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Abstract
Unlike wavelet, shearlets have the capability to detect directional

discontinuities together with their directions. To achieve this, the
considered scaling matrices have to be not only expanding, but also
anisotropic. Shearlets allow for the definition of a directional multiple
multiresolution analysis, where perfect reconstruction of the filterbank
can be easily ensured by choosing an appropriate interpolatory multi-
ple subdivision scheme. A drawback of shearlets is their relative large
determinant that leads to a substantial complexity. The aim of the
paper is to find scaling matrices in Zd×d which share the properties
of shearlet matrices, i.e. anisotropic expanding matrices with the so-
called slope resolution property, but with a smaller determinant. The
proposed matrices provide a directional multiple multiresolution anal-
ysis whose behaviour is illustrated by some numerical tests on images.

1 Introduction
Shearlets were introduced by [6] as a continuous transformation and quite
immediately became a popular tool in signal processing (see e.g. [7]) due to
the possibility of detecting directional features in the analysis process. In
the shearlet context, the scaling is performed by matrices of the form

M = D2S, D2 =

(
4Ip 0
0 2Id−p

)
∈ Rd×d, 0 < p < d, (1)
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and
S =

(
Ip ∗
0 Id−p

)
. (2)

The diagonal matrix D2 results in the the anisotropy of the resulting shear-
lets while the so-called shear matrix S, is responsible for the directionality
of the shearlets. With a proper mix of these two properties, shearlets give
a wavelet-like construction that is suited to deal with anisotropic problems
such as detection of the singularities along curves or wavefront resolution
[7, 8, 3].
In contrast to other approaches, such as curvelets or ridgelets, shearlets
admit, besides a transform, also a suitably extended version of the multires-
olution analysis and therefore an efficient implementation in terms of filter-
banks. This is the concept of Multiple Multiresolution Analysis (MMRA)
[8]. As for the classical multiresolution analysis, also the MMRA can be con-
nected to a convergent subdivision scheme, or more precisely to a multiple
subdivision scheme [13]. The refinement in a multiple subdivision scheme
is controlled by choosing different scaling matrices from a finite dictionary
(Mj : j ∈ Zs), where we use the convenient abbreviation Zs := {0, . . . , s−1}.
If those scaling matrices are products of a common anisotropic dilation ma-
trix with different shears, the resulting shearlet matrices yield a directionally
adapted analysis of a signal. In particular, if we set Mj = D2Sj , j ∈ Zs, an
n–fold product of such matrices,

Mε :=Mεn · · ·Mε1 , ε ∈ Zn
s ,

allows to explore singularities along a direction directly connected to the
sequence ε. In the shearlet case, this connection is essentially a binary
expansion of the slope [8] while for more general matrices the relationship
can be more complicated [2].
The key ingredient for the construction of a multiple subdivision scheme
and its associated filterbanks [12] is the dictionary of scaling matrices. It
turns out that, in order to have a well–defined (interpolatory) multiple sub-
division scheme and perfect reconstruction filterbanks, we need to consider
matrices (Mj : j ∈ Zs) that are expanding individually and jointly expanding
considering them all together. Shearlet scaling matrices quite automatically
satisfy these properties and they are also able to catch all the directions in
the space due to the so-called slope resolution property. This means that
any possible directions can be generated by Mε applied to a given refer-
ence direction. Therefore, any transform that analyses singularities across
this reference direction in the unsheared case, analyses singularities across
arbitrary lines for an appropriate ε.
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The drawback of the discrete shearlets is the huge determinant of the scaling
matrix which is 2p+d, as minimum, and increases dramatically with the
dimension d. The determinant of the scaling matrix gives the number of
analysis and synthesis filters needed in the critically sampled filterbank, so it
is related to the efficiency and the computational cost of any implementation.
Therefore, it is worthwhile to try to reduce, or even better minimize it.
The aim of this paper is to present a family of matrices with lower determi-
nant that in any dimension d enjoys all the valuable properties of shearlets
by essentially just giving up the requirement that the scaling has to be
parabolic.
This was also the aim of [2], where the authors present a set of matrices in
Z2×2 with minimum determinant among anisotropic integer valued matrices.
In contrast to that, here we consider matrices M ∈ Zd×d which are the
product of an anisotropic diagonal matrix of the form

D =

(
aIp 0
0 bId−p

)
, a 6= b > 1, 0 < p < d, (3)

with a shear matrix. The choice to work with matrices of this form is
motivated by the desire to preserve another feature of the shearlet matrices:
the so-called pseudo-commuting property [1]. Even if this property is not
necessary to construct a directional multiresolution analysis, it is very useful
to give an explicit expression for the iterated matrices Mε, ε ∈ Zn

s and the
associated refined grid M−1

ε Zd.
In this setting, the matrices with minimal determinant are

D =

(
3Ip 0
0 2Id−p

)
. (4)

In this paper, we consider exactly this type of matrices and we prove that
this new family has all the desired properties: they are expanding, jointly
expanding, and provide the slope resolution property as well as the pseudo
commuting property. Furthermore, it is possible to generate convergent
multiple subdivision schemes and filterbanks related to these matrices.
The paper is organized as follows. In Section 2, we recall some background
material. Sections 2.2 and 2.3 introduce the concepts of MMRA and the
related construction of multiple subdivision schemes and filterbanks for a
general set of jointly expanding matrices. In Sections 2.4 we study the
properties of shearlet scaling matrices and in Section 2.5 we recall some
theorems by [1] that show which unimodular matrices pseudo commute with
an anisotropic diagonal matrix in dimension d. This allows us to find pseudo-
commuting matrices. Then, in Section 3, we introduce our choice of scaling
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matrices for a general dimension d. These matrices are pseudo commuting
matrices and we prove that they satisfy all the requested properties. Finally,
in Section 4 few examples illustrate how our bidimensional matrices work
on images.

