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Abstract. We consider elliptic equations in planar domains with mixed boundary conditions of

Dirichlet-Neumann type. Sharp asymptotic expansions of the solutions and unique continuation

properties from the Dirichlet-Neumann junction are proved.

1. Introduction

The present paper deals with elliptic equations in planar domains with mixed boundary condi-
tions and aims at proving asymptotic expansions and unique continuation properties for solutions
near boundary points where a transition from Dirichlet to Neumann boundary conditions occurs.

A great attention has been devoted to the problem of unique continuation for solutions to partial
differential equations starting from the paper by Carleman [5], whose approach was based on some
weighted a priori inequalities. An alternative approach to unique continuation was developed
by Garofalo and Lin [14] for elliptic equations in divergence form with variable coefficients, via
local doubling properties and Almgren monotonicity formula; we also quote [18] for quantitative
uniqueness obtained by monotonicity methods.

The monotonicity approach has the advantage of giving not only unique continuation but also
precise asymptotics of solutions near a fixed point, via a suitable combination of monotonicity
methods with blow-up analysis, as done in [9–13]. The method based on doubling properties
and Almgren monotonicity formula has also been successfully applied to treat the problem of
unique continuation from the boundary in [1, 2, 9, 19, 27] under homogeneous Dirichlet conditions
and in [26] under homogeneous Neumann conditions. Furthermore, in [9] a sharp asymptotic
description of the behaviour of solutions at conical boundary points was given through a fine
blow-up analysis. In the present paper, we extend the procedure developed in [9–13] to the case of
mixed Dirichlet/Neumann boundary conditions, providing sharp asymptotic estimates for solutions
near the Dirichlet-Neumann junction and, as a consequence, unique continuation properties. In
addition, comparing our result with the aforementioned papers, here we also provide an estimate
of the remainder term in the difference between the solution and its asymptotic profile.

Let Ω be an open subset of R2 with Lipschitz boundary. Let Γn ⊂ ∂Ω and Γd ⊂ ∂Ω be two
nonconstant curves (open in ∂Ω) such that Γn ∩ Γd = {P} for some P ∈ ∂Ω. We are interested in
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regularity of weak solutions u ∈ H1(Ω) to the mixed boundary value problem

(1.1)


−∆u = f(x)u, in Ω,

∂νu = g(x)u, on Γn,

u = 0, on Γd,

with f ∈ L∞(Ω) and g ∈ C1(Γn), see Section 2 for the weak formulation. Our aim is to prove
unique continuation properties from the Dirichlet-Neumann junction {P} = Γn ∩ Γd and sharp
asymptotics of nontrivial solutions near P provided ∂Ω is of class C2,γ in a neighborhood of P .
We mention that some regularity results for solutions to second-order elliptic problems with mixed
Dirichlet–Neumann type boundary conditions were obtained in [16, 25], see also the references
therein.

Some interest in the derivation of asymptotic expansions for solutions to planar mixed boundary
value problems at Dirichlet-Neumann junctions arises in the study of crack problems, see e.g. [6,20].
Indeed, if we consider an elliptic equation in a planar domain with a crack and prescribe Neumann
conditions on the crack and Dirichlet conditions on the rest of the boundary, in the case of the crack
end-point belonging to the boundary of the domain we are lead to consider a problem of the type
described above in a neighborhood of the crack’s tip (which corresponds to the Dirichlet-Neumann
junction). We recall (see e.g. [6]) that, in crack problems, the coefficients of the asymptotic expan-
sion of solutions near the crack’s tip are related to the so called stress intensity factor.

In order to get a precise asymptotic expansion of u at point P ∈ Γn∩Γd, we will need to assume
that ∂Ω is of class C2,δ near P . The asymptotic profile of the solution will be given by the function

(1.2) Fk(r cos θ, r sin θ) = r
2k−1

2 cos

(
2k − 1

2
θ

)
, r > 0, θ ∈ (0, π),

for some k ∈ N \ {0}. We note that Fk ∈ H1
loc(R2) and solves the equation

∆Fk = 0, in R2
+,

Fk(x1, 0) = 0, for x1 < 0,

∂x2
Fk(x1, 0) = 0, for x1 > 0,

(1.3)

where here and in the following R2
+ := {(x1, x2) ∈ R2 : x2 > 0}.

The main result of the present paper provides an evaluation of the behavior of weak solutions
u ∈ H1(Ω) to (1.1) at the boundary point where the boundary conditions change. In order to
simplify the statement and without losing generality, we can fix the cartesian axes in such a way
that the following assumptions on Ω ⊂ R2 are satisfied. Here and in the remaining of this paper,
Γn,Γd ⊂ ∂Ω are nonconstant curves (open as subsets of ∂Ω) such that Γn ∩Γd = {0} with 0 ∈ ∂Ω.

(i) The domain Ω is of class C2,δ in a neighborhood of 0, for some δ > 0.
(ii) The unit vector e1 := (1, 0) is tangent to ∂Ω at 0 and pointed towards Γn. Moreover, the

exterior unit normal vector to ∂Ω at 0 is (0,−1).

We are now in position to state the main result of the present paper.

Theorem 1.1. We assume that Ω satisfies the assumption (i)-(ii) above. Let u ∈ H1(Ω) be a
nontrivial weak solution to (1.1), with f ∈ L∞(Ω) and g ∈ C1(Γn). Then, there exist k0 ∈ N \{0},
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β ∈ R \ {0} and r > 0 such that, for every % ∈ (0, 1/2), there exists C > 0 such that

(1.4) |u(x)− βFk0
(ϕ(x))| 6 C|x|

2k0−1
2 +%, for every x ∈ Ω ∩B+

r .

Here, the function ϕ : Ω ∩Br0 → R2
+ is a conformal map of class C2, for some r0 > 0 only

depending on Ω.

Remark 1.1. Here and in the sequel, we identify R2 with the complex plane C; hence, by a
conformal map on an open set U ⊂ R2 we mean a holomorphic function with complex derivative

everywhere non-zero on U . We notice that, if Ω satisfies (i)-(ii) and ϕ : Ω ∩Br0 → R2
+ is

conformal, then Dϕ(0) = α Id and ϕ′(0) = α for some real α > 0, where Dϕ denotes the jacobian
matrix of ϕ and ϕ′ denotes the complex derivative of ϕ.

As a direct consequence of Theorem 1.1, we derive the following Hopf-type lemma.

Corollary 1.2. Under the same assumptions as in Theorem 1.1, let u ∈ H1(Ω) be a non-trivial
weak solution to (1.1), with u > 0. Then

(i) for every t ∈ [0, π),

lim
r→0

u(r cos t, r sin t)

r1/2
= βα1/2 cos

(
t

2

)
> 0,

where α = ϕ′(0) > 0 and ϕ is as in Theorem 1.1;
(ii) for every cone C ⊂ R2 satisfying (1, 0) ∈ C and (−1, 0) ∈ R2 \ C, we have

(1.5) lim inf
x→0
x∈Ω∩C

u(x)

|x|1/2
> 0.

A further relevant byproduct of our asymptotic analysis is the following unique continuation
principle, whose proof follows directly from Theorem 1.1.

Corollary 1.3. Under the same assumptions as in Theorem 1.1, let u ∈ H1(Ω) be a weak solution
to (1.1) such that u(x) = O(|x|n) as x ∈ Ω, |x| → 0, for any n ∈ N. Then u ≡ 0.

We observe that Theorem 1.1 provides a sharp asymptotic expansion (and consequently a unique
continuation principle) at the boundary for 1

2 -fractional elliptic equations in dimension 1. Indeed,

if v ∈ H1/2(R) weakly solves {
(−∆)1/2v = g(x)v, in (0, R),

v = 0, in R \ (0, R),

for some g ∈ C1([0, R]), then its harmonic extension V ∈ H1
loc(R2

+) weakly solves

(1.6)


−∆V = 0, in R2

+,

∂νV = g(x)V, on (0, R)× {0},
V = 0, on (R \ (0, R))× {0},

see [4]. Theorem 1.1 and Corollary 1.3 apply to (1.6). Hence, V (and in particular its restriction v)
satisfies expansion (1.4) and a strong unique continuation principle from 0 (i.e. from a boundary
point of the domain of v). We mention that unique continuation principles from interior points for
fractional elliptic equations were established in [8].
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We do not know if the C2,δ regularity on Ω and C1 regularity of the boundary potential g in
Theorem 1.1 can be weakened in order to obtain a unique continuation property. On the other
hand, we can conclude that a regularity assumption on the boundary is crucial for excluding
the presence of logarithms in the asymptotic expansion at the junction. Indeed, in Section 8 we
produce an example of a harmonic function on a domain with a C1-boundary which is not of
class C2,δ, satisfying null Dirichlet boundary conditions on a portion of the boundary and null
Neumann boundary conditions on the other portion, but exhibiting dominant logarithmic terms
in its asymptotic expansion.

The proof of Theorem 1.1 combines the use of an Almgren type monotonicity formula, blow-up
analysis and sharp regularity estimates. Indeed regularity estimates yield the expansion of u near
zero as follows:

(1.7)

∥∥∥∥∥u−
k0∑
k=1

ak(r)Fk ◦ ϕ

∥∥∥∥∥
L∞(Br)

6 Cr
2k0−1

2 +%,

for every % ∈ (0, 1/2), for some C > 0, k0 > 1 and where ak =
〈u,Fk◦ϕ〉L2(Br)

‖Fj◦ϕ‖2
L2(Br)

. Now, if u is

nontrivial, a blow-up analysis combined with Almgren type monotonicity formula allows to depict
a k0 > 1 for which ak0

(r) → β 6= 0 and ak(r) → 0 for every k < k0 as r → 0. The proof of (1.7)
uses also a blow-up analysis argument inspired by Serra [24], see also [22,23].

Remark 1.2. The extension of our results to higher dimensions are the object of current inves-
tigation. First of all, the implementation of the monotonicity argument for Dirichlet-Neumann
problems exhibits substantial additional difficulties due to the positive dimension of the junction
set and some role played by the geometry of the domain. Moreover, further technical difficulties
appear in higher dimension since, in such a situation, we can no more make use of conformal
transformations like the ones employed in Section 2 which are based on the Riemann mapping
Theorem.

Remark 1.3. For the sake of simplicity of the exposition, in the present paper we considered an
elliptic problem with the Laplacian and a linear term with a bounded potential; a possible extension
to more general elliptic problems with variable coefficients and first order terms could be obtained
with a more sophisticated monotonicity approach like in [9].

The paper is organized as follows. In Section 2 we introduce an auxiliary equivalent problem
obtained by a conformal diffeomorphic deformation straightening B1∩∂Ω near 0 and state Theorem
2.1 giving the sharp asymptotic behaviour of its solutions. Section 3 contains some Hardy-Poincaré
type inequalities for H1-functions vanishing on a portion of the boundary of half-balls. In Section
4 we develop an Almgren type monotonicity formula for the auxiliary problem which yields good
energy estimates for rescaled solutions thus allowing the fine blow-up analysis performed in Section
5 and hence the proof of Theorem 2.1. Section 7 contains the proof of the main Theorem 1.1, which
is based on Theorem 2.1 and on some regularity and approximation results established in Section
6. Finally, Section 8 is devoted to the construction of an example of a solution with logarithmic
dominant term in a domain violating the C2,δ-regularity assumption.

