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ABSTRACT. This paper shows that an eavesdropper can always recover
efficiently the private key of one of the two parts of the public key
cryptography protocol introduced by Shpilrain and Ushakov in [9]. Thus
an eavesdropper can always recover the shared secret key, making the
protocol insecure.
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1. INTRODUCTION

Recent advances in public key cryptography have underlined the need to
find alternatives to the RSA cryptosystem. It has been proposed to use
algorithmic problems in non-commutative group theory as possible ways to
build new protocols. The conjugacy search problem was introduced in several
papers as a generalization of the discrete logarithm problem in the research
of a new safe encryption scheme. The former problem asks whether or not,
given a group G and two elements a,b € G that are conjugate, we can find
at least one € G with a® := 27 lax = b. It is thus important to look for
a platform group G where this problem is computationally hard. Seminal
works by Anshel-Anshel-Godlfeld [1] and Ko-Lee et al. [6] have proposed the
braid group B, on n strands as a possible platform group.

It has been observed that Thompson’s group F' and the braid groups B,
have some similarities. Belk proved in his thesis [2] that F' and the braid
groups have a similar classifying space. Loosely speaking, the elements of F'
appear as braids, but with merges and splits instead of twists (this repre-
sentation of F' uses strand diagrams which are introduced in [2]). Dehornoy
defined in [4] a group of parenthesized braids which contains both F' and B,,
in a very natural way. However, for cryptographic purposes, F' has still not
proved to be a good platform. Kassabov and Matucci have proved in [5]
that the simultaneous conjugacy problem is efficiently solvable, making it
insecure to apply protocols based on the conjugacy problem.

Shpilrain and Ushakov in [9] have proposed using a particular version of

the decomposition problem as a protocol and the group F' as a platform.
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2 The Shpilrain-Ushakov Protocol for Thompson’s Group F' is always breakable

The new problem is: given a group G, a subset X C G and two elements
w1y, wy € G with the information that there exist a,b € X such that awib =
wo, find at least one such pair a,b. In this paper we show how to recover
efficiently the shared secret key of this protocol.

The paper is organized as follows. In Section 2 and Section 3 we recall
the protocol and give a description of Thompson’s group F. In Section 4
we recall the choice of parameters proposed in [9]. In section 5 we give
an efficient attack that always recovers the secret key. In Sections 6 and 7
we show another type of attack. In Section 8 we make some comments on
possible generalizations of this protocol.

History and related works. The first attack on this protocol was an-
nounced by Ruinskiy, Shamir and Tsaban in November 2005 at the Bochum
Workshop Algebraic Methods in Cryptography, showing that the paramaters
given in [9] should be increased to have higher security of the system. Their
attack was improved in other announcements and was finalized in [7] at
the same time that this paper was written. Their attack describes a more
general procedure which uses length functions. We remark that the same
authors have been developing new techniques involving “subgroup distance
functions” and that they applied them on the same protocol for F' as a
test case [8]. The approach of Ruinskiy, Shamir and Tsaban in their men-
tioned papers is heuristic, and its success rates are good but not 100%. Our
approach is deterministic, and provably succeeds in all possible cases.

Acknowledgements. The author would like to thank Martin Kassabov,
Boaz Tsaban and Vladimir Shpilrain for helpful discussions. The author
would also like to thank Ken Brown and the referees for many helpful com-
ments.

2. THE PROTOCOL

The protocol proposed in [9] is based on the decomposition problem: given
a group G, a subset X C G and wy,ws € G, find a,b € X with awib = wa,
given that such a,b exist. Here is the protocol in detail:

Public Data. A group G, an element w € G and two subgroups A, B of G
such that ab = ba for all a € A, b € B.

Private Keys. Alice chooses a; € A, by € B and sends the element u; =
a1wbi to Bob. Bob chooses by € B, as € A and sends the element us = boywas
to Alice. Alice then computes the element K4 = ajusby = ajbswasby and
Bob computes the element Kp = boujas = byajwbias. Since A and B
commute elementwise, X = K4 = Kp becomes Alice and Bob’s shared
secret key.

