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There are many molecular biology approaches to the analysis of microRNA (miRNA) and target interactions, but the experiments
are complex and expensive. For this reason, in silico computational approaches able to model these molecular interactions are
highly desirable. Although several computational methods have been developed for predicting the interactions between miRNA
and target genes, there are substantial differences in the results achieved since most algorithms provide a large number of false
positives. Accordingly, machine learning approaches are widely used to integrate predictions obtained from different tools. In
this work, we adopt a method called multidimensional multiclass GP with multidimensional populations (M3GP), which relies
on a genetic programming approach, to integrate and classify results from different miRNA-target prediction tools. The results
are compared with those obtained with other classifiers, showing competitive accuracy. Since we aim to provide genome-wide
predictions with M3GP and, considering the high number of miRNA-target interactions to test (also in different species), a
parallel implementation of this algorithm is recommended. In this paper, we discuss the theoretical aspects of this algorithm
and propose three different parallel implementations. We show that M3GP is highly parallelizable, it can be used to achieve
genome-wide predictions, and its adoption provides great advantages when handling big datasets.

1. Introduction

MicroRNAs (miRNAs) are approximately 22-nucleotide-
long, single-stranded RNA molecules encoded in the
genomes of plants, animals, and viruses and are capable of
interfering with intracellular messenger RNAs (mRNA) [1].
miRNAs are key regulators of gene expression at the
posttranscriptional level, but the precise mechanisms
underlying their interactions with the respective gene targets
are still poorly understood. The effect of the hybridization

between a miRNA and its target mRNA is that the expression
of the protein coded by the gene is silenced, either by
stopping the translation process or by marking the mRNA
for degradation.

Since miRNAs are involved in the onset of many different
diseases, the study of their interactions with the genome is
very important. For instance, several recent reports suggest
that miRNA aberrations may be an important factor in the
development of cancer [2, 3]. Another study demonstrated
that more than 50% of miRNA targeted genes are located in
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cancer-associated genomic regions or in fragile sites [4],
indicating that miRNAs may play an important role in the
pathogenesis of many human diseases.

It is also a challenging problem to identify miRNAs on an
experimental basis due to their limited expression, which
arises from the dynamic behavior of the regulation process
and the tissue specificity of their control mechanism. More-
over, taking into account the different mechanisms by which
miRNAs exert their role, only the absence of the protein in
miRNA-transfected cells represents definitive proof of the
miRNA-target interaction. This technique is very complex
and costly to achieve, thereby imposing serious constraints
on the number of experiments that can be performed.

Therefore, computational predictions represent a very
important approach for screening possible targets to be
experimentally tested. More precisely, the interactions
between a miRNA and its mRNA target sites can be consid-
ered from thermodynamic, probabilistic, and evolutionary
(or sequence-based) points of view. Several computational
tools for predicting miRNA-target sites have been developed
in recent years using one or more of the aforementioned
aspects [5].

Many works have been done to compare their perfor-
mance (see [6–8] for details), taking into account the most
famous tools: PITA [9], miRSystem [10], miRmap [11],
DIANA-microT-CDS [12], CoMir [13], mirWalk [14], and
PicTar [15].

Among the most well-known prediction tools for
miRNA-target recognition, three of the most adopted ones
are miRanda [16, 17], TargetScan [18, 19], and RNAhybrid
[20]. miRanda completes three sequential steps: (i) sequence
matching to find the maximal local complementarity
between a mature miRNA and the putative target site,
(ii) free energy calculation to estimate the strength of a
potential RNA duplex, and (iii) filtering of predicted targets
on the basis of evolutionary conservation. TargetScan is
based on two hypotheses: (i) highly conserved miRNAs are
more involved in regulation and (ii) membership in large
miRNA families leads to a higher number of existing targets.
After the matching step (allowing wobble pairs and stopping
at the first mismatch encountered), a thermodynamic evalu-
ation of the RNA duplex is performed. Finally, RNAhybrid
predicts the target genes based on free energy calculation. It
collects the most favorable energetic structures, normalizes
them, and then uses estimated p values to determine the
significance of each predicted binding site.

We decided to focus on these three tools since, as
described before, they employ different approaches to predict
the interactions, such as sequence matching, thermodynamic
evaluation of the RNA duplex, or free energy calculation.
This aspect is fundamental since one of the main goals
of this work is to combine results obtained with different
approaches. Finally, we would like to point out that some
of the other available tools base their prediction on the
output of one of the three tools we considered, or employ
a similar technique.

