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1 Introduction

Thompson’s group V is defined as a homeomorphism group of the Cantor set. The group V has many interest-
ing generalisations such as the Higman-Thompson groups V5 , ([10]), Stein’s generalisations [14] and Brin’s
higher-dimensional Thompson groups sV ([3]). All these groups contain any finite group, contain free abelian
groups of infinite rank, are finitely presented and of type FP,, (see work by several authorsin [4, 7,9, 11, 14]).
The first and third authors together with Kochloukova [11, 13] further generalised these groups, denoted
by V,(Z) or G,(X), as automorphism groups of certain Cantor algebras. We shall use the notation V,(Z) in
this paper. We show in Theorem 2.5 that they are the full automorphism groups of these algebras.

Fluch, Marschler, Witzel and Zaremsky [7] used Morse-theoretic methods to prove that Brin’s groups sV
are of type F,. By adapting their methods, we show in Theorem 3.1 that under some restrictions on the
Cantor algebra, which still comprehend all families mentioned above, V,(Z) is of type F,. We also give some
constructions of further examples.

Bleak, Bowman, Gordon, Graham, Hughes, Matucci and Sapir [2] and the first and third authors [13]
showed independently that centralisers of finite subgroups Q in V,,, and V,(Z) can be described as extensions

K- Cy,5)(Q) —» Vp, (Z) x -+ x V (2),

where K is locally finite and rq, ..., r¢ are integers uniquely determined by Q. It was conjectured in [13]
that these centralisers are of type F, if the groups V,(Z) are. In Section 4, we expand the description of
the centralisers given in [2, 13], which allows us to prove that the conjecture holds true. This also implies
that any of the generalised V,(Z) which are of type F, admit a classifying space for proper actions that is
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amapping telescope of cocompact classifying spaces for smaller families of finite subgroups. In other words,
these groups are of type quasi-F,,. For definitions and background, the reader is referred to [13].

We conclude with a description of normalisers of finite subgroups in Section 5. These turn up in compu-
tations of the source of the rationalised Farrell-Jones assembly map, where one needs to compute not only
centralisers, but also the Weyl groups W (Q) = Ng(Q)/Cs(Q). For more details, see [12], or [8] for an example
where these are computed for Thompson’s group T.

2 Background on generalised Thompson groups

2.1 Cantor algebras

We shall follow the notation of [13, Section 2] and begin by defining the Cantor algebras U,(Z). Consider
afinite set of colours S = {1, ..., s}and associate to each i € Saninteger n; > 1, called the arity of the colour .
Let U be a set on which, for all i € S, the following operations are defined: an n;-ary operation A; : U" — U,
and n; 1-ary operations al .. a?’ with a’l U — U.Denote Q = {A;, a; }l ,j and call U an Q-algebra. For more
details, see [5] and [11]. We Write these operations on the right. We also consider, foreachi € Sand v € U,
themap a; : U — U™ given by va; := (vail, val.z, e, va?i). The maps a; are called descending operations, or
expansions, and the maps A; are called ascending operations, or contractions. Any word in the descending
operations is called a descending word.

A morphism between Q-algebras is a map commuting with all operations in Q. Let B be the category of
all Q-algebras for some Q. An object Up(X) € By is a free object in B, with X as a free basis if for any S € B
any mapping 6 : X — S can be extended in a unique way to a morphism Uy(X) — S.

For every set X, there is an Q-algebra, free on X, called the Q-word algebra on X and denoted by Wq(X)
(see [11, Definition 2.1]). Let B ¢ Wq(X), b € B and let i be a colour of arity n;. The set

(B\{bhu{bal,..., bal"}
is called a simple expansion of B. Analogously, if by, ..., bn, € B are pairwise distinct, then
(B \ {blx ceey bni}) U {(bl’ ceey bni)Ai}

is a simple contraction of B. A chain of simple expansions (contractions) is an expansion (contraction).
A subset A ¢ Wq(X) is called admissible if it can be obtained from the set X by finitely many expansions
or contractions.

We shall now define the notion of a Cantor algebra. Fix a finite set X and consider the variety of Q-algebras
satisfying a certain set of identities as follows.

Definition 2.1 ([13, Section 2]). We denote by £ = £; U Z; the following set of laws in the alphabet X.
(i) Asetoflaws Z; given by

uaidi =u, (U1, ..., un)Aia; = (U1, ..., Un,)
for every u € Wq(X), i € S and n;-tuple (uy, ..., up,) € Wo(X)™.
(ii) A second set of laws y
U 2"
1<i<i’'<s
where each Z;’i, is either empty or consists of the following laws. Consider first an i and fix a map
fefl,..oonib - {1,..., sk

For each 1 <j < n;, we see o :05;) as a set of length 2 sequences of descending operations and let
A= U @, ;afG)- Do the same for i’ (with a corresponding map f') to get A,r We need to assume that
f,f are chosen so that |A;| = |Ay| and fix a bijection ¢ : A; — Ay . Then, Zl o is the set of laws

uv=upv), vel;ueWueX).
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Factor out of Wq (X) the fully invariant congruence q generated by Z to obtain an Q-algebra Wq (X)/q satisfying
the identities in X. The algebra Wq(X)/q = U,(Z), where r = |X|, is called a Cantor algebra.

