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Abstract. The objective of this paper is to show how smart water networks ena-

ble new strategies for the energy cost management of the network, more precisely 

Pump Scheduling Optimization. This problem is traditionally solved using math-

ematical programming and, more recently, nature inspired metaheuristics. The 

schedules obtained by these methods are typically not robust both respect to ran-

dom variations in the water demand and the non-linear features of the model. The 

authors consider three alternative optimization strategies: (i) global optimization 

of black-box functions, based on a Gaussian model and the use of the hydraulic 

simulator (EPANET) to evaluate the objective function; (ii) Multi Stage Stochas-

tic Programming,  which models the stochastic evolution of the water demand 

through a scenario analysis to solve an equivalent large scale linear program; and 

finally (iii), Approximate Dynamic Programming, also known as Reinforcement 

Learning. With reference to real life experimentation, the last two strategies offer 

more modeling flexibility, are demand responsive and typically result in more 

robust solutions (i.e. pump schedules) than mathematical programming. More 

specifically, Approximate Dynamic Programming works on minimal modelling 

assumption and can effectively leverage on line data availability into robust on-

line Pump Scheduling Optimization. 

Keywords: Pump Scheduling Optimization, Bayesian Optimization, Multi-

stage Stochastic Programming, Reinforcement Learning.  

1 Introduction 

The digital revolution in the water industry has just started, later than in other sectors 

notably energy, but will disrupt the sector in many, still unpredictable ways [1]. 

In this paper we consider the specific sector of the operations of an urban Water 

Distribution Network (WDN) as it is being impacted by the introduction of smart me-

tering and the growing capability of sensing the network, specifically flow and pres-

sures, and look to the new opportunities that this technological scenario is offering in 
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the way of improving the networks operations. Indeed, the analysis of the new data 

streams has the potential of turning upside down all the aspects of network operations, 

for instance asset management, leak localization, network resilience evaluation, cus-

tomer relationship management and energy cost optimization, water digital services. 

Business information systems for the water sector will have to integrate these data 

streams and functionalities towards achieving technical and business objectives. 

The authors have been active in several European and national projects, such as 

H2OLeak (national), ICeWater (European, FP7), DATA4WATER (European, H2020), 

PILGRIM (national) and PERFORM-WATER2020 (national), addressing the critical 

issues of leak management [2] [3], demand forecasting [4] [5] resilience evaluation [6] 

and, more recently energy cost optimization through innovative strategies for Pump 

Scheduling Optimization (PSO) [7]. 

Operating a WDN is a very energy intensive activity and a substantial part of this 

energy goes into operating pumps, either fixed or variable speed. A number of model-

ling and computational tools have been developed over the years [8] to optimize the 

energy consumption, meeting reliably customers’ demand and respecting operational 

constraints, specifically pressure related. 

PSO, described in Sec. 2, is a nonlinear problem due to the relation between flow 

and head pressure and its solution by mathematical programming requires some model 

simplification, e.g. linearization/convexification of objective functions and constraints 

set. Moreover, the water demand is to be assumed deterministic and known in advance. 

Under these conditions it’s possible to apply highly efficient mixed integer linear pro-

gramming (MINP) methods. Thus, the solution obtained, optimal for the model consid-

ered, might easily be unfeasible due to the simplification introduced and the assump-

tions on the demand. Therefore, its feasibility must be verified through a hydraulic sim-

ulation software, like EPANET[9]. Moreover, these methods require a complete and 

detailed knowledge of the WDN which is not always available, mostly in large scale 

systems built in different time stages. 

Alternatively to MINP, several metaheuristics, such as Genetic Algorithms and Sim-

ulated Annealing among others, have been proposed to solve the PSO problem, such in 

[10], which proposes a two stage simulated annealing approach, or in [11], which uses 

Harmony Search to solve a multi-objective version of PSO.  

The first strategy, analyzed in Sec. 3.1, is a black-box or simulation-based Global 

Optimization. This approach is based on Bayesian Optimization (BO) [12], does not 

require simplification/approximation, uses EPANET to evaluate the objective function, 

and to take care that the pressure constraints are satisfied.  

The second strategy, reported in Sec. 3.2, is focused on the uncertainty on the water 

demand, whose probability distribution is assumed to be known a-priori. The aim is to 

approach PSO via Multi Stage Stochastic Programming (MSSP), by solving several 

water demand scenarios generated according to the distributions  and represented 

through a scenario tree [13]. 