Eavesdropper’s Data. Eve has all the public data and the two elements
u1 and wueg, observed during Alice and Bob’s exchange.
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3. THE GROUP F AND THE SUBGROUPS Ay, B,

Thompson’s group F' was introduced by R. Thompson while working on
problems in logic. The standard introduction to F' is [3]. One of Thompson’s
original definitions of F' is the following: for I = [0, 1] we define PLy(I) to be
the group of piecewise linear homeomorphisms of the interval I with finitely
many breakpoints such that:

e all slopes are integral powers of 2, and

e all breakpoints are in Z[%], the ring of dyadic rational numbers;
the product of two elements is given by the composition of functions. We
thus define F' to be the group PLo(I). F can also be described using the
following presentation:

F = (zg,z1,22,... | xnxr = T1Tnt1, Yk < n).

This presentation has the advantage that the elements of F' can be uniquely
written in the following normal form
Tiy - - xiuafj_vl .. .a;;ll

such that i1 < ... <y, j1 < ... < j, and if both z; and x;l occur, then
either x;11 or :v;_:l occurs, too. Since xj = x(l)fkajlxlgfl for £k > 2, the
group F' is generated by the elements xy and x1. The generators xj of the
infinite presentation can be represented as piecewise-linear homeomorphisms
by shrinking the function xy shown in figure 1 onto the interval [1 — 2%, 1]

and extending it as the identity on [0,1 — 2%]

Ya Ya
La

0 s 3, 1 0 ) 1

FIGURE 1. Two of the elements of the generating set of F.

We now introduce a notation which will be useful for the definition of the
subgroups A and B. For every positive integer k we call

1



4 The Shpilrain-Ushakov Protocol for Thompson’s Group F' is always breakable

From the definition of xj, we get

5! (o) = e 1€ |2.1]

implying that, for t € [¢x, 1], we have
d _ _ _
PR (1) = ap(ag () () (1) = 2

which means xgxlgl is the identity in the interval [¢g,1]. For any s € N,
Shpilrain and Ushakov define in [9] the following sets

=1

Sa, = {xoxyt, ... wox; '}
and
SBS = {iL'S_H, e ,.%'25}
and then define the subgroups A := (S4,) and B, := (Sp,). The previous

argument immediately yields that that all elements of A; commute with all
elements of B (see figure 2), i.e.

Lemma 3.1 (Shpilrain-Ushakov [9]). For every fixed s € N, ab = ba for
every elements a € As and b € Bs.

14 1

Ps Ps

beB
ac A <

> >

0 Y, 1 0 Y, 1

FIGURE 2. An example of an element of A; and one of B;.

Notation 3.2. For every dyadic number d € [0, 1] we denote by PLy(]0,d])
the set of functions in PLy(I) which are the identity on [d, 1]. Moreover, if
we are given a piecewise linear map defined only on [0, d] we will assume it
is extended to [0, 1] by defining it as the identity on [d, 1]. Similar remarks
apply to PLz([d, 1]).

Parts (i) and (iii) of the following Lemma are in [9], while part (ii) is a
simple observation.
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Lemma 3.3. (i) A; is the set of elements whose normal form is of the type

-1 -1
Liq - - .mimxjm e ..%'jl

where i, — k < s and j, — k <s, forallk=1,...,m.
(ii) Bs = PLa([ps, 1]).

(iii) Let a € A5 and b € B, be such that their normal forms are

— ool -1
=i Tip Ty Ty
-1 -1
b=1x¢, ... xe,xy . Ty

Then the normal form of ab is

o ' -1 -1 -1 -1
ab=1xi ... %, Tei4m - e TeydmTa - gy Ly Ty

Theorem 3.4 (Shpilrain-Ushakov [9]). In Thompson’s group F', the normal
form of a given word w can be computed in time O(|w|log|w|), where |w|
is the length of the normal form in the generators xg, 1,2, ...

4. SUGGESTED PARAMETERS FOR THE ENCRYPTION

We now illustrate briefly the choice of parameters proposed in [9]. Alice
and Bob select an integer s € [3,8] and an even integer M € [256,320)]
uniformly and randomly. Morever, they also choose a random element
w € (xg,21,...,Tsr2) With |w| = M, where |w| is as in Theorem 3.4. The
numbers s, M and the element w are now part of the the public data.