As in [11], we say that X is valid if for any admissible Y ¢ Wq(X) we have |Y| = |Y|, where Y is the image of
Y under the epimorphism Wq(X) - U,(Z). In particular, this implies that U,(X) is a free object on X in the
class of those Q-algebras which satisfy the identities X above. In other words, this implies that X is a basis.
If the set Z used to define U,(Z) is valid, we also say that U,(X) is valid. As done for Wq(X), we say that
asubset A ¢ U,(Z) is admissible if it can be obtained by a finite number of expansions or contractions from X,
where expansions and contractions mean the same as before. We shall, from now on, not distinguish between
X and X. If A can be obtained from a subset B by expansions only, we will say that A is an expansion or
a descendant of B and we will write B < A. If A can be obtained from B by applying a single descending
operation, i.e., if

A=(B\{b)u{bal,...,ba"}

for some colour i of arity n;, then we will say that A is a simple expansion of B.

Remark 2.2. Let B be a basis in a valid U,(X) and let A < B. The fact that A is also a basis implies that for any
element b € B there is a single A(b) € A such that A(b)w = b for some descending word w. In this case, we
say that A(b) is a prefix of b.

Definition 2.3 ([13, Definition 2.12]). Let U,(X) be a valid Cantor algebra. Then, V,(X) denotes the group of
all Q-algebra automorphisms of U,(X) which are induced by a map V — W, where V and W are admissible
subsets of the same cardinality.

Throughout this paper, we shall denote group actions on the left.

Remark 2.4. For any basis A > X and any g € V,(Z), there is some B with A < B, gB. To see this, take B such
that A, g7'A < B, which exists by [13, Lemma 2.8].

We now explore the relation between admissible subsets and bases. We say that U,(Z) is bounded (see
[13, Definition 2.7]) if for all admissible subsets Y and Z such that there is some admissible A < Y, Z, there is
a unique least upper bound of Y and Z. By a unique least upper bound we mean an admissible subset T such
that Y < T and Z < T, and whenever there is an admissible set S also satisfying Y < Sand Z < S, then T < S.

Theorem 2.5. Let U,(X) be a valid and bounded Cantor algebra. Then, V,.(X) is the full group of Q-algebra
automorphisms of U,(Z).

Proof. Any Q-algebra automorphism of U,(Z) is induced by a bijective map between two bases V and W with
the same cardinality. Thus, from the definition of V,(Z), we need to show that, under our hypotheses, a subset
of U,(Z) is admissible if and only if it is a basis.

Since every admissible subset is a basis of U,(Z), see [11, Lemma 2.5], we only need to show that any

basis of U,(X) is admissible. Let Y = {y1, ..., yn} be an arbitrary basis. Since X is a basis, it generates all
of U,(X). Hence, for each y; € Y, there exists some admissible subset T; of U,(Z) containing y;. Now, let
Z be a common upper bound of the T;, i = 1, ..., n. This exists by [13, Lemma 2.8] using the argument

of [11, Proposition 3.4]. The set Z is an admissible subset containing a set Y whose elements are obtained
by performing finitely many descending operations in Y. Denote by Y; the subsets of Y given by {y;} < Y;
and Y = |JV;. Since Y and Z are bases and Y < Z, then Remark 2.2 implies that Y; N Y; = & for i # j. By
Remark 2.6, since Y is admissible, it is a basis. Remark 2.6 also implies that Z is a basis. It follows from
the definition of a free basis, see, e.g., [11, p. 3], that no proper subset of a basis is a basis. Hence, Y=2Zis
admissible, thus Y is admissible as well. O

Remark 2.6. Any set obtained from a basis by performing expansions or contractions is also a basis. Further-
more, the cardinality m of every admissible subset satisfies m = rmod d for d := gcd{n; -1:i=1,...,s}.
In particular, any basis with m elements can be transformed into one of r elements. Hence, U,(Z) = Up(Z)
and we may assume thatr < d.
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2.2 Brin-like groups

In this subsection, we give some examples of the groups V,(Z), which generalise both Brin’s groups sV ([3])
and Stein’s groups V(l, A, P) ([14]). Furthermore, these groups satisfy the conditions of Definition 2.14 below
and we show in Section 3 that they are of type F,.

Example 2.7. (i) We begin by recalling the definition of the Brin algebra [11, Section 2], [13, Example 2.4].
Consider the set of s colours S =1{1,...,s}, all of which have arity 2, together with the relations
Y :=2X; UZX, with

%= {ajal =afal: 1<i#j<s, Lt=1,2}

Then, V,(Z) = sV is Brin’s group.
(ii) Furthermore, one can also consider s colours, all of arity n; = n € N, forall 1 <i < s. Let

%, :={a§a§=a§a§:1sz¢1£s, 1<l t<nl.

Here, V,(X) = sV, is Brin’s group of arity n. It was shown in [13, Example 2.9] that in this case U,(Z) is
valid and bounded.

(iii) We can also mix arities. Consider s colours, each of arity n; € N,i =1, ..., s, together with £ := £; U Z,,
where

tl<i#j<s, 1<l<n;, 1<t<n

We denote these mixed-arity Brin groups by V,(Z) = Vin,},....in.}- The same argument asin [11, Lemma 3.2]
yields that the Cantor algebra U,(Z) in this case is also valid and bounded.