2. The auxiliary problem

For every R > 0 let BR = {(x1, x2) ∈ R2 : x2
1 + x2

2 < R2} and B+
R = {(x1, x2) ∈ BR : x2 > 0}.

Since ∂Ω is of class C2,δ near zero, we can find r0 > 0 such that Γ := ∂Ω ∩ Br0 is a C2,δ curve.
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Here and in the following, we let B be a C2,δ simply connected open bounded set such that B ⊂ Ω
and ∂B ∩ ∂Ω = Γ. For some functions

(2.1) f ∈ L∞(B) and g ∈ C1(Γn),

let u ∈ H1(B) be a solution to

(2.2)


−∆u = f(x)u, in B,
∂νu = g(x)u, on Γn,

u = 0, on Γd.

We introduce the space H1
0,Γd

(B) as the closure in H1(B) of the subspace

C∞0,Γd(B) := {u ∈ C∞(B) : u = 0 on Γd ∩ ∂B}.

We say that u ∈ H1(B) is a weak solution to (2.2) if
u ∈ H1

0,Γd
(B),∫

B
∇u(x)∇v(x) dx =

∫
B
f(x)u(x)v(x) dx+

∫
Γn

guv ds for any v ∈ C∞0,∂B\Γn(B)

where C∞0,∂B\Γn(B) = {u ∈ C∞(B) : u = 0 on ∂B \ Γn}. Since B is of class C2,δ, in view of the

Riemann mapping Theorem and [17, Theorem 5.2.4], there exists a conformal map ϕ̂ : B → B1

which is of class C2. Let N = ϕ̂(0) ∈ ∂B1 and let S be its antipodal. We then consider the map

ϕ̃ : R2 \ {S} → R2 \ {S} given by ϕ̃(z) := 2 z−S
|z−S|2 + S, where, for every z ∈ R2 ' C, z denotes

the complex conjugate of z. This map is conformal and ϕ̃(N) = 0. In addition ϕ̃(B1 \ {S}) ⊂ P
where P is the half plane not containing S whose boundary is the line passing through the origin
orthogonal to S.

Then the map ϕ̃ ◦ ϕ̂ is a conformal map which is of class C2 from a neighborhood of the origin
B ∩Br into P for some r > 0. It is now clear that there exists a rotation R and a real number

R > 0 such that, letting UR := ϕ−1(B+
R), the map ϕ := R ◦ ϕ̃ ◦ ϕ̂ : UR → B+

R is an invertible

conformal map of class C2 with inverse ϕ−1 : B+
R → UR of class C2. Moreover ϕ(0) = 0.

Since ϕ is a conformal diffeomorphism, in view of Remark 1.1 we have that, under the assump-
tions of Theorem 1.1,

(2.3) Dϕ(0) = α Id, with α = ϕ′(0) > 0,

being ϕ′(0) the complex derivative of ϕ at 0, which turns out to be real because of the assumption
that (1, 0) is tangent to ∂Ω at 0 and strictly positive because of the assumption that the exterior
unit normal vector to ∂Ω at 0 is (0,−1). In addition, (2.3) implies that, if R is chosen sufficiently
small, ϕ−1((−R, 0)× {0}) ⊂ Γd and ϕ−1((0, R)× {0}) ⊂ Γn.

Therefore letting w = u ◦ ϕ−1 : B+
R → R and Ψ := ϕ−1, we then have that w ∈ H1(B+

R) solves

(2.4)


−∆w(z) = p(z)w(z), in B+

R ,

∂νw(x1, 0) = q(x1)w(x1, 0), x1 ∈ (0, R),

w = 0, on (−R, 0)× {0},
with

p(z) = |Ψ′(z)|2f(Ψ(z)), q(x1) = (g(Ψ(x1, 0))|Ψ′(x1, 0)|.
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It is plain that p ∈ L∞(B+
R) and q ∈ C1([0, R)). Here and in the following, for every r > 0, we

define

(2.5) Γrn := (0, r)× {0} and Γrd := (−r, 0)× {0}.
The following theorem describes the behaviour of w at 0 in terms of the limit of the Almgren

quotient associated to w, which is defined as

N (r) =

∫
B+
r
|∇w|2dz −

∫
B+
r
pw2dz −

∫ r
0
q(x)w2(x, 0) dx∫ π

0
w2(r cos t, r sin t) dt

.

In Section 4 we will prove that N is well defined in the interval (0, R0) for some R0 > 0.

Theorem 2.1. Let w be a nontrivial solution to (2.4). Then there exists k0 ∈ N, k0 > 1, such
that

(2.6) lim
r→0+

N (r) =
2k0 − 1

2
.

Furthermore

τ−
2k0−1

2 w(τz)→ β|z|
2k0−1

2 cos

(
2k0−1

2 Arg z

)
as τ → 0+

strongly in H1(B+
r ) for all r > 0 and in C0,µ

loc (R2
+ \ {0}) for every µ ∈ (0, 1), where β 6= 0 and

β =
2

π

∫ π

0

R−
2k0−1

2 w(R cos s,R sin s) cos
(

2k0−1
2 s

)
ds(2.7)

+
2

π

∫ π

0

[ ∫ R

0

t−k0+3/2−R1−2k0 tk0+1/2

2k0−1 p(t cos s, t sin s)w(t cos s, t sin s) dt

]
cos
(

2k0−1
2 s

)
ds

+
2

π

∫ R

0

t1/2−k0 −R1−2k0tk0−1/2

2k0 − 1
q(t)w(t, 0) dt.

In particular

(2.8) τ−
2k0−1

2 w(τ cos t, τ sin t)→ β cos
(

2k0−1
2 t

)
in C0,µ([0, π]) as τ → 0+.

The proof of Theorem 2.1 is based on the study of the monotonicity properties of the Almgren
function N and on a fine blow-up analysis which will be performed in Sections 4 and 5.

3. Hardy-Poincaré type inequalities

In the description of the asymptotic behavior at the Dirichlet-Neumann junction of solutions to
equation (2.4) a crucial role is played by eigenvalues and eigenfunctions of the angular component
of the principal part of the operator.

Let us consider the eigenvalue problem

(3.1)


−ψ′′ = λψ, in [0, π],

ψ′(0) = 0,

ψ(π) = 0.

It is easy to verify that (3.1) admits the sequence of (all simple) eigenvalues

λk =
1

4
(2k − 1)2, k ∈ N, k > 1,
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with corresponding eigenfunctions

ψk(t) = cos
(

2k−1
2 t

)
, k ∈ N, k > 1.

It is well known that the normalized eigenfunctions

(3.2)

{√
2
π cos

(
2k−1

2 t
)}

k>1

form an orthonormal basis of the space L2(0, π). Furthermore, the first eigenvalue λ1 = 1
4 can be

characterized as

(3.3) λ1 =
1

4
= min
ψ∈H1(0,π)\{0}

ψ(π)=0

∫ π
0
|ψ′(t)|2 dt∫ π

0
|ψ(t)|2 dt

.

For every r > 0, we let (recall (2.5) for the definition of Γrd)

Hr = {w ∈ H1(B+
r ) : w = 0 on Γrd }.

As a consequence of (3.3) we obtain the following Hardy-Poincaré inequality in Hr.

Lemma 3.1. For every r > 0 and w ∈ Hr, we have that∫
B+
r

|∇w(z)|2 dz > 1

4

∫
B+
r

|w(z)|2

|z|2
dz.

Proof. Let w ∈ C∞(B+
r ) with w = 0 on Γrd = [−r, 0]× {0}. Then, in view of (3.3),∫

B+
r

|∇w(z)|2 dz

=

∫ r

0

∫ π

0

ρ

(∣∣∣ ∂∂ρ (w(ρ cos t, ρ sin t))
∣∣∣2 +

1

ρ2

∣∣ ∂
∂t (w(ρ cos t, ρ sin t))

∣∣2) dt dρ

>
∫ r

0

1

ρ

(∫ π

0

∣∣ ∂
∂t (w(ρ cos t, ρ sin t))

∣∣2 dt) dρ

>
1

4

∫ r

0

1

ρ

(∫ π

0

|w(ρ cos t, ρ sin t)|2dt
)
dρ =

1

4

∫
B+
r

|w(z)|2

|z|2
dz

We conclude by density, recalling that the space of smooth functions vanishing on [−r, 0]× {0} is
dense in Hr, see e.g. [7]. �

Lemma 3.2. For every r > 0 and w ∈ Hr, we have that x−1
1 w2(x1, 0) ∈ L1(0, r) and∫ r

0

w2(x1, 0)

x1
dx1 6 π

∫
B+
r

|∇w(z)|2 dz.

Proof. Let w ∈ C∞(B+
r ) with w = 0 on [−r, 0]× {0}. Then for any 0 < x1 < r

|w(x1, 0)| =
∣∣∣∣∫ π

0

d

dt
w(x1 cos t, x1 sin t) dt

∣∣∣∣ =

∣∣∣∣∫ π

0

x1∇w(x1 cos t, x1 sin t) · (− sin t, cos t) dt

∣∣∣∣
6
√
π

√∫ π

0

x2
1|∇w(x1 cos t, x1 sin t)|2 dt.
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It follows that∫ r

0

w2(x1, 0)

x1
dx1 6 π

∫ r

0

∫ π

0

x1|∇w(x1 cos t, x1 sin t)|2 dt dx1 = π

∫
B+
r

|∇w(z)|2 dz.

We conclude by density. �

4. The monotonicity formula

Let w ∈ H1(B+
R) be a non trivial solution to (2.4). For every r ∈ (0, R] we define

(4.1) D(r) =

∫
B+
r

|∇w|2dz −
∫
B+
r

pw2dz −
∫ r

0

q(x1)w2(x1, 0) dx1

and

(4.2) H(r) =
1

r

∫
S+
r

w2 ds =

∫ π

0

w2(r cos t, r sin t) dt,

where S+
r := {(x1, x2) : x2

1 + x2
2 = r2 and x2 > 0}.

In order to differentiate the functions D and H, the following Pohozaev type identity is needed.

Theorem 4.1. Let w solve (2.4). Then for a.e. r ∈ (0, R) we have

(4.3)
r

2

∫
S+
r

|∇w|2ds = r

∫
S+
r

∣∣∣∣∂w∂ν
∣∣∣∣2 ds

− 1

2

∫ r

0

(
q(x1) + x1q

′(x1)
)
w2(x1, 0) dx1 +

r

2
q(r)w2(r, 0) +

∫
B+
r

pwz · ∇w dz

and

(4.4)

∫
B+
r

|∇w|2dz =

∫
B+
r

pw2dz +

∫
S+
r

∂w

∂ν
w ds+

∫ r

0

q(x1)w2(x1, 0) dx1.