Although common guidelines are adopted by the afore-
mentioned methods, differences in the definition of the phys-
ical models (and uncertainties concerning the real biological

mechanisms) and differences in the formalization of the
corresponding algorithms (and implementations) result in
quite different miRNA-target predictions. Moreover, by
comparing computational results with experimental valida-
tions, we can see that these tools produce a large number of
false-positive predictions.

The lack of a clear consensus on the predictions achieved
by these tools has led to the development of methods to
perform meta-analyses of the results by integrating lists of
miRNA-target genes predicted by several algorithms. Among
such integrated tools, the most used ones are miRGator [21]
and ExprTarget [22]. These tools exploit functional analyses
and genome annotations to better characterize the identified
targets. miRGator also provides miRNA expression profiles
by importing expression experiments from the Gene Expres-
sion Omnibus databank [23]. Analogously, expression pro-
files are reported in mESAdb [24] and mirEX [25]. MAGIA
[26] returns predictions as unions or intersections of results
produced by TargetScan, miRanda, and RNAhybrid. More-
over, it integrates mRNA expression values with miRNA
expression scores in order to elucidate inverse correlations,
thus hypothesizing about new miRNA-target associations.
myMIR [27] implements a pipeline for computing ranked
miRNA-target lists, integrating predictions from different
tools. This approach also provides functional annotations
for characterizing genes targeted by each miRNA, highlight-
ing overrepresented ontological terms.

In a previous work [28], we described the application of a
classification technique based on genetic programming,
called M3GP, to integrate results from three different
miRNA-target prediction tools. More precisely, we consid-
ered this as a classification problem and started from a set
of positive and negative examples used to train the adopted
method. Although the M3GP method has been developed
to improve the performance on multiclass problems, it has
also been shown to achieve good results with binary prob-
lems. The idea behind this method is to improve the standard
genetic programming technique in which a population of
candidate solutions is evolved by applying genetic operators
until an ending criterion is reached. In particular, the idea
of M3GP is to define a function that transforms the input
data by mapping them into another feature space. The
objective of M3GP is to evolve transformations of the input
data in such a way that it becomes easier to perform the
classification task in the new feature space of the problem.

To assess the performance of the M3GP method on this
classification problem, we compared the obtained results with
those achieved by other methods which were applied to the
same data, showing that M3GP always achieves good accu-
racy. Another key point relates to the type of models evolved
by M3GP relative to other GP techniques. In M3GP, the
models are composed of a set of independent subtrees
allowing for the individuals to be evaluated in parallel to each
other, an approach that is successfully applied in this work.

Indeed, considering the high number of species to
analyze (this mechanism can be studied in several species
for which the genome is already available), the number of
miRNAs identified (in humans, the total is about 2,000),
and the number of genes to study (in humans about
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20,000), a good strategy to parallelize M3GP is essential. In
this work, we discuss some important aspects of this algo-
rithm, proposing three different parallel implementations.
In summary, we present the following contributions. First,
we show that M3GP can perform competitively in predict-
ing interactions between miRNA and targets. In this task,
the advantage of our method is that it does not overfit
the training data and presents a minimal amount of vari-
ance over multiple runs. In other words, M3GP appears
to be quite robust in this domain. Second, from an imple-
mentation perspective, we show that the method is highly
parallelizable, particularly given the manner in which the
output is constructed. The results show that when the
search contains large populations with large multidimen-
sional individuals, the best strategy is to parallelize the
evaluation of each individual transformation.

The paper is organized as follows: Section 2 provides a
description of the data used in the experimental phase where
the performance of the classification algorithm in integrating
the predictions of miRNA-target sites was evaluated. Section
3 presents the M3GP algorithm and describes its properties.
Section 4 discusses the obtained results, also taking other
state-of-the-art machine learning techniques into account.
Section 5 presents the parallel implementations of the
M3GP system, with a detailed discussion of the performance
achieved. Section 6 concludes the paper and suggests possible
avenues for future research.

2. Background

In this section, we describe the datasets used in this work and
how we obtained the data on which the proposed method
was tested. We started by downloading from the TargetScan
website (http://www.targetscan.org/) the sequences of the
miRNA families and of the untranslated regions (UTRs, the
genomic loci targeted by miRNA) from 23-way alignment
(We have used Release 6 1 of November 2011 to avoid prob-
lems in the names of the miRNA sequences with respect to
those present in the other datasets we considered for the
analysis.) More precisely, the TargetScan database contains
the miRNA sequences obtained from miRBase (with the
additional information about the miRNA families) and the
3UTR sequences obtained from the UCSC. We decided to
use the data from TargetScan to be able to match the identi-
fiers (of both miRNA and UTR sequences) with those used in
the study we employed in our experimental analysis. Subse-
quently, we filtered the information relative to the Homo
sapiens species and obtained a total of 30,887 UTR and
1,558 miRNA sequences, which were used as the starting
point of our analysis.

