
A tutorial on Particle Swarm Optimization Clustering

Augusto Luis Ballardini
ballardini@disco.unimib.it

February 26, 2016

Abstract

This paper proposes a tutorial on the Data Clus-
tering technique using the Particle Swarm Opti-
mization approach. Following the work proposed
by Merwe et al. [1] here we present an in-deep
analysis of the algorithm together with a Matlab
implementation and a short tutorial that explains
how to modify the proposed implementation and
the effect of the parameters of the original algo-
rithm. Moreover, we provide a comparison against
the results obtained using the well known K-Means
approach. All the source code presented in this pa-
per is publicly available under the GPL-v2 license.

1 A gentle introduction

What is Clustering? Clustering can be considered
the most important unsupervised learning problem
so, as every other problem of this kind, it deals
with finding a structure in a collection of unla-
beled data [2]. We can also define the problem
as the process of grouping together similar multi-
dimensional data vectors into a number of clus-
ters, or “bins” [1]. According to the methodology
used by the algorithm, we can distinguish four stan-
dard categories: Exclusive Clustering, Overlapping
Clustering, Hierarchical Clustering and Probabilis-
tic Clustering [3]. Along with these well-established
techniques, several authors have tried to leverage
the Particle Swarm Optimization (PSO) [4] to clus-
ter arbitrary data like, as an example, images. The
contribution of Merwe and Engelbrecht [1] goes ex-
actly along these lines, presenting two approaches
for using PSO to cluster data along with an eval-
uation on six datasets and a comparison with the
standard K-Means clustering algorithm.

While the reader can find an exhaustive descrip-

tion of the proposed algorithms on the original pa-
per, in the rest of the work we will discuss our Mat-
lab implementation of those algorithms together
with a short but complete handbook for its usage.

The remainder of this work is organized as fol-
lows. Section 2 provides a brief introduction to the
PSO technique and its formal definition. Section 3
highlights the the benefits of PSO over state-of-
the-art K-Means algorithm. Section 4 deals with
the main key points of the Matlab code, provid-
ing the insights required to tailor the code to other
datasets or clustering needs.

Figure 1: The idea behind the PSO algorithm can
be traced back to a group of birds randomly search-
ing for food in an area.

2 The PSO algorithm in pills

Particle Swarm Optimization (PSO) is a useful
method for continuous nonlinear function optimiza-
tion that simulates the so-called social behaviors.
The proposed methodology is tied to bird flocking,
fish schooling and generally speaking swarming the-

1

ar
X

iv
:1

80
9.

01
94

2v
1

 [
cs

.N
E

]
 6

 S
ep

 2
01

8

ory, and it is an extremely effective yet simple algo-
rithm for optimizing a wide range of functions [4].
The main insight of the algorithm is to maintain a
set of potential solutions, i.e., particles, where each
one represents a solution to an optimization prob-
lem. Recalling the idea of bird flocks, a straight-
forward example that describes the intuition of the
algorithm is described in [5] and suppose a group
of birds, randomly searching food in an area where
there is only one piece of food. All the birds do
not know where the food is but they know how far
the food is in each time step. The PSO strategy
is based on the idea that the best way to find the
food is to follow the bird which is nearest to the
food.

Moving back to the context of clustering, we can
define a solution as a set of n-coordinates, where
each one corresponds to the c-dimensional posi-
tion of a cluster centroid. In the problem of PSO-
Clustering it follows that we can have more than
one possible solution, in which every n solution con-
sists of c-dimensional cluster positions, i.e., cluster
centroids (see Figures 2 and 3). It is important to
notice that the algorithm itself can be used in any
dimensional space, even though in the this work
only 2D and 3D spaces are taken into account for
the sake of visualizing purposes. The aim of the
proposed algorithm is then to find the best evalua-
tion of a given fitness function or, in our case, the
best spatial configuration of centroids. Since each
particle represents a position in the Nd space, the
aim is then to adjust its position according to

• the particle’s best position found so far, and

• the best position in the neighborhood of that
particle.