\
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Figure 1. Visualising the identities in X, for Vyy} (3.

Example 2.8. We now recall the laws X, for Stein’s groups [14]. Let P € Q.o be a finitely generated multi-

plicative group. Consider a basis of P of the form {ny, ..., ng} with all n; > 1 integers,i =1, ..., s. Consider
s colours of arities {ny, ..., ns} and let £ = ¥; U X, with %, the set of identities given by the order-preserving
identification
1.1 1.0 2 1 2.1 n; 1 n; N
{aiai, QG ai e, aia;’, , ;a5 a; aj}
1.1 1.m 2 1 2,1 no1 nj n;
= {a}-al, ..,a}-al’,a}.ai, ,aiail,...,aj’ai,...,aj‘ai'},

wherei #jandi,je {1,...,s}
The resulting Brown—-Stein algebra U,(X) is valid and bounded, see, e.g., [13, Lemma 2.11]. We denote
the resulting groups by V.(2) = Vin,,....n.}-

Definition 2.9. Let S be a set of s colours together with arities n; for each i =1, ..., s. Suppose S can be
partitioned into m disjoint subsets Sy such that for each k, the set {n; : i € Sx}is a basis for a finitely generated
multiplicative group Py € Qso.

Consider Q-algebras on s colours with arities as above and the set of identities £ = X; U X,, where
X, = Xy, U X, is given as follows.
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Figure 2. Visualising the identities in X, for V5 3;.

+ X, is given by the following order-preserving identifications (as in the Brown-Stein algebra in Exam-
ple 2.8). For each k < m, we have

nj

. nj 1 n;
s €A, @ a;'},

wherei #jandi,j € Sg.
« X, is given by Brin-like identifications (as in Example 2.7). Foralli € Sy and j € S;suchthat Sy n S; = @,
k+1, k,1<m,wehave 1
t .

gt — . .
2, .—{aiaj—ajai.lslsn,,1stsn,}.

We call the resulting Cantor algebra U, (Z) Brin-like and denote the generalised Higman-Thompson group
by Vi(2) = Vingiesy)

..... {nj:ieSm}+

Example 2.10. From Definition 2.9, we notice the following examples.

(i) If m = s, we have the Brin groups as in Example 2.7 (iii).

(ii) If m = 1, we have Stein groups as in Example 2.8.

(iii) Suppose that wehave {n; : i € Sk} = {n; : i € S;}foreachl, k < m. Then, the resulting group can be viewed
as a higher-dimensional Stein group mVp,.ics,,}-

Question 2.11. Suppose m ¢ {1, s}. What are the conditions on the arities for the groups Vi,:ies,1,...,{n;:ieSm}
not be isomorphic to any of the known generalised Thompson groups such as the Higman-Thompson groups,
Stein’s groups or Brin’s groups? More generally, when are two of these groups non-isomorphic? See [6] for
some special cases.

Remark 2.12. We can view these groups as bijections of m-dimensional cuboids in the m-dimensional
Cartesian product of the Cantor set, similarly to the description given for sV, the Brin—-Thompson groups.
In each direction, we get subdivisions of the Cantor set as in the Stein-Brown groups given by %, .

Lemma 2.13. The Brin-like Cantor algebras are valid and bounded.
Proof. Using the description of Remark 2.12, we can apply the same argument as in [11, Lemma 3.2]. O

All groups defined in this subsection satisfy the following condition on the relations in X, and hence satisfy
the conditions needed in Section 3.

Definition 2.14. Using the notation of Definition 2.1, suppose that for all i # i’, i, i’ € S, we have Ziz’i’ + @,
and that f(j) = i’ forallj = 1,...,n;and f'(j') = iforallj' = 1, ..., ny. Then, we say that X (or, equivalently,
U, (X)) is complete.

Remark 2.15. The Brin-like Cantor algebras are complete.

3 Finiteness conditions

In this section, we prove the following result.
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Theorem 3.1. Let X be valid, bounded and complete. Then, V,(Z) is of type F .

We closely follow [7], where it is shown that Brin’s groups sV are of type F,. We shall use a different notation,
which is more suited to our set-up, and we will explain where the original argument has to be modified in order
to get the more general case. Throughout this section, U,(X) denotes a valid, bounded and complete Cantor
algebra.

Definition 3.2. Let B < A be admissible subsets of U,(Z). We say that the expansion B < A is elementary if
there are no repeated colours in the paths from leaves in B to their descendants in A. Since X is complete, this
condition is preserved by the relations in Z. We denote an elementary expansion by B < A. We say that the
expansion is very elementary if all paths have length at most 1. In this case, we write B c A.

Remark 3.3. If A < B is elementary (very elementary) and A < C < B, then A < C and C < B are elementary
(very elementary).

Lemma 3.4. Let X be complete, valid and bounded. Then, any admissible basis A has a unique maximal ele-
mentary admissible descendant denoted by E(A).