To proceed with the protocol described in Section 2, Alice chooses random
elements a1 € Ag, by € B, with |a1| = |by| = M, while Bob chooses random
elements ag € Ag, by € B, with |ag| = |ba] = M. Now they both compute
the shared secret key:

K = a1bswasgb;.

Shpilrain and Ushakov remark that this choice of parameters gives a key

space which increases exponentially in M, i.e., |[As(M)| > \/§M, thereby
making it difficult for Eve to perform a brute force attack.

5. RECOVERING THE SHARED SECRET KEY

We begin this section by providing the theoretical background for the
attack. We will use the piecewise-linear point of view to understand why the
attack works and then rephrase it combinatorially. We will now describe how
Eve, by knowing the elements w, u1, ue, can always recover one of the two
legitimate parties’ private keys. She chooses whose key to crack, depending
on whether the graph of w is above or below the point (s, ¢s).
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5.1. Recovering Bob’s Private Keys: w(ps) < ¢s. Since w(t) < ¢, for
all ¢t € [0, ps], we observe the following identity

ug(t) = bawag(t) = was(t), YVt € [0, ¢g].

Therefore, Eve may apply w™! to the left of both sides of the previous
equation to obtain

wtug(t) = as(t), YVt € [0, pq]
and so w™luy € A;B, and
-1
wlt) = {iﬂ R
Now Eve has the elements as, w and us = bswas and she computes
by = u2a2_1w71

thereby detecting Bob’s private keys and the shared secret key K.

5.2. Recovering Alice’s Private Key: w(yps) > 5. Since w™l(t) < o,
for all ¢t € [0, 5], we have

upt(t) = by tw ey (1) = wlar (1), V€ [0, 04
By applying the same technique as in the previous subsection Eve recovers

(11_1 and obtains that wyw™" € A,Bs. Thus, she is able to detect a1, b; and
the shared secret key K. Alternatively, Eve observes

w_lul(t) = w_lalwbl(t) = by (t), Vt € [ps, 1]

but) = {t t €0,

and so

wluy () t € [ps, 1]
5.3. Outline of the attack. We expand on the previous discussion to de-

scribe a combinatorial attack. Assume that Eve has the elements w, w1, us.

(1) Eve writes the normal forms of z; := uyw ™! and 23 := w™tus.

(2) By the previous discussion, either z; € AsB; or 22 € AsB; (or both).
She can detect which one using Lemma 3.3(i) and selects this z;.
(3) She computes the As-part a,, of z;.
(4) If @ = 1, she computes b, := w'a;'us. If i = 2, she computes
by, 1= uQa;;w*I
(5) Eve computes K from wuy,u2,a,,bs,.
The only point of this procedure which needs further explanation is (2).
When we have the normal forms of z1, 29, we know that one of them is in

AsBs. We write the normal form z; = x;, ...xiex;fl . x;ll and we look

at the notation of Lemma 3.3(i): we need to find the the smallest index r
in z; such that either i,41 or j,11 does not satisfy the index condition in
Lemma 3.3(i). To verify if z; € AsBs, we need to check whether it has the
form described in Lemma 3.3(iii): we remove the first r letters and the last
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r letters of z; from the word and we lower all the indices of the remaining
letters by r; if what remains is a word whose indices are in {s + 2,...,2s},
then we have an element of By, otherwise z; ¢ A;Bs. If 2; € A;DBy, then a,
will be the product of the first r elements of z; and the last r ones.

5.4. Complexity of the attack. By Theorem 3.4 we know that computing
normal forms can be done in time O(M log M), where M is the size of the
inputs suggested in Section 4. Part (2) of the attack can be executed in
time O(M), by just reading the indices of the normal forms and finding
when the relation of Lemma 3.3(i) breaks down. Finally, the last steps are
just multiplications and then simplifications so they can again be performed
in time O(M log M). Therefore, Eve can recover the shared secret key in
time O(M log M).

