
 

   UNIVERSITÀ DEGLI STUDI DI MILANO 

 

 

 

 

 

  

 

  

 

 

Modelling and optimization techniques for acoustic Full 

Waveform Inversion in seismic exploration 

 

 

Ph.D. Thesis 

 

 

 
 

Bruno Giovanni Galuzzi 
Matricola R10913-R28 

 

 

 

 

 

 

 

               Tutor 

    Prof. Eusebio Stucchi 

 

           Co- Tutor 

   Prof. ssa Elena Zampieri 

             Academic Year 

               2017-2018 

                     Coordinator 

      Prof. ssa Elisabetta Erba 

Dottorato di Ricerca in Scienze della Terra 
Ciclo XXX 



 

 2 

 

  



 

Abstract 
Full Waveform Inversion has become an important research field in the context of seismic exploration, 

due to the possibility to estimate a high-resolution model of the subsurface in terms of acoustic and 

elastic parameters. To this aim, issues such as an efficient implementation of wave equation solution for 

the forward problem, and optimization algorithms, both local and global, for this high non-linear inverse 

problem must be tackled. In this thesis, in the framework of 2D acoustic approximation, I implemented 

an efficient numerical solution of the wave equation based on a local order of approximation of the 

spatial derivatives to reduce the computational time and the approximation error. Moreover, for what 

concerns the inversion, I studied two different global optimization algorithms (Simulated Annealing and 

Genetic Algorithms) on analytic functions that represent different possible scenarios of the misfit 

function to estimate an initial model for local optimization algorithm in the basin of attraction of the 

global minimum. Due to the high number of unknowns in seismic exploration context, of the order of 

some thousands or more, different strategies based on the adjoint method must be used to compute the 

gradient of the misfit function. By this procedure, only three wave equation solutions are required to 

compute the gradient instead of a number of solutions proportional to the unknown parameters.  

The FWI approach developed in this thesis has been applied first on a synthetic inverse problem on the 

Marmousi model to validate the whole procedure, then on two real seismic datasets. The first is a land 

profile with two expanding spread experiments and is characterized by a low S/N ratio. In this case, the 

main variations of the estimated P-wave velocity model well correspond to the shallow events observed 

on the post-stack depth migrated section. The second is a marine profile extracted from a 3D volume 

where the local optimization, based on the adjoint method, allows to estimate a high-resolution velocity 

model whose reliability has been checked by the alignment of the CIGs computed by pre-stack depth 

migration.  
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Introduction 
Full Waveform Inversion (FWI) represents an essential variant of seismic tomography for the estimation 

of a high-resolution subsurface model, through a minimization procedure on a misfit function, which 

measures the differences between the observed and the modelled seismograms. These are given by the 

numerical solution of the seismic wave equation, requiring a high computational cost if the simulation 

of seismic wave propagation is made in complex 2D and 3D Earth structures. The minimization 

procedure consists of any optimization algorithm able to reach the global minimum of the misfit 

function, despite the high number of possible unknows and the non-linearity relation between the seismic 

data and the subsurface model parameters.  

During my Ph.D. I have investigated three central topics regarding FWI in case of 2D acoustic 

approximation and in the context of seismic exploration. The first topic concerns the seismic modelling, 

in particular, the implementation of an efficient algorithm to simulate synthetic seismograms, using a 

numerical approach with low numerical dispersion and low computational time. The second regards the 

implementation of the adjoint method to compute the gradient of a misfit function, for a local 

optimization procedure, including some basic processing operations on the synthetic data. The third 

deals with the possibility to use global optimization strategies to determinate a suitable starting model 

for local FWI.  

As demonstration of the FWI feasibility, I have applied the FWI procedure for the estimation of an 

acoustic macro-model of the subsurface for three very different scenarios: a classical problem of FWI 

on synthetic marine data, a FWI on real land data, and a FWI on real marine data. 

The thesis is divided into nine Chapters and an Appendix. Chapter 1 introduces the Full Waveform 

Inversion in the context of seismic exploration, underlining the limits and the difficulties of its 

applications.  

Chapter 2 presents the new numerical scheme I implemented to model the generation and propagation 

of seismic waves in the subsurface under a 2D acoustic approximation assumption, whereas Chapter 3 

describes an efficient numerical scheme to compute the gradient of a misfit function using the adjoint 

method.  

A general description of the software for the modelling and the gradient computation is given in Chapter 

4, with more details of the implementation in Appendix A. 

Chapter 5 is intended to introduce the study I have done on the global optimization, and in particular on 

two global optimization algorithms: the Adaptive Simulated Annealing (ASA) and the Genetic 

algorithms (GA). In Chapter 6, both algorithms have been used to find the global minimum of some 

analytic test functions, that represent very different scenarios of the misfit function. 

In the last chapters, I present the results of three different FWI experiences. Chapter 7 illustrates the 

results obtained by the application of ASA and GA algorithms for a classical FWI problem, which 

consists of the inversion of synthetic seismograms of the Marmousi model.  

Chapter 8 deals with the results of an experience of acoustic FWI on a 2D seismic line data acquired 

onshore, using the GA algorithm for the estimation of a smooth velocity model of the area of interest, 

and a subsequent local minimization.  

Finally, in Chapter 9 a local FWI procedure is applied on the data of a 2D marine seismic profile to 

estimate an acoustic velocity field for a pre-stack depth migration of the seismic data.





 

Chapter 1.  

Full Waveform Inversion 
 The first chapter is intended to introduce the Full Waveform Inversion in the context of seismic 

exploration. 

1.1 Seismic exploration 

Seismic exploration is an active geophysical exploration method, which has the aim of obtaining 

structural subsurface information from active seismic data. The main application of this method is in oil 

and gas industry, in search of oil and gas reservoirs, but many other applications exist such as the search 

of geothermal reservoirs, site investigation for civil engineering, and the exploration of mineral deposits 

and underground water supplies. For a complete and exhaustive description of seismic exploration, it is 

possible to see, for example, [1] and [2]. 

In a seismic acquisition the seismic waves created by a controlled source, that generates a band-limited 

time-varying impulse signal, propagate through the subsurface. Some of them return to the surface as 

refractions or reflections from geological boundaries within the subsurface. The recording instruments, 

or receivers, distributed on the surface along a line (2D seismic) or a grid (3D seismic), detect these 

returning waves and measure the arrival times and the amplitudes of the waves at a different distance, 

or offset, from the source. The record of a single receiver is called seismic trace, whereas the 

seismogram is classically the set of all the seismic traces relative to the same shot. Finally, the seismic 

data are processed and converted into depth information to map the distribution of subsurface geological 

structures.  

In general, we distinguish between a land acquisition and a marine acquisition.  In the first case, the 

seismic source produces elastic energy that propagates into the Earth, and the receivers are distributed 

on the ground to detect the ground motion caused by the returning waves. The source can be explosive 

(dynamite, seismic gun) or non-explosive (vibroseis). The receivers, called geophones, produce an 

output voltage proportional to the velocity or acceleration of the ground particles as the wave passes. In 

the second case, the source and receivers are towed behind a vessel, in the water. The source radiates 

acoustic energy into the water, which propagates down to the geological structures located under the sea 

floor. The receivers are distributed near the sea surface to detect the pressure waves caused by the energy 

of the returning waves. The source is usually one or more air-guns, and the receivers are hydrophones 

that can produce an output voltage proportional to pressure variations associated with the passage of 

compressional seismic waves through the water. Figure 1.1 displays a sketch of a marine seismic 

acquisition from [3].  

Figure 1.2a and Figure 1.2b show two raw seismograms, made on land and at sea, respectively. The land 

one shows the presence of strong noisy events, that depends on the ground-roll or surface waves that 

propagate along the surface, and can hide the reflections events. The sea one is cleaner than the previous 

one, but the multiple strong waves are present that can hide much information.  
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Figure 1.1: Example of a marine seismic acquisition from [3]. 

 
Figure 1.2: Example of: a) raw land seismogram; b) raw marine seismogram. 
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1.2 What is the Full Waveform Inversion? 

When the elastic properties of the rocks in the subsurface are highly variable, it is difficult to estimate 

information from the seismic data, using classical tomography techniques based on ray theory 

approximation. Vice versa, if we have a perfect knowledge of the elastic properties of the subsurface, it 

is possible to simulate the synthetic seismograms of a seismic acquisition, by solving the numerical 

solution of the wave equation.  

Full Waveform Inversion (FWI) is a seismic imaging technique that estimates a high-resolution model 

of the subsurface by a minimization of a misfit functional 𝐹(𝑚). This function measures the difference 

between observed seismograms, obtained during a seismic acquisition, and the predicted 

seismograms obtained by the numerical solution of the seismic wave equation (acoustic or elastic). This 

approach was proposed about 30 years ago  [4], but it has gained success recently, thanks to the enormous 

improvements in the computational time and memory storage of computers, that nowadays can model 

the propagation of seismic waves through 2D and 3D Earth structures, e.g., basins and reservoirs. Recent 

reviews of FWI can be found in [5] and in [6]. 

1.3 FWI as a minimization problem 

Figure 1.3 displays a possible scheme of the algorithm FWI, characterized by an iterative procedure that 

is based on: 

• a modelling algorithm, to simulate predicted seismograms using the numerical solution of the 

wave equation; 

• a misfit function to measure the difference between the predicted and the observed data; 

• a stopping criterium, to determine when to stop the iterative procedure; 

• an inversion algorithm step, to estimate the predicted model that minimizes the misfit function. 

 

 
Figure 1.3: Full Waveform Inversion iterative procedure. 

The modelling algorithm depends on the type of seismic wave propagation we want to simulate (elastic 

or acoustic? Isotropic or anisotropic?1D, 2D or 3D?) and will be discuss in the next chapter. 

The misfit function represents some function quantifying the difference between the observed and the 

modelled data. It reads: 

𝑚 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑚∈𝑀

𝐹(𝑢(𝑚), 𝑢0), (1.1) 
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where 𝑀 is the set of all possible geological models, 𝑢0 is the observed data, and 𝑢(𝑚) is the predicted 

data. The Earth model 𝑚  consists of a set of geophysical properties such as the spatial distribution of 

the P-wave velocity 𝑣𝑝(𝒙), the S-wave velocity 𝑣𝑠(𝒙) and the density 𝜌(𝒙).  

In the context of FWI different misfit functions can be chosen based, e.g., on differences between 

waveforms, travel times, amplitudes, envelopes, and phases. See [7] and [8] for the description and 

application of many misfit functions. However, a classical one remains the 𝑳𝟐-norm difference between 

the observed and the synthetic seismogram [4] [9]: 

𝐹(𝑚) =
1

2
∑(∫[𝑢(𝑚, 𝒙, 𝑡) − 𝑢0(𝒙, 𝑡)]

2𝛿(𝒙 − 𝒙𝑟)

𝑇

0

𝑑𝑡)

𝑛𝑟

𝑟=1

, (1.2) 

where 𝑛𝑟 is the number of receivers, and {𝒙𝑟}  represent their positions. The integral in (1.2) is 

approximated by the following quadrature formula: 

𝐹(𝑚) ≈ 𝐹(𝑚) =
1

2
∑(∑[𝑢(𝑚, 𝒙, 𝑡𝑘) − 𝑢0(𝒙, 𝑡𝑘)]

2

𝑛𝑟

𝑟=1

 𝛿(𝒙 − 𝒙𝑟)) 𝑑𝑡

𝑛𝑡

𝑘=1

, (1.3) 

where 𝑛𝑡 is the number of trace samples, and 𝑑𝑡 is the time sampling. 

However, some processing steps such as band-pass filtering, windowing operations, and gain recovery 

operations can be applied to the seismograms before the building of the misfit functions to isolate and 

invert only specific events. For example, in [10] a low-pass filter and a time windowing on the diving 

waves for a FWI on marine data are used. 

In Chapter 2 we will observe that the space of propagation of the seismic waves must be discretized on 

a modelling grid to use a modelling algorithm. This fact causes the discretization of geological models, 

and a FWI problem becomes a minimization problem with the number of possible unknowns given by 

the number of nodes in the modelling grid multiplied by the number of geophysical properties we 

consider for each node.  

The stopping criterion consists of a practical test to determine when to stop the iterative procedure, such 

as a threshold value of the misfit function or a maximum number of iterations. 

1.4 Local inversion algorithm for FWI 

Since 𝐹(𝑚) is a complicated non-linear function of the model 𝑚, an iterative minimization procedure 

must be used to obtain the global minimum 𝑚. Starting from a plausible initial model 𝑚0, an iterative 

minimization updates the current model 𝑚𝑘, to a new model 𝑚𝑘+1, given by 

𝑚𝑘+1 = 𝑚𝑘 + 𝛾̅𝑘ℎ𝑘 (1.4) 

where 𝐹(𝑚𝑘+1) < 𝐹(𝑚𝑘), and ℎ𝑘 ∈ ℝ
𝑛 and 𝛾̅𝑘 ∈ ℝ

+ are the descend direction and the step length, 

respectively. For a local descend direction we must have  

ℎ𝑘 ∙  𝛻𝑚𝐹(𝑚
𝑘) < 0, (1.5) 
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where ∇𝑚𝐹(𝑚
𝑘) represents the gradient of the misfit function 𝐹(𝑚) and " ∙  "  denotes the scalar ( or 

inner) product between ℎ𝑘  and 𝛻𝑚𝐹(𝑚
𝑘). Table 1.1 lists some possible descend directions, classically 

used in the context of local optimization algorithms. A complete and detailed description of them is in 

[11]. 

Algorithm 𝒉𝒌 

a) Steepest descend method −𝛻𝑚𝐹(𝑚
𝑘) 

b) Newton’s method −𝐻𝐹(𝑚
𝑘) ∙ 𝛻𝑚𝐹(𝑚

𝑘) 

c) Conjugate gradient method -𝛻𝑚𝐹(𝑚
𝑘) + 𝛽𝑘ℎ𝑘−1, with 𝛽𝑘 ≥ 0 

Table 1.1: Some possible descend directions used for local optimization algorithms.  a) The Steepest descend method 

uses the gradient of the misfit function at mk as descend direction. b) The Newton’s method uses also the knowledge of 

Hessian matrix HF(mk) at mk. c) The Conjugate gradient method uses a combination of the gradient of the misfit function at 

mk and the previous descend direction hk-1. 

The step length 𝛾̅𝑘  should be chosen such that 𝐹(𝑚𝑘 + 𝛾̅𝑘ℎ𝑘) is minimal along the direction ℎ𝑘 . 

However, to assure the convergence of the algorithm it is sufficient to find a step length 𝛾̅𝑘 that satisfies 

these two following conditions, called strong Wolfe conditions [12]: 

 

{
𝐹(𝑚𝑘 + 𝛾̅𝑘ℎ𝑘) < 𝐹(𝑚𝑘) + 𝑐1𝛾̅𝑘𝛻𝑚𝐹(𝑚

𝑘) ∙ ℎ𝑘

|𝛻𝑚𝐹(𝑚
𝑘 + 𝛾̅𝑘ℎ𝑘) ∙ ℎ𝑘| < 𝑐2|𝛻𝑚𝐹(𝑚

𝑘) ∙ ℎ𝑘|
 (1.6) 

with 0 < 𝑐1 < 𝑐2 < 1 [11]. 

The first condition assures a sufficient decrease of the misfit function along the direction ℎ𝑘 , whereas 

the second one that the slope has been reduced sufficiently. 

1.5 Limits and difficulties of local FWI 

Solving a FWI problem by local optimization algorithms can be a good strategy. However, many 

difficulties arise in such a problem, such as: 

1. no a priori information about the structure of the misfit function; 

2. high number of unknows of the optimization problem; 

3. high computation cost of a misfit evaluation; 

4. a non-trivial way to obtain local information of the misfit function, such as the value of gradient 

or the Hessian; 

5. the presence of many local minima for the misfit function; 

The first difficulty is related to the fact that there is no explicit analytic expression for the misfit function 

as a function of the model parameters. 

The second one is related to the fact that a high number of parameters can be necessary to descr ibe the 

variations of the physical properties of complex geological structures. 

The third difficulty is related to the fact that to evaluate the misfit function for a model 𝑚, is necessary 

to solve the wave equation by using a modelling algorithm, whose computational time depends on the 

size of the problem, but also on the efficiency of the numerical method used. 
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The fourth problem is related to the fact that it is not possible to compute the gradient of the Hessian of 

the misfit function in a reasonable time, using some finite difference approximation formula, because 

the number of unknowns is large, and the solution of the wave equation is computationally expensive. 

The last one is because seismic inverse problems such as FWI are characterized by non-linear relation 

between a model 𝑚 and the synthetic seismograms 𝑢(𝑚). Besides, the well-known cycle skipping effect 

causes the fact that, if the starting model produces predicted seismograms very different from the 

observed ones, then the local optimization could converge to a local minimum rather than the global 

one.  From a mathematical point of view this means that, if the starting model 𝑚0 of a local procedure 

is not in the basin of attraction of the global minimum, the algorithm cannot converge to the global 

minimum, but rather to a local one [13]. Figure 1.4 displays an example of possible misfit function with 

a high number of local minima, in which a local procedure converges to the global minimum, starting 

from the green points in the basin of attraction of the global minimum. On the other hand, it converges 

to a local minimum, if it starts from the red points, which are not in the basin of attraction of the global 

minimum.  

 
Figure 1.4: Example of misfit function with many local minima. If the starting model m0 is outside the basin of attraction 

of global minimum 𝑚̅, the local algorithm converges to a local minimum. 

All these facts make the FWI problem rich of challenges, many of which have not been resolved yet. 

1.6 My research about FWI  

During my Ph.D. I have studied some of the central aspects regarding FWI, in case of 2D acoustic 

approximation, such as: 

1. the study and the implementation of an efficient modelling algorithm to simulate synthetic 

seismograms, using a new numerical approach with low numerical dispersion and low 

computational time, that includes the possibility to execute some basic processing operations on 

the data (Chapter 2 and Chapter 4); 

2. the study and the implementation of an efficient tool to compute the gradient of a misfit function 

using the well-known adjoint method, but that also includes the possibility to execute some basic 

processing operations on the synthetic data (Chapter 3 and Chapter 4); 
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3. the study (Chapter 5) and the comparison (Chapter 6) of the performances of the two global 

optimization algorithms on finding the global minimum of some analytic objective functions; 

4. the application of global optimization procedure for a classical problem of FWI on synthetic 

seismograms (Chapter 7); 

5. the application of global optimization procedure for a FWI on a real land data (Chapter 8);  

6. the application of local optimization procedure for a FWI on real marine data (Chapter 9). 





 

Chapter 2.  

Numerical implementation of the seismic 

wave equation for acoustic FWI 
In this chapter, I present the essential elements to model the generation and propagation of seismic waves 

in the subsurface. Under the hypothesis of a 2D acoustic approximation, I describe the numerical scheme 

I implemented. See [14] for more details.   

2.1 Modelling the seismic wave equation 

In this section, the acoustic wave equation is introduced as a particular case of the elastic one.  For a 

complete and exhaustive description of the mathematical model of the seismic wave propagation, the 

reader can refer, for example, [15]. 

2.1.1 Elastic wave equation 

The propagation of seismic waves in the Earth can be modelled by the elastic wave equation 

𝒖̈(𝒙, 𝑡) − 𝜌(𝒙)−1∇ ∙ 𝝈(𝒙, 𝑡) = 𝜌(𝒙)−1𝒇(𝒙, 𝑡),     𝑥 ∈ 𝐷 ⊂ ℝ3,   𝑡 ∈ [0, 𝑇] ⊂ ℝ+, (2.1) 

that relates the displacement field 𝑢 in a region of the Earth 𝐷 to its density 𝜌, the stress tensor 𝜎, and 

an external force 𝑓, representing the source of seismic waves. At the surface 𝜕𝐷, the normal 

components of the stress tensor 𝝈 is zero, that is 

𝝈(𝒙, 𝑡) ∙ 𝒏 = 𝟎, (2.2) 

where 𝒏 is the unit normal on 𝜕𝐷. This condition is called free surface boundary condition. 

As initial condition, both the displacement field 𝒖 and the velocity field 𝒖̇ are zero before 𝑡 = 0,  

𝒖𝒕≤𝟎 = 𝒖̇𝒕≤𝟎 = 𝟎, (2.3) 

that is when the source 𝒇 starts to act. The stress tensor 𝝈 is related to the displacement vector 𝒖 by the 

linear visco-elastic equation 

𝝈(𝒙, 𝑡) = ∫ 𝑪̇(𝒙, 𝑡 − 𝑡′) ∶ ∇𝐮(𝐱, 𝑡′)
+∞

−∞

𝑑𝑡′, (2.4) 

where 𝑪 is the 4th-order elastic tensor, with 21 independent components and 𝑪(𝑡)𝑡≤0 = 𝟎. In the 

previous equation " ∶  " denotes the tensor product between 𝑪̇ and the displacement gradient ∇𝐮. 

Equations (2.1) and  (2.4) are very general and include several effects, such as anisotropic effects and 

visco-elastic dissipation. See [16] for more details about the theory of elasticity. However, in 

macroscopic scale, the Earth or a region 𝐷 of our interest can be sufficiently well described as an 

isotropic non-dissipative medium. In this case, the equation (2.4) becomes   

𝜎𝑖,𝑗(𝒙, 𝑡) = 𝛿𝑖,𝑗 (𝜅(𝒙) −
2

3
μ(𝐱)) ∇𝐮(𝐱, t) + 2μ(𝐱)𝜀𝑖,𝑗 , (2.5) 

where 𝛿𝑖,𝑗 is the Kronecker delta symbol, the quantity 𝜀𝑖,𝑗 = (
𝜕𝑢𝑗(𝒙,𝑡)

𝜕𝑥𝑖
+
𝜕𝑢𝑖(𝒙,𝑡)

𝜕𝑥𝑗
) is called strain tensor,  

𝜅 is the Bulk modulus, and μ is the shear modulus. Equations (2.1) and (2.5) constitute the 

displacement-stress formulation of the elastic wave equation, in the absence of dissipation. 
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2.1.2 Acoustic wave equation 

In case of acoustic approximation of the propagation of the seismic waves, we assume that 𝜇 = 0. Even 

if this assumption is strictly valid only in fluid and gaseous media, the acoustic approximation is 

justifiable when the seismic source is isotropic and radiates little S-wave energy, and the data analysis 

is restricted to the analysis of the P-waves. Examples of applications are in [6]. Therefore, for our 

applications, the acoustic approximation can be used to model the propagation of seismic waves in case 

of: 

• the marine seismic acquisition, in which the source and receivers are in the water, where 𝜇 = 0 

and little conversion between P to S waves is present; 

• the land seismic acquisition, if the source is explosive (e. g. dynamite) and we restrict the analysis 

to the first-arriving P waves, or specific P-wave reflections. 

The assumption 𝜇 = 0, simplifies significantly (2.5), giving  

𝜎𝑖,𝑗(𝒙, 𝑡) = −𝑝(𝐱, t)𝛿𝑖,𝑗,  (2.6) 

where 𝑝(𝐱, t) =  −𝜅(𝒙)∇𝐮(𝐱, t) is the scalar pressure. 

Inserting  (2.6) in (2.1) we obtain  

𝒖̈(𝒙, 𝑡) + 𝜌(𝒙)−1∇𝑝(𝒙, 𝑡) = 𝜌(𝒙)−1𝒇(𝒙, 𝑡),     (2.7) 

Now, if we consider the divergence of the last equation and use the definition of the pressure 𝑝, 

we obtain  

−𝜅(𝒙)−1𝑝̈(𝒙, 𝑡) + ∇ ∙ (𝜌(𝒙)−1∇𝑝(𝒙, 𝑡)) = −∇ ∙ (𝜌(𝒙)−1𝒇(𝒙, 𝑡)),     (2.8) 

Finally, if the density 𝜌(𝒙) varies much more slowly than the pressure field 𝑝 and the source 𝒇, we have 

∇ ∙ (𝜌−1∇𝑝) ≈ 𝜌−1∆𝑝 and ∇ ∙ (𝜌−1𝒇) ≈ 𝜌−1∇ ∙ 𝒇), obtaining the 3D acoustic wave equation: 

𝑝̈(𝒙, 𝑡) − 𝑣𝑎(𝒙)
2∆p(𝒙, t) = 𝑣𝑎(𝒙)

2𝑔(𝐱, t),     (2.9) 

where 𝑣 = √
𝜅

𝜌
 is the acoustic velocity and 𝑔(𝐱, t) = ∇ ∙ 𝒇 is the acoustic source. Equation (2.9) 

describes the seismic wave motion with a single scalar variable p, which depends only on the source 

term g(𝐱, t) and the spatial distribution of the acoustic velocity 𝑣(𝒙). The range of the possible values 

of the acoustic velocity depends on the region of the Earth we consider. An example of velocity ranges 

for some geological materials is listed in Table 2.1. 

