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' The growth dynamics of Ga(In)N semiconductors by Plasma-Assisted Molecular Beam Epitaxy (PAMBE)
. atlow temperatures (T=450°C) is here investigated. The presence of droplets at the growth surface
strongly affects the adatom incorporation dynamics, making the growth rate a decreasing function
of the metal flux impinging on the surface. We explain this phenomenon via a model that considers
. droplet effects on the incorporation of metal adatoms into the crystal. A relevant role is played by the
. vapor-liquid-solid growth mode that takes place under the droplets due to nitrogen molecules directly
. impinging on the droplets. The role of droplets in the growth dynamics here observed and modeled
in the case of Nitride semiconductors is general and it can be extended to describe the growth of the
material class of binary compounds when droplets are present on the surface.

 Among compound semiconductors, InGaN has very unique properties such as high near band edge absorption,
- high carrier mobility, surface electron accumulation, and superior radiation resistance'™*. But what puts this
: material in high demand for many industrial applications is its wide tunability of the band gap which spans from
0.7 to 3.4 eV, depending on the In composition®. This large energy range covers almost the whole solar spectrum
- thus making InGaN the optimal material for solar applications®. InGaN characteristics are desirable for many
- applications such as light sources, light detectors, solar cells, photo electrochemical water splitting and electro-
. chemical biosensors’=®. Moreover, growth of low to high indium composition InGaN directly on Si has recently
. been demonstrated!’ for cost reduction and integration with Si technology. InGaN growth is hindered by the lat-
. tice mismatch and the different thermal stabilities of the two bond types present in the material: In-N and Ga-N.
The lattice mismatch leads to a miscibility gap which can cause fluctuations of the In content in the epilayer!"'2.
: The different binding energies of In-N and Ga-N bonds are reflected in the different decomposition temper-
© atures of InN (630°C) and GaN (850°C)"’. Consequently, a reduction of In incorporation in the epilayer occurs
not only due to the re-evaporation of adsorbed surface adatoms but also due to the thermal decomposition of
In-N bonds. So far, many works have been devoted to the study phenomena such as phase separation'*, sur-
face reconstruction during transition between metal-rich and N-rich regions'®, and the other growth behav-
iors of InGaN grown mostly at high (normal) temperatures'é-2!. Low growth temperatures have been used to
. avoid InN decomposition and In desorption, thus allowing the growth of high-In-composition InGaN layers by
. plasma-assisted molecular beam epitaxy (PAMBE)!®22-4, At these temperatures, metal-rich conditions easily
. lead to the formation of droplets on the surface which affect the film quality? and that are difficult to remove by
. thermal treatment, because the In-N dissociation temperature is lower than the onset temperature for the evapo-
: ration of In from the In droplets on the InGaN surface®. This has been shown to be detrimental to material prop-
: erties and a major drawback for device applications?” although there was no clear explanation reported for these
: phenomena. At higher substrate temperatures, an intermediate Ga-rich regime is observed, leading to smooth
droplet-free surfaces®. Several method to overcome such drawback have been proposed, based on the alternating
sequence of metal-rich and nitrogen-rich conditions at low temperature to take profit of the higher mobility of
metal adatoms in metal-rich conditions and to eliminate the metal droplets that form on the surface during the
atomic nitrogen irradiation in absence of metal flux*****,
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Metal flux (10'* | Growth time | Metal dose (10'¢ | Growth rate
Sample atomscm~2s7!) | (mins) atoms cm™2) (nm/min)
A 0.39 120 28 0.65
B 0.78 120 56 1.20
C 0.98 120 71 1.67
D 1.17 120 84 1.46
E 1.41 90 76 1.30
F 1.96 45 53 1.37
G 2.94 45 79 1.32
H 2.94 90 158 1.42
1 2.94 150 264 1.67
] 3.92 60 141 1.03
K 7.83 90 423 0.83

Table 1. Metal flux (In +Ga with one to one ratio), growth time, and growth rate of samples.

However, there is still little knowledge about the exact growth dynamics of InGaN in the low temperature
regime and the role that is played by the metal droplets that form at the surface in the metal-rich conditions. In
this study we demonstrate that the droplets have a fundamental role in determining the InGaN growth dynamics
determining the adatoms kinetics of incorporation in the presence of droplets. We propose a theoretical approach
that models the observed phenomena highlighting the role of the droplet as a sink for the metal adatoms and
the role of the Vapor Liquid Solid (VLS) growth mode that takes place under the droplets in the InGaN epilayer
growth.