Remark 5.1. The previous discussion shows that there is no need to pass
from words to piecewise-linear functions and back. The attack can be per-
formed entirely by using the combinatorial point of view which is used for
encryption. The piecewise-linear point of view is necessary only to prove
that the combinatorial attack works. We also remark that the complexity
of the attack is independent of the parameter s.

6. TRANSITIVITY OF A; AND B

The previous section showed how to recover the shared secret key of one
of the two involved parties, based on whether the graph of w lies above or
below the point (ps,ps). However, it is possible to find the shared secret
key even in the cases not studied in the previous section. More precisely, it
is possible to attack Alice’s word in the case w(yps) < s and Bob’s word in
the case w(ps) > ps. We need a better description of the subroups Ag. If
s = 1, we observe that A7 = <xox1_1> is a cyclic group. For larger values of
s, As becomes the full group of piecewise linear homeomorphism on [0, ;).

Lemma 6.1. Ay = PLy ([0, %})

Proof. Let a,b be the two generators of PLy([0, 3]) shown in figure 3.
One sees that a = x%xflzﬁl and that b = xox%x;xflxal and so a conjuga-
tion of PLy([0, 3]) by 23 yields PLy([0, 3]) = ( 2axy?, x2bry?). By Lemma
3.3 we have

2 4

xoaxEZ = xoxl_lxg?’ € A
2dbrg? = adaiey o lagd € Ay
so that PLy([0, £]) € As. The other inclusion is obvious. O
Theorem 6.2. A; = PLs([0, ¢s)), for every s > 2.
Proof. A straightforward computation shows that
53 PL((0, pul)ao = PLo([0, gss1]), Vs > 0.
Therefore Ay = PLs([0, ¢2]) and the definition of As imply
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14 14

1a Ya
Va

0 %) 1 0 W 1

FIGURE 3. The two standard generators for PLy([0, 3]).

PLy([0,p5]) = 2 Asxg™* C Ay € PLo([0, ¢s))

therefore implying that As = PLy([0, ¢s]). O
Corollary 6.3. A; & B; = F, for every s > 2.
The previous Theorem and Lemma 2.5 in [5] yield the following corollaries:

Corollary 6.4 (Transitivity of A,). For any ty,ty € Z[1] N[0, ¢s] we can
construct an a € Ag with a(ty) = ta.

Corollary 6.5 (Extendability of A,). Let tg € Z[3] N [0,¢,] and a(t) =
aljo,,) for an element a € As. Assume we know a, but that we do not know a.
Then we can construct an a, € A, such that a,(t) = a(t) for all t € [0, ¢s].

Remark 6.6. The analogues of the last two corollaries are true for the
interval [pg, 1] and By too.

7. USING TRANSITIVITY TO ATTACK THE SHARED SECRET KEY

With the new description of A; and B given in section 6, it is now possible
to attack the secret keys in the cases left open from section 5.

7.1. Attacking Alice’s word for the case w(ys) < ¢s. We have
u1(t) = arw(t), vt € [0, ),
thus

ai(t) = Ulw_l(t)7Vt € [0, w(ps)]
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and so a; is uniquely determined in [0, w(¢ps)]. We apply corollary 6.5 to
find an element a, € A4 such that a, = a; on the interval [0, w(ps)]. If we

define

=1 1
b :=w Ta, uy

then we have that
bo(t) = whay tayw(t) = wlw(t) = t,Vt € [0, pg]

Therefore b, € Bs and a;wb, = u1 and so Eve can recover the shared secret
key K by using the pair (a, by).

Remark 7.1. We observe that any extension of a1|[07w(%)] to an element a,
of PLy([0, ¢s]) will yield a suitable element to attack Alice’s key. Moreover,
any element aj € A such that ajwb| = uy, for some suitable b} € Bj, will
be an extension of a1 (g u(e.)-

7.2. Attacking Bob’s word for the case w(yps) > ¢s. Eve considers
uy ' = ay 'wlby ! and recovers a pair (a;!,b; ') to get the shared secret key
in the same fashion of the previous subsection.

Remark 7.2. Both the techniques of this section have been carried out
using the transitivity of As (Corollary 6.4). They can also be solved by
using the analogue of Corollary 6.5 for B to get another pair (a,, b,) which
can be used to retrieve the secret key.

