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1 Introduction
Thompson’s group V is de�ned as a homeomorphism group of the Cantor set. The group V hasmany interest-
ing generalisations such as the Higman–Thompson groups Vn,r ([10]), Stein’s generalisations [14] and Brin’s
higher-dimensional Thompsongroups sV ([3]). All these groups contain any�nite group, contain free abelian
groups of in�nite rank, are �nitely presented and of type FP∞ (seework by several authors in [4, 7, 9, 11, 14]).
The �rst and third authors together with Kochloukova [11, 13] further generalised these groups, denoted
by Vr(Σ) or Gr(Σ), as automorphism groups of certain Cantor algebras. We shall use the notation Vr(Σ) in
this paper. We show in Theorem 2.5 that they are the full automorphism groups of these algebras.

Fluch, Marschler, Witzel and Zaremsky [7] used Morse-theoretic methods to prove that Brin’s groups sV
are of type F∞. By adapting their methods, we show in Theorem 3.1 that under some restrictions on the
Cantor algebra, which still comprehend all families mentioned above, Vr(Σ) is of type F∞. We also give some
constructions of further examples.

Bleak, Bowman, Gordon, Graham, Hughes, Matucci and Sapir [2] and the �rst and third authors [13]
showed independently that centralisers of �nite subgroupsQ inVn,r andVr(Σ) canbedescribed as extensions

K �  CVr(Σ)(Q) �¤ Vr1 (Σ) × ⋅ ⋅ ⋅ × Vrt (Σ),

where K is locally �nite and r1, . . . , rt are integers uniquely determined by Q. It was conjectured in [13]
that these centralisers are of type F∞ if the groups Vr(Σ) are. In Section 4, we expand the description of
the centralisers given in [2, 13], which allows us to prove that the conjecture holds true. This also implies
that any of the generalised Vr(Σ) which are of type F∞ admit a classifying space for proper actions that is
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amapping telescope of cocompact classifying spaces for smaller families of �nite subgroups. In other words,
these groups are of type quasi-F∞. For de�nitions and background, the reader is referred to [13].

We conclude with a description of normalisers of �nite subgroups in Section 5. These turn up in compu-
tations of the source of the rationalised Farrell–Jones assembly map, where one needs to compute not only
centralisers, but also theWeyl groupsWG(Q) = NG(Q)/CG(Q). Formore details, see [12], or [8] for an example
where these are computed for Thompson’s group T.

2 Background on generalised Thompson groups

2.1 Cantor algebras

We shall follow the notation of [13, Section 2] and begin by de�ning the Cantor algebras Ur(Σ). Consider
a �nite set of colours S = {1, . . . , s} and associate to each i ∈ S an integer ni > 1, called the arity of the colour i.
Let U be a set on which, for all i ∈ S, the following operations are de�ned: an ni-ary operation λi : Uni → U,
and ni 1-ary operations α1i , . . . , α

ni
i with αji : U → U. Denote Ω = {λi , αji}i,j and call U an Ω-algebra. For more

details, see [5] and [11]. We write these operations on the right. We also consider, for each i ∈ S and v ∈ U,
the map αi : U → Uni given by vαi := (vα1i , vα

2
i , . . . , vα

ni
i ). The maps αi are called descending operations, or

expansions, and the maps λi are called ascending operations, or contractions. Any word in the descending
operations is called a descending word.

Amorphism between Ω-algebras is a map commuting with all operations in Ω. LetB0 be the category of
all Ω-algebras for some Ω. An object U0(X) ∈ B0 is a free object inB0 with X as a free basis if for any S ∈ B0
any mapping θ : X → S can be extended in a unique way to a morphism U0(X) → S.

For every set X, there is an Ω-algebra, free on X, called the Ω-word algebra on X and denoted by WΩ(X)
(see [11, De�nition 2.1]). Let B ⊂ WΩ(X), b ∈ B and let i be a colour of arity ni. The set

(B \ {b}) ∪ {bα1i , . . . , bα
ni
i }

is called a simple expansion of B. Analogously, if b1, . . . , bni ⊆ B are pairwise distinct, then

(B \ {b1, . . . , bni }) ∪ {(b1, . . . , bni )λi}

is a simple contraction of B. A chain of simple expansions (contractions) is an expansion (contraction).
A subset A ⊆ WΩ(X) is called admissible if it can be obtained from the set X by �nitely many expansions
or contractions.

We shall nowde�ne the notion of a Cantor algebra. Fix a �nite set X and consider the variety of Ω-algebras
satisfying a certain set of identities as follows.

De�nition 2.1 ([13, Section 2]). We denote by Σ = Σ1 ∪ Σ2 the following set of laws in the alphabet X.
(i) A set of laws Σ1 given by

uαiλi = u, (u1, . . . , uni )λiαi = (u1, . . . , uni )

for every u ∈ WΩ(X), i ∈ S and ni-tuple (u1, . . . , uni ) ∈ WΩ(X)ni .
(ii) A second set of laws

Σ2 = ⋃
1≤i<i�≤s Σi,i

�
2 ,

where each Σi,i
�

2 is either empty or consists of the following laws. Consider �rst an i and �x a map

f : {1, . . . , ni} → {1, . . . , s}.

For each 1 ≤ j ≤ ni, we see αjiαf(j) as a set of length 2 sequences of descending operations and let
Λi = ⋃ni

j=1 α
j
iαf(j). Do the same for i� (with a corresponding map f �) to get Λi� . We need to assume that

f, f � are chosen so that |Λi| = |Λi� | and �x a bijection ϕ : Λi → Λi� . Then, Σi,i�2 is the set of laws

uν = uϕ(ν), ν ∈ Λi , u ∈ WΩ(X).
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Factor out ofWΩ(X) the fully invariant congruence qgeneratedby Σ to obtain anΩ-algebraWΩ(X)/q satisfying
the identities in Σ. The algebraWΩ(X)/q = Ur(Σ), where r = |X|, is called a Cantor algebra.