Proof. Let £(A) be the admissible subset of n; - - - ng|A| elements obtained by applying all descending opera-
tions exactly once to every element of A. O

3.1 The Stein subcomplex

Denote by P, the poset of admissible bases in U,(Z). The same argument asin [11, Lemma 3.5 and Remark 3.7]
shows that its geometric realisation |P,| is contractible and that V,(X) acts on P, with finite stabilisers.
In [11, 13], this poset was denoted by 2(, but here we will follow the notation of [7]. This poset is essentially
the same as the poset of [7], denoted there by P, as well.

We now construct the Stein complex §,(Z), which is a subcomplex of |P;|. The vertices in §,(Z) are given
by the admissible subsets of U,(X). The k-simplices are given by chains of expansions Yy < --- < Y, where
Yo < Yy is an elementary expansion.

Lemma 3.5. Let A, B € P, with A < B. There exists a unique A < By < B such that A < By is elementary and for
any A < C < Bwith A < C elementary, we have C < By.

Proof. Let £(A) be as in the proof of Lemma 3.4. Let By = glb(E(A), B), which exists by [11, Lemma 3.14].
If A< C<B,thenC < &(A)and so C < By. O

Lemma 3.6. For every r and every valid, bounded and complete Z, the Stein space 8,(X) is contractible.

Proof. By [11, Lemma 3.5], |?,| is contractible. Now, use the same argument of [7, Corollary 2.5] to deduce
that §,(X) is homotopy equivalent to |P,|. Essentially, the idea is to use Lemma 3.5 to show that each simplex
in |P,| can be pushed to a simplex in §,(Z). O

Remark 3.7. Notice that the action of V,(X) on P, induces an action of V,(Z) on 8,(X) with finite stabilisers.
Consider the Morse function t(A) = |A] in §,(Z) and filter the complex with respect to ¢, i.e.,
8;(2)=" := full subcomplex supported on {A € §,(Z) : t(A) < n}.

By the same argument as in [11, Lemma 3.7], §,(Z)=" is finite modulo the action of V,(Z). Let §,(2)<" be the
complex given by the vertex set {A € §,(Z) : t(A) < n}.
Provided that

the connectivity of the pair (8,(X)=", §,(£)<") tends to co as n — oo, (3.1)

Brown’s theorem [4, Corollary 3.3] implies that V,(Z) is of type Fo,, thus proving Theorem 3.1. The rest of this
section is devoted to proving (3.1).
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3.2 Connectivity of descending links

Recall that for any A ¢ $,(X), the descending link L(A) := 1k|{(A) with respect to t is defined to be the inter-
section of the link 1k(A) with 8,(Z)<", where t(4) = n. To show (3.1), we proceed as in [7]. Using Morse
theory, the problem is reduced to showing that for A as before, the connectivity of L(A) tends to co when
t(A) = n — co. Whenever this happens, we will say that L(A) is n-highly connected. More generally, as-
sume we have a family of complexes (Xy)qcn together with amap n : A — Z.¢ such that the set {n(a)qea} is
unbounded. Assume further that whenever n(a) — oo, the connectivity of the associated complexes X, tends
to co. In this case, we will say that the family is n-highly connected.

Note that L(A) is the subcomplex of 8,(Z) generated by {B : B < A is an elementary expansion}. Follow-
ing [7], define a height function h for B € L(A) by

h(B) = (CS) ey C2, b)y

where b = |Bland ¢, i = 2, ..., s, isthe number of elements in A whose length as descendants of their parent
in Bisi. We order these heights lexicographically. Let ¢(B) = (cs, . . . , C2), which are also ordered lexicograph-
ically. Denote by Lo(A) the subcomplex of S,(X) generated by {B : B C A is a very elementary expansion}.
Then, for any B € L(A), B € Lo(A) if and only if h(B) = (0, ..., 0, |B]).

Lemma 3.8. The set of complexes of the form Ly(A) is t(A)-highly connected.

Proof. For any n > 0, we define a complex denoted by K, as follows. Start with a set A with n elements.
The vertex set of K, consists of labelled subsets of A where the possible labels are the colours {1, ..., s} and
where a subset labelled i has precisely n; elements. Recall that n; is the arity of the colour i. A k-simplex
{00, ..., 0x} in Ky, is given by an unordered set of pairwise disjoint ¢;. This complex is isomorphic to the
barycentric subdivision of Lo(A) for n = t(A). To prove that K, is n-highly connected, proceed as in the proof
of [4, Lemma 4.20]. O

Now, consider descending links in L(A) with respect to the height function h, i.e., for B € L(A), let 1k|"(B)
be the subcomplex of L(A) generated by {C € L(A) : h(C) < h(B) and either B < C or C > B}. Consider the
following two cases.

(i) B e L(A)\ Lo(A) and there is at least one element of B that is expanded precisely once to obtain A.

(ii) B € L(A) \ Lo(A) and no element of B is expanded precisely once to obtain A.

The next two lemmas show that in either case 1k|"(B) is t(A)-highly connected.

As in [7], the descending link 1k|"(B) of some B € L(A) with respect to h can be viewed as the join of
two subcomplexes, the downlink and the uplink. The downlink consists of those elements C such that C < B
and h(C) < h(B). Hence, c(B) = c¢(C). The uplink consists of those C that B < C, h(C) < h(B), and therefore
c(B) > c(C).

Lemma 3.9. Let B € L(A) as in (i). Then, 1k|"(B) is contractible.