Proof. We observe that, by elliptic regularity theory, w ∈ H2(B+
r \ B+

ε ) for all 0 < ε < r < R.
Furthermore, the fact that w has null trace on ΓRd implies that ∂w

∂x1
has null trace on ΓRd . Then,

testing (2.4) with z · ∇w and integrating over B+
r \B+

ε , we obtain that

(4.5)
r

2

∫
S+
r

|∇w|2ds− ε

2

∫
S+
ε

|∇w|2ds =

∫
B+
r \B+

ε

pwz · ∇w dz

+ r

∫
S+
r

∣∣∣∣∂w∂ν
∣∣∣∣2 ds− ε∫

S+
ε

∣∣∣∣∂w∂ν
∣∣∣∣2 ds+

∫ r

ε

q(x1)w(x1, 0)x1
∂w

∂x1
(x1, 0) dx1.

An integration by parts, which can be easily justified by an approximation argument, yields that

(4.6)

∫ r

ε

q(x1)w(x1, 0)x1
∂w

∂x1
(x1, 0) dx1 =

r

2
q(r)w2(r, 0)

− ε

2
q(ε)w2(ε, 0)− 1

2

∫ r

ε

(q + x1q
′)w2(x1, 0) dx1.

We observe that there exists a sequence εn → 0+ such that

lim
n→∞

[
εnw

2(εn, 0) + εn

∫
S+
εn

|∇w|2ds

]
= 0.
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Indeed, if no such sequence exists, there would exist ε0 > 0 such that

w2(r, 0) +

∫
S+
r

|∇w|2ds > C

r
for all r ∈ (0, ε0), for some C > 0;

integration of the above inequality on (0, ε0) would then contradict the fact that w ∈ H1(B+
R) and,

by trace embedding, w ∈ L2(Γε0n ). Then, passing to the limit in (4.5) and (4.6) with ε = εn yields
(4.3). Finally (4.4) follows by testing (2.4) with w and integrating by parts in B+

r . �

In the following lemma we compute the derivative of the function H.

Lemma 4.2. H ∈W 1,1
loc (0, R) and

(4.7) H ′(r) = 2

∫ π

0

w(r cos t, r sin t)∂w∂ν (r cos t, r sin t) dt =
2

r

∫
S+
r

w ∂w
∂ν ds,

in a distributional sense and for a.e. r ∈ (0, R), and

(4.8) H ′(r) =
2

r
D(r), for a.e. r ∈ (0, R).

Proof. Let ϕ ∈ C∞c (0, R). Since w,∇w ∈ L2(B+
R) and w ∈ C1(B+

R), using twice Fubini’s Theorem
we obtain that∫ R

0

H(r)ϕ′(r) dr =

∫ R

0

(∫ π

0

w2(r cos t, r sin t) dt

)
ϕ′(r) dr

=

∫ π

0

(∫ R

0

w2(r cos t, r sin t)ϕ′(r) dr

)
dt = −

∫ π

0

(∫ R

0

d

dr

(
w2(r cos t, r sin t)

)
ϕ(r) dr

)
dt

= −
∫ π

0

(∫ R

0

(
2w(r cos t, r sin t)∂w∂ν (r cos t, r sin t)

)
ϕ(r) dr

)
dt

= −
∫ R

0

(∫ π

0

(
2w(r cos t, r sin t)∂w∂ν (r cos t, r sin t)

)
dt

)
ϕ(r) dr

thus proving (4.7). Identity (4.8) follows directly from (4.7) and (4.4). �

Let us now study the regularity of the function D.

Lemma 4.3. The function D defined in (4.1) belongs to W 1,1(0, R) and

D′(r) = 2

∫
S+
r

∣∣∣∣∂w∂ν
∣∣∣∣2ds(4.9)

− 1

r

∫ r

0

(
q(x1) + x1q

′(x1)
)
w2(x1, 0) dx1 +

2

r

∫
B+
r

pwz · ∇w dz −
∫
S+
r

pw2 ds

in a distributional sense and for a.e. r ∈ (0, R).

Proof. From the fact that w ∈ H1(B+
R) and w

∣∣
ΓRn
∈ L2(ΓRn ), we deduce that D belongs to

W 1,1(0, R) and

(4.10) D′(r) =

∫
S+
r

|∇w|2ds−
∫
S+
r

pw2ds− q(r)w2(r, 0)

for a.e. r ∈ (0, R) and in the distributional sense.
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The conclusion follows combining (4.10) and (4.3). �

Lemma 4.4. There exists R0 ∈ (0, R) such that H(r) > 0 for any r ∈ (0, R0).

Proof. Let R0 ∈ (0, R) be such that

4‖p‖L∞(B+
R)R

2
0 + π‖q‖L∞(ΓRn )R0 < 1.(4.11)

Assume by contradiction that there exists r0 ∈ (0, R0) such that H(r0) = 0, so that w = 0 a.e. on
S+
r0 . From (4.4) it follows that∫

B+
r0

|∇w|2dz −
∫
B+
r0

pw2dz −
∫ r0

0

q(x1)w2(x1, 0) dx1 = 0.

From Lemmas 3.1 and 3.2, we get

0 =

∫
B+
r0

|∇w|2dz −
∫
B+
r0

pw2dz −
∫ r0

0

q(x1)w2(x1, 0) dx1

>
[
1− 4‖p‖L∞(B+

R)r
2
0 − π‖q‖L∞(ΓRn )r0

] ∫
B+
r0

|∇w|2dz,

which, together with (4.11) and Lemma 3.1, implies w ≡ 0 in B+
r0 . From classical unique continu-

ation principles for second order elliptic equations with locally bounded coefficients (see e.g. [28])
we can conclude that w = 0 a.e. in B+

R , a contradiction. �

Thanks to Lemma 4.4, the frequency function

(4.12) N : (0, R0)→ R, N (r) =
D(r)

H(r)
,

is well defined. Using Lemmas 4.2 and 4.3, we now compute the derivative of N .

Lemma 4.5. The function N defined in (4.12) belongs to W 1,1
loc (0, R0) and

N ′(r) = ν1(r) + ν2(r)(4.13)

in a distributional sense and for a.e. r ∈ (0, R0), where

ν1(r) =
2r
[ (∫

S+
r

∣∣∂w
∂ν

∣∣2 ds) · (∫
S+
r
w2 ds

)
−
(∫

S+
r
w ∂w
∂ν ds

)2 ]
(∫

S+
r
w2 ds

)2(4.14)

and

ν2(r) =−
∫ r

0

(
q(x) + xq′(x)

)
w2(x, 0) dx∫

S+
r
w2 ds

+ 2

∫
B+
r
pwz · ∇w dz∫
S+
r
w2 ds

−
r
∫
S+
r
pw2 ds∫

S+
r
w2ds

.(4.15)

Proof. From Lemmas 4.2, 4.4, and 4.3, it follows that N ∈ W 1,1
loc (0, R0). From (4.8) we deduce

that

N ′(r) =
D′(r)H(r)−D(r)H ′(r)

(H(r))2
=
D′(r)H(r)− 1

2r(H
′(r))2

(H(r))2

and the proof of the lemma easily follows from (4.7) and (4.9). �

We now prove that N (r) admits a finite limit as r → 0+.
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Lemma 4.6. There exists γ ∈ [0,+∞) such that limr→0+ N (r) = γ.

Proof. From Lemmas 3.1 and 3.2 it follows that

D(r) >
[
1− 4‖p‖L∞(B+

R)r
2 − π‖q‖L∞(ΓRn )r

] ∫
B+
r

|∇w|2dz,

hence there exist r̄ ∈ (0, R0) and C1 > 0 such that

D(r) > C1

∫
B+
r

|∇w|2dz, for all r ∈ (0, r̄).

In particular

(4.16) N (r) > 0, for all r ∈ (0, r̄).

Moreover, using again Lemmas 3.1 and 3.2 we can estimate ν2 in (0, r̄) as follows

|ν2(r)| 6
‖q + xq′‖L∞(ΓRn )πr

∫
B+
r
|∇w|2dz∫

S+
r
w2 ds

(4.17)

+
‖p‖L∞(B+

R)r(1 + 4r2)
∫
B+
r
|∇w(z)|2 dz∫

S+
r
w2 ds

+ r‖p‖L∞(B+
R)

6
1

C1

(
‖q + xq′‖L∞(ΓRn )π + ‖p‖L∞(B+

R)(1 + 4r̄2)
)
N (r) + r̄‖p‖L∞(B+

R).

Since ν1 > 0 by Schwarz’s inequality, from Lemma 4.5 and the above estimate it follows that there
exists C2 > 0 such that

(4.18) N ′(r) > −C2(N (r) + 1) for all r ∈ (0, r̄),

which implies that
d

dr

(
eC2r(1 +N (r))

)
> 0.

It follows that the limit of r 7→ eC2r(1 +N (r)) as r → 0+ exists and is finite; hence the function
N has a finite limit γ as r → 0+. From (4.16) we deduce that γ > 0. �

The function H defined in (4.2) can be estimated as follows.

Lemma 4.7. Let γ := limr→0+ N (r) be as in Lemma 4.6. Then

(4.19) H(r) = O(r2γ) as r → 0+.

Moreover, for any σ > 0,

(4.20) r2γ+σ = O(H(r)) as r → 0+.

Proof. From Lemma 4.6 we have that

(4.21) N is bounded in a neighborhood of 0,

hence from (4.18) it follows that N ′ > −C3 for some positive constant C3 in a neighborhood of 0.
Then

(4.22) N (r)− γ =

∫ r

0

N ′(ρ) dρ > −C3r
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in a neighborhood of 0. From (4.8), (4.12), and (4.22) we deduce that, in a neighborhood of 0,

H ′(r)

H(r)
=

2N (r)

r
>

2γ

r
− 2C3,

which, after integration, yields (4.19).
Since γ = limr→0+ N (r), for any σ > 0 there exists rσ > 0 such that N (r) < γ + σ/2 for any

r ∈ (0, rσ) and hence H′(r)
H(r) = 2N (r)

r < 2γ+σ
r for all r ∈ (0, rσ). By integration we obtain (4.20). �

5. Blow-up analysis for the auxiliary problem

Lemma 5.1. Let w ∈ H1(B+
R) be a non trivial solution to (2.4). Let γ := limr→0+ N (r) be as in

Lemma 4.6. Then there exists k0 ∈ N, k0 > 1, such that

γ =
2k0 − 1

2
.

Furthermore, for every sequence τn → 0+, there exist a subsequence {τnk}k∈N such that

(5.1)
w(τnkz)√
H(τnk)

→ w̃(z)

strongly in H1(B+
r ) and in C0,µ

loc (B+
r \ {0}) for every µ ∈ (0, 1) and all r ∈ (0, 1), where

(5.2) w̃(r cos t, r sin t) = ±
√

2

π
r

2k0−1
2 cos

(
2k0 − 1

2
t

)
, for all r ∈ (0, 1) and t ∈ [0, π].