BO and MSSP are characterized by an off-line analysis, where the solution is the 

state of each pump for every time step (typically 1 hour) of the optimization horizon 

(typically 24 hours). However, the availability of on-line consumptions and operational 

data enables to formulate PSO as an on-line optimization/control problem. Indeed, the 
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authors believe that the digitalization of WDN will offer opportunities for alternative 

optimization strategies free from the limitations of BO and MSSP and able to leverage 

the availability in smart grid of online data into strategies with the potential of simulta-

neously learning and optimizing. The third strategy, described in Sec. 3.3, is based on 

a Markov Decision Process (MDP), structured in term of states, transition dynamics 

and actions specified for each state and rewards. In this case the PSO problem is solved 

using the Approximate Dynamic Programming (ADP), a.k.a. Reinforcement 

Learning (RL) in the machine learning community, that does not require full 

knowledge of the system (i.e. transition dynamics and rewards), and tries actions, in 

different states, with the aim to learn something more about the system behavior (ex-

ploration) while exploiting current knowledge to infer a policy, even if not the best, 

with a good potential towards long term reward. 

The three strategies can be tested both on benchmarks and real WDNs. However, 

since WDNs evolve along different trajectories both in terms of data model and avail-

ability as well as optimization goals, we do not provide a comparison between the nu-

merical results obtained by using the three strategies on three different experimental 

settings. The main result of this paper is a set of new generation optimization strategies 

which, not necessarily as computationally efficient as deterministic mathematical pro-

gramming, adapt to different operational and technological settings, and blend effec-

tively learning from the environment (exploration) and optimization depending on the 

info gathered so far (exploitation). 

Finally, in Sec. 4 we report the main conclusions and discussion about the benefits 

and limitations of the three strategies, depending on the different operational settings. 

2 The pump scheduling optimization problem 

A complex WDN can be represented by a set of nodes connected by links. The nodes 

consist of three subsets: reservoirs, tanks and junctions. Reservoirs are nodes that 

represent an infinite external source or sink of water to the network. Tanks are nodes 

with storage capacity, where the volume of water can vary with time during a simula-

tion. Junctions are points in the network where links join and where water can leave the 

network to satisfy a certain quantity of water demand. We indicate with 𝐽, 𝑅, and 𝐾 

the set of junctions, reservoirs, and tanks, respectively. 

The links consist of two subsets: pipes, that convey water from one point in the 

network to another, and pumps, that are used to increase the pressure within the net-

work by generating enough water flow to satisfy the demand. We indicate with 𝑁, and 

𝑁𝑝, the set of pipes and pumps, respectively.  

Different decision variables can be defined related to the WDN analyzed over a plan-

ning horizon, generally divided into equally-sized time periods 𝑡𝜖{1, . . , 𝑇}: the status 

𝑠𝑖,𝑡 of the pumps 𝑖 ∈ 𝑁𝑝, the flow rate 𝑞𝑖,𝑡 and the head-loss ℎ𝑖,𝑡  of the pipes 𝑖 ∈ 𝑁, and 

the volume of water 𝑣𝑘,𝑡 of the tanks 𝑘 ∈ 𝐾. Typical parameters of the optimization 

problem are the set of the demands 𝐷𝑗,𝑡 ≥ 0, for each junction node 𝑗 ∈ 𝐽.  

An example of benchmark WDN very used is the Anytown [11], reported in Fig. 1a. 

It consists of 37 pipes, 19 nodes, 1 tank and 1 reservoir, with 4 pumps installed at the 
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source of supply water. The total water demand 𝐷𝑡 = ∑ 𝐷𝑗,𝑡𝑗∈𝐽  is reported in Fig. 1b 

and ranges from a minimum of 161.51 𝑙𝑝𝑠 to a maximum of 484.53 𝑙𝑝𝑠, with two 

peaks during a 24-hour period, one around 10:00 and another around 20:00. 

 

Fig. 1.  a) Topology of the water distribution system Anytown. b) The hourly water demand of 

Anytown network over 24 hours. 

