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Abstract Full Waveform Inversion (FWI) is a computational method to estimate
the physical features of Earth subsurface from seismic data, leading to the mini-
mization of a misfit function between the observed data and the predicted ones,
computed by solving the wave equation numerically. This function is usually multi-
modal, and any gradient-based method would likely get trapped in a local minimum,
without a suitable starting point in the basin of attraction of the global minimum.
The starting point of the gradient procedure can be provided by an exploratory stage
performed by an algorithm incorporating random elements. In this paper, we show
that Bayesian Optimization (BO) can offer an effective way to structure this explo-
ration phase. The computational results on a 2D acoustic FWI benchmark problem
show that BO can provide a starting point in the parameter space from which the
gradient-based method converges to the global optimum.
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1 Bayesian Optimization

Bayesian optimization (BO) [11] is a suitable global optimization algorithm to find a
global minimum x∗ of a black-box, usually expensive-to-evaluate, objective function
f (x), where x ∈ X ⊂ Rd is a point in a d-dimensional bounded-box space X .
In BO the objective function is modelled as a realization of a stochastic process,
typically a Gaussian Process (GP) on a probability space (Ω ,Σ ,P). A GP, which
defines a prior distribution over the function f , is completely specified by its mean
µ(x) : X → R and a definite positive covariance function k(x,x

′
) : X2→ R,

f (x)≈ GP(µ(x);k(x,x
′
)) (1)

The BO algorithm starts with an initial set of k points {xi}k
i=1 ∈ X and the associated

observations {yi}k
i=1, with yi = f (xi). At each iteration t ∈ {k+1, ,N}, the GP prior

is updated using the Bayes rule, to obtain posterior distribution conditioned on the
current training set St = {(xi,yi)}t

i=1 containing the past evaluated points and ob-
servations. For any point x ∈ X , the posterior mean µ t(x) and the posterior variance
σ

2
t (x) of the GP, conditioned on St , are known in closed-form:

µt(x) = K(Xt ,x)t [K(Xt ,Xt)+λ I]−1 Yt (2)

σ
2
t (x) = k(x,x)−K(Xt ,x)t [K(Xt ,Xt)+λ I]−1 K(Xt ,x) (3)

where K(Xt ,Xt) is the t× t matrix whose (i j)th entry is k(xi,x j), K(Xt ,x) (respec-
tively Yt ) is the t× 1 vector whose ith entry is k(xi,x) (respectively yi) and λ is the
noise variance. A new point xt+1 is then selected and evaluated to provide an obser-
vation yt+1 = f (xt+1). This new pair {(xt+1,yt+1)} is added to the current training
set St , to define the training set for the next iteration St+1 = St ∪{(xt+1,yt+1)}.
The new point to evaluate is selected by solving an auxiliary optimization problem,
typically of the form:

xt+1 = argmaxUt(x;St) (4)

where Ut is an acquisition function to maximize. The rationale is that, because the
optimization run-time or cost is dominated by the evaluation of the expensive objec-
tive function f , time and effort should be dedicated to choosing a promising point to
evaluate, by solving the auxiliary problem. Solving this auxiliary problem does not
involve the evaluation of the expensive objective function f , but only the posterior
quantities of the GP and, thus, is considered cheap.
In this paper we focus on two of the most used acquisition function: the expected
improvement (EI) [12], and the confidence bound (CB) [1] (lower/upper confidence
bound, LCB/UCB, for minimization and maximization problems, respectively). EI
is defined as follows:

EIt(x;St) =
(

f+−µt(x)
)

Φ

(
f+−µt(x)

σt(x)

)
+σt(x) ·N(

(
f+−µt(x)

σt(x)

)
(5)
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where, considering a minimization problem, f+ = minxi∈X1:t f (xi) is the best value
found after t evaluations (aka best seen), and Φ(·) and N(·) are the normal cumula-
tive distribution and the density probability function, respectively. The LCB formula
is:

LCBt(x;St) = µt(x)− kσt(x) (6)

where k≥ 0 is a parameter to manage the exploration/exploitation trade-off: a larger
k drives exploration. In this paper we investigate the application of BO to seismic
inversion problems comparing the EI and CB acquisition functions. An example of
its application in the model inversion optimization problems, in the field of haemo-
dynamic, is in [15].