2 Background material
In this section, we recall some of the fundamental concepts needed for MM-
RAs.

2.1 Basic notation and definitions

All concepts that follow are based on expanding matrices which are the key
ingredient and fix the way to refine the given data, hence to manipulate
them. A matrix M ∈ Zd×d is called a dilation or expanding matrix for Zd if
all its eigenvalues are greater than one in absolute value, or, equivalently if
‖M−n‖ → 0 for some matrix norm as n increases. These properties suggest
that |detM | is an integer ≥ 2. A matrix is said to be isotropic if all its
eigenvalues have the same modulus and is called anisotropic if this is not
the case. In this paper we consider a set of s expanding matrices, denoted
by (Mj : j ∈ Zs) where Zs := {0, . . . , s− 1}.
In order to recover the lattice Zd from the shifts of the sublattice MZd, we
have to consider the cosets

Zd
ξ := ξ +MZd := {ξ +Mk : k ∈ Zd}, ξ ∈M [0, 1)d ∩ Zd,

where ξ is called the representer of the coset. Any two cosets are either
identical or disjoint, and the union of all cosets gives Zd; the number of
cosets is | detM |.
For the definition of a subdivision scheme, we have to fix some notation for
infinite sequences. The space of real valued bi-infinite sequences indexed by
Zd or, equivalently, the space of all functions Zd → R is denoted by `(Zd).
By `p(Zd), 1 ≤ p <∞, we denote the sequences such that

‖c‖`p(Zd) :=

∑
α∈Zd

|c(α)|p
1/p

<∞,

and use `∞(Zd) for all bounded sequences. Finally, `00(Zd) is set of sequences
from Zd to R with finite support.
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2.2 Multiple subdivision schemes and MMRA

The concept of multiresolution analysis provides the theoretical background
needed in the discrete wavelets context. Unlike curvelets and ridgelets,
shearlets allow to define and use a fully discrete transform based on cas-
caded filterbanks using the concept of MMRA. Here we recall the basic as-
pects of MMRA and show when and how it is possible to generate a multiple
multiresolution analysis with different families of scaling matrices.
A subdivision operator S : `(Zd) → `(Zd) based on a mask a ∈ `00(Zd) maps
a sequence c ∈ `(Zd) to the sequence given by

Sc =
∑
α∈Zd

a(· −Mα) c(α),

which is then interpreted as a function on the finer gridM−1Zd. An algebraic
tool in studying subdivision operators is its symbol, defined as the Laurent
polynomial whose coefficients are the values of the mask a,

a∗(z) =
∑
α∈Zd

a(α)zα, z ∈ (C \ {0})d.

As shown by [13], it is always possible to generate MMRA for an arbitrary
family of jointly expanding scaling matrices (Mj : j ∈ Zs) in the shearlet
context for an arbitrary dimension d, based on a generalization of subdivision
schemes: multiple subdivision.

Definition 1 A multiple subdivision scheme Sε consists of a dictionary (Sj :
j ∈ Zs) of s subdivision schemes with respect to dilatation matrices (Mj :
j ∈ Zs) and masks aj ∈ `00(Zd), j ∈ Zs, yielding the subdivision operators

Sjc =
∑
α∈Zd

aj(· −Mjα) c(α), j ∈ Zs.

Given n ∈ N and ε ∈ Zn
s , ε = (ε1, . . . , εn), the multiple subdivision operator

takes the form

Sεc = Sεn · · ·Sε1c =
∑
α∈Zd

aε(· −Mεα) c(α), aε ∈ `00(Zd),

where Mε :=Mεn · · ·Mε1.

In other words, the main idea of a multiple subdivision scheme is that in
each step of the iterative process one can choose an arbitrary subdivision
scheme from the family (Sj : j ∈ Zs).
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Definition 2 The multiple subdivision scheme is called (uniformly) con-
vergent if for any infinite sequence ε : N → Zs of digits and any c : Zd →
R, c ∈ C∞(Zd) there exists a uniformly continuous function fε,c : Rd → R
such that

lim
n→∞

sup
α∈Zd

∣∣Sεn · · ·Sε1c− fε,c
(
M−1

ε1 · · ·M−1
εn α

)∣∣ = 0,

and fε,c 6= 0 for at least one choice of c. Similar notions exist for convergence
in Lp(Rd), 1 ≤ p <∞ [13].

In multiple subdivision one considers all Sε simultaneously and a subdivision
scheme is convergent if all possible combinations of the subdivision schemes
converge (see for details [13, 12]. As a consequence, not only the individual
matrix Mj , j ∈ Zs has to be expanding, but we need that they are jointly
expanding, i.e. Mε is an expanding matrix for any choice ε ∈ Zn

s , n ∈
N. While in the shearlets context this property follows directly from the
particular choice of the Mj , j ∈ Zs, made there, for general families (Mj :
j ∈ Zs) is an additional assumption that has to be verified in each concrete
case.
From now on, we assume that (Mj : j ∈ Zs) is a family of jointly expanding
matrices in Zd×d. We recall the following generic construction for convergent
multiple subdivision schemes that relies on the algebraic properties of the
matrices Mj : given a scaling matrix Mj , j ∈ Zs, we follow [2] and consider
the Smith factorization