Experimental

The InGaN thin-films were grown by molecular beam epitaxy (MBE) equipped with a radio frequency (RF)
plasma source for nitrogen, on Si (111) substrates. The native silicon oxide was removed from the surface by a
thermal annealing at 850 °C for 30 min in vacuum. Prior to the growth, the substrates were exposed to the nitro-
gen plasma with a flux of 0.9 sccm (standard cubic centimeter per minute) and RF power of 360 W at 800 °C.
This procedure has been established to grow high quality GaN and InGaN epilayers on Si’*!. Subsequently the
temperature of the sample was reduced to 450 °C (growth temperature) and the InGaN thin film was grown with
equal Ga and In fluxes (see Table 1). The same N flux and RF power was maintained as during the nitridation step.

After growth, the samples were rapidly cooled down to room temperature and taken out of the MBE chamber
for further characterization.

X-ray diffraction (XRD) was employed to examine the sample composition. The surface morphology was
investigated by both optical microscopy as well as scanning electron microscopy (SEM) using a secondary elec-
tron detector. The layer thickness, and in turn the growth rate, was determined via cross-section SEM images of
the samples.

Results and Discussion

Figure 1(a-e) show the optical microscopy and SEM images taken from samples with different metal fluxes.
Epilayer surfaces are smooth and free of metal droplets when the metal flux is not too high, that is, when the
growth presumably takes place in slightly N-rich conditions (excess of active N atoms compared to metal atoms
reaching the surface). In this regime the growth rate is proportional to the impinging metal flux (green shaded
area in Fig. 2). The droplets start to appear as the ratio of metal flux vs nitrogen flux exceeds the equilibrium point,
which in our experiments is F=0.98 x 10'* atoms cm ™2 s~. This happens when two Ga atoms and/or more form
a stable initial cluster on the surface. The same kinds of process for the Ga clusters, starting with two Ga atoms,
were previously observed by in-situ scanning tunneling microscopy (STM) during a MBE growth on GaAs(001)
substrate®2. The creation of metal droplets in the metal-rich conditions has been already reported in case of GaN
and in general in the growth of InGaN grown at low temperature?*-262>33-35_ Here we observed that as the drop-
lets start to appear on the surface, a marked decrease in growth rate (see Fig. 2) occurs. The growth rate depends
strongly on the metal flux, decreasing as the flux increases, and this effect starts as soon as droplets are formed on
the surface (Fig. 2). At the end of the growth, for F > F;, we observe surface covered by metal droplets. It is worth
mentioning that the total amount of metal stored in the droplets corresponds, within 20% accuracy, to the total
dose of metal deposited, once the fraction incorporated in the InGaN crystal has been subtracted. However, it is
found that in presence of droplets, by increasing the time of growth (at the same metal/N ratio), the growth rate
increases (see samples G,H and I in Table I).

To understand the observed behavior, we carefully consider the metal adatom dynamics during the growth
in the transition between the N-rich and the metal-rich regimes. Among all growth parameters, the ITI/N ratio is
one of the key points to improve the surface structure and morphology of the grown film. Based on this ratio, two
different morphologies have been observed. One is the smooth epilayer structure which is achieved in metal-rich
and lightly N-rich conditions and the other is the so-called nano-columnar structure which will appear in case
of N-rich growth*. Nitride semiconductor films grown with even a slight excess of N during growth (N-stable
conditions) display a rough surface morphology with a columnar structure initiated by the formation of stacking
faults®”. This can be explained considering the very different diffusivity for Ga and N adatoms on the surface.
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Figure 1. (Top) Optical Microscope and (bottom) related SEM images (taken at an angle of 70° respect to the
sample) of InGaN samples grown under different metal fluxes, from left to right: (a) 0.39 x 10, (b) 0.98 x 10%,
(c) 1.41 x 10, (d) 3.92 x 10, (e) 7.83 x 10'* atoms cm 2 s~ 1. Black line length in all the images is 100 um.
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Figure 2. Average growth rate as a function of metal flux F normalized by F,=0.98 x 10'* atoms cm™2s
The dashed lines correspond to the model predictions: Initial linear dependence in absence of droplets (blue),
T (red) and Ry (black). Model fit parameters are Ry/Rg (Fy) =0.940.2, 0p,/6 =3 £ 1, the critical exponent
p=1.610.1. The size of the experimental points indicates the error of the data.