As in [11], we say that Σ is valid if for any admissible Y ⊆ WΩ(X) we have |Y| = |Y|, where Y is the image of
Y under the epimorphism WΩ(X) �¤ Ur(Σ). In particular, this implies that Ur(Σ) is a free object on X in the
class of those Ω-algebras which satisfy the identities Σ above. In other words, this implies that X is a basis.
If the set Σ used to de�ne Ur(Σ) is valid, we also say that Ur(Σ) is valid. As done for WΩ(X), we say that
a subset A ⊂ Ur(Σ) is admissible if it can be obtained by a �nite number of expansions or contractions from X,
where expansions and contractionsmean the same as before.We shall, fromnowon, not distinguish between
X and X. If A can be obtained from a subset B by expansions only, we will say that A is an expansion or
a descendant of B and we will write B ≤ A. If A can be obtained from B by applying a single descending
operation, i.e., if

A = (B \ {b}) ∪ {bα1i , . . . , bα
ni
i }

for some colour i of arity ni, then we will say that A is a simple expansion of B.

Remark 2.2. Let B be a basis in a valid Ur(Σ) and let A ≤ B. The fact that A is also a basis implies that for any
element b ∈ B there is a single A(b) ∈ A such that A(b)w = b for some descending word w. In this case, we
say that A(b) is a pre�x of b.

De�nition 2.3 ([13, De�nition 2.12]). Let Ur(Σ) be a valid Cantor algebra. Then, Vr(Σ) denotes the group of
all Ω-algebra automorphisms of Ur(Σ) which are induced by a map V → W, where V and W are admissible
subsets of the same cardinality.

Throughout this paper, we shall denote group actions on the left.

Remark 2.4. For any basis A ≥ X and any g ∈ Vr(Σ), there is some B with A ≤ B, gB. To see this, take B such
that A, g−1A ≤ B, which exists by [13, Lemma 2.8].

We now explore the relation between admissible subsets and bases. We say that Ur(Σ) is bounded (see
[13, De�nition 2.7]) if for all admissible subsets Y and Z such that there is some admissible A ≤ Y, Z, there is
a unique least upper bound of Y and Z. By a unique least upper bound wemean an admissible subset T such
that Y ≤ T and Z ≤ T, and whenever there is an admissible set S also satisfying Y ≤ S and Z ≤ S, then T ≤ S.

Theorem 2.5. Let Ur(Σ) be a valid and bounded Cantor algebra. Then, Vr(Σ) is the full group of Ω-algebra
automorphisms of Ur(Σ).

Proof. Any Ω-algebra automorphism of Ur(Σ) is induced by a bijective map between two bases V andW with
the same cardinality. Thus, from the de�nition of Vr(Σ), we need to show that, under our hypotheses, a subset
of Ur(Σ) is admissible if and only if it is a basis.

Since every admissible subset is a basis of Ur(Σ), see [11, Lemma 2.5], we only need to show that any
basis of Ur(Σ) is admissible. Let Y = {y1, . . . , yn} be an arbitrary basis. Since X is a basis, it generates all
of Ur(Σ). Hence, for each yi ∈ Y, there exists some admissible subset Ti of Ur(Σ) containing yi. Now, let
Z be a common upper bound of the Ti, i = 1, . . . , n. This exists by [13, Lemma 2.8] using the argument
of [11, Proposition 3.4]. The set Z is an admissible subset containing a set Ŷ whose elements are obtained
by performing �nitely many descending operations in Y. Denote by Ŷi the subsets of Ŷ given by {yi} ≤ Ŷi
and Ŷ = ⋃ Ŷi. Since Y and Z are bases and Y ≤ Z, then Remark 2.2 implies that Ŷi ∩ Ŷj = ⌀ for i ̸= j. By
Remark 2.6, since Ŷ is admissible, it is a basis. Remark 2.6 also implies that Z is a basis. It follows from
the de�nition of a free basis, see, e.g., [11, p. 3], that no proper subset of a basis is a basis. Hence, Ŷ = Z is
admissible, thus Y is admissible as well.

Remark 2.6. Any set obtained from a basis by performing expansions or contractions is also a basis. Further-
more, the cardinality m of every admissible subset satis�es m ≡ rmod d for d := gcd{ni − 1 : i = 1, . . . , s}.
In particular, any basis with m elements can be transformed into one of r elements. Hence, Ur(Σ) = Um(Σ)
and we may assume that r ≤ d.
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2.2 Brin-like groups

In this subsection, we give some examples of the groups Vr(Σ), which generalise both Brin’s groups sV ([3])
and Stein’s groups V(l, A, P) ([14]). Furthermore, these groups satisfy the conditions of De�nition 2.14 below
and we show in Section 3 that they are of type F∞.

Example 2.7. (i) We begin by recalling the de�nition of the Brin algebra [11, Section 2], [13, Example 2.4].
Consider the set of s colours S = {1, . . . , s}, all of which have arity 2, together with the relations
Σ := Σ1 ∪ Σ2 with

Σ2 := {αliα
t
j = α

t
jα
l
i : 1 ≤ i ̸= j ≤ s, l, t = 1, 2}.

Then, Vr(Σ) = sV is Brin’s group.
(ii) Furthermore, one can also consider s colours, all of arity ni = n ∈ ℕ, for all 1 ≤ i ≤ s. Let

Σ2 := {αliα
t
j = α

t
jα
l
i : 1 ≤ i ̸= j ≤ s, 1 ≤ l, t ≤ n}.

Here, Vr(Σ) = sVn is Brin’s group of arity n. It was shown in [13, Example 2.9] that in this case Ur(Σ) is
valid and bounded.

(iii) We can also mix arities. Consider s colours, each of arity ni ∈ ℕ, i = 1, . . . , s, together with Σ := Σ1 ∪ Σ2,
where

Σ2 := {αliα
t
j = α

t
jα
l
i : 1 ≤ i ̸= j ≤ s, 1 ≤ l ≤ ni , 1 ≤ t ≤ nj}.