2 Introduction to seismic inversion problems

The estimation of the geological properties of the subsurface can be obtained by
means of seismic acquisition (Fig. 1, a)), in which artificially induced seismic waves,
created by an impulse source, propagate through the subsurface. The receivers, dis-
tributed on the surface along a line (2D seismic) detect the returning waves and
measure the arrival times and the amplitudes of the waves at different distances, or
offset. The seismic data are organized in a seismograms dobs(t,xr), where t ∈ [0,T ]
is the recording time and {xr}nr

r=1 ⊂ R2 is the set of receivers locations. Fig. 1, b)
shows a seismogram acquired during a marine seismic acquisition.
A seismic inversion problem [7], in case of acoustic approximation, consists of the
estimation of an acoustic velocity subsurface model vp(x), that explains the events
observed in a seismogram (reflections, refractions), and can be formulated as a min-
imization problem

v∗ = argmin
v∈V

F(v) (7)

with V the set of possible acoustic velocity models, and F(v)≥ 0 a misfit function

F(v) = ||dobs−dpred(v)||, (8)

measuring the difference between the observed and the predicted seismograms
dpred(v), computed by means of some seismic modelling algorithm.
In case of 2D acoustic approximation, the generation and propagation of seismic
waves is modelled by the 2D acoustic wave equation [13]:

p̈(x, t)− v(x)2
∆ p(x, t) = δ (x−x0)s(t) (9)

where t ∈ [0,T ] is the recording time, x = (x,z) ∈D⊂ R2 is a bi-dimensional space
domain, p is the acoustic pressure of the wave, x0 is the location of the source,
and s(t) is the seismic source. The predicted seismograms dpred correspond to the
restriction of the solution of the acoustic wave equation to the receivers locations.
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Fig. 1 a) Example of a marine seismic acquisition, taken from [19]. b) Example of a marine seis-
mogram.

The solution of the wave equation can be obtained using an explicit finite-difference
(FD) scheme , where the space domain D is sampled through a uniform grid spacing
dx, along the horizontal and vertical direction, obtaining a regular grid D based on
nx ·nz grid nodes, with i = 1, . . .nx ·nz, and with xi, obtained scrolling the grid nodes
along the rows.
It is important to remark that each evaluation of the misfit function is computation-
ally expensive. Indeed, it requires the solution of the wave equation, which mandates
for relatively small values of space sampling dx and time sampling dt [5]. Accord-
ing to a FD grid for the space parametrization, the acoustic FWI problem becomes
an optimization problem with the number of variables given by the number of nodes
in the modelling grid

argmin
v∈V

F(v)≈ argmin
v∈V i

F(vi) (10)

where V i represents the set of the P-wave velocity models discretized on the grid D.
This means an optimization problem with nx ·nz possible variables.
An important aspect of FWI is that the computation of the gradient of the mis-
fit function, ∇v f (v), can be done efficiently by means of the adjoint method [16].
This fact allows us to solve such minimization problem efficiently using an iterative
procedure, updating an initial model v0 with a gradient-based method, until a satis-
factory match between the observed and the predicted data is obtained. However, as
already noted in [2], the misfit functions are characterized by the presence of mul-
tiple local minima, and such local optimization approach will converge to a local
minimum if the used starting model is not in the basin of attraction of the global
minimum.
Global optimization algorithms can estimate such starting model, and meta-heuristic
optimization methods have been already proposed for FWI, specifically Genetic Al-
gorithms [17][10] and Simulated Annealing [6] [9]. In this paper we propose BO as
global optimization approach to identify a promising starting model for a synthetic
2D acoustic FWI benchmark problem, in the field of seismic exploration.



Bayesian Optimization for Full Waveform Inversion 5

Fig. 2 a) The portion of the Marmousi velocity model used as true model for the FWI procedure.
b) An example velocity model derived from the proposed sparse parametrization technique.