Material 𝒗 (km/s) 

Water 1.45-1.5 

Oil 1.2-1.25 

Chalk 2.3-2.6 

Limestone 3.5-6.0 

Dolomite 3.5-6.5 
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Table 2.1: Example of acoustic velocities of common materials, from [17]. 

Since the source-receiver geometries considered are confined to a plane (𝑦 = 0) and assuming a 2.5D 

geometry of subsurface, it is possible to approximate (2.9) with the 2.5D acoustic wave equation [18]  

𝑝̈(𝒙, 𝑡) − 𝑣(𝑥, 𝑧)2∆p(𝒙, t) = 𝑣(𝑥, 𝑧)2g(𝐱, t), (2.10) 

in which 𝑣𝑎 varies only as a function of the depth 𝑧 and the length 𝑥. Finally, because of the large 

computational cost of 3D modeling, in my work I consider the 2D acoustic wave equation:  

𝑝̈(𝑥, 𝑧, 𝑡) − 𝑣(𝑥, 𝑧)2∆p(𝑥, 𝑧, t) = 𝑣(𝑥, 𝑧)2g(𝑥, 𝑧, t), (2.11) 

with (𝑥, 𝑧) ∈ 𝐷 ⊂ ℝ2 and ∆p(𝑥, 𝑧, t) = (
𝜕2𝑝(𝑥,𝑧,𝑡)

𝜕𝑥2
+
𝜕2𝑝(𝑥,𝑧,𝑡)

𝜕𝑧2
).  

2.1.3 Seismic source 

Generally, in seismic exploration, the dimension of the source is much smaller than the region of Earth 

considered. Therefore, in  (2.11) it is possible to assume a 𝜹-source in space 

g(x, z, t) = 𝛿(𝑥 − 𝑥0)𝛿(𝑧 − 𝑧0)𝑠(𝑡), (2.12) 

where (𝑥0, 𝑧0) is the location of the source in space and 𝑠(𝑡) is the seismic wavelet, describing seismic 

source in time. The wavelet estimation represents an essential challenge for Full Waveform Inversion 

because its choice considerably influences the quality of the results. Different functions exist that try to 

describe the wavelet of a seismic acquisition. See, e.g. [19] for a comparison of various wavelets. 

However, in case of real data, the wavelet usually must be estimated from the seismograms. A 

comparison of various methods to estimate the wavelet is, e.g., in [20]. 

2.2 Implementation of 2D acoustic wave equation 

In this section, I describe the numerical approach used for the solution of the 2D acoustic wave equation 

((2.11) to model the synthetic seismograms in the context of seismic exploration. This method is based 

on a finite difference (FD) approximation of the time and spatial derivatives [21] [22] [23].  

2.2.1 Discretization in time 

If we set 𝑝̇ = 𝑞, the 2D acoustic wave equation (2.11) can be written as a couple of two first order 

differential equations: 

{
𝑞̇(𝒙, 𝑡) = 𝑣𝑎(𝒙)

2∆p(𝒙, t) + 𝑣(𝒙)2𝛿(𝒙 − 𝒙0)𝑠(𝑡)

𝑝̇(𝒙, 𝑡) = 𝑞(𝒙, 𝑡)
, 

(2. 13) 

To approximate the time derivatives, I use the Leap-Frog method, an explicit second order in time 

approximation with uniform time sampling 𝑑𝑡, obtaining the following system 

Gneiss 4.4-5.2 

Granite 4.5-6.0 

Basalt 5.0-6.0 
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{
𝑞(𝒙, 𝑡𝑘+1/2) = 𝑞(𝒙, 𝑡𝑘−1/2) + 𝑑𝑡 𝑣(𝒙)

2(∆p(𝒙, 𝑡𝑘) + 𝛿(𝒙 − 𝒙0)𝑠(𝑡𝑘))

𝑝(𝒙, 𝑡𝑘+1) = 𝑝(𝒙, 𝑡𝑘) + 𝑑𝑡 𝑞(𝒙, 𝑡𝑘+1/2)
, 

(2.14) 

where the number of time samples is 𝑛𝑡 =
𝑇

𝑑𝑡
+ 1, with 𝑘 = 1,… , 𝑛𝑡.  

2.2.2 Discretization in space  

For the discretization of the space, 𝐷 is assumed to be a rectangular domain, where the top side (𝑧 = 0) 

represents the surface level, the bottom (𝑧 = 𝑍) represents the maximum depth of the true physical 

domain of our interest, and the lateral sides, 𝑥 = 0  and 𝑥 = 𝑋 limit the domain along the 𝑥-direction. 

Therefore, we sample 𝐷 with a uniform space sampling 𝑑𝑥 along the horizontal and vertical direction, 

obtaining a regular grid 𝐷𝑖,𝑗 of 𝑛𝑥 ∙ 𝑛𝑧 grid nodes, with 𝑖 = 1, … , 𝑛𝑥 and 𝑗 = 1, … , 𝑛𝑧, obtaining the 

following finite difference system 

{
𝑞(𝑥𝑖,𝑗, 𝑡𝑘+1/2) = 𝑞(𝑥𝑖,𝑗, 𝑡𝑘−1/2) + 𝑑𝑡 𝑣(𝑥𝑖,𝑗)

2
( ∆̂p(𝑥𝑖,𝑗, 𝑡𝑘) + 𝛿(𝑥𝑖,𝑗− 𝒙0)𝑠(𝑡𝑘))

𝑝(𝑥𝑖,𝑗, 𝑡𝑘+1) = 𝑝(𝑥𝑖,𝑗, 𝑡𝑘) + 𝑑𝑡 𝑞(𝑥𝑖,𝑗, 𝑡𝑘+1/2)
, 

(2.15) 

where ∆̂𝑝(𝑥𝑖,𝑗) represents any finite difference operator used to approximate the Laplacian operator. 

An efficient way to implement the FD system consists of reordering the space grid nodes 𝑥𝑖,𝑗 as a row 

vector 𝑥𝑖 with 𝑖 = 1,… , 𝑛𝑥 ∗ 𝑛𝑧 , scrolling the grid matrix along the rows. Thus, I obtain: 

{
𝑞
𝑖

𝑘+1/2
= 𝑞

𝑖

𝑘−1/2
+ 𝑑𝑡 𝑣𝑖

2(∆̂𝑝𝑖
𝑘+ 𝛿(𝑥𝑖 − 𝒙0)𝑠

𝑘)

𝑝
𝑖
𝑘+1 = 𝑝

𝑖
𝑘 +𝑑𝑡 𝑞

𝑖

𝑘+1/2 . 
(2.16) 

with 𝑝𝑖
𝑘 = 𝑝(𝑥𝑖, 𝑡𝑘),  𝑞𝑖

𝑘+1/2
= 𝑞(𝑥𝑖, 𝑡𝑘+1

2

), 𝑣𝑖 = 𝑣(𝑥𝑖,𝑗) and 𝑠𝑘 = 𝑠(𝑡𝑘). Using this notation, the operator 

∆̂𝑝𝑖
𝑘  corresponds to the application of a matrix 𝐾∆, called stiffness matrix, on the vector 𝒑𝑘  where the 

elements of each row depend on the way the value of the spatial derivatives for each grid node 𝑥𝑖 is 

computed. In general, the Laplacian operator is approximated by the following finite difference formula:  

∆̂𝑝(𝑥𝑖,𝑗) =
(∑ 𝑐𝑙( 𝑝(𝑥𝑖+𝑙,𝑗)+𝑝(𝑥𝑖−𝑙,𝑗) +𝑝(𝑥𝑖,𝑗+𝑙)+𝑝(𝑥𝑖,𝑗−𝑙) )−4(∑ 𝑐𝑙

𝑝𝑜𝑟𝑑
2

𝑙=1
)𝑝(𝑥𝑖,𝑗)

𝑝𝑜𝑟𝑑
2

𝑙=1
)

𝑑𝑥2
, 

(2.17) 

where the 𝑐𝑙  are the coefficients for the 𝑝𝑜𝑟𝑑-order approximation of the spatial derivatives [24], and  

𝑝𝑜𝑟𝑑 is an even number. Table 2.2 lists the values of 𝑐𝑙 , obtained as a function of the order of 

approximation 𝑝𝑜𝑟𝑑 = 2,4,… ,12.  

𝒑𝒐𝒓𝒅 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 

2 1 0 0 0 0 0 

4 4/3 -1/12 0 0 0 0 

6 3/2 -3/20 1/60 0 0 0 

8 8/5 -1/5 8/135 -1/560 0 0 

10 5/3 -5/21 5/126 -5/1008 1/3150 0 
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12 12/7 -15/56 10/189 -1/112 2/1925 -1/16632 

Table 2.2: Values of the coefficients cl for different orders of approximation of the spatial derivatives. 

The row elements of  𝐾∆ corresponds to the coefficients obtained for a 𝑝𝑜𝑟𝑑- order approximation of the 

spatial derivatives. The matrix 𝐾∆ is sparse, symmetric, banded, with the number of non-zeros elements 

𝑁∆ that is of the order of (2𝑝𝑜𝑟𝑑 + 1)𝑛𝑥𝑛𝑧. 

2.2.3 Local adaptive scheme for the stiffness matrix 

In general, for an explicit finite difference scheme, two numerical conditions need to be satisfied. The 

first one is related to the numerical stability relation [25] and imposes a limit on the time sampling 𝑑𝑡: 

𝑑𝑡 <
𝑑𝑥

𝑣𝑚𝑎𝑥
𝜆, 

(2.18) 

where 𝜆 ≈ 0.5 is the Courant number, and 𝑣𝑚𝑎𝑥 is the maximum velocity.  The second one is due to the 

numerical dispersion relation [26] and enforces a limit on 𝑑𝑥 and the order 𝑝𝑜𝑟𝑑 : 

𝑛 <
𝑣𝑚𝑖𝑛

𝑑𝑥 ∙ 𝑓𝑚𝑎𝑥
, 

(2.19) 

where 𝑛 = 𝑛( 𝑝𝑜𝑟𝑑) is the number of points per wavelength, 𝑣𝑚𝑖𝑛 is the minimum velocity of the model, 

and 𝑓𝑚𝑎𝑥  is the maximum frequency of the wavelet s(t). Table 2.3 lists the values of n, as a function of 

the order of approximation pord, required in (2.19) [27]. 

  

𝒑𝒐𝒓𝒅 2 4 6 8 10 12 

𝑛 18 6.3 4.5 3.75 3.5 3.25 

Table 2.3: Values of n as a function of pord. 

The numerical dispersion relation can cause very inefficient forward modelling for FWI applications 

because only the minimum velocity 𝑣𝑚𝑖𝑛 of the model is considered to fix the grid parameters 𝑑𝑥 and 

𝑝𝑜𝑟𝑑. An example of this is in Figure 2.1a, where there is a constant velocity model of 7 𝑘𝑚/𝑠 

superimposed by a thin layer of 1.5 𝑘𝑚/𝑠. For this case, the choice of the grid parameters is influenced 

only by a small part of the model having the lowest velocity value. Even if the examined model is clearly 

unrealistic, we can have similar consequences also for realistic models. For example, in a marine seismic 

acquisition (Figure 2.1b), the minimum velocity is usually fixed to the water velocity situated on the top 

of the studied region, but the geological model situated below has, in general, a higher velocity. 
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Figure 2.1: a) An example of a velocity model where the lowest velocity layer compromises the computational efficiency. 

b) A synthetic but realistic geological model situated below a water layer in which the mean velocity is higher than the water 

one. 

Therefore, the choice of a classical finite difference approach to model the seismic wave propagation 

seems inefficient.  Thus, I have implemented a new approach based on the use of different orders of 

approximation of the spatial derivatives in different parts of the model, instead of a global one 𝑝𝑜𝑟𝑑. 

Starting from the numerical dispersion relation (2.18), and setting 𝑑𝑥 and 𝑓𝑚𝑎𝑥 , I replace the minimum 

velocity 𝑣𝑚𝑖𝑛, with 𝑣𝑖 = 𝑣(𝑥𝑖): 

𝑛𝑙𝑜𝑐
𝑖 <

𝑣𝑖

𝑑𝑥 ∙ 𝑓𝑚𝑎𝑥
. 

(2.20) 

This local numerical dispersion relation applied to any velocity model, allows us to compute the 

parameter 𝑛𝑙𝑜𝑐
𝑖 , i.e., the local number of points for the wavelength that must be necessary to satisfy 

Equation (2.20). Afterwards, I estimate the local order of the approximation of the spatial derivatives 

𝑝𝑙𝑜𝑐
𝑖 , from 𝑛𝑙𝑜𝑐

𝑖  according to the results in Table 2.3. Therefore 𝑝𝑙𝑜𝑐
𝑖  will be high in those parts of the 

model with low velocities, and low in the ones with high-velocity values. Figure 2.2 shows an example 

of the computation of 𝑝𝑙𝑜𝑐
𝑖 , with 𝑑𝑥 = 27𝑚, 𝑓𝑚𝑎𝑥 = 20 𝐻𝑧 and the velocity model of Figure 2.1b. 

Starting from the analysis of the velocity value 𝑣𝑖, it is possible to compute the local number of points 

for wavelength 𝑛𝑙𝑜𝑐
𝑖  (Figure 2.2a), and the local order of the approximation of the spatial derivatives 𝑝𝑙𝑜𝑐

𝑖  

(Figure 2.2b). 

This new approach modifies the structure of the stiffness matrix 𝐾∆ to a new local stiffness matrix 𝐾∆̂, 

that depends on the velocity model of each grid nodes 𝑣𝑖 = 𝑣(𝑥𝑖), yielding an asymmetric matrix. 

Moreover, its number of non-zero elements 𝑁∆̂, depends on the model velocity and is in general smaller 

than 𝑁∆. In particular, I obtain: 

𝑁∆̂  ≈ ∑ (2 ∙ 2𝑘 + 1)𝑛2𝑘 ,

𝑝𝑚𝑎𝑥
2

𝑘=1

 
(2.21) 

where 𝑝𝑚𝑎𝑥 is the maximum implemented order, 𝑛2𝑖 is the number of grid nodes with 𝑝𝑙𝑜𝑐 = 2𝑘, and 

𝑛2 + 𝑛4 + ⋯+ 𝑛𝑝𝑚𝑎𝑥 = 𝑛𝑥 ∙ 𝑛𝑧 . 
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Figure 2.2:a) nloc and b) ploc computation for the model of Figure 2.1b, with dx=27m and fmax =20 Hz. 

2.2.4 Point source  

Since the source is a 𝛿-source in space 𝛿(𝒙 − 𝒙0), I distinguish two cases: 

• if the position of the source 𝒙0  coincides with the position of a grid point  𝑥𝑖 (Figure 2.3b), I put  

𝛿(𝒙 − 𝒙0) = {
1, 𝑖𝑓 𝑥𝑖 = 𝒙0
0, 𝑖𝑓 𝑥𝑖 ≠ 𝒙0

, 
(2.22) 

at each time step  𝑡𝑘, during the computation of the numerical solution of (2.16).  

• if the position of the source 𝒙0 does not coincide with the position of any grid point  x𝑖 (Figure 

2.3a), I approximate the space component of the source using the formula in [28]: 

𝛿(𝒙 − 𝒙0) ≈ 𝑊(𝒙 − 𝒙0) ∙
1

𝑑𝑥
𝑠𝑖𝑛𝑐 [

𝜋(𝒙−𝒙0)

𝑑𝑥
],   (2.23) 

and 𝑊(𝒙 − 𝒙0) is the Kaiser windowing function [29]: 

 

𝑊(𝒙 −𝒙0) =

{
 
 

 
 𝐼0 (𝛽√1 −

|𝑥 − 𝑥0|
𝑘𝑤𝑑𝑥 

) 𝐼0 (𝛽√1−
|𝑧 − 𝑧0|
𝑘𝑤𝑑𝑥 

)

𝐼0(𝛽)2
, |𝒙 − 𝒙0|∞ < 𝑘𝑤𝑑𝑥 

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

(2.24) 

 

where  𝐼0 denotes the zero-order Bessel function of the first kind [30]. The parameter 𝑘𝑤 ∈ ℕ 

controls the width of the Kaiser window, whereas the parameter 𝛽 ∈ ℝ+ controls its shape. 

Typical values of  𝑘𝑤 are between 1 and 10. The value of 𝛽 is fixed as a function of 𝑘𝑤, using 

Table 2.4 [28]. Thus, the location of the point source is approximated with its band-limited 

version distributed through a small square of 4𝑘𝑤
2  grid nodes surrounding the exact source 

position. 
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Figure 2.3: Examples of interpolation of a point source: a) the source position does not coincide with the position of 

any grid point and a Keiser window (the red rectangle), with kw=3 is used; b) the source position coincides with the 

position of a grid point.   

𝒌𝒘 1 2 3 4 5 6 7 8 9 10 

𝜷 1.24 2.94 4.53 6.31 7.91 9.42 10.95 12.53 14.09 14.18 

Table 2.4: Values of β as a function of kw, taken from [28]. 

2.2.5 Boundary conditions 

The reduction of the computational domain to only a part of the true physical domain entails artificial 

reflecting boundaries. To suppress these undesired reflections, an absorbing boundary condition is 

used based on the introduction of a thin narrow strip along the artificial boundary. In particular, I used 

the Gaussian taper method [31], a very popular and robust technique, that consists of a multiplication 

of the solution inside the absorbing layers at each time step times a Gaussian taper factor. This factor 

is 1 along the boundaries between the computational domain and the narrow strip, and decreases until 

the value 0.85 along the outside boundaries of the narrow strip. Thus, the previous scheme of (2.16) 

becomes: 

{
𝑞𝑖
𝑘+1/2

= 𝐺𝑖 (𝑞𝑖
𝑘−1/2

+ 𝑑𝑡 𝑣𝑖
2(∆̂𝑝𝑖

𝑘 + 𝛿(𝑥𝑖 − 𝒙0)𝑠
𝑘))

𝑝𝑖
𝑘+1 = 𝐺𝑖(𝑝𝑖

𝑘 + 𝑑𝑡 𝑞𝑖
𝑘+1/2

)
, 

(2.25) 

where 𝐺𝑖,𝑗 ∈ [0.85,1] is the Gaussian taper factor. Clearly, each side can have a different number of 

absorbing grid nodes and the total number 𝑛̅𝑎𝑏𝑠 is given by: 

𝑛̅𝑎𝑏𝑠 = (𝑛̅𝑡 + 𝑛̅𝑏) 𝑛𝑥 + (𝑛̅𝑙 + 𝑛̅𝑟) 𝑛𝑧 + (𝑛̅𝑡 + 𝑛̅𝑏) (𝑛̅𝑙 + 𝑛̅𝑟), (2.26) 

where 𝑛̅𝑡, 𝑛̅𝑏, 𝑛̅𝑙  , 𝑛̅𝑟 are the grid node numbers of the top, bottom, left and right absorbing layers, 

respectively. Figure 2.4a shows an example of the computational domain with 𝑛𝑥 = 𝑛𝑧 = 500, 

surrounded on the four sides by absorbing boundaries layers with 𝑛̅𝑟 =𝑛̅𝑏 =𝑛̅𝑡 =𝑛̅𝑙  =50, while Figure 

2.4b displays the values of the Gaussian taper factor from 1 to 0.85 inside the absorbing boundary layers. 
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Figure 2.4:  a) Example of the computational domain (nx=nz=500), with 𝑛̅𝑟 =𝑛̅𝑏 =𝑛̅𝑡 =𝑛̅𝑙  =50 and, b) the value of the 

Gaussian taper. Note that Gi,j<1 inside the absorbing boundaries and Gi,j=1 otherwise. 

2.2.6 The synthetic seismograms 

The synthetic seismograms represent the restriction of the solution of the acoustic wave equation (2.11) 

on that part of the computational domain where the receivers are located. As in case of the seismic 

source, also a receiver can be approximated by a point source in space. Precisely, considering 𝑋𝑟 = {𝒙𝑟} 

the set of points related to the position of the receivers, then the predicted seismogram 𝑢(𝑣𝑝, 𝒙, 𝑡𝑘) is the 

restriction of the solution of the acoustic wave equation on the 𝑋𝑟: 

𝑢(𝑣𝑝, 𝒙, 𝑡) = 𝑝(𝒙, 𝑡)|𝒙𝜖 𝑋𝑟 , (2.27) 

using 𝑣𝑝 as the acoustic velocity model.  Also in this case, we distinguish between the cases in which 

the position of a receiver 𝒙𝑟  coincides with the position a grid point  𝒙𝑖  or it does not: 

• if the position of a receiver 𝒙𝑟  coincides with the position a grid point  x𝑖, then  

𝑢(𝑣𝑝, 𝒙
𝑟 , 𝑡𝑘) = 𝑝𝑖

𝑘+1, (2.28) 

at each time step  𝑡𝑘, during the computation of the numerical solution of (2.16).  

• if the position of a receiver 𝒙𝑟 does not coincide with the position of any grid point  x𝑖, the signal 

at the receiver is approximated using a formula analogous to that applied for the approximation 

of the source: 

𝑢(𝑣𝑝, 𝒙
𝑟 , 𝑡𝑘) = ∑ (𝑊(𝒙𝑖 − 𝒙

𝑟) ∙
1

𝑑𝑥
𝑠𝑖𝑛𝑐 [

𝜋(𝒙𝑖−𝒙
𝑟)

𝑑𝑥
] ∙ 𝑝𝑖

𝑘+1)
𝑛𝑥∙𝑛𝑧
𝑖=1 .  (2.29) 

Note that the number of non-zero elements of the summation corresponds to 4𝑘𝑤
2 . 

2.3 Conclusions and results 

In this Chapter, I have described the numerical scheme used for the solution of the 2D acoustic wave 

equation. This scheme models the predicted seismograms in the field of the seismic exploration, with a 

low computational time and a low approximation error, using also some devices for the treatment of the 

boundary conditions and the approximation of the sources and the receiver positions.  





 

Chapter 3.  

Implementation of the adjoint method  
In this chapter, I describe the numerical scheme I implemented for the computation of the gradient of a 

misfit function, in the framework of 2D acoustic approximation, using the adjoint method. 

3.1 An introduction to the adjoint method 

The adjoint method is a mathematical tool proposed in control theory [32] and introduced in the theory 

of inverse problems [33] that considerably reduces the computational time for the gradient of a misfit 

function. Several authors have illustrated the adjoint method in the geophysical literature, e.g. [34], [35], 

[36], [7], [37], and [38] among others. It requires the computation of a time integral that depends on the 

solution of two differential equations: the first is the regular wave equation (elastic or acoustic) and the 

second is the adjoint wave equation, where the source term, or adjoint source, depends on the solution 

of the regular wave equation. An important issue is that to compute this time integral, both solutions 

must be known at the same computational time over the whole physical domain. A classical way to 

obviate this problem is to re-compute the solution of the regular wave equation reverse in time, during 

the computation of the adjoint solution which is carried out backward in time, see e.g. [7], [6], [39] and 

[40]. 