While Ga is very mobile at typical growth temperatures, the diffusion of N is slower by orders of magnitude. The
presence of excess N strongly increases the Ga diffusion barrier. It has been calculated that the diffusion barrier
for Ga adatoms on N-rich surfaces is as high as 1.8 eV, whereas it is only 0.4 eV when the growth is carried out on
a Ga-saturated surface. Thus, N-rich growth leads to very low adatom mobility and to an undesired kinetically
induced roughening of the surface®. GaN growth by PAMBE is commonly carried out under metal-rich condi-
tions. But it must not be forgotten that in metal-rich regimes where there is the accumulation of metal atoms and
creation of droplets on the surface, these very mobile metal adatoms on the surface can join metal droplets instead
of participating in the crystal growth.

We observe that the decrease in the growth rate is always accompanied by the presence of metal droplets on
the sample surface after the growth. The growth rate decreases more and more with the increase of the metal flux
and so does the density and volume of droplets, though the N flux is unchanged. This is in marked contrast to
the common assumption that the growth rate under metal rich conditions is determined by the N flux. Hence,
the common N flux calibration procedure under metal-rich conditions must be reconsidered. The droplets thus
should play a fundamental role in the change of metal adatom incorporation dynamics. As soon as the number
of metal atoms exceeds the critical density for droplet formation, the metal atoms start to form droplets and
accumulate in them. The presence of droplets on the surface establishes a depletion channel for the metal adatom
density on the growth surface, as metal adatoms can be efficiently captured by the droplets. This depletion channel
is in competition with the N-driven metal adatom incorporation into the InGaN crystal. This leads, on one hand,
to a reduction of the metal adatom incorporation rate into the crystal in the regions not covered by the droplets.
On the other hand, the presence of liquid metal droplets on the surface should allow for the VLS growth of
InGaN material under the droplets themselves, via direct incorporation of nitrogen. In summary, three possible
processes are available to the metal adatom on the growing InGaN surface in the presence of droplets (see Fig. 3):
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Figure 3. (a) Available metal adatom processes. Process 1 leads to metal droplet attachment. Process 2 leads
to incorporation into the growing crystal (indicated by the red dot). (b) Schematics of the metal adatom rate
equation model highlighting the four available channels for the metal adatoms: (1) droplet attachment; (2)
crystal incorporation; (3) desorption; (4) VLS crystal growth under the droplet.

(1) Incorporation of metal adatom into the crystal by binding to a N active site on the droplet-free surface.
(2) Metal adatom attachment to a droplet.
(3) Desorption.

In addition, the metal adatoms incorporated in the droplets can be incorporated in the crystal due to VLS
mechanism under the droplet by direct N flux into the droplet (process 4). It is possible then to model the com-
bined effect of the three processes as a set of rate equations for the metal adatom density n and VLS growth rate
(seeb). The first equation describes the kinetics of the metal adatom density #, determined by the combined effect
of external metal flux, incorporation in to the crystal and attachment to the droplets:

dn

o F — E — nd(®/F) — noo(F) M
where Fis the total (In plus Ga) metal flux, @ is the active N flux, E is the desorption flux, §(®/F) the incorporation
probability into the crystal on the droplet free surface, which depends on the ratio between active N flux ¢ and
the metal flux F. §(¢/F) is proportional to the probability, for a metal adatom, to find an active N site for binding.
p(F) the droplet density and o the droplet capture cross section. We cannot access experimentally the exact den-
sity of droplets acting during the growth. The droplet density that is measured after the growth, especially at high
coverage, it is affected by Ostwald ripening effects that take place during the cooling of the sample and it is there-
fore not clearly related to the droplet density in the growth regime. Therefore the droplet density and its depend-
ence on the metal flux will be treated as a model parameter. At low temperature in MBE conditions the metal
desorption flux is close to zero (E=0). Therefore in the steady state condition, Eq. (1) leads to the solution for n

— Lt
8(®IF) + ap )

And consequently, the bulk growth rate per unit surface area (process 2) R; that takes place in the regions of the
sample where there are no droplets is:

SCIENTIFICREPORTS| (2018) 8:11278 | DOI:10.1038/s41598-018-28984-9 4



www.nature.com/scientificreports/

Ry Rs| adatom

1.8— T T T T T
1.7 + 1
<16 1
£ s
E 1.5 _ - - |
. !
ol e |
1.2~ - - - - -
(b) 40 60 80 100 120 140 160
Time (min)

Figure 4. (a) Schematic of crystal growth under and between the metal droplets. (b) Observed dependence of
average growth rate from growth time (black dots). The dashed line represents the model predictions [Eq. (7)].
Here R.=67nm/h and 39B/5=15nm/h'. Metal flux used in the growth: F=2.94 x 10'* atoms cm 2 s~