Wedenote thesemixed-arity Brin groups byVr(Σ) = V{n1},...,{ns}. The same argument as in [11, Lemma3.2]
yields that the Cantor algebra Ur(Σ) in this case is also valid and bounded.

1 2 3 4 5 6 1 4 2 5 3 6

Figure 1. Visualising the identities in Σ2 for V{2},{3}.

Example 2.8. We now recall the laws Σ2 for Stein’s groups [14]. Let P ⊆ ℚ>0 be a �nitely generated multi-
plicative group. Consider a basis of P of the form {n1, . . . , ns} with all ni ≥ 1 integers, i = 1, . . . , s. Consider
s colours of arities {n1, . . . , ns} and let Σ = Σ1 ∪ Σ2 with Σ2 the set of identities given by the order-preserving
identi�cation

{α1i α
1
j , . . . , α

1
i α

nj
j , α

2
i α

1
j , . . . , α

2
i α

nj
j , . . . , α

ni
i α

1
j , . . . , α

ni
i α

nj
j }

= {α1j α
1
i , . . . , α

1
j α

ni
i , α

2
j α

1
i , . . . , α

2
j α

ni
i , . . . , α

nj
j α

1
i , . . . , α

nj
j α

ni
i },

where i ̸= j and i, j ∈ {1, . . . , s}.
The resulting Brown–Stein algebra Ur(Σ) is valid and bounded, see, e.g., [13, Lemma 2.11]. We denote

the resulting groups by Vr(Σ) = V{n1 ,...,ns}.

De�nition 2.9. Let S be a set of s colours together with arities ni for each i = 1, . . . , s. Suppose S can be
partitioned intom disjoint subsets Sk such that for each k, the set {ni : i ∈ Sk} is a basis for a �nitely generated
multiplicative group Pk ⊆ ℚ>0.

Consider Ω-algebras on s colours with arities as above and the set of identities Σ = Σ1 ∪ Σ2, where
Σ2 = Σ21 ∪ Σ22 is given as follows.
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1 2 3 4 5 6 1 2 3 4 5 6

Figure 2. Visualising the identities in Σ2 for V{2,3}.

∙ Σ21 is given by the following order-preserving identi�cations (as in the Brown–Stein algebra in Exam-
ple 2.8). For each k ≤ m, we have

{α1i α
1
j , . . . , α

1
i α

nj
j , α

2
i α

1
j , . . . , α

2
i α

nj
j , . . . , α

ni
i α

1
j , . . . , α

ni
i α

nj
j }

= {α1j α
1
i , . . . , α

1
j α

ni
i , α

2
j α

1
i , . . . , α

2
j α

ni
i , . . . , α

nj
j α

1
i , . . . , α

nj
j α

ni
i },

where i ̸= j and i, j ∈ Sk.
∙ Σ22 is given by Brin-like identi�cations (as in Example 2.7). For all i ∈ Sk and j ∈ Sl such that Sk ∩ Sl = ⌀,

k ̸= l, k, l ≤ m, we have
Σ22 := {αliα

t
j = α

t
jα
l
i : 1 ≤ l ≤ ni , 1 ≤ t ≤ nj}.

We call the resultingCantor algebraUr(Σ)Brin-like anddenote the generalisedHigman–Thompsongroup
by Vr(Σ) = V{ni:i∈S1},...,{ni:i∈Sm}.

Example 2.10. From De�nition 2.9, we notice the following examples.
(i) If m = s, we have the Brin groups as in Example 2.7 (iii).
(ii) If m = 1, we have Stein groups as in Example 2.8.
(iii) Suppose thatwehave {ni : i ∈ Sk} = {ni : i ∈ Sl} for each l, k ≤ m. Then, the resulting group canbe viewed

as a higher-dimensional Stein group mV{ni:i∈Sm}.

Question 2.11. Suppose m ∉ {1, s}. What are the conditions on the arities for the groups V{ni:i∈S1},...,{ni:i∈Sm}
not be isomorphic to any of the knowngeneralised Thompson groups such as theHigman–Thompson groups,
Stein’s groups or Brin’s groups? More generally, when are two of these groups non-isomorphic? See [6] for
some special cases.

Remark 2.12. We can view these groups as bijections of m-dimensional cuboids in the m-dimensional
Cartesian product of the Cantor set, similarly to the description given for sV, the Brin–Thompson groups.
In each direction, we get subdivisions of the Cantor set as in the Stein–Brown groups given by Σ21 .

Lemma 2.13. The Brin-like Cantor algebras are valid and bounded.

Proof. Using the description of Remark 2.12, we can apply the same argument as in [11, Lemma 3.2].

All groups de�ned in this subsection satisfy the following condition on the relations in Σ, and hence satisfy
the conditions needed in Section 3.

De�nition 2.14. Using the notation of De�nition 2.1, suppose that for all i ̸= i�, i, i� ∈ S, we have Σi,i
�

2 ̸= ⌀,
and that f(j) = i� for all j = 1, . . . , ni and f �(j�) = i for all j� = 1, . . . , ni� . Then, we say that Σ (or, equivalently,
Ur(Σ)) is complete.

Remark 2.15. The Brin-like Cantor algebras are complete.

3 Finiteness conditions
In this section, we prove the following result.
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Theorem 3.1. Let Σ be valid, bounded and complete. Then, Vr(Σ) is of type F∞.

We closely follow [7], where it is shown that Brin’s groups sV are of type F∞. We shall use a di�erent notation,
which ismore suited to our set-up, andwewill explainwhere the original argumenthas to bemodi�ed inorder
to get the more general case. Throughout this section, Ur(Σ) denotes a valid, bounded and complete Cantor
algebra.

De�nition 3.2. Let B ≤ A be admissible subsets of Ur(Σ). We say that the expansion B ≤ A is elementary if
there are no repeated colours in the paths from leaves in B to their descendants in A. Since Σ is complete, this
condition is preserved by the relations in Σ. We denote an elementary expansion by B ⪯ A. We say that the
expansion is very elementary if all paths have length at most 1. In this case, we write B ⊑ A.