Proof. Let us set

(5.3) wτ (z) =
w(τz)√
H(τ)

.

We notice that, for all τ ∈ (0, R), wτ ∈ H1 and
∫
S+

1
|wτ |2ds =

∫ π
0
|wτ (cos t, sin t)|2 dt = 1. More-

over, by scaling and (4.21),

(5.4)

∫
B+

1

(
|∇wτ (z)|2 − τ2p(τz)|wτ (z)|2

)
dz − τ

∫ 1

0

q(τx)|wτ (x, 0)|2 dx = N (τ) = O(1)

as τ → 0+, whereas from Lemmas 3.1 and 3.2 it follows that

N (τ) >
1

H(τ)

[
1− 4‖p‖L∞(B+

R)τ
2 − π‖q‖L∞(ΓRn )τ

] ∫
B+
τ

|∇w|2dz(5.5)

=
[
1− 4‖p‖L∞(B+

R)τ
2 − π‖q‖L∞(ΓRn )τ

] ∫
B+

1

|∇wτ |2dz

for every τ ∈ (0, R0), being R0 as in (4.11). From (5.4), (5.5), and Lemma 3.1 we deduce that

(5.6) {wτ}τ∈(0,R0) is bounded in H1(B+
1 ).

Therefore, for any given sequence τn → 0+, there exists a subsequence τnk → 0+ such that
wτnk ⇀ w̃ weakly in H1(B+

1 ) for some w̃ ∈ H1(B+
1 ). Due to compactness of trace embeddings, we

have that w̃ = 0 on Γ1
d and

(5.7)

∫
S+

1

|w̃|2ds = 1.
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In particular w̃ 6≡ 0. For every small τ ∈ (0, R0), wτ satisfies

(5.8)


−∆wτ = τ2p(τz)wτ , in B+

1 ,

∂νw
τ = τq(τx1, 0)wτ , on Γ1

n,

wτ = 0, on Γ1
d,

in a weak sense, i.e.∫
B+

1

∇wτ (z) · ∇ϕ(z) dz = τ2

∫
B+

1

p(τz)wτ (z)ϕ(z) dz + τ

∫ 1

0

q(τx)wτ (x, 0)ϕ(x, 0) dx

for all ϕ ∈ H1(B+
1 ) s.t. ϕ = 0 on S+

1 ∪ Γ1
d. From weak convergence wτnk ⇀ w̃ in H1(B+

1 ), we can
pass to the limit in (5.8) along the sequence τnk and obtain that w̃ weakly solves

(5.9)


−∆w̃ = 0, in B+

1 ,

∂νw̃ = 0, on Γ1
n,

w̃ = 0, on Γ1
d.

From (5.6) it follows that {τq(τx)wτ (x, 0)}τ∈(0,R0) is bounded in H1/2(Γ1
n). Then, by elliptic

regularity theory, for every 0 < r1 < r2 < 1 we have that {wτ}τ∈(0,R0) is bounded in H2(B+
r2 \B

+
r2).

From compactness of trace embeddings we have that, up to passing to a further subsequence,
∂w

τnk

∂ν → ∂w̃
∂ν in L2(S+

r ) for every r ∈ (0, 1). Testing equation (5.8) for τ = τnk with wτ on B+
r we

obtain that∫
B+
r

|∇wτnk (z)|2 dz =

∫
S+
r

∂wτnk

∂ν
wτnk ds

+ τ2
nk

∫
B+
r

p(τnkz)|wτnk (z)|2 dz + τnk

∫ r

0

q(τnkx)|wτnk (x, 0)|2 dx

→
k→+∞

∫
S+
r

∂w̃

∂ν
w̃ ds =

∫
B+
r

|∇w̃(z)|2 dz,

thus proving that ‖wτnk ‖H1(B+
r ) → ‖w̃‖H1(B+

r ) for all r ∈ (0, 1), and hence

(5.10) wτnk → w̃ in H1(B+
r )

for every r ∈ (0, 1). Furthermore, by compact Sobolev embeddings, we also have that, up to
extracting a further subsequence,

wτnk → w̃ in C0,µ
loc (B+

r \ {0}),

for every r ∈ (0, 1) and µ ∈ (0, 1).
For any r ∈ (0, 1) and k ∈ N, let us define the functions

Dk(r) =

∫
B+
r

|∇wτnk |2 dz − τ2
nk

∫
B+
r

p(τnkz)|wτnk (z)|2dz − τnk
∫ r

0

q(τnkx)|wτnk (x, 0)|2 dx,

Hk(r) =
1

r

∫
S+
r

|wτnk |2 ds,



14 MOUHAMED MOUSTAPHA FALL, VERONICA FELLI, ALBERTO FERRERO, AND ALASSANE NIANG

and Nk(r) := Dk(r)
Hk(r) . Direct calculations yield that Nk(r) = N (τnkr) for all r ∈ (0, 1). From (5.10)

it follows that, for any fixed r ∈ (0, 1),

Dk(r)→ D̃(r) :=

∫
B+
r

|∇w̃|2 dz and Hk(r)→ D̃(r) :=
1

r

∫
S+
r

|w̃|2 ds.

From classical unique continuation principles for harmonic functions it follows that D̃(r) > 0 and

H̃(r) > 0 for all r ∈ (0, 1) (indeed D̃(r) = 0 or H̃(r) = 0 for some r ∈ (0, 1) would imply that
w̃ ≡ 0 in B+

r and, by unique continuation, w̃ ≡ 0 in B+
1 , a contradiction). Hence, by Lemma 4.6,

(5.11) Ñ (r) =
D̃(r)

H̃(r)
= lim
k→∞

Nk(r) = lim
k→∞

N (τnkr) = γ

for all r ∈ (0, 1). Therefore Ñ is constant in (0, 1) and hence Ñ ′(r) = 0 for any r ∈ (0, 1). By (5.9)
and Lemma 4.5 with p ≡ 0 and q ≡ 0, we obtain(∫

S+
r

∣∣∣∣∂w̃∂ν
∣∣∣∣2 ds

)
·
(∫

S+
r

w̃2 ds

)
−
(∫

S+
r

w̃
∂w̃

∂ν
ds

)2

= 0 for all r ∈ (0, 1),

which implies that w̃ and ∂w̃
∂ν are parallel as vectors in L2(S+

r ). Hence there exists η = η(r) such

that ∂w̃
∂ν (r cos t, r sin t) = η(r)w̃(r cos t, r sin t) for all r ∈ (0, 1) and t ∈ [0, π]. It follows that

(5.12) w̃(r cos t, r sin t) = ϕ(r)ψ(t), r ∈ (0, 1), t ∈ [0, π],

where ϕ(r) = e
∫ r
1
η(s)ds and ψ(t) = w̃(cos t, sin t). From (5.7) we have that

∫ π
0
ψ2 = 1. From (5.9)

and (5.12) we can conclude that
ϕ′′(r)ψ(t) + 1

rϕ
′(r)ψ(t) + 1

r2ϕ(r)ψ′′(t) = 0, r ∈ (0, 1), t ∈ [0, 1],

ψ(π) = 0,

ψ′(0) = 0.

Taking r fixed, we deduce that ψ is necessarily an eigenfunction of the eigenvalue problem (3.1).

Then there exists k0 ∈ N \ {0} such that ψ(t) = ±
√

2
π cos( 2k0−1

2 t) and ϕ(r) solves the equation

ϕ′′(r) +
1

r
ϕ′ − (2k0 − 1)2

4r2
ϕ(r) = 0.

Hence ϕ(r) is of the form

ϕ(r) = c1r
2k0−1

2 + c2r
− 2k0−1

2

for some c1, c2 ∈ R. Since the function r−
2k0−1

2 ψ(t) /∈ H1(B+
1 ), we deduce that necessarily c2 = 0

and ϕ(r) = c1r
2k0−1

2 . Moreover, from ϕ(1) = 1, we obtain that c1 = 1 and then

(5.13) w̃(r cos t, r sin t) = ±
√

2

π
r

2k0−1
2 cos

(
2k0 − 1

2
t

)
, for all r ∈ (0, 1) and t ∈ [0, π].

From (5.13) it follows that

H̃(r) =

∫ π

0

w̃2(r cos t, r sin t) dt = r2k0−1.
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Hence, in view of (4.8),

γ = Ñ (r) =
r

2

H̃ ′(r)

H̃(r)
=
r

2
(2k0 − 1)

r2k0−2

r2k0−1
=

2k0 − 1

2
.

The proof of the lemma is thereby complete. �

We observe that at this stage of our analysis we cannot exclude that the limit function w̃ found
in Lemma 5.1 depends on the subsequence. In order to prove that the convergence in (5.1) actually
holds as τ → 0+ we need to univocally identify the limit profile w̃.

Lemma 5.2. Let w 6≡ 0 satisfy (2.4), H be defined in (4.2), and γ := limr→0+ N (r) be as in
Lemma 4.6. Then the limit limr→0+ r−2γH(r) exists and it is finite.

Proof. In view of (4.19) it is sufficient to prove that the limit exists. By (4.2), (4.8), and Lemma 4.6
we have that

d

dr

H(r)

r2γ
= 2r−2γ−1(D(r)− γH(r)) = 2r−2γ−1H(r)

∫ r

0

N ′(ρ)dρ,

and then, by integration over (r,R0),

(5.14)
H(R0)

R2γ
0

− H(r)

r2γ
= 2

∫ R0

r

H(ρ)

ρ2γ+1

(∫ ρ

0

ν1(t)dt

)
dρ+ 2

∫ R0

r

H(ρ)

ρ2γ+1

(∫ ρ

0

ν2(t)dt

)
dρ

where ν1 and ν2 are as in (4.14) and (4.15). Since, by Schwarz’s inequality, ν1 > 0, we have that

limr→0+

∫ R0

r
ρ−2γ−1H(ρ)

(∫ ρ
0
ν1(t)dt

)
dρ exists. On the other hand, from Lemma 4.6 N is bounded

and hence from (4.17) we deduce that ν2 is bounded close to 0+. Hence, in view of (4.19), the
function ρ 7→ ρ−2γ−1H(ρ)

(∫ ρ
0
ν2(t)dt

)
is bounded and hence integrable near 0. We conclude that

both terms at the right hand side of (5.14) admit a limit as r → 0+ thus completing the proof. �

The following lemma provides some pointwise estimate for solutions to (2.4).

Lemma 5.3. Let w ∈ H1(B+
R) be a nontrivial solution to (2.4). Then there exist C4, C5 > 0 and

r̄ ∈ (0, R0) such that

(i) supS+
r
|w|2 6 C4

r

∫
S+
r
|w(z)|2 ds for every 0 < r < r̄,

(ii) |w(z)| 6 C5|z|γ for all z ∈ B+
r̄ , with γ as in Lemma 4.6.