3.2 Gradient of the misfit function 

Generalizing Equation (1.3), we can consider as a misfit function the 𝐿𝑛-norm difference between the 

observed and the synthetic seismogram, that is: 

𝐹(𝑣) =
1

𝑛
∑(∑|𝑢(𝑣, 𝒙, 𝑡𝑘) − 𝑢0(𝒙, 𝑡𝑘)|

𝑛

𝑛𝑟

𝑟=1

 𝛿(𝒙 − 𝒙𝑟)) 𝑑𝑡

𝑛𝑡

𝑘=1

. (3.1) 

The gradient of (3.1) with respect to the model 𝑣 gives: 

[
𝛿𝐹(𝑣)

𝛿𝑣
] = ∑(∑|𝑢(𝑣, 𝒙, 𝑡𝑘) − 𝑢0(𝒙, 𝑡𝑘)|

𝑛−1𝑠𝑖𝑔𝑛(𝑢(𝑣, 𝒙, 𝑡𝑘) − 𝑢0(𝒙, 𝑡𝑘))

𝑛𝑟

𝑟=1

𝛿𝑢(𝑣𝑝, 𝒙, 𝑡𝑘)

𝛿𝑣𝑝
𝛿(𝒙 − 𝒙𝑟)𝑑𝑡)

𝑛𝑡

𝑘=1

, (3.2) 

and, inserting equation (2.27) we obtain: 

[
𝛿𝐹(𝑣)

𝛿𝑣
] = ∑(∑|𝑝(𝒙, 𝑡𝑘) − 𝑢0(𝒙, 𝑡𝑘)|

𝑛−1𝑠𝑖𝑔𝑛(𝑝(𝒙,𝑡𝑘)−𝑢0(𝒙, 𝑡𝑘)) ∙

𝑛𝑟

𝑟=1

𝛿𝑝(𝒙, 𝑡𝑘)

𝛿𝑣𝑝
𝛿(𝒙 − 𝒙𝑟)𝑑𝑡)

𝑛𝑡

𝑘=1

, 
(3.3) 

where 𝑝(𝒙, 𝑡𝑘) represents the solution of the wave equation at time 𝑡𝑘 and point 𝒙,  using  𝑣 as velocity 

model. Due to the discretization of the space domain, the gradient of the misfit function is given by the 

𝑛𝑥 ∙ 𝑛𝑧 partial derivatives of 𝐹 with respect to the components  𝑣𝑖 = 𝑣(𝑥𝑖) of the velocity model  𝑣 on 

the grid nodes: 

[
𝜕𝐹(𝑣)

𝜕𝑣𝑖
] =∑(∑|𝑝(𝒙, 𝑡𝑘) − 𝑢0(𝒙, 𝑡𝑘)|

𝑛−1𝑠𝑖𝑔𝑛 (𝑝(𝒙, 𝑡𝑘)−𝑢0(𝒙, 𝑡𝑘)) ∙

𝑛𝑟

𝑟=1

𝜕𝑝(𝒙, 𝑡𝑘)

𝜕𝑣𝑖
𝛿(𝒙 − 𝒙𝑟)𝑑𝑡)

𝑛𝑡

𝑙=1

. (3.4) 
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The difficulty of (3.4) lies in the appearance of the term 
𝜕𝑝(𝒙,𝑡𝑘)

𝜕𝑣𝑖
, which is hard to evaluate numerically. 

If a finite difference approximation is used to evaluate the partial derivatives, when the number of 

components is large, the solution of the wave equation is computationally expensive. 

3.3 Formula of the gradient using the adjoint method  

The adjoint method is a mathematical tool that can efficiently compute the gradient of a misfit function 

in the context of seismic inverse problems. It can be used for different types of the wave equation, such 

as the acoustic [35] or the elastic one [7] and different types of misfit function [8]. Differentiating the 

acoustic wave relationship (2.9) with respect to 𝑣 we obtain: 

−2𝑣−3𝑝̈(𝒙, 𝑡) + 𝑣−2
𝛿𝑝̈(𝒙, 𝑡)

𝛿𝑣
−
𝛿𝛥𝑝(𝒙, 𝑡)

𝛿𝑣
= 0. 

(3.5) 

Multiplying (3.15) by an arbitrary test function 𝑝∗𝑇(𝒙, 𝑡) and integrating in time, we obtain: 

−2𝑣−3∫ (𝑝̈(𝒙, 𝑡) ∙ 𝑝∗𝑇(𝒙, 𝑡))𝑑𝑡
𝑇

0

+∫ (𝑣𝑝
−2 𝛿𝑝̈(𝒙, 𝑡)

𝛿𝑣
−
𝛿𝛥𝑝(𝒙, 𝑡)

𝛿𝑣
) ∙ 𝑝∗𝑇(𝑥⃗, 𝑡)𝑑𝑡 =

𝑇

0

0. (3.6) 

Using the theory of the adjoint operator [6], if 𝑝∗𝑇(𝒙, 𝑇) = 𝑝∗𝑇̇ (𝒙, 𝑇) = 0, ∀𝒙 ∈ 𝐷, we can rewrite (3.6) 

as follows 

−2𝑣−3∫ (𝑝̈(𝒙, 𝑡) ∙ 𝑝∗𝑇(𝒙, 𝑡))𝑑𝑡
𝑇

0

+∫ (𝑣−2𝑝∗𝑇̈ (𝒙, 𝑡) − 𝛥𝑝∗𝑇(𝒙, 𝑡))
𝛿𝑝(𝒙, 𝑡)

𝛿𝑣
𝑑𝑡

𝑇

0

= 0. (3.7) 

Then, approximating the time integral with the same time sampling of (1.3), we obtain 

−2𝑣−3𝑑𝑡∑(𝑝̈(𝒙, 𝑡𝑘) ∙  𝑝
∗𝑇(𝒙, 𝑡𝑘))

𝑛𝑡

𝑘=1

+ 𝑑𝑡∑((𝑣−2𝑝∗𝑇̈ (𝒙, 𝑡𝑘) − 𝛥𝑝
∗𝑇(𝒙, 𝑡𝑘))

𝛿𝑝(𝒙, 𝑡𝑘)

𝛿𝑣
)

𝑛𝑡

𝑘=1

= 0. (3.8) 

Finally, summing (3.4) and (3.7), we obtain: 

[
𝛿𝐹(𝑣)

𝛿𝑣
] = −2𝑑𝑡 𝑣−3∑(𝑝̈(𝒙, 𝑡𝑘) ∙ 𝑝

∗𝑇(𝒙, 𝑡𝑘))

𝑛𝑡

𝑘=1

+ 

𝑑𝑡∑((𝑣−2𝑝∗𝑇̈ (𝒙, 𝑡𝑘) − 𝛥𝑝
∗𝑇(𝒙, 𝑡𝑘) +∑(|𝑝(𝒙, 𝑡𝑘) − 𝑢0(𝒙, 𝑡𝑘)|

𝑛−1𝑠𝑖𝑔𝑛(𝑝(𝒙, 𝑡𝑘) − 𝑢0(𝒙, 𝑡𝑘)) ∙  𝛿(𝒙 −𝒙𝑟))

𝑛𝑟

𝑟=1

)
𝛿𝑝(𝒙, 𝑡𝑘)

𝛿𝑣
)

𝑛𝑡

𝑘=1

. 

(3.9) 

It is possible to cancel the second term, and so the red term of the sum if we can determinate a field 𝑝∗𝑇 

is determined, that satisfies the following equation, called adjoint wave equation:  

𝑝̈∗𝑇(𝒙, 𝑡) − 𝑣2∆𝑝∗𝑇(𝒙, 𝑡) = −𝑣2 ∙ 𝑔∗𝑇(𝒙, 𝑡), (3.10) 

subjected to the conditions 𝑝∗𝑇(𝑥⃗,𝑇) = 𝑝̇∗𝑇(𝑥⃗,𝑇) = 0, ∀𝑥⃗ ∈ 𝐷, and where 𝑔∗𝑇 is the adjoint source, 

namely  

𝑔∗𝑇(𝒙, 𝑡) = −∑(|𝑝(𝒙, 𝑡𝑘) − 𝑢0(𝒙, 𝑡𝑘)|
𝑛−1𝑠𝑖𝑔𝑛(𝑝(𝒙, 𝑡𝑘) − 𝑢0(𝒙, 𝑡𝑘)) ∙  𝛿(𝒙− 𝒙

𝑟))

𝑛𝑟

𝑟=1

. 
(3.11) 
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Note that if  𝒙 is at a receiver node, the adjoint source is the derivative of the 𝐿𝑛−1-norm difference 

between the observed and the synthetic seismograms 

𝑔∗𝑇(𝒙, 𝑡𝑘) = |𝑝(𝒙, 𝑡𝑘) − 𝑢
0
(𝒙, 𝑡𝑘)|

𝑛−1
𝑠𝑖𝑔𝑛 (𝑝(𝒙, 𝑡𝑘) − 𝑢

0
(𝒙, 𝑡𝑘)) 

(3.12) 

Since the adjoint equation (3.10) is of the same type of the acoustic wave equation, it can be solved using 

the same numerical method (2.25),  but backward in time due to the to the final conditions at time 𝑇: 

{
𝑞∗𝑖
𝑘−1/2

= 𝐺𝑖 (𝑞
∗
𝑖
𝑘+1/2

+ 𝑑𝑡 𝑣𝑖
2 (∆̂𝑝∗𝑖

𝑘 − 𝑣𝑖
2 ∙ 𝑔∗𝑖

𝑘
))

𝑝∗𝑖
𝑘−1

= 𝐺𝑖 (𝑝
∗
𝑖
𝑘
+ 𝑑𝑡 𝑞∗𝑖

𝑘−1/2
)

 
(3.13) 

Then, due to the finite difference approximation of the space domain, we obtain  

[
𝜕𝐹(𝑣)

𝜕𝑣𝑖
] = −2𝑑𝑡 ∙ 𝑣𝑖

−3∑(𝑝̈(𝑥𝑖, 𝑡𝑘) 𝑝
∗𝑇(𝑥𝑖, 𝑡𝑘))

𝑛𝑡

𝑘=1

, 
(3.14) 

and, finally, I derive the formula for the gradient of the misfit function: 

𝜕𝐹(𝑣)

𝜕𝑣𝑖
= {

−
2𝑑𝑡

𝑣𝑖
∑ (∆̂𝑝𝑖

𝑘  ∙ 𝑝∗𝑖
𝑘)

𝑛𝑡
𝑘=1 , 𝑖𝑓 𝑥𝑖 ≠ 𝒙0

−
2𝑑𝑡

𝑣𝑖
∑ ((∆̂𝑝𝑖

𝑘 + 𝛿(𝑥𝑖 − 𝒙0)𝑠
𝑘) ∙ 𝑝∗𝑖

𝑘)
𝑛𝑡
𝑘=1 , 𝑖𝑓 𝑥𝑖 = 𝒙0

. 
(3.15) 

Therefore, to obtain the gradient of the misfit function, it is necessary to know ∆𝑝 and 𝑝∗𝑇 at each grid 

nodes 𝑥𝑖 and each time samples 𝑡𝑘. This method, compared with the finite difference approximation of 

the gradient, requires solving only two equations: the acoustic wave equation and the adjoint acoustic 

wave equation.  The solution of the first equation 𝑝  will be call regular solution whreas the one of the 

adjoint equation 𝑝∗𝑇 will be call adjoint solution. 

3.4 Computational aspects of the adjoint method 

To implement the adjoint method efficiently, some practical precautions are necessary. 

First, to compute the adjoint solution 𝑝∗𝑇 backward in time the adjoint source 𝑔∗𝑇 is necessary, that 

depends on the regular solution 𝑝, computed forward in time. To overcome this issue, first I compute the 

regular solution 𝑝  and I evaluate the adjoint source 𝑔∗𝑇 and store it at each time step 𝑡𝑘. Then, I compute 

the adjoint solution 𝑝∗𝑇 using the scheme in (3.13).   

The second problem is that to compute each 𝑘 −component of the sum in (3.15) the knowledge of 𝑝 and 

𝑝∗𝑇  simultaneously, at each time step 𝑡𝑘, over the whole physical domain, is necessary.  

Three approaches are possible to solve this last issue. In the first approach, during the computation 

of 𝑝∗𝑇, I recover the regular solution 𝑝, previously stored at each time step 𝑡𝑘 in all the physical domain. 

To store the regular solution  𝑝,  𝑛𝑡 ∗ 𝑛𝑥 ∗ 𝑛𝑧 times the memory used for the value of 𝑝 on a grid node 

is necessary. Unfortunately, this method is not practical in case of an acoustic FWI with a considerable 

number of grid nodes and many step times, because of the excessive memory requirement.  

In the second approach, in absence of any absorbing boundary layers, when 𝑝∗𝑇 is computed backward 

in time, the regular solution 𝑝 is re-computed reverse in time, from 𝑡𝑘+1 to 𝑡𝑘, starting from the final 

states 𝑝𝑖
𝑛𝑡 and 𝑞𝑖

𝑛𝑡−1/2 and using the following reverse scheme (2.16): 

{
𝑝𝑖
𝑘 = 𝑝𝑖

𝑘+1 − 𝑑𝑡 𝑞
𝑖

𝑘+1/2

𝑞
𝑖

𝑘−1/2
= 𝑞

𝑖

𝑘+1/2
− 𝑑𝑡 𝑣𝑖

2(∆̂𝑝𝑖
𝑘 +𝛿(𝑥𝑖 − 𝒙0)𝑠

𝑘)
, 

(3.16) 
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At this point, both 𝑝 and 𝑝∗𝑇 are simultaneously known, and it is possible to compute the gradient using 

(3.15). Using this procedure, I solve the wave equation only three times: the first to compute the regular 

solution forward in time, the second to compute the adjoint solution backward in time, and the third to 

re-compute the regular solution reverse in time. However, we saw in the previous chapter that it is 

necessary to consider absorbing boundary layers to reduce the dimension of the computational domain. 

In this case, it is not possible to use the scheme in (3.16) to reconstruct the regular solution 𝑝 reverse in 

time from its final value only. In fact, the regular solution must be multiplied, at each time step 𝑡𝑘, by 

the inverse of the Gaussian tapering factor. This term is bigger than 1 for the grid nodes inside the 

absorbing boundary layers, causing numerical instability.   Figure 3.1a shows the inverse of the Gaussian 

taper factor on the computational domain of Figure 2.4a.  

 

Figure 3.1: a) Values of the inverse Gaussian taper on the grid of Figure 2.4a and b) the grid nodes (coloured by green) 

where the solution is stored at each time step, with a global order 𝑝𝑜𝑟𝑑=10. In this case, the absorbing layers have a width 

of 𝐿 = 50 ∙ 𝑑𝑥, with  𝑛𝑎𝑏𝑠 = 100(𝑛𝑥 + 𝑛𝑧) + 4 ∙ 50
2, but we must store only 20(𝑛𝑥 + 𝑛𝑧) nodes of the absorbing region. 

The third approach combines the previous two ones, and it is the one I implemented. During the 

computation of (2.25), a part of the solution 𝑝 inside the absorbing boundary layers is stored at each time 

step 𝑡𝑘. This part corresponds to the part of the solution inside the absorbing boundary layers necessary 

for the computation of the Laplacian of the grid nodes near the boundaries. If a global order of 

approximation of the spatial derivatives 𝑝𝑜𝑟𝑑 is used, the memory required corresponds to 𝑛𝑡 ∙ 𝑝𝑜𝑟𝑑 ∙

(𝑛𝑥 + 𝑛𝑧) times the memory used by the value of 𝑝 on a grid node and this amount is much smaller than 

the one required by the first approach for big modelling grids. In Figure 3.1b the absorbing layers have 

a width of L = 50 ∙ dx, with  nabs = 100(nx + nz) + 4 ∙ 50
2, but we must store only 20(nx + nz) nodes 

of the absorbing region in case of pord = 10.  

Then, to avoid numerical instability, during the computation of the adjoint solution 𝑝∗𝑇, the regular 

solution 𝑝 is re-computed reverse in time using the scheme (3.16)  and the previously stored solution.  

Note that, if a local order of approximation of the spatial derivatives is used, the memory required to 

store the regular solution inside the absorbing layers further decreases.  

3.5 Including the processing operations in the misfit function 

Usually, a certain number of processing operations are required before a comparison between synthetic 

and observed seismograms, among which: 

• trace normalization, to enforce information at long offset of the seismograms; 
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• trace envelope, to reduce the cycle-skipping effect and, in general, the non-linearity of the misfit 

function; 

• muting, to focus the modelling and/or the inversion on specific events of the seismograms; 

• filtering, to have similar frequency range for the observed and the predicted seismograms;  

To include the processing operations, the Equation (3.1) is modified to a more general equation: 

𝐹(𝑣) =
1

𝑛
∑(∑|𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘)) − 𝑢0(𝒙, 𝑡𝑘)|

𝑛

𝑛𝑟

𝑟=1

 𝛿(𝒙 − 𝒙𝑟)) 𝑑𝑡

𝑛𝑡

𝑘=1

. (3.17) 

where 𝐺 represents a sequence of processing operations to apply on the synthetic seismograms: 

 

𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘)) = 𝐺𝑛 (𝐺𝑛−1, . . 𝐺1(𝑢(𝑣, 𝒙, 𝑡𝑘))). (3.18) 

For example, in case of a muting and a trace normalization operation we have: 

 

𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘)) =
𝑚(𝒙, 𝑡𝑘) ∙ 𝑢(𝑣, 𝒙, 𝑡𝑘)

√∑ (𝑚(𝒙, 𝑡𝑘) ∙ 𝑢(𝑣, 𝒙, 𝑡𝑘))
2𝑛𝑡

𝑘=1

, (3.19) 

where  𝑚(𝒙, 𝑡𝑘)  is the muting function. For a better readability, I set Ψ(𝑣) the quantity 

Ψ(𝑣) = Ψ (𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘))) = |𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘)) − 𝑢0(𝒙, 𝑡𝑘)|
𝑛
, (3.20) 

obtaining the following expression for the misfit function 

𝐹(𝑣) =
1

𝑛
∑(∑Ψ(𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘)))

𝑛𝑟

𝑟=1

 𝛿(𝒙 − 𝒙𝑟)) 𝑑𝑡

𝑛𝑡

𝑘=1

. (3.21) 

The gradient of (3.21)  respect to the model 𝑣 corresponds to: 

[
𝛿𝐹(𝑣)

𝛿𝑣
] =∑(∑(

𝛿Ψ(𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘)))

𝛿𝐺
∙
𝛿𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘))

𝛿𝑢
∙
𝛿𝑢(𝑣, 𝒙, 𝑡𝑘)

𝛿𝑣
)

𝑛𝑟

𝑟=1

𝛿(𝒙 − 𝒙𝑟)𝑑𝑡)

𝑛𝑡

𝑘=1

 (3.22) 

where: 

• 
𝛿Ψ(𝐺(𝑢(𝑣,𝒙,𝑡𝑘)))

𝛿𝐺
= |𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘))−𝑢0(𝒙, 𝑡𝑘)|

𝑛−1
𝑠𝑖𝑔𝑛 (𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘))−𝑢0(𝒙, 𝑡𝑘)) ; 

• 
𝛿𝐺(𝑢(𝑣,𝒙,𝑡𝑘))

𝛿𝑢
 is the derivative of the processing operator with respect to the synthetic seismograms; 

• 
𝛿𝑢(𝑣,𝒙,𝑡𝑘)

𝛿𝑣
=
𝜕𝑝(𝒙,𝑡𝑘)

𝜕𝑣
 is the derivative with respect to 𝑣 of the solution of the wave equation at time 

𝑡𝑘,  and point 𝒙, using  𝑣 as velocity model. 

Using similar mathematic passages, such as from (3.5) to (3.8), we obtain a formula for the gradient of 

the misfit function similar to (3.9), that is: 
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[
𝛿𝐹(𝑣)

𝛿𝑣
] = −2𝑑𝑡 𝑣−3∑(𝑝̈(𝒙, 𝑡𝑘) ∙ 𝑝

∗𝑇(𝒙, 𝑡𝑘))

𝑛𝑡

𝑘=1

+ 

𝑑𝑡∑((𝑣−2𝑝∗𝑇̈ (𝒙, 𝑡𝑘) − 𝛥𝑝
∗𝑇(𝒙, 𝑡𝑘) +∑(

𝛿Ψ(𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘)))

𝛿𝐺
∙
𝛿𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘))

𝛿𝑢
 𝛿(𝒙 − 𝑥⃗𝑟))

𝑛𝑟

𝑟=1

)
𝛿𝑝(𝒙, 𝑡𝑘)

𝛿𝑣
)

𝑛𝑡

𝑘=1

. 

(3.23) 

If the second term of the sum is cancel out, that means to determinate a field 𝑝∗𝑇, that satisfies the adjoint 

wave equation (3.10) where this time the adjoint source 𝑔∗𝑇(𝒙, 𝑡) corresponds to:  

𝑔∗𝑇(𝒙, 𝑡) = −∑(
𝛿Ψ(𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘)))

𝛿𝐺
∙
𝛿𝐺(𝑢(𝑣, 𝒙, 𝑡𝑘))

𝛿𝑢
 𝛿(𝒙 − 𝑥⃗𝑟))

𝑛𝑟

𝑟=1

. 
(3.24) 

The computation of the red term in (3.24) requires the computation of the gradient of processing operator 

respect to the synthetic seismogram. In case of a processing operator such (3.18) we can use the chain 

rule to obtain: 

𝛿𝐺(𝑢(𝑣,𝒙,𝑡𝑘))

𝛿𝑢
=

𝛿𝐺𝑛(𝐺𝑛−1,..𝐺1(𝑢))

𝛿𝑢
=

𝛿𝐺𝑛(𝐺𝑛−1,..𝐺1(𝑢))

𝛿𝐺𝑛−1
∙ … ∙

𝛿𝐺1(𝑢)

𝛿𝑢
. (3.25) 

For example, in case of a processing sequence such as (3.19) we have: 

𝑚(𝒙,𝑡𝑘)

√∑ (𝑚(𝒙,𝑡𝑘)∙𝑢(𝑣,𝒙,𝑡𝑘))
2𝑛𝑡

𝑘=1

∙ [1 −
𝑚(𝒙,𝑡𝑘)𝑢(𝒙,𝑡𝑘)∑ (𝑚(𝒙,𝑡𝑘)∙𝑢(𝒙,𝑡𝑘))

𝑛𝑡
𝑘=1

(∑ (𝑚(𝒙,𝑡𝑘)∙𝑢(𝒙,𝑡𝑘))
2𝑛𝑡

𝑘=1
)

1
4

]. (3.26) 

Using (3.25), many other processing operations can be included in the misfit function to compute the 

specific adjoint source. However, the possible changes in (3.24) do not influence the kernel of numerical 

implementation proposed in the previous section. 

3.6 Conclusions and results 

In this Chapter, I have described a detailed numerical implementation of the adjoint method to compute the 

gradient of a misfit function efficiently. Starting from classical theoretical developments, I illustrate the 

main computational aspects and the practical cautions I consider concerning stability, accuracy and 

memory resources. As misfit function, I consider 𝐿𝑛-norm difference between the synthetic and the 

observed seismograms, but I also include the possibility to execute a simple processing sequence on the 

synthetic seismograms. 

 

 

 

 



 

Chapter 4.  

The software fullwave2D 
In this chapter, I describe the software developed during my Ph.D. The software is designed to simulate 

the propagation of seismic waves in a 2D acoustic model of subsurface and use the numerical approach 

described in the previous Chapter 2.  The code organization, the input and output files, the software and 

hardware requirements, and how to compile and execute the software is described in Appendix A. 

4.1 Why writing another modelling code? 

Nowadays a great number of modelling codes for the solution of the wave equation (acoustic and elastic, 

2D and 3D) have been developed to simulate the synthetic seismograms in the context of FWI.  

However, these codes have often been optimized for specific applications and suffer from some 

limitations that can make difficult their use, such as: 

• a rigid structure of modelling, often optimized for a specific context, with few parameters that 

can be set from the user; 

• the difficulty to include some processing operations on the synthetic seismograms at the end of 

the modelling code. 

In writing this code, we have paid attention to implement a software that it is efficient but flexible, which 

can be used for modelling and inversion problems, and that can include some processing operations on 

the seismograms. Among the number of features of the code, we can mention: 

• sources and receivers may be placed anywhere in the model- not just at integer grid points; this 

option is used to treat seismograms in which the location of sources and receivers can be very 

irregular, such as the one of a land acquisition; 

• both free surface and absorbing boundary conditions are implemented, and different length of 

the absorbing layers can be set. This option is used to optimize the modelling when, for example, 

the location of the sources is near a boundary of the grid; 

• the order of approximation of the spatial derivatives can be set either by the user to a global order 

or can be optimized using the ploc-method described in the previous Chapter 2;  

• different wavelets can be chosen for the different sources. Experience reveals that this option can 

be useful in cases where there are different wavelets for the seismograms, such as, for example, 

in a land acquisition;  

• if the time step chosen for the synthetic seismograms, called recording step, violates the 

numerical stability relation, the code uses a sub-step of the recording one to assure the numerical 

stability relation during the modelling. However, the synthetic seismograms are recorded using 

the original recording step in order to save memory. This option can be useful to test different 

velocity models with different velocity range in an inversion procedure; 

• a distinction can be done between the recording time, that is the common length of all the 

synthetic seismograms, and the modelling time necessary to compute each of them. This option 

can save computational time, for example, in case of seismograms with different characteristics, 

such as different maximum offset or muting masks with maximum time length; 
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• the possibility to use the synthetic seismograms, obtained at the end of the modelling procedure, 

together with the observed ones, for the computation of the value of a misfit function that is the 

Ln-norm difference between the synthetic and the observed seismograms, with 𝑛 an integer 

number (typically 1 or 2).  