Remark 3.3. If A ⪯ B is elementary (very elementary) and A ≤ C ≤ B, then A ⪯ C and C ⪯ B are elementary
(very elementary).

Lemma 3.4. Let Σ be complete, valid and bounded. Then, any admissible basis A has a unique maximal ele-
mentary admissible descendant denoted by E(A).

Proof. Let E(A) be the admissible subset of n1 ⋅ ⋅ ⋅ ns|A| elements obtained by applying all descending opera-
tions exactly once to every element of A.

3.1 The Stein subcomplex

Denote byPr theposet of admissible bases inUr(Σ). The sameargument as in [11, Lemma3.5 andRemark3.7]
shows that its geometric realisation |Pr| is contractible and that Vr(Σ) acts on Pr with �nite stabilisers.
In [11, 13], this poset was denoted by A, but here we will follow the notation of [7]. This poset is essentially
the same as the poset of [7], denoted there by Pr as well.

We now construct the Stein complex Sr(Σ), which is a subcomplex of |Pr|. The vertices in Sr(Σ) are given
by the admissible subsets of Ur(Σ). The k-simplices are given by chains of expansions Y0 ≤ ⋅ ⋅ ⋅ ≤ Yk, where
Y0 ⪯ Yk is an elementary expansion.

Lemma 3.5. Let A, B ∈ Pr with A < B. There exists a unique A < B0 ≤ B such that A ≺ B0 is elementary and for
any A ≤ C ≤ B with A ⪯ C elementary, we have C ⪯ B0.

Proof. Let E(A) be as in the proof of Lemma 3.4. Let B0 = glb(E(A), B), which exists by [11, Lemma 3.14].
If A ⪯ C ≤ B, then C ≤ E(A) and so C ≤ B0.

Lemma 3.6. For every r and every valid, bounded and complete Σ, the Stein space Sr(Σ) is contractible.

Proof. By [11, Lemma 3.5], |Pr| is contractible. Now, use the same argument of [7, Corollary 2.5] to deduce
that Sr(Σ) is homotopy equivalent to |Pr|. Essentially, the idea is to use Lemma 3.5 to show that each simplex
in |Pr| can be pushed to a simplex in Sr(Σ).

Remark 3.7. Notice that the action of Vr(Σ) on Pr induces an action of Vr(Σ) on Sr(Σ) with �nite stabilisers.

Consider the Morse function t(A) = |A| in Sr(Σ) and �lter the complex with respect to t, i.e.,

Sr(Σ)≤n := full subcomplex supported on {A ∈ Sr(Σ) : t(A) ≤ n}.

By the same argument as in [11, Lemma 3.7], Sr(Σ)≤n is �nite modulo the action of Vr(Σ). Let Sr(Σ)<n be the
complex given by the vertex set {A ∈ Sr(Σ) : t(A) < n}.

Provided that

the connectivity of the pair (Sr(Σ)≤n , Sr(Σ)<n) tends to∞ as n →∞, (3.1)

Brown’s theorem [4, Corollary 3.3] implies that Vr(Σ) is of type F∞, thus proving Theorem 3.1. The rest of this
section is devoted to proving (3.1).
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3.2 Connectivity of descending links

Recall that for any A ∈ Sr(Σ), the descending link L(A) := lk↓t(A) with respect to t is de�ned to be the inter-
section of the link lk(A) with Sr(Σ)<n, where t(A) = n. To show (3.1), we proceed as in [7]. Using Morse
theory, the problem is reduced to showing that for A as before, the connectivity of L(A) tends to ∞ when
t(A) = n →∞. Whenever this happens, we will say that L(A) is n-highly connected. More generally, as-
sume we have a family of complexes (Xα)α∈Λ together with a map n : Λ → ℤ>0 such that the set {n(α)α∈Λ} is
unbounded. Assume further that whenever n(α) → ∞, the connectivity of the associated complexes Xα tends
to∞. In this case, we will say that the family is n-highly connected.

Note that L(A) is the subcomplex of Sr(Σ) generated by {B : B ≺ A is an elementary expansion}. Follow-
ing [7], de�ne a height function h for B ∈ L(A) by

h(B) := (cs , . . . , c2, b),

where b = |B| and ci, i = 2, . . . , s, is the number of elements in Awhose length as descendants of their parent
in B is i.We order these heights lexicographically. Let c(B) = (cs , . . . , c2), which are also ordered lexicograph-
ically. Denote by L0(A) the subcomplex of Sr(Σ) generated by {B : B ⊏ A is a very elementary expansion}.
Then, for any B ∈ L(A), B ∈ L0(A) if and only if h(B) = (0, . . . , 0, |B|).

Lemma 3.8. The set of complexes of the form L0(A) is t(A)-highly connected.

Proof. For any n ≥ 0, we de�ne a complex denoted by Kn as follows. Start with a set A with n elements.
The vertex set of Kn consists of labelled subsets of A where the possible labels are the colours {1, . . . , s} and
where a subset labelled i has precisely ni elements. Recall that ni is the arity of the colour i. A k-simplex
{σ0, . . . , σk} in Kn is given by an unordered set of pairwise disjoint σj. This complex is isomorphic to the
barycentric subdivision of L0(A) for n = t(A). To prove that Kn is n-highly connected, proceed as in the proof
of [4, Lemma 4.20].

Now, consider descending links in L(A) with respect to the height function h, i.e., for B ∈ L(A), let lk↓h(B)
be the subcomplex of L(A) generated by {C ∈ L(A) : h(C) ≤ h(B) and either B < C or C > B}. Consider the
following two cases.
(i) B ∈ L(A) \ L0(A) and there is at least one element of B that is expanded precisely once to obtain A.
(ii) B ∈ L(A) \ L0(A) and no element of B is expanded precisely once to obtain A.

