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Abstract This paper presents a network analysis approach to simulate cascading
effects in a transit network with the aim to assess its resilience and efficiency. The
key element of a cascade is time: as time passes by, more locations or connections
of the transit network which are nodes and edges of the associated graph can be
affected consecutively as well as change their own condition. Thus, modifications
in terms of efficiency and resilience are also dynamically evaluated and analysed
along the cascade. Results on the two case studies of the RESOLUTE project (i.e.,
Florence, in Italy, and the Attika region, in Greece) are presented. Since the two
case studies are significantly different, important differences are reflected also on
the impacts of the relative cascades, even if they were started in both the two cases
from the node with the highest betweenness centrality.
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1 Introduction

In complex Urban Transport System (UTS), such as urban city or regional trans-
ports, the nodes individually experience a load, such as the volume of passengers
passing through that node, and in normal circumstances, this load does not exceed
the capacity of that node [1]. Cascades failures are initiated when a heavily loaded
node is lost for some reason (an accident, an infrastructure collapses or an attack)
and a load of that node (i.e. the flow passing through it) must be redistributed to
other nodes of the UTS. This redistribution may cause other nodes to exceed their
capacity causing them also to fail. Then, the number of failed nodes increase, prop-
agating throughout the network.
The analysis of cascades in complex networks [2, 3, 4] is an important topic towards
modelling and assessment of network resilience. In this case, the term resilience in-
dicates the capability of a UTS to resist to a node failure, and the possible resulting
cascade. Resilience has come to define a set of properties of a much broader socio-
technical framework to cope with infrastructure threats and disruptions including
preparedness, response, recovery and adaptation. All these concepts run across sev-
eral application domains like ecology, economics and networked infrastructures.
Methods of representation and analysis of resilience come from several different
communities like statistical physics, graph theory, optimization, network science
and engineering design. An interesting tool of quantitative analysis of recovery ca-
pability of a system is reported in [5], which considers the London underground
where a new resilience measure is proposed according to the speed with which the
passenger count time series return to normal condition. This information is taking
as an indicator of how quickly the underground transport system is able to recover
from the shock and, after that, resume normal operations.
In the extensive literature about cascades and resilience, a primary distinction must
be made between percolation cascades and capacity cascades [6]. In the former, e.g.
epidemiological networks, the nodes change their status due to interaction with their
neighbourhood. In the latter, e.g. water distribution networks [7, 8] and transit net-
works, cascades occur when, due to failure in edges/nodes, the flow can no longer
be carried out by the edges with their capacities or when some of the nodes fail. The
failure in a capacity cascade can jump to nodes that are many hops away from the
initial failure also skipping the neighbourhoods.
This paper is focused on the capacity cascades in UTSs. Recent works about it can
be found, for example, in [9] and [10]. The main goal is to characterize the level
of efficiency and resilience that ensure the persistence of key functions even in the
presence of cascading failures. This is coherent with the activities of the EU project
RESOLUTE (www.RESOLUTE-eu.org), whose general aim is the operationaliza-
tion of the resilience guidelines and development of software tools for resilience
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assessment and support to a quick recovery of the service.
Two main lines of analysis have been pursued and are represented in the literature.
When demand and supply data are available, the interaction between demand and
supply is simulated through mathematical modelling and/or software simulation and
generates the flow within the network. Simulation allows to capture the operational
and economic aspects, such as the flow-induced costs, and the behaviour of users
both prior and post any disruptions, as presented in [11].
When, as in most cases, data are not available, one is left to work with the network
topology; traffic flows are not explicitly modelled, and the number of shortest paths
between any two points passing through a node/link is taken as a proxy of the traffic
demand in that node/link. This approach is adopted, for instance, in [12] and [13].
The topological structure of a network provides critical information and enables the
computation of efficiency/resilience measure, which has been applied to study the
Boston subway network and the transit networks of major cities worldwide [14].
Typically, only information about the interconnections is needed to create the graph
associated to the transit infrastructure and still they can provide fundamental insights
about the structural weakness of a transport network. Therefore, to operationalize re-
silience management in a wide set of conditions, the topological approach has been
adopted in this paper, based on the description of a transit network and a possible
capacity cascade using the graph theory.