Mj = ΘjΣjΘ
′
j , (5)

where Θj ,Θ
′
j ∈ Zd are unimodular matrices, i.e., | detΘj | = |detΘ′

j | = 1,
and Σj is a diagonal matrix with diagonal values σjk, k = 1, . . . , d. Ordering
the diagonal values such as one values is divisible for the previous one, this
can also be turned into a Smith normal form, see [9] for details.
To construct a convergent subdivision scheme for Mj , we use a convergent
scheme for Σj by means of a tensor product of univariate interpolatory
schemes with arity equal to the respective diagonal values σjk and masks
bjk. The automatically convergent tensor product mask bΣj : Zd → R is
then of the form

bΣj :=

d⊗
k=1

bjk, bΣj (α) =

d∏
k=1

bjk(αk), α ∈ Zd, (6)

so that the corresponding symbol can be written as

b∗Σj
(z) =

∑
α∈Zd

bΣj (α) z
α =

d∏
k=1

b∗jk(zi), z ∈ (C \ {0})d. (7)
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Thus, the mask of the scheme related to Mj is

aj := bΣj (Θ
−1
j ·),

and its symbol becomes

a∗j (z) =
∑
α∈Zd

bΣj (Θ
−1
j α)zα =

∑
α∈Zd

bΣj (α)z
Θjα = b∗Σj

(zΘj ). (8)

In this way, the unimodular matrix Θj takes the role of a resampling op-
erator. Indeed, if Θ ∈ Zd×d is any unimodular matrix, then, by the above
reasoning, the resampled sequence c(Θ−1·) has symbol(

c(Θ−1·)
)∗

(z) = c∗(zΘ), zΘ :=
(
zθ1 , . . . , zθd

)
, Θ = [θ1, . . . , θd],

where θi, i = 1, . . . , d are the column vector of Θ.
The following concept by [13] is a generalization of the well–known (z +
1)–factor of univariate subdivision that works as a multivariate smoothing
operator.

Definition 3 If M = ΘΣΘ′ is a Smith factorization, the associated canon-
ical factor with respect to M is the Laurent polynomial

ψM (z) :=

d∏
i=1

σi−1∑
k=0

zθik =

d∏
i=1

zσiθi − 1

zθi − 1
, (9)

where again θi are the column vectors of Θ and σi are the diagonal elements
of Σ, i = 1, . . . , d.

Theorem 4 ([13]) The multiple subdivision scheme generated by (aj ,Mj),
with Laurent polynomial a∗j = ψMj , j ∈ Zs, converges in L1(Rd).

Since the autoconvolution of a compactly supported L1 function is continu-
ous, the following conclusion can be done directly from Theorem 4.

Corollary 5 The multiple subdivision scheme generated by {(aj ,Mj)} with
a∗j =

1
detMj

ψ2
Mj

, j ∈ Zs, converges to a continuous limit function.

To each Mj , j ∈ Zs, we can associate a subdivision scheme by means of
(8) by choosing a collection of univariate interpolatory subdivision schemes
with arities σjk, k = 1, . . . , d, where the latter ones are the diagonal values
of Σj in the Smith factorization of Mj . Considering the tensor product of
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such schemes we get a the multiple subdivision scheme generated by Mj ,
j ∈ Zs. As an example, if bjk is the piecewise linear interpolatory scheme
with arity σjk, it has mask

bjk =
1

σjk
(0, 1, 2, . . . , σjk − 1, σjk, σjk − 1, . . . , 2, 1, 0) ,

and its symbol is

b∗jk(z) =
z−(σjk−1)

σjk
(1 + z + z2 + . . .+ zσjk−1)2, k = 1, . . . , d.

According to (7), the symbol of (6) takes the form

b∗Σj
(z) =

d∏
k=1

z
−(σjk−1)
k

σjk

σjk−1∑
`=0

z`i

2

, (10)

hence, the symbol of the scheme associated to Mj (8) is

a∗j (z) = b∗Σj

(
zΘj
)
=

d∏
k=1

z−(σjk−1)θk

σjk

σjk−1∑
`=0

z` θk

2

. (11)

In this way we obtain a convergent multiple subdivision scheme.

Proposition 6 The scheme Sε, ε ∈ Zn
s and n ∈ N, as constructed above,

is a convergent multiple subdivision scheme that converges to a continuous
function.

Proof. For each matrix Mj , j ∈ Zs, the corresponding canonical factor is

ψMj (z) =
d∏

k=1

zσjkθk − 1

zσjk − 1
=

d∏
k=1

(1+ zθk + . . .+ z(σjk−1)θk) =
d∏

k=1

σjk−1∑
`=0

z`θi


and since

1

detMj
ψ2
Mj

(z) =
d∏

k=1

1

σjk

σjk−1∑
`=0

z`θk

2

is equal to a∗j up to the shift factors z−(σjk−1)θk , Corollary 5 yields that Sε,
ε ∈ Zn

s , n ∈ N, is convergent to a continuous limit function.
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2.3 Filterbanks

Filters, more precisely Linear and Time Invariant (LTI) filters [4], are linear
operators on discrete signals that commute with translations and are basic
building blocks of signal processing. Commuting with translations yields
that they are stationary processes and can be represented by convolutions,

Fc = f ∗ c =
∑
α∈Zd

f(· − α) c(α), c : Zd → R.

A filterbank consists of a finite set of analysis and synthesis filters, named fk
and gk, k ∈ Zm, respectively, and operations to split a given signal into m
subband components by means of filtering and downsampling, the so called
analysis process, and to recombine these components into an output signal
by upsampling and filtering, called the synthesis process (see [14]). The
downsampling operator ↓M , respect to an expanding matrix M , is defined
as

↓M c = c(M ·), c ∈ `(Zd).

To invert downsampling one introduces the upsampling operator ↑M

↑M c(α) =

{
c(M−1α), α ∈MZd,
0, α /∈MZd,

c ∈ `(Zd).