Proof. 1t suffices to follow the proof of [7, Lemma 3.7]. We briefly sketch this proof using our notation. Let
b € Bbe an element that is expanded precisely once to obtain A. Given B < A and let b € B, which is expanded
precisely once to get to A, then there isan M such that B < M c A and b € M. The existence of M follows from
avariation of Lemma 3.5. Now, for any C € 1k|"(B) lying in the uplink, welet B < Co C C, where Cy is obtained
by performing all expansions in B needed to get C, except the one of b.

One easily checks that Cy < M, that Co and M lie in 1k|"(B) and that both Cy and M lie in the uplink.
Hence, M > C, < C provides a contraction of the uplink. As 1k|"(B) is the join of the downlink and the uplink,
we get the result. O

Lemma 3.10. Let B be as in (ii). Then, 1k|"(B) is t(A)-highly connected.

Proof. As before, we follow the proof of [7, Lemma 3.8] with only minor changes. With our notation, we
let ks be the number of elements in B that are also leaves of A and let kj; be the remaining leaves. Then,
one checks that the uplink in 1k|"(B) is kj-highly connected and that the downlink is ks-highly connected.
As t(A) = n < kpny -+ ng + kg, we get the result. O
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Finally, using Morse theory as in [7], we deduce that the pair (L(A), Lo(A)) is t(A)-highly connected. As
aresult, L(A) is also t(A)-highly connected, establishing (3.1) and, hence, Theorem 3.1.

Some time after a preprint of this work was posted, we learned of Thumann’s work [15], where he pro-
vides a generalised framework of groups defined by operads to apply the techniques introduced in [7]. We
believe that automorphism groups of valid, bounded and complete Cantor algebras might be obtained making
a suitable choice of cube cutting operads, see [15, Section 3.5.2]. Therefore, Theorem 3.1 could also be seen
as a special case of [15, Section 4.7.2].

4 Finiteness conditions for centralisers of finite subgroups

From now on, unless mentioned otherwise, we assume that the Cantor algebra U, () is valid and bounded.

Definition 4.1. Let L be a finite group. The set of bases in U,(X) together with the expansion maps can be
viewed as a directed graph. Let (U,(Z), L) be the following diagram of groups associated to this graph. To each
basis A, we associate Maps(4, L), the set of all maps from A to L. Each simple expansion A < B corresponds to
the diagonal map 6 : Maps(A, L) — Maps(B, L) with S(f)(aa’i) = f(a), where a € A is the expanded element,
ie, B=(A\{a}hu {aail, RN aa?"} for some colour i of arity n;. To arbitrary expansions, we associate the
composition of the corresponding diagonal maps.

Centralisers of finite subgroups in V,(Z) have been described in [13, Theorem 4.4] and also in [2, Theorem 1.1]
for the Higman-Thompson groups Vy,,. This last description is more explicit and makes use of the action
of V. on the Cantor set (see Remark 4.3 below).

We will use the following notation, which was used in [13]. Let Q < V,(Z) be a finite subgroup and let ¢ be
the number of transitive permutation representations ¢; : Q — Sy, of Q. Here, 1 < i < t, m; is the orbit length
and Sy, is the symmetric group of degree m;. Also, let L; = Cs,, (¢i(Q)).

There is a basis Y setwise fixed by Q and which is of minimal cardinality. The group Q acts on Y by per-
mutations. Thus, there exist integers 0 < rqy,...,r: < dsuchthatY = Ule W; with W; the union of exactly r;
Q-orbits of type ¢;. See Remark 2.6 for the definition of d.

The next result combines the descriptions in [13, Theorem 4.4] and [2, Theorem 1.1] giving a more
detailed description of the centralisers of finite subgroups in V,(X).

Theorem 4.2. Let Q be a finite subgroup of V,(Z). Then,

t
Crm(Q@ =[]6Gi
i=1
where G; = K; x V(%) and K; = li_r)n(U,,.(Z), L;). Here, V,(2) acts on K; as follows. Let g € V(%) and let A be
abasisin Uy, (Z). The action of g on K; is induced, in the colimit, by the map Maps(A, L) — Maps(gA, L) obtained
contravariantly from

-1
gA £, A

Proof. The decomposition of Cy,x)(Q) into a finite direct product of semi-direct products was shown in [13,
Theorem 4.4]. Hence, for the first claim, all that remains to be checked is that K; = li_I)n(Url. (%), L;). We use the
same notation as in the proof of [13, Theorem 4.4].

Fix o =i, l:=r1;, L:=L;, m:=m; and K := K; = ker 7. Let x € K = ker 7, where 7 : Cy,()(Q) —» V(%) is
the split surjection of the proof of [13, Theorem 4.4]. With Y as above, there is a basis Y; > Y with xY; = Y3
and Y; is also Q-invariant. Then, the basis Y; decomposes as a union of [ Q-orbits (all of them of type ¢) and x
fixes these orbits setwise. We denote these orbits by {C1, . .., C;}. In each of the Cj, there is a marked element.
Since ¢ is transitive, this can be used to fix a bijection C; — {1, ..., m} corresponding to ¢. Then, the action
of x on C; yields a well-defined I; € L. This means that we may represent x as (lj)1<j<. Let A be the basis of
U;(Z) obtained from Y7 by identifying all elements in the same Q-orbit, i.e., A = 7(¥7) with the notation
of [13]. Denote A = {ay, ..., a;} with aj coming from C;. Then, the element x described before can be viewed
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as themap x : A — L with x(a;) = I;. Suppose we chose a different basis Y, fixed by x. It is a straightforward
check to see that there is a basis Y3, also fixed by x, such that Y3, Y, < Y3, and that this representation is
compatible with the associated expansion maps.