2 Graph-based modelling of a transit network

The main elements of a networked infrastructure, such as a UTS, can be easily
mapped into elements of a directed graph G = (V,E), where V is a set of n nodes
and E is a set of edges, which are ordered 2-element subsets (i, j), with i and j el-
ements of the V set. In case of a UTS, the nodes represent the locations of interest
on the transportation network, such as towns, bus/rail stops, road intersections, etc.
whereas the edges represent connections/links between locations, such as roads, rail
lines, bus line sections, etc. Furthermore, another relevant concept is the route, that
can be mapped into a series of connected edges of the graph, and with a specific
label, to distinguish by other routes.
Considering connectivity information at node levels, a measure of the network or-
ganization is the betweenness centrality [15], computed for each node i as:

g(i) = ∑
j,k∈V, j 6=i,k 6=i

σ jk(i)
σ jk

, (1)

where σ jk is the total number of shortest paths from the node j to node k and σ jk(i)
is the number of those paths passing through node i. Two different parameters are
considered to measure the efficiency and the resilience of a network, during and
after a cascade. The first is the relative size of the largest connected component
(S) [12, 13], defined as
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S =
N
′

N
, (2)

where N
′

and N are, respectively, the number of nodes in the largest connected
component after and before the cascade. The second is the network efficiency (E)
[16], defined as

E =
1

n(n−1) ∑
i, j∈V,i6= j

1
di j

, (3)

where di j = d(i, j) represent the length of shortest path between nodes i and j,
named distance. Normalization by n(n−1) ensures that E ≤ 1, where 1 is obtained
for a complete graph. These two quantities can be computed before, during and after
the cascade event.

3 Capacity cascades caused from a station closure

Disruptions of a transportation network can be of different types (accidents, infras-
tructure collapses, attacks, etc.) and can lead to impacts with different severities:
injuries, fatalities. Common disruptions, such as a road link blocked, a rail service
interruption, a strike, etc., have an impact with low severity. In this work, we sim-
ulate a capacity cascade caused by the closure of a station or stop, that means the
access to that station/stop is disabled but transport lines/routes passing through it are
not interrupted. In this case, the node k of a graph, corresponding to the station of
the UTS, is removed from the graph but with the possibility that all the paths passing
through it are still maintained. The resulting graph after this event is G

′
= (V

′
,E
′
)

where: V
′
=V −{k} and

E
′
= E−{(i,k) ∈ E,(k, j) ∈ E}∪{(i, j) : ∃(i,k) ∈ E ∧∃(k, j) ∈ E} (4)

To select the station to close, the g value is computed for every node of the network
and the node with the highest g value is selected as target node. The intentional
capacity cascade in the network is simulated starting from the removal of the target
node. As in [1], we definite Li(t) the total number of shortest paths, or load, passing
through node i at a certain iteration t of the cascade, whereas ψi is the maximum
load that the node i can handle, or capacity. This value corresponds to the initial
load at iteration t = 0, multiplied by a tolerance parameter α ≥ 1:

ψi = α Li(0) i = 1,2, ...,n (5)

To start the cascading effect, the node with higher (initial) load is removed, and a
new graph is re-computed using Eq. 4. Then, the g value for each of the remained
nodes is re-computed: if any node has a g value exceeding its own capacity, then that
node is removed from the network. The process iterates until no more node must be
removed from the network, that is the termination of the cascade. Note that the load



Evaluation of cascade effects for transit networks 5

for each node is updated along the iterations of the cascade simulation, whereas the
capacities are set at the beginning. Logically, capacity could be increased with the
aim to contrast cascades of failures in the network.

Fig. 1 a) Graph of the bus transport network in Florence before the cascade. b) Graph of the
transport network in Attika region before the cascade. c) Graph of the bus transport network in
Florence after the cascade. d) Graph of the transport network in Attika after the cascade effect.
In a) and b) the red points represent the nodes from which the cascades begin (the ones with the
highest g-value), whereas in c) and d) the red points represent the node failed along the cascade.