It is worthwhile to remark that only ↓M↑M is an identity while ↑M↓M is a
lossy operator due to the decimation involved in the upsampling

↑M↓M c(α) =

{
c(α), α ∈MZd,
0, α /∈MZd.

The expanding matrix M defines the decimation which is performed in the
downsampling after the convolution with the analysis filters. In the usual
case of critically sampled filterbanks, the decimation rate |detM | coincides
with the number m of filters in the filterbank in order to have the same
amount of information after decomposition. The filters f0 and g0 are nor-
mally low-pass filters and all the other filters fk, gk with k 6= 0 are chosen
as high-pass filters. Thus, the decomposition of a signal yields a coarse
component, convolving with f0 and downsampling, and m− 1 details com-
ponents given by the convolution of the signal with fk, k 6= 0, followed by
downsampling. Hence, analysis computes the vector sequences

c 7→ (ck :=↓M fk ∗ c : k ∈ Zm)
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while synthesis combines them into∑
k∈Zm

gk ∗ (↑M ck) .

In order to achieve perfect reconstruction, the usual standard assumption
for a reasonable filterbank, the analysis and synthesis parts have to be the
inverse of one another. This is equivalent to

c =
∑
k∈Zm

gk ∗ (↑M↓M fk ∗ c) , c : Zd → R.

It was shown, for example by [12], that starting with an interpolatory con-
vergent subdivision scheme it allows us to define filterbanks that achieve the
perfect reconstruction by the prediction-correction method. A convergent
interpolatory subdivision scheme with mask a takes coarse data and predicts
how to refine them, thus it can be used as a synthesis filters g0 = a. In this
case, the best way to define the low-pass analysis filter is to set f0 = δ, so
the analysis process samples the initial data. Since, in general, prediction
from decimation cannot reconstruct the signal, we introduce a correction
which defines the high-pass analysis filters as f∗k (z) = zξk −a∗−ξk

(zM ), where
ξk ∈ EM := M [0, 1)d ∩ Zd are the coset representers, k ∈ Zm \ {0} and
a−ξk the corresponding submask. This analysis can be complemented by a
canonical synthesis process yielding the filters

f∗0 (z) = 1, f∗k (z) = zξk − a−ξk(z
M ),

g∗0(z) = a∗(z), g∗k(z) = z−ξk ,
(12)

with ξk ∈ EM , k 6= 0. If we have not a single expanding matrix M but a
dictionary (Mj : j ∈ Zs) of expanding matrices, we consider s filterbanks,
one for each Mj , j ∈ Zs, defined in the same way as (12), hence

f∗j,0(z) = 1, f∗j,k(z) = zξk − a∗j,−ξk
(zMj ),

g∗j,0(z) = a∗j (z), g∗j,k(z) = z−ξk .
(13)

with ξk ∈ EMj , k 6= 0. In each of the filterbanks the number of filters is equal
to | detMj | = mj , j ∈ Zs, that is, the filterbanks are critically sampled.
At each step of decompositions we choose a matrix Mj , j ∈ Zs, and we
apply the corresponding analysis filters fj,k, k ∈ Zmj .
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2.4 Shear scaling matrices

In the context of shearlets, the dilatation matrices are of the form

M = DaSW , (14)

where Da is a parabolic expanding anisotropic diagonal matrix

Da =

(
a2Ip 0
0 a Id−p

)
, a ∈ N, a ≥ 2, p < d, (15)

and SW a shear matrix

SW =

(
Ip W
0 Id−p

)
, W ∈ Zp×(d−p). (16)

The shear matrix takes the role of a rotation which would be the desirable
transformation which, unfortunately, neither offers a group structure in the
continuous case [?, see]]furh2015 nor keeps the grid Zd invariant in the dis-
crete case. Shears, on the other hand, both work in the continuous and the
discrete case.
The matrix Da is called a parabolic scaling matrix because its eigenvalues
are squares of each other. This implies

detDa = ad+p,

which quickly leads to huge values when d increases. Since the determinant
of Da also corresponds to the number of filters for decomposition level, a
high value of this determinant is not at all desirable in applications where
a reasonable depth of decomposition could only be reached starting with a
very huge amount of input data.
Shear matrices (16) are unimodular matrices in Zd×d, i.e. detSW = ±1.
Their inverses are again shear matrices S−1

W = S−W . Moreover, they satisfy

Sj
W = SjW and SW SW ′ = SW+W ′ .

Due to these properties we have a pseudo-commuting property, namely

DaSW = Sa
WDa

which is very useful when dealing with powers of M and different scaling
matrices as in the discrete shearlet transform [8]. In fact

DaSW =

(
a2Ip 0
0 a Id−p

)(
Ip W
0 Id−p

)
=

(
a2Ip a2W
0 aId−p

)
=

(
Ip aW
0 Id−p

)(
a2Ip 0
0 aId−p

)
= SaWDa = Sa

WDa.
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The minimum determinant of (14) is given by a = 2

D2 =

(
4Ip 0
0 2Id−p

)
, (17)

and detD2 = 2p+d.
For the discrete shearlet transform it was proved by [8, 12, 13] that it is
possible to generate a MMRA and achieve perfect reconstruction if the ac-
cumulated scaling matrices

Mε =Mεn . . .Mε1 , ε = (ε1, . . . , εn) ∈ {0, . . . , s− 1}n =: Zn
s , n = |ε|,

satisfy the following properties: all Mε are expanding matrices, the lattice
M−1

ε Zd is a refinement of Zd and the family (M−1
j : j ∈ Zs) has the slope

resolution property.

Definition 7 A family (Mj : j ∈ Zs) provides the slope resolution if there
exists a reference line `0 through the origin such that for any line ` there
exists a sequence ε ∈ Zn

s such that Mε`0 → `.