Proof. We first notice that (ii) follows directly from (i) and (4.19). In order to prove (i), we argue
by contradiction and assume that there exists a sequence τn → 0+ such that

sup
t∈[0,π]

∣∣∣w(τn
2

cos t,
τn
2

sin t
)∣∣∣2 > nH

(τn
2

)
with H as in (4.2), i.e., defining wτ as in (5.3)

(5.15) sup
x∈S+

1/2

|wτn(z)|2 > 2n

∫
S+

1/2

|wτn(z)|2ds.

From Lemma 5.1, there exists a subsequence τnk such that wτnk → w̃ in C0(S+
1/2) with w̃ being as

in (5.2), hence passing to the limit in (5.15) a contradiction arises. �



16 MOUHAMED MOUSTAPHA FALL, VERONICA FELLI, ALBERTO FERRERO, AND ALASSANE NIANG

To obtain a sharp asymptotics of H(r) as r → 0+, it remains to prove that limr→0+ r−2γH(r) is
strictly positive.

Lemma 5.4. Under the same assumptions as in Lemmas 5.2 and 5.3, we have that

lim
r→0+

r−2γH(r) > 0.

Proof. From Lemma 5.1 there exists k0 ∈ N, k0 > 1 such that γ = 2k0−1
2 . Let us expand w as

(5.16) w(r cos t, r sin t) =

∞∑
k=1

ϕk(r) cos
(

2k−1
2 t

)
where

(5.17) ϕk(r) =
2

π

∫ π

0

w(r cos t, r sin t) cos
(

2k−1
2 t

)
dt.

The Parseval identity yields

(5.18) H(r) =
π

2

∞∑
k=1

ϕ2
k(r), for all 0 < r 6 R.

From (4.19) and (5.18) it follows that, for all k > 1,

(5.19) ϕk(r) = O(rγ) as r → 0+.

Let η ∈ C∞c (0, R). Testing (2.4) with the function η(r) cos
(

2k−1
2 t

)
, by (5.16) we obtain

π

2

∫ R

0

rϕ′k(r)η′(r) dr +
π

2

∫ R

0

(2k−1)2

4

1

r
ϕk(r)η(r) dr =

∫ R

0

q(r)w(r, 0)η(r) dr(5.20)

+

∫ R

0

rη(r)

(∫ π

0

p(r cos t, r sin t)w(r cos t, r sin t) cos
(

2k−1
2 t

)
dt

)
dr .

Integrating by parts in the first in integral on the left hand side of (5.20) and exploiting the fact
that η ∈ C∞c (0, R) is an arbitrary test function, we infer

−ϕ′′k(r)− 1

r
ϕ′k(r) +

1

4
(2k − 1)2ϕk(r)

r2
= ζk(r), in (0, R),

where

(5.21) ζk(r) =
2

πr
q(r)w(r, 0) +

2

π

∫ π

0

p(r cos t, r sin t)w(r cos t, r sin t) cos
(

2k−1
2 t

)
dt.

Then, by a direct calculation, there exist ck1 , c
k
2 ∈ R such that

(5.22) ϕk(r) = r
2k−1

2

(
ck1 +

∫ R

r

t
1−2k

2 +1

2k − 1
ζk(t) dt

)
+ r

1−2k
2

(
ck2 +

∫ R

r

t
2k−1

2 +1

1− 2k
ζk(t) dt

)
.

From Lemma 5.3 it follows that

(5.23) ζk0(r) = O
(
r

2k0−1
2 −1

)
as r → 0+,

and hence the functions

t 7→ t
1−2k0

2 +1ζk0
(t) and t 7→ t

2k0−1
2 +1ζk0

(t)
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belong to L1(0, R). Hence

r
2k0−1

2

(
ck0
1 +

∫ R

r

t
1−2k0

2 +1

2k0 − 1
ζk0

(t) dt

)
= o(r

1−2k0
2 ) as r → 0+,

and then, by (5.19), there must be

ck0
2 =

∫ R

0

t
2k0−1

2 +1

2k0 − 1
ζk0

(t) dt.

From (5.23), we then deduce that

r
1−2k0

2

(
ck0
2 +

∫ R

r

t
2k0−1

2 +1

1− 2k0
ζk0

(t) dt

)
= r

1−2k0
2

∫ r

0

t
2k0−1

2 +1

2k0 − 1
ζk0

(t) dt = O(rk0+ 1
2 )(5.24)

as r → 0+. From (5.22) and (5.24), we obtain that

(5.25) ϕk0(r) = r
2k0−1

2

(
ck0
1 +

∫ R

r

t
1−2k0

2 +1

2k0 − 1
ζk0(t) dt+O(r)

)
as r → 0+.

Let us assume by contradiction that limr→0+ r−2γH(r) = 0. Then (5.18) would imply that

lim
r→0+

r−
2k0−1

2 ϕk0(r) = 0,

and hence, in view of (5.25), we would have that

ck0
1 +

∫ R

0

t
1−2k0

2 +1

2k0 − 1
ζk0

(t) dt = 0,

which, together with (5.23), implies

r
2k0−1

2

(
ck0
1 +

∫ R

r

t
1−2k0

2 +1

2k0 − 1
ζk0

(t) dt

)
= r

2k0−1
2

∫ r

0

t
1−2k0

2 +1

1− 2k0
ζk0

(t) dt = O(r
1
2 +k0)(5.26)

as r → 0+. From (5.25) and (5.26), we conclude that ϕk0(r) = O(r
1
2 +k0) as r → 0+, namely,√

H(τ)

∫ π

0

wτ (cos t, sin t) cos
(

2k0−1
2 t

)
dt = O(τ

1
2 +k0) as τ → 0+,

where wτ is defined in (5.3). From (4.20), there exists C > 0 such that
√
H(τ) > Cτγ+ 1

2 for τ
small, and therefore

(5.27)

∫ π

0

wτ (cos t, sin t) cos
(

2k0−1
2 t

)
dt = O(τ

1
2 ) as τ → 0+.

From Lemma 5.1, for every sequence τn → 0+, there exist a subsequence {τnk}k∈N such that

(5.28) wτnk (cos t, sin t)→ ±
√

2

π
cos

(
2k0 − 1

2
t

)
in L2(0, π).

From (5.27) and (5.28), we infer that

0 = lim
k→+∞

∫ π

0

wτnk (cos t, sin t) cos
(

2k0−1
2 t

)
dt = ±

√
2

π

∫ π

0

cos2
(

2k0−1
2 t

)
dt = ±

√
π

2
,

thus reaching a contradiction. �
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Proof of Theorem 2.1. Identity (2.6) follows from Lemma 5.1, thus there exists k0 ∈ N, k0 > 1,
such that γ = limr→0+ N (r) = 2k0−1

2 .
Let {τn}n∈N ⊂ (0,+∞) be such that limn→+∞ τn = 0. Then, from Lemmas 5.1 and 5.4, scaling

and a diagonal argument, there exists a subsequence {τnk}k∈N and β 6= 0 such that

(5.29)
w(τnkz)

τγnk
→ β|z|

2k0−1
2 cos

(
2k0−1

2 Arg z

)
strongly in H1(B+

r ) for all r > 0 and in C0,µ
loc (R2

+ \ {0}) for every µ ∈ (0, 1). In particular

(5.30) τ−γnk w(τnk(cos t, sin t))→ β cos

(
2k0 − 1

2
t

)
in C0,µ([0, π]). To prove that the above converge occurs as τ → 0+ and not only along subsequences,
we are going to show that β depends neither on the sequence {τn}n∈N nor on its subsequence
{τnk}k∈N.

Defining ϕk0
and ζk0

as in (5.17) and (5.21), from (5.30) it follows that

ϕk0(τnk)

τγnk
=

2

π

∫ π

0

w(τnk cos t, τnk sin t)

τγnk
cos
(

2k0−1
2 t

)
dt(5.31)

→ 2

π
β

∫ π

0

cos2
(

2k0−1
2 t

)
dt = β

as k → +∞. On the other hand, from (5.22), (5.24) , and (5.25) we know that that

ϕk0
(τ) = τ

2k0−1
2

(
ck0
1 +

∫ R

τ

t
1−2k0

2 +1

2k0 − 1
ζk0

(t) dt

)
+ τ

1−2k0
2

∫ τ

0

t
2k0−1

2 +1

2k0 − 1
ζk0

(t) dt(5.32)

= τ
2k0−1

2

(
ck0
1 +

∫ R

τ

t
1−2k0

2 +1

2k0 − 1
ζk0

(t) dt+O(τ)

)
as τ → 0+.

Choosing τ = R in the first line of (5.32), we obtain

ck0
1 = R−

2k0−1
2 ϕk0(R)−R1−2k0

∫ R

0

t
2k0−1

2 +1

2k0 − 1
ζk0(t) dt.

Hence, from the second line of (5.32), we obtain that

τ−γϕk0(τ)→ R−
2k0−1

2 ϕk0(R)−R1−2k0

∫ R

0

t
2k0−1

2 +1

2k0 − 1
ζk0(t) dt+

∫ R

0

t
1−2k0

2 +1

2k0 − 1
ζk0(t) dt,

as τ → 0+. Then, from (5.31) we deduce that

(5.33) β = R−
2k0−1

2 ϕk0(R)−R1−2k0

∫ R

0

t
2k0−1

2 +1

2k0 − 1
ζk0(t) dt+

∫ R

0

t
1−2k0

2 +1

2k0 − 1
ζk0(t) dt.

In particular β depends neither on the sequence {τn}n∈N nor on its subsequence {τnk}k∈N, thus
implying that the convergence in (5.29) actually holds as τ → 0+ and proving the theorem. We
observe that (2.7) follows by replacing (5.17) and (5.21) into (5.33). �
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6. Some regularity estimates

In this section, we prove some regularity and approximation results, which will be used to
estimate the Hölder norm of the difference between a solution u to (1.1) and its asymptotic profile
βFk0

.

Proposition 6.1. Let f ∈ L∞(B+
4 ), g ∈ L∞(Γ4

n) and let v ∈ H1(B4) ∩ L∞(B+
4 ) solve

(6.1)


−∆v = f, in B+

4 ,

∂νv = g, on Γ4
n,

v = 0, on Γ4
d.

Then, for every ε > 0, there exists a constant C > 0 (independent of v, f , and g) such that

(6.2) ‖v‖
C1/2−ε(B+

2 )
6 C

(
‖f‖L∞(B+

4 ) + ‖g‖L∞(Γ4
n) + ‖v‖L∞(B+

4 )

)
.

Proof. In the sequel we denote as C > 0 a positive constant independent of v, f , and g which may
vary from line to line. We consider a C2 domain Ω′ such that B+

3 ⊂ Ω′ ⊂ B+
4 and Γ3

n ∪ Γ3
d ⊂ ∂Ω′.