Generally, the PSO problem is formulated as the minimization of an objective func-

tion, representing the value of the energy consumption on the planning horizon [8][14]: 

 min 𝐸 , = min (∑ ∑
𝐶𝑡

𝑒𝑖
∙ 𝜆 ∙ 𝑠𝑖,𝑡 ∙ ℎ𝑖,𝑡 ∙ 𝑞𝑖,𝑡

𝑇
𝑡=1𝑖𝜖𝑁𝑝

), (1) 

where 𝑒𝑖 ∈ (0,1) represents the efficiency of the pump 𝑖 ∈ 𝑁𝑝, 𝐶𝑡 is the electricity cost, 

measured in $/kWh, and 𝜆 is an appropriate constant factor. 

For feasibility reasons, the operational constraints [15] must be added to the formu-

lation, such as the flow-rate or the water levels of tank(s) within a given range. An 

important set of constrains is related to flow-continuity equations for all the WDN’s 

junctions: 

 ∑ 𝑞𝑖,𝑡𝑖∈𝑁𝑗
= 𝐷𝑗,𝑡  ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (2) 

where 𝑁𝑗 indicates the subset of links with a vertex in junction 𝑗 and the flow 𝑞𝑖,𝑡 is 

positive by convention. Another important set of constrains is related to the flow-head-

loss equations: 

 ℎ𝑖,𝑡 = {
ℎ0 − 𝑟 ∙ 𝑞𝑖,𝑡

𝑛, ∀𝑖 ∈ 𝑁𝑝 

𝑟 ∙ 𝑝𝑖,𝑡
𝑛 + 𝑚 ∙ 𝑞𝑖,𝑡

2, ∀𝑖 ∈ 𝑁 
, ∀𝑡 ∈ 𝑇 (3) 

where 𝑟 is the resistance coefficient, 𝑛 is the flow exponent, 𝑚 is the minor loss coef-

ficient, and ℎ0 is the shutoff head for the pump. Finally, an important constrain is the 

tank mass balance equation, ∀𝑡 ∈ 𝑇: 

 𝑣𝑘,𝑡 = 𝑣𝑘,𝑡−1 + ∑ 𝑞𝑖,𝑡𝑖∈𝑁𝑘
, ∀𝑘 ∈ 𝐾, (4) 

where 𝑁𝑘 indicates the subset of links with a vertex in the tank node 𝑘. 



5 

This formulation of the PSO is a mixed integer non-linear problem that is computa-

tionally expensive to solve using a standard optimization software with no guarantee of 

global optimality.  

The optimal pump schedule obtained by solving the PSO is limited to the decision 

variables 𝑠𝑖,𝑡 which represent the status of each pump i at time step t. These variables 

are discrete (i.e., {0, 1}) in the case of on/off pumps, and continuous (e.g. in [0, 1]) in 

the case of variable speed pumps. However, a simple WDN such as Anytown have 4 

ON/OFF pumps and, considering an hourly resolution and a 24-hours horizon, this 

leads to an optimization problem with 96 discrete decision variables and, consequently, 

424(i.e. ≈ 2.8 ∙ 1014) possible pump schedules. 

3 Optimization strategies 

3.1 Global Optimization through Bayesian Optimization 

The first strategy presented in this work to solve the PSO problem uses  a Global Opti-

mization (GO) approach and, specifically, Bayesian Optimization (BO) [16] [17]. In 

this case the PSO problem is considered as a solution 𝑥∗ of a global optimization prob-

lem of a black-box usually expensive-to-evaluate, objective function 𝑓(𝑥),  

 𝑥∗ = argmin
𝑥

𝑓(𝑥)  (5) 

where 𝑥 ∈ 𝑋 ⊂ 𝑅𝑑 is a point in a d-dimensional bounded-box space 𝑋. With respect to 

the PSO problem, 𝑓(𝑥) represents the energy cost 𝐸 (Eq. 1), whereas the dimension 𝑑 

of the search space is given by 𝑇 ∙ 𝑁𝑝 [7]. Each evaluation will require to run an 

EPANET simulation and, in case of possible warnings during the simulation run (i.e. 

some constraint is not satisfied) is possible to use a penalty on the objective function. 

In BO the objective function 𝑓 is modelled as a realization of a stochastic process, 

typically, a Gaussian Process (GP) on a probability space (Ω, Σ, 𝑃). A GP, which de-

fines a prior distribution over the function 𝑓 , is completely specified by its mean 

𝜇(𝑥): 𝑋 → 𝑅 and a definite positive covariance function 𝑘(𝑥, 𝑥′): 𝑋2 → 𝑅: 

 𝑓(𝑥) ≈ 𝐺𝑃(𝜇(𝑥); 𝑘(𝑥, 𝑥′)). (6) 

It can intuitively think of GP as analogous to a function, but instead of returning a single 

numeric value 𝑓(𝑥), it returns the mean and variance of a normal distribution over the 

possible values of 𝑓(𝑥) (Fig. 2a).  