To identify the miRNA-target interactions, we used
three target prediction tools: miRanda [16, 17], TargetScan
[18, 19], and RNAhybrid [20]. The results produced by
these tools were combined in a matrix; by looking at the
positions on the UTR of each predicted interaction and,
for each of them, we considered the score corresponding
to the obtained prediction. Moreover, to handle the missing
predictions of some tools, we replaced the missing values
with Not-a-Number (NaN). To deal with such values during

the experiments performed, we assigned penalizing scores
to them. About the missing data, we conducted some
experiments to assess how the choice of the penalization
influences the final classification results. Results of this
preliminary analysis showed that the value of the penaliza-
tion score only marginally affects the final results. The overall
matrix was composed of 48,121,946 elements (30,887
UTRs× 1,558 miRNAs) and 3 columns corresponding to
the scores of the considered prediction tools (in addition
to the other columns containing information about the
miRNA-target interaction).

As discussed in [29], one problem when using machine
learning methods to address the prediction of miRNA-
target interactions is the lack of negative examples or miRNA
nontarget pairs. In fact, since having a good training set is
crucial when applying these techniques for solving classifica-
tion problems, the current approaches tend to randomly
generate sequences to be used as negative examples that, by
the way, could be unrealistic. For this reason, we decided to
adopt the results proposed in [29] to populate the dataset
used to train the proposed classifier.

In that work, the authors generated two sets of positive
and negative miRNA-target examples. The former set
(positive examples) was obtained by biologically verified
experiments, while the latter examples (negative) were
identified from a pooled dataset of predicted miRNA-
target pairs. More precisely, the authors selected a set of
computationally predicted (by one or more algorithms)
targets of miRNA, measuring the tissue specificity for both
of them. Then, significantly overexpressed miRNA-mRNA
pairs were selected as potential negative examples, and a
further expression profiling test was performed to discard
those that did not pass this filter. Finally, the thermodynamic
stability and seed-site conservation were measured to infer
the final negative examples. The downloaded dataset from
[29] is composed of 288 (Out of the 289 positive examples
available in the dataset, we were not able to find a match
for one of them, which was discarded.) positive examples
and 286 negative examples of miRNA-target interactions.

To further increase the set of positive examples in the
dataset, we downloaded the data from miRTarBase [30],
which is a database of experimentally validated miRNA-
target interactions. In this way, it was possible to classify
the positive examples into positive and experimentally
validated examples, only experimentally validated examples,
and only positive examples. More specifically, we crossed
miRTarBase interactions with the positive examples from
[29], in order to make the dataset more robust. We thus
labelled the positive examples with three different labels
(although the final classification problem is binary), which
are (1) for the positive examples from [29] that were also
present in the miRTarBase, (2) for the (positive) interactions
only found in the miRTarBase, and (3) for those only present
in the positive examples from [29], while we labelled with 1
the negative examples (from [29]). In this way, in the binary
classification problem encountered in this work, we selected
two balanced sets of elements: the first one among the
negative examples was labelled with 1, while the second one
among those labelled with 1, 2, and 3 since all of them
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represent “positive examples” (from [29], miRTarBase, or
both). To obtain the final matrix, we combined the results
of the prediction tools with these classification labels and,
for those predicted interactions that are neither negative
nor positive (in any of the three sets), we added the label 0.
Finally, we refined these results by eliminating redundancies
in the two classes of examples which are caused by notational
problems (i.e., the same mRNA identified multiple times).
Table 1 reports the number of elements in the matrix for each
classification type.

Note that the unknown examples are elements of the
matrix for which we do not have a priori knowledge regard-
ing whether the interaction is true or not. For this reason,
these examples could be used to identify new interaction
candidates to be biologically validated; that is, those classified
as positive by the proposed method could represent novel
miRNA-mRNA interactions.

3. Method

In this work, we address a binary classification problem in
which the two classes refer to the examples described in
Section 2. More precisely, the first class refers to negative
examples, while the second class refers to positive ones. To
simplify the classification process, we take an equal number
of elements from both classes (for the positive ones, we
combined the three classes of positive examples of Table 1),
defining a balanced classification task that is easier to handle
for most machine learning classifiers. Figure 1 presents
different views of the distribution of all samples used from
each class, showing three 2D views, one for each pair of fea-
tures (prediction tools). As it is possible to notice from these
scatter plots, the problem basically shows three clusters of
data, but in each of them the classes are multimodal and
overlap within the feature space. This view clearly shows that
the problem of distinguishing the classes is quite difficult.