• the possibility to use the synthetic seismograms, obtained at the end of the modelling procedure, 

together with the observed ones, for the computation of the gradient a misfit function. the 

possibility to include some processing operations, in any desired order, on the synthetic data, 

such as filtering, trace envelope, muting and trace normalization. These operations can also be 

included in computation of the misfit function and its gradient; 

• the name of files containing the receivers positions, the sources positions, the velocity model and 

the wavelets are input parameters that can be specified by the user. This fact can be important 

when a user wants to execute different runs of the code at the same time, using different velocity 

models or acquisition layouts. 

4.2 Type of tasks 

The code is designed to undertake three different possible tasks that may arise in the context of FWI: 

• Modelling task, in which the code produces as output file the synthetic seismograms, using the 

information of the input file, on the basis of the implementation explained in Chapter 3; 

• Misfit computation, in which the code uses the synthetic seismograms for the computation of 

a misfit function; 

• Gradient computation, in which the code uses the synthetic seismograms for the computation 

of the gradient of a misfit function, by the implementation explained in Chapter 4. 

The tasks must be specified during the setting of the code by the user.  

4.3 Some Examples 

In this section, I show how to use our code in the context of seismic exploration, to simulate a possible 

marine seismic acquisition. As input files, I used the ones located in the subdirectory work_example (See 

Appendix A). The acquisition layout consists of two sources, located at the begin and the end of the 

seismic profile, and a recording spread composed by 384 receivers, with a group interval of 24m. Both 

sources and receivers are at a depth of 24 m (see Figure 4.1). The source wavelet is a Ricker wavelet 

with a peak frequency of 6 Hz and maximum frequency of 18 Hz (see Figure 4.2). The velocity models 

I consider is the Marmousi model (see Figure 4.3) and a smooth version of it (see Figure 4.4).  

In the numerical implementation, I used 𝑑𝑡 = 0.002 𝑠 (sampling time), 𝑇 = 6𝑠 (recording time), 𝑑𝑥 =

24𝑚 (sampling space) and 𝑝𝑜𝑟𝑑 = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 (optimized order for the approximation of spatial 

derivatives, using the 𝑝𝑙𝑜𝑐 −method). The grid is made of 46848 nodes, with 𝑛𝑥 = 384 and 𝑛𝑧 = 122; 

the water layer is modelled by the first two rows of the grid. I put absorbing boundary conditions on the 

lateral and bottom sides of the model, with  𝑛𝑟 = 𝑛𝑙 = 𝑛𝑏 = 30 and reflecting boundary conditions at 

the top side to simulate the sea-air interface. The modelling parameters are specified in the runfile file. 

Figure 4.5 and Figure 4.6 display the two raw synthetic seismograms related to the Marmousi model, 

without any processing operations on them. Figure 4.7 and Figure 4.8 display the same synthetic 
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seismograms but with the application of a processing sequence consisting of a lowpass filter up to 10Hz 

and trace normalization. Figure 4.9 shows the gradient of a misfit function, obtained using: 

• the seismograms of Figure 4.5 and Figure 4.6 as observed data; 

• the model of Figure 4.4 as velocity model; 

• The 𝐿2-norm difference between the predicted and observed seismograms as misfit function. 

Figure 4.10 shows the gradient of a misfit function, obtained using: 

• the seismograms of Figure 4.5 and Figure 4.6 as observed data; 

• the model of Figure 4.4 as velocity model; 

• the 𝐿2-norm difference between the predicted and observed seismograms as misfit function; 

• a processing sequence on the synthetic seismograms consisting of a lowpass filter up to 10Hz 

and trace normalization. 

 
Figure 4.1: Position of the sources and the receivers on the modelling grid.  

 
Figure 4.2: a) Ricker wavelet with a peak frequency of 6 Hz and b) its amplitude spectrum. 
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Figure 4.3: Marmousi model on the modelling grid. 

 
Figure 4.4: Smooth Marmousi model on the modelling grid. 
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Figure 4.5: Raw synthetic seismogram related to the first source, using the Marmousi model. 

 

 
Figure 4.6: Raw synthetic seismogram related to the second source, using the Marmousi model. 
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Figure 4.7: Synthetic seismogram related to the first source, using the Marmousi model, with the application of a 

processing sequence consisting of a lowpass filter up to 10Hz and trace normalization.  

 

 

 
Figure 4.8: Synthetic seismogram related to the second source, using the Marmous model, with the application of a 

processing sequence consisting of a lowpass filter up to 10Hz and trace normalization.  
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Figure 4.9: Gradient of the L2- norm difference between the observed seismograms and predicted seismograms. As 

observed ones, I consider the seismograms of Figure 4.5 and Figure 4.6. As predicted ones, I consider the synthetic 

seismograms obtained from the smooth Marmousi model of Figure 4.4.  

 
Figure 4.10: Gradient of the L2- norm difference between the observed seismograms and predicted seismograms. As 

observed ones, I consider the seismograms of Figure 4.7 and Figure 4.8. As predicted ones, I consider the synthetic 

seismograms obtained from the smooth Marmousi model of Figure 4.4, On both seismograms a processing sequence 

consisting of a lowpass filter up to 10Hz and trace normalization is applied. 
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4.4 Conclusions and results 

In this Chapter I presented the software developed during my PhD to undertake three different possible 

tasks in the context of FWI: the simulation of the synthetic seismograms, the evaluation of a misfit 

function, and the gradient computation of a misfit function. Besides it is also possible to include simple 

processing operations on the seismograms for a better comparison between synthetic and observed 

seismograms. As example, I have used my software to simulate the seismograms and the gradient of a 

misfit function in a marine seismic acquisition.



 

Chapter 5.  

Heuristic algorithms for global optimization 
In this chapter, I introduce the study I have done on the global optimization, focusing the attention on 

two global optimization algorithms to use in the context of Full Waveform Inversion. 

5.1 Introduction to Global optimization  

Global optimization is a branch of applied mathematics and numerical analysis with the goal of finding 

the best possible parameter 𝑥 from a set 𝑋, according to some criterion 𝑓. 

In case of a continuous optimization problem,  𝑋 corresponds to a subset of 𝑅𝑛 and the criterion can be 

expressed as a mathematical function, called objective function, 

𝑓: 𝑋 ⊆  𝑅𝑛 → 𝑅. (5.1) 

In this case, the common form to represents a global optimization problem is as a minimization problem: 

find 𝑥̅ ∈ 𝑋, such that: 

𝑓(𝑥̅) = min
𝑥∈𝑋

𝑓(𝑥). (5.2) 

Note that finding a global maximum of a function 𝑔(𝑥) is analogous to find the global minimum of 

𝑓(𝑥) = −𝑔(𝑥). We distinguish between: 

• an analytic objective function, in which an analytic expression between a parameter 𝑥  and the 

value of 𝑓(𝑥) is available; 

• a black-box objective function, where the value of the function 𝑓(𝑥) can only be obtained by 

giving the parameter value to a subroutine or a program that generates the value for 𝑓 after some 

time. 

FWI and, in general, optimization problems that involve the numerical solution of PDE equations, are 

typical examples of black-box objective functions.  

 
Figure 5.1: An example of objective function with a global minimum (blue) and a local minimum (red) 

A global optimization problem is distinguished from a classical optimization one by its focus on finding 

the minimum over all the 𝑋, as opposed to finding local minima (see Figure 5.1). In particular, we 

distinguish between: 

• a local minimum, that is a point 𝑥 ∈ 𝑋, where 𝑓(𝑥) ≤ 𝑓(𝑥) at a subset 𝑋̃ ⊆ 𝑋; 
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• a global minimum, that is a point 𝑥̅ where 𝑓(𝑥̅) ≤ 𝑓(𝑥) at all 𝑋. 

Finding a local minimum can be relatively straightforward by using classical local optimization 

methods. These are search strategies that use the knowledge of local information, such as the gradient 

or the hessian of the objective function, creating an iterative sequence of points {𝑥𝑖}, that converges 

towards a local minimum, starting from an initial model 𝑥0. A complete review of the main local 

optimization strategies can be found in [11]. Classical local strategies, used in the geophysical context, 

are the line-search algorithms such as the steepest descend method or the conjugate gradient one. 

Generally, the use of local strategies to solve a global optimization problem can be done only in 

particular cases, such as: 

• convex optimization problem, in which a local minimum is also global one (see Figure 5.2a); 

• the starting model 𝑥0 is in the basin of attraction of the global minimum 𝑥̅ (see Figure 5.2b). 

In both cases, the use of a local strategy assures the convergence of the algorithm to the global minimum.  

 
Figure 5.2: a) Example of a convex objective function and b) a non-convex objective function, where the local 

optimization procedure starts in the basin of attraction of the global minimum. 

However, many optimization problems are characterized by a nonlinearity of the objective function and 

the presence of many local minima. In these cases, the use of a local strategy for finding the global 

minimum is not possible because of the risk to be entrapped in a local minimum, if the starting model is 

not in the basin of attraction of the global minimum.  

In this context, global optimization algorithms represent search methods that try to estimate the global 

minimum of an objective function using: 

• an exploration strategy, to find the more promising regions in the search domain, in which the 

global minimum can be located;  

• an escape mechanism, to avoid being entrapped in a local minimum; 

• an exploitation strategy, to probe a limited, but promising, region of the search domain and 

refine the search of the global minimum in this region.   

Many algorithms have developed over the years, based on very different strategies. For a complete 

review of most of these strategies, the reader can see, for example, [41]. Figure 5.3 sketches a rough 

taxonomy of global optimization methods from the book of Weise.  

Generally, optimization algorithms can be divided in two basic classes:  

• deterministic algorithms, based on enumeration, generation of cuts and bounding in such a way 

that a part of the search domain is proved not to contain any optimum solution; 
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• stochastic algorithms, based on the random generation of feasible trial points and nonlinear 

local optimization procedures to explore the search domain.  

 
Figure 5.3: The taxonomy of global optimization algorithms, taken from [41]. 

Algorithms belonging to the first class are most often used if the dimensionality of the search domain 

is low and some a priori information about the structure of the objective function is available (e.g. the 

concavity, the difference of convex function, the Lipschitz continuity). A typical example of a 

deterministic algorithm is the branch and bound method [42]. Algorithms belonging to the second 

class do not require any assumption about the objective function and are based often on the use of 
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heuristic techniques. These last ones represent the components of an optimization algorithm that uses 

information currently gathered to help to decide which candidate solution should be tested next or how 

the next individual can be produced. They combine objective function values and reasoning rules in a 

somewhat abstract and hopefully effective way, in many cases inspired by natural phenomena, such as 

biological evolution or the social behavior of animals, or physical process. In my work, I have focused 

the study and the research on two of these heuristic methods: the Simulated Annealing and the 

Genetic algorithms. 

 

5.2 Simulated annealing 

The simulated annealing (SA) method is a stochastic optimisation method developed by [43]. 

Originally proposed for objective functions with a discrete search domain, in [44] some modifications 

are proposed to apply to optimization of a function defined in a continuous domain. 

The idea of this algorithm was to develop a minimization strategy inspired by the mechanism of cooling 

of the metals. In metallurgy, to remove possible defects of the crystalline structure, a metal is annealed 

to bring it back to the molten state. After the annealing, a slowly cooling process follows to obtain a new 

possible crystalline structure without defects. To remove all the defects, the sequence of annealing and 

cooling can be performed several times. 

In analogy with this process, a minimization on a function 𝑓(𝑥) represents a cooling process in which: 

• the global minimum 𝑥̅ corresponds to a metal without any defects in the crystalline structure; 

• the local minima correspond to a metal with some defects in the crystalline structure; 

• the algorithmic procedure to find the global minimum, avoiding to be entrapped in a local one, 

corresponds to the process of cooling and annealing. 

Following this philosophy, the simulate annealing creates an iterative sequence of models {𝑥𝑘}𝑘≥0 , 

where 𝑘 is the index of the iteration of the algorithm to reach the global minimum.  

For each iteration 𝑘, a new candidate model 𝑦 is generated in a neighbourhood of the current model 

using the generation formula: 

𝑦 = 𝑥𝑘 + ∆𝑥𝑘(𝑇𝑔, 𝑝), (5.3) 

where ∆𝑥𝑘 is the step size, which depends on a parameter 𝑇𝑔, called the generation temperature, and 

p is a random number uniformly distributed over [0,1]. The step size is proportional to 𝑇𝑔.  

Once the candidate model 𝑦 is created, the algorithm chooses whether the model is accepted or not. If 

the candidate is rejected, the algorithm proceeds from the current model 𝑥𝑘+1 = 𝑥𝑘, otherwise the 

candidate model becomes the current model 𝑥𝑘+1 = 𝑦. The new model is always accepted if the new 

value of the objective function is lower, whereas if this value is higher, the model is accepted with a 

probability value dependent on a parameter called the acceptatance temperature 𝑇𝑎. 

The number of accepted models until the iteration 𝑘, is indicated with 𝑘𝑎. This procedure is expressed 

with the following formula, called Metropolis choice [45]: 
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𝑥𝑘+1 = {
𝑦, 𝑝 ≤ min (1, 𝑒

−
𝑓(𝑦)−𝑓(𝑥𝑘)

𝑇𝑎 ),

𝑥𝑘 , otherwise

 
(5.4) 

where 𝑝 is a random number uniformly distributed over [0,1]. The possibility of randomly accepting 

models with higher objective function values permits to escape from local minima, simulating the 

annealing process of the metals. Figure 5.4 shows a possible sketch of an iterative minimization, using 

SA, whereas Figure 5.5 gives an outline of how a generic SA algorithm works. 

 

 

 
Figure 5.4: Sketch of an optimization procedure using SA. 

 

Figure 5.5: outline of how a general SA algorithm works. 
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At the early stages of the optimisation, the initial generation and acceptatance temperatures (𝑇𝑎,0, 𝑇𝑔,0 ) 

must be set to high values to allow a wide exploration of the model space. Subsequently, during the 

optimisation, their values are progressively reduced to the final values (𝑇𝑎,𝑓, 𝑇𝑔,𝑓 ) to focus the search on 

the most promising zones of the model space. The rate at which the temperatures decreases is called 

cooling rate. As suggested in [46], it is a good practice to increase the initial generation temperature 

and to reduce the cooling rate as the dimension of the model space increases 

Different implementations of the SA can be found in the literature, which differ for the types of step size  

∆𝑥𝑘,  generation temperature 𝑇𝑔 and acceptance temperature  𝑇𝑎 used. A complete description of the 

many variants of SA can be found, for example, in [47]. 

In my work I consider a variant of SA called Adaptive Simulate Annealing (ASA) developed by [48]. 

The main characteristics of this implementation are: 

• an acceptance temperature characterized by an exponential decrease with respect to the number 

of accepted model 𝑘𝑎: 

𝑇𝑎,𝑘+1 = 𝑇𝑎,0𝑒
−𝑐𝑎 √𝑘𝑎

𝑛
 , 

(5.5) 

where 𝑐𝑎 is a scalability factor, and 𝑇𝑎,0 is the initial temperature.  The acceptance temperature 

𝑇𝑎 reaches his final value 𝑇𝑎,𝑓  after a given number of accepted model  𝑛𝑎𝑐𝑝. Afterwards, it 

remains constant.  

• A generation temperature different for each i-th direction of the model space, characterized by 

an exponential decrease with respect to the number of iteration 𝑘, respectively: 

𝑇𝑔,𝑘+1
𝑖 = 𝑇𝑔,0

𝑖 𝑒−𝑐 √𝑘
𝑛

 , 
(5.6) 

where 𝑛 is the dimension of the model space, 𝑐𝑎 is a scalability factor and 𝑇𝑔,0
𝑖  are the initial 

generation temperatures for the different components 𝑖.  The generation temperatures 𝑇𝑔
𝑖 reach 

thier final values 𝑇𝑔,𝑓
𝑖  after a given number of iteration  𝑛𝑖𝑡𝑒𝑟. Afterwards, it remains constant.  

 

• Different generation formula for each i-th direction of the model space: 

𝑦𝑖 = 𝑥𝑘+1
𝑖 + ∆𝑥𝑘

𝑖 (𝐵𝑖 − 𝐴𝑖), 
(5.7) 

where  𝑖 = 1,… , 𝑛, 𝑥𝑖 ∈ [𝐴𝑖, 𝐵𝑖] and ∆𝑦𝑘
𝑖  is obtained by the following formula: 

∆𝑥𝑘
𝑖 = 𝑠𝑔𝑛 (𝑝𝑖 −

1

2
)([1 +

1

𝑇𝑔,𝑘
𝑖 ]

|2𝑝𝑖−1|

− 1) 𝑇𝑔,𝑘
𝑖 , 

(5.8) 

with 𝑝𝑖 ∈ [0,1] uniform at random. 

• The possibility to increase again the acceptance and the generation temperatures (reannealing) 

after a certain number of iteration as a function of 𝑘 and 𝑘𝑎 respectively. The increase of the 

generation temperature of a single component 𝑇𝑔,𝑘
𝑖  is inversely proportional to the absolute value 

of partial derivatives |
𝜕𝑓(𝑥𝑘)

𝜕𝑥𝑖
|, where 𝑥𝑘 is the current model of the iteration process.  
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5.3 Genetic algorithm 

Genetic algorithm (GA) is a search algorithm developed by [49] that belongs to the larger class of 

evolutionary algorithms. The idea of Holland was to study the phenomenon of the adaptation in the 

natural contest to develop possible strategies inspired by the mechanisms of genetic evolution. Indeed, 

biological evolution is a research method within a large number of possible solutions to create 

individuals with a strong ability to survive and reproduce. For example, the immune system of the 

mammals is an extraordinary solution which has evolved to defend them by the bacteria. In this regard, 

evolutionary mechanisms such as selection, mutation or recombination can suggest efficient research 

strategies to solve the optimization problem. 

Figure 5.6 gives an outline of how the algorithm works. The first step to solve a minimization problem 

using a genetic algorithm consists of the creation of a set, called population, of 𝑁𝑖𝑛𝑑 randomly 

individuals {𝑥}, each one representing a candidate solution for the global minimization problem. The 

value of the objective function 𝑓(𝑥) is computed for all the individuals. If the optimization criterion is 

met for some of this individual, the algorithm is stopped. Otherwise, another population is formed 

combining the best individuals of the previous generation, called parents, obtained by ranking and 

selection mechanisms, and new individuals, called offsprings, obtained using mechanisms of 

recombination and mutation on the parents. This iterative process is repeated until the stopping 

criterion is met. 

The ranking operation consists of ordering all the individuals of a population based on their value of 

the objective function: the lower the value of the objective function for an individual, the greater is its 

position in the ranking.  The position of an individual in the ranking is indicated with 𝑃𝑜𝑠. Thus, the 

individual with the lower objective function value has 𝑃𝑜𝑠 = 1, the greater has 𝑃𝑜𝑠 = 𝑁𝑖𝑛𝑑. 

Then a fitness function, 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑜𝑠), which depends on position 𝑃𝑜𝑠 is used to measure the 

probability of everyone to be selected as a parent for the new population. 

The selection operation consists of choosing a certain number of individuals from the population based 

on their value of the fitness function. An individual with a high fitness value has more probability to be 

selected as parent compared with respect to one with a lower fitness value. The total number of 

individuals to be selected as parents is controlled by a selection-rate parameter 𝑠𝑒𝑙𝑟𝑎𝑡𝑒 ∈ [0,1]. For 

example, 𝑠𝑒𝑙𝑟𝑎𝑡𝑒 = 0.6 means that the number of parents in a population of 100 individuals is 40. 

The recombination operation produces new offsprings using the information contained in two or more 

parents, combining the variable values of the parents.  

The mutation operation randomly alters the offsprings obtained by recombination operation. These 

variations are mostly small and are applied to the variables xi of the individuals with a low probability, 

called mutation-rate parameters, that is inversely proportional to the number of variables 𝑛.  For 

example, it is possible to choose 𝑚𝑢𝑡𝑟𝑎𝑡𝑒 =
1

𝑛
 to produce good results for a wide variety of test functions 

[50]. In general, a good mutation operator should often produce small step-sizes with a high probability 

and large step-sizes with a low probability. 

Different implementations of the genetic algorithm can be found in the literature, which differs in 

function for mechanisms used for ranking, selection, recombination and mutation operators. A complete 

description of many variants of GA can be found, for example, in [51] and [52]. 
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Figure 5.6: Outline of a generic algorithm GA. 

 
Figure 5.7: Example of fitness assignment using a linear-ranking for a population of 10 individuals and different choice 

of selection pressure. 

I consider a real-coded GA version developed in [53]. The main characteristics of this implementation 

are: 

•  a fitness function based on a linear ranking of the individuals [54], using the following formula 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑜𝑠) = 2 − 𝑆𝑃 + 2 ∙ (𝑆𝑃 − 1) ∙
(𝑃𝑜𝑠−𝑁𝑖𝑛𝑑)

(1−𝑁𝑖𝑛𝑑)
, 

(5.9) 

where 𝑆𝑃  is the selection pressure, that can vary between 1 and 2. Figure 5.7 shows an example 

of linear ranking for a population of 10 individuals and different selection pressure; 

• a stochastic universal sampling method for the selection operation [55], in which all the 

individuals of the population are mapped to contiguous segments of a line. The line length is 

equal to 1 and the length of each individual's segment is proportional to its fitness value. Here 

equally 𝑁𝑝𝑜𝑖𝑛𝑡𝑒𝑟  spaced pointers are placed over the segment, where 𝑁𝑝𝑜𝑖𝑛𝑡𝑒𝑟  is the number 
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of the individuals,  
1

𝑁𝑝𝑜𝑖𝑛𝑡𝑒𝑟
 is the distance between two consecutive pointers, and the position of 

the first pointer is given by a randomly generated number in the range [0,
1

𝑁𝑝𝑜𝑖𝑛𝑡𝑒𝑟
]. 

Figure 5.8 shows an example of the application of stochastic universal sampling method, in 

which the number of individuals is 10, the selection pressure is 2 and 𝑁𝑝𝑜𝑖𝑛𝑡𝑒𝑟 is 8. 

 
Figure 5.8: Example of universal sampling: the individuals are 10, the selection pressure is 2 and 𝑁𝑝𝑜𝑖𝑛𝑡𝑒r is 8 

• an intermediate recombination method [50] for the recombination operation, in which the 

components xi of a new individual x are chosen somewhere around and between the variable 

values of two parents, randomly chosen randomly with equal probability in the set of all the 

parents. A new offspring is produced according to the following formula: 

𝑉𝑎𝑟𝑖
0 = 𝑎𝑖 ∙ 𝑉𝑎𝑟𝑖

𝑝1
+ (1 − 𝑎𝑖) ∙ 𝑉𝑎𝑟𝑖

𝑝2
, 

(5.10) 

with 𝑖 = 1,… , 𝑛, 𝑎𝑖 ∈ [−0.25,1.25] uniform at random for each 𝑖. Figure 5.9 shows the area of 

the variable range of the offspring defined by the variables of the parents; 

 
Figure 5.9: Area for variable value of offspring compared to parents in intermediate recombination. 

•  a real variables mutation operator [50] based on the creation of randomly values that are 

added to the variables xi of a new offspring x, according to the following formula: 

𝑉𝑎𝑟𝑖
𝑀𝑢𝑡 = 𝑉𝑎𝑟𝑖 + 𝑠𝑖 ∗ 𝑟 ∗ 𝑅𝑎𝑛𝑔𝑒𝑖 ∗ 2

−𝑢∗𝑘, 
(5.11) 

with  𝑠𝑖 ∈ {−1,1} uniform at random, 𝑟 mutation range, 𝑢 ∈ [0,1]  uniform at random and 𝑘 

mutation precision. Thus, the mutation steps are created inside the area [𝑟 ∗ 2−𝑘 , 𝑟]. Typical 

parameters of the mutation operator are 𝑘 ∈ {4,5, … ,20} and 𝑟 ∈ [10−6, 0.1]. Figure 5.10 shows 

a sketch of how an individual in two dimensions can be changed by the mutation operations. 
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Figure 5.10: Possible mutations for an individual in two dimensions. 

