = ½  MI = ± ½ ; the spectrum shows 
two resonances

 Heff =  H ±  a/2 = H ± a Mi (where a is a measure
of the interaction)

The energy of hyperfine interaction in the isotropic form 
was investigated by Fermi and is defined with the following 
equation

Wiso  =   8π/3 (ψ0)
2μez μnz  where ψ0  is the wave function 

evaluated on the nucleus
μez μnz are the components of electronic and nuclear mag-
netic moments along the H direction.

4.3.2 Hyperfine interaction by quantum mechanical approach
By using quantum mechanical operators:

μez = -gβ Sz 
µnz = -gn βn Iz 

Hiso=  8π/3gβ gn βn (ψ0)
2 Sz Iz = hA0 Sz Iz  

where A0 is the isotropic hyperfine coupling constant (hertz)
In the case of the hydrogen atom the complete Hamiltonian 
operator is

H = gβ H Sz + hA0 Sz Iz 

By associating the eigenvalues of Sz and of Iz to the four spin 
and nuclear states 

 Ms = ½ ≡ αe    Ms =- ½ ≡βe          

MI = ½ ≡ αN    MI =- ½ ≡βN

four different states are generated
(αe αN)  (βe αN)  (αe βN)  (βe βN )

Operating by the H operator on each one of the states
W αe αN  = <αe αN | gβ H Sz + hA0 Sz Iz | αe αN > = ½ gβH + 

1/4h A0 
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W αe βN =  ½ gβH  - 1/4h A0

W βe βN  = - ½ gβH  + 1/4h A0

W βe αN  = -½ gβH  - 1/4h A0

The microwave induced energy transition undergoes the 
following selection rules

ΔMs ±1 ΔMI = 0
The energy transition is consequently 

Hk = hν0/gβ  -  a/2     MI =  ½ 
Hm = hν0/gβ  +  a/2     MI = - ½ 
where        a = hA0/gβ 

The microwave induced energy transition undergoes the 
following selection rules

ΔM
s
 ±1 ΔM

I
 = 0

The energy transition is consequently 
H

k
 = hν

0
/gβ  -  a/2     M

I
 =  ½ 

H
m 

= hν
0
/gβ  +  a/2     M

I
 = - ½ 

where    a = hA
0
/gβ 

Scheme 23 - Effect of the hyperfine interaction for hydrogen atom
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4.3.3 The electronic interaction with the magnetic field in 
oriented systems
In the most general case the interaction energy of an electron 
with the magnetic field is anisotropic , provided the physical 
status does not induce averaging of the magnetic interactions.
g  is represented by a tensor and the Hamiltonian operator is

H = β S g H         S and H are both vectors
H = β ( Sx gxx Hx  + Sy gyy Hy + Sz gzz Hz ) 

Figure 13 - Resonance spectra for axially symmetry 

 Figure 14 - Resonance spectra for rhombic symmetry 
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4.3.4 The electronic interaction with the magnetic field in 
oriented systems
gxx   gyy   gzz   are the g components along three directions, 
called principal magnetic axes, observed when the magnet-
ic field is oriented along these directions.
For different orientations, the g value follows the expression:

geff
2 = gxx cos2θHX + gyy cos2θHY + gzz cos2θHZ

θ is the angle between the magnetic field component and 
the g tensor component. 
In the following cos2θHX = lz

geff
2  = [ lx  ly  lz ]	 gxx

2	 0	 0	 [ lx  
		  0	 gyy

2	 0	 ly  
		  0	 0	 gyy

2	 lz ] 

The geff
2  matrix is diagonal only when the H directions are 

coincident with the magnetic ones (principal directions).
In general the principal magnetic directions are unknown 
and g is measured with respect to an arbitrary system 
geff

2  = [ lx ly lz ]	 gxx
2	 gxy

2	 gxz
2	 [ lx  

	 gyx
2	 gyy

2	 gyz
2

	 ly  
	 gzx

2	 gzy
2	 gzz

2	 lz
 ] 

The matrix is then diagonalized to obtain g principal values 
and their orientation with respect to the magnetic field

4.3.5 The origin of the g anisotropic behavior
The observation that the g parameter has anisotropic be-
havior is not simply relatable to the symmetry of the field 
where the electron is located and interacts with the exter-
nal magnetic field. It is more suitably explained as the in-
teraction between the external magnetic field and both the 
spin and the orbital electron magnetic moments. The total 
interaction is described by the Zeeman operator:

H  =  β H L +  ge βHS
If the spin and the orbital angular moments interact be-
tween them, the spin orbit coupling operator ζ L S perturbs 
the spin eigenfunctions 

ψ0 |α/β>  to new states |± >
± > = |ψ0 α/β> - Σn<n|ζLS |ψ0α/β> • (1/En- E0) |n>
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Let we consider a new operator S which operates at it fol-
lows:
Sz |± > = ±1/2 |± >           Sx |+ > = 1/2 |- >         Sy |+ > = 1/2i |- >   
where S works on the states  |± >  as S on the states | α/β >
Then the magnetic field is along the z axis, the Hamiltonian 
operator is
H  = βH (gxz Sx + gyz Sy  + gzz Sz) and it operates on the |± > 
eigenfunctions as it follows

	 <+| ½ βHgzz	 ½ βH(gxz-igyz)	
	 < -| ½ βH(gxz+igyz)	 -½ βHgzz	 (a)
	 <+|		  <-|

The true Zeeman Hamiltonian for H along z is H = βH(Lz+ 
geSz) and It is associated to the energy matrix

βH <+| Lz+ geSz |+>      βH <+| Lz+ geSz |->
βH < -| Lz+ geSz |+>      βH < -| Lz+ geSz |->      (b)

Considering the analogy between matrices (a) and (b), the g 
component expression can be expressed as it follows

 gzz  =  2 <+| Lz+ geSz |+> = ge - 2ζ Σn <ψ0| Lz | ψn> <ψn| Lz | 
ψ0> •1/(En- E0) 
 gxz+igyz = 2 <-| Lz+ geSz |+> = ge - 2ζ Σn <ψ0| Lz | ψn> <ψn| Lx | 
ψ0> •1/(En- E0) 
The g values contain the free electron value, ge, 2.0023, and 
a perturbation term which is a function of the spin orbit 
coupling and of the energy difference between the ground 
electronic state and the excited ones interacting by spin or-
bit coupling

4.3.6 g expressions for a d1 electronic configuration in 
tetragonal symmetry field

d (x2-y2) < dxz,yz< d(z2)
If the unpaired electron lies in the d(x2-y2) orbital: 

gzz    =  2 -  8ζ/Δ     Δ = E(dx2-y2)  -  E (dxy)
gxx,yy  =  2  - 2ζ/δ     δ = E(dxz,yz)  -  E(dx2-y2)

If the unpaired electron lies in the d(z2) Energy of orbital: 
gzz    =  2
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gxx,yy  =  2  - 6ζ/ E(dxz,yz) - E d(z2) 
If the unpaired electron lies in the (dxy) orbital

gzz    =  2 -  8ζ/Δ
gxx,yy  =  2  - 2ζ/δ

4.3.7 g tensor dependence on the energy level trend of the 
paramagnetic centers

In the case of valence electrons

In the case of gap electrons

E0 near CB g<ge	   E0 near VB g>ge

Let you observe that the expression indicate the free elec-
tron g value, perturbed by the contribution of the angular 
momentum, weighted on the energy differences among the 
interacting states.

Fig. 15 - Some examples of electron spin resonance spectra in different 
physical states 

CoMe Acacen spectra in liquid crystal

Frozen solution

Frozen liquid crystals 
oriented as C

Frozen liquid crystals 
oriented at 90° from C
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Co Phthalocyanine dissolved in 4 methyl pyridine

CoAcacen diluted in NiAcacen as powder spectrum

Co Phthalocyanine diluted in Ni Phthalocyanine as powder spectrum
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5. General observation

The reported lectures outline the fundamental role of the 
Group Theory in simplifying the modelling of the chemical 
bond. It shows the possibility of fast interpretation of the 
data of electronic spectroscopy and magnetism.
A simple quantum mechanical treatment is used as the wave 
equation is solved by the aid of the symmetry operators.
For a chemist it has a great value to simplify the quantum 
mechanical approach, as the molecules are complex sys-
tems whose electronic properties risk to be absolutely un-
known.
For me there was no better satisfaction as to look to a spec-
trum and in a short time to approach the molecular structure.