In addition to M3GP, we executed several other standard
classifiers from the machine learning literature to solve this
problem (in order to evaluate the proposed method’s per-
formance with respect to the state-of-the-art techniques),
as follows:

(1) Euclidean distance classifier (ED)

(2) Mahalanobis distance classifier (MD)

(3) Naive Bayes Classifier (NB);

(4) Support vector machine (SVM) (with Gaussian radial
basis function kernel and a default scaling factor of 1)

(5) K-nearest neighbor (KNN) (using K = 5 neighbors)
(6) Treebagger classifier (TREE) (using 10 trees)

(7) Multidimensional multiclass genetic programming
classifier with multidimensional populations (M3GP)
[31, 32]

ED and MD are linear classifiers that assume a Gaussian
unimodal distribution for each class, an assumption that is
clearly violated in this problem as seen in Figure 1. KNN

and NB are well-known and widely used classifiers, mainly
for their simplicity, ease of implementation, and competitive
performance. However, the NB classifier assumption that
each feature dimension can be treated independently is often
violated in practice (although this is not the case in the
problem studied here). SVM and TREE are state-of-the-art
methods that perform strongly in many domains. In particu-
lar, the TREE classifier can handle multimodal classes and
unbalanced datasets.

3.1. Multidimensional Multiclass GP with Multidimensional
Populations: M3GP. In this section, we introduce the method
we previously developed and apply it to the problem of
integrating the results of different prediction tools. More pre-
cisely, M3GP uses a GP-based search to achieve competitive
performance on multiclass problems but also achieves strong
results in binary tasks [32].

M3GP is based on the multiclass GP with multidi-
mensional populations (M2GP) [31] that searches for a
transformation, which is applied to the input data so that
the transformed data of each class can be grouped into
unique clusters and thus simplify the classification task.
In M2GP, the number of dimensions in which the clustering
process is performed is completely independent of the num-
ber of classes, such that high-dimensional datasets can be
easily classified by a low-dimensional clustering, while low-
dimensional datasets may be better classified by a high-
dimensional clustering.

In order to achieve this, M2GP uses a representation of
the solutions that allows performing, for each data point x,
the mapping k x : ℝp →ℝd , from an input feature space of
p dimensions to a new one. The representation is basically
the same used for regular tree-based GP, except that the root
node of the tree exists only to define the number of dimen-
sions d of the new space. Each branch stemming directly
from the root performs the mapping in one of the new
d dimensions. In M2GP, candidate solutions are evaluated
as follows:

(1) All the p-dimensional samples of the training set are
mapped to the new d-dimensional space (each
branch of the tree is one of the d dimensions).

(2) In this new space, for each of theM classes in the data,
the covariance matrix and the cluster centroid are cal-
culated from the samples belonging to that class.

(3) the Mahalanobis distance between each sample and
each of the M centroids is calculated. Each sample

Table 1: Description of the types of samples in our dataset.

Classification Number of elements

Negative examples 286

Positive and exp. validated examples 179

Only exp. validated examples 286

Only positive examples 6376

Unknown examples 48114996

Total 48121946

4 Complexity



is then assigned to the class having the closest
centroid. Finally, the fitness function is given by the
classification accuracy.

The original M2GP uses a greedy approach to determine
how many dimensions the evolved solutions should have. It
may happen that, by fixing the number of dimensions at the

beginning of the run, the algorithm will be unable to find the
best solutions during the search process with respect to those
that may be found by using a different number of dimensions.
Therefore, in the M3GP approach, a population that may
contain transformation of different dimensions is evolved.

During the breeding phase, whenever the chosen genetic
operator is a mutation, one of the three following actions is
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Figure 1: Scatter plots showing the distribution of the data: negative examples are represented by blue dots, while three different colors are
used for positive examples. More precisely, red are those samples that are among the positive examples in the dataset from [29] and that are
also experimentally validated, green for those only experimentally validated in miRTarBase, and yellow for the ones that are only in the
positive examples of the dataset from [29].
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performed with equal probability: (i) a standard subtree
mutation, where a randomly created new tree replaces a
randomly chosen branch (excluding the root node) of the
parent tree; (ii) a randomly created new tree is added as a
new branch of the root node, effectively adding one
dimension to the parent tree; and (iii) a complete branch of
the root node is randomly removed, effectively removing
one dimension from the parent tree.