[12] has verified these three properties for the parabolic matrix (17) in a
general dimension d. There, the pseudo commuting property

D2SW = S2
WD2

for parabolic matrices turned out to be useful because it allows to write
explicitly the formulas for the iterated matrices

Mε =
n∏

j=1

D2SWj = SW ′Dn
2 , W ′ =

n∑
j=1

2jWj .

For example, recalling that shear matrices are unimodular, the identity

M−1
ε Zd = D−n

2 S−W ′Zd = D−n
2 Zd,

allows us to conclude that M−1
ε Zd is a refinement of Zd for any n ∈ N and

ε ∈ Zn
s .

2.5 Pseudo-commuting matrices

Motivated by a simple and very useful property of the scaling matrices in
bivariate discrete shearlets (see [8]), the idea by [1] was to look for anisotropic
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diagonal expanding matrices D ∈ Zd×d and unimodular matrices A, not
necessarily shear matrices, such that there exist m,n ∈ N for which the
commuting relationship

DAm = AnD (18)

is true. If two matrices A,B satisfy the requirement (18), i.e., BAm = AnB,
we say that they are pseudo commuting. Of course, any pair of commuting
matrices has this property. It turns out (see [1]), that this depends strongly
on the dimension d. For d = 2 we have the following result.

Proposition 8 ([1]) Let D an anisotropic diagonal expanding matrix in
Z2×2 and A a non-diagonal unimodular matrix in Z2×2. The identity

DAm = AnD

is satisfied if and only if one of the following three cases holds:

1. Aq = I, and m, n such that m = `1q, n = `2q, for some `1, `2 ∈ Z;

2. D =

(
rk 0
0 k

)
, m, n such that r = n

m and A = ±
(
1 w
0 1

)
;

3. D =

(
rk 0
0 k

)
, m, n such that r = m

n and A = ±
(
1 0
w 1

)T

.

In particular, any 2 × 2 matrix that pseudo commutes with an anisotropic
scaling matrix has to be a shear matrix. For d = 3, the situation is different.

Proposition 9 ([1]) Let

D =

krs 0 0
0 kr 0
0 0 k

 , r, s ∈ Q+, r, s 6= 1,

and
A =

(
B v

0 λ

)
,

where B ∈ Z2×2 is unimodular and v ∈ Z2. Then DA = AnD holds for
some n ∈ N if and only A has one of the following forms

1. v = 0, λ = ±1, B a shear matrix and s = n or λ = −1, Bn = B,
s = 1 and n is odd;
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2. v 6= 0, λ = 1 and either B = ±
(
1 w
0 1

)
, s = n and r ∈ {1, n} or

B = ±
(
1 w
0 1

)T

, s = 1
n and r ∈ {1, 1n}.

3. λ = −1, n odd and either B = ±
(
1 w
0 1

)
, s = n, and r ∈ {1, 1n} or

B = ±
(
1 w
0 1

)T

, s = 1
n , and r ∈ {1, n}.

4. λ = 1, Bn = B, Bv = v, s = 1 and r = n.

A matrix B will be called n-periodic if Bn = B. Proposition 9 shows
that, in contrast to d = 2, there exists non-shear matrices in Z3×3 that
pseudo–commute with anisotropic diagonal matrices. The same extends to
higher dimensions.

Proposition 10 For d > 3 consider

D :=

(
krIp 0

0 kId−p

)
,

and let
A :=

(
B W

0 Id−p

)
,

where B ∈ Zp×p is a unimodular n-periodic matrix, W ∈ Zp×d−p, and
BW =W . Then the relation DA = AnD holds if r = n.

3 Anisotropic diagonal scaling matrices and shears
From the previous section we show that in order to generate a directional
multiple multiresolution analysis we have to consider a family of jointly ex-
panding matrices that satisfies the slope resolution property. Unfortunately,
parabolic matrices in form (17) have a huge determinant that grows rapidly
with the dimension d, so we choose here to work with an anisotropic diagonal
dilatation matrix with determinant as small as possible. This is obviously
the case for

D =

(
3Ip 0
0 2Id−p

)
. (19)

One of the most important application in the shearlet context is the detec-
tion of tangential hyperplanes in a point, because this permits us to catch

14



faces of a given contour. For this reason we choose p = d− 1 and we fix on
a dilatation matrix of the form

D =

(
3Id−1 0
0 2

)
. (20)

As for the bivariate shearlets (see [8]), this choice is arbitrary and creates an
asymmetry between the variables where the last variable is treated differ-
ently from the first d−1 ones with respect to which the shearing is symmet-
ric. We will also see that this prohibits the resolution of certain directions.
To obtain a system that resolves all possible directions, d multiresolution
systems have to be used where the special role is taken by all variables in
turn.
In two dimensions the difference between the parabolic matrix D2 and D
from (20) is still small, detD2 = 8 and detD = 6, but when d increase the
difference increases rapidly:

detD2 = 22d−1, detD = 2d
(
1 +

1

2

)d−1

,

see also Figure 1.

2 3 4 5 6 7 8

0

0.5

1

1.5

2

2.5

3

3.5
×10

4

Figure 1: Comparison between detD2 = 22d−1 (dash line) and detD =

2d
(
1 + 1

2

)d−1 (solid line) for d = 2, . . . , 8.