The next two lemmas show that in either case lk↓h(B) is t(A)-highly connected.
As in [7], the descending link lk↓h(B) of some B ∈ L(A) with respect to h can be viewed as the join of

two subcomplexes, the downlink and the uplink. The downlink consists of those elements C such that C < B
and h(C) < h(B). Hence, c(B) = c(C). The uplink consists of those C that B < C, h(C) < h(B), and therefore
c(B) > c(C).

Lemma 3.9. Let B ∈ L(A) as in (i). Then, lk↓h(B) is contractible.

Proof. It su�ces to follow the proof of [7, Lemma 3.7]. We brie�y sketch this proof using our notation. Let
b ∈ B be an element that is expandedprecisely once to obtainA. Given B ≺ A and let b ∈ B, which is expanded
precisely once to get to A, then there is anM such that B ⪯ M ⊏ A and b ∈ M. The existence ofM follows from
a variation of Lemma3.5. Now, for any C ∈ lk↓h(B) lying in the uplink,we let B ≺ C0 ⊑ C, where C0 is obtained
by performing all expansions in B needed to get C, except the one of b.

One easily checks that C0 ≤ M, that C0 and M lie in lk↓h(B) and that both C0 and M lie in the uplink.
Hence,M ≥ C0 ≤ C provides a contraction of the uplink. As lk↓h(B) is the join of the downlink and the uplink,
we get the result.

Lemma 3.10. Let B be as in (ii). Then, lk↓h(B) is t(A)-highly connected.

Proof. As before, we follow the proof of [7, Lemma 3.8] with only minor changes. With our notation, we
let ks be the number of elements in B that are also leaves of A and let kb be the remaining leaves. Then,
one checks that the uplink in lk↓h(B) is kb-highly connected and that the downlink is ks-highly connected.
As t(A) = n ≤ kbn1 ⋅ ⋅ ⋅ ns + ks, we get the result.
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Finally, using Morse theory as in [7], we deduce that the pair (L(A), L0(A)) is t(A)-highly connected. As
a result, L(A) is also t(A)-highly connected, establishing (3.1) and, hence, Theorem 3.1.

Some time after a preprint of this work was posted, we learned of Thumann’s work [15], where he pro-
vides a generalised framework of groups de�ned by operads to apply the techniques introduced in [7]. We
believe that automorphismgroups of valid, boundedand complete Cantor algebrasmight be obtainedmaking
a suitable choice of cube cutting operads, see [15, Section 3.5.2]. Therefore, Theorem 3.1 could also be seen
as a special case of [15, Section 4.7.2].

4 Finiteness conditions for centralisers of �nite subgroups
From now on, unless mentioned otherwise, we assume that the Cantor algebra Ur(Σ) is valid and bounded.

De�nition 4.1. Let L be a �nite group. The set of bases in Ur(Σ) together with the expansion maps can be
viewed as a directed graph. Let (Ur(Σ), L) be the following diagramof groups associated to this graph. To each
basis A, we associateMaps(A, L), the set of allmaps from A to L. Each simple expansion A ≤ B corresponds to
the diagonal map δ : Maps(A, L) → Maps(B, L) with δ(f)(aαji) = f(a), where a ∈ A is the expanded element,
i.e., B = (A \ {a}) ∪ {aα1i , . . . , aα

ni
i } for some colour i of arity ni. To arbitrary expansions, we associate the

composition of the corresponding diagonal maps.

Centralisers of �nite subgroups inVr(Σ)havebeendescribed in [13, Theorem4.4] andalso in [2, Theorem1.1]
for the Higman–Thompson groups Vn,r. This last description is more explicit and makes use of the action
of Vn,r on the Cantor set (see Remark 4.3 below).

Wewill use the following notation, whichwas used in [13]. Let Q ≤ Vr(Σ) be a �nite subgroup and let t be
the number of transitive permutation representations φi : Q → Smi of Q. Here, 1 ≤ i ≤ t,mi is the orbit length
and Smi is the symmetric group of degree mi. Also, let Li = CSmi (φi(Q)).

There is a basis Y setwise �xed by Q and which is of minimal cardinality. The group Q acts on Y by per-
mutations. Thus, there exist integers 0 ≤ r1, . . . , rt ≤ d such that Y = ⋃t

i=1Wi withWi the union of exactly ri
Q-orbits of type φi. See Remark 2.6 for the de�nition of d.

The next result combines the descriptions in [13, Theorem 4.4] and [2, Theorem 1.1] giving a more
detailed description of the centralisers of �nite subgroups in Vr(Σ).

Theorem 4.2. Let Q be a �nite subgroup of Vr(Σ). Then,

CVr(Σ)(Q) =
t

∏
i=1
Gi ,

where Gi = Ki ⋊ Vri (Σ) and Ki = limÚÚ→(Uri (Σ), Li). Here, Vr(Σ) acts on Ki as follows. Let g ∈ Vri (Σ) and let A be
abasis in Uri (Σ). The action of g on Ki is induced, in the colimit, by themapMaps(A, L) → Maps(gA, L) obtained
contravariantly from

gA
g−1
ÚÚ→ A.

Proof. The decomposition of CVr(Σ)(Q) into a �nite direct product of semi-direct products was shown in [13,
Theorem 4.4]. Hence, for the �rst claim, all that remains to be checked is that Ki = limÚÚ→(Uri (Σ), Li). We use the
same notation as in the proof of [13, Theorem 4.4].