We define the functions (obtained uniquely by minimization arguments) v1 ∈ H1(Ω′) satisfying

(6.3)


−∆v1 = f, in Ω′,

∂νv1 = 0, on Γ3
n ,

v1 = 0, on ∂Ω′ \ Γ3
n ,

and ṽ2 ∈ H1/2(R) satisfying {
(−∆)

1
2 ṽ2 = g, in (0, 4),

ṽ2 = 0, on R \ (0, 4) .

Therefore by (fractional) elliptic regularity theory (see e.g. [21, Proposition 1.1]), we deduce that

(6.4) ‖ṽ2‖C1/2(R) 6 C‖g‖L∞(Γ4
n).

Consider the Poisson kernel P (x1, x2) = 1
πx2|x|−2 with respect to the half-space R2

+, see [4, Section
2.4]. We define

v2(x1, x2) = (P (·, x2) ? ṽ2)(x1) =
1

π
x2

∫
R

ṽ2(t)

x2
2 + (x1 − t)2

dt =
1

π

∫
R

ṽ2(x1 − rx2)

1 + r2
dr

where with the symbol ? we denoted the convolution product with respect to the first variable.

One can check that v2 ∈ H1
loc(R2

+) (see for example [3, Subsection 2.1]) and

(6.5)


−∆v2 = 0, in R2

+,

∂νv2 = g, on Γ4
n ,

v2 = 0, on R \ (0, 4).

It is easy to see that

‖v2‖L∞(R2
+) 6 C‖ṽ2‖L∞(R).
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Moreover by (6.4), for x, y ∈ R2
+ we get

|v2(x)− v2(y)| 6 C‖g‖L∞(Γ4
n)|x− y|1/2

∫
R

max(1, |r|1/2)

1 + r2
dr

6 C‖g‖L∞(Γ4
n)|x− y|1/2.

It follows that

(6.6) ‖v2‖C1/2(R2
+)
6 C‖g‖L∞(Γ4

n).

By [25, Theorem 1] and continuous embeddings of Besov spaces into Hölder spaces, we get

‖v1‖2C1/2−ε(Ω′)
6 C‖v1‖H1(Ω′)

(
‖f‖L∞(B+

4 ) + ‖v1‖H1(Ω′)

)
.

Multiplying (6.3) by v1, integrating by parts and using Young’s inequality, we get

C‖v1‖2L2(Ω′) 6 ‖∇v1‖2L2(Ω′) 6 ‖v1‖L2(Ω′)‖f‖L2(B+
4 ) 6 ε‖v1‖2L2(Ω′) + Cε‖f‖2L∞(B+

4 )
,

where in the first estimate we have used the Poincaré inequality for functions vanishing on a portion
of the boundary. We then conclude that

(6.7) ‖v1‖C1/2−ε(Ω′) 6 C‖f‖L∞(B+
4 ).

Now, thanks to (6.1), (6.3) and (6.5), the function V := v− (v1 + v2) ∈ H1(Ω′) solves the equation

(6.8)


−∆V = 0, in Ω′,

∂νV = 0, on Γ3
n,

V = 0, on Γ3
d.

By elliptic regularity theory, we have that

(6.9) ‖V ‖
C2(B+

5/2
\B+

1 )
6 C‖V ‖H1(B+

r )

where r is a fixed radius satisfying 5
2 < r < 3 and C > 0 is independent of V . Let η a radial cutoff

function compactly supported in B3 satisfying η ≡ 1 in Br; testing (6.8) with ηV , we infer that
‖V ‖H1(B+

r ) 6 C‖V ‖L2(Ω′) for some constant C > 0 independent of V . Hence by (6.9) we obtain

(6.10) ‖V ‖
C2(B+

5/2
\B+

1 )
6 C‖V ‖L∞(Ω′).

Let η̃ ∈ C∞c (B5/2) be a radial function, with η̃ ≡ 1 on B2. Then the function Ṽ := η̃V ∈ H1(R2
+)

solves 
−∆Ṽ = −V∆η̃ − 2∇V · ∇η̃, in R2

+,

∂ν Ṽ (x1, 0) = 0, x1 ∈ (0,+∞),

Ṽ (x1, 0) = 0, x1 ∈ (−∞, 0).

Then by [25, Theorem 1], the arguments above, (6.10), (6.6) and (6.7), we deduce that

‖v − (v1 + v2)‖
C1/2−ε(B+

2 )
6 ‖Ṽ ‖

C1/2−ε(R2
+)
6 C‖V ‖L∞(Ω′)

6 C
(
‖f‖L∞(B+

4 ) + ‖g‖L∞(Γ4
n) + ‖v‖L∞(B+

4 )

)
.

This, combined again with (6.6) and (6.7) completes the proof. �
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Recalling (1.2), for every k ∈ N with k > 1, we consider the finite dimensional linear subspace
of L2(B+

r ), given by

Sk :=


k∑
j=1

ajFj : (a1, . . . , ak) ∈ Rk
 .

For every r > 0, k > 1, and u ∈ L2(B+
r ), we let

Fuk,r := ArgminF∈Sk

∫
B+
r

(u(x)− F (x))2 dx

be the L2(B+
r )-projection of u on Sk, so that

min
F∈Sk

∫
B+
r

(u(x)− F (x))2 dx =

∫
B+
r

(u(x)− Fuk,r(x))2 dx

and

(6.11)

∫
B+
r

(u(x)− Fuk,r(x))F (x) dx = 0, for all F ∈ Sk.

Next, we estimate the L∞ norm of the difference between a solution of a mixed boundary value
problem on B+

1 and its projection on Sk.

Proposition 6.2. Let u ∈ H1(B+
1 ) ∩ L∞(R2

+) solve

(6.12)


−∆u = f, in B+

1 ,

∂νu = g, on Γ1
n,

u = 0, on Γ1
d,

where, for some k ∈ N \ {0} and C > 0,

|f(x)| 6 C|x|max(γk− 3
2 ,0), for every x ∈ B+

1 ,

|g(x1)| 6 C|x1|max(γk− 1
2 ,0), for every x1 ∈ (0, 1),

and γk = 2k−1
2 . Then, for every α ∈ (0, 1/2), we have that

(6.13) sup
r>0

r−γk−α‖u− Fuk,r‖L∞(B+
r ) <∞.

Proof. In the sequel, C > 0 stands for a positive constant, only depending on α,C and k, which
may vary from line to line. Assume by contradiction that, there exists α ∈ (0, 1/2) such that

(6.14) sup
r>0

r−γk−α‖u− Fuk,r‖L∞(B+
r ) =∞.

We consider the nonincreasing function

(6.15) Θ(r) := sup
r>r

r−γk−α‖u− Fuk,r‖L∞(B+
r ).

It is clear from our assumption that

Θ(r)↗ +∞ as r → 0.

Then there exists a sequence rn → 0 such that

r−γk−αn ‖u− Fuk,rn‖L∞(B+
rn ) >

Θ(rn)

2
.
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We define

vn(x) := r−γk−αn

u(rnx)− Fuk,rn(rnx)

Θ(rn)
,

so that

(6.16) ‖vn‖L∞(B+
1 ) >

1

2
.

Moreover, by a change of variable in (6.11), we get

(6.17)

∫
B+

1

vn(x)F (x) dx = 0 for every F ∈ Sk.

Claim: For R = 2m and r > 0, we have

(6.18)
1

rγk+αΘ(r)
‖Fuk,rR − Fuk,r‖L∞(B+

rR) 6 CR
γk+α.

Indeed, by definition, for every r > r > 0, we have

‖u− Fuk,r‖L∞(B+
r ) 6 r

γk+αΘ(r)

and thus, using the monotonicity of Θ, for every x ∈ B+
r we get

|Fuk,2r(x)− Fuk,r(x)| 6 ‖u− Fuk,2r‖L∞(B+
2r) + ‖u− Fuk,r‖L∞(B+

r )(6.19)

6 21+γk+αrγk+αΘ(r) 6 Crγk+αΘ(r).

Letting Fuk,r =
∑k
j=1 aj(r)Fj and γj = 2j−1

2 , by taking the L2(B+
r )-norm in (6.19), we get

(6.20) |aj(2r)− aj(r)|rγj 6 Crγk+αΘ(r) for every r > 0.

Then

1

rγk+αΘ(r)
‖Fuk,r2m − Fuk,r‖L∞(B+

r2m
) 6

1

rγk+αΘ(r)

k∑
j=1

|aj(r2m)− aj(r)|(r2m)γj

6
1

rγk+αΘ(r)

k∑
j=1

m∑
i=1

|aj(2ir)− aj(2i−1r)|(r2m)γj

6
C

rγk+αΘ(r)

k∑
j=1

m∑
i=1

2γjm2(γk−γj+α)(i−1)rγk+αΘ(2i−1r)

6 C
k∑
j=1

m∑
i=1

2γjm2(γk−γj+α)(i−1) 6 C
k∑
j=1

2γjm2(γk−γj+α)m

6 C2m(γk+α).

This proves the claim.
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From the definition of Θ and (6.18), for R = 2m > 1, we have

sup
x∈B+

R

|vn(x)| = 1

rγk+α
n Θ(rn)

‖u− Fuk,rn‖L∞(B+
rnR

)

6
1

rγk+α
n Θ(rn)

‖u− Fuk,rnR‖L∞(B+
rnR

) +
1

rγk+α
n Θ(rn)

‖Fuk,rnR − F
u
k,rn‖L∞(B+

rnR
)

6
1

rγk+α
n Θ(rn)

(rnR)γk+αΘ(rn) + CRγk+α

6 CRγk+α.

Consequently, letting R > 1 and m0 ∈ N be the smallest integer such that 2m0 > R, we obtain
that

sup
x∈B+

R

|vn(x)| 6 sup
x∈B+

2m0

|vn(x)| 6 C2m0(γk+α) 6 C(2R)γk+α(6.21)

6 CRγk+α,

with C being a positive constant independent of R. Thanks to (1.3) and (6.12), it is plain that
−∆vn = r

2−γk−α
n

Θ(rn) f(rn·), in B+
1/rn

,

∂νvn = r
1−γk−α
n

Θ(rn) g(rn·), on Γ
1/rn
n ,

vn = 0, on Γ
1/rn
d .

By assumption, we have that r
2−γk−α
n

Θ(rn) f(rnx) and r
1−γk−α
n

Θ(rn) g(rnx1) are bounded in L∞(B+
M ) and

L∞(ΓMn ) respectively, for every M > 0. Hence, by Proposition 6.1 and (6.21), we have that vn is

bounded in Cδ(B+
M ) for every M > 0 and δ ∈ (0, 1/2). Furthermore, it is easy to verify that vn is

bounded in H1(B+
M ) for every M > 0. Then, for every M > 0 and δ ∈ (0, 1/2), vn converges in

Cδ(B+
M ) (and weakly in H1(B+

M )) to some v ∈ Cδloc(R2
+) ∩H1

loc(R2
+) satisfying

−∆v = 0, in R2
+,

∂νv = 0, on Γ∞n ,

v = 0, on Γ∞d ,

and by (6.21), for every R > 1,

‖v‖L∞(B+
R) 6 CR

γk+α.