The special case d = 2 is discussed by [11], here we want to generalize to
dimension d.
We consider shear matrices of the form

Sj =

(
Id−1 −ej
0 1

)
, j ∈ Zd, (21)
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where ej , j ∈ Zd, are the vertices of the standard simplex in Rd−1, i.e., e0 = 0
and e1, . . . , ed−1 defined by (ej)k = δjk, k = 1, . . . , d− 1. By Proposition 10,
these matrices interact with the dilation matrix D in the following way:

DS2
j = S3

jD, j ∈ Zd. (22)

In analogy with the shearlet case in [8], we define the refinement matrices
Mj , j ∈ Zd, as

Mj := DS2
j =

(
3Id−1 −6ej
0 2

)
= S3

jD, (23)

whose inverses can be easily computed as

M−1
j = S−2

j D−1 =

(
1
3 Id−1 ej
0 1

2

)
. (24)

The multiple subdivision scheme is now governed by the matrices

Mε :=Mεn . . .Mε1 , ε = (ε1, . . . , εn) ∈ Zn
d , n ∈ N,

for which we can can give an explicit expression.

Lemma 11 For n ∈ N and ε ∈ Zn
d we have

M−1
ε =

(
3−nId−1 21−npε

(
2
3

)
0 2−n

)
, (25)

with the d− 1 multivariate polynomials

pε (x) =

n∑
j=1

xj−1eεj , x ∈ [0, 1].

Proof. Proceeding by induction on n, we first note that in the case n = 1
we obtain exactly the matrices M−1

ε , ε ∈ Zd in (24).
We now suppose that the claim is true for n > 1 and verify it for n+ 1 and
ε = (ε′, εn+1) ∈ Zn+1

d . The matrix M−1
ε becomes

M−1
ε =M−1

ε′ M
−1
εn+1

=

(
3−nId−1 21−npε′(2/3)

0 2−n

)(
3−1 eεn+1

0 2−1

)
=

(
3−(n+1)Id−1 2−npε′(2/3) + 3−neεn+1

0 2−(n+1)

)
,
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and taking into account that

2−npε′

(
2

3

)
+ 3−neεn+1 = 2−n

(
pε′

(
2

3

)
+

(
2

3

)n

eεn+1

)
= 2−n pε

(
2

3

)
we get (25).
Inverting (25), we also obtain the general expression for Mε, namely

Mε =

(
3nId−1 3n+1 qε(2/3)

0 2n

)
, qε (x) := −

n∑
j=1

xjeεj , ε ∈ Zn
d , n ∈ N.

(26)
Now we verify some properties of Mε that imply that these family of scal-
ing matrices is useful for a directional multiresolution analysis based on
an MMRA: they are jointly expanding, i.e., the grid M−1

ε Zd tends to Rd

uniformly and they satisfy a slope resolution property.

Proposition 12 (Mj : j ∈ Zd) are jointly expanding matrices.

Proof. We have to show that the joint spectral radius of the scaling matrices

ρ (Mj : j ∈ Zd) = lim
n→∞

max
ε∈Zn

d

∥∥M−1
ε

∥∥1/n ,
defined by [10], is strictly less than one. By the equivalence of norms on finite
dimensional spaces, we can choose the underlying matrix norm arbitrarily.
Using ‖·‖1, we obtain for n ∈ N that

max
ε∈Zn

d

∥∥M−1
ε

∥∥1/n
1

= max
ε∈Zn

d

∥∥∥∥(3−n 21−npε (2/3)
0 2−n

)∥∥∥∥1/n
1

= max
ε∈Zn

d

(
21−n

∥∥∥∥pε(2

3

)∥∥∥∥
1

+ 2−n

)1/n

≤ 1

2

2

n−1∑
j=0

(
2

3

)j

+ 1

1/n

≤ 1

2

2

∞∑
j=0

(
2

3

)j

+ 1

1/n

=
71/n

2

and therefore maxε∈Zn
d

∥∥M−1
ε

∥∥1/n
1

< 1 for n ≥ 3 independently of ε.
For each ε ∈ Zn

d , we can rewrite (26) as

Mε =

(
3nId−1 3n+1qε(2/3)

0 2n

)
= Dn

(
Id−1 3qε(2/3)
0 1

)
=: DnSε (27)
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and (25) as

M−1
ε =

(
3−nId−1 21−npε(2/3)

0 2−n

)
= D−n

(
Id−1 3

∑n
j=1

(
3
2

)n−j
eεj

0 1

)
=: D−nŜε. (28)

Taking inverses of (27) and (28) also yields

Mε = Ŝ−1
ε Dn, M−1

ε = S−1
ε D−n. (29)

These formulations of Mε and M−1
ε allow us to compute efficiently the grids

MεZd and M−1
ε Zd as transformations of the Dn or D−n refined grid. These

transformations are still shears, however, in contrast to the shearlet case
with the parabolic matrix D2, they have no integer translations any more.
Given a hyperplane H = {x ∈ Rd : vTx = 0} ⊂ Rd whose normal has the
property vd 6= 0, we can renormalize v such that vd = 1. Writing v = (t, 1)T ,
we call t ∈ Rd−1 the slope of the hyperplane H.
The next result shows that any such hyperplane can be obtained, up to
arbitrary precision, from a single reference hyperplane by applying a proper
matrixMε. This property is called slope resolution property and ensures that
an anisotropic transform which captures singularities across the reference
hyperplane can capture directional singularities across arbitrary hyperplanes
in a MMRA, where the modified direction can be directly read off from the
index ε. The slope of the reference hyperplane can even be chosen arbitrarily
in a scaled version of the standard simplex

∆d−1 :=

{
t ∈ Rd−1 : ti ≥ 0,

d−1∑
i=1

ti ≤ 1

}
.

Theorem 13 For any reference hyperplane H with slope t ∈ 6∆d−1, the
matrix family (Mj : j ∈ Zd) has the slope resolution property: for any
hyperplane H ′ with slope t′ ∈ Rd−1 and any δ > 0 there exists ε : N → Zd

such that ∥∥∥∥(t′1
)
− 2−nMε

(
t
1

)∥∥∥∥ < δ.