4 Experimental setting and results

In this section, we report the results obtained from network analysis applied to two
real UTSs. These systems are modelled through a directed multi-graph, because
more than one route/line may connect two stations; moreover the graph is direct to
model direction of each line from one stop to the next.
The first one consists of the public bus transportation in Florence. The number of
bus stops is 999, whereas the number of directed edge is 3226. Fig. 1, a) shows the
associated graph of the network. To improve the visualization, we did not draw mul-
tiple edges. The different colors and sizes of the nodes indicate the different values
of their g− value. Passing from the yellow color to the blue one, and from the lower
size to the greater size of the nodes, we have an increase of the g-value. The bigger
red point indicates the node with the highest g-value (35517.7).
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The second network consists of the public transportation network (bus, tramway,. . . ),
in the Attika region. The number of stops is 7681, whereas the number of directed
edges is 18.128. Fig. 1, b) shows the associated graph of the network. Again, pass-
ing from the green color to the blue one we have an increase of the g-value, and the
bigger red point indicates the node with the highest g-value (438585.6). The pecu-
liar location of the node with highest betweenness in Attika depends on different
factors. First of all, the Attika’s UTS has more branches towards peripheral regions.
This leads to having some sub-graphs (i.e. clusters) associated with the peripheral
areas. Nodes - as well as links - connecting clusters in a graph, are characterized by
high values of betweenness since all the paths between two clusters pass through
them. Thus, several nodes with high betweenness values are located on the branches
connecting peripherals. Secondly, there are a lot of nodes with very high between-
ness also in the center of the network, however the rule we have adopted to choose
the ”triggering” node is just to select the one with highest node betweenness value,
even if the difference with the second or the third ones- which could be less periph-
eral - is very small.
To simulate a possible capacity cascade for the two networks we simulate the re-
moval of the node with the largest g−value of the graphs. The re-computation of
the g-value for each node permits to identify the new failing nodes in the cascade
(i.e. nodes with the capacity lower than the current load). These nodes are removed,
and the process iterated until no more nodes fail. Fig. 1, c) and d) show the two final

Fig. 2 Values of S (a), E (b), the relative number of remaining nodes (c), and the relative number
of remaining edges (d), along the cascade. Black curves refer to the Florence UTS; red curves refer
to the Attika UTS.
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networks at the end of the cascade, respectively, in which the black points represent
the nodes removed along the cascade. Fig. 2 a) and b) show the values of E and
S computed during the cascade, for Florence (black) and Attika (red), respectively.
In Fig.2, c) and d) we represent also the number of remaining nodes and edges of
the two networks, during cascades. Both these quantities are divided by their corre-
sponding values before the cascade.
For both the cases we note that the removal of a such critical nodes generate an
important disruption of the network, causing the decrease of both E and S. In par-
ticular, in the Florence UTS S and E decrease from 1 to 0.35, and from 0.044 to
0.007, respectively, with a cascade consisting of 17 iterations. In the second Attika
UTS case we also note a decrease of S and E, decreasing from 1 to 0.32 and from
0.023 to 0.002, respectively, with a longer cascade consisting of 37 iterations.
The decrease of such quantities is coherent with the decrease of the number of nodes
and edges of the two graphs, during the cascade. However, the Attika’s UTS shows
a greater resilience to the cascading failure compared to the Florence’s one. Indeed,
it requires a largest number of iteration to reach similar values of E and S during the
cascade, with no significant changes between the first and the fifth iteration.

5 Conclusions

The experimental results have demonstrated that a set of analytical functionalities
can be used simulate a cascading failure and assess, dynamically along the cascade,
the re-organization of flows into the network. A software tool has been developed
to dynamically analyse the graph associated to the UTS, even under changing con-
ditions, to identify the new failing components along the cascade and, therefore, the
critical components which could potentially be empowered to block or at least mit-
igate the impact of the cascade. This analytical tool is important for assessing the
resilience, as well as the efficiency, of a UTS even with respect to disruptive events
starting from different locations (i.e. selecting any node as the target) and to support
decisions about the capacity increase on critical nodes (i.e. those which may guar-
antee a lower impact).
Finally, the analytical software tool has been validated on two real UTSs, the bus
transport network in Florence and the transport system in the Attika region, respec-
tively. The analysis allowed to identify important differences between the two UTSs
with respect to the impact of the corresponding cascades, even if, in both the two
cases, the cascade was started by considering, as starting node, the node with highest
betweenness centrality in the two networks.
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