To fulfill the previous statements, each particle
stores these values:

• xi, its current position

• vi, its current velocity

• yi, its best position, found so far.

Using the above notation, intentionally kept as
in [1], a particle’s position is adjusted according to:

vi,k(t + 1) = wvi,k(t) + c1r1,k(t)(yi,k(t)− xi,k(t))

+ c2r2,k(t)(y(t)− xi,k(t))

(1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

In Equation (1) w is called the inertia weight,
c1 and c2 are the acceleration constants, and both
r1,j(t) and r2,j(t) are sampled from an uniform
distribution U(0, 1). The velocity of the parti-
cle is then calculated using the contributions of
(1) the previous velocity, (2) a cognitive compo-
nent related to its best-achieved distance, and (3)
the social component which takes into account the
best achieved distance over all the particles in the
swarm. The best position of a particle is calcu-
lated using the trivial Equation (3), which simply
updates the best position if the fitness value in the
current i-timestep is less than the previous fitness
value of the particle.

yi(t + 1) =

{
yi(t) if f(xi(t + 1)) ≥ f(yi(t)

xi(t + 1) if f(xi(t + 1)) < f(yi(t)
(3)

The PSO is usually executed with a continuous
iteration of the Equation (1) and Equation (2),
until a specified number of iterations has been
reached. An alternative solution is to stop when
the velocities are close to zero, which means that
the algorithm has reached a minimum in the opti-
mization process.

One more time, it is important to notice that
even if in [1] two kinds of PSO approaches are pre-
sented, respectively named gbest and lbest where
the social components is basically bounded either
to the current neighborhood of the particle rather
than the entire swarm, in this work we refer only
to the basic gbest proposal.

Before closing this section we need to introduce
how to evaluate the PSO performance at each time
step, i.e., a descriptive measure of the fitness of the
whole particle set. Equation (4) implements this
measure, where |Ci,j | is the number of data vectors
belonging to cluster Cij , zp is the vector of the in-
put data belonging the Cij cluster, mj is the j-th
centroid of the i-th particle in cluster Cij , Nc is
the number of clusters, and it can be described as
follows.

Je =

∑Nc

j=1

[∑
∀Z∈Cij

d(zp,mj)/|Ci,j |
]

Nc
(4)

2

Figure 2: In this example, we use two particles
to cluster the given data using two clusters in 2
classes (dimensions). Each particle is represented
using a green square, in which we can detect the
two tracked centroids (A and B in the first parti-
cle, C and D in the second particle). Please notice
that the black dots represent the data, which is the
same in each green square.

Figure 3: The IRIS dataset initialized with two par-
ticles (green and magenta in this picture) each one
using two c-centroids.

The Section 4 will present an in-depth analysis of
the code, where each step will be described within
its relation with the formal definition just provided.

3 PSO vs K-Means

Before moving on the code description, some im-
portant considerations should be highlighted. In
particular, this section is focused to emphasize the
benefits of PSO with respect to the well-known K-
Means algorithm which, even if is one of the most
popular clustering algorithms, shows as its main
drawback its sensitivity to the initialization of the
starting K centroids. PSO tackles this problem by
means of the incorporation of the three contribu-
tions stated in Section 2, i.e., inertia, cognitive and
social components. It follows that the population-
based search of the PSO algorithm reduces the
effect that initial conditions have, since it starts
searching from multiple positions in parallel and,
even if PSO tends to converge slower (after fewer
evaluations) than the standard K-Means approach,
it usually yields to more accurate results [6]. As
a final note, the performances of PSO can be fur-
ther improved by seeding the initial swarm with
the results of the K-Means algorithm, e.g., using
the results of K-Means as one of the particles and
thus leaving the rest of the swarm randomly ini-
tialized. The latter approach, known as Hybrid-
PSO and well-described in [1], can effectively im-
prove treacherous configurations like the one de-
picted in Figure 4.