On the other hand, whenever the chosen genetic operator
is a crossover, one of the two following actions is performed
with equal probability: (i) a standard subtree crossover,
where a random node (excluding the root node) is chosen
in each of the parents, and the corresponding branches are
swapped, and (ii) the swapping of dimensions, where a
random complete branch of the root node is chosen in each
parent, and swapped between each other, effectively swap-
ping dimensions between the parents. The latter event is just
a particular case of the first one, where the crossing nodes are
guaranteed to be directly connected to the root node.

M3GP also adds a pruning procedure that removes a
random dimension and reevaluates the tree. If the fitness
improves, the pruned tree replaces the original one and the
procedure goes through the pruning of another dimension.
Otherwise, the pruned tree is discarded and the original tree
goes through the pruning of a new dimension. The procedure
stops after each of the original dimensions was pruned and
tested for improvement.

4. Results

As stated above, the problem is posed as a balanced binary
classification task where the data for both classes were taken
from the sets of positive and negative examples described in
Section 2, by eliminating the duplicated entries. More pre-
cisely, 212 data samples were selected to represent class 1
(of negative examples labelled with 1) and 212 data samples
were selected to represent class 2 (of positive examples, from
those labelled with 1, 2, and 3). Subsequently, each of the
selected methods for the performance comparison (i.e., ED,
MD, NBC, SVM, KNN, TREE, and M3GP) was executed.
The whole dataset was split into two partitions, a training
set composed of 70% of the data and a test set with the
remaining 30%. For each classifier, 30 independent runs were
performed using a different random partition of the data in
each run.

For M3GP, we used the parameter values specified in
Table 2, following the indication of [32]. These values have
been shown to produce accurate results, and since a prelimi-
nary tuning phase (performed with a grid search) showed no
(statistically significant) change in terms of performance with
respect to other configurations tested, we relied on these
values. This is related to the fact that it has become increas-
ingly clear that GP is very robust to parameter values once
a good configuration is determined, as suggested by a recent
and in-depth study [33].

Figure 2 provides a detailed view of the results by
showing a comparison of the boxplots. In detail, Figure 2(a)
shows the error obtained by the classifiers on the training
data, while Figure 2(b) shows the error on the test set.

Again, as anticipated in Section 3, these results confirm
that all the considered classifiers achieve a very similar per-
formance on unseen data, even if the training performance
is better for some of them. In fact, we can state that SVM,
KNN, and TREE overfit the training instances and, thus,
their training performance is a poor indicator of performance
on unseen instances. To statistically validate the results
obtained, statistical comparisons are carried out using a
1 ×N formulation where a single control method (M3GP)
is compared with N algorithms. We use the Friedman test
and the Bonferroni-Dunn correction of the p values for each
comparison. In all tests, the null hypothesis (that the medians
are equal) is rejected at the α = 0 05 significance level.
According to the statistical validation, SVM and TREE are
the techniques that are able to outperform M3GP on unseen
instances. Specifically, the p values returned by the Friedman
test are 0.0001 and 0.0016, respectively. All of the remaining
techniques perform similarly than M3GP.

While SVM and TREE produce a better performance
with respect to M3GP, it is important to highlight an
advantage provided by M3GP with regard to the former
methods. Specifically, M3GP is able to produce a human-
understandable model, combining the problem features in a
tree structure that can be interpreted by a domain expert,
hence allowing for a better understanding of the relations
between the features of the problem. This is a typical prop-
erty of the large majority of GP-based systems. On the other
hand, SVM does not have this property, providing a model
that expresses the equation of the hyperplane that divides
the two classes of the problem. TREE provides an ensemble
of trees, and this makes it inherently different from the other
techniques considered. For this technique, it is even difficult
to identify what the final model is. For all these reasons, we
believe that M3GP is a useful technique for addressing
classification problems with two or more classes.

Although the results achieved by the tested methods may
look similar, which was expected due to the difficulty of the
problem (see Figure 1 for details of the distribution of the
input data), we can highlight some aspects of the adopted
approach. First of all, M3GP does not seem to be affected
by overfitting or a lack of generalization after learning, with

Table 2: Parameters used by M3GP to obtain the results reported
in Figure 2.