5.4 Conclusions 

In this chapter, I studied two global optimization algorithms to use in the context of FWI: the Adaptive 

Simulated Annealing and the Genetic algorithms. These use very different heuristic techniques to guide 

the optimization procedure in the search domain: the first uses a minimization strategy inspired by the 

cooling mechanism of the metals, to escape from possible local minima of the objective function; the 

second uses strategies inspired by the mechanisms of genetic evolution such as selection, mutation or 

recombination.   



 

 

Chapter 6.  

Global optimization algorithms on analytic 

functions 
In this chapter, I illustrate the results obtained by the application of ASA and GA to find the global 

minimum of some analytic test functions. The obtained results are published in a paper in the journal 

Geophysical Prospecting. See [56] for more details. 

6.1 Introduction 

I have evaluated the performance of ASA and GA using four analytic test functions with very different 

characteristics: the sphere function, which is symmetric and convex; the Rosenbrock function, which is 

convex but with the minimum in an elongated flat valley; the Rastrigin function, which has many 

regularly distributed local minima and the Schwefel function, which has the global minimum at the 

border of the search space and several irregularly distributed local minima. Each of these functions is 

defined for an integer dimension n of the model space, except the Rosenbrock function, which is defined 

only for even dimensions.  

Table 6.1 summarizes the features of each function: separability, multimodality, and symmetry. 

 

Function Separable? Multimodal? Symmetric? 

Sphere yes no yes 

Rosenbrock no no no 

Rastrigin yes yes yes 

Schwefel yes yes no 

Table 6.1: summary of the characteristics of the analytic test functions. 

Many other analytic test functions can be found, for example, in [57]. 

6.2 Setting the experimental frameworks 

A specific framework is set up to compare the performances of the algorithms on the different analytic 

functions. Since each objective function has a typical search domain different from another test function,  

I have rescaled the search domain of each objective function such that we can consistently use the same 

domain for the model parameters, that is the hypercube [−5,5]𝑛. The same convergence criterion is the 

following: an algorithm converges during an optimization test when it finds a model 𝒙 𝜖 [−5,5]𝑛  that 

satisfies the following accuracy criterion: 

√∑ (𝑥𝑖 − 𝑥𝑖
𝑔𝑙𝑜𝑏)

2𝑛
𝑖=1

𝑛
< 𝜖 

(6.1) 

where 𝑥𝑔𝑙𝑜𝑏 represents the global minimum, and the accuracy 𝜖  is 0.05.  
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If the convergence criterion is not satisfied after a certain number of evaluated models, the algorithm 

could remain entrapped in a local minimum unable to escape from it. In this case a test is considered as 

failed. Anyway, a test is considered as failed even when it does not reach the global minimum within 

the selected accuracy after 107 evaluated models.  

A total number of 100 tests are performed for each algorithm, for each test function, and for each 

dimension of the model space, to produce statistically significant results. From the subset of tests where 

the algorithm satisfies the criterium test, I derive the mean value and the standard deviation of the number 

of evaluated models, to estimate the convergence rate and its variability as a function of the dimension 

of the model space. The number of successful tests is used to compute the percentage of convergence of 

the algorithms as a function of the dimension of the model space and the type of test function.  

6.3 Setting the parameters of the algorithms 

Some of the main parameters of the algorithms are set according to values that can be found in literature 

in particular, according to the dimension of the model space and the complexity of the objective 

functions.  

Table 6.2 shows the ASA parameters: according to [46] the value of 𝑇𝑔0, 𝑇𝑔𝑓 and 𝑛𝑖𝑡𝑒𝑟   increase with 

the dimension of the model space n. Multiple cooling/heating cycles (reannealing) are used for multi-

minima functions, every 1000 iterations or 100 accepted models.  

Table 6.3 shows the GA parameters: according to [50] the size of the GA population is increased linearly 

with n, and the mutation rate decreases linearly with n−1. The selection rate is 0.8. 

ASA parameters Sphere Rosenbrock Rastrigin Schwefel 

𝑻𝒈𝟎 10n 10n 10n 10n 

𝑻𝒈𝒇 10-19n 10-19n 10-19n 10-19n 

𝒏𝒊𝒕𝒆𝒓 100n 100n 100n 100n 

Reannealing no no yes yes 

Table 6.2: Control parameters for the ASA method used in the tests on the analytic objective functions; n indicates the number 

of dimensions.  

 

GA parameters Sphere Rosenbrock Rastrigin Schwefel 

Nind 10n 10n 10n  100n 

Sel-rate 0.8 0.8 0.8 0.8 

Mut-rate 𝑛−1 𝑛−1 𝑛−1 𝑛−1 

Table 6.3: Control parameters for the GA method used in the tests on the analytic objective functions; n indicates the number 

of dimensions. 

 

 

6.4 Test on the Sphere function 

The first test compares the ASA and GA performances on the Sphere function, or De Jong’s function 

n°1 [58]: 
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𝑓(𝑥) =∑𝑥𝑖
2

𝑛

𝑖=1

 
(6.2) 

This function is symmetric, convex and unimodal, with a unique minimum in [0,…,0]. Even if it is a 

simple function, it is possible to evaluate the ability of the different algorithms in a favourable scenario 

in which there is a single minimum of the objective function. Figure 6.1a and Figure 6.1b show this 

function in two dimensions as a surface in the three-dimensional space and as a projection onto a 2D 

map, respectively. Table 6.4 displays the percentage of success computed on the set of 100 tests for the 

two algorithms in a range of model-space dimensions from 2 to 60. The two algorithms successfully 

converge for all the values of n. 

 2 4 6 8 10 12 14 16 18 20 

ASA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

GA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 22 24 26 28 30 32 34 36 38 40 

ASA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

GA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 42 44 46 48 50 52 54 56 58 60 

ASA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

GA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Table 6.4: percentage of success of ASA and GA on the sphere function, in a range of dimension from 2 to 60. 

Figure 6.2 displays the rate of convergence of the two algorithms as a function of the dimension n. The 

ASA algorithm exhibits an exponential trend, that is a linear trend when using a semi-logarithmic plot, 

whereas GA is characterized by a polynomial trend, that is a logarithmic trend when using a semi-

logarithmic plot. For medium-low dimensions (2<n<40), ASA is the best-performing algorithm, while 

for dimensions higher than 44, GA outperforms ASA.  
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Figure 6.1: The sphere function with n=2, represented a) as a surface in 3D space and b) as a 2D projection. 
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Figure 6.2: Curves of convergence for the sphere function computed on the ensemble of 100 tests performed for each 

method and for each dimension of the model space. 

6.5 Test on the Rosenbrock function 

The second test compares the ASA and GA performances on the Rosenbrock function [59]: 

𝑓(𝑥) =∑(A(𝑥2𝑖−1 − 𝑥2𝑖
2 )2 + (1 − 𝑥2𝑖−1)

2)

𝑛
2

𝑖=1

 
(6.3) 

with 𝐴 = 100 and 𝑛 assuming only even values (for odd dimensions, the nature of the function changes, 

becoming a multi-minima function).  Figure 6.3a Figure 6.3b show the Rosenbrock function with 𝑛 = 2 

as a surface in the three-dimensional space and as a projection onto a 2D map, respectively.  

This function is convex with a single minimum located in the flat valley at [2,… ,2]. Finding the valley 

is trivial, but, because of the flatness of the valley, it is difficult to converge to the minimum.  
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Figure 6.3: The Rosenbrock function with n=2, represented a) as a surface in 3D space and b) as a 2D projection. 

For this reason, the number of evaluated models required to converge can be very high. Table 6.5 

represents the percentage of success for dimensions varying from 2 to 40 for the two algorithms. Both 
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GA has complete success for all the dimensions. The ASA algorithm is completely successful for 𝑛 <

40; then it becomes to fail because of the high number of evaluated models necessary to converge, higher 

than 107. 

 

 2 4 6 8 10 12 14 16 18 20 

ASA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

GA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 22 24 26 28 30 32 34 36 38 40 

ASA 100% 100% 100% 100% 100% 100% 100% 100% 100% 40% 

GA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Table 6.5: Percentage of the success of ASA and GA on the Rosenbrock function, in a range of 

dimension from 2 to 40.  

 

Figure 6.4: Curves of convergence for the Rosenbrock function, computed on the ensemble of 100 tests performed for 

each method and dimension of the model space. 

Figure 6.4 shows the curves of convergence for the two algorithms up to 𝑛 = 40. We note that their 

behaviour is similar to the sphere case. The ASA algorithm has an exponential trend, while GA shows 

polynomial trends.  For medium-low dimensions (2<n<30), ASA is the best-performing algorithm, while 

for dimensions higher than 32, GA outperforms ASA.  In particular, the ASA algorithm for dimensions 
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greater than 40 exceeds the maximum number of evaluated models. Therefore, they are considered as 

failing to converge.  

6.6 Test on the Rastrigin function 

The third test compares the performances of the two algorithms on the Rastrigin function [60]: 

𝑓(𝑥) = 𝐴 𝑛 +∑[𝑥𝑖
2 − 𝐴 cos(2𝜋𝑥𝑖)]

𝑛

𝑖=1

 
(6.4) 

where  𝐴 = 10. Figure 6.5a and Figure 6.5b show the Rastrigin function as a surface in the three-

dimensional space and as a projection onto a 2D map, respectively. This function is an example of a 

non-convex function, with a global minimum in [0, … ,0] and a high number of local minima, which 

increases exponentially with the dimension of the model space. Precisely, this function has 11𝑛  local 

minima for this range of the model space, i.e., [−5,5]𝑛.  

Table 6.6 represents the percentage of success for dimensions varying from 2 to 40 for the two 

algorithms. The GA method successfully converges for all the dimensions, whereas the ASA algorithm 

fails after 𝑛 = 38 because all the tests exceed the maximum number of model evaluations allowed.  

 2 4 6 8 10 12 14 16 18 20 

ASA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

GA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 22 24 26 28 30 32 34 36 38 40 

ASA 100% 100% 100% 100% 100% 100% 100% 100% 40% 0% 

GA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Table 6.6: Percentage of success of ASA and GA on the Rastrigin function, in a range of dimension from 2 to 60. 
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Figure 6.5: The Rastrigin function with n=2, represented a) as a surface in 3D space and b) as a 2D projection. 

Figure 6.6 shows the curves of convergence for the two algorithms for 𝑛 varying from 2 to 40. By 

comparing these curves with the ones of the sphere function we note an overall increment of the mean 
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number of evaluated models for the two algorithms for all 𝑛, caused by the more complex nature of the 

Rastrigin function with respect to the sphere one. Nevertheless, the convergence trends for ASA and GA 

appear to be the same as before, i.e., an exponential trend for ASA and a polynomial trend for GA. The 

ASA algorithm results the best method for medium-low dimensions (4 < 𝑛 < 20), but it shows an 

exponential convergence trend; on the contrary, GA, being characterized by a polynomial convergence 

trend, after a crossing point (at 𝑛 = 20), eventually overcomes ASA in terms of performance for higher 

dimensions. 

 
Figure 6.6: Curves of convergence for the Rastrigin function, computed on the ensemble of 100 tests performed for each 

method and for each dimension of the model space. 

6.7 Test on the Schwefel function 

The Schwefel function [61] rescaled in the [−5,5]𝑛 range is: 

𝑓(𝑥) = 𝐴 𝑛 − 100∑[𝑥𝑖 ∙ sin (10 √|𝑥𝑖|)]

𝑛

𝑖=1

 
(6.5) 

where A=418.9829. This function has a large number of local minima equal to 7𝑛 . However, differently 

from the previous function, in which the local minima surround the central global minimum, in the 

Schwefel function the local minima are more irregularly distributed, and important local minima are 

distant from the non-centred global minimum, which lies at [4.209687, … ,4.209687]. 



6. Global optimization algorithms on analytic functions  

 

63 

63 

Figure 6.7a and Figure 6.7b show the 2D Schwefel function as a surface in the three-dimensional space 

and as a projection onto a 2D map, respectively.  

Table 6.7 displays the percentage of success of the two methods with 𝑛 varying from 2 to 40.  

 

 2 4 6 8 10 12 14 16 18 20 

ASA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

GA 100% 98% 90% 82% 69% 60% 53% 39% 42% 27% 

 22 24 26 28 30 32 34 36 38 40 

ASA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

GA 29% 18% 17% 14% 11% 0% 0% 0% 0% 0% 

Table 6.7: Percentage of success of ASA and GA on the Schwefel function, in a range of dimension from 2 to 40. 

ASA successfully converges for all tests, displaying 100% success for all dimensions. Regarding the 

GA method, it is completely successful only for dimensions up to 2. For higher dimensions, only a 

fraction of the set of 100 tests successfully converges to the global minimum. The percentage of 

successful tests in the ensemble of 100 tests quickly drops to zero in a range of 𝑛 from 2 to 30 for GA. 

The increase of failures for GA is because they remain entrapped in local minima that are far from the 

global minimum. 

Figure 6.8 shows the curves of convergence of the two algorithms. The ASA algorithm has an 

exponential trend and is clearly the best-performing algorithm. For the GA the small number of 

successful tests used to derive the convergence curve is insufficient to infer reliable convergence trend.  
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Figure 6.7: The Schwefel function with n=2, represented a) as a surface in 3D space and b) as a 2D projection. 
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Figure 6.8: Curves of convergence for the Schwefel function, computed on the ensemble of 100 tests performed for each 

method and for each dimension of the model space. 

6.8 Conclusions and results 

Comparing the results obtained on the set of the four analytic functions I have observed that: 

• in an ideal case such as asymmetric, convex, separable function (Sphere function) the two 

methods converge to the global minimum and the larger is the dimension of the model space, the 

larger is the number of evaluated model necessary to converge. In particular, I observe an 

exponential trend for the curve of convergence of ASA and a polynomial trend for GA. For lower 

dimensions of the model space, ASA appears to be the best algorithm. However, because of the 

better scalability with the number of unknowns, GA outperform ASA after a certain dimension 

of the model space;  

• in case of a convex, but very asymmetric function characterized by a flattening of the function 

near the global minimum (Rosenbrock function), the two algorithms worsen their performances 

with respect to the sphere test, increasing the number of evaluated models necessary to converge. 

However, the trend of the curves of convergence appears very similar to the previous case. ASA 

is the best algorithm for low dimensions, whereas GA outperforms ASA after a certain 

dimension; 
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• in case of symmetric and non-convex function characterized by a large number of local minima 

(Rastrigin function), the two algorithms worsen their performances with respect to the sphere 

test, increasing the number of evaluated models. The trend of the curves of converges for ASA 

and GA is again exponential and polynomial, respectively. ASA is the best algorithm for low 

dimensions, whereas GA outperforms ASA for greater dimension.  The number of evaluated 

models for the convergence is greater for the Sphere test but lower for the Rosenbrock test. In 

particular, the ASA algorithm can become very expensive regarding the number of evaluated 

models; 

• in case of non-symmetric and non-convex function characterized by a large number of local 

minima (Schwefel function), the two algorithms worsen their performances with respect to the 

Sphere test increasing the number of evaluated models (ASA) or remaining entrapped in a local 

minimum (GA). The ASA algorithm has the same similar exponential trend of the previous tests. 

Its number of evaluated models for the convergence is greater than the Sphere function, but lower 

than the Rastrigin function, probably because of the lower number of local minima. The GA 

algorithm has no definite trend of convergence because of the high number of unsuccessful tests 

and appears to suffer from the irregular distribution of the local minima, which causes the 

entrapment of the algorithm in local minima far from the global one; 

Starting from these results, I conclude that both algorithms have strengths and weaknesses: 

1. for a low dimension of the model space the ASA algorithm appears to be the best algorithm in 

term of the number of evaluated models necessary to converge, whereas the GA algorithm is 

better for greater dimensions; 

2. for both algorithms the presence of flatness zone in the model space, that means low sensibility 

of some parameters, worsen their performance; 

3. for both algorithms the presence of a large number of local minima worsen their performances, 

but less than the presence of flatness zones; 

4. the GA algorithm suffers the irregular distribution of local minima in the model space risking 

to be entrapped in one of them, whereas this phenomenon does not influence the ASA algorithm.  

 

 



 

 

Chapter 7.  

Experience of FWI on synthetic data  
In this chapter, I illustrate the results obtained by the application of ASA and GA algorithms for a 

classical acoustic 2D FWI problem, which consists of the inversion of synthetic seismograms of the 

Marmousi model. See [62] for more details. 

7.1 A classical inversion test: seismic acquisition on the Marmousi model 

A common way to test the feasibility of a seismic inversion procedure is to test it in the inversion of 

synthetic seismograms, using some complex geological model. This procedure allows us to compare 

both the seismograms obtained at the end of an inversion procedure and the final best model with the 

true one. A standard test used in case of 2D acoustic FWI is the inversion of one or more synthetic 

seismograms simulated on a complex 2D acoustic structural model, called Marmousi model.  

The Marmousi model (Figure 7.1) was formulated at the Institute Francais du Petrole (IFP). It was used 

for the workshop on practical aspects of seismic data inversion at the 1990 EAEG meeting in 

Copenhagen, where different groups (contractors, universities, and oil companies) applied their imaging 

tools on this data set. The possible seismograms relative to this model are generated usually using a 2D 

acoustic finite difference modelling program. See [63] and [64] for details. 

The model is built to resemble a sedimentary basin originated during an overall continental drift with 

numerous large normal faults. The geometry is based somewhat on a profile through the North 

Quenguela in the Cuanza basin, situated in Angola, as described in [65]. It consists of 160 velocity layers 

and contains many reflectors, steep dips, and high velocity variations in both the lateral and the vertical 

direction. The velocity distribution varies from a minimum of 1500𝑚/𝑠 to a maximum of 5500𝑚/𝑠 

with a realistic horizontal and vertical velocity gradient. The horizontal dimension is 9.200 meters, 

whereas the vertical one is 3000 meters.  

The sources and the receivers are usually located near the top of the model in the water layer, to simulate 

a marine seismic acquisition. The recording time 𝑇, the time sampling 𝑑𝑡 and the type of wavelet 𝑠(𝑡) 

depend on the target we want to simulate. 
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Figure 7.1: Marmousi model: a complex 2D acoustic model of a sedimentary basin with faults, reflectors, and strong 

velocity variations in both lateral and vertical directions. 

7.2 Simulation of the observed seismograms on a portion of the Marmousi 

model 

To simulate the synthetic seismograms, I have considered as a velocity model the one of Figure 7.2, that 

represents the central part of the Marmousi model, with a total length of 4608m and a depth of 1152m. 

A regular modelling grid, with 𝑑𝑥 = 24𝑚, 𝑛𝑥 = 192 and 𝑛𝑧 = 48 (Figure 7.3), is used. The water layer 

is modelled by the first two rows of the grid. As acquisition layout, I have considered: 

• 16 sources located at depth of 24𝑚, that corresponds to the first row of the modelling grid, and 

with a uniform distance of about  ∆𝑠= 305𝑚 (the red points in Figure 7.4); 

• 192 receivers for each source located at depth of 24𝑚, with a uniform distance ∆𝑟= 24𝑚 (the 

blue points in Figure 7.4); 

• A time step of 𝑑𝑡 = 0.002s and a recording length of 𝑇 = 4𝑠; 

• A Ricker wavelet with a peak frequency of 𝑓0 = 6 𝐻𝑧 and a frequency range between 0 and 

24 𝐻𝑧. Figure 7.5a and Figure 7.5b display the wavelet as a function of time and temporal 

frequency, respectively. 

Absorbing boundary conditions are set on the lateral and bottom sides of the model, with  𝑛𝑟 = 𝑛𝑙 =

𝑛𝑏 = 30, and reflecting boundary conditions on the top side to simulate the sea-air interface. Note that 

the same receiver positions are used for all the sources and that the numerical stability and dispersion 

relations are satisfied with these modelling parameters.  
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Figure 7.2: Portion of Marmousi model, that corresponds to the upper central part of it. 

 
Figure 7.3: Modelling grid for the model of Figure 7.2. 

 
Figure 7.4: Source-receiver’s layout of the seismic acquisition on the modelling grid of Figure 7.3. 
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Figure 7.5: Ricker wavelet as a function of a) time and b) temporal frequency. 

The computation of the seismograms is done with the software fullwave2D. To simulate a possible 

processing sequence on the data, I have applied: 

1. a low-pass filter between 0 and 10 𝐻𝑧 to enforce the information of the low frequencies;  

2. a trace by trace normalization to enforce the information of the seismograms at long offset. 

Figure 7.6 shows the seismogram with the applied processing sequence related to the leftmost source.  

These seismograms are the set of the observed data we want to invert using a FWI procedure. 

 
Figure 7.6: Observed seismogram related to the first source.  
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7.3 Defining the misfit function and the inversion grid 

To apply a FWI procedure for inverting the observed seismograms, I had to set up: 

• the modelling algorithm to simulate the synthetic seismograms; 

• the misfit function to measure the difference between the predicted and the observed 

seismograms; 

• the inversion grid, which is the set of the positions of the unknows; 

• the inversion procedure used to estimate the models;  

As modelling algorithm, I have used the software fullwave2D again with the same modelling parameters 

used to generate the observed seismograms. The computational time for each simulation corresponds to 

about 10s, using a Desktop PC with Intel Core i7-3770 Processor (4x 3.4 GHz) and 32 GB DDR4 RAM. 

As misfit function, the sum of the all the 𝐿2-norm difference between the observed and the synthetic 

seismograms is used 

𝐹(𝑣) =∑(
1

2
∑(∑|𝐺(𝑢(𝑣, 𝑡𝑘, 𝒙

𝑟 , 𝒙𝑠)) − 𝐺(𝑢0(𝒙, 𝑡𝑘 , 𝒙
𝑟 , 𝒙𝑠))|

2

𝑛𝑡

𝑘=1

 ) 𝑑𝑡

𝑛𝑟

𝑟=1

)

16

𝑠=1

. (7.1) 

where: 

• 𝒙𝑟 are the positions of the receivers, the same for all the seismograms; 

• 𝒙𝑠 are the positions of the sources; 

• 𝑡𝑘 are the temporal moments of the seismograms; 

• 𝑢0(𝒙, 𝑡𝑘, 𝒙
𝑟 , 𝒙𝑠) is the set of observed seismograms; 

• 𝑢(𝑣, 𝑡𝑘 , 𝒙
𝑟 , 𝒙𝑠) is the synthetic data; 

• 𝐺 is the processing operator, applied on the synthetic and observed seismograms. 

Note that, using the software fullwave2D, I can evaluate the misfit function immediately after the 

computation of synthetic seismograms, without storing them. 

As inversion grid, I have defined two different inversion grids: 

• a coarse inversion grid, formed by 9 rows and 9 columns for a total number of 81 unknowns, if 

a global optimization algorithm is applied. In Figure 7.7 the set of the black points represents the 

coarse grid. To obtain the velocity model on the modelling grid from the coarse one, a bilinear 

interpolation function is used. The use of a coarse grid to have a feasible number of unknows for 

the application of the metaheuristic algorithms of Chapter 5 and Chapter 6; 

• a fine inversion grid, equal to the modelling grid of Figure 7.3, without the first two rows. In 

Figure 7.7 the set of red points represents the fine inversion grid. This grid is used when a local 

algorithm is applied, for a total number of 8832 unknows.  

Finally, as inversion procedure, I apply a two-step approach: 

• in the first step, I use the two algorithms ASA and GA, as global optimization procedures to 

estimate two smooth models on the coarse grid; 

• in the second step, I use the best models obtained by ASA and GA, as starting models for two 

local optimization procedures on the fine inversion grid. 
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Note that the water layer velocity and the water depth are supposed to be known and fix during both the 

global and local inversion procedures. 

 

 
Figure 7.7: Fine inversion grid (red points) and coarse inversion grid (black points). 

7.4 Global FWI using ASA and GA 

In this section, I show the results obtained by the application of ASA and GA to this synthetic example. 

The ASA and GA parameters are set using the value of Table 6.2, Table 6.3, with 𝑛 = 81.  