4 The code, explained

In this section, while mainly focusing on the key
points of the PSO algorithm, i.e., a detailed analy-
sis of the meaningful code, will also highlight some
tricky lines of the Matlab code, which may be not
trivial for a novice Matlab user. In all the examples
shown in this paper, we used the common Fisher’s
IRIS dataset [7] provided in the Matlab environ-
ment, reducing its dimensionality to two or three
in order to allow an easy visualization of the data
and the clusters. Please notice that all the code
lines provided in the listings correspond to the line
numbers of the published Matlab code.

The code provides the following parameters:

3

(a) Hybrid PSO approach (b) Standard PSO approach

Figure 4: The two figures depict the results of the PSO algorithm with and without the initial guess
provided by K-Means (Hybrid-PSO). The reader can notice the slightly different results near the data
point at coordinates (3,1), where the point is wrongly labeled as green in the right figure while it is
correctly assigned to the magenta cluster in the left image. The data shown in this picture is retrieved
from the IRIS dataset, considering only the first two features of the whole dataset.

29 centroids = 2
30 dimensions = 2
31 particles = 2
32 dataset subset = 2
33 iterations = 50
34 simtime = 0.801
35 write video = false
36 hybrid pso = false
37 manual init = false

Listing 1: The parameters of the proposed
algorithm

In the list, centroids represent the number of
clusters that the user wants to discover, i.e., how
many n-dimensional groups should be available in
the input data, and corresponds to the K value in
the K-Means algorithm. The dimension parame-
ter specifies the n value of each centroid that is,
in a two-dimensional world, the x and y coordi-
nates. Please note that these two values, centroids
and dimension, are not mutually related as it is
perfectly feasible to find two clusters in a three-
dimensional space. The particles parameter rep-
resents how many parallel swarms should be exe-
cuted at the same time. Recall that each swarm,
called also particle, represents a complete solution
of the problem, i.e., in the case of two centroids
within a two-dimensional space, a couple two coor-
dinates that localize the centroids. As an example,
the user may refer to Figure 2, where a set of two
swarms is shown. The dataset subset parameter al-
lows to resize the original four-dimensional Matlab
IRIS dataset to the specified value, allowing a 2D
or 3D visualization. The meaning of the remaining

parameters should be straightforward: iterations
simply counts how many times the algorithm will
be reiterated before stopping its repetition, simtime
allows a pleasant visualization delay during the ex-
ecution of the script, write video enable the script
to grab a video using as frames the image shown in
each iteration, hybrid pso seeds the PSO algorithm
with the output of the standard Matlab K-Means
implementation and the manual init parameter al-
lows, if the dimensions parameter is set to 2, to
specify the initial position of the clusters. After
this initial environment setup, the code provides
three variables to specify the w, c1, c2 parameters
of the Equation (1) that control the inertial, cog-
nitive and social contributions. In the code, these
values were set according to [1, 8] to ensure a good
convergence.

41 w = 0.72; %INERTIA
42 c1 = 1.49; %COGNITIVE
43 c2 = 1.49; %SOCIAL

Listing 2: The specific PSO algorithm parameters

4.1 Assigning measures to cluster

176 for particle=1:particles
177 [value, index] = min(distances(:,:,

particle),[],2);
178 c(:,particle) = index;
179 end

Listing 3: A non-trivial assignment

Implementing the Equation (4) for calculating
the fitness of a particle is trivial but the Matlab

4

implementation may seem hard to understand at
a glance. The code needed to calculate the fit-
ness starts with line 218 checking if inside the ar-
ray c there is at least one element belonging to the
centroid-th centroid. The local fitness is then de-
fined as the mean of all the distances between the
points belonging to each centroid. Since multiple
particles can be evaluated in parallel, an additional
loop is introduced in line 216, allowing the code to
iterate through the multiple swarm fitness evalua-
tion. Please note that, during the second loop, we
store and update two additional values in lines 228
and 229, i.e., the local best fitness and position
found so far, while at lines 233 and 234 we extract
the very best fitness value and position of all the
particle swarm currently used. An overview of this
process is shown in Figure 5(a).