Parameter Value

Runs 30

Population size 500 individuals

Generations 100

Initialization
6-depth full initialization with

1 initial dimension

Operator probabilities Crossover pc = 0 5, mutation pμ = 0 5
Function set (+, − , × , ÷ protected as in [34])

Terminal set Ephemeral random constants [0,1]

Bloat control 17-depth limit

Selection Lexicographic tournament of size 5

Elitism Keep best individual
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an almost equal training and testing performance. Second,
the method seems to be quite robust to the training data used,
exhibiting the least amount of variance of all the methods.
This result is particularly surprising since M3GP is a sto-
chastic search procedure, like most other evolutionary
algorithms. Indeed, a common feature of such methods
is that their performance tends to vary from run to run,
especially when different data partitions are used. This
does not happen to M3GP in this domain, making the
method an interesting and promising choice for the con-
sidered problem given that there can be a lot of noise in
the data collection process.

4.1. M3GP Parallelization. Like most population-based
search methods, and given the manner in which M3GP oper-
ates, the algorithm can be easily implemented in a parallel
way by using different methods [35]. However, probably
the most direct way to parallelize the algorithm is to evaluate
each candidate solution in parallel since the fitness computa-
tion of each individual is independent, and this is referred to
as the global model [36]. In the case of M3GP, this includes
the data transformation stage and the results of the MD
classification step.

Another approach is to change the basic GP paradigm,
which is mostly used as a synchronous and local algo-
rithm. For instance, it is possible to use the evolutionary
model proposed in [37] to distribute the evolutionary pro-
cess across various client machines (either locally or over
the web) in a plug-and-play manner, thus increasing the
available computational resources by exploiting cloud-based
technologies. However, this option is left for possible
future work.

Moreover, in the particular case of M3GP, there is
another parallelization option. Since the individuals are
composed of several independent subtrees joined by the
“dummy” root node, it is quite easy to parallelize the evalua-
tion of each individual subtree (dimension). In other words,
each feature dimension in an M3GP individual can be
evaluated independently.

In summary, three different parallel implementations of
M3GP were developed and tested in this work (see Figure 3):

(i) Parallel population evaluation (Pop Parallel): this
implementation parallelizes the evaluation of each
solution as a whole, sending to each parallel worker
independent solutions to process. This is a very com-
mon approach for evolutionary algorithms where
the fitness evaluation of the population is divided
to reduce the computational time.

(ii) Parallel fitness evaluation (Fitness Parallel): this
implementation parallelizes the evaluation of each
subtree branch on the main root node, sending
individual independent branches (features) to paral-
lel workers. Thus, the evaluation of M3GP is paralle-
lized based on the number of feature dimensions for
each candidate solution.

(iii) Full parallel M3GP (Full Parallel): in this case, the
two previous approaches are combined.

5. Discussion

Before describing the experimental analysis we performed to
compare the three different implementations, we discuss
some important aspects regarding each. More precisely, we
want to highlight advantages and differences of the different
approaches, also with respect to the Non-Parallel approach,
from a computational complexity point of view. In particular,
we focus on how the evaluation process can be parallelized.
In the following analysis, we consider the computational cost
of a single generation and for a fixed initial configuration of
the algorithm parameters (see Table 3). The reason for this
choice is that we want to focus on the differences in the
described parallel approaches, discarding all operations that
do not vary among them in our analysis.

The first approach, which is referred to as Pop Parallel,
consists of evaluating each individual of the current popula-
tion independently of the others and then joining the results
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Figure 2: Boxplot reporting the errors of the tested classifiers in the both training (a) and test (b) sets.
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to create the new population. As anticipated before, this is
probably one of the most intuitive ways to apply parallelism
to M3GP. Accordingly, the overall computational time in
the worst-case scenario, that is, when all individuals require
the same time to be evolved, is P/t C, where P is the
population size (i.e., the total number of individuals), t is
the number of threads, and C =max ci , with 1 ≤ i ≤ P, is
the maximum time required to evaluate an individual and
ci is the computational time necessary to evolve the ith

individual. Moreover, we also assume that t ≤ P because
having more threads than the number of individuals in the
population will not bring any additional benefit to the
parallelization since the excess threads will be unused.

Although this approach is very efficient from a theoretical
point of view, some considerations must be made. In partic-
ular, one drawback is the memory consumption required to

End

Fitness evaluation (each branch at a time)Fitness evaluation
(the whole tree is evaluated)

Initial population or new population
(just one solution at a time)

Initial population or new population
(four solutions at a time)

Start
Parallel (4 workers)Nonparallel

YesStop criteria
fulfilled

Selection of best current solutions

Reproduction by a genetic operator

Replace worst solutions with new
generated solutions from a previous step

No

Figure 3: Parallelization options for M3GP: an example with four independent threads (or workers). After the start, a nonparallel branch and
a parallel one are shown. The latter highlights possible ways to parallelize the M3GPmethod, that is, (i) to evolve each solution independently,
(ii) to compute each branch of the fitness tree separately, or (iii) to combine the two previous approaches.