The search ranges (Figure 7.8) of the 81 unknows varies from 1500 𝑚/𝑠 to 2250 𝑚/𝑠 for the unknowns 

at the first row of the coarse grid and from 1800 𝑚/𝑠 to 3700 𝑚/𝑠 for the unknowns at last row. We 

perform: 

• 100000 iterations of the ASA algorithm, that correspond to generate a sequence {𝑣𝑘} 𝑘≥0 of 

100000 models, a new model for each iteration 𝑘. At the end of the procedure, we consider as 

best ASA model, the model with the lowest misfit value found by the algorithm. Note that the 

best model could be different from the last model obtained by the algorithm.  

• 150 generations of the GA algorithm, that correspond to generate an initial population of 810 

individuals and 97200 offsprings, 648 for each generation. At the end of the procedure we 

consider as best GA model, the model with the lowest misfit value; 
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Figure 7.8: Search domain consisting of the search range, that varies from 1500 m/s to 2250 m/s for the unknowns of 

first row of the coarse grid and from 1800 m/s to 3700 m/s for the unknowns at last row. 

To compare the performances of the two optimization algorithms, I consider the evolution of their data 

misfit during the optimization process. In particular, I consider: 

• the ASA data misfit, a curve that represents the value of misfit function as a function of the total 

number of evaluated models 𝑘; 

• the GA data misfit, a curve that represents the minimum value of the misfit, as a function of the 

total number of evaluated models, that is  810 + 648 ∗ 𝑔𝑒𝑛, at each generation 𝑔𝑒𝑛. 

Figure 7.9 displays the evolution of the data misfit, obtained by the two algorithms. The ASA algorithm 

passes from an initial value of 2716 to a final value of 1265, but the minimum value is reached at 𝑘 =

93930 and is 1238. The GA algorithm passes from an initial value of 2301 to a final value of 1392. 

Therefore, the lowest misfit value is the one obtained from ASA. 

 
Figure 7.9: Evolution of the data misfit for ASA (red curve) and GA (blue curve). 

Figure 7.10 displays the best ASA model (Figure 7.10a), the best GA model (Figure 7.10b) and their 

difference (Figure 7.10c) on the coarse grid. The ASA and GA best models are more similar to the top 

and the center of the coarse grid, whereas they present some significant differences especially on the 
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bottom part. Figure 7.11 displays the same models on the modelling grid. Note the smoothness of the 

models caused by the interpolation operation between the two grids. 

 
Figure 7.10: a) Best ASA model, b) best GA model, and c) their differences on the coarse grid. 

 
Figure 7.11: a) Best ASA model and b) best GA model on the modelling grid. 

Finally, Figure 7.12 and Figure 7.13 show the differences between the predicted and the observed 

seismogram relative to the leftmost source in the acquisition layout. In particular, Figure 7.12 shows the 

differences between the observed and predicted seismograms, using the model of the first iteration of 

ASA (Figure 7.12a), and the best model (Figure 7.12b), respectively. Figure 7.13 displays the difference 

between the observed and predicted seismograms, using the best model of the first generation of GA 

(Figure 7.13a) and of the last generation (Figure 7.13b), respectively. Note the partial match of some of 

the main events on the seismograms, such as the main reflections and refractions, for both the synthetic 

seismograms obtained by the two algorithms. 
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Figure 7.12: Differences between the predicted and the observed seismogram relative to the leftmost source in the 

acquisition layout, using a) the model of the first iteration of ASA, and b) the best model obtained by ASA. 
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Figure 7.13: Differences between the predicted and the observed seismogram relative to the leftmost source in the 

acquisition layout, using a) the model of the first generation of GA, and b) the best model obtained by GA. 

7.5 Local FWI starting from the best global model 

We used the two best ASA and GA models, as described in the previous section, as starting model on 

the fine inversion grid for two different local optimization procedures. As local algorithm, I make use 

of the conjugate gradient method [66], where the descend direction hk+1 of (1.4) is given by  

ℎ𝑘+1 = −𝛻𝑣𝑝𝐹(𝑣𝑝
𝑘) + 𝛽𝑘ℎ𝑘 , 

(7.2) 

and the parameter 𝛽𝑘 ≥ 0  is the Hestenes-Stiefel parameter [67], given by: 

𝛽𝑘 =
(𝛻𝑣𝑝𝐹(𝑣𝑝

𝑘)−𝛻𝑣𝑝𝐹(𝑣𝑝
𝑘−1))

𝑡

∙𝛻𝑣𝑝𝐹(𝑣𝑝
𝑘)

(𝛻𝑣𝑝𝐹(𝑣𝑝
𝑘)−𝛻𝑣𝑝𝐹(𝑣𝑝

𝑘−1))
𝑡

∙ℎ𝑘

. 
(7.3) 

For the step length 𝛾𝑘  of Equation (1.4), we estimate a value 𝛾𝑘̂   along ℎ𝑘 , that satisfies the Wolfe 

conditions of Equation (1.6), using as trial initial step length 

𝛼 = 𝛾𝑘−1
(𝛻𝑣𝑝𝐹(𝑣𝑝

𝑘−1)
𝑡
∙ℎ𝑘−1)

𝛻𝑣𝑝𝐹(𝑣𝑝
𝑘)
𝑡
∙ℎ𝑘

. 
(7.4) 
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and we reduce the step length by half until the Wolfe conditions are satisfied, with 𝑐1 = 0.0001 and 

𝑐2 = 0.1, as suggested in [11]. To compute the gradient 𝛻𝑣𝑝𝐹(𝑣𝑝
𝑘) of the misfit function in (7.2), the 

implementation of the adjoint method described in Chapter 3 is used.  

The search domain is displayed in Figure 7.14 and consists of the search ranges of the 8832 unknows, 

that varies from 1400 𝑚/𝑠 to 2350 𝑚/𝑠 for the unknowns of the first row of the fine grid and from 

1700 m/s to 3800 𝑚/𝑠 for the unknowns at last row.  

 
Figure 7.14: Search domain consisting of the search range, that varies from 1400 m/s to 2350 m/s for the unknowns of 

first row of the fine inversion grid and from 1700 m/s to 3800 m/s, for the unknowns at last row. 

200 iterations of both the minimization procedures are performed. Figure 7.15 displays the two curves 

of the evolution of the data misfit: the blue curve represents the minimization started from the best GA 

model, whereas the red one represents the minimization started from the best ASA model. Note a 

decrease of about 98 % for the GA data misfit at the last iteration, passing from 1392 to 27.4, and a 

decrease of about 98.1 % for the ASA data misfit at the last iteration, passing from 1238 to 24.5.  

 

 
Figure 7.15: Evolution of data misfit for the two local minimization procedures on the fine inversion grid: the red curve 

starts from the best ASA model; the blue curve starts from the best GA model. 

Starting from the GA best model, Figure 7.16a and Figure 7.16b shows the final model and the difference 

between the true and the final model obtained at the end of the minimization procedure, respectively. 

Starting from the ASA best model, Figure 7.17a and Figure 7.17b shows the final model and the 
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difference between the true and the final model obtained at the end of the minimization procedure, 

respectively 

The final models obtained by the two minimizations are very similar to the true one, except in some 

areas near the lateral and the bottom boundaries, where the seismic illumination is poor. This fact means 

that the starting models estimated by the two algorithms can be considered quite near the basin of 

attraction of the global minimum of the misfit function, that corresponds to the true model.  

As a further validation of the effectiveness of the two-step procedure described, in Figure 7.18 and 

Figure 7.19 I show the difference between the predicted and the observed seismograms relative to the 

leftmost source in the acquisition layout at the end of the local FWI, using the best GA and ASA model 

as starting model, respectively. Note the significant reduction of the difference between the observed 

data and the final predicted one. 

 

 
Figure 7.16: a) The final model obtained by the minimization procedure, using the GA model as starting model, and b) 

the difference between the true and the final model. 
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Figure 7.17: a) The final model obtained by the minimization procedure, using the ASA model as starting model, and b) 

the difference between the true and the final model. 

 
Figure 7.18: Difference between the predicted and the observed seismogram relative to the leftmost source in the 

acquisition layout, using the best model obtained at the end of the local FWI, starting from the best GA model. 
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Figure 7.19: Difference between the predicted and the observed seismogram relative to the leftmost source in the 

acquisition layout, using the best model obtained at the end of the local FWI, starting from the best ASA model. 

7.6 Conclusions and results 

Using a global optimization algorithm such as ASA or GA on a coarse inversion grid, it is possible to 

estimate a proper starting velocity model for a local FWI, which allows us to solve a complex synthetic 

seismic inversion problem. The good correspondence between the true model and the final model, and 

between the predicted and observed seismograms, makes the application of the global optimization 

algorithms of particular interest, especially in seismic inversion problems characterized by highly non-

linearity and multiple local minima. 

 



 

 

Chapter 8.  

Experience of FWI on real land data  
In this chapter, I illustrate the results of an experience of acoustic FWI on a 2D seismic line acquired 

onshore, in South Tuscany, aimed at estimating a low-wavenumber P-wave velocity model of the 

subsurface. To obtain this, I use a similar procedure of the previous Chapter. First, I use a global 

optimization procedure on a coarse inversion grid to obtain a smooth velocity model of the area of 

interest. Then I use this model as a starting model on a fine inversion grid for a subsequent local 

optimization.  

The synthetic seismograms are computed using the fullwave2D code and require a high computational 

time. Because of this, I make use of only of the GA algorithm as global optimization procedure, which 

allows us to parallelize the computation of the individuals of a generation, reducing in this way the 

computational time. See [68] and [69] for more details. 

8.1 Location and geological framework  

The seismic data are acquired in Southern Tuscany, that is characterised by: 

• an average altitude of 270 meters, with positive Bouguer anomalies [70]; 

• high heat flow: 120 𝑚𝑊/𝑚2 on the average, with local peaks up to 1000 𝑚𝑊/𝑚2; 

• the crust-mantle passage at a depth of around 22 − 25𝑘𝑚 [71]; 

• a lithosphere-asthenosphere boundary believed to be at about 30 km [72]; 

• two important geothermal systems that are the Larderello (north) and the Monte Amiata (south) 

geothermal fields. 

The structural and stratigraphic setting of this area is the consequence of two different deformational 

processes:  

• the first is related to a process of convergence tectonic [73], in which the European margin and 

the Adria microplate, during the period of Cretaceous-Early Miocene, collided and produced the 

stacking of the Northern Apennines nappes; 

• the second is related to a process of post-collisional extensional tectonic [74], which have 

affected the inner zone of the Northern Apennines, starting from the Early-Middle Miocene; this 

process caused the opening of the northern Tyrrhenian Basin, with the development of the 

northern and southern tectonic sectors in Tuscany, which are separated by a SW-NE trending 

lineament of lithospheric significance.  

In particular, in the southern sector, the extensional tectonic have caused the emplacement of Neogene-

Quaternary magmatic bodies, mainly derived from mixing of crust and mantle magmas. For more details 

and references about this area, the reader can see [75]. 

8.2 Data 

In this section, I present the seismic data used to test the acoustic FWI. These data are taken from a 2D 

land seismic profile, acquired in 1995, during the CROP project. 
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8.2.1 The CROP project 

The CROP project (CROsta Profonda) was an Italian deep crust exploration project, that is a result of a 

collaboration between the National Research Council (CNR), ENI-AGIP and ENEL. It represents a 

multidisciplinary research program, with the following targets: 

• understanding the main geodynamic processes responsible for the current geological 

arrangement of Italy; 

• define and prevent geological hazard; 

• search for energy resources, especially hydrocarbons and geothermal fields; 

• identification of stable zones for the industrial installation. 

The CROP Project started in the middle of ’80 as a feasibility study. Then from 1986 to 1999, about 

10000 𝑘𝑚 of land and sea seismic reflection profiles were acquired, processed and interpreted. Figure 

8.1 shows the location map of all the seismic profiles.  

 
Figure 8.1:  Map of all the seismic profiles of the CROP project. 

The marine profiles have a total length of about 8740 𝑘𝑚 and were acquired in shallow and deep waters 

around the Italian peninsula, in both compressional and extensional structural domains, and in the 

presence of sea floors of variable morphology and acoustic characteristics. During the first phase (CROP 

Mare 1, 1991) about 3400 𝑘𝑚 of seismic profiles were recorded in the Ligurian, Tyrrhenian, and Ionian 
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Seas. Then, in a second phase (CROP Mare 2, 1993-1994), over 5000 𝑘𝑚 of seismic profiles were 

acquired in the southern Tyrrhenian Sea, in the Sardinia Channel and the Ionian and Adriatic Seas. In 

both phases, the data were acquired by the oceanographic vessel OGS-Explora, using air-gun sources. 

Data processing were performed by OGS, AGIP and ISMES. 

The land profiles consist of about 1250 𝑘𝑚 and were acquired in very different areas such as the Alps 

(CROP01/TRANSALP), the Northern Apennines (CROP03, CROP18), the central Apennines 

(CROP11) and the Southern Apennines (CROP04). The seismic source was the vibroseis (CROP01, 

CROP04) or the dynamite (CROP03, CROP11, CROP18). Table 8.1 and Table 8.2 illustrate the main 

characteristics and acquisition parameters of the land and marine profiles, respectively [76].  

 

 CROP 01 CROP 03 CROP 04 CROP 11 CROP 18 

Year 1999-2000 1992-1993 1989-1990 1995,1999 1995 

N° of profiles 1 1 1 1 2 

Area Eastern  

Alps 

Northern 

Appenines 

Southern 

Appenines 

Central 

Appenines 

Southern 

Appenines 

Total length 300km 230km 172km 265km 116km 

Recording time 18-20s 25s 18-20s 25s 25s 

Sampling interval 2ms 2ms 2ms 2ms 2ms 

Station interval 50m 60m 80m 40-60m 60m 

Source interval 4500m 180m 2400m 160-280m 180m 

N° of channels 360 192 240 192 192 

Type of source vibroseis dynamite vibroseis dynamite dynamite 

Table 8.1: Main characteristics of the land profiles of the CROP project. 

 CROP-ECORS CROP MARE 1 CROP MARE 2 

Year 1988 1991 1993-1995 

Area Western Sardinia Ligurian, Tyrrhenian 

and Ionian Sea 

Tyrrhenian, Ionian and Adriatic 

Sea and channel of Sicily 

Total length 205km 3410km 5225km 

Recording time 16s 17-20s 17-30s 

Sampling interval 2ms 2ms 2ms 

Hydrophone interval 25m 25m 25m 

Streamer length 3000m 4500m 4500m 

N° of channels 120 180 180 

Type of source Air-gun Air-gin Air-gun 

Table 8.2: Main characteristics of the marine profiles of the CROP project. 

The digital and analog data have been stored in a Data Center created at the Bologna Section of Institute 

of Marine Sciences ISMAR-CNR, to create an official CROP Data Base, becoming operative during 

2004. 

Even if the first phase of elaboration of seismic data was already done, nowadays it is possible to improve 

the results using more modern and sophisticated techniques, among which FWI. In the last decade, a 
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significant effort has been made to study the geological interpretation, the seismic signals, the 

correlations with other geophysical data and the re-processing of seismic data. See, e.g., [77], [78], and 

the references therein. 

In this thesis, I used one of the seismic profile, called CROP18, to perform a 2D land FWI. 

8.2.2 The CROP18A seismic line 

The reflection crustal seismic line CROP18 was acquired in 1995 to investigate the relationship between 

the geological structures and geothermal resources of southern Tuscany. Figure 8.2 shows a simplified 

map of Southern Tuscany with the location of the profile. 

 
Figure 8.2: Location of the CROP 18 profile, crossing the CROP03 profile.  

The line is 115km long, and NNW-SSE oriented from S. Giovanni delle Contee to Guardistallo and it 

consists of two parts: the first is called CROP18a and is in the northern part of the Larderello geothermal 

field, the second is called CROP18b and is in the southern part, over the Amiata area. The seismic line 

crosses another seismic line, the CROP03, that was previously acquired in 1993, and extends across the 

whole Central Italy, from Punta Ala (on the Tyrrhenian coast) to Gabicce (near Pesaro, on the Adriatic 

coast) (Figure 8.2). 

The total length of the CROP18a segment is about 48km and consists of 195 shots. The shot interval is 

180m. Figure 8.3a shows the position of shots along the profile as a function of latitude, longitude, and 

elevation, whereas Figure 8.3b shows the positions of the receivers related to the first shot. Note that the 

maximum topography variation is about 450m. 
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Figure 8.3: a) Positions of the shots (red points) along the profile and b) Positions of the receivers (black points) relative 

to the first source. 

The data were acquired using an explosive source of about 30𝑘𝑔. The depth of the borehole is between 

15𝑚 and 30𝑚. The receiver system consists of an array of 24 geophones with a natural frequency of 

10𝐻𝑧. The spread is asymmetric and formed by 192 active channels, with a station interval of 60𝑚. The 

minimum offset is between 150𝑚 and 300𝑚, while the maximum offset is between 6.6 and 8.4 𝑘𝑚. 

The total number of seismic traces is 37824. The time sampling is 2𝑚𝑠, while the recording time is 25𝑠.  

8.2.3 Preliminary comments about the seismic line 

Before any processing, inversion or interpretation operation on the seismic profile, it is necessary to 

display the raw data to have an idea of the possible characteristics or difficulties we must face, such as 

the signal-to-noise ratio (S/N), the temporal frequency range or seismic velocity of first arrivals. Figure 

8.4 shows four different shots as a function of the positions of the sources and the receivers along the 

profile. 

 
Figure 8.4: Four different shots as a function of the sources and the positions of the receivers along the profile.  
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At first sight, it is possible to note a low S/N ratio, caused by the presence of the surface wave (ground 

roll) at near offset and by the random noise at far offset. The apparent velocity of the first arrivals appears 

to be very high, between 3km/s to 7km/s, and with a general decrease moving from the first to the last 

shot. Despite the good visibility of the first arrivals, in general the CROP18a profile is characterized by 

a low presence of reflections. The main strong reflection is the so-called K-horizon, that is possible to 

be noted along all this profile for a registration time of about 4s, especially for the shot at the end of the 

profile (in the last shot of Figure 8.4 the K-horizon is clearly visible). This seismic event is also present 

on other seismic lines, such as the CROP03, and is nowadays subject to research about the geological 

interpretation.  The seismic data are in SEG-Y file format, and the header of the file contains many 

information about the acquisition parameters of the entire profile.  

8.2.4 Expanding spread experiments 

Besides the shots, two wide-angle experiments, called expanding-spread experiments (ES) were 

acquired to integrate the shot information, with the aim to reach the deep targets with illumination angles 

wider than those used in the shot. 

The idea is to perform a composite shot, where the charge size increases with the source-spread distance 

to preserve an appropriate signal-to-noise-ratio at far offset. The position of the first ES experiment is at 

the begin of the seismic profile, while the second one is at the end.   

 
Figure 8.5: Design of the expanding spread experiments: a) forward experiment, b) backward experiment. The Figures 

are taken from [79]. 

Figure 8.5 shows the design of each experiment and the explosive charge used for each spread position. 

See [79] for more details. The first ES (Figure 8.5a), called forward experiment, is the result of an 

assembly of four different data acquisitions. Each of them is formed by 192 active channels and the 

position of the last eleven channels of the first, the second and the third segment overlaps to the first 

eleven channel of the second, the third and the fourth segment respectively. By this way, the forward 
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experiment has a maximum offset of about 45km, and the total number of different active channels is 

750. The seismogram of the forward ES is displayed in Figure 8.6a. The second ES (Figure 8.5b), called 

backward experiment, is the result of an assembly of four different segments. The position of the last 

eleven channels of the first and the second segment overlaps to the first eleven channels of the second 

and the third segment, while the position of the last 42 channels of the third segment overlaps the first 

42 channels of the fourth segment. By this way, the backward experiment has a maximum offset of about 

42km and the total number of active channels is 714. Each of the four segments is formed by 192 active 

channels. The seismogram of the backward ES is displayed in Figure 8.6b.  

 
Figure 8.6: Seismograms of a) forward and b) backward expanding spread experiments. 
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8.2.5 The time section 

A time stack section of the CROP18a profile was elaborated in 1996 and is displayed in Figure 8.7 until 

𝑇 = 6𝑠. At first sight, it is possible to note the presence of strong low-frequency events in the upper part 

of the section (between 0𝑠 and 1𝑠), that could represent the shallow geological discontinuities of the 

subsurface. A strong reflection, so-called K-horizon, is located at about 4𝑠, between CDP 1180 and 1460 

(the end of the seismic profile). Finally, a very dip reflection is visible between CDP 950 and 1150, 

deepening towards North. 

 
Figure 8.7: Time section for the CROP18a profile, taken from [77]. 

This section can be used for post-stack depth migration, if we have a reasonable acoustic velocity model 

of the subsurface, to map the events in the correct positions in depth. The estimation of a reasonable 

velocity model represents a challenge for the FWI process, mainly because of the low S/N ratio of the 

seismic data. 

8.3 Setting of seismic data for 2D acoustic FWI 

To reduce the computational cost of the FWI, I selected only a certain number of shots representative of 

the entire profile. I have chosen both the ES and 18 shots along the profile, for a total number of 20 

shots. Figure 8.8 shows the positions of the sources of the selected shots.  
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Figure 8.8: The 20 shots of the CROP 18a profile selected for the FWI. The blue points represent the positions of the 

shot, the red ones the positions of the ES. 

The use of a 2D acoustic FWI requires a certain number of operations on the raw seismograms. I have 

divided the operations of the raw seismograms into two categories: 

• noise removal operations that are the operations necessary to remove any noise or surface 

waves, performed only on the raw observed seismograms; 

• processing operations, that are the set of all the possible operations applied to the observed and 

synthetic seismograms. 

8.3.1 Noise removal operations 

The set of operations applied to the raw seismograms consists of: 

• trace killing, to remove the noisy traces; 

• top mute, to remove all the noise before the first arrivals; 

• adjacent shot sum, to reduce the random noise and enforce the coherent signals. In particular, 

each shot was summed with the two-adjacent shots on the left and the two ones on the right; 

• f-k filter, to attenuate the ground roll effect at near offset. A polygonal filter was applied on the 

𝐹 − 𝐾 domain to attenuate all the seismic events with low frequencies between 1 and 14 𝐻𝑧 and 

low velocity between 0.5𝑘𝑚/𝑠 and 1.7𝑘𝑚/𝑠 for negative and positive wavenumbers; 

• predictive deconvolution, to further reduce to the ground roll effect at near offset. It was applied 

using a predictive distance of 50𝑚𝑠, an operator length of 250𝑚𝑠 and an offset between −650𝑚 

and 650𝑚; 

• 𝒇 − 𝒙 deconvolution, to remove the random noise at far offset. A temporal window of 300ms 

and a frequency range between 2 and 60 𝐻𝑧 were used; 

• dip-scan stack, to strengthen the coherent signal of the seismic events over a specific velocity 

that is 3𝑘𝑚/𝑠. 

Figure 8.9 and Figure 8.10 show one of the shot and the backward ES experiment before and after the 

noise removal operations. As we can note, the ground roll effect was mitigated, and the coherent signals 

of the first arrivals and the reflections were enforced.  

These processing operations were carried out using the Promax software of Landmark Graphics 

Corporation. See [80] for more details about these steps of data pre-processing.  
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Figure 8.9: First shot selected for the FWI, a) before and b) after the noise removal operations. The seismogram is 

displayed until T=3s. To improve the visualization, a trace by trace normalization is applied. 

 
Figure 8.10: Backward ES experiment of Figure 8.6b, after the noise removal operations. To improve the visualization, 

a trace by trace normalization is applied. Note the different offset of the ES in comparison to the shot of Figure 8.9. 
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8.3.2 Processing operations 

To perform a FWI on the real data, it is necessary to design a specific processing sequence to carry out 

on the observed and synthetic data. At first step, to focus the inversion on the first arrivals, a muting 

mask was applied on the seismograms. This mask, specific for each shot, is characterized by a time 

length of about 1s for all the traces and a ramp of 30ms at the beginning and the end of the mute mask, 

to avoid an abrupt transition to zero of the signal. Then, to consider low frequencies during the inversion 

procedure, a band-pass filter is applied with a bandpass between 5 Hz and 10 𝐻𝑧 followed by a trace 

envelope. Finally, a trace normalization was applied overcoming the fact that the modelling is 2D and 

cannot reproduce 3D geometrical spreading. Figure 8.11 and Figure 8.12 show the shot of Figure 8.9b 

and the backward ES of Figure 8.10 respectively, after the processing sequence, previously described. 