216 for particle=1:particles
217 for centroid = 1 : centroids
218 if any(c(:,particle) == centroid)
219 local fitness = ...
220 mean(distances(c(:,particle)==

centroid,centroid,particle));
221 average fitness(particle,1)=

average fitness(particle,1)...
222 + local fitness;
223 end
224 end
225 average fitness(particle,1) =

average fitness(particle,1) / ...
226 centroids;
227 if (average fitness(particle,1) <

swarm fitness(particle))
228 swarm fitness(particle) =

average fitness(particle,1);
229 swarm best(:,:,particle) = swarm pos

(:,:,particle); %LOCAL BEST
230 end

%FITNESS
231 end
232

233 [global fitness, index] = min(
swarm fitness); %GLOBAL BEST FITNESS

234 swarm overall pose = swarm pos(:,:,index);
%GLOBAL BEST POSITION

Listing 4: In this listing the code that controls the
fitness evaluation is reported. Please note that the
global fitness is evaluated after the evaluation of
the whole local fitness’s set.

The last part of the code concerns about updat-
ing the inertia, cognitive and social components
that contribute to set the velocity of the particles.
Apart from the inertia component scaled using only

the w parameter, the others use the previously cal-
culated best local and global positions, respectively
for the cognitive and social aspects. All of the
components, added together, creates the so-called
swarm velocity, that is used to update the overall
swam position. In lines 49 and 51 the r1, r2, c1 and
c2 variables corresponds to the parameters defined
in Equation (1).

47 for particle=1:particles
48 inertia = w * swarm vel(:,:,particle);
49 cognitive = c1 * r1 * ...
50 (swarm best(:,:,particle)-

swarm pos(:,:,particle));
51 social = c2 * r2 * (swarm overall pose-

swarm pos(:,:,particle));
52 vel = inertia+cognitive+social;
53 % UPDATED PARTICLE ...
54 swarm pos(:,:,particle) = swarm pos(:,:,

particle) + vel ; % .. POSE
55 swarm vel(:,:,particle) = vel;

% .. VEL
56 end

Listing 5: The code shows how update the position
of the whole particle swarm

4.2 Replacing the IRIS dataset

The provided code is tailored for the Matlab IRIS
dataset with a specific configuration, meaning that
the visualization part mainly works only with two-
dimensional and three-dimensional input. This is
achieved by resizing the original four-classes 150×4
IRIS dataset either by 150 × 2 or 150 × 3. We
trivially resized it for visualization purposes only,
since only two or three classes can be effectively
shown in a graph. Tests based on the dataset pro-
vided in [9] shown the feasibility of using high di-
mensional dataset, i.e., more than 3 classes, using
both the available approaches with basic changes
in Lines 56 to 58.

56 load fisheriris.mat
57 meas = meas(:,1+dataset subset:dimensions+

dataset subset);
58 dataset size = size (meas);

Listing 6: How to load the input dataset

4.3 Video Grabbing

We put some extra lines in the code to allow an
easy video grabbing. This feature is ensured by
means of the getframe and writeVideo Matlab func-
tions and their usage is trivial as follows. In the

5

(a)

(b)

(c)

Figure 5: In this example, a dataset of with 6 data points (blue points) is clustered using two centroids.
In (a) the distances to the closest centroid is marked in red. In (b) only the distance to the closest
centroid is shown along with a measure of distance. Two averages, i.e., local fitnesses are then calculated
using line 220. In the case with multiple particles like in (c), where two swarms depicted with different
colored stars are present, the process is iterated over every particle and a final value of global fitness is
chosen, selecting it from the minimum local fitness set. Please note that in addition to the fitness value
also the local and global positions are stored, respectively in lines 229 and 234 of Listing 4.

6

listing lines 47 to 49 open the filesystem using as
an output filename PSO.avi, which will be located
in the same folder of the Matlab Code. Lines 243
and 244 grab and insert an image in the video,
while lines 295 to 297 close the previously opened
file.