The BO algorithm starts with an initial set of 𝑘 points {𝑥𝑖}𝑖=1
𝑘 ∈ 𝑋 and the associated 

observations {𝑦𝑖}𝑖=1
𝑘  with 𝑦𝑖 = 𝑓(𝑥𝑖). At each iteration 𝑘̅ ∈ {k + 1, … , N}, the GP prior 

is updated using the Bayes rule, to obtain posterior distribution conditioned on the cur-

rent training set 𝑆𝑡 = {(𝑥𝑖 , 𝑦𝑖 )}𝑖=1
𝑘̅  containing the past evaluated points and observa-

tions. For any point 𝑥 ∈ 𝑋, the posterior mean 𝜇̅𝑡(𝑥) and the posterior variance 𝜎𝑡
2(𝑥) 

of the GP, conditioned on 𝑆𝑡, are known in closed-form: 

 𝑥𝑘̅+1 = arg max
𝑥𝜖𝑋

𝑈𝑘̅(𝑥; 𝑆𝑘̅), (7) 
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where 𝑈𝑘̅ is a acquisition function to maximize. Solving this auxiliary problem does 

not involve the evaluation of the expensive objective function 𝑓, but only the posterior 

quantities of the GP and, thus, is considered cheap. Several acquisition functions have 

been proposed, such as the Probability of Improvement [18], the Expected Improve-

ment [12], the Lower Confidence Bound (LCB) and Upper Confidence Bound (UCB) 

[19], and the Knowledge Gradient [20]. 

3.2 Multi-Stage Stochastic Programming 

The second strategy presented in this work to solve the PSO problem simplifies the 

original problem to a simple linear problem (LP), where the nonlinear relation coming 

from the objective function and/or some of the constrains above are circumvented. 

A complex WDN can be simplified to only three nodes, one reservoir, one tank, and 

one junction, and two links, one pump from the reservoir to the junction node, and one 

pipe from the junction node to the tank. For each period 𝑡, a tank volume 𝑣𝑡 and a pump 

flow rate 𝑞𝑡 is defined, whereas the junction node has as demand 𝐷𝑡 = ∑ 𝐷𝑗,𝑡𝑗∈𝐽 . 

By this way, the original PSO problem is approximated by an LP problem [21] [11]: 

 min
𝑞1,...,𝑞𝑇

∑ 𝑐𝑡 ∙ 𝑞𝑡
𝑇
𝑡=1 , (8) 

subjected to the following constrain: 

 𝑣𝑚𝑖𝑛 ≤ 𝑣1 + ∑ (𝑞𝑙 − 𝐷𝑙)𝑡
𝑙=1 ≤ 𝑣𝑚𝑎𝑥, ∀𝑡 ∈ 𝑇. (9) 

where 𝑐𝑡 is an appropriate factor, representing the proportional factors between the en-

ergy and the pumped flow, and 𝑣𝑚𝑖𝑛  and 𝑣𝑚𝑎𝑥  represent the minimum and the maxi-

mum water level of the tank. 

 Such simple model can be used to describe a more complex model of water distri-

bution in a synthesis stage [21], whereas an extended period simulation, using 

EPANET, can be used subsequently in order to verify the feasibility of the obtained 

pump schedule, in an analysis stage. If the demand pattern {𝐷𝑡}𝑡=1
𝑇  is known in advance, 

the optimal pumping policy is given by the optimal solution to the LP problem, solved 

by using any commercial code able to solve a MIL problem such as CPLEX. 