Fix φ = φi, l := ri, L := Li, m := mi and K := Ki = ker τ. Let x ∈ K = ker τ, where τ : CVr(Σ)(Q) �¤ Vl(Σ) is
the split surjection of the proof of [13, Theorem 4.4]. With Y as above, there is a basis Y1 ≥ Y with xY1 = Y1
and Y1 is alsoQ-invariant. Then, the basis Y1 decomposes as a union of l Q-orbits (all of themof type φ) and x
�xes these orbits setwise.We denote these orbits by {C1, . . . , Cl}. In each of the Cj, there is amarked element.
Since φ is transitive, this can be used to �x a bijection Cj → {1, . . . ,m} corresponding to φ. Then, the action
of x on Cj yields a well-de�ned lj ∈ L. This means that we may represent x as (lj)1≤j≤l. Let A be the basis of
Ul(Σ) obtained from Y1 by identifying all elements in the same Q-orbit, i.e., A = τU(Y1) with the notation
of [13]. Denote A = {a1, . . . , al}with aj coming from Cj. Then, the element x described before can be viewed
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as the map x : A → L with x(aj) = lj. Suppose we chose a di�erent basis Y2 �xed by x. It is a straightforward
check to see that there is a basis Y3, also �xed by x, such that Y1, Y2 ≤ Y3, and that this representation is
compatible with the associated expansion maps.

To prove the second claim, consider an element g ∈ Vl(Σ) viewed as an element in CVr(Σ)(Q) using the
splitting τ above. Thismeans that gmapsQ-�xedbases toQ-�xedbases and that g preserves the set ofmarked
elements. Let Y1, A and x ∈ K be as above. Then, the basis gY1 is the union of the Q-orbits {gC1, . . . , gCl}
and τU(gY1) = gA. Also, for any ci ∈ Ci, gxg−1gci = gxci, whichmeans that if the action of x on Ci is given by
li ∈ L, then the action of xg on gCi is given also by li. Therefore, the map gA → L, which represents xg, is the
composition of the maps g−1 : gA → A and the map A → L, which represents x.

Remark 4.3. In [2], where the ordinary Higman–Thompson group Vr(Σ) = Vn,r is considered, the subgroups
Ki are described as Map0(C, L), where C denotes the Cantor set and Map0 the set of continuous maps. Here,
the Cantor set is viewed as the set of right in�nite words in the descending operations.

It is a straightforward check to see that both descriptions are equivalent in this case. In fact, x : A → L
corresponds to the element in Map0(C, L)mapping each ς ∈ C to x(a) for the only a ∈ A which is a pre�x of ς.
Similarly, one can describe Ki when Vri (Σ) = sV is a Brin group, using the fact that these groups act on Cs,
see [6].

We shall now show that for each i, the action of Vri (Σ) on Kni has �nitely many orbits for any n.

Notation 4.4. Any element of Ur(Σ) which is obtained from the elements in X by applying descending oper-
ations only is called a leaf. We denote by L the set of leaves. Observe that L depends on X. Note also that for
any leaf l, there is some basis A ≥ X with l ∈ A. Let l ∈ L, de�ne

l(L) := {b ∈ L : lw = bw� for descending words w, w�}

and for a set of leaves B ⊆ L, put also
B(L) = ⋃

b∈B
b(L).

Let
Ω := {B(L) : B ⊂ L �nite} ∪ {⌀}.

We also denote

Ωn := Ω × ⋅ ⋅ ⋅ × Ω⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n-times

= {(ω1, . . . , ωn) : ωi ∈ Ω}, Ωnc := {(ω1, . . . , ωn) ∈ Ωn :
n
⋃
i=1
ωi = L}.

Note that the Ω here has no connection to the Ω of the Ω-algebra used in Section 2.1.

Lemma 4.5. The following statements hold.
(i) Let B ≥ A ≥ X be bases, B1 ⊆ B. Let A1 := {a ∈ A : a is a pre�x of an element in B1}. Then, A1(L) = B1(L).
(ii) Let A ≥ X be a basis. Then, A(L) = L.
(iii) For any (ω1, . . . , ωn) ∈Ωn, there is some basis A with X ≤ A and some Ai ⊆ A,1≤ i ≤ n, such that ωi = Ai(L).
(iv) Let A ≥ X be a basis, A1, A2 ⊆ A and ωi = Ai(L) for i = 1, 2. Then, ω1 = ω2 if and only if A1 = A2.
(v) Let A, B ≥ X be two bases and ω ∈ Ω be such that for some A1 ⊆ A, B1 ⊆ B, we have ω = A1(L) = B1(L).

Then, |A1| ≡ |B1|mod d and |A1| = 0 if and only if |B1| = 0.
(vi) Let A, B ≥ X be two bases and A1, A2 ⊆ A, B1, B2 ⊆ B with A1(L) = B1(L) and A2(L) = B2(L). Then,

A1 ∩ A2 = ⌀ if and only if B1 ∩ B2 = ⌀.

Proof. It su�ces to prove (i) in the case when B is obtained by a simple expansion from A. Moreover, we may
assume that A1 = {a} and B1 = {aα1i , . . . , aα

ni
i } for some colour i of arity ni. Then, obviously, B1(L) ⊆ a(L).

Denote bj = aαji and let u ∈ a(L). Then, uv = ac for descending words v and c. Performing the descend-
ing operations given by c on the basis A, we obtain a basis C with ac ∈ C. Let D be a basis with C, B ≤ D.
Then, there is some element d ∈ D which can be written as d = acc� for some descending word c�. Moreover,
Remark 2.2 also implies that d = bjb� for some j and some descending word b�. As uvc� = acc� = bjb�, we get
u ∈ bj(L). Now, (ii) follows from (i).
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To prove (iii), suppose that ωi = {a1i , . . . , a
li
i }(L). For each a

j
i, we may �nd a basis T ji ≥ X containing aji.

Now, let A be a common descendant of T ji and use (i).
To establish (iv), it su�ces to check that if â ∈ A, â ̸∈ Ai, then â ̸∈ Ai(L). Suppose â ∈ Ai(L). Then, there

are descending words v, u and some a ∈ Ai such that âv = au = b. Performing the descending operations
given by v and u on â and a, respectively, we get a basis A ≤ B and b ∈ B contradicting Remark 2.2.

In (v), since there is a basis C with A, B ≤ C, we may assume that A ≤ B. Then, (v) is a consequence of (i)
and (iv).

Finally, for (vi), we may also assume that A ≤ B. Then, we only have to use Remark 2.2.