47 writerObj = VideoWriter('PSO.avi');
48 writerObj.Quality=100;
49 open(writerObj);

243 frame = getframe(fh);
244 writeVideo(writerObj,frame);
295 frame = getframe(fh);
296 writeVideo(writerObj,frame);
297 close(writerObj);

5 Conclusions

In this paper, a systematic explanation of the PSO-
Algorithm proposed in [1] was presented by means
of the analysis of the code publicly available at [10].
The code provides both the standard PSO and the
Hybrid-PSO options, allowing the user to master
every detail of the original work. Although the
code was originally tailored to be executed using
the Matlab IRIS dataset, it can be easily adapted
in order to perform clustering of potentially any
kind of dataset with minimal code changes.

Acknowledgement

The author would like to thank Dr. Axel Furlan
for his support in writing the first prototype of the
following Matlab Code.

7

6 Matlab Code

1 % Author: Augusto Luis Ballardini
2 % Email: augusto.ballardini@disco.unimib.it
3 % Website: http://www.ira.disco.unimib.it/people/ballardini-augusto-luis/
4

5 % This library is distributed in the hope that it will be useful,
6 % but WITHOUT ANY WARRANTY; without even the implied warranty of
7 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
8 % Permission is granted to copy, distribute and/or modify this document
9 % under the terms of the GNU Free Documentation License, Version 1.3

10 % or any later version published by the Free Software Foundation;
11 % with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts
12 % A copy of the license is included in the section entitled "GNU
13 % Free Documentation License".
14

15 % The following code is inspired by the following paper:
16 % Van Der Merwe, D. W.; Engelbrecht, AP., "Data clustering using particle
17 % swarm optimization," Evolutionary Computation, 2003. CEC '03. The 2003
18 % Congress on , vol.1, no., pp.215,220 Vol.1, 8-12 Dec. 2003
19 % doi: 10.1109/CEC.2003.1299577
20 % URL:
21 % http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1299577
22

23 clear;
24 close all;
25

26 rng('default') % For reproducibility
27

28 % INIT PARTICLE SWARM
29 centroids = 2; % == clusters here (aka centroids)
30 dimensions = 2; % how many dimensions in each centroid
31 particles = 1; % how many particles in the swarm, how many solutions
32 iterations = 50; % iterations of the optimization alg.
33 simtime=0.101; % simulation delay btw each iteration
34 dataset subset = 2; % for the IRIS dataset, change this value from 0 to 2
35 write video = false; % enable to grab the output picture and save a video
36 hybrid pso = true; % enable/disable hybrid pso
37 manual init = false; % enable/disable manual initialization
38 % (only for dimensions={2,3})
39

40 % GLOBAL PARAMETERS (the paper reports this values 0.72;1.49;1.49)
41 w = 0.72; %INERTIA
42 c1 = 1.49; %COGNITIVE
43 c2 = 1.49; %SOCIAL
44

45 % VIDEO GRAB STUFF...
46 if write video
47 writerObj = VideoWriter('PSO.avi');
48 writerObj.Quality=100;
49 open(writerObj);
50 end
51

52 % LOAD DEFAULT CLUSTER (IRIS DATASET); USE WITH CARE!
53 % Resize the dataset with current "dimensions" variable. the standard iris
54 % dataset in matlab is 150x4, in this tutorial we need 150x2 or 150x3 for
55 % visualization purposes
56 load fisheriris.mat
57 meas = meas(:,1+dataset subset:dimensions+dataset subset);
58 dataset size = size (meas);
59

60 % Execute k-means if enabled the hybrid pso approach. If enabled, the

8

61 % startint position of the pso algorithm will be initialized using the
62 % output of the standard matlab implementation of k-means.
63 if hybrid pso
64 fprintf('Running Matlab K-Means Version\n');
65 [idx,KMEANS CENTROIDS] = kmeans(meas, ...
66 centroids, ...
67 'dist', ...
68 'sqEuclidean', ...
69 'display', ...
70 'iter', ...
71 'start', ...
72 'uniform', ...
73 'onlinephase', ...
74 'off');
75 fprintf('\n');
76 end
77