 The advantage of such formulation consists of the possibility to use the Multi-stage 

stochastic programming (MSSP) approach [22] [23],  to manage a possible uncertain 

demand, in which, for example, the demand at each time  follows a probability distri-

bution.  In this case the evolution pattern of the demand is treated as  a stochastic pro-

cess  𝑫 = (𝐷1, … , 𝐷𝑇) (sequence of random variables representing a random time se-

ries), and the flow rate 𝑞𝑡 as a decision process 𝒒 = (𝑞1, … , 𝑞𝑇), that are interlinked 

into a sequence of alternating decisions and observations: 𝑞1, 𝐷1, 𝑞2, 𝐷2 … , 𝑞𝑇 , 𝐷𝑇 . The 

decisions at each stage are made while considering that will be opportunities for mod-

ification and corrections at later stages (recourse decisions). The decision process is 

non-anticipative or implementable, i.e. the decision 𝑞𝑡 at time 𝑡 depends only on previ-

ous information 𝐷1, … , 𝐷𝑡−1. The MSSP formulation for the problem of Eq. (7) will be 

set as follow: 
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  min
𝑞1,...,𝑞𝑇

𝔼[∑ 𝑐𝑡 ∙ 𝑞𝑡
𝑇
𝑡=1 (𝐷[𝑡])], (10) 

 subject to constraint (9) and where 𝑞𝑡(𝐷[𝑡]) means that the solution 𝑞𝑡 will be depends 

only on the demand until stage 𝑡 and 𝔼 represents the expected value as a function of 

the demand. The MSSP solves for an optimal policy which contains the first-stage de-

cisions (values) and the recourse decisions (functions of revealed information).  

 Finding the functions 𝑞𝑡(∙) which lead to optimal solution of the MSSP is done in-

troducing a discrete approximation of space of  the stochastic process by means of the 

scenarios [13], which are particular possibilities of how the process might be realized 

as the future  unfolds. The stochastic process 𝑫 is discretized into a finite set of scenar-

ios 𝑫𝑠 = (𝐷1
𝑠, … , 𝐷𝑡

𝑠) ∈ Ω𝑇, ∀𝑠 = 1, … 𝑆, with a probability 𝑝𝑠 where ∑ 𝑝𝑠
𝑆
𝑠=1 = 1. 

Each scenario, 𝑫𝑠, is defined as a possible realization of the stochastic process over the 

entire time horizon. The function 𝑞𝑡(∙) is replaced by a corresponding finite number of 

vectors, equal to the different possibilities taken by the function 𝑞𝑡(∙) as its input, and 

using a non-anticipativity requirement, that means that every pair of scenarios 𝑫𝑘 , 𝑫𝑙 ∈
Ω, which are indistinguishable up to stage 𝑡 (share the same history) have the same 

decision history up to stage 𝑡. A common way to represent such situation is through a 

scenario tree (Fig. 2) [13], consisting of nodes and arcs; each node represents a possi-

ble realization of the stochastic process, where the root node represents the first stage. 

In such a scenario tree, the path from the root node of the tree to each of its leaf nodes 

corresponds to a single scenario, and the event outcomes for scenarios that pass through 

the same intermediate node are identical for all stages up to that node. 

 
 

Fig. 2 Example of scenario tree. 

3.3 Approximated dynamic programming 

The third strategy, presented in this section, is based on Markov Decision Processes 

(MDP), a powerful framework to model a variety of sequential optimization problems 

and provide a robust mechanism to generate solutions online. 
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An MDP is based on a state space 𝑆, and an action space 𝒜. A state consists of a 

set of possible decision variables 𝑠𝑡 = {𝜉1,𝑡 , . . . , 𝜉 𝑁𝑣,𝑡} at a time step 𝑡. An action 𝑎𝑡 =

𝑎 allows for moving from the current state 𝑠𝑡 = 𝑠 to another state 𝑠𝑡+1 = 𝑠̅, according 

to the transition dynamics of the system. When transition dynamics is not known a-

priori, as well as the immediate rewards associated to every state-action pair, Approxi-

mate Dynamic Programming (ADP) is used. Any ADP algorithm learns how to behave 

with the system to be optimized by directly interacting with it (aka “environment”) 

while infers an optimal policy (i.e. a mapping from every state 𝑠 to the action 𝑎 associ-

ated to the highest long-term reward). More precisely, we consider Q-Learning, one 

of the most widely adopted ADP algorithm, well-known in the Reinforcement Learning 

community. It takes its name from the variable 𝑄(𝑠, 𝑎) which represents the value of 

being in the state 𝑠 ∈ 𝑆 and taking the action 𝑎 ∈ 𝒜 (i.e. state-action value function). 

Q-Learning works “going forward in time”, where the next action to perform is se-

lected according to an 𝜀-greedy policy, selecting a random action with probability 𝜀  

(exploration)and the action with maximum value of 𝑄(𝑠, 𝑎), (exploitation)with proba-

bility 1 − 𝜀. 