Notation 4.6. Let ω ∈ Ω, X ≤ A and B ⊆ A such that ω = B(L). We put

‖ω‖ =
{
{
{

0 if ω = ⌀,
t for |B| ≡ tmod d and 0 < t ≤ d otherwise.

This is well-de�ned by Lemma 4.5 (v). Take B� ⊆ A and ω� = B�(L). If B ∩ B� = ⌀, we put ω ∧ ω� = ⌀. Note
that by Lemma 4.5 (vi), this is well-de�ned.

Finally, let

Ωnc,dis := {(ω1, . . . , ωn) ∈ Ωnc : L =
n
⋃
i=1
ωi and ωi ∧ ωj = ⌀ for i ̸= j}.

The group Vr(Σ) does not act on the set of leaves. It does, however, act on Ω as we will see in Lemma 4.7.
Nevertheless, there is a partial action of Vr(Σ) on the set of leaves as follows. If l is a leaf such that l ∈ A for
a certain basis A ≥ X and g is a group element such that gA ≥ X, then we will denote by gl the leaf of gA to
which l is mapped by g.

Lemma 4.7. The group Vr(Σ) acts by permutations onΩ and on Ωnc,dis. There are only �nitely many Vr(Σ)-orbits
under the latter action. Furthermore, the stabiliser of any element in Ωnc,dis is of the form Vk1 (Σ) × ⋅ ⋅ ⋅ × Vkn (Σ)
for certain integers k1, . . . , kn.

Proof. To see that Vr(Σ) acts on Ω, it su�ces to check that ifω = l(L) for some leaf l ∈ L, thenwe have gω ∈ Ω
for any g ∈ Vr(Σ). Let X ≤ A be a basis with l ∈ A. By Remark 2.4, there is some A ≤ B with A ≤ gB. Note that
by Lemma 4.5 (i), ω can also be written as

ω = B1(L),

where B1 = {l1, . . . , lk} is the set of leaves in B obtained from l. Therefore, gB1 = {gl1, . . . , glk} ⊆ gB and
gω = gB1(L).

That this action induces an action on Ωnc,dis is a consequence of the easy fact that for any g ∈ Vr(Σ) and
any (ω1, . . . , ωn) ∈ Ωnc,dis, we have gωi ∧ gωj = ⌀ and L = ⋃n

i=1 gωi.
Let (ω1, . . . , ωn), (ω�

1, . . . , ω�
n) ∈ Ωnc,dis be such that ‖ωi‖ = ‖ω�

i‖ for 1 ≤ i ≤ n. There are bases X ≤ A, A�

and subsets A1, . . . , An ⊆ A, A�
1, . . . , A�

n ⊆ A� such that for each 1 ≤ i ≤ n we have ωi = Ai(L), ω�
i = A

�
i (L)

and |Ai| = |A�
i |. Hence, we may choose a suitable element g ∈ Vr(Σ) such that gA = A� and gAi = A�

i for each
i = 1, . . . , n. Then, g(ω1, . . . , ωn) = (ω�

1, . . . , ω�
n). Since the number of possible n-tuples of integers mod-

ulo d having the same number of zeros is �nite, it follows that there are only �nitely many Vr(Σ)-orbits.
Finally, consider W = (ω1, . . . , ωn) ∈ Ωnc,dis as before, i.e., with X ≤ A and A1, . . . , An ⊆ A such that

ωi = Ai(L) for 1 ≤ i ≤ n. An element g ∈ Vr(Σ) �xes W if and only if gωi = ωi for each i = 1, . . . , n. We may
choose a basis B with A ≤ B, gB and then, by using Lemma 4.5 (i) and (iv), we see that g �xesW if and only
if it maps those leaves of B which are of the form av for some a ∈ Ai and some descending word v to the anal-
ogous subset in gB. Considering each subalgebra of Ur(Σ) generated by Ai, we see that g can be decomposed
as g = g1 ⋅ ⋅ ⋅ gn with gi ∈ Vki (Σ) for ki = |Ai|.

Let K be a group and denote by Y = K∗K∗⋅ ⋅ ⋅ the in�nite join of copies of K viewed as a discrete CW-complex,
i.e., Y is the space obtained byMilnor’s construction for K. Then, Y has a CW-complex decomposition whose
associated chain complex yields the standard bar resolution. For more details, see, e.g., [1, Section 2.4].
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Obviously, if a group H acts on K by conjugation, this action can be extended to an action of H on Y and
to an action of G = K ⋊ H on Y.

Lemma 4.8. Let H and K be groups and let H act on K via φ : H → Aut K. Assume that H is of type F∞ and that
for every n ∈ ℕ, the induced action of H on Kn has �nitely many orbits and has stabilisers of type F∞. Then,
G = K ⋊φ H is of type F∞. The same statement holds if F∞ is replaced with FP∞.

Proof. Let Yn = K∗n and let Y be as above. Consider the action of G on Y induced by the diagonal action. Note
that this preserves the individual join factors. Since the action of K on Y is free, the stabiliser of a cell in G
is isomorphic to its stabiliser in H. The stabiliser of an (n − 1)-simplex is the stabiliser of n elements of K,
thus F∞ by assumption. Maximal simplices in Yn correspond to elements of Kn and every simplex of Yn is
contained in amaximal simplex. This, together with the fact that the action of G on Kn has only �nitely many
orbits, implies that the action of G on Yn is cocompact. Finally, the connectivity of the �ltration {Yn}n∈ℕ tends
to∞ as n →∞. Hence, the claim follows from [4, Corollary 3.3 (a)].

Theorem 4.9. Assume that for any t > 0, the group Vt(Σ) is of type F∞. Then, the groups Gi = Ki ⋊ Vri (Σ) of
Theorem 4.2 are of type F∞. The same statement holds if F∞ is replaced with FP∞.

Proof. Put V := Vri (Σ), K := Ki and G := Gi. We claim that for every n there is some n big enough such that
there is an injective map of V-sets

ϕn : Kn → Ωnc,dis.