3 The Marmousi benchmark

This benchmark problem consists of the estimation of the acoustic velocity model
of Fig. 2, a), that represents the upper central part of the Marmousi model [18], from
a FWI procedure on a set of synthetic seismograms. This model contains 192 and
48 grid points in the z-and x-direction, respectively, with a grid spacing of 24 m.
The first two rows of the modelling grid represent the water layer, whose velocity
and depth are considered known and fixed a priori. We considered 16 seismograms,
recorded by a spread of 192 receivers, equally spaced 24 m. Both the sources and
the receivers are at a depth of 24 m, and the recording time is T = 4 secs. The
synthetic seismograms are obtained by solving the acoustic wave equation (9), using
an efficient FD scheme, whose details of the implementation can be found in [8].
As misfit function, we used the sum of the all the L2-norm difference between the
observed and the synthetic seismograms, whereas as local optimization algorithm
for FWI, we used the conjugate gradient method [14], one of most common gradient
method to solve FWI [7].

4 Experimental setting and results

The starting model is estimated by means of BO using a sparse parameterization
technique to reduce the number of parameters of modelling grid, formed by 192 ·48
grid nodes, to only 10 parameters, using a set of three interfaces and four velocities
(Fig. 2, b)), as described in [6]. The first and the third interfaces are associated with
the seabed (between 2nd and the 3rd row of the modelling grid) and the bottom of
the model (situated at the 48th row) and are considered flat. The second interface
represents a possible velocity contrast between the seabed and the bottom of the
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Fig. 3 a) Best velocity model obtained by EI. b) Best velocity model obtained by LCB. c) Final
velocity model obtained by the local optimization using a) as starting model. d) Final velocity
model obtained by the local optimization using b) as starting model.

model and is represented by a set of six nodes {(xk,zk)}6
k=1 (the red point in Fig. 2,

b)) with xk evenly distributed and fixed along the x-direction and zk that can range
along the z-direction. We use a non-oscillatory spline to interpolate the interface
across the nodes (the dot white spline of Fig. 2, b)). The four velocities prescribed
the velocity just below the first interface, just above the second interface, just below
the second interface, and just above the third interface, respectively. The velocities
of the grid nodes between interfaces are obtained using linear interpolation in the
vertical direction.
The overall number of variables needed for the parametrization is 10: a real variable
for each one of the 4 velocities and 6 discrete variables for the zk components of the
nodes at the second interface. Velocities are in the range 1.5− 4km/sec, while the
range for the 6 discrete variables is between 4 and 47. An overall number of 1000
function evaluations was fixed for each experiment, with 10 independent runs for
each acquisition function (i.e., EI and LCB).
Fig. 3, a) and b) show the best velocity models obtained for EI and LCB, respec-
tively. The first model obtains a value of the misfit function of 1868.1, whereas the
second one obtains a value of 1723.5. These two models have been used as different
starting points for the local optimization procedure on the modelling grid. Fig. 3, c)
and d) show the corresponding velocity models obtained by the local optimization,
after 1000 iterations of conjugate gradient. The final models obtained are very simi-
lar to the actual one, except in some areas near the lateral and the bottom boundaries,
where, however, the seismic illumination is poor. The main result is that the starting
models estimated by the BO, independently by the acquisition function used (EI vs
LCB), can be considered quite near the basin of attraction of the global minimum
of the misfit function, corresponding to the actual model. However, the differences
between the two starting models obtained at the end of the BO, respectively for EI
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(Fig 3.c) and LCB (Fig. 3,d)), lead to slightly different final models at the end of the
entire procedure, with the lower misfit function value for LCB of 9.4 with respect
to a value of 57.7 for EI.

5 Conclusions

According to the emerging interest on BO, to solve black-box and expensive opti-
mization processes [3] [4], we have proposed the BO as a global optimization algo-
rithm for the estimation of a promising starting model for FWI. We considered two
alternative acquisition functions for BO and test them on a 2D acoustic FWI bench-
mark problem, namely the Marmousi model. The low error between the actual and
the final models obtained, independently on the acquisition function, makes the pro-
posed approach well suited for the seismic inversion problems, such as FWI, usually
characterized by highly non-linearity, multiple local minima, and an expensive-to-
evaluate misfit function.
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