78 % PLOT STUFF... HANDLERS AND COLORS.
79 % This lines pre-configures the variables that will be used to plot the
80 % data.
81 pc = []; txt = [];
82 cluster colors vector = rand(particles, 3);
83

84 % PLOT DATASET
85 % This block creates either a 2d or 3d plot according to the "dimensions"
86 % variable. Please note that for visualization purposes the only admissible
87 % values are 2 (two) or 3 (three).
88 fh=figure(1);
89 hold on;
90 if dimensions == 3
91 plot3(meas(:,1),meas(:,2),meas(:,3),'k*');
92 view(3);
93 elseif dimensions == 2
94 plot(meas(:,1),meas(:,2),'k*');
95 end
96

97 % PLOT STUFF .. SETTING UP AXIS IN THE FIGURE
98 % Reconfiguring the axis in the figure. Without this line the axis max/min
99 % values may change during runtime.

100 axis equal;
101 axis(reshape([min(meas)-2; max(meas)+2],1,[]));
102 hold off;
103

104 % SETTING UP PSO DATA STRUCTURES
105 % Here the variables needed in the pso clustering are pre-initialized.
106 % Please note that swarm vel, swarm pos and swarm best maintains the values
107 % for all the swarms (aka particles)
108 % 'c' =
109 % 'ranges' is used to scale the initial randomized values to something
110 % inside the range of the input data (just to not have useless values
111 % outside the valid range, i.e. the range of the data).
112 % 'swarm fitness' is initially set as infinite. this is the "value" that
113 % will become smaller and smaller (i.e. minimizating the fitness function)
114 swarm vel = rand(centroids,dimensions,particles)*0.1;
115 swarm pos = rand(centroids,dimensions,particles);
116 swarm best = zeros(centroids,dimensions);
117 c = zeros(dataset size(1),particles);
118 ranges = max(meas)-min(meas); % used to scale the values
119 swarm pos = swarm pos .* repmat(ranges,centroids,1,particles) + ...
120 repmat(min(meas),centroids,1,particles);
121 swarm fitness(1:particles)=Inf;
122

9

123 % KMEANS INIT
124 % Here, if the hybrid pso approach was selected, we replace the first
125 % swarm/solution to the result of the k-means algorithm. please note that
126 % even with this initialization the pso will somehow try to improve this
127 % guess, since the velocities of the swarm are still randomly set, meaning
128 % that the system is unstable at the very beginning.
129 if hybrid pso
130 swarm pos(:,:,1) = KMEANS CENTROIDS;
131 end
132

133 % MANUAL INITIALIZATION (only for dimension 2 and 3)
134 % For dimension 2 (two) we can add an user-initialization of the algorithm.
135 % This will eventually replace the k-means initialization, since here we
136 % replace again the first swarm/solution <notice the swarm pos(:,:,**1**)>
137 % In the case of dimensions==3, i put here a random value, you can change
138 % these meaningless numbers without any problem <[6 3 4; 5 3 1]>
139 if manual init
140 if dimensions == 3
141 % MANUAL INIT ONLY FOR THE FIRST PARTICLE (with 'random' numbers!)
142 swarm pos(:,:,1) = [6 3 4; 5 3 1];
143 elseif dimensions == 2
144 % KEYBOARD INIT ONLY FOR THE FIRST PARTICLE
145 swarm pos(:,:,1) = ginput(2);
146 end
147 end
148