Let x ∈ K be given by amap x : A → L, where A is a basiswith X ≤ A. The element x is determined uniquely by
amapwhich, by slightly abusing notation, we also denote by x : L → Ω. This xmaps any s ∈ L toωs := As(L)
with As = {a ∈ A : x(a) = s}. Obviously,⋃s∈L ωs = L. This means that �xing an order in L yields an injective
map of V-sets

ξn : Kn → Ωn|L|c .

Consider any (ω1, . . . , ωm) ∈ Ωmc for m = n|L|. Let X ≤ A with A1 . . . , Am ⊆ A and ωi = Ai(L) for 1 ≤ i ≤ m.
Let n := 2m − 1, i.e., the number of non-empty subsets⌀ ̸= S ⊆ {1, . . . ,m}. For any such S, let

AS := ⋂
i∈S
Ai \⋃{⋂

j∈T
Aj : S ⊂ T ⊆ {1, . . . ,m}}.

Then, one easily checks that the AS are pairwise disjoint and that their union is L. Let ωS := AS(L). The
preceding paragraph means that �xing an ordering on the set of non-empty subsets of {1, . . . ,m} yields an
injective map of V-sets

ρm : Ωmc → Ωnc,dis.

Composing ξn and ρm, we get the desired ϕn.
Now, by applying Lemma 4.7, we deduce that Kn has only �nitely many orbits under the action of Vri (Σ)

and that every cell stabiliser is isomorphic to a direct product of copies of Vt(Σ) for suitable indices t. It now
su�ces to use Lemma 4.8.

This implies that [13, Conjecture 7.5] holds.

Corollary 4.10. The following statements hold.
(i) Vr(Σ) is quasi-FP∞ if and only if Vk(Σ) is of type FP∞ for any k.
(ii) Vr(Σ) is quasi-F∞ if and only if Vk(Σ) is of type F∞ for any k.

Proof. The “only if” part of both items is proven in [13, Remark 7.6]. The “if” part is a consequence of
[13, De�nition 6.3, Proposition 6.10] and Theorem 4.9 above.

Theorem 4.9 also implies that the Brin-like groups of Section 3 are of type quasi-F∞.

Corollary 4.11. Suppose Ur(Σ) is valid, bounded and complete. Then, Vr(Σ) is of type quasi-F∞. In particular,
centralisers of �nite groups are of type F∞.
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5 Normalisers of �nite subgroups
Let Y be any basis. We denote

S(Y) := {g ∈ Vr(Σ) : gY = Y}.

Observe that this is a �nite group, isomorphic to the symmetric group of degree |Y|.

Theorem 5.1. Let Q ≤ Vr(Σ) be a �nite subgroup. Let Y, t, ri, li, φi and 1 ≤ i ≤ t be as in the proof of Theo-
rem 4.2. Then,

NVr(Σ)(Q) = CVr(Σ)(Q)NS(Y)(Q)

and
NVr(Σ)(Q)/CVr(Σ)(Q) ≅ NS(Y)(Q)/CS(Y)(Q).

Proof. Let g ∈ NVr(Σ)(Q) and Y1 = gY. Then, for any q ∈ Q, qY1 = qgY = gqgY = gY = Y1. Therefore, Y1 is also
�xed setwise by Q. Let r�i denote the number of components of type φi in Y1. Then, by [13, Proposition 4.2],
ri ≡ r�i mod d and ri = 0 if and only if r�i = 0.

We claim that Y and Y1 are isomorphic as Q-sets, in other words, that ri = r�i for every 1 ≤ i ≤ t. Note that
since g normalises Q, it acts on the set of Q-permutation representations {φ1, . . . , φt} via φgi (x) := φi(xg

−1 ).
Let i with ri ̸= 0 and let g(i) be the index such that φgi = φg(i). The fact that g : Y → Y1 is a bijection implies
that ri = r�g(i). We may do the same for g(i) and get an index g2(i) with rg(i) = r�g2(i). At some point, since the
orbits of g acting on the sets of permutation representations are �nite, we get

gk(i) = i and rgk−1(i) = r�i .
As r�i ≡ rimod d, we have rgk−1(i) ≡ rimod d, and since 0 < ri , rgk−1(i) ≤ d, we deduce that r�i = rgk−1(i) = ri
as claimed.

Now, we can choose an s ∈ Vr(Σ) mapping Y1 to Y and such that s : Y1 → Y is a Q-map, i.e., commutes
with the Q-action. Therefore, s ∈ CVr(Σ)(Q) and sgY = Y, thus sg ∈ NS(Y)(Q).

Remark 5.2. We can give a more detailed description of the conjugacy action of NS(Y)(Q) on the group
CVr(Σ)(Q). Recall that, by Theorem 4.2, this last group is a direct product of groups G1, . . . , Gt. We use the
same notation as in Theorem 4.2. Let g ∈ NS(Y)(Q) and put φg(i) = φgi as before. Denote by Zg(i), Zi ⊆ Y the
subsets of Y which are unions of Q-orbits of types φg(i) and φi, respectively. Then, one easily checks that
gZg(i) = Zi and Gg(i) = Ggi . Moreover, recall that Gi = Ki ⋊ Vri (Σ)with Ki = limÚÚ→(Uri (Σ), Li) and Li = CSli (φi(Q)).
Then, rg(i) = ri and g maps the subgroup Vri (Σ) of Gi to the same subgroup of Gg(i) and Ki to Kg(i). We also
notice that g acts diagonally on the system (Uri (Σ), Li)mapping it to (Urg(i) (Σ), Lg(i)). In particular, the action
of g on Li is the restriction of its action on CS(V)(Q) and taking the colimit this action yields the conjugation
action Kgi = Kg(i).

Remark 5.3. Using [16, Theorem5], one can also give amore detailed description of the groups Li above, i.e.,

Li = Nφi(Q)(φi(Q)1)/φi(Q)1,

where φi(Q)1 is the stabiliser of one letter in φi(Q). Of course, if Q is cyclic, then so is φi(Q), and we get
φi(Q)1 = 1 and Li = φi(Q).
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