8. COMMENTS AND ALTERNATIVES TO THE PROTOCOL

This section analyzes possible alternatives and weaknesses of our methods.
We observe that, if instead of PLy(I) we had used a larger group of piecewise
linear homeomorphisms of the unit interval, the same technique would have
worked, as long as the commuting subgroups A and B had disjoint supports.
More generally, we can copy this idea if the given group G acts on some space
and we have A, B with disjoint support. We will now see some examples of
how this is possible.

8.1. Choice of the subgroups A and B. We recall the following result:

Theorem 8.1 (Kassabov-Matucci [5]). Let A = (a1,...,am) < F be a
finitely generated subgroup. Then

(i) There exists a dyadic partition of [0,1] = I} U ... U I, such that the
centralizer Cp(A) := {f € F|af = fa,Va € A} is a product of subgroups
Cy,...,Cn, where C, <{f € F| f(t) =t,Vt € I,}. Moreover, we have
e C, = PLy(I,) if and only if of a;|;, =id, for alli =1,...,r.
e C, 27 if and only if a1lz,, ..., amn|r. have a common root on I,.
e C, =1 if and only if there are i # j such that a;|;,,a;|;, have no
common root on I,.

(ii) There exist two elements g1, go € F such that Cr(A) = Cr(g1)NCF(g2).
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Going back to the protocol introduced in Section 2 we observe that, after
we choose a finitely generated subgroup A = (f1,..., fm), we are very re-
stricted in our choice of the subgroup B. Since B < Cr(A), we must make
sure that the elements of B, when restricted to I, are powers of common
roots of the a;’s, if at least one a; is non-trivial on I,.. This gives a tight
restriction on the subgroup B whose support is essentially disjoint from that
of A, except in the intervals where they all are powers of a common root. An
attack similar to that of Section 5 can thus be applied on each interval I,.:
if their supports are disjoint on I,., we can act as before, otherwise elements
of A and B are powers of a common root on I,.

With more general commuting subgroups, the attack of Section 5 does
not immediately give either of the two keys. However, the discussion above
suggests that the choice of A and B must be done much more carefully in
order to avoid similar attacks.

8.2. Alternative Protocol and Attacks. Ko-Lee et al. [6] introduced a
slightly different protocol based on the decomposition problem (They worked
with braid groups, but we will apply their protocol to Thompson’s group).
In their protocol, Alice picks ai,as € A and sends u; = ajwas to Bob,
while Bob chooses b1,by € B and sends us = bjwby to Alice. We can
still attempt to solve this new protocol, by again dividing the problem into
various cases. We assume that we use the same subgroups Ay and B, and
we work in the case w(ps) < @5 to show how to attack the private keys of
Bob. We apply the analogue for Bs of Corollary 6.4 and find a by such that
by (w L (0s) = 13 () = by 'w L (py). We define

W, = by
by = baby*
ufy = bjwbl
so that by (w1 (ps)) = w™(ps) > ps. Thus we have
uh(t) = by (H)wby(t) = wby(t), vt € [0,w™" (s)]
hence
by(t) = wuy(t), vt € [0, (ps))-

Thus b} is uniquely determined in [0,w™!(p;)]. We apply corollary 6.5 for
Bs to find a by, € By such that by, = by on [0, w ™ (ps)] and we define

1 —1 -1
bo, 1= ugb, w™ .

Thus
bo, (t) = bhwblyb, }w™ () = b (t) = t,Vt € [0, ¢4
therefore b,, € Bs. Therefore the pair (bs,,bs,) satisfies uy = b,, wb,, and

so Eve can recover the shared secret key K. A similar argument can be used
to attack the element ajwaso, with the transitivity results for As.
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8.3. A comment on the Alternative Protocol. The weakness in the
protocol discussed in the previous subsection arises from the fact that the
chosen subgroups As and B are transitive on the intervals on which they
act nontrivially. This suggests that a possible way to avoid such attacks is
for A and B to be chosen to be not transitive on their support.

Remark 8.2. We observe that the attacks of section 7 and section 8 can
be carried out in a fashion similar to that of Section 5, still producing a
solution in polynomial time.
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