 
Figure 8.11: Seismogram of Figure 8.9a, after the processing sequence (muting, filtering, trace envelope and trace 

normalization). 

 
Figure 8.12:Seismogram of Figure 8.10, after the processing sequence (muting, filtering, trace envelope and trace 

normalization). 

The set of the processing operations can be expressed as the application of a processing operator 𝐺: 
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𝐺(𝑢0(𝒙, 𝑡)) = 𝐺4 (𝐺3 (𝐺2 (𝐺1(𝑢0(𝒙, 𝑡))))), 
(8.1) 

where: 

• 𝑢0(𝒙, 𝑡) are the observed seismograms, with applied the noise removal operations; 

• 𝐺1 is the muting operator; 

• 𝐺2 is the filtering operator; 

• 𝐺3 is the trace envelope operator; 

• 𝐺4 is the trace normalization operator. 

Note that all these operations involve only the recording time and are independent from the position of 

the receivers. 

8.4 Setting up of the modelling to compute the synthetic seismograms 

To use the modelling code fullwave2D for an acoustic FWI procedure, it is necessary to set all the 

modelling parameters. In particular, I define: 

• the discretization in space (𝑑𝑥, 𝑛𝑥, 𝑛𝑧, 𝑝𝑜𝑟𝑑); 

• the discretization in time (𝑑𝑡, 𝑇); 

• the seismic wavelet 𝑠(𝑡); 

• the source and receiver positions on the modelling grid; 

• the boundary conditions. 

8.4.1 Discretization in space 

To set the dimensions of the velocity model and the corresponding modelling grid, it is necessary to 

consider the length of the seismic profile, and the presence of some a priori knowledge about the acoustic 

velocities of the area, for the possible implications concerning the numerical dispersion. 

I fixed the length of the velocity model to 𝑋 = 42 𝑘𝑚, that is the length of the seismic profile. Fixing 

the model depth 𝑍 is not simple because it depends on the possible illumination I can expect from the 

shot and the ES data I consider. 

In [81] a tomography velocity analysis of the first beaks has shown that the maximum depth penetration 

of the rays is approximately 1.5𝑘𝑚 for the shot and 3.5𝑘𝑚 for the ES data. Starting from this analysis, 

but maintaining a certain caution, I consider a depth of 𝑍 = 6𝑘𝑚 of the model, where the zero level 

correspond to the maximum elevation of the seismic profile, which is 450𝑚 above the sea-level. To 

include the topography effects, the velocity of the part of the model above the topography level is 0 

km/s. 

As modelling grid parameters, I consider a spatial sampling of 𝑑𝑥 = 30𝑚 (with 𝑑𝑥 = 𝑑𝑧), with 𝑛𝑥 =

1563 and 𝑛𝑧 = 200. By these modelling parameters, the numerical dispersion relation Equation (2.19) 

is satisfied for a minimum velocity 𝑣𝑚𝑖𝑛 = 2𝑘𝑚/𝑠 and maximum temporal frequency of about 𝑓𝑚𝑎𝑥 =

10𝐻𝑧, using a global order 𝑝𝑜𝑟𝑑 = 4. However, to reduce the computational time, I use a local order of 

approximation of the spatial derivative 𝑝𝑜𝑟𝑑 = 𝑝𝑙𝑜𝑐 . 

 Figure 8.13 shows the modelling grid, where the blue colour area on the top of the model corresponds 

to the part over the topography level. 
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Figure 8.13: Modelling grid, with nx=1563, nz=200,and dx=dz=30m. The blue colour area corresponds to the part above 

the topography level. The red points represent the position of the ES sources, whereas the black ones represent the position 

of the 18 shots. 

8.4.2 Discretization in time 

To fix the time step 𝑑𝑡, it is useful to have a raw estimation of the acoustic velocities of the area for the 

possible implications concerning the numerical stability. In particular, the Equation (2.18) is satisfied, 

if 𝑑𝑡 ≤ 0.002𝑠 , considering a maximum acoustic velocity of 7.5km/s.  Thus, I consider a time sampling 

of 𝑑𝑡 = 0.002𝑠, that equals to the recording sampling of the observed seismograms. 

Because the mute masks for the ES experiments extend until 8s, I consider a modelling time of 𝑇 = 8𝑠 

for these two shots.  On the contrary, since the mute masks of the shots extend until 3s, I consider a 

modelling time of 𝑇 = 3𝑠 for these shots.  

8.4.3 Estimation of the seismic wavelet 

To simulate the seismic propagation on the modelling grid, it is necessary the knowledge of the seismic 

wavelet 𝑠(𝑡). Since the CROP18a profile data do not provide any information about it, an estimation of 

the wavelet was necessary from the seismic data. To do this, I apply the following steps:  

• the extraction of the seismic traces from each trace with a maximum offset of −2000𝑚 and 

2000𝑚; 

• the flattening of the first arrivals using a velocity estimated from the picking of the first arrivals, 

specific for each shot, and zeroing the seismic traces after 600𝑚𝑠;  

• the normalization and sum of all the seismic traces to obtain a mean wavelet; 

• the cross-correlation of the mean wavelet with all the traces to compute a value to apply to each 

trace for a better alignment; 

• the removal of all the seismic traces with a static value greater than 40𝑚𝑠; 

• the sum of all the seismic traces to obtain a mean wavelet and zeroing the values after 0.13𝑠; 

Figure 8.14a and Figure 8.14b show the estimated wavelet as a function of time and frequency, 

respectively.  
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Figure 8.14: Estimated wavelet as a function of a) time and b) temporal frequency. 

8.4.4 Source and receivers position 

The position of the sources and receivers of all the 20 shots were extracted from the headers of the 

seismic traces. The positions along the x-direction are approximated using the header information 

relative to the CDP point, whereas the positions along the z-direction are approximated using the header 

information regarding the elevation for the receivers, and the elevation and borehole depth for the 

sources. 

The corresponding grid node positions are obtained sampling these measures by 𝑑𝑥 = 30𝑚.  Table 8.3 

lists the grid node positions of the sources. Using this information is possible to build the source and 

receiver text files. 

source nx nz 

1 131 12 

2 149 10 

3 215 8 

4 325 10 

5 351 10 

6 389 10 

7 479 3 

8 557 8 

9 605 7 

10 633 4 

11 747 10 

12 771 9 

13 843 8 
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14 899 3 

15 947 2 

16 989 4 

17 1023 4 

18 1169 12 

19 1277 14 

20 1385 14 

Table 8.3: Positions of the 20 sources on the modelling grid. 

8.4.5 Boundary conditions 

A reflecting boundary condition is considered for the top side of the model to simulate the air-land 

contrast of velocity and density. On the other hand, an absorbing boundary condition is considered for 

left, right and bottom sides of the model, with absorbing boundary layers of 30 grid nodes for each side. 

8.5 Setting the misfit function and the inversion grid 

To apply a FWI procedure to invert the observed seismograms, I set up: 

• the misfit function used to measure the difference between the predicted and the observed 

seismograms; 

• the inversion grid that is the set of the unknows used for the inversion algorithm; 

• the inversion procedure used to estimate the models. 

8.5.1 Misfit function 

As misfit function, I use the sum of the all the 𝐿2-norm difference between the observed and the synthetic 

seismograms 

𝐹(𝑣) =∑(
1

2
∑(∑|𝐺(𝑢(𝑣, 𝑡𝑘 , 𝒙

𝑟,𝑠, 𝒙𝑠)) − 𝐺(𝑢0(𝒙, 𝑡𝑘 , 𝒙
𝑟,𝑠, 𝒙𝑠))|

2

𝑛𝑡

𝑘=1

 ) 𝑑𝑡

𝑛𝑠,𝑟

𝑟=1

)

20

𝑠=1

. (8.2) 

where: 

• 𝑛𝑠,𝑟 is the number of receivers for each source (192 for the shot, 750 for the forward ES and 714 

for the backward ES) 

• 𝒙𝑟,𝑠 are the positions of the receivers, different for each source; 

• 𝒙𝑠 are the positions of the sources; 

• 𝑡𝑘 are the temporal samples of the seismograms; 

• 𝑢0(𝒙, 𝑡𝑘, 𝒙
𝑟 , 𝒙𝑠) are the observed seismograms, with the application of the noise removal 

operations; 

• 𝑢(𝑣, 𝑡𝑘 , 𝒙
𝑟 , 𝒙𝑠) are the synthetic seismograms; 

• 𝐺 is the processing operator, as in Equation  (8.1), that is the set of the processing operations of 

Section 8.3.2.   

Note that the operator 𝐺 is applied to the observed and synthetic seismograms, whereas the noise removal 

operations are applied only to the observed ones.  



8. Experience of FWI on real land data 

 

 

96 

96 

8.5.2 Inversion grids 

I make use of two different inversion grids: a coarse inversion grid and a fine inversion grid. The 

coarse inversion grid (the black points in Figure 8.15), consists of 105 grid nodes, organized in 6 rows. 

The number of grid per row decreases as a function of the depth, from 30 nodes for the first row, to 5 

nodes for the last one. The first row of the inversion grid is located on the topography level. The last row 

is located on the bottom of the modelling grid. The other rows are located between the topography level 

and the bottom of the modelling grid, at increasing depth from the first row and with the distance between 

the adjacent rows that increases as a function of the depth. The use of a non-regular grid helps the 

inversion to focus on the upper part of the model, where the illumination is high, trying to make the 

velocity variations of the bottom of the model more sensible, i.e. where the illumination is poor. I used 

a three-step interpolation procedure to pass from the coarse to the modelling grid. In the first step each 

coarse row is interpolated linearly along row-direction to obtain a row of 1563 grid nodes, the same 

horizontal dimension of the modelling grid rows. Then each grid node is translated downward of a 

certain quantity, function of the row direction, to simulate the topography of the model. Eventually, each 

column is interpolated along the depth direction to obtain the column dimension of the modelling grid.  

The fine inversion grid (the red points in Figure 8.15) consists of 2260 grid nodes, organized in 20 rows. 

Also in this case the number of grid nodes per rows decreases as a function of depth from 151 nodes for 

the first row to 75 nodes for the last one, and I use a similar three-step interpolation procedure to obtain 

the modelling grid from the coarse one. 

 
Figure 8.15: Fine grid (red points) and coarse grid (black points) superimposed on the modelling grid. 

8.5.3 Inversion procedure 

As inversion procedure, I use the following two-step approach: 

• in the first step I use the GA algorithm to estimate a smooth model on the coarse inversion grid; 

• in the second step I use the conjugate gradient algorithm on the fine inversion grid, using the best 

GA model as starting model. 

8.6 The genetic algorithms parameters 

As we saw in Chapter 6, the GA algorithms have some parameters that must be tuned up to perform the 

optimization efficiently. 

The search domain (Figure 8.16) consists of the search ranges of the 105 unknows, that varies from 2 

km/s to 6 km/s for the unknowns of the first row of the coarse grid and from 5.5 km/s to 7.7 km/s for the 



8. Experience of FWI on real land data 

 

97 

97 

unknowns of the last row. The range of the unknows decrease with the depth, passing from 4km/s for 

the first row to 2km/s for the last one, to avoid possible high-velocity variations of the model that are 

not possible to estimate from the observed data. 

The dimension of the GA initial population is set to 𝑛𝑝𝑜𝑝 = 1050 and the models of initial population 

are chosen randomly inside the velocity ranges, the selection rate is set to 0.8 and the mutation rate is 

set to 1/105, according to the value of Table 6.3, with 𝑛 = 105. 

Finally, I parallelize the computational of 840 offsprings of the new population using 7 servers   Intel(R) 

Xeon(R) CPU E5-2630 v4 (20x 2.20GHz) and 128 GB DDR4 RAM. 

 

 
Figure 8.16: Search domain consisting of the search range, that varies from 2 km/s to 6 km/s for the unknowns of first 

row of the coarse grid and from 5.5 km/s to 7.5km/s for the unknowns at last row. 

8.7 Global FWI using GA 

In the first step, I consider a GA minimization on the coarse inversion grid (Figure 8.15). 200 generations 

are performed, corresponding to an initial population of 1050 individuals and 168000 offsprings, 840 

for each generation.  

Figure 8.17 shows the evolution of the data misfit during the GA minimization procedure. The red and 

the blue curves represent the mean and the lowest misfit of the various generations, respectively. All 

these values are divided by the lowest misfit value of the first generation. We can note: 

• a decrease of the blue curve, that passes from 1 to about 0.47 at the 200 generation, with a 

substantial flattening of the curve after 160 generations;  

• a decrease of the distance between the blue and the red curves, which passes from 0.24 to about 

0.0064 at the last generation; 

These two facts could imply a concentration of the individuals of the population in a specific zone of the 

search domain, where the global minimum of the misfit function could be. To verify this, in Figure 8.18 

the average value of the distance between the individuals of the population as a function of the generation 

is showed, divided by the average distance of the first generation. We can note a significant reduction 

of this value, which passes from 1 to 0.1, and a flatting of the curve after 190 generations. 
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Figure 8.17: Evolution of the misfit as a function of generations. The blue curve represents the lowest misfit obtained by 

each generation, whereas the red curve represents the mean misfit. All these values are divided by the lowest misfit value of 

the first generation. 

 
Figure 8.18: Evolution of the average distance between the individuals of the population as a function of the generation, 

divided by the average distance of the first generation. 

Figure 8.19 shows the GA model with the lowest misfit value at the first generation (Figure 8.19a), and 

the last generation (Figure 8.19b), interpolated on the modelling grid. To check the sensitivity of the 

misfit function as a function of the different parts of final model, in Figure 8.19c I represented the 

absolute values of the diagonal elements |
𝜕2𝑓

𝜕𝑥𝑖2
|  of the Hessian matrix, interpolated on the modelling grid. 

A large element indicates that the corresponding unknowns 𝑥𝑖 is well resolved, which means that the 

misfit function increases substantially if the value of this unknown is changed. 
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 As we expect, there is a low sensitivity of the unknows on the lateral sides of the model because of the 

poor illumination of the seismic data in these zones. Besides, there is a decrease of the sensitivity range 

along the x-direction as a function of the depth.  

 
Figure 8.19: a) Best GA model at first generation on the modelling grid; b) best GA model at last generation on the 

modelling grid; c) the values of the diagonal elements of the Hessian matrix interpolated on the modelling grid. The misfit 

function is not sensible to the region outside the black curve.  

The model obtained shows a velocity range between 2.5𝑘𝑚/𝑠 in the shallow part and 6 𝑘𝑚/𝑠 at about 

4-5 km, in agreement with the geological context [82] [83]. The upper part (above 500 m) is dominated 

by Neogene continental and marine sediments and by the Ligurian units with a velocity between 

2.5 𝑘𝑚/𝑠 and 4 𝑘𝑚/𝑠. At a depth of 500𝑚 until 1𝑘𝑚, the velocities contrast indicates the metamorphic 

basement, which is considered very shallow in this area and characterized by a velocity slightly higher 

than 5 − 6 𝑘𝑚/𝑠,.  The deeper part of the model presents a high-velocity zone (about 7 km/s), which 

climbs up from North to South. This area could be associated with the emplacement of magmatic bodies 

[84]. 

The inversion velocities situated on the bottom corners of the model are not reliable because of the very 

low sensitivity of the misfit function to these parts of the model. Finally, there is a low-velocity zone 

situated between 36 and 39 𝑘𝑚 at a depth of 3𝑘𝑚, given by the value of 87th unknown of the coarse 
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grid, which has a value of 4.7 𝑘𝑚/𝑠. This value represents a significant anomaly compared to the 

surrounding area that has a mean velocity of about 6 𝑘𝑚/𝑠. However, it is likely a numerical artefact 

caused by the random mutations of the GA and the low sensitivity of the misfit function for this area. 

To check this fact, in Figure 8.20 I studied the behaviour of the misfit function, varying only the value 

of the unknown that causes this anomaly in a range between 3 km/s and 6.5 km/s. We can note also the 

presence of a pronounced local minimum around the velocity of 5.7 𝑘𝑚/𝑠 in accordance with the 

velocity of the surrounding zone. 

 
Figure 8.20 The behaviour of the misfit function, varying the value of the 87th unknown in a range between 3 km/s and 

6.5 km/s, and using the values obtained by the GA algorithm at the last generation for the other unknowns. The red point 

represents the value obtained by the GA algorithm. 

On the seismograms, replacing the value of the 87th unknown with the velocity of 5.7 𝑘𝑚/𝑠, no 

significant difference is noted except for the part of backward ES experiment at long offset, which is 

characterized by a low S/N ratio. This also suggests the non-reliability of this inversion velocity.  

The Figure 8.21 shows the model obtained by the one of Figure 8.19b, replacing the value of the 87th 

unknown with the velocity of 5.7 𝑘𝑚/𝑠. I will consider this last model as the best GA model.  

 
Figure 8.21: The model obtained by the one of Figure 8.19b, replacing the value of the 87th unknown with the velocity of 

5.7 km/s, interpolated on the modelling grid. This is considered as the best GA model. 

Finally, Figure 8.22 and Figure 8.23 show a comparison between the predicted and the observed 

seismograms relative to leftmost shot for the model with the lowest misfit value at the first generation 

of GA (Figure 8.22) and the best GA model (Figure 85). a) and b) in each figure display the predicted 

seismogram and the difference (in module) between the observed and predicted seismogram, 
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respectively. Note a general partial match of some of the main events on the seismograms. A similar 

comparison of the predicted and the observed seismograms for the backward ES experiment is in Figure 

8.24 and Figure 8.25. 

 

 
Figure 8.22: a) The predicted data of the leftmost shot, using the best model of the first generation of GA (Figure 8.19a) 

and b) the difference between the observed and the predicted seismograms. 
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Figure 8.23: a) The predicted data of the leftmost shot, using the best model of the best GA model (Figure 8.21) and b) 

the difference between the observed and the predicted seismograms.  
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Figure 8.24: a) The predicted data of the backward ES, using the best model of the first generation of GA (Figure 75a) 

and b) the difference between the observed and the predicted seismograms. 
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Figure 8.25: a) The predicted data of the backward ES, using the best model of the best GA model (Figure 8.21) and b) 

the difference between the observed and the predicted seismograms. 

8.8 Local FWI starting from the best GA model 

For the second step, I used the best GA model (Figure 8.21) obtained in the previous step as starting 

model on the fine inversion grid (the red points in Figure 8.15), for a local optimization of the misfit 

function. As a local algorithm, I make use of the Conjugate gradient method [66], where the descend 

direction ℎ𝑘  and the step length 𝛾𝑘  are computed as described in the previous chapter in Section 7.5.  

Figure 8.26 displays the evolution of the data misfit, in which we can note a decrease of about 49% of 

the initial value. However, after 200 iterations the minimization procedure seems to reach a stable value 

of the data misfit, and this is therefore we stop the iterative procedure.  
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Figure 8.26: Evolution of data misfit for the local minimization procedures on the fine inversion grid. 

Figure 8.27a shows the final model obtained at the end of the procedure, whereas Figure 8.27b shows 

the difference between the final and the starting model.  

 
Figure 8.27: a) The final model obtained by the local minimization interpolated on the modelling grid and b) the 

difference between the final local model and the starting one (best GA model interpolated on the modelling grid). 

In the upper part of the model until a depth of 2 km there is a significant change of the velocity values, 

but the long-wavelength structures of the starting model are not significantly changed. Finer details are 

added to the bottom part of the model where there is the high velocity zone of 7 km/s. Eventually, no 

significant changes are observed in the zone of velocity anomaly previously analyzed.  
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As proof of the effectiveness of the two-step method described, in Figure 8.28 I show final predicted 

seismograms (Figure 8.27a) and the difference between the predicted and the observed seismograms 

(Figure 8.27b), relative to the leftmost shot. A similar comparison for the backward ES experiment is in 

Figure 8.29. 

 
Figure 8.28: a) The predicted data of the leftmost shot, using the final model of the local minimization (Figure 8.27a), 

and b) the difference between the observed and the predicted seismograms.   
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Figure 8.29: a) The predicted data of the backward ES experiment using the final model of the local minimization (Figure 

8.27a), and b) the difference between the observed and the predicted seismograms. 

 

8.9 Post-stack migration using the best FWI model 

Using the final velocity model obtained by the FWI procedure (Figure 8.27a), I perform a post-stack 

depth Kirchoff migration of the available stacked seismic section, with the final velocity model obtained 

by the FWI procedure shown Figure 8.27a. Figure 8.30a shows the migrated section obtained up to the 

depth 𝑍 = 6𝑘𝑚, whereas Figure 8.30b shows the final model superimposed to the migrated section. As 

can be noted, the main stronger events are in accordance with the higher velocity contrasts observed in 

the model and located at a depth between 0.25 and 2 𝑘𝑚.  
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Figure 8.30: a) Depth section obtained after the post-stack depth migration of the time section until T=3s, using the model 

in Figure 8.27a. b) Depth section superimposed on the velocity model. Note the good correspondence between the main 

stronger events and the higher velocity contrasts observed in the model and located at a depth between 0.25 and 1 km. 

Because of the low S/N ratio of the seismic data, it was not possible to obtain additional information 

from the Common Image Gathers, or CIGs, computed by the pre-stack depth migration of the seismic 

data. 

8.10 Conclusions and results 

In this chapter, I described an acoustic FWI experience made on a 2D seismic land data. In particular, I 

used a two-step procedure based first on the application of the GA on a coarse grid, and then of the 

conjugate gradient algorithm on a fine inversion grid, using the best GA model as starting model. 

The final model agrees with the geological context, and the quality of the result is assessed by the good 

correspondence between the predicted and the observed data. Moreover, the depth section obtained by 

the post-stack migration reveals some events in accordance with the higher velocity contrasts observed 

in the final model. 



 

Chapter 9.  

Experience of local FWI on real marine data 
 

In this final chapter, I illustrate the application of local FWI on a 2D marine seismic profile to estimate 

an acoustic velocity field for a pre-stack depth migration of the seismic data. As a starting model of the 

local procedure, I have used a model presented in [10] by a global optimization method based on GA. 

The synthetic seismograms and the gradient of the misfit function are computed using the fullwave2D 

code. See [85] for more details. The authors wish to thank ENI for the permission to present the results. 

9.1 The seismic data 

The seismic data pertains to an inline 2D data set extracted from a 3D marine acquisition, acquired by 

ENI. The total length of the seismic profile is about 11.5km and consists of 765 shot gathers. The sources 

are located at a depth of 12.5𝑚 and separated by the same distance ∆𝑠= 12.5m. Each shot gather is 

formed by 159 receivers located at a depth of 12.5𝑚, with a uniform spacing between receivers ∆𝑟=

25𝑚. The minimum offset is 150𝑚, while the maximum offset is about 4.1𝑘𝑚. The time sampling is 

𝑑𝑡 = 4 𝑚𝑠, while the recording time is 𝑇 = 4.6𝑠. The seabed is considered flat with a depth of 

approximately 300𝑚 and the water velocity is equal to 1.48𝑘𝑚/𝑠. 

To reduce the computational cost of the FWI, the length of the examined area is cut to the part of the 

seismic profile between the CDP 161 and 737, for a total length of about 7.2𝑘𝑚. Besides, I have selected 

only 56 shot gathers distributed along this part of the profile, with a uniform distance of ∆𝑠= 125𝑚. 

Figure 9.1 shows a sketch of the seismic profile: the red row represents the part of the profile used for 

the inversion, whereas the black and red points represent the position of the sources considered. 

 
Figure 9.1: Sketch of the seismic profile: the red row represents the part of the profile used for the inversion, whereas 

the black and red points represent the position of the sources considered. The seismograms of the red point sources are 

displayed in Figure 9.2. 

 Eventually, I have reduced the record length to 𝑇 = 1.6𝑠 and the maximum offset to about 2km, to 

focus the inversion on the diving waves and the shallow reflections of the data. In this way, the number 

of traces for shot gather changes from a minimum of 7 traces for the first shot to a maximum of 80 for 

the shots between 16 and 56, for a total number of 3910 traces. 
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Figure 9.2 shows three of the shot gathers at the begin, at the middle and the end of segment considered 

for the inversion procedure. Note that the number of seismic traces of each shot depends on its position 

along the profile. 

 
Figure 9.2: Three of the 56 shot gathers considered for the inversion procedure. Note the number of seismic traces of 

each shot depends on its position along the profile. 