To prove the second claim, consider an element g € V;(X) viewed as an element in Cy,(x)(Q) using the
splitting T above. This means that g maps Q-fixed bases to Q-fixed bases and that g preserves the set of marked
elements. Let Y1, A and x € K be as above. Then, the basis gY; is the union of the Q-orbits {gCy, ..., gC;}
and t¥(gY;) = gA. Also, for any ¢; € C;, gxg~gc; = gxc;, which means that if the action of x on C; is given by
l; € L, then the action of x8 on gC; is given also by [;. Therefore, the map gA — L, which represents x8, is the
composition of the maps g! : gA — A and the map A — L, which represents x. O

Remark 4.3. In [2], where the ordinary Higman-Thompson group V,(X) = V,,, is considered, the subgroups
K; are described as Map®(¢, L), where ¢ denotes the Cantor set and Map® the set of continuous maps. Here,
the Cantor set is viewed as the set of right infinite words in the descending operations.

It is a straightforward check to see that both descriptions are equivalent in this case. In fact, x : A - L
corresponds to the element in Map®(¢, L) mapping each ¢ € ¢ to x(a) for the only a € A which is a prefix of ¢.
Similarly, one can describe K; when V,,(Z) = sV is a Brin group, using the fact that these groups act on €3,
see [6].

We shall now show that for each i, the action of V;,(Z) on K} has finitely many orbits for any n.

Notation 4.4. Any element of U,(X) which is obtained from the elements in X by applying descending oper-
ations only is called a leaf. We denote by £ the set of leaves. Observe that £ depends on X. Note also that for
any leaf [, there is some basis A > X with l € A. Let | € £, define

I(L) :={b € £ : lw = bw for descending words w, w'}

and for a set of leaves B ¢ £, put also
B(L) = | b(L).
beB
Let
Q :={B(L) : B c £ finite} U {@}.

We also denote

n
Q"=0x%x--xQ={(w1,...,wp) : w; €Q}, Q:= {(wl,...,a}n)eQ":Uw,-zL}.

n-times i=1
Note that the Q here has no connection to the Q of the Q-algebra used in Section 2.1.

Lemma 4.5. The following statements hold.

(i) LetB>A > Xbebases,By € B.Let A, :={a € A : ais a prefix of an element in B,}. Then, A1(L) = B1(L).

(ii) Let A > X be a basis. Then, A(L) = L.

(iii) For any (w1, . . . , wy) € Q", there is some basis A with X < A and some A; € A, 1 <i < n, such that w; = A;(L).

(iv) Let A > X be a basis, A1, Ay € A and w; = Aj(L) fori=1,2. Then, w, = w; ifand only if A1 = A,.

(v) Let A, B > X be two bases and w € Q be such that for some A1 € A, B1 € B, we have w = A1(£) = B1(L).
Then, |A1| = |B1|mod d and |A1| = O if and only if |B1| = O.

(vi) Let A, B > X be two bases and A1, A, € A, B1, B, € B with A1(£) = B1(£) and A,(L) = B>(L). Then,
AiNA =@ ifand OnlyifBl NnB, =@.

Proof. It suffices to prove (i) in the case when B is obtained by a simple expansion from A. Moreover, we may
assume that Ay ={a} and B; = {aal.l, ceey aa?"} for some colour i of arity n;. Then, obviously, B;(£) <€ a(£).
Denote b;j = aa}i and let u € a(£). Then, uv = ac for descending words v and c. Performing the descend-
ing operations given by c on the basis A, we obtain a basis C with ac € C. Let D be a basis with C, B < D.
Then, there is some element d € D which can be written as d = acc’ for some descending word ¢’. Moreover,
Remark 2.2 also implies that d = b;b’ for some j and some descending word b’. As uvc' = acc’ = b;b’, we get
u € bj(£). Now, (ii) follows from (i).
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To prove (iii), suppose that w; = {ail,_. - ag"}(L). For each a}l:, we may find a basis Tf: > X containing a]l:.
Now, let A be a common descendant of Té and use (i).

To establish (iv), it suffices to check thatif a € A, @ ¢ A;, thena ¢ A;(L). Suppose a € A;(£). Then, there
are descending words v, u and some a € A; such that av = au = b. Performing the descending operations
given by v and u on a and a, respectively, we get a basis A < B and b € B contradicting Remark 2.2.

In (v), since there is a basis C with A, B < C, we may assume that A < B. Then, (v) is a consequence of (i)
and (iv).

Finally, for (vi), we may also assume that A < B. Then, we only have to use Remark 2.2. O

Notation 4.6. Let w € Q, X < A and B ¢ A such that w = B(£). We put

1l 0 ifw=9,
wl =
t for|B|=tmoddandO < t < d otherwise.