Proof. Let H ′ be any hyperplane with slope t′ ∈ Rd−1. A multiplication
with M−1

j , j ∈ Zd, changes the slope in the following way:

M−1
j

(
t
1

)
=

(
1
3 Id−1 ej
0 1

2

)(
t
1

)
=

1

2

(
2
3 t+ 2ej

1

)
, t ∈ Rd−1,
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(0,0) (4,0) (6,0)

(0,4)

(0,6)

(2,0)

(0,2)

h0

h2

h1

Figure 2: In two dimension (d − 1 = 2), we have three different functions
hj , j ∈ {0, 1, 2} and the union of h0(6∆2) (red), h1(6∆2) (green), h2(6∆2)
(orange) gives 6∆2.

due to which we define the affine contractions hj : Rd−1 → Rd−1 by

hj(t) :=
2

3
t+ 2ej , j ∈ Zd, (30)

which satisfy

hj(6∆d−1) =
2

3
6∆d−1 + 2ej = 4∆d−1 + 2ej ⊂ 6∆d−1 (31)

and ⋃
j∈Zd

hj(6∆d−1) = 6∆d−1, (32)

as visualized in Figure 2 for d = 3. As pointed out by [5], the compact set
6∆d−1 is an invariant space with respect to the contractions hj , j ∈ Zd and
for any compact subset X ⊂ Rd−1 the generating property

6∆d−1 = lim
n→∞

⋃
ε∈Zn

d

hε(X) (33)

holds true in the Hausdorff metric. For general ε ∈ Zn
d we have

M−1
ε

(
t
1

)
=

(
3−nId−1 21−npε

(
2
3

)
0 2−n

)(
t
1

)
= 2−n

((
2
3

)n
t+ 2pε

(
2
3

)
1

)
,

which involves the affine contractions

hε(t) = hεn
(
h(ε1,...,εn−1)(t)

)
=

(
2

3

)n

t+ 2pε

(
2

3

)
, ε ∈ Zn

d , n ∈ N.
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This iterative definition and (31) yield that

hε(6∆d−1) ⊂ 6∆d−1, ε ∈ Zn
d , n ∈ N. (34)

For given t′ ∈ Rd−1, and 0 < δ′ < δ, we first consider the compact set
Rδ′(t

′) = {u ∈ Rd−1 : ‖t′ − u‖1 ≤ δ′}, for which the generating property
(33) implies that there exist n1 ∈ N and ε1 ∈ Zn1

d such that

I := hε1
(
Rδ′(t

′)
)
∩ 6∆ 6= ∅,

Again by (33), this time applied to the closure of I, there exist n2 ∈ N and
ε2 ∈ Zn2

d such that

t ∈ hε2(I) ⊂ hε2
(
hε1
(
Rδ′(t

′)
))

=: hε
(
Rδ′(t

′)
)
, ε = (ε2, ε1) ∈ Zn

d , (35)

hence h−1
ε (t) ∈ Rδ′(t

′) or, equivalently,∥∥∥∥(t′1
)
− 2−nMε

(
t
1

)∥∥∥∥ ≤ δ′ < δ

as claimed.

4 Some numerical examples
Finally, we illustrate how these matrices work as a MMRA, see Section 2.2,
by providing some explicit examples and applying them to images. To that
end, we focus on the two dimensional case, where we consider the family of
matrices

M0 =

(
3 0
0 2

)
, M1 =

(
3 −6
0 2

)
, (36)

with det(Mj) = 6, for j ∈ Z2. This means that we have to provide 6 analysis
filters and 6 synthesis filters for each Mj , j ∈ Z2.
The Smith factorization form of the matrices is

M0 = IDI, M1 =

(
3 −6
0 2

)
=

(
1 −3
0 1

)(
3 0
0 2

)(
1 0
0 1

)
= S3DI.

(37)
Following the construction presented in Section 2.2, we start with two uni-
variate interpolatory subdivision schemes with scaling factors σ1 = 3 and
σ2 = 2, respectively, like the ternary and dyadic piecewise linear interpola-
tory schemes with masks

b1 =

(
. . . , 0,

1

3
,
2

3
, 1,

2

3
,
1

3
, 0, . . .

)
, b2 =

(
. . . , 0,

1

2
, 1,

1

2
, 0, . . .

)
.
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Using (11), the symbols of the subdivision schemes related to the matrices
M0 and M1 are

a∗0(z) = b∗D(z) =
z−2
1 z−1

2

6
(1 + z1 + z21)

2(1 + z2)
2, (38)

a∗1(z) = b∗D(z
S3
) =

z1z
−1
2

6
(1 + z1 + z21)

2(1 + z−3
1 z2)

2. (39)

Once we have the subdivision schemes for both the matrices we can com-
pute the filters using the prediction-correction method and (13). Then, the
analysis and synthesis filters for the diagonal matrix M0 are

f0,0 =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 , f0,1 =


0 0 0 0 0
0 0 0 0 0
0 −2

3 1 0 − 1
3

0 0 0 0 0
0 0 0 0 0

 , f0,2 =


0 0 0 0 0
0 0 0 0 0
0 −1

3 0 1 − 2
3

0 0 0 0 0
0 0 0 0 0

 ,

f0,3 =


0 0 − 1

2 0 0
0 0 1 0 0
0 0 −1

2 0 0
0 0 0 0 0
0 0 0 0 0

 , f0,4 =


0 − 1

3 0 0 − 1
6

0 0 1 0 0
0 −1

3 0 0 − 1
6

0 0 0 0 0
0 0 0 0 0

 , f0,5 =


0 − 1

6 0 0 − 1
3

0 0 0 1 0
0 −1

6 0 0 − 1
3

0 0 0 0 0
0 0 0 0 0



g0,0 =

 1
6

1
3

1
2

1
3

1
6

1
3

2
3 1 2

3
1
3

1
6

1
3

1
2

1
3

1
6

 , g0,1 =

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 , g0,2 =

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 ,

g0,3 =

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0

 , g0,4 =

0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

 , g0,5 =

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 ,

where the boldface entry highlights the (0, 0) element. In the same way we
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Figure 3: Multiple decomposition tree up to level 2.