After the selected action is performed, an immediate reward 𝑟 value is observed 

along with the new state 𝑠′, so the value of the state-action pair, 𝑄(𝑠, 𝑎), is updated 

consequently: 

𝑄(𝑠, 𝑥) ← 𝑄(𝑠, 𝑥) + 𝛼 [ℛ(𝑠, 𝑥) + 𝛾 max
𝑥′

𝑄(𝑠′, 𝑥′) − 𝑄 (𝑠, 𝑥)]  (13) 

 

where 𝛼 is the learning rate – which sets how much the old estimate of the Q-value 

has to change depending on the observed state and reward – and 𝛾 is the discount factor 

– which sets how much the future rewards impact on the update of the Q-value of the 

current state-action pair. 

 

In case of the PSO problem, we have defined the state as a 2D vector consisting of 

the tank level and the average pressure (computed on all the WDN’s junctions). The 

two vector components have been discretized on 5 levels each, leading to a discrete 

state space with size 25. An action is a vector with a number of components equal to 

the number of pumps, that is 4 in the Anytown case study. In our previous analysis we 

have considered on/off pumps, only [24]. Finally, the transition dynamics is not mod-

elled – indeed, Q-Learning is “model-free” – and  the reward is computed according to 

the energy costs associated to the actions performed. 

Therefore Q-Learning does not provide, in one shot, an entire schedule for the 24 hours 

horizon, but suggests the best action to perform (i.e. activation of each pump) at every 

decision step, working online with the WDN. Q-Learning proved to be an effective 

strategy even when the optimal policy is obtained on a deterministic case and then ap-

plied on the real-world system: it is robust with respect to demand variations/uncer-

tainty 
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4 Conclusion and discussion 

In this paper, we have presented several approaches because PSO in WDN should 

be modelled and solved in different ways according to the objectives of the analysis, 

the data infrastructure and availability and in general the state of digitalization of the 

network.  

BO has the advantage that the problem formulation is not analytical but based on a 

hydraulic simulator that can take care, also in a detailed way, of operational objective 

and constraints. This simulation, based black-box optimization, is expensive because 

each evaluation of the model requires the run of simulation but has the advantage that 

the solutions proposed are hydraulically feasible. Moreover, BO alternates exploration 

stages, to acquire information on the model, and exploitation to improve the incumbent 

solution: this affects also early stage solutions proposed by the algorithm correspond to 

good quality schedules. This make possible to deal with WDN, as shown in [7], way 

larger than the theoretical scaling properties would suggest. 

The MSSP solution we presented is analytically based and requires linearization of 

objective functions and constraints. This simplification makes it necessary to check the 

hydraulic feasibility of the proposed schedules. An advantage of the MSSP approach is 

that demand is no longer considered deterministic but can be uncertain, modeled 

through a probability distribution. The strategy is computationally demanding requiring 

the generation of a scenario tree and consequently a larger set of variables to simulate 

the possible evolution of the water demand. 

The result of MSSP is not just a schedule but more generally a strategy mapping   the 

water demand observed so far to the best flow provided by pumps for the current step 

(i.e. node of the scenarios tree). 

The last strategy ADP/RL is completely data-driven which makes it, at least in prin-

ciple, the natural choice where full digital infrastructure is already in place and can 

acquire and process online pressure, flows, water demand and energy consumption. 

There is no need to model or know a priori the water demand whose values are provided 

by sensor readings. Simulation is not needed because the sensory infrastructure is such 

that the state of the system is observable on line This strategy is also structure in phases 

of exploration (learning something more about the WDN behavior) and exploitation 

(using the current knowledge to improve on the best pump schedule obtained so far. 

Similarly, to MSSP, ADO/RL provides not only a solution but more generally a strategy 

mapping the water demand observed so far to the best flow provided by pumps for the 

current step (i.e. node of the scenarios tree). The difference is that in ADP/RL this strat-

egy is inferred by interacting online with the WDN, instead of generating possible sce-

narios a-priori 

The focus of this paper is only energy operations management strategy which is en-

abled by smart water networks: besides the PSO problem it is important to remark that 

other operational functions are going to be disrupted by the online data availability as 

already demonstrated by the prototypes developed by the authors for leak management 

[25], demand forecasting [26] [27] and resilience evaluation [28] [29] in the previously 

cited European projects.  
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