1
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Ry(F, ®) = n6(®/F) = F
1+

here we explicitly used the expected dependence of the droplet density on the metal flux p(F) = p,F**. p is the
critical exponent for droplet nucleation, whose value depends on physical processes responsible for the formation
of the droplets: (i) the size of the critical nucleus in terms of atoms*?, (ii) the probability of metal atoms from the
flux to stick on the surface and to be incorporated in the adatom population. The latter process is usually classified
in “complete condensation” and “incomplete condensation” regimes. These term, in the theory of nucleation of
stable adatom clusters on the growth surface, refers to a condition where the actual flux of adatom from the gas is
fully adsorbed (complete condensation) or not-fully adsorbed (incomplete condensation) due to desorption or
other leaky channels***. As droplet formation during growth of happens in the presence of a leak channel for the
adatoms, that is the bulk incorporation, we expect to be in the regime of incomplete condensation. In this regime,
p > 1 values are expected®.

It is worth mentioning that in the N-rich region, where the density of droplets is equal to zero (green region
in Fig. 2), Eq. (3) reduces to:

Ry(F, ®) = F

In N-rich conditions the predicted InGaN growth rate linearly follows the metal flux, as observed. When the
growth turns to metal-rich conditions, as soon as the adatom density n overcomes the critical density for droplet
formation, the second depletion channel opens for the metal adatoms (in addition to the incorporation), thus
leading to a rapid depletion of the adatom density #. The depletion of n leads a reduction of R in the area between
the droplets. The effect becomes larger as the metal flux increases, as the droplet density, and thus in turn the
metal adatom capture probability by the droplets, increases with F. The transition between the two growth modes
takes place around F=0.98 x 10 atoms cm ™2 s 1.

However, under the droplets, VLS growth can take place, due to the incorporation of nitrogen molecules into
the droplets by direct impingement*!. An additional nitrogen incorporation mechanism in to the droplet, with
subsequent VLS growth at the basis of the droplet, has been identified by means of molecular dynamics simu-
lations by Kawamura et al.** and related to N migration on stable InGaN surfaces. The growth rate per unit area
under the droplet is R;,(?) and depends on the nitrogen flux @, the incorporation probability of N into the droplet
and the growth rate at the liquid-solid interface. The total growth rate is therefore the sum of the two contribu-
tions, that is the growth rate Ry in the droplet free areas and Ry, under the droplets, whose relevance is given by the
surface area covered by the droplets (see Fig. 4). The total growth rate per unit area is then:
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R(F, ®, 7) = (1 — x)Rg + xRy = Ry + X(Ry — Ry) (4)

where  is the relative area covered by the droplets. This depends on the total amount of metal stored in the drop-
let ensemble and on the droplet density p. As long as the droplets do not touch (x <« 1), the dependence of x on
the metal flux F, the deposition time 7 and the droplet density p is:

2/3

2/3
1 2tp
pzfyg(l)/?’l— . F3 o2
1 4 2%

%) 5)

where ~ is a normalization constant which can be derived from experiments by equating the Eq. (5) predictions
with the observed x at maximum metal flux. (F—R)7 is the total metal quantity that is stored in the droplet
ensemble after the growth time 7. It corresponds to the total metal dose deposited on the substrate minus the
amount incorporated in the crystal between the droplets (R;). We did not consider the decrease in the metal dose
available for droplet formation due to the crystallization under the droplet as it is a small correction for Y <1 and
it adds complexity to the model. It is worth mentioning that Eq. (5) is not valid for long growth times, when x — 1
and the amount of growth proceeding via VLS under the droplets becomes relevant. By combining equations (3-5)
we find the dependence of the total growth rate, at time 7, per unit area to be given by the relation

X(7) =1

{(F — RyT

2/3
13 _ 1 -~ 1 2P| o
T + e, |Ry(®) — F "z 1 o "z F3|r
5(@/F) 5(2/F) 5(@/F) (6)

R, =F

The total growth rate Ry versus time dependence is introduced by the change, with the growth time, of the area
covered by the droplets. The exact T#* dependence is related to the invariance of the wetting angle of the droplet
with its size. In the extreme case of a surface covered by closely arranged droplets, the growth rate will be deter-
mined by the N flux only, that is Ry o< ®. It is worth mentioning that the growth progressively shifts towards the
VLS dominated mode as the growth time increases in metal-rich conditions.

From equation (6) the dependence on time of the average growth rate I' is

3y 2/3
I =R+ - B(F, )7 @
where B(F, ) indicates the complex formula encased in the square brackets in Eq. (6).