9.2 Processing of the seismic data for 2D acoustic FWI 

To perform a FWI I design a specific processing sequence to carry out on the observed and synthetic 

data, similar to that of the previous chapter, consisting of: 

• a muting mask to focus the inversion on the diving waves and the shallow reflections of the 

data, with a time window length that varies from a minimum of 0.1 s to a maximum of 0.5 𝑠; 

• a low-pass filter up to 10𝐻𝑧, to reduce the cycle skipping effect and to consider low frequencies 

during the inversion procedure; 

• a trace envelope to reduce the non-linearity of the misfit function, and enforce the information 

of low frequencies; 

• a trace normalization to enforce the information of the seismograms at longest offset and 

because the modelling is 2D and cannot reproduce 3D geometrical spreading. 

The set of the processing operations can be expressed as the application of a processing operator 𝐺: 

𝐺(𝑢0(𝒙, 𝑡)) = 𝐺4 (𝐺3 (𝐺2 (𝐺1(𝑢0(𝒙, 𝑡))))), 
(9.1) 

where: 

• 𝑢0(𝒙, 𝑡) are the observed seismograms; 

• 𝐺1 is the muting operator; 

• 𝐺2 is the filtering operator; 

• 𝐺3 is the trace envelope operator; 

• 𝐺4 is the trace normalization operator. 

Note that all these operations involve only the recording time and are independent of the position of the 

receivers. Figure 9.3 shows the gather of Figure 9.2, after the processing sequence. 
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Figure 9.3: Seismogram of Figure 9.2a, after the processing sequence (muting, filtering, trace envelope and trace 

normalization). 

9.3 Preparation of the modelling to compute the synthetic seismograms 

As in the previous chapter, to use the modelling code fullwave2D for an acoustic FWI procedure, it is 

necessary the set the modelling parameters. 

9.3.1 Discretization in space 

I fixed the length of the velocity model to 𝑋 = 7 𝑘𝑚 and the depth to 𝑍 = 1.2 𝑘𝑚, where the zero level 

corresponds to the sea-air interface. As modelling grid parameters, I consider a space sampling of 𝑑𝑥 =

30𝑚 (with 𝑑𝑥 = 𝑑𝑧), with 𝑛𝑥 = 242 and 𝑛𝑧 = 40, and I use a local order of approximation of the 

spatial derivative 𝑝𝑜𝑟𝑑 = 𝑝𝑙𝑜𝑐. Figure 9.4 shows the modelling grid. 

 
Figure 9.4: Modelling grid with nx=242, nz=40, and dx=dz=30m. The blue colour area corresponds to the water layer. 

9.3.2 Discretization in time 

To assure numerical stability, Equation (2.18) must be satisfied, that means 𝑑𝑡 ≤ 0.0043𝑠, where I 

consider a maximum acoustic velocity of 3.5𝑘𝑚/𝑠.  Due to this fact, the time sampling is fixed to 𝑑𝑡 =

0.004𝑠, that is the same of the recording sampling of the observed seismograms. Besides, I consider a 

modelling time of 𝑇 = 1.6𝑠. 
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9.3.3 Estimation of the seismic wavelet 

The source wavelet is estimated using a similar sequence of the previous chapter, but on the sea-bed 

reflection. Figure 9.5a and Figure 9.5b show the estimated wavelet as a function of time and frequency, 

respectively.  

 
Figure 9.5: Estimated wavelet as a function of a) time and b) temporal frequency. 

9.3.4 Source and receivers position 

The position of the sources and receivers of all the 56 shots were extracted from the headers of seismic 

traces. The positions along the x-direction are approximated using the header information relative to the 

CDP points, whereas the positions along the z-direction are 12.5m, under the sea surface. The 

corresponding grid node positions are obtained sampling these measures by dx=30m.   

9.3.5 Boundary conditions 

I consider a reflecting boundary condition for the top side of the model to simulate the sea -air contrast 

of velocity and density, whereas, for left, right and bottom sides of the model I consider absorbing 

boundary conditions, with absorbing boundary layers of 30 grid nodes. 

9.4 Setting the misfit function and the inversion grid 

9.4.1 Misfit function 

As misfit function I use the mean of all the 𝐿1-norm difference between the observed and the synthetic 

seismograms: 



9. Experience of local FWI on real marine data 

 

113 

113 

𝐹(𝑣) = ∑(∑(∑|𝐺(𝑢(𝑣, 𝑡𝑘, 𝒙
𝑠, 𝒙𝑟,𝑠)) − 𝐺(𝑢0(𝒙, 𝑡𝑘, 𝒙

𝑠, 𝒙𝑟,𝑠))|

𝑛𝑡

𝑘=1

 ) 𝑑𝑡

𝑛𝑠,𝑟

𝑟=1

)

56

𝑠=1

. (9.2) 

where: 

• 𝑛𝑠,𝑟 is the number of receivers for each source; 

• 𝒙𝑠 are the positions of the sources; 

• 𝒙𝑟,𝑠 are the positions of the receivers, different for each source; 

• 𝑡𝑘 are the temporal samples of the seismograms; 

• 𝑢0(𝒙, 𝑡𝑘, 𝒙
𝑟 , 𝒙𝑠) are the observed seismograms; 

• 𝑢(𝑣, 𝑡𝑘 , 𝒙
𝑟 , 𝒙𝑠) are the synthetic seismograms; 

• 𝐺 is the processing operator, as in Equation (9.1).   

Note that the operator 𝐺 is applied to the observed and synthetic seismograms. 

9.4.2 Inversion grid  

As inversion grid, I make use of a fine inversion grid, which is a subset of the modelling grid of Figure 

7.3, for a total number of 7260 unknows. Note that the first ten rows of the modelling grid are not 

included in the fine inversion grid, because we suppose to know the water layer velocity of 1480 𝑘𝑚/𝑠 

up to the seabed at 300𝑚. In Figure 9.6 the set of red points represents the fine inversion grid.  

 
Figure 9.6: Fine inversion grid (the red points) and modelling grid. 

9.4.3 Inversion procedure and initial model 

As local algorithm I make use of the conjugate gradient method [66], where the descend direction ℎ𝑘  

and the step length 𝛾𝑘  are computed as described in Section 7.5. The search domain is very general and 

consists of the search ranges of the 7260 unknows, that varies from 1300 𝑚/𝑠 to 3750 𝑚/𝑠 for all the 

unknowns. 

9.4.4 The initial model 

We have seen that the initial model 𝑣𝑝
0 plays an essential role in a highly non-linear inverse problem 

such as FWI. As initial model, in this test, I have used the velocity model obtained from a previous 

inversion (Figure 9.7), that makes use of the application of genetic algorithms on a coarse grid. The 

details and the results can be found in [86] and [10]. The model accuracy is checked through the degree 

of flattening of the events on the CIGs, obtained after the pre-stack Kirchhoff depth migration (PSDM).  
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Figure 9.11a shows 11 CIGs evenly spaced along the profile up to 1.2 km of depth (the maximum depth 

of the modelling grid), computed with the starting model of Figure 9.7. In this figure, a trace-by-trace 

normalization and a gain function are applied for display purposes. A preliminary alignment of some 

events can be observed, but the gathers still present complex move-outs that can be reduced using a local 

FWI based on a gradient line-search method. 

 
Figure 9.7: Starting model for the local minimization procedure, pre-estimated by a global optimization procedure using 

the GA. 

9.5 Local FWI starting from a pre-estimated model 

I perform 200 iterations of the minimization procedure. Figure 9.8 displays the evolution of the data 

misfit, with a decrease of about 53 % at the last iteration. Figure 9.9 shows a comparison of four vertical 

velocity profiles obtained at the end of the inversion process, related to four CDP positions along the 

seismic profile (the green points in Figure 9.7). The long-wavelength structure of the starting model is 

not significantly changed, except for the upper part just below the seabed where a significant change of 

the velocity values can be noted. Figure 9.10 shows the difference between the observed and predicted 

data for two shot gathers before and after the optimization procedure, where the decrease of the 

differences of the inverted data can be observed. 

Finally, Figure 9.11b shows the CIGs obtained by pre-stack depth migrating the data, using the final 

velocity model of the minimization procedure. Comparing Figure 9.11a and Figure 9.11b, a significant 

improvement of the horizontal alignment of the events can be noted, especially for the events just below 

the seabed reflection and located in the central part of the model, between 300𝑚 and 600𝑚 of the depth.  

9.6 Conclusions and results 

In this chapter, I have described an acoustic FWI experience made on a 2D seismic marine data. In 

particular, I have used an inversion procedure based on a local optimization algorithm, and a specific 

processing sequence applied either on the observed and the predicted data to reduce the non-linearity of 

the misfit function. This procedure has allowed us to make the whole procedure more robust against the 
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cycle skipping problem, and applicable at low seismic frequencies where the S/N ratio could be low. 

Starting from a velocity model obtained by a previous global optimization procedure based on genetic 

algorithms I have estimated a final model whose quality is assessed by the good correspondence between 

the predicted and the observed data and by the improvements of the horizontal alignment of the events 

in the CIGs, obtained by a PSDM Kirchoff depth migration. 

 

 
Figure 9.8: Evolution of the data misfit for the local minimization procedures. 

 

 

 
Figure 9.9: Comparison of four vertical velocity profiles: the red curves represent the velocity profiles related to the 

starting model; the blue curves represent the velocity profiles related to the final model. 
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Figure 9.10: Observed data for two shot gathers (left) and the difference between the predicted and the observed data 

before (center) and after (right) the local inversion. 

 
Figure 9.11: CIGs derived from PSDM (Kirchoff) using a) the starting velocity model for the local optimization and b) 

the final velocity model obtained at the end of the local optimization procedure. 

 



 

Conclusions 
In my Ph.D. I have obtained the following outcomes concerning different topics of the Full 

Waveform Inversion: 

• an algorithm for the solution of the 2D acoustic wave equation to model the predicted 

seismograms in the context of the seismic exploration. This scheme is characterized by a local 

order of approximation of the spatial derivatives to reduce the computational time and the 

approximation error;  

• an efficient algorithm to compute the gradient of a misfit function using the well-known adjoint 

method. This algorithm considers the 𝐿𝑛-norm difference between the synthetic and the observed 

seismograms as misfit function, and includes also the possibility to execute a simple processing 

sequence on the synthetic seismograms; 

• a comparison of the performances of two global optimization algorithms, the Adaptive Simulated 

Annealing and the Genetic algorithms, on some analytic test functions representing different 

scenarios of the misfit function; 

• an application of FWI on a classical synthetic seismic inversion problem on the Marmousi model; 

• an application of FWI on a 2D seismic line acquired onshore in South Tuscany, characterized by 

data with a very low S/N ratio; 

• an estimation of an acoustic velocity field for a 2D marine seismic profile, using a local FWI 

procedure, and a specific processing sequence on the seismograms; 

• an implementation of the developed algorithms in a tool, called fullwave2D, to use in the context 

of seismic inversion problems. 

Nowadays the Full Waveform Inversion represents an important research topic in seismic exploration. 

In my Ph. D I studied some of the most important aspects concerning the modelling and the inversion 

techniques, under the hypothesis of a 2D acoustic approximation. The efficient procedures implemented  

for the solution of the wave equation, the adjoint method, and the global and local optimization 

techniques allow solving complex FWI problems both on synthetic and real data. 

Moreover, the applications of these tools on real data allow testing the reliability and the efficiency of 

these modelling and inversion techniques, that otherwise would remain unproven working only on 

synthetic data. 

Future steps of my research will be the analysis and the development of new tools in more complex 

scenarios such as 3D and/or elastic context. 

 





 

Appendix A.  

Implementation details of fullwave2D 
In this appendix, I describe the details of the implementation of the code fullwave2D, presented in 

Chapter 4. In particular, I consider the software and hardware requirements, the code organization, the 

input and output files, and how to compile and execute the software. 

A.1  Software and hardware requirements 

1. Operating system: the code is designed to run on a generic version of Linux or Unix. It has been 

tested on Ubuntu, Centos and Slackware version of Linux and on the BSD version of Unix that 

underlies MAC OS X. It is not designed to run under Microsoft Windows. However, it is possible 

to run the code on Linux version installed on Microsoft Windows virtual machine. 

2. Compiler: the code is written in C++ and has been compiled and tested under the gnu compiler 

suite g++ version 4.4. It does not require specific scientific library, such as GNU Scientific Library 

(GSL), but only the standard libraries of gcc compiler. All the names of the libraries can be found 

in the file library.h.  

3. Hardware: the solver is designed to run on every computer with a generic version of Linux or 

MAC OS X. It was tested on machines with different type of CPU (i5-dual core, i7-quadcore, i- 

Xeon-multicore) and different RAM sizes (8GB, 16GB, 32GB and 64GB). The clock-speed 

influences the computational time of the code. The size of the RAM influences the dimension of 

problems that can be managed.  

A.2  Code organization 

The code is organized into the following directories: 

1. src/, that contains all the source codes, that is the .cpp files and .h file of the code to be compiled 

by the Makefile; 

2. utils/, that contains some octave codes for utilities; 

3. work_example/, that contains an example to run the code for the Marmousi model. 

The Makefile file contains the instructions to compile the code.  The README file provides more 

specific information about the internal structure of the code. 

A.2.1 Files in src/ 

The source code is divided into many .cpp files to better organize the specific functions and for clarity 

reason. Here is a list of the more important file: 

• main.cpp: this file represents the main function, which starts of the program. It initializes many 

global parameters, prints the modelling information on terminal, and calls all the other functions; 

• read_runfile.cpp: this function reads the Runfile file, in which the parameters required to run the 

code are contained; 

• matrixK_acoustic.cpp: this file contains the functions to compute the stiffness matrix, that is the 

matrix of finite difference coefficients for the approximation of the spatial derivatives; 



A. Implementation details of fullwave2D 

 

 

120 

120 

• modelling.cpp: this file contains the functions that controls the information about the sources, 

the receivers, and calls the functions to compute the stiffness matrix; 

• receivers.cpp: this file contains the functions to read the receiver coordinates from the receiver 

file; 

• source.cpp: this file contains the functions to read the source coordinates from the source file 

and to read the source wavelet from the wavelet file; 

• boundary.cpp:  this file contains the functions to build the boundary conditions, reflecting or 

absorbing ones; 

• model_param_acoustic.cpp: this file contains the functions to read the velocity model file;   

• read_obs.cpp: this file contains the function to read the observed seismograms in case of misfit 

or gradient computation task;  

• read_mute.cpp:  this file contains the function to read the possible mute file to be applied to the 

observed and/or synthetic seismograms; 

• processing.cpp: this file contains the function to apply the possible set of processing operations 

to the observed and/or synthetic seismograms; 

• read_filter.cpp: this file contains the function to read the possible filter file to be applied to the 

observed and/or synthetic seismograms; 

• filter_bp.cpp: this file contains the function to apply the possible filter operation to the observed 

and/or synthetic seismograms; 

• envelope.cpp: this file contains the function to apply the possible envelope operation to the 

observed and/or synthetic seismograms; 

• adjoint_source.cpp: this file contains the function to compute the adjoint source in case of the 

computation of the gradient of a misfit function related to the velocity model;  

• forward.cpp: this file contains the function for the computation of the predicted seismograms;  

• misfit.cpp: this file contains the function for the computation of the misfit between the predicted 

and the observed one; 

• gradient_acoustic.cpp: this file contains the function to compute the gradient of a misfit function 

related to the velocity model. 

In the library.h file there are the declarations of all the C++ libraries necessary to run the code, the 

prototypes of all the c.pp functions.   

A.2.2 File in utils/ 

In this directory, there are some useful functions, written in Matlab code, to build the file necessary to 

run the code: 

1. write_source(source,name_source): this function builds the wavelet file with a name specified 

by name_source, and one or more wavelets specified by the struct source; 

2. write_Vp(V, V_name): this function builds the velocity model with a name specified by V_name 

and the 2D model specified as a matrix V; 
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3. seismogram=read_seismogram(name_file): this function reads the synthetic seismograms, 

whose name is specified by name_file and returns as output a structure, formed by the different 

seismograms, organized as matrixes; 

4. build_filter(name_file,nt,dt,[fl,fh]): this function builds a filter file, whose name is specified by 

name_file, which has a sampling time of dt, a number of samples of nt and a bandpass between 

fl and fh. 

More details about these functions can be found in the first lines of the code of each function  

A.2.3 File in work_example/ 

In this directory, there is an example of working directory for the code.  

1. MarmousiOrig.bin is a binary file representing the velocity model, that is the Marmousi model 

(𝑛𝑥 = 384, 𝑛𝑧 = 122); 

2. MarmousiSmooth is a binary file representing a smooth version of the Marmousi model; 

3. Source.txt and Receivers.txt are text files, representing the acquisition layout of 2 sources and 

384 receivers; 

4. Wavelet.bin is a binary file, representing the wavelet, that is a Ricker function with a peak 

frequency of 6𝐻𝑧;  

5. Runfile.txt is a text file, in which the information about the modelling parameters are specified 

(𝑑𝑥 = 24𝑚, 𝑑𝑡 = 0.002, 𝑇 = 3𝑠, etc…). 

A.3  Input files 

A.3.1 The Runfile file 

The runfile is a text file that specifies the modelling parameters to run the code and the possible 

processing operations to run on the synthetic data. The runfile file for Marmousi model, located in the 

subdirectory work_example/, is sketched in Figure A.1. 

Each command line is organized as “name_command = value_of_command”. A blank space before and 

after the equal sign is necessary to ensure the correct reading of the runfile by the code.  

The runfile supports the following parameters:  

• Source_name: name of the source file;  

• Source: number of sources, specified in the source file; 

• Wavelet: number of wavelets, specified in the wavelet file. The value of this parameters can be 

1 or equal to the number of sources. In the first case, there is a unique wavelet for all the sources; 

In the second case, there are many wavelets as many sources; 

• Receivers_name: name of the receivers file:  

• Receivers: number of total receivers, that is the sum of all the numbers of receivers of all the 

seismograms; 

• dx: space sampling along the length; 

• dz: space sampling along the depth; 

• nx: number of grid nodes along the length; 

• nz: number of grid nodes along the depth; 
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• p-order: order of approximation of the spatial derivatives, that can be an even number between 

2 and 24 or “optimized”, if you want to use a local order of approximation of the spatial 

derivatives; 

• freq_max: specifies the highest frequency considered during the modelling (this parameter is 

active only if p-order = optimized); 

• top_boundary: number of boundary layers at the top of the model. 0=free surface; >0 absorbing 

layers with specified thickness in grid points; 

• bottom_boundary: number of boundary layers at the bottom of the model. 0=free surface; >0 

absorbing layers with specified thickness in grid points; 

• left_boundary: number of boundary layers at the left of the model. 0=free surface; >0 absorbing 

layers with specified thickness in grid points; 

• right_boundary: number of boundary layers at the right of the model. 0=free surface; >0 

absorbing layers with specified thickness in grid points; 

• dt: time sampling in seconds; 

• time_recording: recording time in seconds; 

• time_modelling: if 0 modelling time is equal to the recording time; if >0 the modelling time is 

equal to the length of the wavelet/wavelets; 

• force_stability: if >0 code forces the numerical stability, subsampling the time sampling until 

stability condition is reached; 

• processing: if 0 the processing operations are performed only on the synthetic data; if 1 also on 

the observed data; 

• trace_equalization: if 0 no trace equalization, if 𝑛 > 0 then the trace equalization is applied to 

the synthetic and/or observed seismograms as nth processing operation; 

• mute: if 0 no mute operation, if 𝑛 > 0 then the mute operation is applied to the synthetic and/or 

observed seismograms as nth processing operation; 

• filter: if 0 no filter operations, if 𝑛 > 0 then the filtering is applied to the synthetic and/or 

observed seismograms as nth processing operation; 

• envelope: if 0 no envelope, if 𝑛 > 0 then the envelope operation is applied to the synthetic and/or 

observed seismograms as 𝑛𝑡ℎ processing operation; 

• mute_file: name of the muting file; 

• filter_file: name of the filtering file; 

• obs_file: name of the observed seismograms file; 

• misfit: vector norm used for the misfit computation between the observed and the synthetic 

seismograms;  
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Figure A.1: Sketch of the Runfile for Marmousi model, located in the subdirectory work_example. 
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A.3.2 The Source file 

The information about the position of the sources on the modelling grid are contained in a text file, 

whose name is specified in the runfile file. The source file, located in work_example/ is sketched in Figure 

A.2. 

 
Figure A.2: Sketch of the Source file, located in the subdirectory work_example. 

The first column contains the position of the sources along the length of the grid. The second column 

contains the position of the sources along the depth of the grid. The third column contains the number 

that identify each source. The code checks if the positions of the sources are consistent with the 

dimension of the grid and if the number of sources in the source file is consistent with the number of 

sources declared in the runfile. 

A.3.3 The receiver file 

The information about the position of the receivers on the modelling grid are contained in a text file, 

whose name is specified in the runfile file. The receiver file, located in work_example is sketched in 

Figure A.3. The first column contains the position of the receivers along the length of the model. The 

second column contains the position of the receivers along the depth of the model. The third column 

contains the number of source to which each receiver belongs.  

The code checks if the positions of the receivers are consistent with the dimension of the grid and if the 

total number of receivers in the receiver file is consistent with the number of receivers declared in the 

runfile. 
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Figure A.3: Sketch of the Receiver file, located in subdirectory work_example. 

A.3.4 The velocity model file 

The information about the velocity model is contained in a binary file, whose name is specified during 

the execution of the command. The byte structure is organized as follow: the first eight byte are reserved 

to the dimension of model, 𝑛𝑥 and 𝑛𝑧,stored as integers. Figure A.4 shows a sketch of the organization 

of the velocity model file. Then, the model samples are stored for rows as doubles. The code checks that 

the model sizes are correct and that the maximum velocity in the model is consistent with the numerical 

stability condition. 
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Figure A.4: Sketch of the organization of the velocity model file. 

A.3.5 The wavelet file 

The information about the wavelet is contained in a binary file, whose name is specified during the 

execution of the command (see on the Section A.5). The byte structure can be of two types: 

• in case of single wavelet for all the sources, first the length of the wavelet is specified as integer; 

then the wavelet samples are stored as double; 

• in case of the number of wavelet is equal to the number of sources, first each length of each 

wavelet is specified as integer; then each wavelet is stored as double; 

The code checks that the dimensions of the wavelets are consistent.  

A.3.6 Some other files 

In case of a misfit or gradient computation problem, a file of the observed seismograms must be present 

with the name specified in the runfile. The format and the dimension of this file must be the same of one 

of the synthetic seismograms. The code checks if its dimensions are correct.   

In case of a muting operation on the synthetic and /or observed seismograms, a muting file must be 

present with the name specified in the runfile. The format and the dimension of this file must be the 

same of one of the synthetic seismograms. The code checks if its dimensions are correct.  

In case of a filtering operation on the synthetic and /or observed seismograms, a filter file must be present 

with the name specified in the runfile. The build of the filter file can be done using the function 

build_filter located utils. 

A.4  The output file 

The output data, whose name is specified during the execution of the command, is contained in an output 

file that depends on the type of problem the code has solved. 

In case of a modelling problem, the output file is formed by all the synthetic seismograms, stored in a 

binary format used by the code, very similar to the format of a sgy file, and organized as follow: first the 

information about the acquisition layout is specified in a File Header, then all the seismic traces are 

stored as float, starting from the ones of the first source, and ordered as in the receiver file. In the File 

Header first the number of sources, receivers and recording samples are stored as integer. Then the 

recording sampling is stored as a float.  

In case of a misfit problem, the output file is a binary file, that contain the value of the misfit, stored as 

a double.  

In case of a gradient computation, the output file is a binary file, with a byte structure like the structure 

of the velocity model, with the values of the gradient in place of the value of the velocities.  
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A.5  Compiling and running the fullwave2D code 

1. Compilation: compiling the code is done simply by typing make on a terminal in the main 

directory. This command executes the Makefile file, compiling all the .cpp files contained in the 

src directory and producing a binary file named fullwave on the main directory. The removal the 

binary file is done by typing make clean.  

2. Execution: the code is run with the command: 

./fullwave type_of_problem runfile velocity_model wavelet output, 

 with:    

• Type_of_problem is the type of problem, that is modelling, misfit or gradient; 

• Runfile is the name of the runfile; 

• Velocity_model is the name of the velocity model; 

• Wavelet is the name of source wavelet; 

• Output is the name of the output file of the code, that can be the seismograms, the 

misfit value or the gradient of a misfit function for the velocity_model. 
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