Table 3: Parameters of M3GP used in all the parallel variants.

Parameter Value

Runs 30

Population size 10,50,100, and 150 individuals

Generations 1

Initialization
12-Depth full initialization with 1, 5,

10, 20, and 30 dimensions

Operator probabilities Crossover pc = 0 5, mutation pμ = 0 5
Function set (+, − , × , ÷ protected as in [34])

Terminal set Ephemeral random constants [0,1]

Bloat control 17-Depth limit

Selection Lexicographic tournament of size 5

Elitism Keep best individual
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store all the individuals processed by the different threads.
The number of nodes in the trees, which will impact the
amount of memory required to store each tree, can lead
to high memory consumption and a possible bottleneck.
Unfortunately, in GP it is common for individual models
to evolve larger than they need to be, which is referred
to as the bloat phenomenon.

On the other hand, the second approach we took for
parallelization is the fitness computation, which is split, in
the Fitness Parallel implementation, among the different
threads. In details, the evaluation takes as an input a tree
composed of d subtrees, with d the number of dimensions
of the transformed feature space of each individual in
M3GP. Moreover, let F be the maximum cost necessary to
evaluate one of the d subtrees connected to the root, that is,
F =max f i , with 1 ≤ i ≤ d, where f i is the cost required to
compute the fitness in the ith subtree.

The overall computational time to evaluate a single
individual, which is the one required by the Non-Parallel
approach, is dF + d, since in the worst case each of the
d subtrees requires F time to be computed, plus an addi-
tional d time to combine these results. In any case, each
subtree can be computed independently so in the Fitness
Parallel implementation the computation is split into t
threads. In this case, the cost is d/t F + d/t log t, assum-
ing that t ≤ d. In fact, by having more threads than dimen-
sions of the search space will only waste the excessive
computational power.

In more detail, assuming the worst-case scenario in
which the computation of all the subtrees requires F time,
we can split the d computations on t threads, leading to
a d/t F time. Further, we can also take advantage of the
parallelism to recombine these results so that this process
is executed in a binary-tree structure. In this way, the d
results are recursively recombined in pairs, which are distrib-
uted in t threads, so that the overall time for recombining the
results is d/t log t. Finally, as is easy to observe, when t = 1,
we obtain the same complexity of the Non-Parallel approach,
that is, dF + d.

5.1. Parallel Experiments. M3GP was implemented using the
GPLAB toolbox in Matlab [], which is freely available at
http://gplab.sourceforge.net. Each parallel M3GP variant
was implemented using the parallel computing tools in
Matlab. The experiments were carried out on a workstation
with an 8-core CPU and 16GB of RAM.

In our experiments, the goal was to evaluate the relative
improvement of the parallel approach in conditions that
required a high computational cost. After some preliminary
experimental runs, the configuration reported in Table 3
was used to stress the search process and illustrate the
benefits of the different parallel approaches. In particular, it
is noted that the highest initial tree depth was set to 12 levels,
making a total of 2,048 nodes for each dimension in an
evolved transformation. This makes the required computa-
tional cost of evaluating each individual feature significant,
and evaluating each individual is more costly when increas-
ing the total number of dimensions. Moreover, we compared
the total computational time using different population sizes

and a different number of total initial dimensions in the
population. For the sake of comparison, M3GP without any
parallelization (referred to as Non-Parallel) was run with
the same settings as a baseline.

A parallel environment for the experiments was set up to
check for time improvements in just one generation. Letting
the algorithm run for a complete search will just increase the
computational cost linearly since each generation is indepen-
dent of the previous one, in particular when the current
solution is already close to the maximum allowed depth.
For a fair comparison, the same random seeds were used
for all parallel M3GP variants so that the random tree
generation process did not influence the results.

5.2. Comparison of the Different Parallel Approaches. The
results are summarized in the plots of Figure 4 where for each
run, the time required to evaluate a population for the
sequential M3GP and all the three parallel versions (i.e.,
Pop Parallel, Fitness Parallel, and Full Parallel) is shown.
The x-axis in each plot corresponds to the number of dimen-
sions of each individual, while each plot corresponds to a
different population size (i.e., 10, 50, 100, and 150).

Running M3GP with just one dimension (one branch
below the root node) does not provide any substantial benefit
for the parallelization. In this case, with different population
sizes, the fastest evaluation was the Non-Parallel M3GP. The
reason is that in the Fitness Parallel version the majority of
the time was spent sending data to different workers and then
merging the computed results.