At first glance, the parameters of the model that enter Eq. (6) are quite numerous, which would make the
extraction of the parameter values rather difficult. However, it is possible to reduce consistently the number of
free parameters through the following considerations. The parameter v, the prefactor of the droplet coverage
dependence, can be extracted from Eq. (5) once the surface coverage for a sample is known. We used as reference
the sample K, the one obtained at maximum metal flux, where X = 0.6. The model scaling factor can be adjusted
by setting I'(Fy) =I'yja.x= 1.7 nm/min. The parameters o, p, and 0 are always present in the form of the ratio /6.
Therefore, the only free parameters to be found by fitting procedures are then: i) the ratio Ri/R, ii) the ratio opy/6
and iii) the critical exponent p. The fitted values are: R/R; (Fy) =0.940.2, 0p0/6 =3+ 1 and the critical exponent
p=1.6=%0.1. The dependence of the growth rate on the metal flux is reported in Fig. 2. After the initial linear
dependence on F, the model curve shows a clear decrease in the growth rate. The good agreement of the model
based on the dependence of Rgon F (black curve) indicates that the main factor determining the reduction of the
growth rate is the decrease in the adatom density n caused by the opening of the droplet depletion channel. The
critical exponent extracted from the model is p=1.6 £ 0.1, thus showing that the droplet density is increasing
superlinearly with the increasing metal flux as expected being the droplet nucleation in the regime of incomplete
condensation, since in presence of nitrogen, a fraction of the deposited metal flux is incorporated into the crystal,
and therefore cannot contribute to droplet nucleation or to the increase in volume of existing droplets. We find
that the probability for a metal adatom to attach to a forming droplet is three times larger with respect to being
incorporated in the growing crystal at F;- (op, = 36). This significant difference in incorporation probability leads
to the observed fast decrease of the average growth velocity and its lack of recovery even at high F. When VLS
growth under the droplet is considered (red curve in Fig. 2) the description of the data is substantially improved,
with the mean square weighted deviation decreasing by a factor three. Ry still decreases with the increasing metal
flux, although a sizeable decrease in the curve slope with F, eventually reaching a plateau at high metal fluxes,
is clearly present. The VLS growth mode dominates the dynamics when the droplet coverage reaches a sizeable
percentage of the surface. According to our experimental observations, the maximum coverage in our samples is
Xm= 0.6 (sample K, see Table I). One of fitting parameter of the model is the growth rate per unit area under the
droplets (Ry). By fitting procedure, we find that R, is roughly equal, at Fr, to Rs. This suggests that the incorpora-
tion rate of N into the droplets and the InGaN surface at the growth temperature of 450 °C and F; are equivalent.

The model predicts a recovery of the growth rate as the growth time increases, with a 72* dependence. This
is due to the increase of the area covered by the droplets whose outcome is the increase in relevance of the VLS
mode. To test this expected phenomenon we grew three samples (samples G, H and I) using the same growth con-
ditions in terms of substrate temperature, nitrogen flux and metal flux (F=2.94 x 10 atoms cm~2s~!) but where
we changed the growth time by a factor four (see Fig. 4b). In this sample series, a clear dependence of the average
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growth time is observed. The behavior of I when T increases follows the predictions of Eq. (7), thus confirming
the model predictions that in the metal-rich zone the growth is increasingly dominated by the VLS mode in the
regions covered by the droplets.

Conclusion

The observed dynamics in the growth rate in the metal rich region is determined by the droplets. This happens
in two ways. The first is related to the metal adatom attachment to the droplet that depletes the adatom density
n thus hindering the epilayer growth. This phenomenon becomes more and more relevant as the metal flux
increases, as the surface is covered by an increasing density of droplets. This leads to the observed reduction of the
growth rate with the increasing metal flux. On the other side, the presence of the droplets on the surface activates
the VLS crystal growth under the droplet. This relates to direct impingement of N onto the droplet. Our findings
show that this growth method is faster than the normal crystal incorporation and promotes, at long times, a
recovery of the growth rate in samples with high droplet coverage. It is worth mentioning that role of droplets in
the growth dynamics here observed and modeled has a general validity. Because it is generated by the simultane-
ous presence of the competing processes of crystal growth and VLS, it therefore not restricted to case of Ga(In)N
semiconductors. It is in fact applicable to growth of the wide material class of binary compounds, including As, P
and Sb based semiconductors, where the excess of metal flux can cause the formation of droplets on the surface.

Data availability. The datasets generated during and/or analysed during the current study are available from
the corresponding author on reasonable request.
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