This is well-defined by Lemma 4.5 (v). Take B’ ¢ A and w' = B'(£). f Bn B’ = @, we put w A w' = @. Note
that by Lemma 4.5 (vi), this is well-defined.
Finally, let

n
QZ’diS = {(wl,...,wn) eQl: L= Uwiandwi/\w,- =g fOl’l'#:]'}.
i=1
The group V,(Z) does not act on the set of leaves. It does, however, act on Q as we will see in Lemma 4.7.
Nevertheless, there is a partial action of V,(Z) on the set of leaves as follows. If [ is a leaf such that [ € A for
a certain basis A > X and g is a group element such that gA > X, then we will denote by gl the leaf of gA to
which 1 is mapped by g.

n

Lemma 4.7. The group V,(Z) acts by permutations on Q and on Q7 ... There are only finitely many V,(X)-orbits
under the latter action. Furthermore, the stabiliser of any element in Q? gis 1S of the form Vi, (Z) x -+ x Vi, (Z)
for certain integers k4, . . ., ky.

Proof. Toseethat V,(Z) acts on Q, it suffices to check that if w = I(£) for some leafl € £, then we have gw € Q
for any g € V,(X). Let X < A be a basis with [ € A. By Remark 2.4, there is some A < B with A < gB. Note that
by Lemma 4.5 (i), w can also be written as

w = Bl(L)’

where By = {l, ..., li} is the set of leaves in B obtained from l. Therefore, gB; = {gl1, ..., glk} < gB and
gw = gB1(L).
That this action induces an action on QZ 4is 18 @ consequence of the easy fact that for any g € V;(Z) and

any (w1, ..., wy) € Q7 ,.., we have gw; A gwj = @ and £ = |Ji_, gw;.
Let (w1, ..., wn), (W], ..., wy) € Q" ;. be such that |w;| = |w}|| for 1 < i < n. There are bases X < A, A’

and subsets A1, ...,An C A, Al,..., A, < A’ such that for each 1 <i < n we have w; = A;(£), w] = A{(£)
and |4;| = IAlfI. Hence, we may choose a suitable element g € V,(Z) such that gA = A’ and gA; = Alf for each
i=1,...,n. Then, g(wi,...,wy) = (w'l, ..., wpy). Since the number of possible n-tuples of integers mod-
ulo d having the same number of zeros is finite, it follows that there are only finitely many V,(X)-orbits.
Finally, consider W = (w1, ..., wy) € Q;’,dis as before, i.e., with X< A and A4,...,A, € A such that
w; =Ai(L) for 1 <i<n.An element g € V,(2) fixes W if and only if gw; = w; foreachi =1, ..., n. We may
choose a basis B with A < B, gB and then, by using Lemma 4.5 (i) and (iv), we see that g fixes W if and only
if it maps those leaves of B which are of the form av for some a € A; and some descending word v to the anal-
ogous subset in gB. Considering each subalgebra of U,(Z) generated by A;, we see that g can be decomposed

as g =gi---8n With g; € Vi, () for k; = |A;]. O

Let Kbe agroup and denoteby Y = K« K=--- the infinite join of copies of K viewed as a discrete CW-complex,
i.e., Y is the space obtained by Milnor’s construction for K. Then, Y has a CW-complex decomposition whose
associated chain complex yields the standard bar resolution. For more details, see, e.g., [1, Section 2.4].
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Obviously, if a group H acts on K by conjugation, this action can be extended to an action of H on Y and
toanactionof G=KxHonY.

Lemma 4.8. Let H and K be groups and let H act on K via ¢ : H — Aut K. Assume that H is of type F, and that
for every n € N, the induced action of H on K™ has finitely many orbits and has stabilisers of type F,. Then,
G = K %y His of type F,. The same statement holds if F, is replaced with FP,.

Proof. Let Y, = K*" and let Y be as above. Consider the action of G on Y induced by the diagonal action. Note
that this preserves the individual join factors. Since the action of K on Y is free, the stabiliser of a cell in G
is isomorphic to its stabiliser in H. The stabiliser of an (n — 1)-simplex is the stabiliser of n elements of K,
thus F,, by assumption. Maximal simplices in Y, correspond to elements of K" and every simplex of Y;, is
contained in a maximal simplex. This, together with the fact that the action of G on K™ has only finitely many
orbits, implies that the action of G on Y, is cocompact. Finally, the connectivity of the filtration {Y, },cv tends
to co as n — oo. Hence, the claim follows from [4, Corollary 3.3 (a)]. O

Theorem 4.9. Assume that for any t > 0, the group V(Z) is of type Fo,. Then, the groups G; = K; x V,,(Z) of
Theorem 4.2 are of type F,. The same statement holds if F, is replaced with FP,.