obtain the analysis and synthesis filters for the matrix M1,

f1,0 =

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

 , f1,1 =

0 0 0 0 0 0
0 −2

3 1 0 − 1
3 0

0 0 0 0 0 0

 ,

f1,2 =

0 0 0 0 0
0 −1

3 0 1 − 2
3

0 0 0 0 0

 , f1,3 =

− 1
2 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 −1

2

 ,

f1,4 =

− 1
3 0 0 − 1

6 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −1

3 0 0 − 1
6

 ,

f1,5 =

− 1
6 0 0 − 1

3 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1

6 0 0 − 1
3



g1,0 =

 1
6

1
3

1
2

1
3

1
6 0 0 0 0 0 0

0 0 0 1
3

2
3 1 2

3
1
3 0 0 0

0 0 0 0 0 0 1
6

1
3

1
2

1
3

1
6

 , g1,1 =

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 ,

g1,2 =

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 , g1,3 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 ,

g1,4 =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 , g1,5 =

0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

 .

In each step of the analysis process we can now choose either M0 or M1.
After two decomposition levels we thus have 4 different decompositions, as
depicted by the tree in Figure 3. If we apply two levels of decompositions on
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Figure 4: Two level decomposition of the image in Figure 6a. The six images
in each row are the scaling coefficients c2ε and details coefficients d2ε,k with
ε ∈ Z2 and k = 1, . . . , 5. Each row represents a branch of the tree in Figure
3 from ε = (0, 0) to (1, 1).

Figure 5: Two level decomposition of the image in Figure 6a using
Daubechies wavelet of order 2. The 4 images are the scaling coefficients
c2 and details coefficients along the horizontal, vertical, diagonal direction,
from left to right.

the test image in Figure 6a, then the resulting scaling and details coefficients
are displayed in Figure 4. The effect of the matrix M1, or better of the
shear, on the decomposition coefficients, is to shift the dominant directions
for edges in the image. The more applications of M1 we do, the more
the resulting image is “rotated” and stretched, as shown in the last row of
Figure 4.
As for wavelets, each detail coefficient detects features along a certain direc-
tion. In the tensor product wavelet case these relevant directions are only
the horizontal, the vertical and the diagonal one, see Figure 5. In our case
the combination of the details directions ξk with the shearing of the images
allows us to detect different directional features in different branches of the
tree. One can analyze this behavior looking at Figures 6 and 7 where, after
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two levels and following all the different branches separately, we reconstruct
only the details while removing the scaling coefficients. We recall that the
detail coefficients are higher along the directions considered, this clearly
shows which directions are considered for each different branch.
Due to the tree structure, the analysis with shearlets is highly redundant.
This could be a disadvantage from the point of view of memory consump-
tion but keeping only the well approximated parts from each branch will
eventually have to potential for very efficient compression. In fact once we
have computed the full decomposition tree, we can reconstruct the original
image either following a single branch or combining together the branches
that emerge from the same knot. In the second case, every time we re-
construct one level we take some average between the reconstructed images
that refer to the same knot in the tree. In Figures 6 and 7, we compare
the reconstructed details following a specific branch and combining all the
branches, see Figures 6b and 7b. The reconstructed details as mean of all
the branches detects more features than the reconstruction along a single
branch. Moreover, taking the mean of all the branches mitigates the arti-
facts that occur in the single branch. For example, the double application of
M1 shows some blur on the edges of the image, see the bottom right images
in Figures 6 and 7. This effect is less visible if we reconstruct averaging all
the branches of the tree, Figures 6b and 7b.

5 Conclusion
We proposed a shearlet-like decomposition family of matrices that allow to
define a directional transform, based on shears and a nonparabolic scaling
matrix. These matrices are jointly expanding, thus suitable for a multiple
multiresolution process. In particular, we show how to define a convergent
multiple subdivision scheme and the respective filterbanks using this family
of matrices. In any dimension d, we have also proved that they satisfy
the slope resolution property, crucial for having a tool capable to capture
the directional features of a signal in arbitrary directions. Moreover, the
proposed matrices satisfy the pseudo commuting property that allows a
faster computation of the refined (coarse) lattice.
In contrast to classical shearlets, the matrices considered here have smaller
determinant. This is a useful feature because the determinant gives the
number of filters to be considered and so it is strictly related to the compu-
tational complexity of the implementation.
We have also illustrated by means of a few examples how this family of ma-
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(a) Original image (b) All the tree

(c) ε = (0, 0) (d) ε = (0, 1)

(e) ε = (1, 0) (f) ε = (1, 1)

Figure 6: Reconstructed details following different branches of the tree (Fig.
3) after two levels of decomposition.
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(a) Original image (b) All the tree

(c) ε = (0, 0) (d) ε = (0, 1)

(e) ε = (1, 0) (f) ε = (1, 1)

Figure 7: Reconstructed details, after two levels of decompositions, following
different branches of the tree or considering all the tree together.
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trices acts on images and the potential of using it. In fact, as expected, the
details of the images capture the discontinuities along different directions.
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