A tendency that emerged from the results we obtained
and that is easy to observe in all the plots is that increments
in the population size do not substantially affect the trend
of the total computational time. In fact, it is almost linear
in all cases considered, although the (absolute) time required
to process bigger populations is greater than that required for
processing smaller populations.

On the other hand, by increasing the number of
dimensions, the overall workload entailed in evaluating each
solution increases. The parallel implementations start to
show significant improvements when five dimensions are
used, and they continuously improve when more dimensions
are added.

This is particularly true of the Fitness Parallel imple-
mentation, which tends to require less time than the other
variants do. In all analyzed cases, only the Fitness Parallel
variant requires less processing time than the sequential
Non-Parallel M3GP does. It is evident that when increas-
ing the population size and the number of dimensions,
Full Parallel and Pop Parallel start to perform worse with
each increment.

5.3. M3GP Speed-Up. To assess the speed-up of the different
M3GP systems we proposed, the implementations were
tested with up to 8 threads, and the results are shown in
Figures 5 and 6. The values reported are calculated as the
ratio between the run time of the Non-Parallel version over
the parallel ones. Then, by varying the number of threads,
we can measure the gain in terms of speed.
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In the plots in Figure 5, we reported the speed-up of the
three parallel implementations of M3GP for individuals
with 10 dimensions, tested over different values of the pop-
ulation size: 10, 50, 100, and 150. There is a performance
gain when using 2 or more threads. In fact, when adopting
only one thread, we have values lower than 1 because the
parallel runs required additional operations, with respect
to the Non-Parallel one, leading to this loss in performance.
The Full Parallel and Pop Parallel perform best in this
setup, with Parallel Fitness always performing slightly
worse, except for the simplest case with the smallest popu-
lation. However, it is still necessary to evaluate how this
performance generalizes when evolving larger transforma-
tions with more dimensions.

Therefore, we performed similar tests by fixing the popu-
lation size to 100 and varying the number of dimensions in
the individual transformations. In Figure 6, we show the plots
for 1, 5, 10, 20, and 30 dimensions. Not surprisingly, in the
first case with only a single dimension, the Parallel Fitness
implementation does not take advantage of the increasing
number of threads since its parallelization is based on the
number of dimensions. In the other cases, we can observe

that by increasing the number of dimensions, this implemen-
tation improves its speed-up, achieving the best performance
when the number of dimensions reaches 30.

Finally, although Matlab allows a very fast and useful
way to realize and test the M3GP method (also providing
an easy way to implement a parallel algorithm), we think
that a more efficient implementation could lead to a sig-
nificant performance improvement.

6. Conclusions

In this work, we applied a novel GP-based classification
method called M3GP to the problem of integrating the
results of different miRNA-target prediction tools, namely,
miRanda, TargetScan, and RNAhybrid, and classifying them.
Moreover, we derived a parallel implementation of this
algorithm to reduce the computational cost of the search
when evolving large multidimensional transformations.

The results we obtained with the M3GP method are
promising and competitive when compared with the ones
achieved by the other classifiers we tested (Euclidean dis-
tance, Mahalanobis distance, naive Bayes, SVM, KNN, and
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Figure 4: Parallel runs with M3GP, time (in minutes) versus dimensions.
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Treebagger). The main advantage in contrast with other
machine learning techniques is that the performance of
M3GP is more robust than that of the other methods. Specif-
ically, in this domain M3GP shows almost no overfitting or
lack of generalization relative to the training performance
and is robust to the training set used since its performance
variance is almost null.

This makes the M3GP method a good candidate for
solving the problem at hand. We also showed that M3GP is
easily parallelizable. In fact, like most evolutionary algo-
rithms, M3GP can be parallelized during fitness evaluation,
or by assigning each solution to a different thread, or by com-
bining these two approaches. However, it was shown that the
best strategy is to parallelize the evaluation of every single
individual by sending each tree branch (feature dimension)
of the root node to a different thread. This can be done by

virtue of the way in which M3GP individuals construct their
output response. This approach showed substantial improve-
ments when compared to the sequential approach and to
other parallelization options.

One of the possible future research directions will focus
on exploiting the parallelization aspects by adopting a more
efficient implementation of the M3GP method and also by
testing its execution in a distributed environment. Moreover,
to further improve the robustness of the results and the
strength of the approach, we plan to integrate the results of
other miRNA-target prediction tools (in addition to the ones
we considered here) but also to employ other datasets, such
as [38]. As a final remark, we would like to point out that
for future study, one can employ additional target sequences,
such as the 5-UTR of the genes and the coding part of
the transcripts.
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