Proof. Put V := V,,(%), K := K; and G := G;. We claim that for every n there is some n big enough such that
there is an injective map of V-sets

(,‘bn:K"—>Qﬁ

c,dis*

Letx € Kbegivenbyamapx : A — L, where A isabasiswith X < A. The element x is determined uniquely by
amap which, by slightly abusing notation, we also denote by x : L — Q. This x mapsany s € L to ws := Ag(£L)
with As = {a € A : x(a) = s}. Obviously, | J,; ws = £. This means that fixing an order in L yields an injective
map of V-sets

& K" — QM

Consider any (w1, ...,wn) € QF form=n|L|. Let X <AwithA;...,Apn cAand w; = A;(L) for1 <i<m.
Letn := 2™ -1, i.e., the number of non-empty subsets @ + S ¢ {1, ..., m}. For any such S, let

As :=ﬂAi\U{ﬂAJ~:Sc Tet,....m}.
ieS jeT
Then, one easily checks that the As are pairwise disjoint and that their union is £. Let ws := As(£). The
preceding paragraph means that fixing an ordering on the set of non-empty subsets of {1, ..., m} yields an
injective map of V-sets

pm: QT — Q"

c,dis*
Composing &, and p,,, we get the desired ¢,.

Now, by applying Lemma 4.7, we deduce that K™ has only finitely many orbits under the action of V;,(Z)
and that every cell stabiliser is isomorphic to a direct product of copies of V(%) for suitable indices t. It now
suffices to use Lemma 4.8. O

This implies that [13, Conjecture 7.5] holds.

Corollary 4.10. The following statements hold.
(i) V(%) is quasi-FP, if and only if Vi(Z) is of type FP, for any k.
(i) Vy(2)is quasi-F if and only if Vi(Z) is of type F, for any k.

Proof. The “only if” part of both items is proven in [13, Remark 7.6]. The “if” part is a consequence of
[13, Definition 6.3, Proposition 6.10] and Theorem 4.9 above. O

Theorem 4.9 also implies that the Brin-like groups of Section 3 are of type quasi-F,.

Corollary 4.11. Suppose U,(Z) is valid, bounded and complete. Then, V(%) is of type quasi-F . In particular,
centralisers of finite groups are of type Fo,.



12 —— C. Martinez-Pérez, F. Matucci and B. E. A. Nucinkis, Cohomological finiteness conditions DE GRUYTER

5 Normalisers of finite subgroups

Let Y be any basis. We denote
S(Y):={geV,(¥):8Y =Y}

Observe that this is a finite group, isomorphic to the symmetric group of degree |Y].

Theorem 5.1. Let Q < V() be a finite subgroup. Let Y, t, r;, l;, ¢; and 1 < i < t be as in the proof of Theo-
rem 4.2. Then,
Nv,)(Q) = Cv,(Q)Nsw)(Q)

and
Nv,5(Q)/Cv,)(Q) = Nsv)(Q)/Csry(Q).

Proof. Letg € Ny,(x)(Q)and Y1 = gY.Then, foranyq € Q, qY, = qgY = gq®Y = gY = Y;. Therefore, Y; isalso
fixed setwise by Q. Let rlf denote the number of components of type ¢; in Y;. Then, by [13, Proposition 4.2],
ri =r;modd and r; = 0 ifand onlyif r] = 0.

We claim that Y and Y; are isomorphic as Q-sets, in other words, that r; = rl’. forevery 1 < i < t. Note that
since g normalises Q, it acts on the set of Q-permutation representations {¢1, . .., ¢} via (pig (x) := (pi(ngl).
Let i with r; # 0 and let g(i) be the index such that (pig = @g(i). The fact that g : Y — Y7 is a bijection implies
that r; = ré(i). We may do the same for g(i) and get an index g2 (i) with rg(;) = r’g2 0" At some point, since the
orbits of g acting on the sets of permutation representations are finite, we get

ghi)=1 and rge =1l

As r} = rymodd, we have rg1(;) = rymod d, and since 0 < ry, rgi-1;y < d, we deduce that r} = rer1(y = 1;
as claimed.

Now, we can choose an s € V,(X) mapping Y; to Y and such that s : Y; — Y is a Q-map, i.e., commutes
with the Q-action. Therefore, s € Cy,(x)(Q) and sgY =Y, thus sg € N5 (Q). O

Remark 5.2. We can give a more detailed description of the conjugacy action of Nsy)(Q) on the group
Cv,)(Q). Recall that, by Theorem 4.2, this last group is a direct product of groups G1, ..., G;. We use the
same notation as in Theorem 4.2. Let g € Ng(v)(Q) and put @g;) = (pig as before. Denote by Zg(;), Z; < Y the
subsets of Y which are unions of Q-orbits of types @g;) and ¢;, respectively. Then, one easily checks that
8Zg) = Ziand Gg(;) = Gf.Moreover, recall that G; = K; x V,,(Z) with K; = li_I)n(Url.(Z), Lij)and L; = Cs,i (pi(Q)).
Then, rg() = r; and g maps the subgroup V,,(Z) of G; to the same subgroup of Gg(;) and K; to Kg(;). We also
notice that g acts diagonally on the system (Uy,(Z), L;) mapping it to (Uy,, (2), Lg(;)). In particular, the action
of g on L; is the restriction of its action on Cs(1,(Q) and taking the colimit this action yields the conjugation
action K¥ = Kg(j).

Remark 5.3. Using [16, Theorem 5], one can also give a more detailed description of the groups L; above, i.e.,

Li = Ny, (9i(Q)1)/9i(Q)1,

where ¢;(Q); is the stabiliser of one letter in ¢;(Q). Of course, if Q is cyclic, then so is ¢;(Q), and we get
@i(Q)1 = 1and L; = ¢;(Q).
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