By Lemma 6.3 (below), we deduce that necessarily

v ∈ Sk.

This clearly yields a contradiction when passing to the limit in (6.16) and (6.17). �

The following Liouville type result was used in the proof of Proposition 6.2.
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Lemma 6.3 (Liouville theorem). Let v ∈ C(R2
+) ∩H1

loc(R2
+) satisfy

−∆v = 0, in R2
+,

∂νv = 0, on Γ∞n ,

v = 0, on Γ∞d ,

and, for some α ∈ (0, 1/2) and C > 0,

(6.22) ‖v‖L∞(B+
R) 6 C R

γk+α for every R > 1,

where γk = 2k−1
2 , k ∈ N \ {0}. Then

(6.23) v ∈ Sk.

Proof. Arguing as in the proof of Lemma 5.4, we expand v in Fourier series with respect to the
orthonormal basis of L2(0, π) given in (3.2) as

v(r cos t, r sin t) =

∞∑
j=1

ϕj(r) cos
(

2j−1
2 t
)

where ϕj(r) = 2
π

∫ π
0
v(r cos t, r sin t) cos

(
2j−1

2 t
)
dt. From assumption (6.22) and the Parseval iden-

tity we have that

π

2

∞∑
j=1

ϕ2
j (r) =

∫ π

0

v2(r cos t, r sin t) dt 6 πC2r2(γk+α), for all r > 1.

It follows that

(6.24) |ϕj(r)| 6 const rγk+α for all j > 1 and r > 1,

for some const > 0 independent of j and r.
From the equation satisfied by v it follows that the functions ϕj satisfy

−ϕ′′j (r)− 1

r
ϕ′j(r) +

1

4
(2j − 1)2ϕj(r)

r2
= 0, in (0,+∞),

and then, for all j > 1, there exist cj1, c
j
2 ∈ R such that

ϕj(r) = cj1r
2j−1

2 + cj2r
1−2j

2 for all r > 0.

The fact v is continous and v(0) = 0 implies that ϕj(r) = o(1) as r → 0+. As a consequence we

have that cj2 = 0 for all j > 1. On the other hand (6.24) implies that cj1 = 0 for all j > k. Therefore
we conclude that

v(r cos t, r sin t) =

k∑
j=1

cj1r
2j−1

2 cos
(

2j−1
2 t
)

=

k∑
j=1

cj1Fj(r cos t, r sin t),

i.e. v ∈ Sk. �
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7. Asymptotics for u

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let w = u ◦ ϕ−1, with ϕ : UR → B+
R being the conformal map constructed

in Section 2. Let γ = 2k0−1
2 , with k0 being as in Theorem 2.1. We define (recalling (5.3))

w̃τ (z) := τ−γw(τz) = τ−γ
√
H(τ)wτ (z).

From Theorem 2.1 we have that there exists β 6= 0 such that w̃τ → βFk0 in H1(B+
r ) for all r > 0

and in C0,µ
loc (R2

+ \ {0}) for every µ ∈ (0, 1).

Claim 1: We have

(7.1) w(y) = βFk0
(y) + o(|y|γ) as |y| → 0 and y ∈ B+

R .

If this does not hold true then there exists a sequence of points ym ∈ (B+
R ∪ ΓRn ) \ {0} and C > 0

such that ym → 0 and

|ym|−γ |w(ym)− βFk0(ym)| = |w̃τm(zm)− βFk0(zm)| > C > 0,

where τm = |ym| and zm = ym
|ym| . If m is large enough, we get a contradiction with (2.8). This

proves (7.1) as claimed.
Let % ∈ (0, 1/2) and let p and q be the functions introduced in (2.4). By (7.1), by the fact that

p ∈ L∞(B+
R) and q ∈ C1([0, R)), and by Proposition 6.2 applied to w, we have that, for every

r ∈ (0, R),

(7.2) |w(x)− Fwk0,r(x)| 6 Crγ+%, for every x ∈ B+
r ,

for some positive constant C > 0 independent of r, which could vary from line to line in the sequel.
From (7.1) and (7.2) we deduce that

(7.3) sup
x∈B+

r

r−γ |βFk0(x)− Fwk0,r(x)| → 0, as r → 0+.

Claim 2: We have

(7.4) |βFk0
(x)− Fwk0,r(x)| 6 Crγ+%, for every x ∈ B+

r .

Once this claim is proved, then according to (7.2), we can easily deduce that for any r ∈ (0, R)

|w(x)− βFk0
(x)| 6 |w(x)− Fwk0,r(x)|+ |Fwk0,r − βFk0

(x)| 6 Crγ+%, for every x ∈ B+
r .

In particular,

|w(x)− βFk0
(x)| 6 C|x|γ+%, for every x ∈ B+

R

which finishes the proof of Theorem 1.1.

Let us now prove Claim 2. Writing Fwk0,r
(x) =

∑k0

j=1 aj(r)Fj(x), by (7.3) we have that

(7.5) |β − ak0(r)| → 0, as r → 0+.

Moreover by taking the L2(B+
r )-norms in (7.3), we find that

(ak0
(r)− β)2r2γ+2 +

k0−1∑
j=1

a2
j (r)r

2γj+2 6 Cr2γ+2, for every R > r > 0,
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with γj = 2j−1
2 . This yields, for j = 1, . . . , k0 − 1,

(7.6) |aj(r)| 6 Crγ−γj → 0 as r → 0.

From (7.2), we get, for every x ∈ B+
r and R > r > 0,∣∣∣∣w(x)−

k0∑
j=1

aj(r)Fj(x)

∣∣∣∣ 6 Cr%+γ .
Hence, for every x ∈ B+

r/2, we have that∣∣∣∣ k0∑
j=1

(aj(r)− aj(2−1r))Fj(x)

∣∣∣∣ 6 |Fwk0,r(x)− w(x)|+ |Fwk0,2−1r(x)− w(x)| 6 Cr%+γ .

Taking the L2(B+
r/2)-norms in the previous inequality, we find that, for every r ∈ (0, R)

k0∑
j=1

|aj(r)− aj(2−1r)|rγj 6 Crγ+%.

This implies that

|aj(r)− aj(2−1r)| 6 Cr%+γ−γj for all 1 6 j 6 k0 and r ∈ (0, R).

From this, (7.5) and (7.6), we obtain

|β − ak0
(r)|r−% +

k0−1∑
j=1

|aj(r)|r−%−γ+γj 6
k0∑
j=1

∞∑
i=0

|aj(r2−i−1)− aj(r2−i)|r−%−γ+γj

6 C
∞∑
i=0

2−i%.

This implies that, for every x ∈ B+
r ,

|βFk0
(x)− Fwk0,r(x)| 6 |β − ak0

(r)|rγ +

k0−1∑
j=1

|aj(r)|rγj 6 Crγ+%.

That is (7.4) as claimed. �

Remark 7.1. (i) Since ϕ is conformal, we have that F̃ := Fk0
◦ϕ satisfies F̃ ∈ H1(UR) and

solves the homogeneous equation
∆F̃ = 0, in UR,
F̃ = 0, on Γd ∩ ∂UR
∂ν F̃ = 0, on Γn ∩ ∂UR.

(7.7)

(ii) Let Υ : U+ := B ∩ U → B+
ρ define a C2 parametrization (e.g. given by a system of

Fermi coordinates), for some open neighborhood U of 0, with Υ(0) = 0, DΥ(0) = Id,
Υ(Γn ∩U) ⊂ Γρn and Υ(Γd ∩U) ⊂ Γρd. By Theorem 1.1, for every % ∈ (0, 1/2), there exist
C, ρ0 > 0 such that

(7.8) |u(Υ−1(y))− βα
2k0−1

2 Fk0
(y)| 6 C|y|

2k0−1
2 +%, for every y ∈ B+

ρ0
,
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with α > 0 as in (2.3). Indeed, to see this, we first observe that (7.8) is equivalent to

(7.9) |u(x)− βFk0
(αΥ(x))| 6 c|x|

2k0−1
2 +%, for every x ∈ Υ−1(B+

ρ0
),

for some constant c > 0. We then further note that

|DFk0(x)| 6 c|x|
2k0−1

2 −1

and thus

|Fk0(αΥ(x))− Fk0(ϕ(x))| 6 c|x|
2k0−1

2 −1|αΥ(x)− ϕ(x)|

6 c|x|
2k0−1

2 −1|x|2

6 c|x|
2k0−1

2 +1,

in a neighborhood of 0, where c > 0 is a positive constant independent of x possibly varying
from line to line. This, together with (1.4) and the triangular inequality, gives (7.9).

Proof of Corollary 1.2. From Theorem 1.1 and (7.8) it follows that, if u ∈ H1(Ω) is a non-trivial
solution to (1.1), then there exist k0 ∈ N \ {0} and β ∈ R \ {0} such that, for every t ∈ [0, π),

(7.10) lim
r→0

r−
2k0−1

2 u(r cos t, r sin t) = βα
2k0−1

2 cos
(

2k0−1
2 t

)
.

Therefore, if u > 0, we have that necessarily k0 = 1 so that statement (i) follows. Moreover, (7.8)
implies that

u(r cos t, r sin t) > βα1/2r1/2 cos
(
t
2

)
− Cr1/2+%,

which easily provides statement (ii). �

Proof of Corollary 1.3. Let us assume by contradiction that u 6≡ 0. Then, Theorem 1.1 and (7.8)
imply that (7.10) holds for every t ∈ [0, π) and for some k0 ∈ N \ {0} and β ∈ R \ {0}. Taking
n > 2k0−1

2 , (7.10) contradicts the assumption that u(x) = O(|x|n) as |x| → 0. �

8. An example

In this section we show that the presence of a logarithmic term in the asymptotic expansion
cannot be excluded without assuming enough regularity of the boundary.

Let us define in the Gauss plane the set

A := C \ {x1 ∈ R ⊂ C : x1 6 0}
and the holomorphic function η : A→ C defined as follows:

η(z) := log r + iθ for any z = reiθ ∈ A, r > 0, θ ∈ (−π, π).

Let us consider the holomorphic function

v(z) := e2η(−iz)η(−iz) for any z ∈ C \ {ix2 : x2 6 0}
and the set

(8.1) Z := {z ∈ C \ {ix2 : x2 6 0} : =(v(z)) = 0}.
If z = reiθ with r > 0, θ ∈

(
−π2 ,

3π
2

)
\ {−π4 , 0,

π
4 ,

π
2 ,

3π
4 , π,

5π
4 }, then z ∈ Z if and only

(8.2) r = ρ(θ) := exp

[
−
(
θ − π

2

)
cot(2θ)

]
.
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For some fixed σ ∈
(
0, π2

)
, we define the curve Γ+ ⊂ Z parametrized by

(8.3) Γ+ :

{
x1(θ) = ρ(θ) cos θ

x2(θ) = ρ(θ) sin θ
θ ∈ (−σ, 0) .