149 % Here the real PSO-algorithm begins
150 for iteration=1:iterations
151

152 % CALCULATE EUCLIDEAN DISTANCES TO ALL CENTROIDS
153 % Here we evaluate the distance (default 2-norm) between each centroid
154 % inside each particle against all the values inside the input data
155 % vector (the 'meas' variable resized in the very beginning). Keep all
156 % the distances in the 'distances' variable.
157 distances=zeros(dataset size(1),centroids,particles);
158 for particle=1:particles
159 for centroid=1:centroids
160 distance=zeros(dataset size(1),1);
161 for data vector=1:dataset size(1)
162 %meas(data vector,:)
163 distance(data vector,1) = norm(...
164 swarm pos(centroid,:,particle)-meas(data vector,:));
165 end
166 distances(:,centroid,particle) = distance;
167 end
168 end
169

170 % ASSIGN MEASURES with CLUSTERS
171 % using the 'min' Matlab function to find the "Smallest elements in
172 % array" we create an 150xn matrix where the first column represents
173 % the distances of each input value to neares current centroids, and
174 % the n-columns specifies to which cluster/centroid the distance
175 % refers to.
176 for particle=1:particles
177 [value, index] = min(distances(:,:,particle),[],2);
178 c(:,particle) = index;
179 end
180

181 % PLOT STUFF... CLEAR HANDLERS
182 % clean the figure before plotting again
183 delete(pc); delete(txt);
184 pc = []; txt = [];

10

185

186 % PLOT STUFF...
187 % plotting again this step
188 hold on;
189 for particle=1:particles
190 for centroid=1:centroids
191 if any(c(:,particle) == centroid)
192 if dimensions == 3
193 pc = [pc plot3(swarm pos(centroid,1,particle), ...
194 swarm pos(centroid,2,particle), ...
195 swarm pos(centroid,3,particle),'*','color', ...
196 cluster colors vector(particle,:))];
197 elseif dimensions == 2
198 pc = [pc plot(swarm pos(centroid,1,particle), ...
199 swarm pos(centroid,2,particle),'*','color',...
200 cluster colors vector(particle,:))];
201 end
202 end
203 end
204 end
205 set(pc,{'MarkerSize'},{12})
206 set(gca,'LooseInset',get(gca,'TightInset'));
207 hold off;
208

209 % CALCULATE GLOBAL FITNESS and LOCAL FITNESS:=swarm fitness
210 % Here I evaluate the fitness of the algorithm, measured as the
211 % quantization error using the equation 8 of the original paper. It
212 % also calculates the global best and local best positions using
213 % equation 5. Please refer to the tutorial for explanation of this
214 % equation.
215 average fitness = zeros(particles,1);
216 for particle=1:particles
217 for centroid = 1 : centroids
218 if any(c(:,particle) == centroid)
219 local fitness = ...
220 mean(distances(c(:,particle)==centroid,centroid,particle));
221 average fitness(particle,1)=average fitness(particle,1)...
222 + local fitness;
223 end
224 end
225 average fitness(particle,1) = average fitness(particle,1) / ...
226 centroids;
227 if (average fitness(particle,1) < swarm fitness(particle))
228 swarm fitness(particle) = average fitness(particle,1);
229 swarm best(:,:,particle) = swarm pos(:,:,particle); %LOCAL BEST
230 end %FITNESS
231 end
232 [global fitness, index] = min(swarm fitness); %GLOBAL BEST FITNESS
233 swarm overall pose = swarm pos(:,:,index); %GLOBAL BEST POSITION
234

235 % SOME INFO ON THE COMMAND WINDOW
236 % Here I print some info the the Matlab Command Window
237 fprintf('%3d. global fitness is %5.4f\n',iteration,global fitness);
238 pause(simtime);
239

240 % VIDEO GRAB STUFF...
241 % If the GRABBING option was selected, put the frame inside the video.
242 if write video
243 frame = getframe(fh);
244 writeVideo(writerObj,frame);
245 end
246

11

247 % SAMPLE r1 AND r2 FROM UNIFORM DISTRIBUTION [0..1]
248 % Equation 3 and 4 needs a random value, sampled from an uniform
249 % distribution. Here we go!
250 r1 = rand;
251 r2 = rand;
252

253 % UPDATE CLUSTER CENTROIDS
254 % Update the cluster centroids using equation 3 and 4. Here the
255 % cognitive and social contributions are calculated to update the
256 % velocity and position of each swar.
257 for particle=1:particles
258 inertia = w * swarm vel(:,:,particle);
259 cognitive = c1 * r1 * ...
260 (swarm best(:,:,particle)-swarm pos(:,:,particle));
261 social = c2 * r2 * (swarm overall pose-swarm pos(:,:,particle));
262 vel = inertia+cognitive+social;
263

264 % UPDATED PARTICLE ...
265 swarm pos(:,:,particle) = swarm pos(:,:,particle) + vel ; % .. POSE
266 swarm vel(:,:,particle) = vel; % .. VEL
267 end
268

269 end % end of the PSO algorithm
270

271 % PLOT THE ASSOCIATIONS WITH RESPECT TO THE CLUSTER
272 % At the very end, paint the original points using the same color for the
273 % elements within the same cluster.
274 hold on;
275 particle=index; %select the best particle (with best fitness)
276 cluster colors = ['m','g','y','b','r','c','g'];
277 for centroid=1:centroids
278 if any(c(:,particle) == centroid)
279 if dimensions == 3
280 plot3(meas(c(:,particle)==centroid,1),meas(c(:,particle)== ...
281 centroid,2),meas(c(:,particle)==centroid,3),'o','color',...
282 cluster colors(centroid));
283 elseif dimensions == 2
284 plot(meas(c(:,particle)==centroid,1), ...
285 meas(c(:,particle)==centroid,2),'o','color', ...
286 cluster colors(centroid));
287 end
288 end
289 end
290 hold off;
291

292 % VIDEO GRAB STUFF...
293 % Close the video file, if opened.
294 if write video
295 frame = getframe(fh);
296 writeVideo(writerObj,frame);
297 close(writerObj);
298 end
299

300 % SAY GOODBYE
301 fprintf('\nEnd, global fitness is %5.4f\n',global fitness);

12

References

[1] D. W. van der Merwe and A. P. Engelbrecht. Data clustering using particle swarm optimization. In
Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on, volume 1, pages 215–220 Vol.1,
Dec 2003.

[2] Tagaram Soni Madhulatha. Advances in Computing and Information Technology: First Interna-
tional Conference, ACITY 2011, Chennai, India, July 15-17, 2011. Proceedings, chapter Com-
parison between K-Means and K-Medoids Clustering Algorithms, pages 472–481. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[3] Matteo Matteucci. A Tutorial on Clustering Algorithms. http://home.deib.polimi.it/

matteucc/Clustering/tutorial_html/index.html.

[4] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995. Proceedings.,
IEEE International Conference on, volume 4, pages 1942–1948 vol.4, Nov 1995.

[5] Xiaohui Hu. PSO Tutorial. http://www.swarmintelligence.org/tutorials.php, 2006.

[6] M Omran, Ayed Salman, and Andries P Engelbrecht. Image classification using particle swarm
optimization. Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning,
1:18–22, 2002.

[7] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics,
7(2):179–188, 1936.

[8] Frans Van Den Bergh. An analysis of particle swarm optimizers. PhD thesis, University of Pretoria,
2006.

[9] M. Lichman. UCI machine learning repository, 2013.

[10] Augusto Luis Ballardini. A Tutorial on Clustering Algorithms. https://github.com/

iralabdisco/pso-clustering.

[11] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm. Journal
of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.

13

http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/index.html
http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/index.html
http://www.swarmintelligence.org/tutorials.php
https://github.com/iralabdisco/pso-clustering
https://github.com/iralabdisco/pso-clustering

	1 A gentle introduction
	2 The PSO algorithm in pills
	3 PSO vs K-Means
	4 The code, explained
	4.1 Assigning measures to cluster
	4.2 Replacing the IRIS dataset
	4.3 Video Grabbing

	5 Conclusions
	6 Matlab Code