If we choose σ > 0 sufficiently small then Γ+ is the graph of a function h+ defined in a open right
neighborhood U+ of 0. Moreover h+ is a Lipschitz function in U+, h+ ∈ C2(U+) and

(8.4) lim
x1→0+

h+(x1)

x1
= 0 , lim

x1→0+
h′+(x1) = 0 .

Then we define the harmonic function

(8.5) u(x1, x2) := −=(v(z)) for any z = x1 + ix2 ∈ C \ {iy : y 6 0} .

In polar coordinates the function u reads

(8.6) u(r, θ) = r2
[
(log r) sin(2θ) +

(
θ − π

2

)
cos(2θ)

]
.

From (8.1–8.2) and (8.6) we deduce that u vanishes on Γ+.
The next step is to find a curve Γ− on which ∂u

∂ν = 0 where ν = (ν1, ν2) is the unit normal to
Γ− satisfying ν2 6 0. We observe that

u(x1, x2) = x1x2 log(x2
1 + x2

2) +

[
arctan

(
x2

x1

)
+
π

2

]
(x2

1 − x2
2) for any x1 < 0, x2 ∈ R .

From direct computation we obtain

∂u

∂x1
(x1, x2) = x2 log(x2

1 + x2
2) + x2 + 2

[
arctan

(
x2

x1

)
+
π

2

]
x1 ,

∂u

∂x2
(x1, x2) = x1 log(x2

1 + x2
2) + x1 − 2

[
arctan

(
x2

x1

)
+
π

2

]
x2 .

We now define

H1(x1, x2) =
2
[
arctan

(
x2

x1

)
+ π

2

]
x1

log(x2
1 + x2

2)
and H2(x1, x2) =

2
[
arctan

(
x2

x1

)
+ π

2

]
x2

log(x2
1 + x2

2)

on the set B1 ∩Π− where Π− := {(x1, x2) ∈ R2 : x1 < 0}. One can easily check that H1, H2 admit
continuous extensions defined on B1 ∩ Π− which we still denote by H1 and H2 respectively. We
also observe that H1, H2 ∈ C1(B1 ∩ Π−). Therefore H1, H2 may be extended also on the right of
the x2-axis up to restrict them to a disk of smaller radius. For example one may define

H1(x1, x2) := 3H1(−x1, x2)− 2H1(−2x1, x2) and H2(x1, x2) := 3H2(−x1, x2)− 2H2(−2x1, x2)

for any (x1, x2) ∈ B1/2 ∩ Π+ where we put Π+ := {(x1, x2) ∈ R2 : x1 > 0}. One may check that

the new functions H1, H2 belong to C1(B1/2).
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We can now define the functions V1, V2 : B1/2 → R by

V1(x1, x2) :=

{
x2 + x2

log(x2
1+x2

2)
+H1(x1, x2) if (x1, x2) 6= (0, 0)

0 if (x1, x2) = (0, 0) ,

V2(x1, x2) :=

{
x1 + x1

log(x2
1+x2

2)
−H2(x1, x2) if (x1, x2) 6= (0, 0)

0 if (x1, x2) = (0, 0) .

One may verify that V1, V2 ∈ C1(B1/2). Moreover we have

∂V1

∂x1
(0, 0) = 0 ,

∂V1

∂x2
(0, 0) = 1 ,

∂V2

∂x1
(0, 0) = 1 ,

∂V2

∂x2
(0, 0) = 0 .

Then we consider the dynamical system

(8.7)

x
′
1(t) = V1(x1(t), x2(t))

x′2(t) = V2(x1(t), x2(t)) .

After linearization at (0, 0), by [15, Theorem IX.6.2] we deduce that the stable and unstable
manifolds corresponding to the stationary point (0, 0) of (8.7), are respectively tangent to the
eigenvectors (1,−1) and (1, 1) of the matrix DV (0, 0) where V is the vector field (V1, V2).

We define the curve Γ− as the stable manifold of (8.7) at (0, 0) intersected with Bε ∩Π− where
ε ∈ (0, 1

2 ) can be chosen sufficiently small in such a way that Γ− becomes the graph of a function
h− defined in a open left neighborhood U− of 0. Combining the definitions of h+ and h− we can
introduce a function h : U+ ∪U− ∪{0} → R such that h ≡ h+ on U+, h ≡ h− on U− and h(0) = 0.

Then we introduce a positive number R sufficiently small and a domain Ω ⊆ BR such that
Ω = {(x1, x2) ∈ BR : x2 > h(x1)}. One can easily check that the function u defined in (8.5)
belongs to H1(Ω). From the above construction, we deduce that u = 0 on Γ+ ∩ ∂Ω and ∂u

∂ν = 0 on

Γ− ∩ ∂Ω. We observe that ∂Ω admits a corner at 0 of amplitude 3π
4 .

The presence of a logarithmic term in u can be explained since the C2,δ-regularity assumption
is not satisfied from the right, i.e. h|U+∪{0} 6∈ C2,δ(U+ ∪ {0}) for any δ ∈ (0, 1). To see this, it is
sufficient to study the behavior of h(x1)− x1h

′(x1) in a right neighborhood of zero.
By (8.3) we know that θ ∈

(
− π

2 , 0
)

and hence, if x1 belongs to a sufficiently small right
neighborhood of 0, by (8.2) we have

(8.8)
1

2
log
(
x2

1 + (h+(x1))2
)

tan

[
2 arctan

(
h+(x1)

x1

)]
+ arctan

(
h+(x1)

x1

)
− π

2
= 0.

By (8.4) and (8.8) we have that, as x1 → 0+,

tan

[
2 arctan

(
h+(x1)

x1

)]
= −

2 arctan
(h+(x1)

x1

)
− π

log
(
x2

1 + (h+(x1))2
) =

π

2

1

log x1
+ o

(
1

log x1

)
.(8.9)
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Differentiating both sides of (8.8) and multiplying by x2
1 + (h+(x1))2 we obtain the identity

(8.10)
(
x1 + h+(x1)h′+(x1)

)
tan

[
2 arctan

(
h+(x1)

x1

)]

+

1 +
log
(
x2

1 + (h+(x1))2
)

cos2
[
2 arctan

(
h+(x1)
x1

)]
(x1h

′
+(x1)− h+(x1)

)
= 0

and hence (8.4) and (8.9) yield

(8.11) x1h
′
+(x1)− h+(x1) ∼ −π

4

x1

log2 x1

as x1 → 0+.

This shows that h+ 6∈ C2(U+ ∪ {0}) (and a fortiori cannot be extended to be of class C2,δ).
We observe that the reason of the appearance of a logarithmic term is not due to the presence

of a corner at 0; indeed we are going to construct a domain with C1-boundary for which the same
phenomenon occurs. In order to do this, it is sufficient to take the domain Ω and the function u
defined above and to apply a suitable deformation in order to remove the angle. We recall that Ω
exhibits a corner at 0 whose amplitude is 3π

4 .
For this reason, we define F : C \ {ix2 : x2 6 0} → C by

F (z) := r
4
3 ei

4
3 θ for any z = reiθ , r > 0 , θ ∈

(
−π

2
,

3π

2

)
.

We observe that, up to shrink R if necessary, the map F : Ω→ F (Ω) is invertible so that we may

define Ω̃ := F (Ω) and ũ : Ω̃→ R, ũ(y1, y2) := u(F−1(y1, y2)) for any (y1, y2) ∈ Ω̃.

We also define the curves Γ̃+ := F (Γ+) and Γ̃− := F (Γ−). Up to shrink R if necessary, we may

assume that Γ̃+ and Γ̃− are respectively the graphs of two functions h̃+ and h̃−.

It is immediate to verify that ũ = 0 on Γ̃+. We also prove that ∂ũ
∂ν = 0 on Γ̃−. To avoid

confusion with the notion of normal unit vectors to Γ− and Γ̃− we denote them respectively with
νΓ− and νΓ̃−

. Since ũ is still harmonic, ∂u
∂νΓ−

= 0 on Γ− and F is a conformal mapping, for any

ϕ̃ ∈ C∞c (Ω̃ ∪ Γ̃−), we have∫
Γ̃−

∂ũ

∂νΓ̃−

ϕ̃ ds =

∫
Ω̃

∇ũ(y)∇ϕ̃(y) dy =

∫
Ω̃

[∇u(F−1(y))(DF (F−1(y)))−1]∇ϕ̃(y) dy

=

∫
Ω

[
∇u(x)(DF (x))−1

]
∇ϕ̃(F (x)) |det(DF (x))| dx

=

∫
Ω

[
∇u(x)(DF (x))−1

][
∇ϕ(x)(DF (x))−1

]
|det(DF (x))| dx

=

∫
Ω

∇u(x)∇ϕ(x) dx =

∫
Γ−

∂u

∂νΓ−

ϕds = 0

where we put ϕ(x) = ϕ̃(F (x)). This proves that ∂ũ
∂νΓ̃−

= 0 on Γ̃−.

Finally we prove for h̃+ an estimate similar to (8.11).
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From the definition of F it follows that Γ̃+ admits a representation in polar coordinates of the
type

(8.12) r = ρ̃(θ) := exp

[
−
(
θ − 2π

3

)
cot

(
3θ

2

)]
.

Proceeding exactly as for (8.8)-(8.9) one can prove that

(8.13)
1

2
log
(
x2

1 + (h̃+(x1))2
)

tan

[
3

2
arctan

(
h̃+(x1)

x1

)]
+ arctan

(
h̃+(x1)

x1

)
− 2π

3
= 0 .

As we did for h+, also for the function h̃+ one can prove that

(8.14) lim
x1→0

h̃+(x1)

x1
= 0 , lim

x1→0+
h̃′+(x1) = 0 .

By (8.14) we have

tan

[
3

2
arctan

(
h̃+(x1)

x1

)]
= −

2 arctan
( h̃+(x1)

x1

)
− 4π

3

log
(
x2

1 + (h̃+(x1))2
)(8.15)

=
2π

3

1

log x1
+ o

(
1

log x1

)
as x1 → 0+ .

Differentiating both sides of (8.13) and multiplying by x2
1 + (h̃+(x1))2 we obtain the identity

(8.16)
(
x1 + h̃+(x1)h̃′+(x1)

)
tan

[
3

2
arctan

(
h̃+(x1)

x1

)]

+

1 +
3 log

(
x2

1 + (h̃+(x1))2
)

4 cos2
[

3
2 arctan

(
h̃+(x1)
x1

)]
(x1h̃

′
+(x1)− h̃+(x1)

)
= 0

By (8.14), (8.15) and (8.16), we obtain

(8.17) x1h̃
′
+(x1)− h̃+(x1) ∼ −4π

9

x1

log2 x1

as x1 → 0+.

The above arguments show that ∂Ω̃ is of class C1 but not of class C1,δ (and a fortiori not of class
C2,δ).
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